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Abstract
Large social graph datasets, pertaining to millions of social network users and
the billions of relationships between them; complex, high dimensional vector data
of large database systems; and petabytes of environmental sensor data are being
generated every day. Employing this flood of data for the benefit of all, is one of
the main challenges of the 21st century[129, 88, 51].

This thesis advances the field of data mining and machine learning for a vari-
ety of data types. For vector data two novel subspace clustering techniques are
introduced, focusing on redundancy reduction and automation to increase the
efficiency of the algorithms. For graph data, this thesis proposes two novel cluster-
ing methods, i.e., community detection methods, based on minimal patterns with
again no-redundancy and automation. Automation of all algorithms is achieved
by creating a coding scheme using the minimum description length principle[161].
Further, an efficient classification method, predicting natural hazards, specifically
tropical storms, using extremely large environmental sensor data from historic
timeseries is developed. High efficiency is achieved by applying tensor factorization
techniques to large graph and timeseries data. Last, this thesis shows a way
to seamlessly integrate and automatically optimize these methods in modern
relational main-memory databases, employing examples of classical clustering and
classification approaches.

All introduced methods are vastly experimentally evaluated and have already
contributed to the respective research society in most cases. The integration of
these methods into relational main-memory databases allows a wide leap from the
theoretical method creation process to praxis-oriented database usage.
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Kurzfassung
Große soziale Graph-datensätze, die zu Millionen von Nutzern sozialer Netzwerke und
den Milliarden Beziehungen zwischen ihnen gehören; komplexe, hochdimensionale Vek-
tordaten von großen Datenbanksystemen; und Petabytes von Umweltsensordaten, die
jeden Tag generiert werden. Diese Flut an Daten nutzbar zu machen zum Gewinn aller,
ist eine der größten und wichtigsten Herausforderungen des 21. Jahrhunderts [129, 88, 51].

Diese Arbeit bringt das wissenschaftliche Feld von Data Mining und Maschinellem
Lernen für eine Auswahl solcher Datentypen voran: Für Vektordaten werden in dieser
Arbeit zwei Subspace Clustering Techniken vorgestellt, die sich um die Effizienz dieser
Verfahren zu steigern auf Redundanzreduzierung und Automatisierung fokussieren. Für
Graphdaten stellt diese Arbeit zwei neue Clusteringmethoden bzw. das Herausbilden von
Gruppen in Graphen vor, die zum einen auf der Erkennung minimaler Muster innerhalb
solcher Gruppen basieren und auch wiederum Redundanzreduktion und Automatisierung
beinhalten. Die Automatisierung aller Algorithmen wird durch die Generierung eines
Kodierungsschematas der minimalen Beschreibungslänge (einer Kompressionsmethode)
[161] erreicht. Des weiteren betont diese Arbeit eine effiziente Klassifizierungsmethode,
welche Naturkatastrophen, insbesondere tropische Stürme, auf großen Umweltsensordaten
historischer Zeitreihen vorhersagt. Hohe Effizienz der Algorithmen auf großen Graph-
und Zeitreihendaten wird durch das Anwenden der Tensorfaktorisierungs-Technik er-
reicht. Zuletzt zeigt diese Arbeit wie man Methoden dieser Art nahtlos und automatisch
optimiert in moderne relationale Hauptspeicherdatenbanken integrieren kann. Dies wird
am Beispiel klassischer Clustering- und Klassifikationsverfahren verdeutlicht.

Alle eingeführten Methoden sind weitreichend experimentell evaluiert und haben in
vielen Fällen bereits einen Beitrag in der jeweiligen Wissenschaft geleistet. Die Integrati-
on von all diesen Methoden in relationale Hauptspeicherdatenbanken zeigt einen weiten
Sprung zwischen dem theoretischen Methodenkreierungsprozess und der praxisorientierten
Datenbanknutzung.
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Introduction

CHAPTER 1

Large graph datasets of social networks from millions of users and billions of
relationships between them; complex, high dimensional relation data of huge
dabase systems and petabytes of streamed environmental sensor data generated
everyday in the world. Creating benefit of such “big data” is nowadays challenge
and predictor for the growth and welfare of our societies [135, 92, 54]. But “big
data” does not only come in sheer volume, it is about the complexity of the data
measured in four specific attributes called the four “V’s” [43][27]:

volume The actual amount of data, that still need to be complex enough. Data,
that simply needs lots of physical space does not necessarily belong to the big data
phenomenon.

variety The different types of structured and unstructured data that organizations
can collect, such as vector-type data, graph data, timeseries data and multimedia
data.

velocity An indication of how quickly the data can be made available for analysis;
the in-and out stream of data.

veracity An indication of data integrity or fuzzyness and the ability for an organi-
zation to trust the data and be able to confidently use it to make crucial decisions.

1
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Figure 1.1: The knowldege discovery in databases process.

The science of extracting useful information from big data sets is usually referred
to as “data mining”, “machine learning” or “data science” (with slightly different
focus [164]) and often the actual analysis of data is one step of the full Knowledge
Discovery process. The Knowledge Discovery in Databases (KDD) process is a very
interdisciplinary topic on the interface of the fields of statistics, machine learning
and database systems. As the analyzed applications are of practical importance,
there are now numerous books and surveys in the area [70] [181] [61] [63] [71] [67].

The KDD process is an iterative process depicted in Figure 1.1. It consists
of data selection, data cleaning, data transformation and reduction, mining, inter-
pretation and evaluation, and finally incorporation of the mined knowledge with
the larger decision making process. The development of efficient computational ap-
proaches to data modeling (finding patterns), data cleaning, and data reduction of
high-dimensional large databases. Methods from databases, statistics, algorithmic
complexity, and optimization are used to build efficient scalable systems that are
seamlessly integrated with the relational/OLAP database structure. This enables
database users to easily access and successfully apply data mining technology in
their applications.
As the KDD process is an essential model in data mining, we describe its

individual steps in the following:

data selection The first step in the KDD process is about selecting which part
of the data should be analyzed. In the easiest case this is done via queries
inside a database. When the data is stored in separate files instead of a structured
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(relational) database, various problems emerge like redundancies and inconsistencies.
Thus often a database for selecting and storing the data is chosen.

data cleaning Data cleaning is the process of consistently and fully combine data
from different sources and conventions. This is the largest task in most KDD
projects and as such takes a lot of time [71, 63]. Time, that can be greatly reduced
by using a data warehouse, as the data is already cleaned in such systems.

data transformation This step performs a transformation of input data to gen-
erate output that can cope with the restrictions of the data mining algorithm that
follows. Many algorithms are not able to process all kind of data types, which makes
a normalization or pruning of the values necessary. This task is often combined
with specific attribute selection in either manual or heuristic fashion for high quality
results.

data mining The actual data mining describes the application of efficient al-
gorithms (for database users: analytics), to find important patterns inside the
provided data (sub-) set [67]. Typical data mining approaches are clustering, outlier
detection, classification and association rule mining. We cover the most important
ones for this thesis in detail in Section 1.1.

interpretation and evaluation The last step of the KDD-process is to present
the results found by the system to domain experts, who will evaluate it further
depending on the original goals. If these goals are not reached the process is
iterated on any given step.

This thesis focuses mainly on the data ming step, by introducing new meth-
ods for data mining. This is done without leaving aside the importance of a
database system, as an efficient system for processing data mining analytics.

1.1 Knowledge Discovery in Heterogeneous Data
As knowledge discovery is a wide and interdisciplinary field, such is the data and
conventional use of names for such data. For clarity we explain the used conventions
for naming different types of data throughout this thesis here.
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1.1.1 Vector Data

Figure 1.2: Vector Data: numerical (age, wage) and categorical (gender) attributes
of a relation.

The term vector data stems from mathematics and the structure used in databases
most frequently: relations. Thus, vector data is also called relational data. A
relation or table is one possibility to get the unstructured structured, by imposing
attributes or dimensions to a set of similar information (such like name, age or
wage). In the relations of database system one tuple can be stored in vectors what
may have caused the name of such data. Another term for a set of vectors or tuples
would be a data matrix.

Vector data itself may include sub types: numeric values and categorical values.
A numeric value is a value that is defined by a given number, and the number
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is the actual mathematical value like in the age or wage attributes of Figure 1.2.
While categorical values indicate a given category like in gender where either “f”
and “m” can stand for female and male or equally assigned “0” and “1”, with “0”
and “1” having a different meaning than their numeric counterparts. Algorithms
that solve mixed data types in vector data, i.e. data consisting of numeric and
categorical data types, are still relatively rare in state-of-the-art research despite
their high occurence in database systems [162].
The concept of storing other collections of data (like lists) in a tuple as done

in object-relational databases can not be modeled by classic vector data alone.
Reasonably in this case already one tuple would need to be modeled as matrix,
and the full data would need to be modeled as a tensor (n-dimensional matrix).

1.1.2 Spatio-Temporal Data

There are two extensions of plain vector data: spatial and temporal data. Spatial
data relates to all data gathered from a geographic environment and as such have
two special attributes (latitude and longitude) relating to the geographic position of
this input data besides the remaining other attributes. Temporal data differs from
standard vector data in the sense, that they have a timestamp (date) attribute and
can be either found in a static or in a dynamic streaming setting. Several vectors
with timestamps are called timeseries data. A vector set combining timestamps
and geographic locations is called spatio-temporal data.
Mining such data has a much higher complexity than mining vector data alone

[64]. The challenge consist largely of that these specific data or geo-location
attributes need a special treatment compared to the other attributes of either
numeric or categorical nature. In this thesis we focus on vector data first and later
go on to a framework for large spatio-temporal weather data.

1.1.3 Graph Data

The structure of graph data lays emphasis on depicting the relationships among
objects. This generates a possibility to model complex relationship types easily.
Any kind of data can be modeled as a graph structure, with vertices representing
data objects and edges expressing relationships between pairs of data objects.
Moreover, in many application fields, like social networks, biology, commerce etc.
modeling specific cases as a graph is the only sensible option.
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We distinguish several different graph types:

undirected graph a set of nodes with two nodes being pairwise connected via
one edge.

directed graph a set of nodes with connecting single edges. edges have a direction
how they connect two nodes.

weighted graph either directed or undirected graphs with edges having a weight
or distance.

attributed graph undirected or directed graph with nodes having relational
attributes (combining graph data with vector data). Also known as property graph.

bipartite graph two sets of nodes all interconnected with the same type of edges.

multi-relational graph set of nodes connected with several types of edges.

heterogenenous graph several sets of nodes connected with several types of
edges. Most complex and considered to be the model that depicts reality best. [87]

Due to the specific nature of data modelled as graph, mining a graph has an
outstanding position compared to the ubiquitous vector or relational data. This
is shown clearly in the analytics of graph data: While some graph mining has
equivalent but somewhat differently names like community detection (equivalent
to clustering in vector data) and anomaly detection (outlier detection), there are
also tasks specific to graph data only like link prediction and node rankings. These
task have in common that they are all linked to the unique structure of a network.
For example finding the hubs (most outstanding vertice) or spokes of a graph
[109], finding topological substructures like stars, trees, [175] link prediction for
predicting the missing links out of the existing ones in dynamic networks[127],
graph traversals [104]and many others[136][132].
In this thesis we show two new methods for community detection, one on

undirected and the other for attributed graphs with overlapping communities.
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1.2 Important Techniques and Systems
In this section we give an overview of all important techniques and systems
mentioned throughout this thesis. We start with the techniques for data analysis.

1.2.1 Subspace Clustering
The general goal for clustering is to categorize data in several groups (cluster),
in which data points (objects) in the same cluster are maximal similar and data
points in different cluster are maximal dissimilar. Similarity measures are in most
cases modeled as distance functions. Distance functions model similarity on the
given attributes of an data object. The smaller the distance of two objects are,
the more similar, the larger the distance the more dissimilar. Different algorithms
use different distance function or other metrics to evaluate similarity. We consider
model-based methods (like k-Means [131]) and density-based methods (like DBScan
[62]) as the most widely known categories. The most important difference between
model-based and density-based methodologies are that model-based algorithms
have it hard to find arbitrary cluster shapes as depicted in Figure 1.3, but are
usually more efficient to implement.

Figure 1.3: (a) axis parallel clustering shapes (b) arbitrary clustering shapes

In the paragraph before all clustering methods are working on full-space di-
mensions (all attributes are considered). But in this thesis we focus on subspace
clustering. Subspace clustering tries to find clusters in several sub-sets of all dimen-
sions, so called subspaces. Consider for example five dimensions A,B,C,D,E then
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a subspace clusterer would find two clusters in the dimensions A,B,C and three
clusters in C,D,E. In this example the clusterings are overlapping in dimension
C, non-overlapping (partitioning) subspace clustering is also possible.

Subspace clustering differs from full-space clustering that it has a major compu-
tational drawback: the so called curse of dimensionality. This drawback states, if
the subspaces are not axis-parallel, an infinite number of combinations of subspaces
is possible. Hence, subspace clustering algorithms utilize heuristics to remain
computationally feasible, at the risk of producing inferior results [121]. For exam-
ple, the downward-closure property (greedy bottom up-approach) can be used to
build higher – dimensional subspaces only by combining lower-dimensional ones
to result in a full space – an approach taken by most of the traditional subspace
clustering algorithms such as CLIQUE [10] and SUBCLU.[107]. One drawback
using such heuristics needs our special attention regarding the quality of the results
of such heuristics in subspace clustering. Often times such greedy bottom – up
or top-down approaches (dividing the full space into subspaces) generate a lot of
redundant results, blurring the actually good results and in the worst case making
such results impossible to interpret [24]. For this reason our methods focus on
automatic redundancy reduction for axis-parallel and arbitrary subspace clustering.

1.2.2 Outlier Detection

“An outlier is an observation which deviates so much from the other observations as
to arouse suspicions that it was generated by a different mechanism” [122]. Outlier
detection is closely related to clustering, as it depends on the cluster definition
which objects do belong to a group and which do not and are thus regarded as
outliers or noise. Still, it is not sensible to use the clustering approaches for outlier
detection, as they are optimized to find clusters and not outliers. Accuracy of outlier
detection depends on how good the clustering algorithm captures the structure of
clusters. A set of many abnormal data objects that are similar to each other would
be recognized as a cluster rather than as outliers or noise. Sample applications
of outlier detection approaches include: fraud detection, credit card misuse, rare
diseases etc.

In this thesis we give a new notion for outliers in an spatio-temporal environment
of sensoric weather data regarding the given neighbors in the vicinity for one spatial
data point in time.
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1.2.3 Classification
Classification is a quite different approach from truly exploratory data analysis
approaches like clustering and outlier detection. It works on the interface of data
mining and machine learning, as parts of the data needs to be labeled (manually
analyzed), to create a model that can be used for fitting the remaining data in an
automatized fashion. Generally, the classification tasks can be divided into two
parts:

1. training This part is about actually learning the given model on a training
set of the full data. This training data is labeled so that for any given object the
correct class label can be checked and predicted. The training part is usually solved
by unprocessed training data.

2. testing In difference to the training part, we use the model created in training
and mine knowledge out of the (remaining) data set. This data is called the test
set and explicit knowledge is created with this data by predicting a label to a
given object (it is not known whether this is true or false and solely depends on
the model created beforehand). Basically we can only call this part “knowledge
discovery”.

The training and testing division is also used to gain classification accuracy.
Clearly, this method is not applicable if the training data with known class label is
very small. In this scenario usually the whole data set is used for training and test,
and cross validation can be applied. Cross validation is a divide approach of the
full data where always one part of the data is used for training in an incremental
fashion. The evaluation of each increment follows afterwards.

Another typical accuracy measurement for classification is the confusion matrix,
that shows which objects are classified into the correct class label. Logically this
accuracy measure only occurs during the training phase as only here a gold label is
available. For consistency reasons it is important to evaluate which input data is
used for the test data. In the extreme example of taking the same data for test
and training, the classification accuracy might be high, but this is erroneous. This
effect is called overfitting.

Most well known approaches are Support Vector Machines [35], Bayes classifiers
[126] which base on conditioned probabilities for attribute values of the different
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classes, and Nearest Neighbor classifiers which miss out of finding explicit knowledge
but instead work directly on the training data. Decision Tree classifiers [16]
deliver explicit knowledge by creating results in decision tree format. All featured
approaches are usually evaluated on small training data sets that are stored main
memory resistant.

In this thesis we show one new method for classifying spatio-temporal data and
we show how to implement and integrate the algorithm Naive Bayes [126] in main
memory database systems.

1.2.4 Minimum Description Length

Figure 1.4: Minimum Description Length: Compressing the same data with three
different models. The shortest bitstring in case (2) of model (grey) and
data (white) yields the best representation. (Image Source [163])

Minimum Description Length (MDL) is a methodology deriving from information-
theory that serves several important purposes for creating new methods in het-
erogeneous data. Its most general purpose is to generate a measurable quality by
compressing the new model in combination with the given data set. Thus, such
compression is called loss-less, as the full data set is included into the compressed
bitstring. As example consider Figure 1.4. Here, three cases for compressing
a model consisting of gaussian mixture models and the underlying data set are
depicted. In case (1) a model of only one gaussian maps a given data set. As the
model is easy to compress the more complex underlying data is not, thus requiring
a much larger bitcode than the model. Case (2) shows the most balanced case
where two gaussians are modelling the data set creating two ball-sized groups.
The number of bits for model and data set is equal. Lastly, in case (3) the model
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is getting more complex using three gaussians, the model needs more bits to be
represented than the data, resulting in a longer bit string than in case (2). Clearly
the model best representing the data is case (2) as can be distinguished by the
number of bits generated by MDL, where the shortest bitstring always represents
the best model for the data. Thus MDL is called a model-selector that for any
given method, be it clustering, outlier detection, classification or others shows
which model best represents the given data. With that knowledge we are able to
run algorithms without their hard to set input parameters, letting the method
automatically choose the number of parameters needed.
In this thesis we show further ways of using the strength of MDL by creating

own coding schemes for the given tasks. We use it as objective function (model
selector) to determine which of our models best reduces redundancy for subspace
clustering and community detection, automatizing our approaches by getting rid of
all input parameters for the given use case.

1.2.5 Tensor Factorization

Figure 1.5: PARAFAC decomposition of a three-way tensor as a sum of n outer
products (rank-one tensors).

Tensor factorization is in general a decomposition of a tensor into its latent factors
(also known as concepts or components) [161]. Tensors are, essentially, multi-
dimensional generalizations of matrices; for instance, a two dimensional tensor
is a common matrix, and a three dimensional tensor is a cubic structure [161].
Each dimension of a tensor is called a ‘mode‘. For example in Figure 1.5 the cubic
(3-mode) tensor is decomposed into n latent factors. The modes of the latent factors
(a|b|c)1, .., (a|b|c)n are each a weighted subset of the attributes in the original tensor.
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To use a tensor for structuring the underlying data is especially useful for
complex settings like in timeseries (spatio-temporal) data or in graph data. Tensors
and tensor factorization are powerful tools to model and analyze data, and are
increasingly gaining popularity in data mining and machine learning [119]. Tensor
factorizations like PARAFAC [161] and Tucker3 [123] can be seen as a generalization
of matrix factorizations, such as the Singular Value Decomposition [14] or Principal
Component Analysis [42] for higher order matrices (tensors). As such, tensor
factorization serves as a dimensionality reduction method of higher dimensional
matrices. Recent research [157] has found a strong correlation between tensor
factorization and co-clustering. The co-clustering problem seeks to simultaneously
partition the rows and the columns of a matrix to produce “coherent” , overlapping
groups called co-clusters.
In this thesis we apply the PARCUBE method [158] who enhances standard

PARAFAC for very large data in an efficient manner. First, we apply it for data
in a spatio-temporal context, hoping to cluster and reduce dimensionality the
latent factors for several hypothesis. Second, we use tensor factorization as useful
representation in an attributed graph clustering setting, by showing the network
structure in the first two modes and the attributes in the third mode of the tensor
and factorize them to achieve efficient co-clustering of such complex data structure.

1.2.6 HyPer
HyPer is our database system of choice, as it is a (former) research project with
several outstanding attributes compared to other relational database systems that
contribute to the efficiency of data mining algorithms. In the following we go
into detail and show which general aspects of HyPer have the greatest impact on
running data analysis algorithms in this system:

in-memory DBMS HyPer claims that most data fits into main-memory (nowa-
days up to several TB) [116], and with data already stored in main-memory the
bottleneck of loading data from disk is easily avoided. Besides, even with already
loaded data in main-memory, a disk-based systems is slower than a DBMS operating
fully in main-memory. This helps complex data mining algorithms even further.

hybrid OLTP and OLAP DBMS HyPer belongs to the emerging class of database
systems that have – in addition to an OLTP engine – capabilities to run OLAP
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queries directly on the transactional data – be it vector, geo-, or graph data
[155][182]. This empowers data mining techniques in the sense, that the data is
always updated and restructured and not staled. Other known hybrid systems
include the database SAP HANA and its associated research prototype [66].

compilation framework A lot of overhead is avoided by HyPer on query execution
by its compilation framework [148] enabling a fast runtime for data-intensive queries.
In particular, by a special technique called data centric code generation, where
SQL is put to assembly and then compiled instead of standard function calls
done by the database’s interpreter. Here, the query execution is divided into two
phases: compiling and actual execution. For data exploration algorithms this
means a strong increase in runtime as unnecessary branches are skipped by prior
compilation.

multi-version concurrency control HyPer’s multi-version concurrency control
(MVCC) system [150] is exceptionally useful for long-running data exploration
queries. It is similar to a timestamp-ordering approach, that keeps older versions
of just changed tuples besides tracking which transaction changed which tuple.
Especially complex workloads benefit from this kind of versioning, as their runtime
is unaffected by other OLTP and OLAP queries.

instant loading Loading different data types into the analytics system takes a
good amount of time compared to the actual analysis in several standalone systems.
For readability and portability reasons data is often stored as plain text outside of
database systems. For this purpose CSV files are commonly used. In traditional
database systems, the intense parsing of these types of files constitutes a significant
bottleneck in the loading process and thereby severely slow down the process of
getting data into the system. HyPer managed to double the performance of this
loading process and achieves “wire speed” with their instant loading system making
the bottleneck of loading large data insignificant[143].

adaptive parallelism In several use cases including data mining analytics, some
data is heavily skewed which creates a bottleneck for internal parallelization of one
query. HyPer solves this by dividing the data in small morsel to apply adaptive
threading [125].
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In this thesis we show how data mining algorithms can be most efficiently and
effectively integrated into a hybrid DBMS such as HyPer. We prove this runtime
efficiency on three classical data mining approaches for graph and vector data: the
clustering algorithm k-Means [131], the classification algorithm Naive Bayes [126]
and the graph node ranking method Pagerank [34].

1.3 Contribution and Outline
All in all, the main contribution of this thesis is the creation of new state-of-art
methods for analyzing a vast variety of data types, depending on the application
these data derive from. For all novel methods creating new techniques like several
specific coding schemes by Minimum Description Length (MDL) [80], elaborating
new quality functions and specific modeling of the data was crucial besides combin-
ing existing approaches.

The remainder of the thesis is structured as follows:

Chapter 2: This chapter covers two methods that focus on creating non-redundant
clustering results in complex high-dimensional vector data. The two methods differ
in the sense what clusterings they are able to find: the first, NORD, finds axis-
parallel clusters while the second is the natural extension of NORD, ISAAC,
which does find all kind of clustering shapes, so called arbitrary clusterings. Both
approaches are automized through minimum description length, which objective
function does rely on non-redundant results for subspace clustering.

Chapter 3: This chapter covers two methods for graph analyzation, both on
undirected graphs one without attributes and one with attributes on the nodes. As
complexity rises strongly with the attributes, for larger graph data a dimensional
reduction method with tensor factorization was applied to gain efficient throughput,
where the first approach, CXPRIME, works with automized description length on
minimal graphlets.

Chapter 4: While the first two chapter deal with clustering problems, this chapter
shows a framework on large temporal-spatial data that solves a classification
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problem. Predicting natural hazards in global weather data is the goal in this
study. We solve this by applying different existing or little varied techniques in a
full framework and evaluate it. The framework combines data mining tasks with
machine learning approaches.

Chapter 5: This chapter combines all other chapters in this thesis and shows
how to create them and all other data mining algorithms efficiently as operators in
the main memory database system HyPer. This is explicitly done by the example
of other, traditional data mining approaches like K-Means [131] for clustering,
Pagerank [34] for graph mining and NaiveBayes [126] for classification algorithms.
Our approach takes HyPer specific architecture into account and enables our
algorithms execution plan to be modified by the databases’ optimizer.





Methods for Vector Data

CHAPTER 2

Parts of this chapter have previously been published in ICDM 2016
[203] and at PAKDD 2017 [99].

In this Chapter we focus on methods applied to vector data as explained in Section
1.1.1. We show two new methods on numeric data that are heavily optimized on
reducing redundant behavior in subspace clustering. The first method, NORD,
works on axis parallel data while the second method, ISAAC, expands NORD for
arbitrary dimensions.

2.1 NORD - Non-redundant Subspace Clustering
Clustering in general is a powerful exploration tool capable of uncovering previously
unknown patterns in data. Subspace clustering is an extension of traditional
clustering, based on the observation that different clusters (groups of data points)
may exist in different subspaces within a dataset. Subspace clustering has attracted
a lot of attention because in many applications it is natural that objects are clustered
flexibly in different subspaces. Typical applications for subspace clustering are e.g.:

• life science data, like genes under different experimental conditions [23] or in
identification and classification of diseases [110]

• security and privacy in recommender systems [206],

17
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Figure 2.1: A possible redundant output of an unspecific subspace clustering method
depicted with our new visualization technique. The clusters C1 to C5
show their redundancy due to their position on the information plane.
The higher the distance d between the clusters, the less redundant they
are to each other.

• computer vision, e.g. image/motion/video segmentation [108][47] as well as
image representation and compression[198]

Allowing objects to be assigned to more than one cluster unfortunately not only
yields interesting novel information which is valuable for interpretation but also can
also contain a lot of redundant, already seen information. If the data contains a rich
cluster structure in some subspace, all subspaces and all super-subspaces will also
tend to exhibit some cluster structure. But is this information interesting? In most
cases the answer is no. Provided that these clusterings are not superior in terms of
quality, they are not interesting because they represent redundant information.

Consider the synthetic example in Figure 4.1. Here, we show a possible redundant
output of some undefined (subspace-) clustering method with our visualization that
is based on information-theoretic measures. The positioning of the six clusters (the
bars) in Figure 4.1 is chosen such, that a pair-wise distance metric, which considers
the set of dimensions and the set of objects of each clusters, is maintained. As
the clusters C1 to C5 standing very close to each other, their novel information
content is quite small. The higher the distance d the higher is the differing in the
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information content as for example in cluster C6 Redundant results do only make
sense when the quality of the clusters is superior to others.
What do we mean by quality? Our algorithm NORD relies on the information-

theoretic idea of linking data mining to data compression. Any kind of non-random
patterns can be exploited to compress data. The stronger the patterns and the
better an algorithm succeeds in detecting them, the better is the compression rate.
We define the quality of a cluster as its contribution to the overall compression
rate.
The challenge is to distinguish interesting novel information from undesired

redundancy. This is done by our novel clustering method NORD (for NOn-
ReDundant) via information-theoretic measures that automatically balances the
novelty and quality of a subspace cluster. The information we gain by a subspace
cluster on our data is two-fold: we learn which attributes span the subspace of the
cluster and we learn which objects belong to that cluster. Information-theoretic
measures allow to quantify the amount of novel information provided by each
cluster as well as its redundancy to the remaining clusters. We combine this idea
with the quality measure to obtain a novel information-theoretic optimization goal
for subspace clustering, that automatically balances both aspects.

The remainder of this subchapter is organized as follows. After giving an overview
of our notation we define the characteristics of a clustering on a information-theoretic
foundation to make it measurable in Section 2.1.1. Here, we also describe the
visualization of our method that is closely connected to the defined quality of a
cluster. Section 2.1.2 introduces the algorithmic concept. The evaluation of our
algorithm NORD takes place in Section 2.1.3. An overview of the related work is
given in Section 2.1.4.

Contributions

1. Non-redundant Subspace Clustering by Balancing Quality and In-
formation: Besides optimizing the cluster quality we consider maximizing
the amount of non-redundant novel information in terms of cluster and
subspace identification as a second major optimization goal for subspace clus-
tering, see Section 2.1.1. NORD is the first approach relying on information
theory to make both aspects measurable in a comparable way such that they
can be integrated into a common objective function.
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2. Efficient and Automatic Clustering: Besides the parameters required
for redundancy control the comparison methods require further parameters
specific to the underlying clustering method, e.g., density thresholds. We also
avoid such difficult to estimate parameters relying on the Minimum Descrip-
tion Length Principle. Section 2.1.1 discusses the overall optimization goal.
We propose an efficient heuristic algorithm which automatically identifies the
most interesting high-quality clusters, see Section 2.1.2.

2.1.1 Goal: Balancing Quality and Novelty

In this section we elaborate the theoretic foundation of our proposed algorithm
called NORD. The first subsection, Section 2.1.1 defines the two correlated quality
measures to assess the interestingness of a single subspace cluster: redundancy
and information. In Section 2.1.1 we unify these measures into a single coding
scheme. We formalize all measures from an information-theoretic perspective,
which allows naturally balancing them in a single objective function that emerges
in the overall optimization goal for our algorithm. These measures are paramount
in our presented algorithm in order to assess the overall novelty of a cluster, i.e.,
the interestingness in terms of information given other clusters. Finally, in Section
2.1.1 we present a useful and elegant visualization technique for clustering results
returned by NORD.

Notations

Definition 1 (Database). Let DB ⊂ Rd be a finite collection of d-dimensional
vectors. We call n := |DB| the database size, d the dimensionality of DB and we
call the vector S := (1, ..., d) the set of all dimensions, or full space.

Definition 2 (A Subspace Cluster). A subspace cluster C is defined as a pair
C = (S ⊆ S,O ⊆ DB), where C.O ⊆ DB is a set of data points existing in a
cluster C of subspace C.S.

Definition 3 (Subspace Clustering). A subspace clustering C = {C1, ...,Ck} is
a set of k subspace clusters such that ∀Ci,Cj ∈ C,Ci 6= Cj : Ci.S = Cj.S ⇒
Ci.O ∩ Cj.O = ∅.
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Making Cluster Information Measurable

In this section, we present the formal definitions exploited by NORD: novelty,
redundancy and overall information of a subspace cluster.
The information provided by a subspace cluster on the data is two-fold: Infor-

mation about which objects are contained in the cluster and information about
which dimensions span the corresponding subspace, more specifically:

Definition 4 (Information of a Subspace Cluster). The amount of information a
subspace cluster C = (S,O) provides on the data is:

H(C) = H(O) +H(S), where (2.1)

is the number of data points in a subspace cluster C and |DB| is the number of
vectors in the full data set then H(O) denotes the entropy of the cluster labels, i.e.

H(O) = − |O|
|DB|

· log2
|O|
|DB|

+ |DB \O|
|DB|

· log2
|DB \O|
|DB|

,

and analogously for the dimensions.
H(C) is a measure which quantifies in bits how much novel information cluster

C provides on our data set. As a subspace cluster represents a subset of objects
and dimensions of the data space, H(C) is the sum of the entropies of object- and
dimension-assignments.

The information of multiple subspace clusters can be highly redundant. High
redundancy can be due to the fact that multiple clusters are composed by similar
subsets of the objects and/or reside in similar subspaces of the data space. It is
therefore interesting to quantify how much non-redundant information a single
cluster contributes to the overall clustering result.

The information of a subspace cluster thus usually consists of a novel part and a
redundant part as can be seen in Figure 2.13. This figure represents the information
of a single cluster by a corresponding circle. The information shared by both cluster
is called redundancy, while the information shared by no other cluster is called
novelty. It is clear that a single cluster may have a high information, but in the
context of many similar clusters, it’s novelty may be much smaller. We formally
define the amount of non-redundant information among two subspace clusters as
follows.
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(a) two cluster (b) Information of both cluster

Figure 2.2: The information content of two cluster. The overlapping part of cluster
1 and cluster 2 is redundant, the other parts are novel information
provided by this one cluster. Together, novelty and redundancy form
the full information of a cluster.

Definition 5 (Non-redundant Information between Two Subspace Clusters). The
amount of non-redundant information of two subspace clusters C1 = (O1,S1) and
C2 = (O2,S2) is defined as:

NR(C1,C2) = V I(O1,O2) + V I(S1,S2), where (2.2)

V I denotes the Variation of Information, i.e. V I(C1,C2) = H(C1) + H(C2) −
2I(C1,C2) with I(C1,C2) is the mutual information of both clusters I(C1,C2) =
|O1∩O2|

n
· log2

|O1∩O2|
|DB| ·

|O1|
|DB| ·

|O2|
|DB|

NR is a metric, since it is the sum of two metrics. In [137] the authors used V I
as similarity measure for comparing the results of different approaches to traditional
partitioning clustering and proved that it is a metric. We use the basic concept of
V I to quantify the similarity of the information which two subspace clusters from
the result set of our method provide on the data. A NR of zero among C1 and C2

implies that V I(O1,O2) and V I(S1,S2) are zero, i.e. both clusters are composed
of stochastically independent subsets of objects and dimensions of the data.

Encoding Quality

We follow an information-theoretic perspective to quantify the quality of a subspace
cluster. To measure the quality of a subspace cluster we regard a subspace cluster



Chapter 2. Vector Data 23

as a pattern which we can exploit to compress the data. The more information (in
bits) we can save by having identified some subspace cluster C in the data, the
higher its quality. We first define how we can encode the set of objects O belonging
to some subspace cluster C = (O,S).
We model the data of a subspace cluster C = (O,S) by a probability density

function pdfC = No(µC ,σC). In a nutshell, the coding cost of a subspace cluster C
corresponds to the deviation of the subspace clusters points from its expectation.
Formally,

Definition 6 (Coding cost of a Subspace Cluster). Let pdfC = No(µC ,σC) be a
probability density function. The coding costs of a subspace cluster C = (O,S)
consist of two parts, data costs dc and parameter costs pc, i.e. costpre(C) =
dc(C) + pc(C) with

dc(C) =
∑
o∈C

log2
1

p(o, pdfC(πS(o))) and (2.3)

pc(C) = |params|2 · log2 |O|,

where πS(o) is the projection of object o to subspace S, params is the set of
parameters of pdfC, p(o, pdfC(o)) is a function that returns the probability that
the distance between o and a random point sampled from pdfC is greater than the
distance between o and the expectation E(pdfC) of pdfC, formally:

p(o, pdfC) =
∫
x∈S

pdfC(x)İ(dist(o,x) > dist(E(pdfC),x)),

E(pdfC) =
∫
x∈S

pdfC(x) · x. (2.4)

The data cost dc is provided by the negative log-likelihood of all associated
points w.r.t. the PDF. The parameters of the PDF are determined after projecting
the objects into the subspace S of the cluster. The better the cluster model fits
the data, the smaller is this term. By using the dual logarithm we obtain the
coding length in bit. In pc(C) the first term represents the costs required to encode
the |params| model parameters of the pdf, in case of a spherical Gaussian pdf we
have |p| = 2 · |O|. Following central results from information theory [137][169], we
use 1

2 · log2 |C| to represent a parameter. The second term represents the costs
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required to encode the cluster assignment and the last term the costs to describe
the subspace of the cluster.

Example 1. Let C = (O,S) be a subspace cluster in a single dimension S,
containing the set of points O = 2, 2, 3, 9. Let pdfC be a uniform distribution in
the interval [0, 10]. We obtain E(pdfC) = 4. Following Equation 2.4 we obtain
p(2, pdfC) = 0.6, p(3, pdfC) = 0.8 and p(9, pdfC) = 0.1. Following Equation 2.3

dc(C) = log2
1

0.6 + log2
1

0.6 + log2
1

0.8 + log2
1

0.1 =

0.737 + 0.737 + 0.322 + 3.322 = 5.118.

We see that the majority of the coding cost of C is contributed by the outlying
point having value 9. Intuitively, we have to add more information to explain
this deviation from the expectation. We argue that the data cost dc can be used as
indication of the quality of the conciseness of a subspace cluster. At the same time,
we obtain

pc = 2
2 · log2 |O| = 1 · 2 = 2,

thus yielding a total

costpre(C) = dc(C) + pc(C) = 7.118.

In the remainder of this chapter we use a spherical Gaussian PDF requiring
|p| = 2 · |S| parameters (mean, variance) but our coding scheme can be extended to
support different distributions and rotated clusters. Intuitively, the smaller dc(C)
the better is C. However, it is difficult to judge dc(C) since without a reference
coding cost, the absolute value does not say much. Therefore, we first introduce
a baseline coding cost for unclustered objects and dimensions before defining the
quality of a cluster as the saved costs over this baseline.

Definition 7 (Baseline Coding Cost). The baseline coding cost for some unclustered
data set U is as follows:

db(U) =
∑
u∈U

log2( 1
pdfDB(u)). (2.5)

The baseline is unimodal with parameters estimated from the complete data set DB
and therefore denoted by PDFDB.
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Figure 2.3: Figure Left: Sending order of the clusters of a clustering to a receiver.
While the first cluster is sent in total, all subsequent ones are only
sending their novel information. Figure Right: Estimating an arbitrary
oriented cluster by microclusters with m = 5.

It is useful to compare the baseline coding cost of the full data set DB in full-
dimensional space A which models all data as one unimodal PDF in comparison to
the coding costs of any intermediate or final subspace clustering result. Subspace
clustering only makes sense if we can improve on the baseline coding cost, otherwise
we have evidence that our data does not contain any subspace clusters which can
be represented by our cluster model. It is also useful to consider the baseline coding
cost of a subspace cluster to define its quality in a comparable way:

Definition 8 (Quality of a Subspace Cluster). The quality of a subspace cluster
C = (O,S) is provided by the savings in bit over the baseline:

Q(C) = db(U)− costpre(C). (2.6)

To facilitate the comparison of the quality of different clusters, we often also
consider the normalized quality Q̂(C) = Q(C)

|O| which represents the average number
of bit saved per object over the baseline.

Balancing Quality and Information

Having formalized quality and information, we exploit the Minimum Description
Length (MDL) [170] for coping with two challenges: We not only aim at automati-
cally selecting the number and dimensionality for the subspace clusters but also
aim at balancing among information and quality of the clusters. In other words, the
second aspect means that the better the quality of a subspace cluster is, the more
redundancy we allow w.r.t. the remaining clusters in terms of object assignment
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and subspace identification. The more novel information a cluster provides the
lower its quality can be.

Clearly, information and quality need to be considered together: Only optimizing
quality leads to the well-known problem of redundancy in subspace clustering, see
Section 2.1.1. Only considering the amount of novel information, a completely non-
sense result consisting of randomly selected subsets of the objects as clusters residing
in subspaces of randomly selected dimensions would be optimal for any data set.
The MDL principle avoids this by relating data mining to data compression. Imagine
the data needs to be transmitted from a sender to a receiver via a communication
channel. If the data contains patterns, in our case subspace clusters, we can exploit
them to compress the data. More specifically, we minimize the total length of a
two-part code: (1) The data cost representing the deviations of the data from the
model, and (2) the parameter costs, representing the costs for encoding the model
itself, i.e. the clusters, the cluster assignment and the corresponding subspaces. We
formalize the description length of a subspace cluster before providing the overall
objective function.

Definition 9 (Description Length of a Subspace Cluster). The full description
length of a subspace cluster C extends the coding costs costpre(C) in Def. 6 for
extra parameter costs pc describing the cluster object assignments and the cluster
subspace assignments.

cost(C) = costpre(C) + |O| · log2
n

|O|
+ |S| · log2

d

|S|
. (2.7)

This coding scheme naturally balances quality and information: For a result
consisting of many high quality but very redundant clusters, the data costs are low
but the parameter costs are unnecessarily high because of many similar subspaces
and clusters, and therefore the MDL score is far from its optimum. The result with
random non-sense clusters has excessively high data costs due to low cluster quality
and therefore scores very bad. However, this basic coding scheme encodes each
cluster separately and does not consider any dependencies among clusters. However,
since we already know that dependencies exist, since objects and dimensions can
be assigned to multiple clusters, we should also exploit this information for more
compact coding. Since the clusters need to be encoded in some sequential order
to be transferred from a sender to a receiver over a communication channel, only
the coding costs of the last cluster correspond to its novelty. In all other cases,
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we do not have the information of all other clusters available. How to efficiently
find a useful coding order? We perform a greedy heuristic approach based on the
VI-metric.

We rank the clusters according to their overlap in terms of mutual information
of the object assignment and start the encoding with the cluster having the highest
entropy. Since this is the first cluster, we need to encode it with its information,
cf. Equation 2.1. In the next steps, we always select that cluster which has the
minimal VI to the previous cluster as the next cluster to be encoded. We encode
its ID-information with a bitstring corresponding to the novelty of the cluster w.r.t.
all previously encoded clusters. If subspace clusters overlap in the dimensions and
the objects, the overlapping part of the data is coded multiple times if we assume
independence which is not necessary. Instead, it suffices for each overlapping object
and dimension to encode the deviations from the previous cluster in our sorting
order as depicted in Figure 2.3.
Last, we define the overall optimization goal for our subspace clustering which

corresponds to minimizing the overall cost of the sorted cluster sequence:

Definition 10 (Overall Optimization Goal). Our optimization goal is to minimize
the coding cost of the overall subspace clustering result, i.e.

min
∑
Ci∈C

cost(Ci|Cj <s Ci).

Interpretable results

We explain our visualization on a synthetic example dataset with originally 10
dimensions with its result depicted in Figure 2.4 . This example refers to six
clusters: Three high quality clusters in three dimensional space {D0,D1,D4}, two
clusters of lower quality in the dimension {D2} and the remaining unclustered
dimensions with very low quality {D3,D5,D6,D7,D8,D9}. The quality of the
clustering as defined in Definition 8 is scaled on the y-axis (the height of the bars),
while the plane spanned by the x-axis and z-axis depicts the dimensionality-reduced
Variation of Information (VI) matrix of the clustering. We apply Multidimensional
Scaling (MDS) to embed the VI-Matrix. By doing so, the position of a cluster to
the other clusters shows the level of similar information content in-between the
different clusters. The spatially closer a cluster is to a respected other cluster.
While the more similar data points and dimensions they share, the farer away they
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(a) Novelty in Object Assignments (b) Novelty in Subspaces

Figure 2.4: Visualization of quality and novelty on a synthetic example data set.
Separated for the objects and the subspaces of the clustering. While
the clusters seem correlated in the subspaces, their objects differ a lot.
Best viewed in color.

are on the plane, the more different they are. To facilitate the illustration, we
show our running example in two separate figures, one for object novelty and one
for subspace novelty. In both figures, the cluster of lowest quality colored in red
corresponds to the unclustered objects. The three high quality clusters seem quite
related in Figure 2.4b as they are spatially close in their subspace, but as Figure
2.4a tells, their objects differ quite a bit. Usually NORD creates a visualization
that combines object and subspace novelty in one plot, as can be seen in all other
illustrations in this chapter.

2.1.2 Algorithm: NORD

After formalizing our quality functions and how to optimize the compression, we
will now explain the algorithm of our approach in detail. Our algorithm is a greedy
bottom-up approach divided into two phases: First, the initialization phase for
creating the microclusters and second a recursive refinement step in which the
initial quality of the clustering is improved by a) combining these microclusters b)
removing redundancy by choosing and merging the most similar clusters first.
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Initialization phase

Our initialization phase – although quite simple – contains one of the main concepts
used in our algorithm and provides the algorithms’ flexibility to find arbitrarily-
oriented clusters: creating so called microclusters similar to the one in [186].
The idea is to create – in this case spherical gaussian - clusters as small as

reasonable in terms of runtime and quality to later on merge them according
to our quality function. Combining these microclusters even enables us to find
arbitrary-shaped clusters as illustrated in Figure 2.3 on the right. The creation of
these microclusters is described in detail in Algorithm 1. Here, the crucial part
is to set and fit the inner parameter m – the number of minimal data points in
one microcluster – according to the given data set DB. As a preprocessing step
we initially set m to n, the overall number of data points, and recalculate the
exact m iteratively depending on how many cluster are necessary to have at least
the minimum of data points m included in a microcluster. Also, the result of our
clusterer should have at least m data points per microcluster to ensure that our
function works properly. The parameter m is significantly important for runtime
and quality of the algorithm and its value is experimentally evaluated depending
on the number of objects O in the experimental Section 2.2.4.

Subroutine 1. Initialization
Input: Numeric data set DB
1: for each one dimensional subspace S ∈ S = {s1, s2, . . . , sd} do
2: find the maximum number k microcluster M , where |M | > m in S
3: end for
4: return one dimensional microclusters M .

Raising Quality

With now every dimension of the data set consisting of very small microclusters the
quality as defined in Definition 8 provided by our cost function is supposed to be
quite low. Now, raising the quality in the first step considers only the quality per
dimension but does not yet involve combining these dimensions. Hence, every single
dimension is processed individually for raising the quality, by greedily merging the
microclusters to their real underlying cluster structure as can be seen in Algorithm
2. In detail, the coding cost is calculated for every pair of clusters. Exactly, one
entry in the cost matrix CMcc corresponds to the MDL of two merged cluster minus
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the same two clusters separately compressed. The costs of two clusters separately
include higher parameter and id-costs than the merged cluster. Since our clusters
are usually initially way too small merging often pays off resulting in a negative
entry of the cost matrix (cc < 0). If this is the case, the two microclusters will get
merged to achieve a higher overall quality. The recursive merging stops when our
quality function does not further improve.

Subroutine 2. Raising Quality Step
Input: Initialization result from Subroutine 1
1: for every dimension d do
2: Calculate the cost matrix CMcc(M ,M) cf. Section 2.1.1
3: end for
4: while minimum coding cost cc <0 do
5: Merge the microclusters with minimum cc
6: end while
7: return one-dimensional high quality clusters C.

Merging Redundant Clusters

After merging every single dimension to its highest possible quality outcome, the
dimensions are combined to higher dimensional subspaces. For this process we
need a smart suggestion how to search through every subspace to not end up in
exponential possibilities. This smart suggestion is provided by the information-
theoretical concept of Variation of Information (VI). With VI we are enabled to
measure novel information compared to other clustering results. The cluster pairs,
providing the least novel information in terms of VI are the ones which are very
similar to each other, thus not that interesting on their own. Those are the ones
suggested by VI to be merged with each other. But a suggestion is not a proof
that this would be a correct decision. The real decision whether it is a good choice
to merge two - often multi-dimensional - clusters globally is done by our quality
function. If the suggestions holds, which means in general the costs are decreased,
the algorithm goes on recursively, if not, the merging is rolled back and other
suggestions are tried until the algorithm finishes in a local cost optimum. The
overall procedure is described in Algorithm 3.
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Algorithm 3. Non-Redundant Algorithm NORD
Input: Numeric, high dimensional data set DB
Output: Overlapping label (optional)
1: Initialization;
2: for all one dimensional microcluster M do
3: Generate the coding cost CC as base cost bc cf. Section 2.1.1
4: end for
5: Apply quality step cf. Subroutine 2;
6: Re-generate CC
7: while CC decreases AND CC > 0 do
8: for every two (one dimensional) cluster do
9: Calculate symmetric VI-Matrix V I(Ci,Cj) cf. Section 2.1.1
10: end for
11: Rank the minimal VI entries
12: Select (next) minimum entry from V I
13: Merge the clusters with highest redundancy
14: Re-calculate CC cf. Section 2.1.1
15: end while
16: Repeat several times until convergence.
17: Compute visualization cf. Section 2.1.1
18: return non-redundant Clustering C.

Complexity Analysis

But the single steps of our heuristic approach are efficient: Our initialization step
where the creation of microclusters takes place is determined by the runtime of our
partitioning clusterer which is O(nkdi), with k being the number of microclusters
chosen and i the number of iterations. Then, for raising the quality of these one
dimensional clusters needs to create the cost matrix Mcc for every combination
of clusterlabel l, for which the MDL for every cluster combination is calculated.
As the quality function from the MDL is linear in the number of objects O by
exploiting the gaussian entropy, the overall runtime of this step is O(l2O). For
the last step, the heuristic search via a matrix MV I that holds the variation of
information (VI) is also quadratic in the number of matrix entries. The VI itself
needs a linear calculation over the number of clusterlabel l for the entropy H and
a quadratic one for the mutual information I for the number of dimensions d.
Therefore the overall procedure for creating a smart suggestion from the VI, costs
O(M2

V I ld
2).
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2.1.3 Experimental Evaluation

In this section, we compare NORD with recent representatives of non-redundant
subspace clustering paradigms like RESCU [144], INSCY [18]and STATPC [139].
For a fair comparison we implemented NORD in JAVA and used the evaluation
frameworks OpenSubspace [145] and OutRules [146], WEKA extensions, where all
mentioned competitor methods are implemented in JAVA as well. The frameworks
also support standard parameter settings for each approach, which makes it easier
to find the optimal selection of parameter for the comparison methods. All runtime
experiments were done on the same machine, an Intel Core Quad with 3 GHz and
6 GB main memory.

Quality Evaluation Measures

Before starting with the actual evaluation, we chose to explain the used quality
measures for our synthetic and real data sets as it has been quite a matter of
debate what quality measure to use when. We measure quality as the F1-score,
which is the harmonic mean of precision and recall and most of the time alone
used for subspace clustering evaluation as can be seen in most of the related work
[18][139]. The second used measure is NMI (normalized mutual information), an
established quality measure for partitioning clustering and accuracy as used in
classification. All of them have their advantages and disadvantages and are more or
less adequate in different contexts. The F1-score (also called F-measure, F1-value
etc.) measures the average purity of a clustering depending on the label which is
most often appearing inside a cluster, while NMI measures the general agreement
among given class labels and the cluster labels assigned by the algorithm. Since
NMI has been designed for partitioning clustering, we cannot apply it in the real
data experiments since usually only one labeling of the objects into classes is
available and not multiple cluster labels as detected in subspace clustering. On
the synthetic experiments we exactly know about the multiple cluster labels of
each object and therefore can provide a comparison by slightly extending NMI:
we compute the NMI considering each distinct combination of cluster labels as
one class. We report the F1-score in the same way for the synthetic experiments.
F1-score and NMI suffer from the fact that the subspace labelling (multiple label)
is not comparable to projected clustering label used by these quality measures.
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For that reason we cannot apply classification accuracy for showing a clustering
quality result, but it gives an extra hint on the general underlying data especially
in combination with the F1-score. The accuracy result is only vulnerable when
the clusters are of very different sizes. Here it can be quite high for a very bad
clustering (for example all data points are in one cluster, and the second cluster is
very small). This is balanced by the F1-score, while accuracy on the other hand
could balance the F1-score if the result would have a very high number of cluster.
We believe with this selection of quality measures, a fair and thorough comparison
of quality can be given.

Synthetic Datas

For the evaluation on synthetic data, all generated data sets correspond to variants
mentioned in this subchapter. If the modifications are stronger it is explained in
detail in the text. The only parameter of our method is the minimal number of

Figure 2.5: Quality and runtime evaluation of inner parameter m.

points inside a microcluster m which is used in the initialization phase of NORD
inside the algorithm. It basically corresponds to the minimal cluster size that
can be detected and should be set to a small value. However, depending on the
dimensionality of the data set, it also should not be set too small in order to ensure
that the parameters of the microclusters can be estimated.

In Figure 2.5 we show now experimentally that this parameter m is very robust
in a wide range without affecting the quality and the runtime of the clustering
algorithm. Here, Figure 2.5(a) shows that all quality measures stay at a stable level
in the range of m = 5, .., 35. Note that 35 already represents 2% of the full data set
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of size 1500 points. Figure 2.5(b) shows that the runtime remains stable until using
less than 10 points per microcluster. A smaller size is anyhow not desirable since
we need to have some points to estimate the cluster model parameters. Therefore,
we set m to a constant value of 10 for all following experiments, as a small value
being stable in quality and runtime, and being far enough away from the critical
mass (smaller than 5) for every data set size.

Figure 2.6: Quality evaluation for scaling the variances (average variance shown on
x-axis).

Scaling the variance allows us to experimental evaluate the level of overlapping
between different clusters and how the algorithm reacts to it. The variances are
given in Figure 2.6 as the average variance of two clusters. For example if the plot
shows a variance of 35, then this combines a higher variance of 50 and a lower
variance 20. Figure 2.6 shows clearly that for all methods the quality decreases
with a higher overlap. Depending on how redundancy is implemented and removed
in the different approaches raises the quality. STATPC as approximate method has
the biggest problems with the mutually overlapping data points that come with
varying the variance of the cluster while NORD achieves the highest results in NMI
as well as in F1-score.

We now study how the algorithms behave when increasing the number of cluster
labels, which increases the number of subspaces containing clusters. Depicted
in Figure 2.7 you see the scaling in range of [1,10] with 1 corresponding to each
found subspace cluster having exactly one label in all subspaces like in projected
clustering and 10 as an extreme case would result in having several clusters that
each only occur in every single dimension for a 10 dimensional data set. We explain
STATPC’s extreme value in F1-score and NMI due to the fact that it creates a
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Figure 2.7: Quality Evaluation on the number of cluster label

clustering with many single clusters in full dimensional space. All others have it
harder the more cluster label combinations are given, with NORD achieving the
overall highest quality.

Figure 2.8: Scalability runtime experiments for dimension size and db size.

For scalability we show runtime experiments for db size (number of data points)
and dimension size as well as quality evaluation for scaling the variances of our
synthetic data sets. Figure 2.8 shows the plots for all comparison methods. While
NORD scales similar with RESCU for the db size, it outperforms all other algorithms
when scaling the dimensions of the data set. Besides the level of redundancy removal
also seems to affect the runtime performance. STATPC as the only one having
only approximative redundancy removal scales the worst compared to the fully
non-redundant comparison methods.
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Dataset Liver (345,6,2) Shape(160,17,2)
Algorithm F1-score Accuracy F1-score Accuracy
NORD 0.64 0.65 0.56 0.56
INSCY 0.62 0.59 0.56 0.61
STATPC 0.57 0.58 0.31 0.62
RESCU 0.62 0.61 0.60 0.73
Dataset Diabetes (768,8,2) Wages(534,10,2)
Algorithm F1-score Accuracy F1-score Accuracy
NORD 0.71 0.65 0.68 0.72
INSCY 0.58 0.65 0.27 0.66
STATPC 0.39 0.64 0.51 0.72
RESCU 0.71 0.79 0.66 0.65
Dataset Genes (4381,24,2) Metab.(9584,43,4)
Algorithm F1-score Accuracy F1-score Accuracy
NORD 0.66 0.86 0.93 0.86
INSCY 0.33 0.45 0.77 0.76
STATPC 0.50 0.52 0.65 0.69
RESCU – – – –

Table 2.1: Quality measures F1-value and Accuracy for real world data sets. The
caption of the data set provides [data set(size, dimensionality, number
clusterlabel)]. The best results are bold.

Real World Data

For the real world data set evaluation we compare all comparison methods on
six data sets as seen in Table 2.1 from different sources and various sizes. While
diabetes is the original Pima Indian diabetes data from the UCI Machine Learning
repository [19]1, the liver and shape data set are taken from the Opensubspace
webpage 2. They are originally drawn from UCI benchmark data sets as well.
The data set wages is also publicly available on a webpage 3 and the genes data
set belongs to the Spellman gene expression data available at the MINE projects
webpage 4. The metabolic data is a sensitive medical data and not available for
free usage. Because all UCI data sets were also shown for INSCY and RESCU we
applied the exact same parameters for these approaches that are given by their

1http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
2http://dme.rwth-aachen.de/en/OpenSubspace
3http : //lib.stat.cmu.edu/datasets/CPS85W ages
4http://www.exploredata.net/Downloads/Gene-Expression-Data-Set
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authors5. The diabetes data was also one of STATPCs data and we could reproduce
its result quite well by guessing the correct parameters. Despite of these data
sets being already used by its competitors, NORD was able to outperform or at
least get the same result (RESCU in liver) in both quality measures except for
the shape data set where RESCU outperforms everyone else. For the other data
sets we also guessed and used the default settings provided by OpenSubspace for
the other algorithms, which was quite often a non trivial task due to the fact that
STATPC has three parameters, INSCY seven parameters and RESCU applies even
eight parameters to process redundancy accurately. With these methods being the
state-of-the-art for redundancy removal in clustering, we can say that so far correct
parametrization was crucial to process redundancy adequately. Now, the other
data sets and their results are explained in more detail. The wages data that we

Figure 2.9: NORDS result on the wages data set.

derived from UCI Machine Learning Repository [19] consist of a random sample of
534 persons from the Current Population Survey (CPS). This social studies goal
was to determine the impact of gender and other attributes like years of education,
work experience and age on the wage. It provides information on wages and other
characteristics of the workers, including sex, number of years of education, years of
work experience, occupational status, region of residence and union membership.
From all attributes only wage, age, work experience and year of education were
numeric and thus relevant. The goal of the study was to determine (i) whether
wages are related to these characteristics and (ii) whether there is a gender gap
in wages. Our clustering algorithm NORD is able to find 9 meaningful clusters

5http://dme.rwth-aachen.de/de/OpenSubspace/RESCU
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on this data set which are depicted in Figure 2.9. The blue cluster, with the
highest quality shows the strong correlation between work experience and age. The
three close cluster combine wage to age and experience. Year of education seems
not interesting for the wage. RESCU had a very similar result with 10 clusters.
STATPC scored well with 15 clusters also but INSCY did not manage to gain a
high quality score with an F1-score of 0.27. The Spellman gene expression data

Figure 2.10: NORDS result on the gene expression data.

does study the mitotic cell cycle of yeast genes. It is also a quite well known data
set for this community for the task to find functionally related genes using cluster
analysis. In this relatively large data set (nearly 5000 data points), NORD finds 15
meaningful clusters depicted in Figure 2.10. Clearly, the two clusters with highest
quality are also relatively similar to each other, both are containing 13 dimensions.
RESCU could not process this dataset (and logically also not the metabolic data
with nearly 10,000 samples). Even after we ran it on a machine with 48GB RAM,
the JVM got an out of memory error. For INSCY we needed to modify this data
set a bit, because it works with positive values only. The metabolic data set has
been provided by one of our cooperation partners and contains the metabolic
screening of 9584 newborns including children with metabolic disorders by genetic
defects and a large healthy control group [22]. Besides the healthy newborns the
data includes three metabolic diseases, the largest of them phenylketonuria (PKU)
(305 newborns), MCC (44 newborns) and LCHAD with 60 individuals). NORD
achieved a very good clustering result with an F1-score of 93% and 24 clusters
depicted in Figure 2.11. The dark blue high quality bar here solely corresponds
to the PKU disease (4 dimensions), clearly noticeable by the abundance of the
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Figure 2.11: NORDs result on the metabolic data.

phenylalanine metabolite. The two clusters with the highest quality (light blue)
both belong to the strong healthy control group(11 dimensions), in addition with
most of the very small low quality clusters (pink, some orange). On one hand this
makes sense due to the wide range of metabolites because of the strong correlation
of different environmental and nutritional factors in the large control group, but is
also a minor effect of existing noise and outliers. NORD also achieves to retrieve
the small group of MCC patients (violet bar), and shows with that its ability to
find clusters of very different sizes.

2.1.4 Related Work
This section provides the related work of the two fields that are connected by
NORD - information theoretic clustering techniques and non-redundant subspace
clustering.

Information-theoretic Clustering

Over the past decades clustering techniques have been studied extensively and
been widely useful in statistics [96], pattern recognition [21] and machine learning
[138]. Most of this research done in database community and others are clustering
techniques in full dimensional feature space with parametrized algorithms like the
famous K-MEANS [95] or DBSCAN [62]. Information-theory is often a method of
choice to automize a clustering and make a clustering method parameter-free. We
distinguish two types of the most common information-theoretic methods: One
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where we assign cluster labels to data points such that the mutual information
between data and labels is maximized as in [38][65] and [57]. The other method
is the in this algorithm also applied Minimum Description Length (MDL) that
recently was regarded to have a significant impact on real datasets [165]. Famous
algorithms applying MDL are for example RIC [29] which first applied different
MDL criteria for arbitrarily oriented cluster despite to consider only axis-parallel
ones in full dimensional space. Please acknowledge that due to limited space we can
not regard all methods applying MDL that even seemed useful for graphs [129] and
mixed data types [162]. For subspace clustering CLIQUE is the most famous one
that first utilized information-theory for principal pruning to decide which cluster
holds enough quality [10]. Newer techniques solve clustering for the subspaces of
the data set in the hope for gaining more information as for example CURLER
[186], which also inspired us to use simple objects (microcluster) to estimate the
larger, arbitrary structure. In the following we focus on non-redundant subspace
clustering techniques only.

Redundancy in Subspace Clustering

Redundancy is an efficiency problem in subspace clustering which was inherited
from the very first bottom-up subspace clustering approaches like for example
CLIQUE [10].In current research of subspace clustering it is a major optimization
criteria to get rid of unnecessary redundancy. Recent research that focus on
redundancy removal is the work of Mueller et. al. with RESCU [144] providing a
new NP-hard model as optimization goal for non-redundant subspace clustering.
RESCU also applies some simple cost function to measure the interestingness of
a cluster that includes the density and number of dimensions of the cluster, but
which is not balanced to the other traits of a cluster as our correlated quality notion.
In RESCU as well as in INSCY [18] by Assent et. al. redundancy is regarded as
lower dimensional projections that do not differ much from their higher dimensional
counterparts. This relatively restricted redundancy definition absolutely gives
reason to use a top-down splitting algorithm and an underlying tree-based index
structure for increasing efficiency as done in INSCY. Another approach, NORSC
[46] relates redundancy - as also done in RESCU - to coverage. NORSC defines
redundancy depending on the count of (existing) data objects, thus the smaller
the cluster the more redundant it might be. The algorithm STATPC [139] has
a redundancy definition which we regard the most close to reality one (and thus
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used by us as well), because it defines not only the largest and highest dimensional
cluster automatically as the best but states that there can be redundant projections
in lower and higher dimensional space of the true (non-redundant) clusters found
by statistical testings. Besides these most related approaches also quite some work
is done on orthogonal non-redundant clustering: OSCLU [85] by Guennemann et.al.
considers orthogonal non-redundant concepts. Improving OSCLUs efficiency by
reducing its number of parameter is done by TSCLU [209]. Solving orthogonal
non-redundant multi-view clustering with several alternative clustering solutions
does Ying Cui et. al. [50]. Closely related to this paper is the work of Donglin
Niu et. al. [153], whose method uses spectral clustering to gain multiple non-
redundant clustering views. Besides this method using spectral clustering, all of
the so far mentioned non-redundant approaches are density-based algorithms, that
need a high number of input parameter. Specifically they need a density threshold
that highly influence the clustering outcome. The work of Gondek et. al.[75] is
focused on solving redundancy by using statistical models to evaluate it. None of
these approaches is able to entire balance the redundancy with the novelty and
information gain of the cluster. Besides so far only density-based or statistical
methods do consider to handle redundancy in subspace clustering. Non-redundant
Subspace Clustering for categorical data does exist in the work of He et al. [90].
The last non-redundant clustering technique we would like to introduce is the spare
subspace clustering notion [59]. As a sparse representation (SR) used in this work
is the smallest union describing the cluster, redundancy is naturally pruned but
not weighted against the information content in the cluster nor arbitrary.

2.2 ISAAC - ISA Arbitrary Subspace Clustering

In real-world data clusters are not restricted to exist in axis-parallel subspaces
but can be contained in arbitrarily oriented subspaces of various dimensionality.
Most state-of-the-art approaches suffer one or more of the following drawbacks:
They cannot explore all relevant subspaces efficiently and the interpretation of
the result tends to be difficult since most existing approaches do not provide any
visualization. In this subchapter we propose a new notion of subspace clustering:
independent subspace clustering. We introduce the algorithm ISAAC (for ISA
Arbitrary Clustering) which is the first method that combines independent subspace
analysis (ISA) with generalized clustering. Generalized subspace clustering explicitly
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searches for relationships among the dimensions of a subspace cluster which are
very interesting for interpretation. However, these relationships also exist in all
redundant sub- and super-spaces bulking up the search space. ISA is very suitable to
explore this large search space in an efficient way by partitioning the data space into
subsets of subspaces exhibiting data distributions which are mutually statistically
independent. However, ISA is a highly parameterized method. Finding suitable
parameter settings is crucial for both clustering and ISA. Therefore, we establish an
objective function based on the Minimum Description Length Principle automating
both tasks. We prove ISAACs effectiveness and efficiency in our comprehensive
experimental evaluation on synthetic and real data sets.

The main purpose of data mining and knowledge discovery is to find concepts,
patterns, relationships, regularities, and structures of interest in a given data set
[76]. Increasingly large data resources in life sciences, mobile information and
communication, e-commerce, and other application domains require automatic
techniques for discovering and gaining knowledge. One of the major data mining
and knowledge discovery tasks is clustering, which aims at summarizing database
objects such that similar objects are grouped together while dissimilar ones are
separated.

In clustering real-world data, researchers face a variety of challenges called
the ’the curse of dimensionality’ which in most cases means distance measures
(e.g. Euclidean distance, Mahalanobis distance, Manhattan distance) lose their
effectiveness to measure similarity or dissimilarity when the dimensionality of
the subspaces becomes infinite. Clusterers in those spaces cannot separate data
into clusters well because the separation information of clusters is flooded. One
kind of method to tackle this “curse of dimensionality” problem is to find several
subspaces which contain most of the cluster-separating information but have a
low dimensionality. Principle Component Analysis (PCA) [1] uses an orthogonal
transformation approach to convert a data set of possibly correlated attributes
into another data set of linearly uncorrelated attributes which are called principal
components. The first principal component has the largest possible variance and
each succeeding component in turn has the highest variance possible under the
constraint that it is orthogonal (i.e., uncorrelated) to the preceding components [33].
By selecting several components to constitute a subspace, we can not only reserve
most information but achieve dimensionality reduction. Independent Subspace
Analysis [103] aims at linearly transforming original space into several independent
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subspaces. In the transformed space, subspaces are independent to each other
and also reveal different structures hidden in the data set. Clusters in different
independent subspaces are also independent to each other. In addition, these
subspaces are not axis-parallel anymore because of the linear transformation. We
use the term ’arbitrarily oriented’ to describe them.
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Figure 2.12: Possible candidate subspaces for clustering. (a) Example 4D data set
projected to two 2D axis-parallel subspaces. (b) Major eigenvector
space (upper) and minor eigenvector space (lower) found by PCA. (c)
Two arbitrarily oriented independent subspaces found by ISAAC.

An example for finding possible candidate subspaces for clustering is given in
Figure 2.12. Here, a 4D data set contains three clusters overlapping each other in
axis-parallel space as depicted in Figure 2.12(a). Conventional subspace clustering
methods cannot perform well in this data set, as the cluster information is contained
in every dimension and the three clusters are hard to separate from each other.
Hence, these axis-parallel, original subspaces are having a bad quality for clustering
as clusters are most likely not found by any clustering algorithm. Figure 2.12(b)
shows two major eigenvectors in the upper part and two minor eigenvectors in the
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lower part found by PCA. Clearly, in the major eigenvector space, PCA does not
find enough relevant information to separate the three clusters completely. In the
minor eigenvector space, PCA maximizes the variance of the data set to separate
the green cluster from the other two clusters. Again, the quality of both found
subspaces for clustering remains quite low. The reason PCA fails in such settings
is because it is a global dimensionality reduction technique that finds one optimal
representation for the complete set of points.[120]

The algorithm we introduce in this subchapter is named ISAAC. In Figure
2.12(c) we see that it is able to find high quality subspaces and to correctly
identify multiple clusterings, that is, a different clustering in each of two different
arbitrarily-oriented subspaces. We can see that the number of clusters in each
clustering may be different, and also note that the number of dimensions per
subspace may be different (in this example both subspaces have two dimensions).
Importantly, ISAAC focuses on minimizing redundancy between clusterings by
maximizing independence between subspaces. Practically this means that each
clustering found by ISAAC in each independent subspace is highly informative
and non-redundant. The lower subspace, for example, shows tight grouping of
objects with common color and shape. In contrast, the upper subspace shows tight
grouping of objects with heterogeneous color and shape. The upper subspace hence
encapsulates different grouping behaviors, which is non-redundant information
potentially leading to another valuable domain insight.

To arrive at such a solution, our method ISAAC combines Independent Subspace
Analysis (ISA) [102] and clustering in one automatic framework. Through ISA
we linearly transform the original space into several pairwise-independent (non-
redundant) subspaces. We find the appropriate subspace cardinalities (required
by ISA) using a greedy heuristic search that exploits the Minimum Description
Length (MDL) principle. For practically finding the correlation clusters in each
subspace, we use EM clustering with a hard-assignment of objects to clusters after
each expectation-maximization step (MDL needs definite assignment of objects to
clusters), although we note that our technique is agnostic to the exact algorithm
used in this step. Again MDL is adopted to automatically choose the number of
clusters in each independent subspace, making ISAAC parameter-free in theory
and practice.
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Contributions

• Finding promising independent subspaces efficiently and effectively
Avoiding of tough choosing the estimators for independence, we use MDL to
reveal the relationship between coding and independence. Subsequently, we
develop a greedy search algorithm to parameterize ISA more effectively and
efficiently to acquire more promising independent subspaces.

• Full detection of informative, independent clusters We solve the task
of arbitrary subspace clustering in a heuristic way by applying ISA together
with the EM algorithm integrated with MDL on the found independent
subspaces. Clusters found in independent subspaces are highly informative
and independent.

• Automation supported by data compression As parameters for the
algorithm are tough to set unsupervised, we apply an advanced coding
scheme which works for different ISA implementations and clusterers based
on the MDL to make the algorithm work fully automatically.

• Parallel clustering and interpretable results ISAAC can parallelly clus-
ter in each independent subspace to flexibly handle high dimensional data sets
more efficiently. The results of ISAAC are interpretable, which is valuable
for decision makers who are not familiar with data mining techniques.

This subchapter about ISAAC is organized as follows: Section 2 introduces
some preliminary knowledge on generalized subspace clustering and independent
subspace analysis. Section 3 demonstrates the core part of our approach: the theory
behind generalized independent subspace clustering and the coding scheme for
automating the algorithm. Section 4 elaborates the detailed algorithmic procedure
of ISAAC. Section 5 evaluates ISAAC and related comparison methods on synthetic
and real data set. In section 6, we briefly survey related work. The following Table
2.2 gives a list of symbols used in this subchapter.

2.2.1 Preliminaries

Generalized Subspace Clustering

Clusters in real-world data are not only restricted to exist in axis-parallel subspaces
but can be contained in arbitrarily oriented subspaces of various dimensionality.
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Table 2.2: Table of Symbols and Acronyms
Symbol Definition
ISA Independent Subspace Analysis
KDE Kernel Density Estimation
W the demixing matrix of ISA
d the dimension of the data set
ns the number of subspaces
ds the dimension of a subspace
f̂h(x) estimated density by KDE
n the number of objects
h the bandwidth of KDE
IQR the interquartile range
|ci| the number of objects in the ith cluster
K the number of clusters in the data set

Generalized subspace clustering aims at detecting clusters in arbitrarily oriented
subspaces. Objects exhibiting a common linear or non-linear dependence among
their attributes are assigned to a common generalized subspace cluster. More
formally, the problem specification of generalized subspace clustering can be stated
as follows:

Definition 11. (Generalized Subspace Clustering) A generalized subspace clustering
is a partition of a data set DS into K clusters {C1, ...,Ck}. Each cluster is defined
as a triple Ci = (oi, di, f), where oi ⊆ DS and di ⊆ d. f is an arbitrary statistical
dependence value among attributes in di.

The two challenges we address in this paper, i.e. parametrization and the curse
of dimensionality, are not independent but interrelated. Approaches to generalized
subspace clustering can be very successful on high-dimensional data where con-
ventional clustering algorithms tend to fail due to the curse of dimensionality, but
only if they are suitably parameterized. Finding suitable parameters for clustering
high-dimensional data is even more difficult than for conventional clustering since
additional parameters need to be specified. Typical required input parameters
include for example the dimensionality of each subspace, a threshold for object
density in subspace clusters, or a threshold on the significance of the statistical
independence relationship among attributes. On low dimensional data sets, param-
eter selection can often be supported by inspections of the data set. For example
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by using scatter plots, or suitable parameters, which can be estimated in a trial and
error fashion. Both options are often not feasible for clustering high-dimensional
data due to the large number of dimensions, non intuitive parameters and the
runtime of the algorithms.

Independent Subspace Analysis

Another important method related to our approach is the Independent Subspace
Analysis (ISA) that was originally developed by Hyvarinen et al. [103]. ISA, an
extension of the famous signal decomposition method Independent Component
Analysis (ICA), aims at linearly transforming original space to several independent
subspaces in such a way that maximizes the pairwise independence or minimizes the
pairwise mutual information between two different subspaces. Differently speaking,

Definition 12. (Independent Subspace Analysis) ISA transforms a given feature
space into several subspaces, achieving that objects in different subspaces are statis-
tically independent whereas objects in the same subspace are dependent.

In detail, considering input data set X has d dimensions, then the goal of ISA is
to find an invertible d×d demixing matrix W such that WX = S = (S1; . . . ;Sd),Si
and Sj (i 6= j) are mutually independent. The estimation of the demixing matrix
W in ISA is equivalent to the minimization of the mutual information I between
the estimated independent subspaces (Si),

MI(W ) = min
W∈GL(d)

I(S1; . . . ;Sd) (2.8)

where GL(d) denotes the set of d × d sized invertible matrices. ISA needs to
transform the data into white space, so that the data has unit variance. This can
be achieved by using the eigenvalue decomposition of the covariance matrix, i.e.
V · Λ · V T = Σ, where V is an orthonormal matrix containing the eigenvectors and
Λ is a diagonal matrix containing the eigenvalues of Σ. After that ISA determines
the demixing matrix W by iteratively updating the rows of W with for example
the update rule proposed in [103]. However, the original FastISA can only separate
the original data set into equal-sized subspaces, which restricts its application.
Another tradeoff of FastISA is that it converges to a local minimum and needs
apriori knowledge of parameter settings like the number of subspaces. This was
later enhanced by other authors like Gruber et al. [79] and Zoltan et al. [180].
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2.2.2 Generalized Independent Subspace Clustering
Now, the main ideas derived from generalized clustering and Independent Subspace
Analysis in Section 2.2.1 are combined to form an efficient clustering algorithm. As
said before, the main goal of this approach is to find highly independent, arbitrarily
oriented clusters in a fast, heuristic manner without using any input parameters that
are hard to parameterize in advance. But how can statistical independence between
subspaces help to reach the goal? To answer this question, we first elaborate
how statistical independence does affect clustering. Later we will show how this
approach can be automated.

Statistical Independence in Clustering

Statistical independence is a broad concept and implicitly used in many data mining
applications [191]. As ISA partitions the full feature space into several distinct
independent subspaces, an independent subspace must have specific attributes that
are crucial for clustering.

Definition 13. (Independent Subspace) Two arbitrary subspaces Si and Sj (i 6= j)
are called independent from each other when their mutual information is 0, i.e.
I(Si,Sj) = 0.

Figure 2.13: Subspace SAB is dependent to SCD, thus all objects are clustered in
the same way. The mutual information between them is close to 1,
even the variance and cluster shape may be different.

In general, dependent cluster means that the subspace clusterers generate de-
pendent lower projections of a “true” cluster which is very distinctive to other
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clusters in a data set. Considering Figure 2.13, two fully dependent subspaces SAB
and SCD are showed in a schematic view. Clearly, what makes them dependent
is not the cluster shape or the variance, as they are (slightly) different in the two
subspaces, but the same objects grouped in one subspace are clustered together
in another subspace. Reducing dependence will greatly increase the accuracy and
efficiency of any subspace clustering algorithm. And limiting the infinite search
space to finite search space will greatly improve efficiency. In our approach this
is easily achieved by automatically merging dependent subspaces with a greedy
search method. Dependence is minimized in between the subspaces of the data set
and we acquire almost independent subspaces by adopting ISA.
Now, clustering in these independent subspaces creates a novel type of cluster:

independent cluster.

Definition 14. (Independent Cluster) Two arbitrary clusters Ci and Cj (i 6= j) are
called independent clusters when they appear in two different independent subspaces
S1 and S2. Independent Clusters differ maximally in their amount of information,
i.e. their mutual information is near 0.

Ci ⊆ S1 ∧ Cj¬ ⊆ S1 (2.9)

Figure 2.14: The clusters between subspaces SAB and SCD are independent as they
co-exist in different independent subspaces. Even if the cluster shape
is similar, the objects are grouped differently.

Clusters in different independent subspaces are highly independent from each
other and can depict different structures hidden in the data set. Whereas clusters
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in the same subspace are dependent and more likely to reveal the distributions of
objects in the data set. Consider the example in the schematic Figure 2.14 where
three independent subspaces are shown, the independent subspaces SAB and SEF
show clearly that the objects are clustered very differently, thus their included
clusters are interpreted as independent clusters. There are no clusters in subspace
SGH , but SGH is totally independent from subspace SAB and SEF .

Automation through Compression

The goals of generalized independent subspace clustering are two-folds: (1) searching
for statistically independent subspaces and (2) achieving good clustering results in
these found independent subspaces. The objective function of the first goal is as
follows:

Definition 15. (Objective function for searching for independent subspaces) Op-
timal results are acquired when the statistically independence between all pairs of
subspaces is maximized, which is equivalent to the sum of mutual information I

between all pairs of subspaces I(Si,Sj) (i 6= j) being minimized:

f = min
i 6=j

∑
i

∑
j

I(Si,Sj) (2.10)

In this paper, we use the Minimum Description Length Principle to reveal
the relation between coding and model selection. Minimum Description Length
(MDL) discriminates between competing models based on the complexity of each
description by viewing statistical modeling as a means of generating descriptions
of observed data [88]. Compressing a model M with MDL in general generates a
flexible objective function balancing complexity between model M and data D.

L(D,M) = L(M) + L(D|M) (2.11)

Given a set of models M , the best model is the one that minimizes equation
2.11where L(M) is the length (in bits) of the description of one model in M , and
L(D|M) is the length (in bits) of the description of the data when encoded with
M .
Compressing the Data Describing the data with a probability density function

as close-to-real as possible raises another challenge. Thus, we use kernel density
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estimation (KDE) to estimate the probability density function of the data in each
subspace. The definition of the multivariate kernel density estimation is as follows:

f̂h(x) = 1
n

n∑
i=1

1
hd
κ(x− xi

h
) (2.12)

where n denotes the number of objects, d stands for the dimension of the data set
and κ denotes a d-dimensional, non-negative kernel function and h = (h1, · · · ,hd)T
is a vector of bandwidths.
As a common choice in literature for KDE, we use the Gaussian kernel with

mean 0 and variance 1. This leads to the following equation:

f̂h(x) = 1
n

n∑
i=1

 d∏
j=1

1
hj
κ(xj − xij

hj
)
 (2.13)

where κ(x) = e−x
2/2/
√

2π. The bandwidth h is selected according to [31]: hj =
0.9× n−1/(ds+4) ×min(σj, IQRj/1.34), where σj is the variance and IQRj is the
interquartile range of the jth dimension.
To conclude the coding cost for the subspaces estimated by KDE, we need to

encode the parameter costs for the KDE model. Here, only one parameter is
of interest: the number of kernels λ, which is equals the dimensionality of the
estimated subspace.

CCp =
ns∑
i=1

λi
2 · log2(n) (2.14)

where ns is the number of subspaces.
Overall this leads to the following compression of the estimated independent

subspaces group S: Let xi be an object in the kth subspace. The total coding cost
of a data set is

L(D|M) = CC(S, ds) =
ns∑
k=1

(
n∑
i=1

log2
1

pdf(xi)
+ CCp,k

)
(2.15)

where CCp,k is the parameter cost of the kth subspace, S is the group of the estimated
independent subspaces and ds contains the dimensionality of each subspace.
Compressing the ISA Model. Compressing the ISA model using MDL has

two challenges: first of all, data is unclustered and its distribution is unknown,
therefore guessing its probability density function for model selection is quite
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hard. In addition, we use ISA as a black box, and different ISA implementations
might need different parameter settings. In our approach, we compress parameters
that are most likely demanded in every ISA model: the dimensionality ds of each
subspace as well as the demixing matrix W .
The coding cost for the dimensionality of estimated independent subspaces is

shown as follows:
CC =

ns∑
i=1

(
di
2 · log2

d

di

)
(2.16)

where d denotes the dimension of the data set and di denotes the dimension of the
ith independent subspace.
Next, we encode the demixing matrix W which is a d × d square matrix. We

encode each row of W by multivariate kernel density estimation as can be seen in
the following equation:

CW =
d∑
i=1

(
log2

1
pdf(Wi)

+ λi
2 · log2(d)

)
(2.17)

where Wi stands for the ith row of W and λi is the number of bandwidth of the ith
row of W .
Finally, the overall coding cost of ISA model can be calculated as:

L(M) = CC + CW (2.18)

Compressing the Clustering. As for clustering, in theory it would be possible
to use any parameter-free, full-dimensional clustering method. However, this would
not fit in generalized clustering to find arbitrary cluster shapes. For this reason, we
adopt the soft clustering algorithm “Expected Maximization”(EM) algorithm [140]
for clustering each independent subspace. The clustering process is automated
by MDL, encoding the data with a multivariate gaussian distribution, as the EM
algorithm adopts gaussian mixture models to cluster. Let x ∈ Rd be a point of the
ith cluster ci and pdfj(x) be a gaussian probability density function with the mean
and variance of the jth coordinate of the points in cluster ci as parameters which
are associated to ci. The compression of a data point is

COP = log2
n

|ci|
+

d∑
j=1

1
log2 (pdfj(xj))

(2.19)
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where |ci| stands for the number of objects in the ith cluster.

The compression of a clustering is

COC =
K∑
k=1

 |ci|∑
i=1

COPi

 (2.20)

where K denotes the number of clusters in the data set.

Independence revealed by coding. Independence can be measured by mutual
information, which accounts for the amount of information that one variable
contains about another variable. There are so many kinds of estimators for mutual
information that it is difficult to choose a proper one. Therefore, we use the method
described in paragraph “Compressing the Data” to determine if two subspaces
should be merged into one space or not according to their coding cost.

Example 2. As example for showing independence by coding, consider four sub-
spaces SA, SB, SC and SD. Their coding costs are 4097.9, 3381.3, 3974.5 and
3951.3 respectively. First, we compute the coding cost of every combination, i.e.
SAB, SAC, SAD, SBC, SBD and SCD and then compute this result minus the sum
of coding costs of each combination’s components. The results are demonstrated
in Table 2.3 showing possible independent subspace candidates. According to this
results, subspace SA and SB should be merged, and subspace SC and SD should be
merged as well, because their difference in coding costs are less than 0. Then, we
evaluate if subspace SAB and SCD should be merged using the same routine. We
compute their difference coding cost SABCD − (SAB + SCD) and the value is 1213.4.
This encoding says subspace SAB and SCD should not be merged anymore. As end
result, we acquire two independent subspaces SAB and SCD depicted in Figure 2.15.

combination SAB-(SA+SB) SAC-(SA+SC) SAD-(SA+SD)
difference -600.26 391.77 379.68
combination SBC-(SB+SC) SBD-(SB+SD) SCD-(SC+SD)
difference 364.29 352.26 -1114.8

Table 2.3: difference coding cost



54 2.2. ISAAC - ISA Arbitrary Subspace Clustering

−5 0 5 10 15 20 25
−5

0

5

10

15

20

A

B

(a) Subspace SAB

−5 0 5 10 15 20
−5

0

5

10

15

20

C

D

(b) Subspace SCD

Figure 2.15: Two independent subspaces SAB and SCD

2.2.3 Algorithm

This section describes the algorithmic procedures of our algorithm ISAAC in detail.
To gain information like the latent structure from arbitrary data, ISAAC in total
works in three building blocks: Firstly, merging the possible subspaces depending
on their independence. Secondly, applying automatic ISA to find the best partition
for independent subspaces inside the data. And finally, clustering data in every
estimated independent subspaces.

Mechanism of ISAAC

Compressing the search space. Limiting the search space in a heuristic way
is crucial for every subspace clustering algorithm. For example, if the dimension
of a original data set is d, the number of possible axis-parallel subspaces is 2d,
while the number of arbitrarily oriented subspaces is infinite. Besides, we need
some optimal suggestions for parametrizations in the next processing step, which
is the automatic independent subspace analysis, so that our algorithm does not
run infinitely.
To effectively search for a promising partition, we develop a greedy search

algorithm which balances exploration and complexity. We firstly partition the
attributes into single dimensional subspaces and compare the compression cost of a
single subspace to that of a merged one according to the subspace data compression
costs for ISA as defined in equation 2.12.
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Figure 2.16: Automatic greedy search procedure of ISAAC

If the compression cost of a merged subspace is less than the summed up
compression cost of its two components, we put the labels of these two subspaces
and their difference in compression costs into a list for ranking. After ranking,
we merge two subspaces according to the ranked difference in compression cost
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ascending. At the beginning of each merging process, we check if the specific two
subspaces have been merged. If they have not merged, we merge them and the
merging process continues until traversing the ranked list. Then we acquire the
parameters for the next step in ISA. After processing the next building block we
obtain a new group of estimated independent subspaces S and the demixing matrix
W . This procedure continues until convergence.

Automatic Independent Subspace Analysis After finding an optimal can-
didate for parametrization in the first building block, we run ISA with these found
parameters for generating the best independent subspaces. ISAAC in theory works
with every ISA implementation as it uses ISA as a black box. For this ISAAC im-
plementation we adopted the ISA proposed in [180], which solves an to ISA related
problem the best in our experiments. The ISAAC in [203] uses a different version
of ISA which is a combination of standard ICA [39] and merging the independent
components. As result of this second building block, we gain the dimensionality of
each found independent subspace d and the transformed data . The pseudocode of
these two building blocks is given in Algorithm 1.

Independent Generalized Clustering This last building block focuses on the
actual clustering process of ISAAC in each prior found independent subspace. All
necessary input parameters for this clustering procedure, which are the (estimated)
independent subspaces S and their dimensions d, are automatically found by
the above two building blocks. Note that every single subspace to be processed
separately can also be dealt with in parallel, which makes our approach more
efficient if the data set is very large. Clearly, the found clusters in one subspace are
independent to clusters found in other subspaces due to the maximized independence
relation between these subspaces. For automatically choosing the proper number of
clusters in each subspace, we apply MDL, i.e. equation 2.20, to the EM algorithm
that enables us to run the EM algorithm without previous parametrization of the
number of clusters K. A Gaussian distribution with mean and variance of the
ith coordinate of a cluster as parameters is used here to describe the probability
density function of each cluster. The clustering procedure of ISAAC can be found
in Algorithm 2.
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Figure 2.17: Clustering procedure of ISAAC

Complexity Analysis of ISAAC

The runtime complexity of whitening the data, a first step in ISA, is O(nd2). Here,
n is the number of objects and d is the number of dimensions in a data set. Since
ISAAC is based on ISA proposed in [180], we need to check on the runtime of
fastICA [101](the underlying method for finding independent components in ISA)
and the grouping process done with mutual information. The computational cost
per iteration of fastICA is 2n(d+ 1). If the iteration number of fastICA is m, then
the overall runtime complexity of fastICA is O(2mn(d + 1)). The next step in
ISA is the actual clustering step. Since the cost of computing pairwise mutual
information is O(n), the time cost of clustering independent components is O(nd2).
Thus, the total runtime complexity of ISA is O ((d2 + 2md+ 2m)n). For MDL the
runtime complexity of compressing the estimated independent subspaces and the
demixing matrix is O(nd + d2). Thus, the total time complexity of finding the
best partition is O ((d2 + (2m+ n)d+ 2m)n+ d2). Since m is a constant, the time
complexity becomes O(d2n+ 2mnd+ n2d). For the clustering process, the runtime
of determining the number of clusters is O(Knd), where K is the final number of
clusters determined by MDL. Therefore, the total runtime complexity of ISAAC
is O(d2n + mnd + n2d) plus the computational complexity of the EM algorithm
O(Kni), where i is the number of iterations of the EM algorithm.
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2.2.4 Experimental Evaluation

In this section, we compare ISAAC with the non-redundant but axis-parallel sub-
space clustering methods INSCY [18], STATPC [139] and RESCU [144]. Together
with the arbitrary-oriented subspace clusterers Orth1, Orth2 (orthogonal clus-
tering, and clustering in orthogonal subspaces, both presented in [51]) and mSC
[153], we have several very related competitor systems. All comparison methods
are implemented in Java, the axis-parallel methods implementation is from in the
OutRules framework [146], a WEKA extension. ISAAC is written in Matlab, but
a Java version exists as well [203]. The parameters for all subspace clustering
methods are set according to their original chapters. For mSC, we provide the
true number of subspaces and clusters. In real-word data, we set the number of
subspaces for mSC equal to those found by ISAAC. For Orth1 and Orth2, we
provide the true number of clusters. All runtime experiments were done on the
same machine with an Intel Core Quad i7-3770 with 3.4 GHz and 32 GB RAM. For
quality evaluation we report the F1 [6] value for our synthetic data and real data
sets. The F1 value of a clustering is the harmonic mean of its precision and recall
and most frequently reported in state-of-the-art research of subspace clustering
[145].

Synthetic Data

The generation process of our synthetic dataset “sync” is as follows: we assume we
have τ two-dimensional “ground truth” subspaces with a clustering in each. Half of
these subspaces contain four clusters; the remaining subspaces contain six (varying
size of clusterings). Correlations between the observations in each cluster are
obtained by 1) starting with n observations generated from uncorrelated standard
normal variables, 2) choosing a correlation matrix C and scalar r ∈ [0, 1] in such
way that ci,i = 1 and ci,j = r, i 6= j, and 3) applying C’s Cholesky transformation
to the observations. Clusters are then positioned in the two-dimensional space by
their respective centers – each a random sample from the set [20, 80]2. To simulate
non-redundancy between clusterings, we randomly permute the object IDs in each
subspace before merging them to a full-space dataset.
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Quality evaluation

For the evaluation of the synthetic data set sync, we vary the number of hidden
independent subspaces τ from 1 to 10. τ = 10 means sync is composed of 10
subspaces, each of which has the dimension size of 1, while τ = 1 means sync only
contains one 10-dimensional subspace.
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Figure 2.18: F1 value of synthetic data set sync

Figure 2.18 shows the effect of increasing the number of subspaces. Clearly,
ISAAC outperforms all evaluated competitor systems in quality and even continually
increases the quality the more hidden independent subspaces in τ are added. This
is specifically good as ISAAC is not “helped’ ’with the provision of any input
parameters (the other multiple-clustering techniques require the correct number
of subspaces and/or clusters). Besides, we can see the trend, that all axis-parallel
competitors can not deal at all with independent subspaces and their quality
decreases rapidly, while the quality of all arbitrary multi-view clusterers increases
continuously from relative low starting points when τ = 2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.19: Cluster Quality. the first row: synthetic data set “sync” with four
two-dimensional independent subspaces; the second row: the four
independent subspaces and clusterings found by ISAAC.

Besides F1-measurement, there is another important attribute of ISAAC regard-
ing the cluster shapes. When at least two subspaces exist, ISAAC can always
discover all hidden independent subspaces and clusters in each subspace efficiently,
but the shape of some clusters may be changed due to space transformations after
running ISA, i.e. each attribute in the transformed space is a linear combination of
all attributes in the original space. This is depicted in Figure 2.19. The first row of
Figure 2.19 shows the four independent subspaces contained in “sync”. The second
row of Figure 2.19 demonstrates the four independent subspaces (corresponding to
the subspaces depicted in the first row) and clusterings found by ISAAC. Compared
to the original subspaces, we can see from the figure that the found subspaces are
rotated because ISA tries to find arbitrarily-oriented subspaces which are a linear
combination of the original ones. When checking the found subspace (the second
row, second column of Figure 2.19, which corresponds to the subspace shown in the
first row, second column of Figure 2.19), we find the top two very-close clusters are
not separated by ISAAC. In other independent subspaces, clusters are separated
cleanly.
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Runtime evaluation

Although we mainly focus on clustering quality, we briefly evaluate ISAAC’s runtime
efficiency as well.
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Figure 2.20: Runtime evaluation on different database size on sync

Figure 2.20 shows the results for varying the database size n from [10k, 100k].
Clearly, ISAAC outperforms all methods except Orth2 and Orth1in runtime.
The orthogonal subspace clusterers dominance can easily be explained by strict
parameter settings that need no costly heuristic search to find the candidate
subspaces as ISAACs automatic approach needs. At this point it is important to
note that ISAAC is the only fully-automatic method being evaluated: it invests
time to search for appropriate model-values in various stages of the framework
(this additional effort is included in the experimental results). Despite this – and
ignoring constant factors – ISAAC “holds its own” in terms of the run-time growth
rate. Its observed quadratic growth rate in n is comparable to mSC, INSCY and
STATPC (Orth2 behaves linearly, and RESCU’s runtime grows with n3).

Real Data

In this section, we evaluate the performance of ISAAC and the six comparison
methods on nine real world data sets. The parameters of the comparison methods
are set according to their original papers.
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Quality Measurement
For quality evaluation, we compare the F1 measure of nine real-world datasets.

The Breast (Wisconsin Diagnostic), Ecoli, Spam, Shuttle, Musk and Connectionist
Bench (Sonar, Mines vs. Rocks) datasets are from the benchmark UCI repository
(http://archive.ics.uci.edu/ml/datasets.html). The metabolic dataset is
from a PKU newborn screening [128]. Dancing Stick Figures (DSF) [83] is a
multi-view dataset with 900 samples of 20 × 20 images across nine stick figures
(Figure 2.21). Amsterdam Library of Object Images (ALOI) [74] collection consists
of images of 1000 common objects taken from various angles and under various
illumination conditions. We chose four different objects (Figure 2.22) with all their
images taken from different viewing directions. We extracted color and texture
features with 611 dimensions for each image using the method proposed in [15]
(code can be found here6). Then for DSF and ALOI, we further apply PCA as a
preprocessing step (also used in [188, 83]), retaining at least 90% of the variance
(five principal components).

The results of all algorithms on real data sets in terms of F1 value found by
ISAAC are listed in Table 2.4. Clearly ISAAC outperforms the other algorithms
on most of these data sets regarding the F1 value.

                 

Figure 2.21: Nine raw samples from the Dancing Stick Figures.

          

Figure 2.22: Four objects of different shapes (ball and cylinder) and colors (green
and red) from ALOI.

ISAAC is deployed in our proposed automated fashion (parameter-free). Orth1
and Orth2 require the number of clusters, so we use the number of class labels in
each respective dataset. For DSF we inform Orth1 and Orth2 that there are three
clusters in each subspace (based on the qualitative intuition in the next section).
In addition to the number of clusters, mSC requires the number of subspaces –
here we provide it with the same value found by ISAAC in all cases.

6http://www.cat.uab.cat/Research/ColorTextureDescriptors/

http://archive.ics.uci.edu/ml/datasets.html
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Table 2.4: F1 measure on real-world data (with dimensions (n;m)). ∗ failed because
of non-trivial bugs in the OpenSubspace implementation [145].

Dataset Metabolic Ecoli Breast Spam Shuttle C. Bench Musk DSF ALOI
(709;10) (336;7) (569;30) (4601;57) (43500;9) (208;60) (476;166) (900;5) (288;5)

ISAAC 0.81 0.71 0.71 0.69 0.78 0.66 0.67 0.86 0.87
mSC 0.41 0.50 0.68 0.68 0.65 0.61 0.65 0.74 0.79
Orth1 0.54 0.43 0.69 0.68 0.63 0.60 0.65 0.71 0.67
Orth2 0.54 0.42 0.69 0.68 0.65 0.52 0.65 0.74 0.62
STATPC 0.44 0.32 0.61 0.68 0.19 0 0 0.60 0.42
INSCY 0.29 0.11 0.65 0.01 –∗ 0 –∗ 0.62 0.27
RESCU 0.26 0.07 0.39 –∗ –∗ 0 –∗ 0.58 0.33

Table 2.4 reports the F1 measure for each dataset and algorithm. We see that
ISAAC obtains a stronger F1 measure in all cases, even outperforming techniques
like mSC, Orth1 and Orth2 which have the advantage of being given the correct
number of clusters as a parameter.

In the following we will only interpret the results of ISAAC on breast and
metabolic data sets in detail because ISAAC found some two or three dimensional
subspaces on these two data sets. We will also qualitatively interpret and compare
the results for Dancing Stick Figures and Amsterdam Library of Object Images
multi-view datasets. For the other datasets, since we do not have “ground truth”
subspaces, we omit their interpretation.

Breast Cancer Wisconsin (Diagnostic) Data Set The Breast Cancer Wis-
consin (Diagnostic) data set deriving from a study on breast cancer consists of 569
instances which are labeled to two classes malignant (M: 212 instances) and benign
(B: 357 instances). Each instance is described by 30 numerical attributes. ISAAC
found 4 subspaces with dimensions size of 15, 6, 6, and 3 respectively. We depict
the subspace of dimension size 3 in Figure 2.23. In this subspace, ISAAC detected
five clusters, which had 418, 118, 27, 3 and 3 instances in each cluster. 31 malign
instances and 2 benign instances were clustered as noise. 63 malign instances were
wrongly clustered as benign instances. Every axis in Figure 2.23 corresponds to
one independent component that is a linear combination of all original attributes
with different weights.
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Figure 2.23: ISAAC on breast cancer Wisconsin (diagnostic) data set

The weights of attributes which make up every axis in the 3 dimensional subspace
are demonstrated in Figure 2.24. From Figure 2.24 we can see which attribute has
a relatively higher contribution to the axes of the subspace. For example, attributes
with id number 8, 18, 20 and 28 have a higher contribution to z-axis.
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Figure 2.24: The weights of attributes making up axes in the 3 dimensional subspace
(The weights of attributes are represented by colors)

Metabolic Data Set The metabolic data set originates from a screening pro-
gram for metabolic disorders in newborns. All instances are described by 10
attributes representing metabolite concentrations and can be clustered to 5 classes
with size 100, 101, 51, 51, 197 respectively. ISAAC detected 4 independent sub-
spaces with the dimension size of 16, 4, 4 , 2 each. Three 2-dimensional independent
subspace is depicted in Figure 2.25.
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Figure 2.25: ISAAC on metabolic data set - three independent subspaces

Every axis in the figure corresponds to one independent component that is a
linear combination of all original attributes with different weights. Figure 2.25(a)
shows a different independent subspace from Figure 2.25(b) and (c), which means
their contained clusters are also independent. The independence is given by the
way their objects are clustered. The subspace (a) and (b) each contains 1 cluster,
and the subspace (c) contains 3 clusters. In subspace (c), the blue cluster contains
299 objects, the green cluster contains 193 objects and the black one contains 8
objects. Interpreting the results is relatively easy when knowing how the weights
are distributed in every subspace. The weights of attributes which make up every
axis in every independent subspace are demonstrated in Figure 2.26. We can see
from Figure 2.26 which attribute has a relatively higher contribution to the axes
of every independent subspaces. For example in subspace (c), attributes with ID
number 4, 7 and 10 contribute more to the x-axis.
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Dancing Stick Figures Dataset In the DSF data, ISAAC finds three in-
dependent subspaces. The first and second subspace contain three clusters and
the third contains four. Figure 2.27 depicts the means of the detected clusters
in the first and second subspaces (we don’t show clusters in the third subspace
because they are not very interpretable). We clearly see a compelling separation
into upper- and lower-body motions (two non-redundant views on the data). In
comparison, we see in Figure 2.27 the two subspaces found by Orth2 (the best
of the competition from Table 2.4). Here Orth2 fails to detect any intuitive and
convincing perspectives.

           

Subspace 1: Upper body Subspace 2: Lower body
ISAAC

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

           

Subspace 1 Subspace 2
Orth2

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Figure 2.27: The means of the clusters detected by ISAAC (top) and Orth2
(bottom) in two subspaces (Dancing Stick Figures data). ISAAC
identifies clear upper- and lower-body perspectives.

Amsterdam Library of Object Images Dataset For the ALOI data, ISAAC
finds three independent subspaces. The means of the detected clusters in the
subspaces are depicted in Figure 2.28. Again the subspaces show three interesting
perspectives on the data: one groups by shape (cylinder and ball), another by color
(red and green) and the other by size (small and big). It is very interesting that
ISAAC detects the subspace in which objects of similar sizes are clustered. In
comparison, the two subspaces detected by mSC (the best of the competition from
Table 2.4) show that it fails to identify the separation between color and shape.



Chapter 2. Vector Data 67

 

 

 

 

 

 

 

 

 

Subspace 1: Shape Subspace 2: Color Subspace 3: Size
ISAAC

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

 

 

 

 

 

 

Subspace 1 Subspace 2
mSC

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Figure 2.28: The means of the clusters detected in the ALOI data by ISAAC
(three subspaces, top) and mSC (two subspaces, bottom). ISAAC
successfully identifies subspaces which partition color and shape. In
addition, it finds subspace in which objects of similar sizes are grouped
together. (best viewed in color)

2.2.5 Related Work And Discussion

Subspace clustering algorithms in axis-parallel subspaces Subspace cluster-
ing is divided in two categories, i.e., axis-parallel subspace clustering and arbitrarily
oriented subspaces clustering. The first category can be divided to the grid-based
subspace clustering and the redundancy-reducing-based subspace clustering. The
grid-based subspace clustering algorithms include CLIQUE [11], ENCLUS [44],
MAFIA [147], etc., which adopt a global density threshold in a bottom-up way
to search for clusters. The resolution of the grid is very important in the perfor-
mance of these grid-based subspace clustering algorithms. With inappropriate grid
resolution, arbitrary oriented or shaped clusters may not be discovered. SCHISM
[174] extends these grid-based subspaces clustering algorithm by using a variable
threshold to detect dense regions, but when the search subspace become larger,
the function of the variable threshold that is equal to that of the global density
threshold. The redundancy-reducing-based subspace clustering algorithms includ-
ing INSCY [18], STATPC [139], RESCU [144] are also strongly related to our
approach thus by finding independent subspaces, non-redundancy is given all the
time. INSCY combines in-process redundancy pruning with novel index structure,
the SCY-tree, for efficient subspace clustering. STATPC selects a suitable set
RReduced from R, represented by a reduced, non-redundant set of (axis-parallel)



68 2.2. ISAAC - ISA Arbitrary Subspace Clustering

statistically significant regions that in a statistically meaningful sense to search ef-
ficiently. RESCU presents a global optimization which detects the most interesting
non-redundant subspace clusters by taking a global look at overlapping clusters.
However, the algorithms listed above cannot detect clusters which are situated in
arbitrarily oriented subspaces.

Subspace clustering algorithms in arbitrarily oriented subspaces Arbi-
trarily oriented subspaces clustering can also be called as generalized subspace
clustering, or correlation clustering. The fundamental technique utilized by most
approaches is PCA. ORCLUS [8] is the first method of arbitrarily oriented subspace
clustering, which combines PCA with kmeans clustering. ORCLUS picks seeds
at first, and includes three procedures: Assign, FindVectors and Merge. At the
beginning of the “Assign procedure”, it partitions the database into current clusters
by assigning each point to its closest seed. At the end of this procedure, each seed
is replaced by the centroid of the cluster which was just created. In “FindVectors”
procedure, the dimensionality of the subspace for each current cluster is found.
In the “ Merge procedure”, a measure for testing the suitability of merging two
clusters by examining the projected energy of the union of the two clusters in the
corresponding least spread subspace is designed. The algorithm terminates when
the merging process over all the iterations has reduced the number of clusters to k.
4C [30] combines PCA with DBSCAN to search for arbitrary linear correlations
of fixed dimensionality. Instead of PCA, CASH [3] utilizes the Hough transform
to find arbitrarily oriented subspace clusters by mapping the data space to a
parameter space to detect correlations within the attributes. COPAC [5] assigns a
local correlation dimensionality to each object and then partitions these objects
according to their local correlation dimensionality. ERiC [4] partitions the objects
of the database according to their correlation dimensionality, then the points within
each partition are clustered using a flat correlation clustering algorithm followed by
a bottom-up strategy to explore the relationships among the correlation clusters.
However, the methods listed above either need many input parameters to determine
the number of detected correlation clusters or can only detect correlation clusters
with less noise, which restricts their broad applications.

Multiple Clustering is also a related field for our method. Multiple clustering
seeks to partition a given set of objects in different ways, which represents different
perspectives of the data. COALA [20] generates multiple clusterings by using
instance level constrains. NACI [52] is driven by using mutual information to
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optimize the dual objective functions of both quality and dissimilarity. [188]
presents a computationally efficient nonparametric entropy estimator to quantify
both clustering quality and distinctiveness. However, the above methods can only
generate two alternative clusterings. MVGen [84] generates multiple clusterings
of data by using multiple mixture models. MVGen uses the iterated conditional
modes (ICM) principle and adopts Bayesian model selection to make a balance
between the complexity of the model and its goodness of fit. SMVC [83] integrates
semi-supervised clustering with multiple clustering and uses variational Bayesian
methods for efficient learning. However, the purposes of MVGen and SMVC
are to detect multiple, overlapping clustering views which are not non-redundant.
Multiple Stable Clustering [94] detects multiple stable clusterings using the idea
of clustering stability based on Laplacian Eigengap. But the found multiple
stable clusterings cannot guarantee diversity, i.e., some clusterings are redundant
and potentially difficult to interpret. mSC [153] integrates the relaxed spectral
clustering objective with the Hilbert-Schmidt independence criterion (HSIC) to find
multiple non-redundant views, and then uses spectral clustering to find clusters
in each view. Orthogonal projection clustering (OPC) [51] uses two strategies,
(1) orthogonal clustering (Orth1), and (2) clustering in orthogonal subspaces
(Orth2), to partition data to achieve multiple clusterings. The last three non-
redundant multiple clustering algorithms achieve the same goal as ISAAC. Differing
from Orth1 which directly seeks non-redundant clusterings, ISAAC indirectly
seeks multiple non-redundant clusterings by using ISA to generate independent
subspaces. Thus, clusterings in those subspaces are independent (non-redundant).
The strategy is very similar to those of Orth2 and mSC which also firstly seek
independent or orthogonal subspaces followed by clustering in those subspaces.

2.3 Conclusion

In this chapter, we introduced two novel approaches to subspace clustering: One,
NORD, that balances the quality of a clustering with the novel information gained
and the other, ISAAC, a parameter-free technique for generalized subspace clus-
tering. ISAAC can find multiple clusterings in arbitrarily-oriented subspaces of
heterogeneous dimensionality such that pairwise clusterings are highly statistically-
independent (non-redundant) and contain potentially-differing numbers of clusters
while NORD works on axis-parallel clusterings only. Both algorithms can be con-
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sidered parameter-free in the sense, that no sensitive input parameter are necessary
to gain a highly valuable result. This automation is achieved through the MDL
principle, where model parameters are selected by balancing accuracy and complex-
ity. An efficient, MDL-driven greedy search heuristic helps ISAAC and NORD to
find the best space partition. As the first information-theoretic algorithms that are
applied to the topic of non-redundant subspace clustering, we showed clearly in our
experiments that the heuristic search method is relatively fast compared to other
state-of-the-art algorithms and achieves a high quality even without the need for
parameters. Last but not least we proposed a visualization of the clustering results
of NORD, that intuitively shows the relationship between quality and novelty. To
conclude, we feel that our proposed solutions are able to yield more useful subspace
clustering results: Instead of yielding a potentially overwhelmingly large set of
high-quality clusters, that might be highly redundant, our solutions narrows down
the space of interesting clusters to the most representative clusters.



Methods for Clustering Graph
Data

CHAPTER 3

Parts of this chapter have previously been published in ICDM 2013
[68] [97]

In this chapter we focus on undirected graph data in social networks like Facebook,
Twitter, IMDB and DBLP. While the heterogeneous graph model seems to estimate
reality the best [87], a complex model has methodological a high overhead. We
chose an easier model for our two automatized community detection methods. The
first method, IROC, finds overlapping communities and reduces their redundancy
automatically for attributed graphs like the two methods for vector data in the
chapter before. The second method, Cxprime, finds communities in very sparse
graphs and can detect whether the community itself is sparse or dense.

3.1 IROC - Non-redundant Overlapping Clustering
In recent years, not only the volume, but also the complexity of data has increased
significantly. Objects are associated with textual information, multi-media data,
social interaction data, and other types of information. This trend is facilitated
by two major factors. First, current trends in technology such as smart phones
allow individual users to easily gather a huge variety of data on-the-fly. Second,
there is a new user mentality of utilizing this technology to voluntarily publish and
share their gathered information publicly in social networking sites, blogs, wikis

71
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Name Picture Age Location Salary Friends Colleagues Coauthors

Alfred
31 80k

Betty
62 90k

Chris
65 140k

Danie
27 75k

Eric
22 35k

Figure 3.1: Attributes and Social Networks of Users

and other platforms. Consequently, entities are described by a potentially large set
of attributes, such as attributes of users, and potentially many networks describing
their interactions, such as friendships, collaborations and spatial proximity. Such a
complex network can be captured by a multi-mode attributed graph. This multi-
mode attributed graph connects two aspects of information: First, the structural
information described by multiple types of interactions of the network. Second,
the attributes of each node. Combining both aspects of information gives the
chance to answer questions like “What does a circle of friends have in common?”
or “what do people in my work environment like and what joins them together?”.
Mining answers for these questions does not only unveil social aspects of groups,
but also opens a new area of targeted marketing, where offers can be tailored
towards groups of people, rather than individual recommendations only. Questions
like this can be answered to some extend by just clustering attributed graphs, as
existing algorithms propose in [211], [196] and [210]. However, these works have in
common that they mine a non-overlapping clustering, where each database entity
may be part of at most one cluster.

Example 3. An example of a database setting where objects are interacting in
different layers is shown in Figure 3.1. Here, each data record corresponds to a user,
represented by a number of attributes stored in the database, including their name,
age, spatial location and the user’s salary. In addition, we are giving information
about social networks that the user participates in, including a friendship network,
a citation network and a collaboration network. Clearly, given all this information
about users, it becomes more challenging to identify clusters of users. Here, we can
see that the users Alfred, Betty and Eric form a clique in both their colleague as
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Name Picture Location Friends Coauth.

Betty

Danie

Eric

(a) Low Quality Cluster

Name Picture Salary Colleagues Coauthors

Alfred 80k

Betty
90k

Danie
75k

(b) High Quality Cluster

Figure 3.2: Clusters in the Multi-Model Network of Figure 3.1

well as their co-author networks. At the same time, these three user are entirely
disconnected in the friends network. In contrast, users Alfred, Chris and Danie
are forming a clique in the friendship network, and are located in the same spatial
region. Arguably, we can already identify two clusters: one cluster covering objects
Alfred, Betty and Eric in the modes collaboration and citation, and one cluster
covering users Alfred, Chris and Danie in modes friends and location.

In our example of Figure 3.1, user Alfred is contained in both clusters that
we identified in Example 3. Without the notion of overlapping clusters, we are
forced to assign Alfred to either his circle of private friends, or to his circle of work
friends, thus incurring a significant loss of information. In practice, a single entity
may be part of a very large number of communities, such that the enforcement of
non-overlapping clusters yields an immense loss of information.

Summarizing, this toy example has shown the potential information preservation
by allowing the overlap of clusters. However, in practice, two overlapping clusters
can be highly redundant, sharing nearly the same set of entities, attributes and
networks. Such overlapping will incur information redundancy, which implies that
one cluster contains significantly less information when given information about the
other cluster. In this chapter, our proposed algorithm aims to detect overlapping
clusters while avoiding information redundancy using an information theoretical
approach. The advantages of the proposed algorithm are:

• Discovery of overlapping communities: Our method allows to discover
overlapping clusters combined in attribute and network space.

• Finding coherent attribute subspaces: Our approach automatically finds
a corresponding subspaces of modes and attributes of a cluster, allowing
overlapping subspaces.
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• Redundancy Minimization: Using Minimum Description Length (MDL)
principle [170] to measure the quality of a clustering, we can obtain a balance
between quality and redundancy of a clustering.

• Automation: Our approach does not require the user to specify any data
specific parameters.

The remainder of this chapter is organized as follows: In the following section,
Section 3.1.1, we formally define the problem of clustering multi-mode attributed
graphs. In Section 3.1.2, we elaborate our coding scheme, which is necessary to
avoid parametrization and balances among quality and redundancy. Exploiting this
coding scheme, we present our algorithm for Information Theoretic non-Redundant
Overlapping Clustering (IROC) in Section 3.1.3. Our experiments in Section
3.1.5 show that IROC achieves high clustering quality for existing community-
labelled attributed social networks, and our proposed improvement using tensor
factorization, TF-IROC fills this gap by sacrificing some of IROC s effectivity in
order to achieve scalability to very large networks. In Section 3.1.6 surveys the
related work.

3.1.1 Problem Definition
This section describes the notation used throughout the chapter.

Definition 16 (Multi-Mode Attributed Graph). A M-mode T -attributed graph
is a triple G = (V ,E, Λ), such that V = {v1, v2, ..., vN} is a set of vertices, E ⊆
V × V ×M is a set of edges, and Λ = {λ1, ...,λT} is a set of attribute functions
λi : V 7→ θi each mapping vertices to an attribute space θi. Further, we let Ak
denote the |V | × |V | adjacency matrix of the network corresponding to mode k
having Akij = 1 if (vi, vj, k) ∈ E and Akij = 0 otherwise; and we let F denote the
|V | × T attribute matrix having Fij = λj(i).

Example 4. As an example, consider Figure 3.1, which shows a M = 3-mode T =
3-attributed graph having five vertices V = {Alfred,Betty,Chris,Denie,Eric}
which correspond to individual users. Each of the three modes {Friends
, Colleagues, Co-authors} corresponds to different social graph, describing social
connections between users. Here, each of the three social graphs A1, A2 and A3

is depicted by an adjacency list using pictures of the five users. The set of edges
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E contains, for instance, the edge (Alfred,Chris, 1), implying that users Alfred
and Chris are connected in mode 1 which corresponds to the friends graph. The
three attributes of users correspond to age, geo-location, and salary of corresponding
users. For instance, the attribute function λ1 maps each user to their age, such as
λ1(Alfred) = 31.

In this subchapter, we aim at mining knowledge from the attributed graph by
detecting non-redundant overlapping clusters. As attributed graphs possess both
structural and attribute information, the clustering of this type of data covers
structural and attribute information. A cluster C is a subset of a multi-mode
attributed graph G. Specifically, a cluster is defined by a set of vertices V ′ ∈ V
and a set of attributes Λ′ ∈ Λ.
In the following, we formally define a multi-mode attributed graph cluster as a

special case of a multi-mode attributed subgraph.

Definition 17 (Multi-Mode Attributed Subgraph). Let G = (V ,E, Λ) be aM -mode
T -attributed graph. A subgraph of G is a multi-mode attributed graph G = (V ′,E ′, Λ′)
such that V ′ ⊆ V , E ′ ⊆ E and Λ′ ⊆ Λ.

Intuitively speaking, a good cluster should

• contain vertices having a high density of edges in as many modes as possible,
and

• contain attributes such that the vertices V ′ have a large mutual similarity in
as many attributes as possible.

Based on a multi-mode attributed subgraph, we can define a multi-mode attributed
cluster of G as a special case of a subgraph of G. Informally, a cluster is a subset of
vertices having a subset of modes and having a subset of attributes, such that all
edges of the original graph G are preserved. Formally:

Definition 18 (Multi-Mode Attributed Graph Cluster). Let G = (V ,E, Λ) be a
multi-mode attributed graph. Let VC ⊆ V be a subset of vertices, letMC ⊆M be
a subset of modes and let ΛC ⊆ Λ be a subset of attribute functions.

A cluster C = (VC ,MC , ΛC) is a subgraph (VG,EG, ΛG) ⊆ G such that:
• VG = VC,
• ΛG = ΛC,
• EG = {(vi, vj, k) ∈ E|vi, vj ∈ V ′ ∧ k ∈MC}.
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Example 5. Returning to our example in Figure 3.1, a possible cluster is defined
by users Betty, Danie and Eric using attribute location, mode friends and mode
coauthors. The resulting cluster

C1 = ({Betty,Danie,Eric}, {friends, coauthors}, {location})

is depicted in Figure 3.2a. Following Definition 18, cluster C1 inherits all edges that
exist in the corresponding subgraph of G (c.f. Figure 3.1). Clearly, Betty, Danie
and Eric are not particularly well connected in the selected modes and attribute: In
terms of spatial location, they are very distant from each other, they are entirely
unconnected in the friendship network, and only share one co-authorship link.
Intuitively, we would much rather like to find a qualitatively better cluster, such
as shown in Figure 3.2b. This cluster, which contains users Alfred, Betty and
Danie, and uses attribute salary, mode colleagues and mode coauthors shows a
much higher connectivity: the three selected users form a clique in both selected
modes and they are very similar in terms of their salary attribute. We can argue
that this cluster shows a group of users having a particular strong connection in
their friendship and spatial proximity networks, while also having similar age.

The challenge of this work is to find such high-quality clusters, i.e., vertices
VC ∈ V , modesMC ⊆M and attributes ΛC ⊆ Λ, such that all vertices in VC are
strongly connected in all modes MC and highly similar in all attributes ΛC . Such
a set of clusters is denoted as a clustering.

Definition 19 (Multi-Mode Attributed Graph Clustering). Let G = (V ,E, Λ) be a multi-mode
attributed graph. A clustering C = {C1, ...,CK} is a set of clusters of G.

A challenge of finding a useful clustering C is to avoid redundancy. In addition
to the high quality cluster C2 := ({Alfred, Betty, Danie}, {Colleagues
, Coauthors}, {Salary}), we may also find C3 := ({Alfred, Danie}, {Colleagues,
Coauthors}, {Salary}) having a high quality. However, both clusters are highly
redundant, sharing the same modes and attributes and only differing in one user.
Thus, the information of one cluster is much lower given the other cluster. Our
approach addresses this challenge of minimizing redundancy between overlapping
clusters by considering the information of one cluster given all other clusters. This
information theoretic approach is described in the next section. Besides, there
are edges connecting these clusters that are not included in any other cluster of a
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clustering C. Further, many attributes of nodes from the full-dimensional subspace
are not assigned to any cluster. We define these areas as the non-cluster area of an
attributed graph in Definition 20, which consists of the elements lying outside the
structure and attribute space of a cluster.

Definition 20 (Non-Cluster Area in an Attributed Graph). Let G = (V ,E, Λ) be a multi-mode
attributed graph and let C be a clustering of G. For each mode mn ∈M, the set of
non-clustered edges

Un := {(vi, vj,n) ∈ E|} \
K⋃

k=1,mn∈MCk

{(vi ∈ VCk
, vi ∈ VCk

,m)}

is defined as the set of all edges of G in mode mn that do not appear in any of the
clusters Ck. Further, we define UF as the non-cluster area in the attribute matrix
F :

UF = {Fij|1 ≤ i ≤ |V |, 1 ≤ j ≤ T} \
⋃

k=1,λj∈Λk

{Fij|vi ∈ VCk
}.

as all the attribute values which do not appear in any cluster. All of the information
Un, 1 ≤ n ≤M and UF that is not captured by clustering C is denoted as U(C).

Example 6. Reconsider the example of Figure 3.1 and a clustering C = C1,C2

consisting of only the two clusterings shown in Figure 2. For the first mode m1 which
corresponds to the Friends network, the set of unclustered edges U1 contains every
single edge of the friends network because only the first cluster C1 uses mode m1,
but does not contain any edges in this mode. For the third mode m3 corresponding
to the Coauthors network, the set of unclustered edges U3 consists only of the edge
between Chris and Eric. This is the only edge in the Coauthors network that is not
captured by cluster C2. The set UF contains all the attribute values that are not
captured by clusters C1 and C2, i.e., the location of Alfred and Chris, the salary of
Chris and Eric and the age of all users.

In the next section, we present an information theoretic approach to compress
the information contained in a clustering C and its corresponding non-clustered
regions Ui, 1 ≤ i ≤ m and UF .
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3.1.2 Coding Scheme

As one core part of our approach, this section proposes a coding scheme to minimally
describe a clustering of a multi-mode attributed graph using the paradigm of
Minimum Description Length (MDL) [170]. As a lossless compression, the MDL
principle follows the assumption that the less coding length we adopt to describe the
data, the more knowledge we can gain from it. To compress data, MDL describes
potentially large fractions of data, by relatively small data models. To apply MDL
to our problem of clustering multi-mode attributed graphs, we will employ clusters
as data models to compress the data. For an intuition of this idea, consider the
following example.

Example 7. Assume a single mode graph having 1,000,000 edges. To represent
such a graph, we can use an adjacency list, exatcly one million edges. This
representation allows to describe any network, regardless of its topology. Now, how
can we compress this graph by exploiting its topology? Assume the network contains
a set of 500 vertices forming a clique. We can store the information about this
clique, using the set of 500 vertices. Then we no longer need to explicitly store the
500 · 499 = 249, 500 edges which are already described by the clique model. In this
case, we have significantly reduces the storage cost from 1, 000, 000 vertex pairs to
750, 500 vertex pairs and a set of 500 vertexes describing the clique model. What
if we don’t have a full clique? Assume another set of 500 vertices having an edge
density of 90%, thus having 224, 550 actually out of 249, 500 possible edges. Using
the concept of minimum description length [170], we know that the subset of these
edges can be uniquely described using only a fraction e(0.9) of the full information,
where e(0.9) = −0.9 · log2 0.9− 0.1 · log2 0.1 = 0.469 has to be stored. Thus, we can
describe these 224, 550 edges at only 46.9% of their description cost, by incurring
an additional model information about the dense cluster of the corresponding 500
vertices. Using the same principle, we can identify further cluster models, which
yield a reduction in edge description that outweighs the additional information
required to describe the cluster model.

This example illustrates how we can use clusters to minimize the description
length of a network. Our aim to is to use the MDL principle to find models which
minimally describe the network. By allowing MDL to only use clusters as data
models, we are guaranteed to obtain high quality clusters as a result.
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Formally, the quality of a model can be identified from Equation 3.1 , where
L(M) denotes the coding length for describing model M and its parameters, while
L(D |M) represents the cost of coding data D under model M .

L(M ,D) = L(D |M) + L(M) (3.1)

In our case, the data D corresponds to the multi-mode attributed graph G and the
describing model M corresponds to a clustering C of G, yielding:

L(C,G) = L(G | C) + L(C). (3.2)

The length of the data under the model L(G | C) can be described as the total
coding cost of all individual clusters and the non-cluster area in the multi-mode
attributed graph G. The length of the model L(C) is the coding length of assignment
of vertices, modes and attributes to each cluster, and the coding cost of parameters.
In the following, we elaborate in detail on both the data description cost L(G | C)
(Section 3.1.2) and the model description cost L(C) (Section 3.1.2) that are necessary
to compress an attributed multi-mode graph. Then, in Section 3.1.2 we provide an
intuition why minimizing the data description cost of our coding scheme will yield
a high-quality clustering.

Data Description Cost L(G | C)

Suppose K clusters C = {C1,C2, ...,CK} are discovered from an attributed graph G.
The data description cost L(G | C) requires the coding cost CC(Ci) of all clusters
Ci and the coding cost CC(U(C)) of the non-clustered information:

L(G | C) =
k∑
i=1

CC(Ci) + CC(U(C)) (3.3)

In the following, we will describe the data description cost.
Coding cost of a cluster CC(Ci): Compressing an attributed graph requires

compressing its adjacency matrices An, 1 ≤ n ≤ M and its attribute matrix F .
A cluster Ci = (VCi

,MCi
, ΛCi

) ∈ C is represented by the adjacency sub-matrices
AmCi

,m ∈MCi
and the subset attribute matrix FCi

. Consequently, the coding cost
of the cluster Ci is the sum of the structural coding cost CC(AmCi

) of each adjacency
matrix and the attribute coding cost CC(FCi

), is:
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CC(Ci)) =
∑

m∈MCi

CC(AmCi
) + CC(FCi

) (3.4)

For a good clustering, a cluster Ci should be composed of densely connected
vertices which is equivalent to having a high probability of ’1’s in subset adjacency
matrix AmCi

. The average coding cost of the entries in matrix AmCi
is lower bounded

by its entropy. Because we assume G to be an undirected graph, we only need to
encode the entries of the upper triangular matrix. The coding cost of the structural
information of the cluster Ci is described in Equation 3.5 , where pm1 (Ci) and
pm0 (Ci) denote the probability of 1s and 0s in the adjacency matrix AmCi

respectively.
Further, nmCi

= |VCi
| ·(|VCi

|−1)/2 refers to the number of entries in upper triangular
matrix of AmCi

.

CC(AmCi
) = −nmCi

· (pm1 (Ci) log2 ·pm1 (Ci) + pm0 (Ci) · log2 p
m
0 (Ci)) (3.5)

Secondly, we need to encode the attribute matrix FCi
. For this purpose, we

discretize each attribute domain θi, 1 ≤ i ≤ T into a finite set of discrete values
θ′i = {θ′i1, ..., θ′i|θ′|}.1 After this discretization, the attributes of each node in Ci
are represented by an element of the cross product of all discretized domains. Let
W :=×1≤i≤T θ

′
i denote the set of all possible attribute combinations, then

p(w ∈ W ) =
∑
v∈VCi

I(v,w)
|VCi
|

denotes the fraction of nodes in Ci having attribute values corresponding to the
discretized values in w. Here, I(v,w) is an indicator function that returns one if the
discretized attribute values of vertex v equal the values of w, and zero otherwise.
Then, the coding cost of the attribute information of cluster Ci can be calculated
as follows.

CC(FCi
) = −|W | ·

∑
w∈W

p(w) · log2 p(w) (3.6)

Being able to compute CC(AmCi
) and CC(FCi

) using Equation 3.5 and Equation 3.6,
respectively, we can substitute Equation 3.4 to obtain the coding cost for a single
cluster Ci. Performing this computation for each Ci ∈ C yields the coding cost of

1For example, for numeric values, we can use a simple min-max or z-score normalization [134]
and use a eight bit representation of the normalized values, for geo-spatial locations we can
apply a quad-tree based decomposition.
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all clusters, which is the first summand in obtaining L(G | C) following Equation
3.3. For the second summand, we next present a coding scheme to compute the
coding cost of the non-clustered part CC(U(C)) of clustering C.

Coding cost of the non-cluster area CC(U(C)): Following Definition 20,
the non-cluster area of clustering C consists of the information in the non-clustered
edges Un for each mode mn ∈ M and the non-clustered attribute values UF .
Consequently, the coding cost of the non-cluster area CC(U(C)) is the sum of the
structural coding costs CC(Un) for all mn ∈ M, and the attribute coding cost
CC(UF ):

CC(U(C)) =
∑

mn∈M
CC(Un) + CC(UF ) (3.7)

For each mode, we consider the set of edges in Un using an adjacency matrix.
Again, due to assuming non-directed edges, we have N = |V | · (|V | − 1)/2 possible
edges, and we let p1(Un) = |Un|

N
denote the relative fraction of non-zeros in the

upper triangle of this adjacency matrix. Intuitively, p1(Un) corresponds to the
probability that a randomly picked edge in V ×V is in Un and p0(Um) = 1− p1(Un)
corresponds to the counter probability. We obtain the following coding cost for
each Un.

CC(Un) = −N · (p1(Un) · log2 p1(Un) + p0(Un) · log2 p0(Un)). (3.8)

Using the same attribute encode that was used for the cluster attribute matrices
FCi

, we again map each attribute domain θi to a discretized domain θ′i. This yields
a discretized version of the non-clustered attribute matrix UF . For each attribute
λi ∈ Λ, and each discrete domain value v ∈ θ′i, let N(θi = v) denote the occurrences
of value v, and let piv = N(θi=v)

|V | denote the probability of a random vertex having
the discretized attribute value v in attribute λi. We encode each attribute value in
UF individually.

CC(UF ) = −
T∑
i=1

∑
v∈θ′i

|θ′i| · piv · log2 p
i
v. (3.9)

Now, we can solve Equation 3.4 by substituting each cluster coding cost CC(Ci)
by using Equation 3.5, and by substituting CC(UC) by using Equation 3.6, thus
yielding the total data description cost L(G | C). Next, in order to solve Equation
3.3 to compute the total coding cost L(C,G), we need to compute the coding cost
L(C) for the clustering C.
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Model Cost L(C)

For encoding the model cost L(M) of the attributed graph, each cluster C =
(VC ,MC, ΛC) will be compressed in three aspects: the assignments of each vertex,
the assignments of attributes and the assignments of modes.

Coding cost of vertices assignment CCV (Ci): As overlapping is allowed
in our proposed algorithm, a vertex can be assigned to multiple clusters. For
each cluster, we adopt an assignment list to label the existence of vertices. When
the vertex belongs to the cluster, the corresponding value in the list is set to 1,
otherwise set to 0. Therefore, the coding cost of the vertices assignment for a
cluster CCV (Ci) in a single mode m is lower bounded by its entropy as follows:

CCm
V (Ci) = −|V | · (pm1 (Ci) · log2 p

m
1 (Ci) + pm0 (Ci) · log2 p

m
0 (Ci)), (3.10)

where pm1 (Ci) and pm0 (Ci) denote the probability of 1s and 0s in the assignment
list of cluster Ci in mode m respectively, and |V | is the number of vertices in the
graph. Then the coding cost of the vertices assignments of the whole graph using
all modes inM is the sum of cost for all clusters in all modes:

CCV (C) =
∑
Ci∈C

∑
m∈M

CCm
V (Ci)

Coding cost of attributes and mode assignments: In our proposed
algorithm, the corresponding attribute and mode subspaces of clusters are also
detected. Similarly, there is overlapping among the subspaces as well, which means
an attribute or mode can be assigned to multiple clusters. Again, we use an
assignment list of size T for the attribute-cluster matching, and an assignment list
of size M for the mode-cluster matching. Again, we use the entropy to lower bound
the coding cost of this matching. For the attribute assignment, we get

CCF (Ci) = −T · (p1(Ci) · log2 p1(Ci) + p0(Ci) · log2 p0(Ci)), (3.11)

where p1 = |ΛCi
|

T
is the fraction of attributes used by Ci and

CCM(Ci) = −M · (p1(Ci) · log2 p1(Ci) + p0(Ci) · log2 p0(Ci)),
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where p1 = |MCi
|

M
is the fraction of modes used by cluster Ci. Adding the three

types of model coding costs we obtain the total model cost:

L(C) = CCV (C) + CCF (Ci) + CCM(Ci) (3.12)

Finally, by using Equation 3.4 and Equation 3.12 for substitution in the right-hand-
side of Equation 3.3, we obtain the total coding cost of a clustering Ci.

Intuition and Discussion

First, one might argue that our coding scheme, by employing entropy as an objective
function, will not only prefer very densely connected subgraphs, but will also prefer
extremely sparsely connected subgraphs. For example, a cluster of vertices that
have no connections in G, will have an entropy of zero. However, adding such a
loose cluster to our clustering will not decrease the overall entropy L(G | C) of the
clustering, since all edges need to be encoded, possibly using the unclustered area
U(C). Ad absurdum, a clustering which only contains clusters having zero edges in
all of their modes, will indeed have a cost of zero to encode all clusters. But in this
case, the unclustered region U(C) will still contain all edges, such that the coding
cost of this region alone equals the coding length of the uncompressed graph G,
such that nothing is gained. Intuitively, a high quality cluster having a high density
of edges, will allow a large number of edges to be encoded at a very low cost, thus
decreasing the global cost L(C,G).

Now, the data encoding cost could be reduced to zero if each edge was described
by an individual cluster, containing only the corresponding two connected nodes,
and only having the corresponding mode of that edge. In that case, each cluster
would be a two-node-clique, and the unclustered region would be empty, thus
incurring a zero data description cost L(G | C). However, in this case where
each edge is represented by its own cluster, the model cost would be extremely
large, incurring a cluster encoding cost for every single edge, thus incurring at
least as much cost as the uncompressed graph G. Summarizing, a clustering that
minimizes the overall coding cost L(C,G) should consist of a small number of
densely connected clusters.
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3.1.3 Algorithm: IROC

In this section, we propose the algorithm IROC to heuristically efficiently detect
overlapping clusters in attributed graphs. The initialization phase and the refine-
ment phase are the two key steps in IROC. The initialization phase is again divided
into two subroutines for a) creating initial graph substructures and b) finding their
coherent attribute subspace. The refinement phase improves the quality of the
initial clusters by a) removing redundant parts of the cluster and b) reassigning
vertices between two clusters.

Initialization

Creating Initial Clustering: For each vertex vi ∈ V we create one initial cluster
Ci by adding all vertices to Ci that are connected to vi in any mode. Initially, each
cluster uses all modes and all attributes, i.e.,

Ci = (vi ∪ {vj ∈ V |∃k : (vi, vj, k) ∈ E},M, Λ). (3.13)

We iteratively and greedily choose K initial clusters from the set {C1,C|V |} mini-
mizing the description length of Section 3.1.2.
After obtaining a clustering C consistingExperiments on synthetic and real-world
data show promising comparisons to state-of-the-art methods with respect to effi-
ciency and effectiveness. of K initial clusters, we need to find the attribute and
mode subspace of each of these clusters. Initially, we start having ΛC = ∅ and
MC = ∅. In this case, cluster C has a coding cost of zero, but an extremely large
cost is attributed to the non-clustered edges and attributes following Equation
3.8 and Equation 3.9. Algorithm 1 summarizes the whole initialization step in
pseudo-code. In Lines 1 to 6 the first initial K sets of nodes are selected. Then, for
each set, the function FindSubspace (Algorithm 2) is called to assign modes and
attributes to each set of nodes, thus yielding an initial clustering. We note that K
is a parameter denoting the initial number of clusters. In Section 3.1.3 we propose
heuristics to choose this parameter automatically, and our experiments show that
both the run-time and quality of IROC are insensitive to the choice of K.
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Algorithm 1. Initialization Phase
Input: Multi-Mode Attributed Graph G = (V ,E, Λ)

Integer K
Output: Initial Clustering: C = {C1,C2, ...,CK}
1: Construct V subgraphs S = {s1, s2, ..., sN} as initial clusters;
2: C ← ∅;
3: for 1 to K do
4: sbest ← Best Cluster s ∈ S using Equation 1.
5: C ← C ∪ (sbest, ∅, ∅)
6: end for
7: for C = (VC ,MC , ΛC) ∈ C do
8: C ← FindSubspace(C,VC)
9: end for
10: return C

Refinement

After the initialization step, our clustering C contains K clusters. These clusters
were generated completely independent of each other. Thus, these clusters may
contain redundant information. To remove redundancy, our refinement iterates two
steps: the merge step and the split step. Briefly, the merge step attempts to merge
two existing clusters into one, while the split step attempts to remove a vertex
from a cluster to form a new cluster.

The refinement step is shown in Algorithm 3 in greater detail. First, the merge
step finds a pair of clusters and merges these two clusters into a single cluster such
that it yields the highest reduction of coding cost. These vertices are selected by

(C1,C2) = argmin
(C1,C2∈C)

L(C \ C1 \ C2 ∪ FindSubspace(VC1 ∪ VC2),G). (3.14)

Here, function FindSubspace is invoked in Line 5 to find the attributes and modes
of the new cluster, which might be different from the old ones. This merge is
performed in Line 6, where the new cluster Cmerge is added to C with the old
clusters being removed.

In the split step, we try to split a single vertex from Cmerge into a new (singular)
cluster Csplit. This single vertex is selected by

vbest = argmin
v∈Csplit

L(C \ Cmerge ∪
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Algorithm 2. FindSubspace(C,VC)
Input: A clustering C and a set of nodes VC
Output: A cluster C ′ = (VC ,M′

C , Λ′C)
1: ΛC ← ∅;
2: MC ← ∅
3: CC = L(C,G)
4: CCold ←∞
5: Cold ← C
6: while CC < CCold do
7: C ← Cold
8: CCold = CC
9: mbest ← Best mode m ∈M \MC

10: CM ← (VC ,MC ∪mbest, Λ)
11: λbest ← Best attribute λ ∈ Λ \ ΛC

12: CΛ =← (VC ,MC , Λ ∪ λbest)
13: if CC(C \ C ∪ CM) ≥ CC(C \ C ∪ CΛ) then
14: Cold = C \ C ∪ CM)
15: else
16: Cold = C \ C ∪ CΛ)
17: end if
18: end while
19: return (VC ,MC , ΛC)

FindSubspace(Cmerge \ v) ∪ FindSubspace({v}),G). (3.15)

This best vertex is selected in Line 7 of Algorithm 3. If any split reduces the overall
coding length, then this split is performed in Line 9. If after any iteration invoking
both merge and split steps, no overall reduction of coding length is achieved, then
the algorithm terminates, returning Cold.

Overall procedure

The overall procedure of IROC is shown in Algorithm 4. First, we automatically
select Ks rough clusters and search their attribute subspace as described in the
initialization phase. Then we calculate the similarity of every pair of clusters,
and merge the two cluster with a minimum similarity. After that a new cluster
Cnew is formed and we find the subspace of it. Then we try to assign vertices
from Cnew to Csplit under the control of MDL. And we consider Csplit as a new
cluster and recalculate the similarity of every pair of clusters. The merging process
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Algorithm 3. Refinement
Input: Clustering C
Output: Clustering C
1: Lold =∞, L = L(C,G)
2: while L < Lold ∧ iter < maxIter do
3: Cold = C, Lold ← L
4: Find pair of clusters C1,C2 ∈ C
5: mergedCluster = FindSubspace(VC1 ∪ VC2)
6: C ← C \ C1 \ C2 ∪mergedCluster
7: vbest ← best split vertex
8: if L(C,G) > L(C \ Cmerge ∪ FindSubspace(Cmerge \ v) ∪

FindSubspace({v}),G) then
9: C ← C \ Cmerge ∪ FindSubspace(Cmerge \ v) ∪ FindSubspace({v})
10: iter + +
11: end if
12: end while
13: return Cold

continues iteratively and is ended when the coding cost of all clusters achieve its
local minimum. Finally, K clusters with coherent attribute subspaces without
redundancy are output.
Note as our refinement algorithm is not guaranteed to converge, we use a

parameter maxIter to enforce termination.

Complexity Analysis

Assume a graph G with |V | vertices, |E| edges, T attributes and M modes. We
first analyze the complexity of computing the coding length L(C,G). For each
cluster C we need to count the edges within C in each mode m ∈M to obtain the
probabilities pm1 (C) required by Equation 3.5. Due to potential overlap of clusters,
the total number of edges in all clusters is not bounded by the number of edges |E|
in all modes. In the worst case, where one mode forms a full clique of all vertices,
the initial clustering of the initialization step will contain all vertices in each cluster,
yielding a worst case of |V | · |E| edges in all clusters. However, assuming the all
modes have sparse connectivity, this number decreases to O(|E|). In addition, the
coding of the attribute matrix (which is not assumed to be sparse) additionally
requires O(|V | · T ) time, yielding a fcode := O(|E| + |V | · T ) time complexity to
compute the coding length of C.
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Algorithm 4. IROC
Input: Attributed Graph G
Output: K Clusters with Subspace C = C1,C2, ...,CK
1: Creating Subgraphs C = C1,C2, ...,CKs ;
2: for i from 1 to Ks do
3: Finding Subspace of Ci
4: end for
5: while Not Converge do
6: Calculate similarity of every pair of clusters;
7: Merge two most similar clusters as Cnew;
8: Finding Subspace of Cnew;
9: Assigning Vertices of Cnew;
10: end while
11: return C = C1,C2, ...,CK .

For the initialization phase of IROC, we greedily chooseK clusters from the initial
|V | sets of clusters. For each such choice, we need to compute the coding length of
C, yielding a total cost of O(K · |V |+ |K| ·fcode) = O(K · (|E|+ |V | ·T )) complexity.
Then, finding the mode and attribute subspace of each cluster requires, in the
worst-case where all modes and attributes are selected, O(T 2 +M2) invocations
of the coding length computation L(C,G). Overall, the initialization cost is in
O(K · (|E|+ |V | · T + T 2 +M2)).

In the refinement step, we need to iterate |C| pairs of clusters to find the best pair
to merge, invoking L(C,G) in each iteration, yielding a cost of O(C2 · |E|+ |V | · T ).
In the split step, we need to iterate, for the merged cluster C, over all |VC | vertices
in C and perform a call of L(C,G). In the worst-case, the size of a cluster is in
O(|V |), yielding a worst-case run-time of O(V · (|E|+ |V | · T )). This worst-case
quadratic run-time seems prohibitive. But our experiments show, that in practice,
this run-time scales nearly linear in |V |: the reason is that on real data, clusters (or
communities) do not span O(|V |) users. As connections are sparse, communities
are relatively small compared to the full network size. Thus, our IROC algorithm is
able to adapt to these small clusters, thus yielding a much cheaper cost of merging
small clusters.
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Figure 3.3: Tensor Construction: Five modes and one attribute.

Discussion

A parameter used by the IROC algorithm is the seed-size K, which significantly
impacts the run-time of the algorithm. For a value of K choosen too large, e.g.,
for K = |V |, the quadratic runtime in the initial number of clusters will yield a
run-time quadratic in |V |. For a value of K chosen too small, e.g., for K = 1, each
iteration of the refinement step will run extremely fast, but the number of refinement
steps required to obtain a high quality clustering (i.e., a low coding cost), will be
extremely large. Per default, we recommend to set K = log2 |V | · log2M · log2 T ,
which yields a reasonable seed of clusters in all our experiments. Our experiments
leading to this recommendation are shown in Section 3.1.5.

3.1.4 IROC meets Tensor Factorization

As our experimental evaluation in Section 3.1.5 shows, a main drawback of the
IROC algorithm proposed in Section 3.1.3 is the large number of iterations of the
refinement. This drawback is the result of a large number of small initial clusters,
which are iteratively merged and split. To address this problem, we next propose
an alternative solution to obtain an initial clustering for the refinement step of
our proposed IROC algorithm. Therefore, we exploit recent research on efficient
factorization approximation of very large tensors [158, 105] which have become
popular for clustering large network data. We show how to apply these algorithms
to multi-mode attribute graph data, and then feed the resulting clusterings into
our IROC algorithm, to further improve this clustering.
Attribute Mode Tensor: Following our definition of a M-mode attributed

graph in Definition 16, an edge is defined by an element of |V | × |V | ×M , which
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corresponds to a three-mode tensor. Thus, implicitly, the modes are already
represented by a tensor. To incorporate information about an attribute function
λ in this tensor, we generate a |V | × |V | similarity matrix for each attribute,
which describes all pairs of nodes that are sufficiently similar to each other. More
formally, we represent a multi-mode attribute graph G = (V ,E, Λ) by the following
three-mode |V | × |V | × (M + T ) tensor T G:

T G i,j,k =



1 if k ≤M ∧ (i, j, k) ∈ E
0 if k ≤M ∧ (i, j, j) 6∈ E
1 if k > M ∧ dk−M(λk−M(Vi),λk−M(Vj)) ≤ εk−M

0 otherwise

(3.16)

Here, di : θi × θi 7→ R is a distance function defined on domain θi, and εi is a
distance threshold for di such that any pair of vertices v1 and v2 is considered
similar in attribute i if di(v1, v2) ≤ ε. We note that this sparse similarity matrix
T G .,.,M+i of attribute function λi can, for most domains θi be derived efficiently
using a similarity self-join on all attribute values of vertices V . Exemplary, if
attribute i corresponds to a geo-location, i.e., θi ∈ R2, we can perform a distance
self-join [160] exploiting possible spatial index structures. Summarizing, Figure 4.4
illustrates our process of generating the tensor T G i,j,k from mode-specific adjacency
matrices and the attribute matrix F .

Tensor Factorization: Given the tensor T G, we employ the ParCube [158]
algorithm to obtain an initial clustering ParCube(T G. Each cluster ParCubei =
(Vi,Xi) yields a set of vertices Vi and a set of third-mode values Xi, which we
translate back to a mode m ∈M and attribute functions λΛ. Formally, each tensor
cluster ParCubei = (Vi,Xi) induces the cluster

Ci = (Vi, {mk|k ∈ Xi}, {λk|k −M ∈ Xi}).

These clusters form the initial cluster C that we can feed directly to the refinement
phase of the IROC algorithm, thus replacing the initial matrix passed to Algorithm
3. Our adapted IROC algorithm using the ParCube algorithm in the initialization
step will be referred to as TF-IROC. Intuitively, we expect the TF-IROC algorithm
to run significantly faster than the IROC algorithm, because the initialization step
is able to use efficient tensor factorization to obtain a “good” initial clustering,
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better than naive initial clustering employed by IROC. Also, the initial number
of clusters is much smaller thus the refinement requires less iterations. At the
same time, this initial clustering takes away freedom from the IROC algorithm by
already being given a full cluster structure. In our experiments, that this loss of
algorithmic freedom yields a significant loss of clustering quality, but allows the
TF-IROC algorithm to be applied to very large datasets.

Table 3.1: Evaluation Overlapping Clusters of Synthetic Data Sets

Algorithms #Clust = 2 #Clust = 3 #Clust = 5
NMI Ω-Index F1-Measure NMI Ω-Index F1-Measure NMI Ω-Index F1-Measure

IROC 1 1 1 1 0.973 0.986 1 0.963 0.981
TF-IROC 1 0.963 0.982 0.914 0.951 0.973 0.966 0.921 0.952
PICS 0.615 0.732 0.846 0.563 0.670 0.612 0.270 0.322 0.487

DB-CSC 0.595 0.826 0.859 − − − − − −
BAGC 0.588 0.947 0.953 0.955 0.607 0.742 0.490 0.722 0.584

PARCUBE 0.764 0.732 0.628 0.422 0.532 0.615 0.412 0.466 0.481

3.1.5 Experimental Evaluation
In this section, we evaluate our proposed algorithms IROC and TF-IROC on both
synthetic and real data sets and compare them to state-of-the-art competitors.
All experiments were performed on a Intel Xeon E7-4870 v2 (60x2.3 GHz) server
with 1 TB main memory, running Ubuntu Linux 15.10 with the 4.2 kernel. Our
competitor approaches evaluated in this section are the following:
DB-CSC [81] is a density based clustering algorithm at detecting dense clusters

with a coherent subspace of attributes. DB-CSC allows finding clusters that overlap
in attributes and vertices.
BAGC [196] is a probability model based attributed graph partition method,

which requires the resulting clusters to be non-overlapping.
PICS [12] is a compression-based, parameter-free algorithm that clusters both

vertices and binary attributes. This algorithm also returns non-overlapping clusters.
ParCube [158] is an tensor factorization algorithm which we also employ in

the the initialization step of the TF-IROC algorithm. The ParCube algorithm is
an approximate solution for the parafac tensor decomposition [89]. In contrast to
TF-IROC, the pure ParCube algorithm does not use the refinement step of TF-
IROC, thus terminating directly after the tensor factorization step. This algorithm
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requires to specify a sampling factor s which we set to s = 1000 in all experiments,
as after this value we found no more increase in clustering quality. ParCube also
requires to specify a threshold τ to specify the point at which no more latent factors
are added to the model. Thus, the lower τ , the more latent factors will be used by
ParCube.

To evaluate these solutions in terms of accuracy, we use the following evaluation
criteria.
F1-Measure. Due to the multiple clustering assignments, we adopt F1-Measure

to evaluate these algorithms on clustering vertices. F1-Measure is computed as the
harmonic mean of Precision and Recall. Precision measures the accuracy of the
detected clusters and Recall measures whether all clusters are detected.
NMI. This criteria is basing in information theory and was extended by Lanci-
chinetti et al. [124] to account for overlap between communities.
Omega Index is the overlapping version of the Adjusted Rand Index (ARI) [207].
It is based on pairs of nodes in agreement in two covers. Here, a pair of nodes is
considered to be in agreement if they are clustered in exactly the same number of
communities.

(a) Varying Network Size (b) Varying the number of modes and at-
tribute

Figure 3.4: Synthetic Runtime Experiments
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Evaluation on Synthetic Data

Synthetic Data Generation: For our scalability experiments, we use synthetic
datasets, where we control the overlap of clusters in each mode. The parameters
and default values of this synthetic dataset are described as follows. The parameter
#Clust = 5 denotes the number of artificial clusters in the dataset. Per default,
n = #Clust · 1000 vertices are generated, each vertex has a probability of p = 0.5
to belong to any of the clusters. This allows a vertex to belong to any number of
clusters. For instance, for #Clust = 2, we have two clusters, n = 2000 vertices, and
approximately 500 of the vertices belong to both clusters, 500 belong to either one
cluster, and 500 belong to none of the two clusters. In each of the m = 3 modes, the
same assignments from nodes to clusters is performed independently. For each mode
k, an edge (vi, vj , k) belongs to G with a probability of db = 0.1, if nodes (vi) and vj
do not appear together in any artificial cluster in mode k, or with a probability of
1− d#Clust(vi,vj ,k)

c , where per default dc = 0.2 and #Clust(vi, vj, k) is the number
of clusters of mode k containing both vi and vj . As an example, for #Clust = 2, an
edge between a pair of vertices contained in exactly one cluster, has a probability of
1−0.21 = 0.8 to exist, whereas an edge between a pair of vertices contained in both
clusters would have a probability of 1− 0.22 = 0.96 to exist. Furthermore, each
vertex is assigned T = 3 attributes. All attributes functions λi map a vertex to a
binary domain θi = [0, 1]. Attributes values are generated randomly, such that a
pair of vertices that appears in a large number of clusters in a large number of nodes
has a higher probability of having identical attribute values. If a pair of vertices is
not contained in any cluster in any mode, then these vertices have a probability
of 0.5 of having the same attribute value in each attribute. If the pair of vertices
appears in a total of #Clust(vi, vj) := ∑m

i=1 #Clust(vi, vj , i) clusters over all modes,
then the probability of sharing the same attribute values is 1− 0.5 ∗ a#Clust(vi,vj)

c

having ac = 0.8. For example, two vertices sharing exactly four clusters of all
modes would have, for each attribute, a probability of 1 − 0.5 ∗ 0.84 = 0.795 to
share the same attribute. Attribute values are chosen iteratively, starting with
random attribute values at an initial vertex.

Our synthetic datasets allow us to scale the number of ground-truth clusters, the
number of modes and attributes, as well as the size of the network in a sandbox.
Furthermore, by construction of the synthetic data-set, we have a clean definition
of a ground-truth clustering, allowing us to measure the effectiveness of different
approaches in terms of finding these clusterings.
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(a) Runtime Impact (b) Accuracy Impact

Figure 3.5: Effect of the initial number of clusters K.

Clustering Accuracy: Table 3.1 presents efficiency results, in terms of finding
the artificial ground-truth clusters. The dataset having only #Clust = 2 clusters
in each mode, IROC manages to perfectly separate the two ground-truth clusters
in each mode. Our more efficient algorithm TF-IROC is reasonably close to this
result. The algorithm PICS outputs a much larger number of clusters in each
mode, which split into two big clusters and several small ones. BAGC finds two
clusters, but is unable to detect any overlap. DB-CSC outputs an extremely large
number of clusters in each mode where clusters contain less than ten vertices. We
run DB-CSC with ε = 0.5, kmin = 4, minpts = 5,robj = 0.1,rdim = 0.1 and smin = 1,
which correspond to the best parameter setting we could find after some parameter
tuning. Finally, the ParCube approach which uses only the tensor factorization
approach without the greedy optimization beformed by IROC, returns For the
synthetic data set having #Clust = 3 clusters, there exists overlap between all
three clusters. IROC and TF-IROC still achieve extremely high accuracy, allowing
to nearly perfect reconstruct the three overlapping clusters of each mode. PICS
outputs an average of six clusters per mode, without overlapping. BAGC produces
three clusters, but again cannot find any overlap. DB-CSC did not terminate even
after adjusting its six parameters several times and running the algorithm several
days. The last synthetic data set, having #Clust = 5 clusters, is more complex than
the other two synthetic data sets with five mutually overlapping clusters. Again,
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IROC performs the best, always finding five clusters and their respective overlap,
only having a few individual vertex-cluster mismatches. TF-IROC follows closely
achieving a slightly less accurate clustering. The clustering quality of PICS and
BAGC deteriorate, since neither of these algorithms can find overlapping clusters.
Thus, any vertex contained in more than one cluster must be assigned to a single
cluster, thus creating a large disparity. From these experiments we conclude, that
non-overlapping clustering solutions such as PICS and BAGC are not applicable in
finding useful results in a setting where clusters overlap. Since these algorithms
essentially solve a much easier problem setting, we will exclude PICS and BAGC
from further evaluation.

Efficiency: Next, we evaluate the runtime of IROC, TF-IROC and DB-CSC.
As explained before, we no longer evaluate the algorithms PICS and BAGC, as
these algorithms are unable to find overlapping clusters, thus yielding extremely
low quality results in our settings. We vary both the number of vertices and the
number of modes, which are shown in Figure 3.4.

In Figure 3.4a, we use a synthetic dataset having #Clust = 2 clusters. We scale
the number of vertices per cluster from 200 to 1M . The DB-CSC algorithm was
only scaled to 1000 nodes due to its excessive run-time. Our IROC algorithm can
be scaled to ten-thousands vertices, but the initialization step and the large number
of initial clusters prohibit any further scaling. Our TF-IROC fills this gap, allowing
to scale the this dataset to millions of vertices in reasonable time. We also see that
PARCUBE has the fastest run-time. However, we see in Table 1, that due to the
lack of clustering optimization performed by IROC, this pure tensor factorization
approach yields a much lower clustering.

In Figure 3.4b, we simultaneously increase the number of modesM and attributes
T from 10 to 50, keeping the number of vertices at 2000. While the pure tensor
factorization outscales TF-IROC by a factor of 10; all algorithms scale linear in
the number of attributes and modes dimensions.
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(a) Accuracy Impact (b) Runtime Impact

Figure 3.6: Effect of cutoff threshold τ

Initialization Parameters: The initialization steps of IROC and TF-IROC
require to specify the number of initial clusters. IROC (c.f. Section 3.1.3) specifies
this parameter directly. For TF-IROC, the number of clusters corresponds to the
number of latent factors, which is controlled by the threshold τ . In this section,
we show that these parameters do not require any fine-tuning or deep knowledge
of the underlying dataset. Figure 3.5 evaluates this parameter K of IROC. We
see in Figure 3.5a that for K ≥ 100, the run-time scales linear in K. For K = 1,
we see an extremely low run-time, due to a too-low number of clusters which are
unable to capture the topology of the data. This yields a low clustering quality
as shown in Figure 3.5b. Having k ≥ 100 of initial clusters, the quality no longer
improves. For all our experiments, choosing k logarithmic in the number of vertices
|V |, the number of modes M and the number of attributes T yielding good results.
Figure 3.6 shows the threshold parameter τ of the ParCube algorithm used to
control the number of latent factors. We can see in Figure 3.6a that for any value
of τ ∈ [0.1, 0.7]] the result quality is fairly high, having a maximum at around
τ = 0.3 in our default setting. For τ > 0.3, the loss of quality is attributed to
a small number of latent factors, and thus, again, a too-small number of initial
clusters. For τ < 0.3, we obtain a large number of clusters. But since ParCube
optimizes a different objective function than MDL, these clusters are over-fitted to
non-important latent factors, creating a high distance to the ground-truth clustering
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#Attributes #Nodes #Edges
Facebook "686" 62 170 3312
Twitter total 0 81306 1768149

"356963" 247 65 1232
Google+ "1004" 150 891 4178
Youtube total 0 1134890 2987624
Amazon total 0 403394 3387388
Gnutella total 0 62586 147892

Table 3.2: Sizes of all used real data sets.

which IROC can not repair without running into local minima. Again, we propose
to choose τ in a way that the number of resulting latent factors (and thus clusters)
follows the same rule-of-thumb described for parameter K. Figure 3.6b shows that
the run-time is linear in the number of latent factors corresponding to the choice
of τ . Finally, we note that IROC and TF-IROC may produce a number of clusters
different to the initial number of clusters. Thus, the parameters K and τ are not
a classic user-specified parameter requiring a-priory knowledge of the number of
clusters in the data. The algorithm will try to find the real number of clusters
iteratively, without any domain knowledge of the data.

In the two Fig. 3.6a and Fig. 3.6b we show how the implicit given threshold
affects (a) clustering quality (b) the runtime of the TF-IROC. The threshold is
used for pruning the result of the tensor factorization, giving meaning to the latent
factors of the PARCUBE result. For a very small threshold, it is interesting to
observe that the cluster quality decreases. This is because the tensor factorization
follows a different optimization target than MDL. But we note again that the tensor
factorization is only used to obtain an initial clustering, from where our IROC
approach can iterate to improve the clustering. Consequently, the initial clustering
does not need to be perfect and thus, we propose to use a fairly high threshold.
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Figure 3.7: Evaluation criterias on Facebook, Google+ and Twitter Ego-Networks.

Real Data Sets

We use six SNAP [136] data sets as described in Table 3.2. The first three of them,
Facebook, Twitter and Google+ are ego-networks having overlapping ground-truth
clusters, called friendship circles. Since we are not able to match the identities of
users between different networks, we only use a single mode in each of the real
data sets. However, solutions for the problem of linking identities between users
of different social networks has recently become a vivid research topic [130, 142].
To compensate for the lack of network modes, each of these networks has a large
number of anonymized attributes. The other three real data sets are mainly for
scaling experiments and only provide unlabeled network data.
Runtime Evaluation: The runtime on large real networks was evaluated

using the unlabeled combined ego-networks of Facebook and Twitter and adding
three other SNAP data sets: com-Youtube, amazon606 and Gnutella. For our
approaches, only TF-IROC was evaluated as IROC was not able to scale to these
large networks. We compare TF-IROC to ParCube, which is also used by TF-IROC
in the initialization phase. We ran TF-IROC and PARCUBE in their parallelized
version on all 60 cores. For each dataset, we set the sampling size s of ParCube to
20% of the original data. Figure 3.8 shows the results for these real-data sets. On
all datasets, TF-IROC exceeds the run-time of ParCube by orders of magnitude. In
particular, the iterative re-adjustment of clusters of the refinement step of TF-IROC
is the bottleneck. Still, we see that TF-IROC still runs in acceptable time for
our utilized social networks, while allowing to find more useful and representative
clustering results, as we will see in the next experiment.
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Quality Evaluation: The quality of the clustering of IROC, TF-IROC and its
used tensor factorization ParCube [158] is given in Figure 3.7. For this experiment,
we only used the data three datasets for which we have friendship circles that we
use as a ground-truth for this dataset. For Facebook we used the ego-network“686”,
for Twitter the Ego-network “356963” and for Googleplus the one starting with
“1004”. The gold label necessary for all the measurements F1-measure, NMI and
Ω-Index was extracted from given Circles of Friends included in the data and
provided by the authors of [136]. These circles contain overlapping nodes, but not
all nodes are labelled, thus explaining the overall low clustering quality. Figure 3.7
shows that the computationally expensive basic IROC yields the best clustering
results. TF-IROC yields significantly worse results, but trades this loss in quality
for a run-time applicable to large graph data. The ParCube algorithm yields the
worst clustering quality.

Figure 3.8: Runtime for large unlabeled real data sets

3.1.6 Related Work and Discussion

The problem of clustering vector data has been studied widely [195]. Our proposed
algorithms IROC and TF-IROC are designed for clustering multi-modal attributed
graphs by allowing not only overlapping in the network structure but also in the
attribute subspace. The related work therefore comprises two parts: (multi-mode)
attributed graph clustering and overlapping community detection methods in
networks.
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Attributed Graph Clustering

Guennemann et al. propose Gamer [82] and DB-CSC[81], which combine dense
subgraph mining like DBSCAN [62] with subspace clustering. Both Gamer and
DB-CSC allow overlapping in the attribute space and consider redundancy as all
density-based approaches but are both very slow, use many parameters and the
attributes supported must be numerical. PICS[12] is a parameter-free algorithm
based on the MDL principle. It is able to mine cohesive clusters from an attributed
graph with similar connectivity patterns and homogeneous attributes. However, it
can not detect any overlapping in the attribute space and it clusters the vertices
and attributes separately. Partition-based methods are, for example, BAGC [196]
which base on an bayesian probabilistic model to partition attributed graphs.
Another partitioning approach is from Zhou et al. [210]. It augments graphs
by considering each attribute as a vertex. A random walk is utilized on the
augmented graph to create a unified similarity measure to combines structural and
attribute information. Obviously, these partition-based methods can not detect any
overlapping of network clusters nor do they find any coherent attributed subspaces.
Considering multi-mode or heterogeneous graphs, Sun et al. [179] propose a model-
based method to clustering heterogeneous information networks, which contain
incomplete attributes and multiple link relations. Also marginally related to our
method are the approaches [177][141] and [185] achieving numerous small cohesive
subgraphs, which aim to discover a correlation between node attributes and small
subgraphs.

Detecting Overlapping Communities

The problem of finding overlapping network structures has been widely neglected,
despite its applications in overlapping community detection in social networks.
The fastest approaches exploit efficient matrix- and tensor factorization, for which
efficient solutions have been recently proposed. [158][105]. Zhang et al. [208]
propose a soft clustering algorithm based on matrix factorization. The assignment
of each vertices is stored as probability in a matrix with a number of dimensions
equal to the number of the community. The authors achieve the overlap of the
communities by fuzzy allocation. Another approach using matrix factorization is
[199] that works for a very large amount of data and makes the oberservation that
overlapping network structures are actually denser than the others. To the best of
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our knowledge tensor factorization was not explicitly used in this approach as a
clustering strategy but it was mentioned that it corresponds to co-clustering, which
is always overlapping [157]. A key problem of finding overlapping clusters is how
to assign a vertex to multiple labels. In a first instance, [73] reveals overlapping
phenomena of complex networks in nature, and achieves overlapping communities
by seeking k-cliques containing overlapping vertices. CONGA[77], proposed by
Gregory, is an algorithm which aims to detect overlapping communities by iteratively
calculating two betweenness centrality based concepts.In order to speed up the
algorithm CONGA, the author proposes an algorithm named CONGO[78] by
calculating local betweenness instead of global betweenness. Both algorithms need
to at least set the number of clusters as input parameters. However, none of
these algorithms are able to cluster networks having more than one mode, and
having attributes associated with vertices. Finally, Non-overlapping community
detection are widespread and similarities can be found in [156][192]. For a survey
on overlapping community detection consider [194].

3.2 CXprime - Automated Clustering Using
Structure Primitives

Real world data from various application domains, such as social networks, bioin-
formatics and neuronal networks can be modeled as graphs. Specific topological
structures like triangles and stars represent meaningful characteristic relationships
among subsets of nodes. Specifically, in [173] the authors introduced a transitivity
attribute which is calculated from the fraction of triangles in all node triplets. As
an indispensable condition for small-world networks, high transitivity implies more
triangles in a graph. Moreover, the authors in [109] characterize graphs with a
power-law degree distribution - a significant feature of scale-free networks - by a
very low degree of most vertices combined with a high degree of only very few
vertices. Therefore, hubness plays a pivot role in a graph which is created in star
style. Obviously, triangles and stars are the two basic regular substructures which
appear in graphs most frequently. The triangle embodies the transitivity of a graph
and the star shows the hubness of a graph. Moreover, graphs containing more
triangles are showing different structures and characteristics to graphs that contain
more stars. It is very interesting to know which substructure is popular in a graph.
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Firstly, the popular substructure reflects the structure feature of the whole graph.
Secondly, based on the frequent appearance of a substructure, the graph can be
compressed under Minimum Description Length (MDL) principle [170]. Thirdly,
the structure information is very helpful for link prediction.

 

JohnSam 

Figure 3.9: Two Differently Structured Sub-graphs.

However, there are some graphs that possess both high transitivity and hubness
in different parts of the whole graph. Take the toy graph which is shown in Figure
3.9 as an example. The graph displays the friendship relationship between Sam
and John. Supposing that Sam prefers to make friends with local people, and
all his local friends are also friends with each other; while John’s friends scatters
in various countries, so that some of them do not know each other. Therefore,
the circle of friends of Sam performs a clique with a large amount of triangles
while John is the hub of his circle of friends which is displaying a star. The
authors of [154] point out that transitivity increases with the strength of the
corresponding community. Traditionally, many algorithms are designed to detect
communities which pursue the compactness of inner vertices and sparseness of
intra vertices, including spectral clustering [176], Min-Max cuts [58] and oth-
ers. However, as shown in Figure 3.9, it is meaningful to distinguish among the
star-like cluster as John’s circle of friends and the clique-like cluster of Sam’s friends.

Contributions. In this subchapter,we propose a novel compression-based graph
mining algorithm named CXprime (Compression-based eXploiting Primitives).
The algorithm is based on exploiting three-node primitives which are the smallest
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substructures and express both transitivity and hubness of a graph. Unlike complex
substructures, three-node primitives are simple and easy to count. Any graph no
matter how complex it is can be considered as a combination of three-node primi-
tives. Moreover, we exploit the differences in the relative frequency of three-node
primitives for graph compression. Based on the idea of MDL, frequently appearing
primitives are effectively compressed in short bitstrings and rarely appearing primi-
tives represented by longer bitstring. Due to the fact that three-node primitives
are appropriate for representing both triangular and star substructures, CXprime
is designed to distinguish and partition graphs with different substructures. The
main contributions of CXprime are summarized as follows:

• Discovery of graph structure: CXprime automatically discovers the basic
structure type of a graph. Relating data mining to data compression, the
core of CXprime is a coding scheme based on three-node primitives allowing
to model both triangular and star structures. Emphasizing the characteristics
of a triangle graph and star graph separately, CXprime comprises a Triangle
Coding Scheme and a Star Coding Scheme. By applying these two coding
schemes to an unknown graph we can determine its structure type either as
star-like or triangle-like.

• Graph partitioning based on structures: Based on the Triangle Coding
Scheme and Star Coding Scheme which is proposed by CXprime, the graph can
be partitioned into subgraphs with star or triangular structures. Furthermore,
the number of clusters can be selected automatically since CXprime is based
on the idea of Minimum Description Length.

• Link prediction based on structures: CXprime allows us to detect the
structure type of a graph. We exploit this information to design a novel unsu-
pervised link prediction score. Experiments demonstrate that this structure-
based score outperforms existing techniques which impressively demonstrates
that structure information is very useful for graph mining.

The remainder of this subchapter is organized as follows: In the next section,
we elaborate our coding scheme. Section 3.2.2 describes the algorithm in detail.
Section 3.2.3 shows experiments and results. Related work is discussed in Section
3.2.5.
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3.2.1 Graph Compression
Suppose we want to transfer a graph G over a communication channel from a sender
to a receiver. We consider an unweighted and undirected graph G with N nodes
in this thesis. The graph is provided by its adjacency matrix A with entries Ai,j
specifying whether there is an edge among the nodes i and j. To transfer G we need
to compress each entry in its adjacency matrix A. If we do not have any knowledge
on the structure of G, the coding costs are provided by the entropy of A. Since
G is an undirected graph, A is symmetric and we only need to encode the upper
or lower half of A without the diagonal (representing self-links which are never or
always set by convention). Regardless of the type of graph and its characteristics,
which can be e.g. scale-free, small-world, Erdos-Renyi, clustered, dense or sparse,
we can represent every graph by a bit string of length corresponding to the entropy
of its adjacency matrix A. To encode a single entry Ai,j, we need an average of
H(A) bits, where H(A) denotes the entropy and is provided by:

−(p(e) · log2(p(e)) + p(ne) · log2(p(ne))),

where p(e) stands for the probability to observe an edge in G, corresponding to
the percentage of 1s in A, and p(ne) analogously. Thus the total coding costs are
provided by: N · (N − 1)/2 ·H(A).
If G contains regularities in the form of frequent structure primitives like tri-

angular or star structures, we can compress it more effectively than its entropy.
Note that our primary focus is not on compacting the data for transmission over a
communication channel but on mining the truly relevant patterns in the data in an
unsupervised way. However, there is a direct relationship between data compression
and knowledge discovery: The better a set of patterns fit to the data, the better is
the compression, i.e. the greater are the savings in coding costs over the entropy
which serves as a baseline. In the following section, we elaborate concrete coding
schemes including structure primitives which are characteristic for major types of
real world graphs, including small-world and scale-free.

Basic Coding Paradigm

Three-node primitives (substructure with three nodes) are the smallest substructures
which can embody both connectivity and transitivity of a complex graph. Figure
3.10 enumerates all possible link patterns among three nodes in an undirected
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graph. In a random graph, each edge exists with the same likelihood and does not
depend on the existence of other edges. Therefore, a random graph requires coding
costs corresponding to its entropy and cannot be represented more efficiently. If a
graph is characterized by transitivity or star-like structures, the existence likelihood
of an edge depends on the existence of other edges. In a graph with many star-like
hubs, if e.g. node B is already connected to node A (cf. Figure 3.10 (c)), then node
C is also connected to A with a high likelihood (cf. Figure 3.10 (g)). In a highly
transitive graph, when we know that there are two edges among tree nodes (cf.
Figure 3.10 (g)), also the third edge closing the triangle (cf. Figure 3.10 (h)) exists
with a high likelihood. In other words, the probability of observing the third edge
BC (cf. Figure 3.10 (h)) is very high under the condition that we already observed
a potential triangle formed by two edges. We can exploit these typical variations in
conditional probabilities to effectively compress structured graphs as follows (see
Figure 5.2):
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Figure 3.10: All Possible Connections of Three-node Primitives

Fixed Processing Order for Coding and De-Coding. First, the sender
and the receiver agree on some fixed order for encoding and de-coding the adjacency
matrix A, which can be column-wise, row-wise or diagonal-wise. For an undirected
graph, the code is a bitstring composed of N · (N − 1)/2 codewords. By the fixed
coding and de-coding order, the receiver always knows which codeword corresponds
to which entry Ai,j without any ambiguity or information loss. To encode the
graph in Figure 5.2(a), without loss of generality, we select a diagonal-wise order
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of processing. The diagonal colored in black in Figure 5.2(b) does not need to
be transferred, since it represents self-connections which are set by convention.
To encode the first off-diagonal, we cannot use any conditional probabilities since
each entry corresponds to a single edge among two different nodes and we have no
information on three-node primitives.

Case Distinctions based on Conditional Probabilities. Starting from the
second off-diagonal, we can exploit conditional probabilities together with case
distinctions depending on the information we have already seen before in the
processing order. In particular, we define three conditional probabilities which
can be obtained from counting the relative frequency of three-node primitives (cf.
Figure 3.10), e.g. Na is the frequency of case (a) :

Definition 21 (Basic Conditional Probabilities).

• No Edge: We have not seen any edges in three-node primitives so far.
p(e|No Edge) = Nbcd

Na+Nbcd

• Potential Star: We have already seen one edge. If another link were added
next, we would get a star primitive, therefore we call this primitive with only
one edge potential star.
p(e|Potential Star) = Nefg

Nbcd+Nefg

• Potential Triangle: We already observed two edges. If another link were
added next, we would get a triangle primitive, therefore we call this primitive
with two edges potential triangle.
p(e|Potential Triangle) = Nh

Nh+Nefg

Where Nbcd = (Nb + Nc + Nd)/3 and Nefg = (Ne + Nf + Ng)/3, cf. Figure
3.10. For every condition σ ∈ {No Edge, Potential Star, Potential Triangle},
the probability that no edge exists is provided by p(ne|Condition σ) = 1 −
p(e|Condition σ). The entropy of each condition is provided by:

H(σ) = −(p(e|σ) · log2 p(e|σ) + p(ne|σ) · log2 p(ne|σ)). (3.17)
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where e means there is an edge and no edge for ne.

When encoding a particular entry in the adjacency matrix, we can find all
previously seen three-node primitives by inspecting the nodes in the corresponding
row and column. In our example (cf. Figure 5.2), we are currently coding the
third off-diagonal and now want to encode the red entry corresponding to the edge
CG in row 3 and column 7. We already have information about the nodes D, E,
and F. We know that D is not connected to C nor G from the entries (3, 4) and
(4, 7). We also know that E is connected to C and G ((3, 5) and (5,7)). Finally,
we know that F is connected to G but not to C ((6,7) and (3,6)). We observed
all three conditions above in the previously seen data. Which one should we use
to encode the current entry? Since we aim at compressing the data as much as
possible we always select that condition which is expected to give us the shortest
codeword. This is the condition having the lowest entropy. We could also see our
three conditions as alternative classifiers predicting the current entry. If we have
the choice among several classifiers, i.e. if multiple conditions apply, it makes sense
to select the classifier which is most certain about the current case. For our example
graph we have p(e|Potential Triangle) = 0.72, p(e|Potential Star) = 0.35 and
p(e|No Edge) = 0.68. Thus, we select the condition Potential Triangle, since it
allows us to encode the current entry with 0.86 bits in average, while Potential
Star would require 0.93 bits and No Edge 0.9 bits. The current entry is an
edge, so we use the codeword representing an edge under the condition Potential
Triangle to encode it. This coding scheme is de-codeable without information
loss since for coding and de-coding sender and receiver perform the same case
distinction based on the same data.

Parameter Costs. To decode the bitstring, the sender needs the codebook
consisting of the conditional probabilities required to perform the case distinction
and the code table saying which bitstring represents an edge or no edge in every
case. Following [169], these parameter costs can be approximated by Eq. 3.18:

CCparam = 0.5 · num · log2
N · (N − 1)

2 , (3.18)

where N is the number of nodes in the graph and num denotes the number of
parameters, which is three in our case since we consider three different conditional
probabilities.
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Efficient Implementation with Adjacency Lists. For efficient coding and
de-coding the sender and receiver use adjacency lists. Every time a new entry
is processed, it is inserted into the adjacency lists of both corresponding nodes.
Figure 5.2(c) displays a snapshot of the adjacency lists before processing CG. In
order to collect the applicable cases for encoding or de-coding CG, instead of
looking into the corresponding row and column of the adjacency matrix, we scan
the adjacency lists of nodes C and G. In particular, we start with the list of G
from the beginning and with that of C from the end. In the first step, we retrieve
F as the first node in the list of G and E as the last node in the list of C. We know
that F is adjacent to G but not to E, which means that the condition Potential
Star is applicable. Having processed F, we move one step forwards in the list of
G and detect the matching node E, from which we can deduce that Potential
Triangle also is applicable. Having processed E, we can move one step in both
lists, which means that we come to the end of the list of G and obtain B in the list
of C. Due to the processing order, information on three-node primitives formed
with node B is not yet available, therefore we can stop as soon as we detect a node
coming before C. But we know that we already have information on D. Therefore,
we detect that condition No Edge is also applicable.

Extended Coding Paradigm

The basic coding paradigm only considers the primitives with three nodes, which is
the simplest substructure in a graph. During the diagonal-wise coding process, we
can see less previous information in the beginning and more at the end. Therefore
if primitives with more nodes can be used, we could compress the graph more
effectively and get more knowledge from it. However, counting probabilities of
primitives with more nodes would require high computational costs.

We choose some primitives with more nodes to extend the basic coding paradigm
as Figure 3.12 shows. These primitives are frequent in real world graphs, like dense
communities or hub nodes and their neighbors.

Definition 22 (Higher-order Conditional Probabilities).

• Multiple Triangles: There are multiple points connecting both B and C,
which means previously we can see multiple dual-connected edges. As shown
in Figure 3.12 (a) and (b);
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• Strong Star: There are multiple points connecting B or C, which means
previously we can see multiple single-connected edges. As shown in Figure
3.12 (c) and (d).

Suppose the high-order conditional are represented as Condition σ′ ∈ {Multiple
Triangles, Strong Star}. The probabilities of existence an edge e under the
condition σ′ are provided by:

p(e|k ·Condition σ′) =
∑E
i=1 Ckmi∑E

i=1 Ckmi
+∑NE

j=1 Cknj

(3.19)

Where E is the number of edges in a graph G, and NE is the number of pairs of
nodes without connection. mi with i = 1, 2, ...,E is frequencies of Condition σ′

for the connected entry, and nj with j = 1, 2, ...,NE is frequencies of Condition
σ′ for the unconnected entry. C is combination symbol. k is the actual frequency
we can see for each entry.
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Figure 3.12: Multiple Primitives.

No extra effort is required to obtain these higher-order conditional probabilities,
since they are calculated without counting the number of edges (again), but are
created by calculating the combination of pair of nodes that have the same basic
primitives, e.g. two linked nodes share n neighbors then they have Ck

n triangles.
We use Eq. 3.19 to calculate the statistic for multiple triangles and strong stars.
In our experiments of both synthetic and real data sets, the probabilities in Eq.
3.19with different k become stable when k increases. Therefore, we only compute
the probabilities when k ≤ 4 in this thesis.
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To be able to automatically detect the structure type of a graph we now introduce
a Star Coding Scheme and a Triangle Coding Scheme.
The Star Coding Scheme employs for coding the following set S of conditional

probabilities S := {No Edge, Potential Triangle, Potential Star, Strong
Star} while the Triangle Coding Scheme works with a different set T := {No
Edge, Potential Star, Potential Triangle, Multiple Triangles} as specified
in the basic and higher-order conditional probabilities, cf. Definitions 21 and 22.
Upon encoding or decoding each entry, the sender or receiver always select that
conditional probability of S and T having the lowest entropy respectively. The
overall coding cost CCS for the Star Coding Scheme is provided by:

CCS =
∑
e

L(e|S)
minH(S)

+
∑
ne

L(ne|S)
minH(S)

+CCparam (3.20)

where L(e|S) = − log2 p(e|S) is the coding length of a connected entry, L(ne|S) =
− log2 p(ne|S) is the coding length of a unconnected entry, CCparam represents the
parameter costs as specified in Eq. 3.18.However, we now have 3 +k−1 parameters
to consider. Three of them are basic probabilities, while k − 1 of them are higher
order probabilities except for corresponding basic three-node primitive. The coding
cost CCT of the Triangle Coding Scheme is determined analogously applying the
corresponding set T .
Both coding schemes contain all basic conditional probabilities since we need

to be able to represent any possible link pattern among three-node primitives
with both schemes. The higher-order probabilities emphasize and reward star and
triangle structures by assigning very short bitstrings to them. The coding and
de-coding process with these two extended coding schemes works as explained in
Section 3.2.1. Also here, to encode the first diagonal of A, we use the entropy
provided by the general edge existence probability, which is omitted in the above
definition for clarity of presentation.

3.2.2 Algorithm: CXprime
In this section, we present our algorithm CXprime to mine useful information
considering the underlying structure primitives from graphs. The core part of
CXprime are the two coding schemes, Triangle and Star Coding Scheme, which are
proposed in the previous section. CXprime is able to distinguish graphs with high
transitivity from graphs with a high amount of hubness by comparing the coding
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cost of both coding schemes. Apart from distinguishing the graph structures, we
combine the coding scheme with K-means for graph partitioning and propose a
new link prediction technique exploiting graph structure information.

Graph Partitioning

Considering the complexity of a graph structure, it can be partly in a high transi-
tivity state and partly consisting of many hubs. Traditionally, dense communities
with high transitivity are formed by several triangular structures. However, com-
munities with hub are playing a pivot role in graphs as well. Combining the two
proposed coding schemes regarding the different structures in a clustering process
we introduce a novel idea for graph clustering: Partitioning by structure. The
K-means like clustering of CXprime is guided by the proposed coding schemes,
which partitions graphs into parts based on their respective structural properties
that compress the whole graph best. To avoid overfitting, we follow the principle
of Minimum Description Length and require that not only the data but also the
structure primitives considered in the codebook need to be encoded.

Based on MDL, we extend the proposed Triangle and Star Coding Scheme to be
used in clustering. More specifically, the MDL principle is applied to compress a
set of candidate clustering models, where in our case different models correspond
to different partitions. We use our Triangle and Star Coding Scheme to compress
the clusters to test whether the subgraph of an original graph contains triangular
or star structures. The coding cost for graph G under the clustering model M with
K clusters {G1,G2, ...,GK} is provided by :

L(G|M) =
K∑
i=1

(min(CCS(Gi),CCT (Gi))) + CCB (3.21)

where CCS represents the coding cost of the star coding scheme, CCT is the coding
cost of the triangle coding scheme and CCB indicates the costs describing the edges
between different graph clusters, for which simple entropy coding is used.

To avoid overfitting, MDL not only include the cost for coding the data with
the model L(G|M) but also the cost L(M) for the model. We need to specify the
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clustering assignment and conditional probabilities of the Triangle or Star Coding
Schemes for each cluster.

L(M) =
K∑
i=1
|Gi| log2( N

|Gi|
) +

K∑
i=1

CCparam(Gi) (3.22)

where the first term represents the coding cost for the clustering assignment and
the second term represents parameters cost.
Finally, the total coding cost for the whole data set with the clustering model

M can be obtained by:

L(G,M) = L(M) + L(G|M)

(3.23)

The MDL based clustering algorithm is depicted in Algorithm 5. During ini-
tialization, we choose K nodes with the longest shortest path between each other
as cluster centers. Then neighbors of the center nodes are directly assigned to
corresponding clusters. If remaining nodes are neighbors of nodes in a cluster, they
will be assigned to this cluster as well. Finally, all nodes are roughly assigned to
K clusters and we calculate the star coding cost CCS and triangle coding cost
CCT of these clusters, then choose the minimum value as initial coding cost. In
the iteration phase, each node is moved to all the other clusters to test whether it
reduces the coding cost. If the new coding cost is decreased, the new graph clusters
will be kept. Otherwise, the nodes will be moved back to their former cluster. The
iteration terminates when the clustering labels do not change. Due to the fact
that CXprime is a MDL-based algorithm, the number of clusters K can be chosen
automatically by searching the minimum coding cost without using any parameter.

Link Prediction

In highly transitive graphs as dense communities, triangular substructures appear
the most frequently. It implies that if two nodes are involved in more Potential
Triangle with other nodes, there will be a higher probability that the two nodes
will be linked. On the other hand, star substructures are the most common patterns



Chapter 3. Graph Data 113

Algorithm 5. Graph Partitioning
Input: Graph G
Output: Graph Clusters Gc = G1,G2, ...,GK

1: Select K nodes as cluster centers, and assign nodes to K clusters;
2: Calculate coding cost CCold
3: while Converge do
4: Reassign nodes to other clusters;
5: Recalculate coding cost
6: if CCnew > CCold then
7: Move nodes back;
8: end if
9: end while
10: return Gc.

appearing in a graph with several high degree hubs. Thus if two nodes are involved
in more Potential Star with other nodes, there is a higher probability that the
two nodes will be connected in a star-like graph. Benefiting from structures of
graph detected by CXprime, we propose a new unsupervised link prediction method.
Specifically, we combine the two situations and give a new prediction score which
is shown as:

SCXprime(e) = CCT
CCT + CCS

· fT (e) + CCS
CCT + CCS

· fS(e),

(3.24)

where CCT and CCS are the coding cost of Triangle Coding Scheme and Star
Coding Scheme respectively, e is the edge that will be predicted, fT is the frequency
of Potential Triangle after normalization and fS is the number of Potential
Star after normalization. These frequencies can be used for link prediction after
we give weights to them based on the graph type. Coding costs of a given graph
on both triangle and star type are adopted to generate weights. If CCT > CCS,
then the graph contains more triangular structures than star structures, and the
frequency of triangle fT will be assigned bigger weight. If CCT < CCS, star
structures dominate the graph, thus we give fS a bigger weight.
Runtime complexity. The runtime complexity of CXprime to compress a

graph G with N nodes and E edges involves: calculating the statistics of structure
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primitives and coding the adjacency matrix. Gathering the statistics with the
adjacency list we need to go through each pair of vertices O(N · (N − 1)/2)
and compare their neighbors O(2E/N), where E/N is the average number of
edges for each vertex. The asymptotic complexity for this task hence reduce to
O(N ·E). Similarly, the complexity of the coding part is O(

√
N · E ·N). For graph

partitioning, we use an efficient K-means-style approach which is linear in N and
usually converges very fast.

3.2.3 Experimental Evaluation

This section evaluates the three major contributions CXprime separately. CXprime
is implemented in Java. All experiments have been performed on a workstation
with 2 Duo 2.4GHz CPU and 4.0 GB RAM.

Discovering the Graph Structure

With the two different coding schemes for stars and triangles, CXprime is able to
identify whether the graph is formed by star structures or by triangular structures.
It holds that the coding scheme that shows the minimal coding cost for a given
graph indicates which structure appearing more frequently in it. We evaluated the
two coding schemes of the algorithm on both synthetic data sets and real data
sets, the real data sets are coming from sports and media industry. To prove the
efficiency of the compression, the acquired coding cost is compared with the entropy
of the graph.
Synthetic Data Sets. We generate two types of graphs which clearly show the

differences between star and triangular structures. One type is mainly constructed
by star-like structure primitives that we call it star graph. The other graph is mainly
composed of triangular structure primitives which is named triangle graph. The
number of nodes in both cases is fixed to 100. Specifically, we generate a star-like
graph with three hubs, based on which three single star structures with equally
same number of nodes are formed. Under the condition of keeping the original
star-like structure, noise edges are added to generated graph. The percentage of
noise increases from 0.05 to 0.25. Obviously, a clique contains numerous triangular
structures. We generate triangle graph based on one clique structure. Similarly, in
order to keep the original triangular structure, we remove edges from the generated
graph with the percentage of removed edges increasing from 0.05 to 0.25.
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As shown in the bar charts of Figure 3.13a and 3.13b, our two coding schemes
of CXprime are evaluated on each generated star graph and triangle graph with
the percentage of disturbing edges increasing from 0.05 to 0.25 separately. While
the entropy of the graph serves as a baseline. Figure 3.13a illustrates that the
Star Coding Scheme has a lower coding cost than the Triangle Coding Scheme
in star graph, which demonstrates that CXprime successfully detects that star
structure frequently appears in all cases. Analogously, in Figure 3.13b the Triangle
Coding Scheme has a lower coding cost in the triangle graph, which proves that
the frequent appearance structure is triangular structure.
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Figure 3.13: Coding scheme evaluation on synthetic data.

Real Data Sets2 Our first real world data set called “Zachary’s karate club”
[204] is a social network with 34 nodes which demonstrates the relationship between
members of a karate sports club at a US university in the 1970s. The other real world
data set “Les Misérables” [118] is a network with 77 nodes indicating characters
in Victor Hugo’s famous novel of the same name. The edges are representing the
connection between any pair of characters which appear in the same chapter of
the book. Both data sets are obtained from the UCI Network Data Repository.
Table 3.3 shows the coding costs of “Zachary’s karate club” and “Les Misérables”
which calculated by entropy, Star Coding Scheme and Triangle Coding Scheme,
respectively. In the case of “Zachary’s karate club” the Star Coding Scheme obtains

2http://networkdata.ics.uci.edu/index.php
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the minimum coding cost, which implies that this graph is more star-like. In
order to further evaluate results of distinguishing graph substructures, we visualize
“Zachary’s karate club” data in Figure 3.14a. Seen from the figure, there are two
striking hubs inside the graph. In terms of “Les Misérables”, comparing with
other coding schemes, the Triangle Coding Scheme yields the smallest value, which
indicates that there are more triangle structures than star structures in the graph.
Moreover, Figure 3.14b shows that there are a large amount of obvious triangular
structures in the “Les Misérables” network.

Table 3.3: Distinguishing Graph Structure on Real Data Sets
Entropy Star Triangle

Zachary’s karate club 330.9 325.6 331.3
Les Miserables 1251.4 986.6 895.1
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Figure 3.14: Coding scheme evaluation on real world data.
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Graph Partitioning

In this section, we compare CXprime with classical graph partitioning algorithms,
such as Metis [113] and Markov Clustering (abbreviated as MCL) [187]. Besides,
we compare CXprime with cross-association (abbreviated as CA) [41], which is also
a compression-based graph clustering algorithm. Metis and MCL require input
parameters. For MCL, we used the default parametrization. CXprime and CA
automatically find clusters without any parameter due to their information-theoretic
approaches.
Synthetic Data Sets. We generate two synthetic data sets with different

structural clusters, and evaluate the graph partitioning performance of CXprime
and the comparison methods. We generate each type of data set 10 times using a
different random number generator and output the average results.
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Figure 3.15: Syn1 with Two Stars and One Clique.

The first synthetic data set Syn1 is composed of two star clusters and one clique
cluster (100 nodes each) with sketch map shown in Figure 3.15a. The star cluster is
generated with one hub connecting all the other nodes, besides 20 edges are added
to it as noise. The clique cluster is created by making a full connected graph first
and then 20 edges are removed from it. The edges between each pair of two clusters
are randomly selected to connect them, which is why we altered their number from
10 to 100 to evaluate their affects on graph partitioning. Since we know the class
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label of each node as ground truth, the Normalized Mutual Information (NMI)
[189] is used to evaluate the clustering results, and NMI scales between 0 and 1,
where 1 means a perfect clustering and 0 means no agreement at all among class
and cluster labels. Figure 3.15b shows curves of NMI values when implementing
CXprime and comparison algorithms on Syn1 with different number of between
edges. Benefiting from finding the structure of the star cluster, CXprime clearly
performs better than the other methods with a NMI above 0.9 even when there are
100 edges between each pair of two clusters. Figure 3.16a depicts the coding costs of
detected clusters in Star Coding Scheme and Triangle Coding Scheme. As expected,
Star Coding Scheme gives less bits for two star-like clusters, while Triangle Coding
Scheme gives less bits for the clique-like cluster. Metis performs good when there
are less edges (below 30) between two clusters, however its performance severely
degrades when there are more edges in between (below 0.3 when there are 100
between edges). MCL cannot find correct clusters with a NMI about 0.5 for all the
cases. CA fails to detect correct clusters with a NMI no bigger than 0.3, because
there is no dense region in a star cluster. Interestingly, CA gets better results when
there are more edges in between, which shows that CA can not find sparse clusters.
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Figure 3.16: Coding Cost of Clusters.

The second synthetic data set Syn2 is composed of three star clusters and each
star contains 100 nodes, the sketch map is shown in Figure 3.17a. Similarly, 20
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edges are added to each star cluster as noise in order to keep the star structure.
Each pair of star clusters is connected with randomly selected edges with their
number ranging from 10 to 100. The clustering results of Syn2 which are evaluated
by NMI are depicted as curve graph in Figure 3.17b. Seen from the figure, CXprime
clearly performs better than the other methods with a NMI above 0.9 even when
there are 100 edges between each pair of two clusters. Figure 3.16b depicts the
coding costs of detected clusters in Star Coding Scheme and Triangle Coding
Scheme, in which the Star Coding Scheme compress all three star-like clusters
with less bits. Metis and MCL perform good when there are less edges between
clusters, however their performances severely degrades when there are more edges
in between. CA cannot detect any clusters in this data set, because CA can not
find star-like structures.
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Figure 3.17: Syn2 with Three Stars.

In summary, the results of CXprime are clearly superior than those of the
comparison partners on all synthetic data. This demonstrates that CXprime is
suitable to detect clusters according to their structure type.
Real Data Sets. Two real data sets are used to evaluate the performance of

CXprime on graph partitioning, “Zachary’s karate club” graph and a subgraph of
the DBLP co-authorship graph.
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“Zachary’s karate club” graph is small and therefore we can asses its structure by
directly drawing it by splitting hub nodes as shown in Figure 3.14a, which helps us
to interpret the partitioning results. CXprime and Cross Association automatically
detect two clusters, MCL finds two clusters under the default parameter setting as
well. Therefore, we set the cluster number to 2 for Metis. Since class labels are
unavailable, we visualize the graph for evaluation. The graph partitioning results
are depicted in Figure 3.18, in which different symbols stand for different cluster
labels. Seen from Figure 3.18a, two clusters are detected by CXprime, the one
labeled with red triangle is sparser and the one labeled with blue square is denser.
Metis and MCL perform well on this data set (Figure 3.18b and 3.18c), but still
have several points grouped differently. However, note that the results of Metis and
MCL only consist of the clustering without giving any information on the cluster
content. CXprime is the only method providing us not only the clustering but also
the interesting information that the content of one clusters is dominated with star
structure and the other one contains more triangle due to the dense connection.
Cross Association completely fails to detect clusters in such data set as Figure
3.18d shows, because there is no very dense region in this graph.
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(d) Cross Association.

Figure 3.18: Graph Partitioning of Zachary’s karate club Data.

The DBLP3 network contains information on which researchers are publishing
together and how each research group evolves over time. It has the advantage
that we can interpret the results relatively easy based on our personal knowledge
and on the knowledge provided open source by DBLP even though the data is
unlabeled. We generated our test data set by taking all co-authors of three well-
known international professors, namely “Jiawei Han”, “Christos Faloutsos” and
“Hans-Peter Kriegel” as nodes and expect the professors to be the nodes with the
highest degree (hubs). The co-authors and professors are connected if any two of
them cooperated on a chapter together. The data set consists of 1014 vertices with

3http://dblp.uni-trier.de/
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Table 3.4: Example of differing people in MCL and CXprime
MCL CXprime

Hui Zhang han-group faloutsos-group
Padhraic Smyth han-group faloutsos-group
Wei-Ying Ma han-group kriegel-group
Senqiang Zhou han-group faloutsos-group

John Paul Sondag han-group faloutsos-group

5828 edges between them. In the following we will refer to the three clusters that
we expect our comparison methods to find as “han-group”, “faloutsos-group” and
“kriegel-group”. Therefore, we set the number of cluster to 3 in Metis, MCL was
working with its default parameter and CXprime and CA are both parameter-free
algorithms.

The extracted DBLP subgraph does not connect densely, thus CA is not able to
find any meaningful clusters. Metis finds three cluster, but one of the clusters con-
tains two hubs “Christos Faloutsos” and “Hans-Peter Kriegel”, which considerably
deviates from the ground truth. The result of MCL and CXprime is similar, all
three professors are as expected in different clusters, and in the overall look the
quality of both results are good. In detail, they differ in the han-group in 26 people,
in the faloutsos-group in 27 people and in the kriegel-group only 8 people. Some
examples are shown in Table 3.4. Among these different peoples both methods
are not totally correct and most of the differences exist between han-group and
faloutsos-group. For example, Hui Zhang and Padhraic Smyth who were falsely
put into han-group by MCL. Specifically, Checking from DBLP website, Hui zhang
has published two chapters with Prof. Faloutsos but has no collaboration with
Prof. Han. And Padhraic Smyth also has only collaborated with Prof. Faloutsos.
Moreover, Wei-Ying Ma has published one chapter with Prof. Kriegel, but is falsely
put into han-group by MCL. However, both Senqiang Zhou and John Paul Sondag
have published one chapter with Prof. Han respectively. But they are falsely
grouped into faloutsos-group by CXprime. Therefore, we consider the quality of
the results of MCL and CXprime for this dataset as approximately equal.
However, CXprime is the only method detecting the structure of these three

clusters. Here, we expect PhDs working at university with the professor to publish
in more of a clique structure and external as well as cooperation partners as more of
a star one. Also, this evolves over time. CXprime provides the content information
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of these three clusters that han-group is the biggest group and is more triangle-like.
The kriegel-group as the smallest cluster is denser and therefore is formed as
triangle-like. And the faloutsos-group is referred to as a more star-like motif, which
may caused by containing external students.
Compression Rates. The basic idea of MDL is that the more you compress the

data the more you learn from it. Therefore, it is non-trivial to compare CXprime
with compression-based methods in terms of compression rates. We compare the
compression rates between these methods: our Star Coding Scheme and Triangle
coding scheme, our CXprime partition algorithm, and two existing compression-
based graph mining algorithms SLASHBURN[109] and cross-association (CA), and
entropy is given as a base line. The results for both synthetic (Syn1 and Syn2
with 10 edges between each pair of clusters) and real datasets are depicted in Table
3.5, which are shown in bits. As only half of the adjacency matrix is considered in
this chapter, the compression rates of SLASHBURN and CA are also calculated
from the half of the matrix. And the number in bracket are the sizes of blocks for
SLASHBURN, we try different settings and output the best compression rate. It is
clear that Cxprime outperforms the other methods by achieving higher compression
rates in both synthetic and real data sets.

Table 3.5: Compression Rates (Bits)

Entropy Star Triangle Cxprime SLASHBURN CA

Syn1 23215 12906 4345 1397.28 4056.6(20) 2230.5
Syn2 3114 1926.8 1930.5 1390.9 2399.1(20) 1695.5
Karate 330.9 325.6 331.3 297.1 306.6(11) 317
DBLP 46027 44743 39249 35297 38538(50) 38485

3.2.4 Link Prediction

Considering the structures which can be distinguished by CXprime, an unsupervised
link prediction score is proposed. In this chapter, we compare our proposed score
with other unsupervised link prediction scores, Common Neighbors (CN), Preference
Attachment (PA) and Katz (β = 0.005). All scores are experimented on both
synthetic and real data sets. In order to evaluate the efficiency of our scores, we
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randomly sample 30% of edges as predicting edges S and deleted them from the
original graph. In the resulting graph, we calculate the link-prediction scores of
every pair of unconnected nodes and sort them descending. The first |S| edges
of each score are selected separately as a predicted result which is expressed as
P . After comparing the predicting edges S with predicted edges P , we use the
precision |S ⋂P |/|S| to evaluate the results. All results are the average values of
10 times running the algorithms.

Synthetic Data Sets. We implement the link prediction scores on both triangle
graph and star graph which are generated in the same way like the synthetic data
sets in section 3.2.3. The precisions of four unsupervised link prediction scores of
the triangle graph and star graph with percentage of noise edges ranging from 0.05
to 0.25 are shown in Figure 3.19a and Figure3.19b separately. Clearly, Figure 3.19a
shows that CXprime possesses more or less higher precisioncolumn in a triangle
graph than the other three scores in each cases. Moreover, seen from Figure3.19b,
CXprime occupies the highest position of the four scores in first four cases of star
graph. Especially when the noise density is small, the advantage of CXprime is
more remarkable.
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Figure 3.19: Precision of Synthetic Data Sets.
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Real Data Sets.4 “Zachary’s karate club” and “Copperfield Word Adjacencies”[152]
are adopted in this part. “Copperfield Word Adjacencies” is the network with 112
nodes and 425 edges which represent common adjective and noun adjacencies for
the novel“David Copperfield” by Charles Dickens. The link prediction precision of
each score is displayed in Table3.6 which shows that our proposed score of CXprime
outperforms the other three scores of the given comparison methods on these two
real data sets.

Table 3.6: Precision of Real Data Sets (%)

CN Katz PA CXprime

Zachary’s karate club 16.9 15.6 16.5 26.1
Copperfield Word Adjacencies 11.1 16.5 11.5 16.7

3.2.5 Related Work

We briefly survey related work on four relevant topics addressed by CXPrime: graph
structure and pattern mining, compression-based graph mining, graph partitioning
and link prediction.
Graph Structure and Pattern Mining. Research on the structure of complex

networks has already gained significant attention. Most real world graphs follow
power-law degree distributions, which can distinguish between an actual real-world
graph and any artificial one [40]. In a power-law graph, most vertices have a very
low degree, while few ones have extremely high degrees (we call this pattern a
star). The existence of these hubs makes the community detection in these real
world graphs very difficult, because most existing graph clustering techniques focus
on densely connected communities (triangle-types). On the other hand, there
are many frequent subgraph mining or motif detection algorithms, [197][175] to
mention a few, which aim to find recurrent and statistically significant sub-graphs.
Our technique CXprime combines these two approaches and exploits structure
primitives to discover the graph structure itself - a novel approach compared to
previous work.
Compression-based Graph Mining. Due to the increasing scale of graph

data, there are many algorithms proposed for efficiently compressing an graph,
4http://networkdata.ics.uci.edu/index.php
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e.g.[32][45] to mention a few. However, the compression aspect is not the major focus
in this paper, but knowledge discovery from an information-theoretic background.
SUBDUE [93] and cross-association [41] are two famous algorithms also relying on
the Minimum Description Length principle to identify patterns in a graph. SUBDUE
uses a heuristic search guided by MDL to find specific patterns minimizing the
description length of the entire graph. Other than CXprime, SUBDUE is not able
to find the global general structure of a graph. Cross-association is another co-
clustering method, which can be applied for unipartite graphs as well, processing a
binary matrix and seeking clusters of rows and columns. Then the matrix is divided
into homogeneous rectangles which are representing the underlying structure of the
data. Cross-association can only find dense triangle communities and is therefore
not suited for many sparse real graphs, while CXprime is explicitly designed for
such types of graphs. Another, more recent work called SLASHBURN [109] was
proposed for graph compression exploiting the hubs and the neighbors of hubs.
SLASHBURN uses the power-law characteristic for compression, and can only
exploit dense communities.

Graph Partitioning. There are plenty of works on graph clustering or graph
partitioning, including spectral clustering [176], Min-Max-Cut algorithms[58], Metis
[113], Markov Clustering [187] for unipartite graphs, co-clustering [57], cross-
association [41] and SCMiner [69] for bipartite ones. All these methods aim to
find regions with more intra edges than inter edges, in which densely connected
subgraph communities can be found. However, none of them considers interesting
sparse patterns like stars, which are prevalent in real world graphs. Therefore, these
approaches fail in detecting star-like communities, while the proposed CXprime
can distinguish between star-like and triangle-like sub-structures.

Link prediction. Inferring whether two disconnected nodes will be linked in
the future, based on available graph information is the task of link prediction in
graph mining. Liben-Nowell and Kleinberg [127] summarize some unsupervised
link prediction approaches for social networks. For example, common neighbour,
preferential attachment [151], Katz [114] and others. Specifically, preferential
attachment is based on the idea that two nodes with higher degrees have a higher
probability to be connected. Katz defines a score that sums up the number of
all paths between two nodes where short paths are weighted stronger. Obviously,
common neighbour and Katz are more effective in triangle graphs, while preferential
attachment works better in star-like graphs. However, none of the previous methods
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consider the underlying graph structure information which is important for link
prediction. To the best of our knowledge, CXprime is the first method that is using
structure information to improve the quality of link prediction.

3.3 Conclusion
In this chapter, we introduced CXprime and IROC, CXprime being an multi-
functional algorithm for mining graphs based on structure primitives and IROC a
non-redundant method for finding overlapping communities on attributed graphs.
The two key ideas of CXPrime are to model the transitivity and the hubness of a
graph using three-node primitives and to exploit the relative frequency of these
structure primitives for data compression and knowledge discovery. We demonstrate
that the combination of these two ideas is very useful for (1) automatically detecting
the structure type of a graph as star-like/scale-free or clique-like/small-world, (2)
clustering the graph into homogeneously structured sub-graphs and (3) accurate link
prediction. Our experiments demonstrate that the knowledge about the structure
type is very interesting for interpreting graphs and that our novel structure-
based cluster notion is a valuable complement to traditional graph clustering
methods searching for dense sub-networks only. Regarding link-prediction, we
outperform existing methods especially on star-like graphs which demonstrates
that the knowledge about the structure type is indeed very useful for graph mining.

Our method IROC applied the concept of information theoretic measures using
Minimum Description Length to assess and optimize the quality of a multi-mode
attribute graph clustering. This approach allows to retrieve high quality clusterings
without requiring the user to specify any parameters and redundancy of clusters
in both the cluster topology as well as the selected attributes. While IROC’s
performance does not scale to large networks we apply tensor factorization to our
information theoretic approach to gain a balanced result considering runtime and
cluster quality. Our experiments showed that IROC and its optimization TF-IROC
are able to outperform state-of-the-art methods on synthetic data. For large real
social network data, IROC and TF-IROC yield the highest accuracy in terms of
finding labelled ground-truth clusters. Next, we hope to aquire large multi-mode
social network datasets, where connections between the same users are recorded
for different social networks. In this case, which IROC and TF-IROC are designed
for, we expect even more convincing experimental results.





Methods for Spatio-Temporal Data

CHAPTER 4

Parts of this chapter have previously been published in PAKDD 2017
[98].

In this chapter we deal with timeseries on environmental spatio-temporal data.
This data is by far the largest in volume (up to 70 TB). For such sensoric data we
create a framework consisting of three phases: First, outlier analysis on environmen-
tal timeseries taking the direct vicinity into account and creating an environmental
extremeness measure as pruning criteria for outlier. Second using such outlier for
tensor sparsification and reducing dimensionality with that factorization. Lastly,
classifying and predicting such outlier, natural hazards and in this case tropical
storms, with a variety of classifying approaches.

129
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4.1 Introduction

Figure 4.1: Example of our concept for mining temperature time series in the region
of Germany. (a) shows the grid layout of MERRA for Germany, (b)
measures the temperature of four specific, connected regions in this
grid over time; (c) calculates the correlation coefficient between these
temperature time series. The four selected grids are colorized in yellow
or red. Red if the coefficient is an outlier, yellow else; (d) illustrates
the matching of this found outlier (red) regarding its spatial region.

Both the current trends in technology such as smart phones, general mobile devices,
stationary sensors and satellites as well as a new user mentality of utilizing this
technology to voluntarily share information produce a huge flood of spatio-temporal
data. Traditionally, a spatio-temporal database consists of triples (ID, time,



Chapter 4. Spatio-temporal Data 131

location), mapping objects (e.g. users) and time to a position in geo-space where
the object was, is, or will be located. In modern applications, sources of geo-spatial
data, such like environmental sensor-data, each spatio-temporal point is further
enriched with additional data. Consequently, mining this flood of data becomes
an increasingly hard challenge. With huge environmental data like the open
source Merra data set [167] from NASA we are suddenly able to make significant
conclusions about the frequency of rare terms even in small spatial regions. By
analyzing the spatio-temporal occurrences of these events, we can hope to find
trends of regions when one region has a sudden significant outlier, that is not seen
in the other regions in the vicinity. Such spatio-temporal outliers indicate some
interesting events, like for example tropical storms.

In this work, we propose a framework to make this data actionable for classifying
and predicting environmental events. An environmental event is a point in space
and time enriched by a label describing the event, such as a storm or an earthquake.
Given such an event in region s at time t, we propose to map this event into the
Merra data set as a spatio-temporal environmental database to obtain information
about the change of environmental attributes, i.e., their time-series, in spatial
regions around s, and during the time around t. Explained by Tobler’s first law
of geography [184], we claim that the time-series of a region should be expected
to be highly correlated to time-series of its vicinity, such that we can argue that
any region that is not correlated to its vicinity indicate an outlier. Figure 4.1(a)
illustrates our concept on the example of the Germany region. For each spatial
grid cell we obtain a time series of measurements, such as temperature. As an
example, the time-series of four individual regions are also depicted in Figure
4.1(b). As all four regions are located in very close vicinity, we assume that their
time-series should be highly correlated. In this example, only three of the regions
show a high spatial correlation value, as indicated by the correlation values shown
in Figure 4.1(c). In a nutshell, each of these correlation values corresponds to the
average Pearson correlation of the corresponding time-series to all of its spatial
neighbors. We call these correlation values derived from their spatial neighbors
an Environmental Extremeness Measure (EEM). If a EEM score is low, which
contradicts Tobler’s law, it indicates an outlier, as marked in Figure 4.1(d). We use
this EEM to reduce a dense set of spatio-temporal environmental measurements to
a sparse set of significant outliers. Given these sparse EEMs, we propose to use a
tensor factorization, to reduce a large tensor, describing different environmental
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attributes over time and space, to a smaller set of latent features. Given labeled
ground-truth events, we build a database of these tensors and their latent features,
which we can use to build a model to classify these events.

To summarize, our contribution of this work are

• We propose an Environmental Extremeness Measure (EEM), which maps each
point in space and time to a score value describing its local extremeness. Our
outlier detection algorithm employs the EEM for deriving spatio-temporal
outliers without prior knowledge of the data set.

• Using labeled event data, we propose two tensor factorization approaches to
learn the latent factor to classify future events. We propose a simple 4-mode
tensor approach, considering different labeled instances as a fourth mode,
and we propose an approach using coupled tensor-tensor factorization.

• In our experiments, we apply our tensor factorization based learning approach,
to a current problem in geo-information science: The problem of predicting
rapid intensification of tropical cyclones. We show that our approach, by ex-
ploiting a spatio-temporal environmental database, is able to predict whether
a tropical cylone will rapidly intensify its wind-speed by at least 30 knots
in the next 24 hours. Our approach outperforms current literature on this
problem.

We start with our unsupervised outlier detection approach in Section 4.2, where
we define our EEM. The EEM is reused in Section 4.3, where we assume that
historical events are labeled with ground-truth information that can be used
for model training to similar events in the future. The experimental evaluation
presented in Section 4.4 shows our results in predicting whether an tropical cyclone
will increase at least 30 knots in 24 hours. Then we bring our work in the context
of related work in Section 4.5 and conclude in Section 4.6.
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4.2 Spatio-Temporal Outlier Detection

Figure 4.2: Example temperature data for 17 neighboring geo-locations. Every line
corresponds to one location. The green line corresponds on the left
hand to a closely correlated region compared to the others, on the right
hand it is an extreme outlier with even negative correlation.

The aim of this section is to find regions whose attribute information, such as
temperature differ significantly from other regions in the vicinity. This approach
is used as a pre-processing step for our classification presented in Section 4.3,
to identify and label anomalous environmental events in cases where these are
not given by a authoritative ground-truth. To find outliers in a spatio-temporal
database, we first need to provide a definition of a spatio-temporal database:

Definition 23 (Spatio-Temporal Database). Let T be a time domain, let S be a
set of spatial regions, and let A be a set of attributes. A spatio-temporal database D
is a collection of tuples (t, s, a), where t ∈ T is a point of time, s ∈ S is a spatial
location, and a ∈ A is an attribute value of domain A ∈ A.

Then we define a timeseries specifically for geographical regions:
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Definition 24 (Attribute Time Series). Let T ⊆ T be a time interval, let s ∈ S
be a spatial region, and let A ∈ A be an attribute domain, then TSs,A,T is a time
series, i.e. a function mapping each point of time t ∈ T to an attribute value a ∈ A
for a region s ∈ S. Thus, each region s ∈ S represents a specific time series:

TS(s∈S,A∈A,T∈T ) : T 7→ A

For detecting natural hazards finding outliers without prior knowledge of the
given data set is the first crucial task. Our spatio-temporal outlier detection finds
extreme regions using a calculated environmental extremeness measure (EEM). We
define this measure by using Pearson correlation of a time-series to other time-series
of regions in spatially close vicinity. In general consider the example in Figure
4.2, where the time series TSs,A,T of the attribute A =temperature is shown for 17
different regions s for some time interval T . Most of these curves show a similar
behavior in terms of temperature change. Only the highlighted green time series
shows little correlation to the other time series. As such it is regarded an outlier.
To formalize such outliers, we define the notion of our EEM for spatio-temporal
data as:

Definition 25 (Environmental Extremeness Measure). Let T ⊆ T be a time
interval, let A ∈ A be an attribute domain, and let s1, s2 ⊆ S be two spatio-
temporal regions, then

Cor(TS(s1,A,T ),TS(s2,A,T )) :=
∑

t∈T
(T S(s1,A,T )(t)− (T S(s1,A,T )(t)))(T S(s2,A,T )(t)− (T S(s2,A,T )(t))√∑

t
(T S(s1,A,T )(t)− (T S(s1,A,T )(t)))2

∑
t
(T S(s2,A,T )(t)− (T S(s2,A,T )(t)))2

denotes the correlation of the time-series of regions s1 and s2 in attribute A during
time T , where (TS(s1,A,T )(t)) denotes the mean of all values, respective for region
s1. For a set of spatial regions S ⊆ S, we define our environmental extremeness
score of a region s as the average correlation to all time-series of S, formally:

EEM(s,S,A,T ) =
∑
s′∈S

Cor(TS(s,A,T ),TS(s′,A,T ))/|S|

The current literature defines outlier and its difference from other points in
terms of distance and density [62, 117]. For spatio-temporal objects, we need to
adapt this definition. Clearly, we could employ a time-series distance to measure
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the similarity of two spatio-temporal regions (s1, t1) and s2, t2, such as Euclidean
distance or Dynamic Time Warping [25]. However, this might not be possible as
two regions may have similar trends of contextual information over time, but their
absolute values may be different as illustrated in the following example.

Figure 4.3: Correlation VS. DTW and Edit Distance. Correlating the red and green
temperature curves would remark (a) as most similar curves. Using
DTW or Edit Distance would resolve (b) as the most similar as the
covered area (yellow) is smaller.

Example 8. Given in Figure 4.3 are two time series A, B showing the temperature
(in Kelvin) to different time frames. A and B in Figure 4.3(a) are showing the same
functional behavior for different regions as A is for example measured temperature
in a valley while B is showing the temperature on a mountain. Thus, their actual
base temperature do not share any similarity. However in Figure 4.3(b), time series
B starts at around the same temperature level as time series A but does show a
quite different altitude over time. Now, Dynamic Time Warping and Edit distance
would both chose the two time series in Figure 4.3(b) as the most similar time
series as their temperature values differ less between and the space between A and
B (yellow) is minimized. But regarding Definition 25 we would want our measure
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to regard the temperature curves in Figure 4.3(a) as similar (even as exact match)
because the amount the temperature changes between these two time series are
the same. Correlation reasonably asseses the similarity of A, B, and C matching
our intuition and the the application-specific requirements from geospatial data.
Moreover, correlation is efficient to compute.

With this stated we define an outlier and the corresponding spatio-temporal
outlier the following:

Definition 26 (Outlier). An outlier is a point, which varies sufficiently from other
points such that it appears to be generated by a different process from the one
governing the other points.

Following Tobler’s first law of geography, two regions are expected to have
a similar context (attribute values) if they are spatially close. This allows a
straightforward extension of the general concept for outliers for spatio-temporal
outlier:

Intuitively, a region s ⊆ S is called a spatio-temporal outlier, if the attribute A
in region s during time interval T , is so different from the attribute at time T in
regions spatially close to s, such that the suspicion arises, that it appears to be
generated by a different process. More formally, we define a spatio-temporal outlier
as follows.

Definition 27 (Spatio-Temporal Outlier). Let D be a spatio-temporal database,
let τ be a real value, let s ∈ S be a spatial region and let S ⊆ S be a set of spatial
region close to s. Region s is called a spatio-temporal outlier for attribute A during
time T if

EEM(s,S,A,T ) ≤ τ .

According to Definition 27, a spatio-temporal outlier is a region whose average
EEM value is below a user specified threshold τ . The automated choice of
parameter τ , which should be chosen individually for each attribute domain A ∈ A,
is beyond the scope of this chapter. In our experimental evaluation, we chose this
parameter empirically.

4.2.1 Algorithmic procedure
Our overall goal is to find spatio-temporal outlier for a specific region. By applying
Toblers Law of Geography [184]. We find this region by comparing the correlation
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Algorithm 1. Average Correlation.
Input: region s, time interval T, attribute A
1: totalCor:=0
2: for s′ in Radius(s,r) do
3: totalCor+=Cor(TS(s,A,T ),TS(s′,A,T ))
4: end for
5: return totalCor

Radius(s,r .

Algorithm 2. Spatio-Temporal Outlier Detection.
Input: time interval T, attribute A, double τ
1: results ← ∅
2: for s in S do
3: for t in T do
4: for A in A do
5: if AverageCorrelation(s,T,A) < τ then
6: result ← result ∪s
7: end if
8: end for
9: end for
10: end for
11: return results.

between this one region to the others surrounding regions by using the formula in
Definition 25 on each of them. This correlation calculated with knowledge of the
vicinity of the region is called an environmental extremeness measure (EEM). To
restrict the areas of these surrounding regions we have to define a radius in which
we regard the regions as connected:

Definition 28 (Spatial Radius). Let r ∈ N. Let s be a region, then Radius(s, r)
is the set of spatial regions having a distance smaller than r.

With this definition we are able to compute the correlation as shown in Algorithm
1. Algorithm 1 computes, for a given time interval T, a given Attribute A, and a
given spatial region s, the average correlation between s and the set of its spatial
neighbors Radius(s,r).

After that we give the procedure for the overall spatio-temporal outlier detection
in Algorithm 2. For a given time interval T and an attribute A, and an outlier
threshold τ , Algorithm 2 computes the set of outlier regions in attribute A during
time T.
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4.3 Framework for Natural Hazards Detection

Our supervised classification approach assumes labeled ground-truth hazard in-
formation, such as the time and location of historical topical cyclones. These can
be obtained either from a natural hazard database such as the NOAA natural
hazard database 1 or by employing the unsupervised outlier detection approach
presented in Section 4.2. Thus, in the following, we assume a set GT of labeled
ground-truth events, such that each element (s,A,T ) ∈ GT describes a hazard at
a spatial location s, during a time interval T , using a set of attributes A. In the
following we will discuss the second main building block of our framework: the
tensor factorization and classification.

Figure 4.4: Creating a tensor from precipitation, temperature and wind speed data.

4.3.1 Environmental Tensor Factorization

For our supervised framework the exact position (latitude, longitude) of possible
labeled outliers and their vicinity are taken to form an environmental tensor X,
formally:

Definition 29 (Environmental Tensor). Let (s,A,T ) ∈ GT be an event, and let
S = {s1, ..., sn} be a set of spatial regions around the event region s. Then we

1https://www.ngdc.noaa.gov/hazard/
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use the set of time series TS(s ∈ S,T ,A ∈ A) to construct a space-time-attribute
tensor as follows:

X(1 ≤ i ≤ |S|, 1 ≤ j ≤ |A|, 1 ≤ k ≤ |T |) = TS(si,Aj,T )(k)

Intuitively, X(i, j, k) is the k’th value of the time series of attribute Aj in region si.
For a specific point in region s1, a set of spatial regions S = {s1, ..., sn} in spatial
vicinity of s, a time interval T , and attribute domains A = {A1, ...,A|A|}, the set
of time series TS(s∈S,A∈A,T ) constitutes the three dimensional tensor X.

Figure 4.4 depicts the construction of one environmental tensor. For each of
the three considered attributes A ∈ A and for each of the 16 considered spatial
regions s ∈ S, we obtain a time series. A 3-mode tensor X is created from these
time series by, concatenating the time series of each spatial location, yielding a two
dimensional space-time matrix, which are concatenated over all attributes, yielding
a space-time-attribute tensor corresponding to the tensor defined in Definition 29.

To derive latent features from such an environmental tensor, we employ a tensor
factorization.

Definition 30 (3-Mode Tensor Factorization). A classical CANDECOMP/-
PARAFAC [105][158] tensor factorization decomposes a tensor X(S,T ,A) as
follows

X(S,T ,A) = U ◦ V ◦W + error

where ◦ denotes the 3-mode tensor product ([119]), U is a |S| ×K matrix, V is
a |T | ×K matrix and W is a |A| ×K matrix. The parameter K is a parameter
of the tensor factorization, controlling the number of latent features extracted for
each mode. Furthermore, error corresponds to the loss of information incurred by
factorizing a large three mode tensor into three small matrices.

The 3-mode tensor defined above represents the environmental information
of a single labeled region. For creating a model of all existing labeled regions
and their vicinity we want to decompose all environmental tensors simultanously.
This can be done in two ways: First, by making use of the special case that all
environmental tensors have all three modes in common by applying a Four-Mode
Tensor Factorization:
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Definition 31 (Environmental Four-Mode Tensor). For n environmental tensors
X1(s1, t1,A1), ...,Xn(sn, tn,An), the environmental four-mode tensor X is defined
as:

X (1 ≤ i ≤ |S|, 1 ≤ j ≤ |A|, 1 ≤ k ≤ |T |, 1 ≤ l ≤ n) = Xl(i, j, k)

having
X (U ,V ,W , ID) = U ◦ V ◦W ◦ ID + error

as the four-mode tensor factorization (4MTF) with U, V, W defined as in Definition
30, ◦ denoting the 4-mode tensor product, and ID is a n×K matrix describing latent
features of each environmental tensor, and thus, of each environmental 3-mode
tensor stored in the 4-mode tensor X .

Besides the 4MTF where all three modes of the environmental tensors are coupled,
it is possible to couple only one dimension of these tensors. This is done by coupled
tensor-tensor factorization (CTTF), which works similar for this case as the coupled
matrix-tensor factorization (CMTF) [2].

Definition 32 (Coupled Tensor-Tensor Factorization). Given n environmental
tensors X(s,T ,A) and let them be sharing only the attribute mode A, their decom-
position optimizes:

1
2‖s− (A1 · A2... · An)‖2‖T − (A1 · A2...An)‖2

where s and T are the variable modes of the environmental tensors and A1...An
is the number of fixed matrices over all environmental tensors for each attribute
domain A. More details on coupled factorization can be found in [2].

For the collective factorization of matrices, coupling is crucial in at least one
mode. Else the latent factors (concepts) of the environmental tensors would be
independent and thus incomparable. Semantically it is different to lock either only
one mode (CTTF) or three modes as we will evaluate in the experimental section
4.4. The overall goal of the environmental tensor factorization is:

• finding discriminative latent attributes describing the environment around
labeled environmental hazards,

• reducing the dimensionality of the environmental tensors,
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• finding similarities among different spatial regions using matrix U , among
different time intervals using matrix V , among different environmental at-
tributes using matrix W , and among different environmental events using
matrix ID.

In the next subsection, we employ the two tensor factorization approaches 4MTF
(Definition 31) and CTTF (Definition 32) to classify new unlabeled environmental
hazards given a set of labeled environmental hazards, using the environmental
tensors extracted using knowledge about time and location of the labeled hazards.

4.3.2 Classifying Natural Hazards
After the environmental tensor factorization, we employ a black box of classifiers to
model historic natural hazards that can predict future occurrences of such hazards
basing on the historic data. We note that these classification algorithms are not
the main focus of this work. Depending on which tensor factorization is used we
have two different inputs for a given classifier:

• CTTF: all uncoupled modes, in this case the space s and time T .

• 4MTF: in the 4-mode case, the modes U, V, W describe the common aspects
between different tensors regarding their attributes/time/space. The ID, in
contrast, describes for each tensor its individual aspects. thus, using these
individual aspects might lead to a discrimination between the tensors and
can thus be used as input features to a classifier.only the fourth mode ID is
uncoupled and as such used as input for the classification.

These latent features can be fed to traditional classification algorithms. The quality
of these algorithms on our factorized latent features will be explored in the next
section.

4.4 Experimental Evaluation
Our experimental evaluation includes two steps: (a) an evaluation of our unsuper-
vised spatio-temporal outlier detection method using data where we synthetically
added outliers to a sample set of real MERRA data and (b) an evaluation of our full
framework applying unsupervised approaches like the outlier detection from (a) as
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well as supervised approaches like tensor factorization and classification. The full
framework is not only capable of finding outliers but works also as a multi-solution
tool for attribute selection and mining massive data. We start by introducing the
used large real data set.

4.4.1 Global Climate Data

The open source data collection MERRA, used in this chapter, is provided by NASA
[166] and consists of more than six gigabytes of spatio-temporal environmental
data per day, having collected more than 70 Terra bytes of data in the last years.2
The MERRA time period covers the modern era of remotely sensed data, from
1979 through the present, and covers a large variety of hundreds of environmental
parameters on a spatial resolution of 0.5 degrees latitude times 0.67 degrees longitude
produced at one-hour intervals.

For our supervised classification experiments, we used the Statistical Hurricane
Intensity Prediction Scheme (SHIPS) database [56, 200]. This database contains
location and time of 800 tropical cyclones (TCs) from 1984-2011. Each TC is
recorded every six hours. Each observation of a TC is also enriched with many
attributes of the TC, such as wind-speed and air-pressure. The NCAR/NCEP
reanalysis data is the one most trusted one among geographers in the last years
and covers 40 years of environmental data generated by a frozen state-of-the-art
global assimilation system and a database as complete as possible. They use a
static forecast/analysis system and perform data assimilation using past data for
the time of 1957 to 1996. 3. Last, the Earth Science Data consists of daily global
air temperature and precipitation measurements, aggregated from heterogeneous
sensors for fifty years (1950-1999). With less attributes than the other data sets this
data set still huge due to fine grid granularity. Each sensor corresponds to a physical
location (latitude, longitude) on the Earths surface. The data is downloadable in
csv format from the Oak Ridge National Laboratory website.

Thus, the initial challenges of knowledge discovery, such as data selection, data
preprocessing, data integration and data transformation have been solved, it is
time for the data mining community to step in to advance the research frontier by
finding useful and previously unknown patterns in earths environment.

2https://gmao.gsfc.NASA.gov/products/documents/MERRA_File_Specification.pdf
3http://rda.ucar.edu/datasets/ds090.0/docs/publications/bams1996mar/

bams1996mar.pdf

https://gmao.gsfc.NASA.gov/products/documents/MERRA_File_Specification.pdf
http://rda.ucar.edu/datasets/ds090.0/docs/publications/bams1996mar/bams1996mar.pdf
http://rda.ucar.edu/datasets/ds090.0/docs/publications/bams1996mar/bams1996mar.pdf
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Figure 4.6: Synthetic outlier data varying the number of manually changed values
for the attributes temperature, precipitation and wind speed.

4.4.2 Finding synthetic spatio-temporal outliers

The first step for proving our concept for spatio-temporal outlier detection is
showing whether we are generally able to find given outliers. Since outliers, i.e.,
triples of space s, time t and attribute A, cannot be verified easily without traveling
back in time to t, we generate synthetic outliers. For this purpose, we randomly
distort real time series, by changing the corresponding attribute values. We distort
a time-series in two ways: (i) the number of values that are changed in the time
series, ranking from a single changed value up to 20 changed values; and (ii) the
magnitude v of the change itself, i.e. how strong is the original value altered,
ranging from 10 to 100 of the original value. The effect of this change is of course
also regarded to the given measurement scale of the three attributes. Temperature
is in Kelvin, wind speed in km/h and precipitation in mm/h. The radius for the
size of the vicinity is set to a manhattan distance of 1.
Figure 4.6 shows the result of our outlier detection for three attributes Wind

Speed, Temperature and Precipitation. We measure the fraction of distorted time-
location pairs for which we distorted the corresponding time series. As expected, we
observe that a larger magnitude v of distortion increases the fraction of distortions
found as outliers. At the same time, an increased duration of distortion, specified
by the number of values changed, also improves the detection rate. Overall, we can
see that our unsupervised outlier detection approach is able to detect environmental
time series, whose attribute values are sufficiently distorted in terms of the number
of time series values changed and in terms of magnitude of this change, with high
accuracy. However, the more applicative problem of supervised classification of
environmental events, given a set of labeled events, is evaluated in the next section.
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Synthesizing Wind Speed

Depicted in Figure 4.6(a), ouf of 100 tries outliers 0.74 percent of outliers can be
found which is close to the maximum 0.8 percent achieved by temperature and
thus a very good result as the temperature data set is much less versatile than
wind speed. All outliers are found by changing the number of values v to 75 for 20
different points in time.

Synthesizing Temperature

Due to the low variability, the temperature attribute shows the best results for
finding synthetic outliers in the data set. Figure 4.6(b) shows clearly, that the
lowest values achieved by just altering a single value reaches up to 0.8 percentage of
outliers are recognized with the highest increased value, while the highest number
of changed values in the time series already achieves nearly maximal found outliers
0, 98 percent for only added half the value (50).

Synthesizing Precipitation

Although the most versatile data set, precipitation gains the least results compared
to the other two attributes. As shown in Figure 4.6(c), precipitation reaches for
single values only a maximum of 0.38 percent of correctly identified outliers and
all outliers are only correctly identified for the highest changed value v and the
highest amount of time points.

Figure 4.7: Tropical Cyclone classification results.

4.4.3 Finding Natural Hazards on Real Data
Our experimental evaluation for the supervised approach aims at classifying Rapid
Intensification (RI) of tropical cyclones (TC) [111] in the Atlantic ocean using
MERRA data. For each TC in the SHIPS dataset, at time t and location s, we
obtained an environmental tensor (as defined in Definition 29) from the MERRA
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dataset as follows: We queried the MERRA dataset for the 24-hour time interval
before t, in all 25 spatial regions having a manhattan distance of at most two to
s, using all 387 environmental attributes available in MERRA. This way, we were
able to link each TC available in the SHIPS data set, to a size 25× 24× 387 tensor
of environmental measurements. We labeled each TC as “RI” if the wind speed
of the TC increased by at least 30 knots within the next 24 hours, or “non-RI”
otherwise. About 5% of TCs were labeled as “RI” this way. The task is to predict
this label. We evaluated the quality of our proposed algorithms using F1-measure
on the two classes “RI” and “non-RI”. For reference, according to [112], the rapid
intensification forecasting from the National Hurricance Center (NHC) official
forecast at 24 hour lead time for the Atlantic Basin reached only a 10% probability
of detection with more than a 30% false alarm rate. We evaluate the following
algorithms.

• Competitor [200]: A data mining approach recently presented in [200], which
uses only data in the SHIPS data set, which includes less than two hundred
parameter per TC, and uses standard classification algorithms on these
features. According to the results of [200], this approach had a F1-measure
of no more than 60% for both classes in any experiment.

• Baseline: The baseline is provided by putting the raw data, without any
dimensionality reduction (4MTF or CTTF) into the classifiers.

• Orig-CTTF and Orig-4MTF: These two algorithms apply our two tensor
factorization approaches (either CTTF or 4MTF) on the raw data tensors,
and use the resulting latent features for classification.

• EEM-CTTF and EEM-4MTF: These two algorithms use the full framework,
thus applying the tensor sparsification using our environmental extremeness
measure (EEM). Then, tensor factorization (CTTF or 4MTF) is applied
to this pre-processed tensor and the resulting latent features are used for
classification.

For the classification step, we use the following standard Matlab implementations,
using 10-fold cross validation. If the parameter setting is not provided, it is kept at
the standard given by Matlab:

• SVM support vector machine with linear kernel.
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• SVM support vector machine with polynomial kernel.

• Decision Tree. Decision Tree classification.

• k-nearest neighbors (knn) classification using k = 10 nearest neighbors.

• kNN Ensemble using random subspaces and k = 10 in each subspace.

• Random Forrest Ensemble using RUSBoost.

In all cases except EEM-CTTF and EEM-4MTF, the data was standardized
before using the classifiers. For these two experiments this was not necessary as the
EEM already normalizes the input for the classifiers. In addition, the algorithms
were set up to take the prior distribution of the labels into account.

Results

Our tropical cyclone rapid intensification classification results are shown in Figure
4.7, depicting the F1 measure for the two classes “RI” and “non-RI”. Overall, we
can see that all proposed approaches using the full information contained in the
spatio-temporal tensor of a TC, including the baseline, yield a higher classification
quality than the classification of features of the SHIPS dataset in [200], which
showed a F1-measure of no more than 60% in any experiment. This promising result
proves that our concept, of joining a natural hazard database (such as the SHIPS
database) with a spatio-temporal environmental database (such as MERRA), has
the potential to improve the classification and forecast of natural hazards beyond
the state-of-the-art of domain-specific solutions, by exploiting the wealth of public
environmental data.
Comparing the five approaches using spatio-temporal tensors obtained from

MERRA, we note that our baseline solution performs very well. In fact, our solutions
using tensor factorization are not able to outperform our baseline classification for
many classification algorithms in many settings. This indicates that our four tensor
factorization based algorithms still allow room for future research and improvement.
Still, see that our most sophisticated approach EEM-CTTF, which employs our
environmental extremeness measure (cf. Section 4.2) and the coupled Tensor-Tensor
factorization (c.f. Section 4.3) is able to achieve a much higher classification rate
using Random Forests, than any other algorithm can achieve using the baseline
features. This improvement is quite significant, and shows that our approach of
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factorizing space, time and environmental attributes can indeed be used to learn
and classify complex environmental phenomena, such as the prediction of whether
a TC will rapidly intensify in wind-speed.

4.5 Related Work

Large spatio-temporal environmental data has created an enormous interest in
findings patterns in earth climatic changes. In [72], the authors introduce climate
challenges to the data mining community and compare and contrast climate data
mining to spatial and spatio-temporal data mining.
Steinbach et al. [178] argues to apply principal components analysis (PCA)

and singular value decomposition (SVD), to discover climate indices. Our outlier
detection algorithm is closest related to [53], where a neighborhood based outlier
detection algorithm is provided. Unlike us, they detect outliers over space and time
only separately to explain some of the extreme events like drought and severe rainfall
at specific locations on earth. For the use case of finding tropical cyclones, [201],
Yang et al. used association rule mining to look for combinations of persistent and
synoptic conditions which provide improved RI (Rapidly Intensifying) probability
estimates. Similar in [202], the authors apply association rule mining on the analysis
of intensity changes of North Atlantic tropical cyclones. As mentioned earlier, in
addition to outlier detection, classification algorithms can be useful when trying
to find, characterize and especially predict natural hazards. For instance, [171]
provides examples for classification being used in combination with spatio-temporal
data. More specifically, these works spatio-temporal data obtained from satellite
images to classify types of vegetation. Clearly, identifying vegetation using our
framework of using environmental tensor will be an interesting new case study.
In [55], data from the weather forecast model Eta was used to identify patterns
which can be associated with unusual weather activity. Wang and Ding [190]
use classification in their three step approach to build a forecasting model for
extreme rainfalls using using location-based patterns. This approach can be used
alternatively to our EEM-measure to find occurrences of spatio-temporal outliers
on an unlabeled dataset. A comparative study, using different environmental outlier
detection approaches is planned for our future work. The survey in [119] gives an
overview over implementations of tensor factorizations used in this work.
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4.6 Conclusion
Concluding, we presented a framework for detection and prediction of environmental
hazards. To predict future hazards, given labeled historic ground-truth of historic
hazards, our framework allows to learn latent features in time, space, and attributes
using tensor factorization. Our framework allows to predict any kind of hazard,
including complex phenomena such as rapid intensification of tropical cyclones. Our
experimental evaluation shows that our framework has the potential to revolutionize
the state-of-the-art in this field. This result is not contributed to our data mining
algorithms, which are all state-of-the-art. Rather, this result is the consequence of
joining an existing problem, with the vast amount of spatio-temporal environmental
data publicly available in the MERRA database.



Data Mining in Main Memory DB
Systems

CHAPTER 5

Parts of this chapter have previously been published in LWA 2015
[183] and EDBT 2017 [159].

The last chapter of this thesis spans a topic that covers all the methods introduced
in the previous chapters. How can all these methods be efficiently integrated into
database systems if you want to apply these methods inside the DBMS? What
achievements are given by doing that or is it even sensible? We like to answer
these questions and even more with the following research on the example of the
database HyPer and three classical data mining / machine learning approaches:
classification (Naive Bayes [126]), clustering (k-Means [131]) and graph traversals
(PageRank [34]).
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Figure 5.1: Overview of approaches to data analytics using relational database
systems. Our system supports the novel layer 4, where data mining is
integrated directly into the database core, thus, leading to higher per-
formance. To maintain expressiveness, high-order functions (lambdas)
can directly be passed as parameters to the database operators.

5.1 Introduction

The current data explosion happening in science and technology poses difficulties
for data management and data analytics. Especially stand-alone data analytics
applications [133, 86] are prone to have problems due to their simple data man-
agement layer: Being optimized for read-mostly or read-only analytics tasks, most
stand-alone systems are unsuitable for frequently changing datasets: After each
change, the whole data of interest needs to be copied to the application again,
which is a time and resource consuming process.

We define data analytics to be algorithms and queries that process the whole
dataset (or extensive subsets), and therefore are computation-intensive and long-
running. This domain contains for example machine learning, data mining, graph
analytics, and text mining. Beside the differences between these subdomains, most
algorithms boil down to a model-application approach, i.e., a two phase process
where a model is created and stored first, and then applied to the same or different
data in a second step.
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In contrast to the afore-mentioned dedicated analytical systems, classical
RDBMSs provide an efficient and update-friendly data management layer and many
more useful features to store big data reliably, such as user rights management and
recovery procedures. Besides, database systems avoid data silos, as data has to be
stored only once, eliminating ETL cycles (extraction, transformation, and loading
of data). Thus, we investigate how data analytics can be sensible integrated into
RDBMSs to contribute to a "one-solution-fits-it-all" system. What efficiency is
possible when running such complex queries in a database? Can it actually be
better than single purpose standalone systems? According to Aggarwal et al. [9],
seamless integration of data analytics technology into DBMSs is one of the most
important challenges.
Some newer database systems, for example SAP HANA [66] and HyPer [115],

are already designed to efficiently handle different workloads (OLTP and OLAP)
in a single system. Main-memory RDBMSs like HyPer are specifically well-suited
for high analytics workload due to their efficient use of modern hardware, i.e.,
multi-core CPUs with extensive instruction sets and large amounts of main memory.
Still, another questions remains: How is an analytics algorithm best integrated

into an RDBMS? While existing database systems that feature data analytics
include the algorithms on a very high level, we propose to add a specific set of
algorithmic building blocks as deep in the system as possible. To describe and
assess different approaches of integrating data analytics algorithms into an RDBMS,
we distinguish four layers, where the fourth layer is the most deeply integrated:

(1) DBMS as data storage with external analytics algorithms—the nowadays
most commonly used, but least integrated approach.

(2) User-defined functions (UDFs)—code snippets in high-level languages exe-
cuted by the DBMS.

(3) SQL queries—including recursive common table expressions (CTE) and our
novel iteration construct.

(4) Integration as physical operators—the deepest integration, providing the
highest performance.

To increase flexibility within (4), we propose user-defined code snippets as parame-
ters to our operators. These so-called lambda functions, containing for instance
distance metrics, are able to change the semantics of a given analytical algorithm.
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All these approaches trade performance versus flexibility in a different way, as
depicted in 5.1. We propose implementing multiple of those approaches into one
system to cover the diverse needs regarding performance and expressiveness of
different user groups and application domains. The novel operator integration (4)
combines the highest performance with high flexibility, but can only be implemented
by the database system’s architects, while (2) and (3) provide environments in
which expert users can implement their own algorithms. Furthermore, all three
integrated approaches (2)-(4) avoid ETL costs, stale data, as well as assembling
and administrating complex system environments, and therefore facilitates ad-hoc
data analytics.

Scan data

Scan data Selection
k-Means Selection

initial centers

distance function
λ

(a) Operator-centric approach. The iterative k-Means algorithm is implemented as physical
relational operator. The distance function is specified as a lambda expression.

Scan data

Scan data Selection Iteration Selection

initial centers

while
stop condition

false

(b) SQL-centric approach. The iterative algorithm, including initialization and stop condi-
tion, is expressed in SQL. The iteration operator can either be the standard recursive
common table expression, or our optimized non-appending iteration construct.

Figure 5.2: Simplified query plans for k-Means clustering using the operator-centric
and SQL-centric approach to data analytics in databases.
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5.1.1 Contributions

In this chapter, we present how data analytics can efficiently be integrated into
relational database systems. Our approach targets different user groups and appli-
cation domains by providing multiple interfaces for defining and using analytical
algorithms. Our contributions are the following:1

• A classification and assessment of approaches to integrate data analytics with
databases.

• The iteration construct as extension to recursive common table expressions
(with recursive) in SQL .

• Analytical operators executed within the database engine that can be pa-
rameterized using lambda expressions (anonymous user-defined functions) in
SQL.

• An experimental evaluation with both dedicated analytical systems and
database extensions for analytical tasks.

5.1.2 Structure

The remainder of this chapter is organized as follows: An overview of the related
work is given in 5.2. After that, in 5.3 we discuss what characteristics make
HyPer especially suited for in-database analytics. We continue by explaining the
in-database processing in 5.4. How analytics can be integrated into SQL is defined
in 5.5 and our building blocks (operators) of the fourth layer are shown in detail
in 5.6. Our operators are very flexible due to their lambda functions, which we
describe in 5.7. The evaluation of our operators in HyPer is given in 5.8. Last we
conclude our work in 5.9.

5.2 Related Work
Data analytics software can be categorized into dedicated tools and extensions to
DBMSs. In this section, we introduce major representatives of both classes.

1Partially based on our prior publication [183].
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5.2.1 Dedicated Data Analytics Tools

The programming languages and environments R2, SciPy3, theano4 and MATLAB5

are known by many data scientists and are readily available, hence, they are heavily
used for data analytics, and implementations of new algorithms are often integrated
into their libraries by researchers. In addition, these languages and environments
provide data visualizations and are, thus, well-suited for exploration and interactive
analytics. However, their algorithm implementations often are only single-threaded,
which is a major drawback concerning today’s multi-core systems and data volumes.

The next group of existing data analytics tools are data analytics frameworks.
Most representatives of this category are targeted at teaching and research, hence,
they do not focus on performance for large datasets. Their architecture makes it
easy to implement new algorithms, and to compare different variants of algorithms
regarding quality of results. Notable examples include ELKI 6, supporting diverse
index structures to speed up analytics, RapidMiner7, used in industry as well as
research and teaching, and KNIME8, where users can define data flows and reports
via a GUI.

Recently, Crotty et al. presented Tupleware [48], a high-performance analytical
framework. Tupleware is meant for purely analytical tasks, hence, the system
is not taking into account transactional data. The authors endorse interactive
data exploration, e.g., by not relying on extensive data preparation [49], and by
providing a data exploration GUI. Tupleware requires users to annotate their
queries with as much semantics as possible: Queries may solely consist of simple
building blocks, e.g., loop or filter, augmented with user-defined code snippets
such as comparison functions. Relational operators—the building blocks of SQL
queries—are fairly similar to Tupleware’s building blocks, but are more coarse-
grained, more robust against faulty or malicious user input, and can be used in a
more general fashion. They therefore do not guarantee as many invariants. SQL
implementations of algorithms, hence, could be optimized in a similar fashion,
although this requires major changes to relational query optimizers.

2http://www.r-project.org/
3http://www.scipy.org/
4http://deeplearning.net/software/theano/
5http://www.mathworks.com/products/matlab/
6http://elki.dbs.ifi.lmu.de/
7http://rapidminer.com/
8http://www.knime.org/

http://www.r-project.org/
http://www.scipy.org/
http://deeplearning.net/software/theano/
http://www.mathworks.com/products/matlab/
http://elki.dbs.ifi.lmu.de/
http://rapidminer.com/
http://www.knime.org/
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The cluster computing framework Apache Spark [205] supports a variety of data
analytics algorithms. Analytical algorithms, contained in the Machine Learning
Library (MLlib), benefit from Spark’s scale-up and scale-out capabilities. Oracle
PGX 9 is a graph analytics framework. It can run predefined as well as custom
algorithms written in the Green-Marl DSL, and is focused on a fast, parallel, and in-
memory execution. GraphLab [132] is a machine learning framework that provides
many machine learning building blocks such as regression or clustering, which
facilitate building complex applications on top of them. As all these frameworks
use dedicated internal data formats that make necessary time-consuming data
loading steps. Furthermore, the synchronization of results back to the original
RDBMS is a complex job that often must be implemented explicitly by the user.

5.2.2 Data Analytics in Databases

Besides standalone systems there are database systems which contain data analytics
extensions. Being faced with the issue of integrating data analytics and relational
concepts, the systems mentioned below come up with different solutions: Either
analytical algorithms are executed via calls to library functions, or the SQL language
is extended with data analytics functions.
MADlib [91] is an example for the second level our our classification, user-defined

functions. This library works on top of selected databases, and makes heavy use
of data parallel query execution, if provided by the underlying database system.
MADlib provides analytical algorithms as user-defined functions written in C++
and Python that are called from SQL queries. The underlying database executes
those functions, but cannot inspect or optimize them. While the output produced
by the functions can directly be post-processed using SQL, only base relations
are allowed as input to data analytics algorithms. Thus, full integration of the
user-defined functions and SQL queries is neither achieved on a query optimization
and execution level nor in the language and query layer.

Another example for the UDF category is the SAP HANA Predictive Analytics
Library (PAL) [172, 66]. This library offers multi-threaded C++ implementations
of a variety of analytical algorithms to run within the main-memory database
system SAP HANA. It is integrated with the relational model in a sense that
input parameters, input data, as well as intermediate results and the output are

9http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/

http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/
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relational tables. The algorithms, so-called application functions, are called from
SQL code. They are compiled into query plans and executed individually. In
contrast to the afore-mentioned MADlib, it integrates in one ecosystem only, and
is therefore capable of connecting to SAP HANA’s user and rights management.
Oracle Data Miner [181] has its focus on supervised machine learning algorithms.

Hence, training data is used to create a model before this model is applied to
test data using SQL functions. Both steps are run multi-threaded to make use
of modern multi-core systems. Results of the algorithms are stored in relational
tables. Interactive re-using and further processing of results within the same SQL
query is not possible, but can be applied in precedent and subsequent queries.
LogicBlox [17] relies on functional programming, like Tupleware, but is a full

relational DBMS. As such, their functional programming language LogiQL can be
combined with declarative programming, and features a relational query optimizer.
For optimizing the functional code, LogicBlox exploits constraint solving.
SimSQL [37] is another recent relational database with analytical features. Users

write algorithms from scratch, which are then translated into SQL. Several SQL
extensions, such as for-each style loops over relations, as well as vector and matrix
data types, facilitate analytics in the database. While recognizing that its tuple-
orientated approach to matrix-based problems results in low performance [36],
SimSQL emphasizes its general-purpose approach. As a result of those design
decisions, SimSQL is able to execute complex machine learning algorithms, which
many other computation platforms are not able to [36], but lacks optimizations for
standard analytical algorithms.
To conclude, while all presented database systems strive for integration of

analytical and relational queries, the achieved level of integration vastly differs
between systems. Most presented systems rely on black box execution of user-
defined functions by the database, while others transform analytical into relational
queries to allow for query inspection and optimization by the database.

5.3 HyPer For Data Analytics

HyPer [115] is a hybrid main-memory RDBMS that is optimized for both trans-
actional and analytical workloads. It offers best-in-class performance for both
workloads, even when operating simultaneously on the same data. Adding capabil-
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ities to execute data analysis algorithms is the next step towards a unified data
management platform, without stale data warehouses.

Several features of HyPer contribute to its suitability for data analytics. First,
Hyper generates efficient data-centric code from user queries, thus reducing the
user’s responsibility to write algorithms in an efficient way [149]. After transforming
the query into an abstract syntax tree (AST), multiple optimization steps, and the
final translation into a tree of physical operators, HyPer generates code using the
LLVM compiler framework. Computation-intensive algorithms benefit from this
design, as, e.g., function calls are omitted. As a result, users without knowledge in
efficient algorithms can write fast analytical queries.

Second, performance is further improved by ensuring data locality. Data-centric
execution attempts keeping data tuples in CPU registers as long as possible to avoid
unnecessary copying of data. If possible, a tuple is therefore kept in registers while
multiple operators are executed on it. This so-called pipelining is most important
for queries that touch tuples multiple times. For ad-hoc analytical queries pre-
and post-processing steps can be combined with the data processing to generate
highly efficient machine code. As many analytical algorithms are pipeline breakers,
in practice we pipeline pre-processing and data materialization as well as result
generation and post-processing.

Third, HyPer focuses on scale-up on multi-core systems rather than on scale-
out on clusters, hence, parallelization of the operators and the generated code
is a performance-critical aspect. Characteristics of modern har[t]dware, such as
non-uniform memory access (NUMA), cache hierarchies, and vector processing,
therefore have to be taken into account when new features are integrated into the
DBMS. Avoiding data distribution onto multiple nodes is especially important when
the input data cannot be chunked easily, e.g., when processing graph-structured
data.

Beside efficient integration of algorithms, other characteristics further encour-
age the use of a specific RDBMS for data analysis use-cases: HyPer provides a
PostgreSQL-compatible SQL interface, it is fully ACID-compliant and offers fast
data loading [143] which is especially important for data scientists.
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5.4 In-database Processing

Existing systems for data analysis often use their own, proprietary query languages
and APIs to specify algorithms, e.g., Apache Spark [205] and Apache Flink [13].
This approach has several drawbacks: Unusual query languages make it necessary
to extensively train the domain experts that write queries. If common high-level
programming languages, like Java, are used, many programmers are available, but
they usually lack domain knowledge. Additionally, optimizing high-level code is a
hard problem that compiler designers have been working on for decades, especially
in combination with additional query execution logic.

Our goal is to enable data scientists to create and execute queries in a straight-
forward way, while keeping all flexibility for expert users. In this chapter, we assess
multiple approaches to integrate data analytics into HyPer. The first layer shown in
5.1, using the database system solely as data storage, is omitted here as it does not
belong to the in-database processing category. Layers two and three—UDFs and
SQL queries, respectively—are already implemented in various database systems.
Layer four describes our novel approach of deeply integrating complex algorithms
into the database core to maximize query performance while retaining flexibility
for the user.

5.4.1 Program Execution within the Database

Many RDBMSs allow user-defined functions (UDFs), in which database users can
add arbitrary functionality to the database. This eliminates the need to copy
data to external systems. The code snippets are registered with the database
system and are usually run by the database system as a black box, though first
attempts to “open the black box” have been made [100]. If UDF code contains
SQL queries, executing these queries potentially required costly communication
with the database. This is because for most UDF languages it is not possible to
bind together the black box code and the code that executes the embedded SQL
query, hence, foregoing massive optimization potential. Because of the dangers to
stability and security that go along with executing foreign code in the database
core, a sandbox is required to separate database code and user code.
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5.4.2 Extensions to SQL

There is general consensus that relational data should be queried using SQL. By
extending SQL to integrate new algorithms, the vast amount of SQL infrastructure,
e.g., JDBC connectors and SQL editors, can be reused to work with analytical
queries. Furthermore, the declarative nature of SQL makes it easy to continuously
introduce new optimizations. Also, using this common language, one avoids the
high effort of creating a new language, and of teaching it to users.
Some algorithms, e.g., the a-priori algorithm [28] for frequent itemset mining,

work well in SQL, but others are difficult to express in SQL and even harder
to optimize. One common difficulty is the iterative nature of many analytical
algorithms. To express iterations in SQL, recursive common table expressions
(CTE) can be used. CTEs compute a monotonically growing relation, i.e., tuples of
all previous iterations are kept. As many iterative algorithms need to access one
previous iteration only, memory is wasted if the optimizer does not optimize this
hard-to-detect situation. This is a problem especially for main-memory databases
where memory is a scarce resource.

To solve this issue, we suggest an iteration concept for SQL that does not append
to the prior iteration, but instead replaces it, and therefore drastically reduces the
memory footprint of iterative computations. As the intermediate results become
smaller, less data has to be read and processed, thus, it also improves analytics
performance. We explain the details of our iteration concept in 5.5.

5.4.3 Data Analytics in the Database Core

In contrast to other database systems, HyPer additionally integrates important data
analytics functionality directly into the core of the database system by implementing
special highly-tuned operators for them. Because the internal structures of database
systems are fairly different, such operators have to be specifically designed and
implemented for each system. Differentiating factors between systems are, among
others, the execution model (tuple-at-a-time vs. vectorized execution) as well as
the storage model (row store vs. column store). For example, an operator in the
analytical engine Tupleware, which does not support updating datasets, would look
significantly different from an operator in the full-fledged database system HyPer,
which needs to take care of updates and query isolation.
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HyPer can arbitrarily mix relational and analytical operators, which leads to a
seamless integration between analytics with other SQL statements into one query
plan. This is especially useful because the functionality of existing relational
operators can be reused for common subtasks in analytical algorithms, such as
grouping or sorting. Thus, analytical operators can focus on optimizing the
algorithms’ core logic such as providing efficient internal data representations,
performing algorithm-dependent pre-processing steps, and speeding up computation-
intensive loops. A further advantage of custom-built analytical operators is that
the query optimizer knows their exact properties and can choose an optimal query
plan based on this information. Having all pre- and post-processing steps in one
language—and one query—greatly simplifies data analytics and allows efficient
ad-hoc queries. In 5.6 we elaborate on our implementation of (physical) operators.
Out of the integration layers presented in this section, special operators are

integrated most deeply into the database. As a result, they provide unrivaled
performance, but have the disadvantage of reducing the user’s flexibility. To aid
this and regain flexibility, we propose lambda expressions as a way to inject user-
defined code into operators. Lambdas can, for example, be used specify distance
metrics in the k-Means algorithm or to define edge weights in PageRank.

By implementing multiple of these layers, we can offer data analytics functionality
to diverse user groups: User-defined algorithms are attractive for data scientists
that want to implement specific algorithms in their favorite programming language
without having to copy the data to another system. Persons knowledgeable in
analytical algorithms and SQL might prefer to stick to their standard data querying
language, hence, extensions to SQL are the best choice for them. Algorithm
operators that are implemented by the database developers are targeted towards
users that are familiar with the data domain but not with data analytics algorithm
design.
Syntactically, UDFs, stored SQL queries and special operators cannot and

should not be distinguished by the user. This way database system architects can,
transparent to the user, decide on an algorithm’s level of integration.
In the following sections, we delve into the details of data analytics using SQL

and using specialized analytical operators with λ-expressions. We omit the details
on the first two layers—using the database solely as data storage, and running UDFs
in a black box within the database—because the first does not incorporate any
analytical algorithms on the database system side and the latter uses the database
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system as a runtime environment for user-defined code. When the database is only
used to provide the data, the performance is bound by data transfer performance
and the data analytics software used to run the algorithms. In case the database is
used to execute code in a black box, again, the runtime depends on the programming
language and implementation used in these UDFs.

5.5 Data Analytics using SQL

Our overall goal is to seamlessly integrate analytical algorithms and SQL queries.
In the third layer, which is described in this section, SQL is used and extended to
achieve this goal. Standard SQL already provides most functionality necessary for
implementing analytical algorithms, such as fix point recursion, aggregation, sorting,
or distinction of cases. However, one vital construct is missing: A more general
concept of iteration has to be added to the language. The following 5.5.1 introduces
this general-purpose iteration construct, called iterate operator. Afterwards, query
optimization for analytical queries is discussed in 5.5.2.
Our running example are the three algorithms k-Means, Naive Bayes, and

PageRank which are well-known [193, 7] examples from vector and graph analytics
and used as example building blocks in other state-of-the-art analytics systems
[48]. Their properties are shared by many other data mining and graph analytics
algorithms. Furthermore, they represent the areas of data mining, machine learning,
and graph analytics, respectively. Thus, they are suiting examples for this chapter.

5.5.1 The Iterate Operator

The SQL:1999 standard contains recursive common table expressions (CTE) that
are constructed using the with recursive. Recursive CTEs allow for computation
of growing relations, e.g., transitive closures. In these queries, the CTE can be
accessed from within its definition, and is iteratively computed until no new tuples
are created in an iteration. In other words, until a fixpoint is reached. Although
it is possible to use this fixpoint recursion concept for general-purpose iterations,
this is clearly a diversion from its intended use case, and can thus result in wrong
optimizer decisions.
Our iterate operator has similar capabilities as recursive CTEs:
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Listing 5.1: Syntax of the iterate SQL language extension. A temporary table
iterate is created, that in the beginning contains the result of the
initialization subquery. Iteratively, the subquery step is applied to the
result of the last iteration, until the boolean condition stop condition
is fulfilled.

SELECT * FROM ITERATE ([ initialization ], [step], [stop condition ]);

-- find smallest three-digit multiple of seven
SELECT * FROM ITERATE (( SELECT 7 "x"),

( SELECT x+7 FROM iterate ),
( SELECT x FROM iterate WHERE x >=100) );

It can reference a relation within its definition, hence, allowing for iterative
computations.

In contrast to recursive CTEs, the iterate operator replaces the old intermediate
relation rather than appending new tuples. Its final result is thus a table with
the tuples that were computed in the last iteration only. This pattern is often
used in data and graph mining algorithms, especially when some kind of metric or
quality of data tuples is computed. In PageRank, for example, the initial ranks
are updated in each iteration. In clustering algorithms, the assignment of data
tuples to clusters has to be updated in every iteration. These algorithms have
in common that they operate on fixed-size datasets, where only certain values
(ranks, assigned clusters, et cetera) are updated. This means the stop criterion
has to be changed: Rather than stopping when no new tuples are generated, our
iterate operator stops when a user-defined predicate evaluates to true. We show the
syntax of the iteration construct in 5.1. By providing a non-appending iteration
concept with a while-loop-style stop criterion, we are adding more semantics to the
implementation, which has been shown to massively speed up query execution due
to better optimizer decisions [48].
Although it is possible to implement the afore-mentioned algorithms using

recursive CTEs, the iterate operator has two major advantages:

• Lower memory consumption: Given a dataset with n tuples, and i iterations.
With recursive CTEs, the table is growing to n ∗ i tuples. Using our operator,
the size of the relation remains n. For comparisons of the current and the last
iteration, we need to store 2∗n tuples, and can discard all prior iterations early.
Hence, the iterate construct saves vast amounts of memory in comparison to
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recursive CTEs. Furthermore, if the stop criterion is the number of executed
iterations, recursive CTEs have to carry along an iteration counter, which is
a huge memory overhead because it has to be stored in every tuple.

• Lower query response times: Because of the smaller relation size, our algorithm
is also faster in scanning and processing the whole relation, which is necessary
to re-compute the ranks, clusters, et cetera.

Lower memory requirements are particularly important in main-memory databases
like HyPer, where memory is a scarce resource. This is especially true when whole
algorithms are integrated into the database, because they often need additional
temporary data structures. Our evaluation, 5.8, shows how algorithm performance
can be improved by using our iterate operator instead of recursive CTEs, while
keeping the flexibility of with recursive statements. Both approaches share
one drawback, they can both produce infinite loops. Those situations need to be
detected and aborted by the database system, e.g., via counting recursion depth or
iterations, respectively.
A conceptually similar idea, that also features appending and non-appending

iterations, can be found in the work of Binnig et al. [26]. Being a language proposal
for a functional extension to SQL, this chapter does neither discuss where which
type of iteration is appropriate, nor lists advantages and drawbacks regarding
performance or memory consumption.

5.5.2 Query Optimization and Seamless Integration with the
Surrounding SQL Query

Keeping intermediate results small by performing selections as early as possible is
a basic principle of query optimization. This technique, called pushing selections,
is in general not possible when analytical algorithms are affected. This is because
the result of an analytical algorithm is not determined by single tuples (as it is for
example for joins), but potentially influenced by the whole input dataset. A similar
behavior can be found in the group-by operator, where the aggregated results also
depend on all input tuples. This naturally narrows the search space of the query
optimizer and reduces optimization potentials.
One mayor influencing factor for query optimization is the cardinality of inter-

mediate results. For instance, precise cardinality estimations are necessary for
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choosing the best join ordering in a query. It is, however, hard to estimate the
output cardinality of the generic iterate operator, because it can contain diverse
algorithms. Some algorithms, e.g., k-Means, iterate over a given dataset, hence,
the number of tuples stays the same before and after the iterate operator. Other
algorithms, e.g., reachability computations, increase the dataset with each iteration,
which makes the final cardinality hard to estimate. Cardinality estimation on
recursive CTEs faces the same difficulty and thus, similar estimation techniques can
be applied. To conclude, the diverse nature of analytical algorithms does not offer
many generic optimization opportunities. Instead, relational query optimization
has to be performed almost independently on the subqueries below and above
the analytical algorithm, while the analytical algorithm itself might benefit from
different optimization techniques, e.g., borrowed from general compiler design or
constrained solving, as suggested by [17]. Because of the lacking potential for
standard query optimization, low-level optimizations such as vectorization and
data locality, as introduced in 5.3, become more important.
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5.6 Operators

Runtime

SQL query

data flow execution

query plan

da
ta

results

relational
operators

data analytics
operators

optimized
query plan

Compilation

Figure 5.3: Query translation and execution with relational and analytical operators.
A SQL query is translated to an abstract syntax tree (AST) consisting
of both relational and analytical operators. The optimizer can inspect
both types of operators. This approach provides highest integration
and performance.

The most in-depth integration of analytical algorithms into a DBMS is by providing
implementations in the form of physical operators. Physical operators like hash
join or merge sort are highly optimized code fragments that are plugged together
to compute the result of a query. All physical operators, including the analytical
ones introduced in this chapter, use tables as input and output. They can be
freely combined, ensuring maximal efficiency. 5.3 shows how physical analytics
operators are integrated into query translation and execution. Physical operators are
performance-wise superior to the general iteration construct, introduced in 5.5.1, as
these specialized operators know invariants of their algorithms such as the estimated
output cardinality, or data dependencies in complex computations. Thus, they
know best how to distribute work among threads or how to optimize the memory
layout of internal data structures.
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Listing 5.2: Operator integration in SQL. Arbitrary preprocessing of input data
and arbitrary post-processing of the results is possible. Additional
parameters define the algorithm’s behavior.

SELECT * FROM PAGE RANK (( SELECT src , dest FROM edges ), 0.85 , 0.0001) ;

For example, the query shown in 5.2 computes the PageRank value for every
vertex of the graph induced by the edges relation10. The query is processed by a
table scan operator followed by our specialized physical PageRank operator. The
PageRank operator implementation defines, e.g., whether parallel input (from the
table scan operator) can be processed, an information that is used by the optimizer
to create the best plan for the given query.
In the next sections, we describe the chosen algorithms, k-Means, Naive Bayes,

and PageRank, and how we implemented them in HyPer. Furthermore, we describe
necessary changes to the optimizer.

5.6.1 The Physical k-Means Operator

k-Means is a fast, model-based iterative clustering algorithm, i.e., it divides a set
of tuples into k spherical groups such that the sum of distances is minimized. It
can be utilized as building block for advanced clustering techniques. The classical
k-Means algorithm by Lloyd [131] splits each iteration into two steps: assignment
and update. In the assignment step, each tuple is assigned to the nearest cluster
center. In the update step, the cluster centers are set to be the arithmetic mean of
all tuples assigned to the cluster. The algorithm converges when no tuple changes
its assigned cluster during an iteration. For practical use, the convergence criterion
is often softened: Either, a maximum number of iterations is given, or the algorithm
is interrupted if only a small fraction of tuples changed its assigned cluster in an
iteration.

In our implementation, the k-Means operator requires two input relations—data
and initial centers—that are passed via subqueries. An additional parameter defines
the maximum number of iterations. Using parallelism, our implementation benefits
from modern multi-core systems: Each thread locally assigns data tuples to their
10Parentheses around the subquery are necessary because arbitrary queries are allowed there.

The sole use of commas would have lead to an ambiguous grammar.
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nearest center and to prepare the re-computation of cluster centers, each thread
sums up the tuples values. The data tuples itself are consumed and directly thrown
away after processing. For the next iteration, tuples are requested again from the
underlying subquery. As a result, the query optimizer can decide to compute the
data relation each time, or use materialized intermediate results, whatever is faster
in the given query. Data locality is ensured because all centers and intermediate
data structures are copied for each thread. Thread synchronization is only needed
for the very last steps, global aggregation of the local intermediate results and the
final update of the cluster centers. This procedure is repeated until the solution
remains stable (i.e., no tuple changed its assignment during an iteration), or until
the maximum number of iterations is reached. The operator then outputs the
cluster centers.

5.6.2 The Physical Naive Bayes Operator

Naive Bayes classification aims at classifying entities, i.e., assigning categorical
labels to them. Other than k-Means or PageRank, it is a supervised algorithm, and,
thus, consists of two steps performed on two different datasets: First, a dataset
A with known labels is used to build a model based on the Bayesian probability
density function. Second, the model is applied to a related but un-labeled (thus,
unknown) dataset B to predict its labels. When implemented in a relational
database, one challenge is storing the model, as it does not match any of the
relational entities—relation, index—completely.

We implemented model creation and application as two separate operators, Naive
Bayes training and Naive Bayes testing, respectively. The generation of additional
statistical measures is handled by two additional operators, that are not limited to
Naive Bayes but can be used as building block for multiple algorithms, for example
k-Means.

Similar to k-Means, the Naive Bayes training operator is a pipeline breaker. Each
threads holds a hash table to manage its input data with the class as key, while
not storing the tuples itself. In addition, the number of tuples N is stored for each
class, as well as the sum of the values ∑n∈N n.a and the sum of the square of each
value ∑n∈N na

2 for each class and attribute. After the whole input is consumed,
the training operator computes the a-priori probability for each class as well as the
mean and standard deviation for each class and attribute:
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For a given training set D with N instances n ∈ D which contains a set of classes
C with c ∈ C being a single class and |c| the number of instances of this class c in
D. Then, the a-priori probability of a class is given by:

PR(c) = |c|+ 1
N + |C|

5.6.3 The Physical PageRank Operator

PageRank [34] is a well-known iterative ranking algorithm for graph-structured
data. Each vertex v in the graph, e.g., a websites or person, is assigned a ranking
value that can be interpreted as its importance. The rank of v depends on the
number and rank of incoming edges, i.e., v is important if many important vertices
have edges to it. A PageRank iteration is a sparse matrix-vector multiplication.
In each iteration, part of each vertex’s importance flows off to the vertices it is
adjacent to, and in turn each vertex receives importance from its neighbors. Similar
to k-Means, PageRank converges towards a fixpoint, i.e., the vertex ranks change
less than a user-defined epsilon. Also, it is common to specify a maximum number
of iterations.
The sparse matrix-vector multiplication performed in the PageRank iterations

is similar to many graph algorithms in that its performance greatly benefits from
efficient neighbor traversals. This means for a given vertex v it has to be efficiently
possible to enumerate all of its neighbors. Our PageRank implementation ensures
this by efficiently creating a temporary compressed sparse row (CSR) representation
[182] that is optimized for the query at hand. We avoid storage overhead and an
access indirection in this mapping by re-labeling all vertices and doing a direct
mapping. After the PageRank computation we use a reverse mapping operator
that translates our internal vertex ids back to the original ids.
The PageRank operator uses only the CSR graph index and does not need to

access the base data anymore. In each iteration we compute the vertices’ new
PageRank values in parallel without any synchronization. Because we have dense
internal vertex ids we are able to store the current and last iteration’s rank in
arrays that can be directly indexed. Thus, every neighbor rank access only involves
a single read. At the end of each iteration we aggregate each worker’s data to
determine how much the new ranks differ from the previous iterations. If the
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difference is less or equal to the user-defined epsilon or if the maximum iteration
count is reached, the PageRank computation finishes.

5.7 Lambda Expressions
In 5.4.3 we describe the integration of specialized data analytics operators into
the database core. These operators provide unrivaled performance in executing
the algorithms they were designed for. However, without modification they are
not flexible, i.e., they are not even applicable in the context of similar but slightly
different algorithms. Consider the k-Medians algorithm. It is a variant of k-Means
that uses the L1-norm (Manhattan distance) rather than the L2-norm (Euclidean
distance) as distance metric. While this distance metric differs between the variants,
their implementations have in common predominant parts of their code. Even
though this common code could be shared, different metrics would make necessary
different variants of our algorithm operators.

Instead, when designing data analytics operators, we identify and aim to exploit
such similarities. Our goal is to have one operator for a whole class of algorithms
with variation points that can be specified by the user. To inject user-defined code
into variation points of analytics operators we propose using lambda expressions in
SQL queries.
Lambda expressions are anonymous SQL functions that can be specified inside

the query. For syntactic convenience, the lambda expressions’ input and output
data types are automatically inferred by the database system. Also, for all variation
points we provide default lambdas that are used should none be specified. Thus,
non-expert users can easily fall back to basic algorithms. With lambda-enabled
operators we strive not only to keep implementation and maintenance costs low, but
especially to offer a wide variety of algorithm variants required by data scientists.
Also, because lambda functions are specified in SQL, they benefit from existing
relational optimizations.
5.3 show how our k-Means operator benefits from lambdas. In the kmeans

function call’s third argument, a lambda expression is used to specify an arbitrary
distance metric. The operator expects a lambda function that takes two tuple
variables as input arguments and returns a (scalar) float value. At runtime, these
variables are bound with the corresponding input tuples to compute the distance.
Thus, by providing a k-Means operator that accepts lambda expressions we do
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Listing 5.3: Customization of the k-Means operator using a lambda expression for
the distance function.

CREATE TABLE data (x FLOAT , y INTEGER , z FLOAT ,
desc VARCHAR (500) );

CREATE TABLE center (x FLOAT , y INTEGER , z FLOAT );
INSERT INTO data ...
INSERT INTO center ...

SELECT * FROM KMEANS (
-- sub-queries project the attributes of interest
( SELECT x,y FROM data),
( SELECT x,y FROM center ),
-- the distance function is specified as λ-expression
λ(a, b) (a.x-b.x)^2+(a.y-b.y)^2,
-- termination criterion: max. number of iterations
3

);

not only cover the common k-Means and k-Medians algorithms but also allow
users to design algorithms that are specific to their task and data at hand. These
custom algorithms are still executed by our highly-tuned in-database operator
implementation and because all code is compiled together, no virtual function calls
are involved.

5.8 Experimental Evaluation

In this section, we evaluate our implementations of k-Means, PageRank, and Naive
Bayes. As introduced in 5.4, we implemented multiple versions of the algorithms,
that reflect different depths of integration. We compare our solutions to other
systems that are commonly used among data scientists. This includes middle-ware
tools based on RDBMSs, analytics software for distributed systems, and standalone
data analysis tools.

5.8.1 Datasets and Parameters

We use a variety of datasets to evaluate the influence of certain characteristics of
the datasets and workload to the resulting performance.
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Figure 5.4: k-Means experiments. From left to right: varying the number of tuples
N , dimensions d, and clusters k. Default parameters: 4,000,000 tuples,
10 dimensions, 5 clusters, 3 iterations.
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Figure 5.5: PageRank and Naive Bayes experiments. From left to right: PageRank
using the LDBC SNB dataset, dumping factor 0.85, and 45 iterations.
Naive Bayes experiment varying the number of tuples N . Naive Bayes
experiment varying the number of dimensions d.

k-Means Datasets and Parameters

k-Means is an algorithm targeted at vector data, i.e., tuples with a number of
dimensions. This data model fits perfectly into relations. The data is characterized
by the number of tuples n, the number of dimensions d used for clustering, and
the data types of the dimensions. We chose to perform experiments for varied
n and d, while keeping the data types constant. In addition to the dataset, also
the algorithm itself has multiple parameters: the number of clusters k, the cluster
initialization strategy, and the number of iterations i that are computed. The
number of clusters k drastically influences the query performance because it defines
the number of distances that have to be computed and compared, and is, hence,
an important parameter in our evaluation. To produce comparable results with



172 5.8. Experimental Evaluation

Table 5.1: Datasets for k-Means experiments.
#tuples n #dimensions d k

Varying 160 000 10 5
number of 800 000 10 5
tuples 4 000 000 10 5?

20 000 000 10 5
100 000 000 10 5
500 000 000 10 5

Varying 4 000 000 3 5
number of 4 000 000 5 5
dimensions 4 000 000 10 5?

4 000 000 25 5
4 000 000 50 5

Varying 4 000 000 10 3
number of 4 000 000 10 5?
clusters 4 000 000 10 10

4 000 000 10 25
4 000 000 10 50

? same experiments, for connecting the
three lines of experiments

a wide range of systems, our experiments use the simplest cluster initialization
strategy: random selection of k initial cluster centers. We chose to perform three
iterations i. This keeps the experiment duration short while leveling out a possible
overhead in the first iteration.

While modifying one parameter, we keep the other two fixed, to focus on the
effect on that parameter only. The resulting list of experiments is shown in 5.1.
We conduct five to six experiments per parameters, which allows us to assess
not only the performance, but also the scaling behavior of the different systems.
The dataset sizes—determined by n and d—were chosen to be processable by all
evaluated systems within main memory and within a reasonable time, given the
vast performance differences between the systems. We create artificial—uniformly
distributed—datasets because they provide an important advantage over real-world
datasets in our use case: As the performance of plain k-Means with a fixed number
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of iterations is irrespective of data skew, our decision to use synthetic datasets does
not introduce any drawbacks.

Naive Bayes Datasets and Parameters

The Naive Bayes experiments are conducted using the same synthetic datasets as
k-Means. We vary the number of tuples N and the number of dimensions d. For
the labels we chose a uniform probability density function of two labels 0 and 1.
Our experiments cover the training phase of the algorithm only, as it has a much
higher complexity and thus runtime than the testing step.

PageRank Datasets and Parameters

PageRank is an algorithm targeted at graph data, i.e., vertices and edges with
optional properties. The algorithm is parameterized with the damping factor d,
modeling the probability that an edge is traversed, e, the maximum change between
two iterations for which the computation continues, and the maximum number of
iterations i. For the damping factor d, we chose the reasonable value 0.85 [34], i.e.,
the modeled random surfer continues browsing with a probability of 85%. To better
compare different systems, we set e to 0 and run a fixed number of 45 iterations
in all systems. As datasets we use the artificial LDBC graph that is designed to
follow the properties of real-world social networks. We generated multiple LDBC
graph in different sizes up to 500,000 vertices and 46 million edges, using the SNB
data generator [60], and used the resulting undirected person-knows-person graph.

5.8.2 Evaluated Systems
We evaluate our physical operators, denoted as HyPer Operator, SQL queries with
our iterate operator, denoted as HyPer Iterate, and a pure SQL implementation
using recursive CTEs, denoted as HyPer SQL, against diverse data analysis systems
introduced in 5.2. We chose MATLAB R2015 as a representative of the “program-
ming languages” group. The next category are “big data analytics” platforms: We
evaluate Apache Spark 1.5.0 with MLlib. As contender in the “database extensions”
category, we chose MADlib 1.8 on top of the Pivotal Greenplum Database 4.3.7.1.

To ensure a fair comparison, all systems have to implement the same variant of
k-Means: Lloyd’s algorithm. Note that we therefore disabled the following opti-
mizations implemented in Apache Spark MLlib: First, the MLlib implementation
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computes lower bounds for distances using norms, hence, reducing the number of
distance computations. Second, distance computation uses previously computed
norms instead of computing the Euclidean distance (if the error introduced by
this method is not too big). litekmeans11, a fast k-Means implementation for
MATLAB, uses the same optimizations. We therefore use MATLAB’s built-in
k-Means implementation in our experiments.

5.8.3 Evaluation Machine

All experiments are carried out on a 4-socket Intel Xeon E7-4870 v2 (15×2.3 GHz
per socket) server with 1 TB main memory, running Ubuntu Linux 15.10 using
kernel version 4.2. Greenplum, the database used for MADlib, is only available for
Red Hat-based operating systems. We therefore set up a Docker container running
CentOS 7. The potential introduced overhead is considered in our discussion. As
mentioned, we chose the datasets to fit into main memory, even when considering
additional data structures. MATLAB does not contain parallel versions of the
chosen algorithms, as mentioned in 5.2. This issue is also considered in our result
discussion.

5.8.4 Results and Discussion

Figures 5.4 and 5.5 display the total runtimes measured in our experiments. In
general, the results match our claims regarding the four layers[t] of integration and
their runtimes as shown in 5.1: Systems using UDFs (layer 2)—in our experiments
represented by MADlib—are slower than HyPer Iterate and HyPer SQL, using SQL
(layer 3). The fastest implementation—HyPer Operator—uses analytical operators
(layer 4). Runtime of dedicated analytical systems, such as MATLAB and Apache
Spark, heavily depends on the individual system.

Recursive CTEs and HyPer Iterate

As claimed in 5.5, using the iteration concept improves runtimes over plain SQL.
While the pure SQL implementation, using recursive CTEs, has to store and
process intermediate results that grow with each iteration, the iteration operator’s
intermediate results have constant size. In our implementations, this means
11http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html

http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
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additional selection predicates for the pure SQL variant, and more expensive
aggregates due to the larger intermediate results.

Hyper Operator and HyPer Iterate

The k-Means experiments show almost no difference between the HyPer Operator
and the HyPer Iterate approach. k-Means is a rather simple algorithm: there is no
random data access, only few branches, vectorization can be applied easily, and
the data structures are straightforward. Furthermore, it operates on vector data,
thus, both operator and SQL implementations use similar internal data structures.
This results in very similar code being generated by the operator and the query
optimizer, hence, the similar runtimes.

For PageRank, the experiments reveal a different picture: HyPer Operator runs
significantly faster than HyPer Iterate because of its optimized CSR graph data
structure. In contrast, HyPer Iterate has to work on relational structures—an
edges table and a derived vertices table—and, thus, needs to perform many (hash)
joins. As a result, its runtime is dominated by building and probing hash tables.
This behavior is also found in [106], where a SQL implementation of PageRank
also showed performance only comparable to stand-alone-systems. The following
rule of thumb can be applied: The more similar optimized SQL code and code
generated from the hand-written operator are, the smaller the runtime difference
between HyPer Iterate and HyPer Operator approach.

HyPer, MATLAB, MADlib, and Apache Spark

Among the contender systems, Apache Spark shows by far the best runtimes, which
was expected because Spark was especially built for these kinds of algorithms.
Still, it is multiple times slower than our HyPer Operator approach for all three
evaluated algorithms, as shown in the Figures 5.4 and 5.5. HyPer’s one-system-
fits-all approach comes with some overhead of database-specific features that are
not present in dedicated analytical systems like Apache Spark. Therefore, it is
important that these features do not cause overhead when they are not used. For
instance, isolation of parallel transactions should not take a significant amount of
time when only one analytical query is running. Some database-specific overhead,
stemming, e.g., from memory management and user rights management, cannot be
avoided. Nevertheless, HyPer shows far better runtimes than dedicated systems,
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while also avoiding data copying and stale data. MATLAB runs both algorithms
single-threaded and therefore cannot compete, but was included because multiple
heavily used data analytics tools do not support parallelism. MADlib, even taking
into account the runtime impairment caused by the virtualization overhead, cannot
compete with solutions that integrate data analytics deeper and, hence, produce
better execution code.

Interestingly, Spark and MADlib seem to be almost not affected by the number
of dimensions or clusters in the experiments. As algorithm-wise more complex
computations are necessary if either of this numbers rises, we suspect those compu-
tations to be hidden behind multi-threading overhead. For example, if each thread
handles one cluster, even the 50 clusters in the largest experiment still fit into the
120 hyper-threads of the evaluation machine. But k-Means with larger number of
dimensions or clusters is not common, because their results are impaired by the
curse of dimensionality or cannot be interpreted by humans, respectively. Regarding
the scaling for larger datasets, log-scaled runtimes fail to show runtime differences
appropriately: Plots with log-scaled runtimes counter-intuitively show converging
lines when in fact the runtime difference between two systems is constant, which is
the case for HyPer Operator/Iterate and Apache Spark in the leftmost k-Means
figure.

The results presented above support our claim that a multi-layer approach helps
targeting diverse user groups. DBMS manufacturers benefit from the identical
interface and syntax of UDFs, stored SQL queries, and hard-coded operators. The
decision in which layer an algorithm is implemented is, thus, solely affected by
implementation effort versus gain in performance and flexibility. Laypersons can
use these manufacturer-provided data analytics algorithms without having to care
whether it is a UDF, an SQL query or a physical operator. Database users with
expertise, opposed to laypersons, that want to implement their own analytical
algorithms, can choose to implement either UDFs or SQL queries.

To put it in a nutshell, the experiments match the expected order concerning
runtimes: the deeper the integration of data analytics, the faster the system. Our
results also support our idea of one database system being sufficient for multiple
workloads. While this has been shown for combining OLTP and OLAP workloads
before [66, 115], our contribution was to integrate one more workload, data analytics,
while keeping performance and usability on a high level.
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5.9 Conclusion
We described multiple approaches of integrating data analytics into our relational
main memory database system HyPer. Like most database systems, HyPer can be
used as a data store for external tools. However, doing so exposes data transfer as
a bottleneck and prevents significant query optimizations. Instead, we presented
three layers of integrating data analytics directly into the database system: data
analytics in UDFs, data analytics in SQL, and analytical operators in the database
core. The layers’ depth of integration and, hence, their analytics performance
increases with each layer.

UDFs allow the user to implement arbitrary computations directly in the database.
However, because the database runs UDFs as a black box, automated optimization
potentials are very limited. To aid this lack of optimization potential, we proposed
doing data analytics in SQL. As iterations are hard to express in SQL and difficult
to optimize we presented the iteration operator and a corresponding language
extension that serves as a building block for arbitrary iterative algorithms directly
in SQL.

For major analytical algorithms that are used frequently, e.g., k-Means, PageRank,
and Naive Bayes, we then proposed an even deeper integration: integrating highly-
tuned analytical operators into the database core. Using our novel SQL lambda
expressions, users can specialize analytical operators directly within their SQL
queries. This adds flexibility to otherwise fixed operators and allows, for example,
for applying arbitrary user-defined distance metrics in our tuned k-Means operator.
Just like the iterate operator and the analytics operator, lambda expressions are
part of the logical query plan and, thus, subject to query optimization and code
generation. Hence, they benefit from decades of research in database systems.

Our presented approaches enable complete integration of data analytics in SQL
queries, ensuring both efficient query plans and usability. In our experiments we
saw that in HyPer data analytics on both graph and vector data is significantly
faster than in dedicated state-of-the-art data analytics systems—e.g., 92 times
faster than Apache Spark for PageRank. This is especially significant because,
as an ACID-compliant database, HyPer must also be able to handle concurrent
transactional workloads. Thus, we showed that HyPer is suitable for integrated data
management and data analytics on large data, with multiple interfaces targeted at
different user groups.





Conclusion

CHAPTER 6

In this thesis, we investigated in the challenges of creating data mining algorithms
for heterogeneous data and showed how efficient integration of such methods in
relational database systems would be possible. We focused on improving shortcom-
ings of existing techniques and proposed more efficient methods for handling large
vector-, graph- and spatio-temporal data.

We started by proposing the two methods NORD and ISAAC for subspace clus-
tering, trying to erase the problem of insignificant results due to high redundancy
with automized approaches. With NORD we managed to balance redundancy for
axis parallel clusterings, while ISAAC extends NORD for arbitrary clusterings ap-
plying the ISA dimensionality reduction to find statistically independent subspaces.
Both approaches make their own coding scheme basing in minimum description
length [170] to erase hard to set input parameters for the user. We demonstrated
the quality of both methods on synthetic and real data sets.

Next, we laid our focus on mining large graph data. We elaborated two methods,
Cxprime and IROC to deal with the community detection in undirected graphs
and in attributed graphs. Cxprime tries to find the communities via different
substructures (cliques and stars)efficiently on sparse graphs. It again uses minimum
description length for eradicating input parameters and assessing the quality of
the found clustering automatically. Besides it is able to predict links in the graph
structure. IROC finds overlapping communities on attributed graphs combining
both the network structure with the relational vector structure of the attributes
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instead of clustering them separately. Here, the problem of redundancy applies to
graphs as well but was solved due to a specific quality function of the minimum
description length. But this raised another problem: The runtime degraded strongly
due to the high complexity of the data structure, as such a tensor factorization
approach TF-IROC was created to speed up the algorithm, but with that the
automization was lost.
In order to expand our vector data sortiment, we proposed a spatio-temporal

framework on the large MERRA weather data of NASA. The goal is to predict
natural hazards in such large environmental data. For that this frameworks has
three steps: First, it applies outlier detection on a given set that is later transformed
into sparse tensors. Then in the second step these sparse tensors are factorized using
a highly parallelizable PARAFAC tensor factorization method for dimensionality
reduction. Then in the third step we classify the tensors with an ensemble of
techniques. We demonstrated its performance and quality outcomes on the given
real data sets that beated the state of the art method and discussed future directions.
Finally, we proposed how to integrate such and other relevant methods in

relational database systems efficiently by making the databases optimizer work
to support the given algorithm in SQL. We introduced the concept of analytics
operators that make such optimizer-centric behavior possible and discussed why no
specific (procedural) query language other than SQL should be used in that scenario.
Besides we introduced so called lambda-functions that serve as parameter settings
for such data mining operators in a database. Lambdas enable the possibility to
generate strong semantical differences in a given data mining approach by selecting
distance metrics an other important values before running the operator.

In conclusion, we proposed several methods including a full framework for efficient
clustering, outlier detection and classification algorithms on various heterogeneous
data types and use cases. Our ideas evolve around applying minimum descrip-
tion length for better quality functions and automizing approaches, and making
special use of tensor factorization for runtime efficiency. Our framework was specif-
ically created for the use case of large weather data and as such creates an own
neighborhood-related way to find the outliers and then use it for building sparse
tensors. Besides, integrating such methods as operators into RDBMS was very
successful and dynamic approaches like the lambda functions can be further evalu-
ated on their semantic differences. With these findings and application oriented
approaches we hope that we can make a little impact in the future of data science.
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