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a b s t r a c t 

Shear banding is observed in many soft materials. We recently developed a two-fluid model for semidi- 

lute entangled polymer solutions by using the generalized bracket approach of nonequilibrium thermo- 

dynamics. This model assumes that Fickian diffusion and stress-induced migration generate a nontrivial 

velocity difference between the polymers and the solution, thereby resulting in shear band formation. A 

straightforward implementation of the slip boundary conditions is possible because the differential ve- 

locity is treated as a state variable. Numerical calculations showed obvious shear banding in the polymer 

concentration profile. Increasing the pressure gradient reduces the inhomogeneity of the concentration 

profile and moves the transition region toward the center of the channel. Moreover, the velocity deviates 

from the typical parabolic form and shows a plug-like profile with a low shear band near the center and 

a high one near the walls. The lack of hysteresis in the profiles of the volumetric flow rate calculated with 

the increasing and decreasing pressure gradient demonstrates the uniqueness of the solution. In addition, 

the flow rate exhibits a spurt at a critical pressure gradient, as experimentally observed for shear banding 

materials. The simplicity of the new model encourages us to analyze it in more complicated flows. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

A rectilinear channel has simple geometry, which makes its

ow problem a suitable benchmark problem for constitutive mod-

ls and newly developed codes. Exact analytical solutions for a

ully developed channel flow have been derived for various well-

nown differential viscoelastic fluid models, including the lin-

arized and exponential forms of the Phan–Thien–Tanner [1–3] ,

iesekus [4,5] , and Johnson–Segelmann [6] models. For instance,

liveira and Pinho [1] found that the shear-thinning behavior re-

uces the wall shear stress and makes the velocity profiles flatter.

ruz et al. [3] investigated the effect of a nontrivial Newtonian sol-

ent viscosity and observed that the spatial variation of the veloc-

ty field can be made flatter by increasing the ratio of the solvent

iscosity to the total viscosity. In addition, the upper-convected

axwell and Oldroyd-B models were analytically solved for a tran-

ient pressure-driven channel flow. They are now extensively used

or validation purposes [7] . Depending on the choice of the model

arameters, viscoelastic fluid models can exhibit intense temporal

scillations. Damped inertio-elastic shear waves travel across the

hannel and reflect back from the stationary walls. Duarte et al.

8] found that the transient response is longer for larger elasticity
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umbers, and the frequency of the oscillations is higher. Further-

ore, shear thinning reduced the time required to reach a steady

tate. The presence of a large Newtonian solvent contribution leads

o a smaller oscillatory frequency of the response as well as an

ttenuation of the oscillation peak [8–10] . Slip along the chan-

el is important, as it is widely observed under strong deforma-

ions of viscoelastic materials. Meanwhile, Ferrás et al. [11] analyt-

cally solved the Giesekus model and a simplified version of the

TT model under linear and nonlinear Navier, Hatzikiriakos, and

symptotic slip conditions. They showed that a unique steady-state

olution always exists for the four phenomenological slip models

onsidered for a simplified PTT model. For the Giesekus model, the

xistence of the solution can be numerically proven for some cases

ith slip if no physical solution exists because of the Weissenberg

umber restrictions in the no-slip condition. 

Shear banding, which is defined as localized bands with differ-

nt shear rates, is ubiquitously observed in soft materials. How-

ver, its underlying mechanisms are not always the same. While

he shear banding instability of wormlike micelles is caused by a

ombination of reptation and micellar breakage, that of semidilute

olymers is still an open issue of debate. Shear banding in com-

lex fluids is reviewed in [12–14] . Several experimental studies fo-

used on the shear banding phenomenon in Poiseuille flows. Par-

icle image velocimetry (PIV) experiments performed on wormlike

icelles in microchannels [15] , regular channels [16] , and capillar-

http://dx.doi.org/10.1016/j.jnnfm.2017.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.02.002&domain=pdf
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ies [17,18] revealed that a spurt is evident in the rapid increase in

the velocity or flow rate at the critical pressure gradient. The ve-

locity profiles exhibit Newtonian behavior at low shear rates. Some

systems form an apparent slip below the onset of the spurt. Kim

et al. [15] noted that the recorded slip velocity may be an artifact

of very thin shear-banding layers near the walls, which are too thin

to be optically resolved. The velocity changes from a parabolic pro-

file to a plug-like one during the transition to the shear banding

regime. Furthermore, the interface between the shear bands was

spatially undulating [19] . Experimental evidence also suggests that

the velocity profile of colloidal particles shows a plug-like shape as

a result of shear-induced migration [20] . By performing PIV in mi-

crochannels, Degré et al. [21] observed that the maximum velocity

for shear-thinning, non-shear-banding polymer solutions superlin-

early increases with the applied pressure gradient in the nonlin-

ear viscoelastic regime. The velocity profile slightly departs from

the parabolic profile of the Newtonian fluids and exhibits a deple-

tion layer in the micrometer range. The flow curve of the polymer

melts shows a spurt and hysteresis in pressure-driven experiments.

The wall slip in polymer melts, particularly, is extensively studied

because of its potential influence on extrusion instabilities [22] .

The extent to which semidilute entangled polymer solutions ex-

hibit the above-described phenomena is currently unclear because

of the lack of experimental data. 

McLeish and Ball [23] conducted the very first numerical study

that relates the spurt in a Poiseuille flow to the shear band-

ing phenomenon. They used an improved version of the Doi–

Edwards model, which also incorporates stress contributions with

shorter relaxation times than the reptation time of a single poly-

mer chain, to capture the rheology of monodisperse polymer melts.

This model exhibits a nonmonotonic steady flow curve under ho-

mogeneous flow conditions. Hence, they were able to capture the

hysteresis loops in the profile of the volumetric flow rate plot-

ted against the applied pressure gradient. Radulescu and Olmsted

[24] also published an early work on shear banding using nonlo-

cal stress diffusive terms. Two distinct shear bands were found be-

low the critical point of monotonicity for the Johnson–Segalmann

model in the case of an inertia-less Poiseuille flow. Many years

later, Fielding and Wilson [25] performed a fully nonlinear stabil-

ity analysis of the same model in a pressure-driven channel flow.

They applied small perturbations in the flow/flow-gradient plane

and flow-gradient/vorticity plane and showed that the initially flat

interface was unstable with respect to the growth of undulations

along it. The Vasquez–Cook–McKinley (VCM) two-species model

for wormlike micelles was also examined [26] . The authors showed

an onset of shear and concentration banding above a critical pres-

sure gradient. The interface between the bands initially forms near

the walls, and then moves toward the center. The VCM model pre-

dicts a jump in the volumetric flow rate at the critical pressure

drop and hysteresis, as experimentally observed for wormlike mi-

celles. Subsequently, these authors investigated the linear stability

of the VCM model and suggested that the spectrum of the unstable

modes is reduced if the interface between the bands is smoothed

by using a larger diffusivity constant or smaller characteristic chan-

nel dimensions [27] . Thus far, shear banding in pressure-driven

flows has only been predicted for one-fluid viscoelastic constitutive

models showing a nonmonotonic homogeneous flow curve. Such

models are well known to be unable to predict steady-state bands

if the curve is strictly monotonic. Therefore, a more complex two-

fluid model, such as the one used in the present work, is required

to examine the shear banding instability of semidilute entangled

polymer solutions [28,29] . Ianniruberto et al. [30] solved Doi and

Milners’ two-fluid theory for semidilute entangled polymer solu-

tions for a pressure-driven channel flow. They found stress-induced

migration of the polymers toward the center. However, their pre-
T  
ictions were limited to pressure gradients smaller than the shear

anding regime. 

Germann et al. [31,32] used the generalized bracket approach

f nonequilibrium thermodynamics to develop a multifluid frame-

ork that would account for the Fickian diffusion and stress-

nduced migration in viscoelastic materials. The differential veloc-

ties are treated as state variables. Hence, the additional bound-

ry conditions arising from the diffusive derivative terms can be

irectly imposed with respect to these variables. This description

s advantageous because it allows for a straightforward formula-

ion of the boundary conditions. For instance, no-slip and no-flux

onditions translate into the requirements that the tangential and

ormal components of the differential velocities must vanish at the

oundaries. The standard approach used in the two-fluid descrip-

ion to impose the additional boundary conditions arising from the

iffusive derivative terms is to require no flux of concentration

nd construct the stress/conformation conditions, such that the to-

al flux vanishes at the boundaries [33–36] . This approach works

ell for mixtures of two fluids that exhibit no slip along the walls.

owever, it cannot be applied that easily if wall slip, mixtures of

ore than two phases, and/or flows in more complicated geome-

ries are considered. Hooshyar and Germann [37] used this frame-

ork to develop a new two-fluid model for semidilute entangled

olymer solutions. 

Several experimental studies reported that concentrated solu-

ions of high-molecular-weight polymers subjected to shear flow

an form spatial inhomogeneities in the concentration profile [38–

0] . Based on this evidence, Leal’s group [36,41] formulated a two-

uid Rolie–Poly model and showed that a realistic constitutive

odel for the stress and concentration coupling is required to pre-

ict shear bands at steady state. Hooshyar and Germann [37] de-

eloped a new model based on the same idea using the general-

zed bracket approach of nonequilibrium thermodynamics. A non-

inear Giesekus relaxation is used in the conformation tensor equa-

ion of the new model to capture the overshoot occurring dur-

ng the rapid start-up of simple shear flow. The Giesekus relax-

tion is an appropriate choice because it accounts for the hydrody-

amic interactions between the polymeric constituents in a con-

entrated solution. An additional relaxation term similar to that

sed in the Rolie–Poly model accounting for convective constraint

elease (CCR) and chain stretch were proposed using nonequilib-

ium thermodynamic arguments to predict the upturn of the flow

urve at high shear rates. While our model is more phenomeno-

ogical than the two-fluid Rolie–Poly model, it fully satisfies the

undamental laws of thermodynamics. In our previous study, the

ehavior of the new model was analyzed in a cylindrical Couette

ow. The results showed that the steady-state solution is unique

or different initial conditions and independent of the applied de-

ormation history. Furthermore, we found that steady banding is

ssociated with the term in the time equation of the differential

elocity that accounts for the stress-induced migration of the poly-

ers. 

This study aims to investigate the new model in a rectilinear

hannel flow driven by a pressure gradient. The remainder of this

aper is organized as follows: Section 2 presents the new thermo-

ynamic model; Section 3 introduces the flow problem and numer-

cal procedure; Section 4 presents and discusses the computational

esults; and Section 5 presents the conclusions of this study. 

. Two-fluid Polymer Model 

In this section, we introduce the equations of our two-fluid

olymer model. Note that all terms used for this model were de-

ived using the generalized bracket approach of nonequilibrium

hermodynamics. The complete derivation can be found in [37] .

he total system considered in this model is assumed to be closed,
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sothermal, and incompressible. This system consists of the two

ollowing components: one species of polymeric constituents and

 viscous solvent. We define the following variables for the poly-

eric species: mass density ρp ; momentum density m 

p = ρp v 
p ,

here v p is the velocity field; and c p , which is the conforma-

ion tensor representing the average second moment of the end-

o-end connection vector of the polymeric constituents. The poly-

er number density is given as n p = (ρp /M p ) N A , with M p being

he molecular weight of the polymer and N A , the Avogadro con-

tant. The following variables are defined for a viscous solvent:

ass density ρs and momentum density m 

s = ρs v 
s , with v s being

he velocity field. The time evolution equations of the state vari-

bles are as follows: 

∂v 

∂t 
= −ρv · ∇v − ∇p + ∇ · σ, (1)

ρp ρs 

ρ

(
∂ 

∂t 
+ v · ∇ 

)
( �v ) 

= 

ρs 

ρ
{ −∇ ( n p k B T ) + ∇ · σ p } 

−ρp 

ρ

{
−∇ ( n s k B T ) + ηs ∇ 

2 v s 
}

− G 0 

D 

�v + ηextra ∇ 

2 ( �v ) , (2) 

∂n p 

∂t 
= −∇ · ( v p n p ) , (3) 

∂c 

∂t 
= − v p · ∇c + c · ∇v p + 

(∇v p 
)T · c 

− 1 

λ1 

[ 
( 1 − α) I + α

K 

k B T 
c 

] 
·
(

c −k B T 

K 

I 

)
− 1 

λ2 

[ 
tr 

(
K 

k B T 
c 

)
−3 

] q (
c −k B T 

K 

I 

)
+ D nonl oc 

(
c · ∇ 

(∇ · σ p 
)

+ 

[∇ 

(∇ · σ p 
)]T · c 

)
. (4) 

q. (1) is the Cauchy momentum balance, where ρ = ρp + ρs rep-

esents the total mass density; t is time; p is pressure; v is the

ass-averaged velocity of the polymer solution; and σ is the ex-

ra stress tensor associated with the polymer solution. Eq. (2) gives

he time evolution equation for the differential velocity �v . k B de-

otes the Boltzmann constant; T is the absolute temperature; ηs 

s the viscosity of the solvent; and σp is the extra stress associated

ith the polymer. The divergence of the tensor σp accounts for the

tress-induced migration. The spatial gradients of the number den-

ities associated with the polymer and solvent describe the Fickian

iffusion. The local diffusivity constant D controls the diffusion be-

ween the polymeric constituents and the solvent. The value of this

arameter has no effect on the steady-state solution. However, the

ime to reach the steady state increases for smaller values [37] . The

ast term was added to facilitate the numerical computations of the

trong boundary layers arising in the differential velocity compo-

ent tangential to the wall in the presence of slip. This term was

btained as follows by adding extra viscous dissipation to the dis-

ipation bracket: 

 

F , H ] = −
∫ 
�

ηextra 

2 

{ 

∇ α

( 

δF 

δ
(
	m β

)) 

+ ∇ β

(
δF 

δ( 	m α) 

)} 

×
{ 

∇ α

( 

δH 

δ
(
	m β

)) 

+ ∇ β

(
δH 

δ( 	m α) 

)} 

d 

3 x, (5) 

here � is the flow domain; F is an arbitrary functional de-

ending on the state variables; H is the Hamiltonian; �m =
(ρs /ρ) �m 

p − (ρp /ρ) �m 

s 
is the differential momentum density 

efined in Hooshyar and Germann [37] ; and ηextra is the dynamic

iscosity controlling the sharpness of the boundary layer. The ad-

itional viscous dissipative term only appears in the time evolu-

ion equation for the differential velocity because the derivatives in

q. (5) are taken with respect to the differential momentum den- 

ity. Eq. (3) gives the time evolution equation for the polymer

umber density. The terms of the equation form the material

erivative and account for the fact that the polymer concentration

an vary locally. Eq. (4) gives the time evolution equation for the

onformation of the polymer, where α is the Giesekus anisotropy

actor, and K is the Hookean spring constant associated with the

olymer. The left-hand side along with the first three terms on

he right-hand side constitutes the upper-convected time deriva-

ive. The fourth term on the right-hand side corresponds to the

iesekus relaxation, accounts for the hydrodynamic interactions,

nd generates a transient overshoot of the shear stress. The fifth

erm on the right-hand side of Eq. (4) is a nonlinear relaxation

erm added to generate the upturn of the flow curve at high shear

ates. This term has a similar structure as that used in the Rolie–

oly model for accounting for convective constraint release, includ-

ng chain stretch [42] . The power-law prefactor [ K/ (k B T ) tr c − 3] q ,

eing a scalar function of the trace of the conformation tensor

nd thus a measure of polymer stretch, is used to describe the

onotonic increase of the steady-state flow curve. This factor is

ppropriate because it allows for an upturn without the need for a

olvent contribution [37] . We obtain [tr σp /( n p k B T )] 
q if we rewrite

his factor in terms of the extra stress associated with the poly-

er. Assuming a constant polymer number density, this stress-

ependent expression exactly reduces to the scalar CCR-function

f the one-fluid Rolie–Poly model [42] . In the last term on the

ight-hand side of Eq. (4) , the nonlocal diffusivity D nonloc controls

he smoothness of the profiles and guarantees a unique solution.

pposing the standard form of the Laplacian of the conformation

ensor, this term can be formulated within the generalized bracket

pproach. The corresponding dissipation bracket can be found in

37] . Note the similarities between the stress diffusive terms ap-

earing in Eqs. (2) and (4) . An explicit expression for the differen-

ial velocity can be obtained from Eq. (2) in the absence of inertia.

nserting this expression into Eq. (4) yields stress diffusive terms

ith the same structure as those we added. The aim of our previ-

us work was to develop a simple model for use in complex flows.

herefore, we decided to directly add a nonlocal term to the con-

ormation tensor. Alternatively, the total system energy could be

ugmented by a nonlocal expression. However, we need to relax

he assumption of incompressibility to properly implement such

n expression in our two-fluid framework [43] . This move would

ake the numerical solution of the resulting model equations

uch more challenging because the pressure would not anymore

e a projector operator of the velocity derivative in the divergence-

ree space and must be explicitly defined in terms of the state

ariables [44] . 

The abovementioned set of time evolution equations is closed

y an explicit expression for the extra stress as follows: 

= σ p + σs = n p ( Kc − k B T I ) + ηs [ ∇v s + (∇v s ) T ] . (6) 

he first term on the right-hand side of Eq. (6) accounts for the

iscoelastic stress of the polymer, whereas the second one ac-

ounts for the contribution of the viscous solvent. The total and

ifferential velocities in our two-fluid framework are defined as

ollows: 

 ≡ ρp 

ρ
v p + 

ρs 

ρ
v s , (7) 

v ≡ v p − v s . (8) 
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Fig. 1. Two-dimensional rectilinear channel flow driven by a pressure gradient. 
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Consequently, the phase velocities can be recovered from the total

average and differential velocities as follows: 

v p = v + 

ρs 

ρ
�v , (9)

v s = v − ρp 

ρ
�v . (10)

The analytical solution of n p = n 0 p and c = ( k B T /K ) I in the equi-

librium state of rest ( v = 0 and �v = 0 ) can be obtained. 

3. Flow problem 

We consider a one-dimensional Poiseuille flow through a

straight channel. Fig. 1 shows a schematic of the problem, where

H and L denote the height and length of the channel, respec-

tively. The inlet and outlet effects can be neglected because we

assume H � L . Furthermore, any dependence on the z -direction

is ignored. The Cartesian coordinate system is used as the refer-

ence frame with origin at the centerline. The walls are kept sta-

tionary, whereas a nonzero pressure gradient 	p is applied in the

x -direction. 

The flow problem can be solved only for the upper half of the

channel to avoid unnecessary computations because the flow is

symmetric with respect to the centerline. The symmetry of the

state variables can be guaranteed by using the following condi-

tions: 

∂v x 

∂y 
= 

∂	v x 

∂y 
= 

∂	v y 

∂y 
= 

∂c xx 

∂y 
= 

∂c yy 

∂y 
= 

∂c zz 

∂y 

= 

∂n p 

∂y 
= 0 at y = 0 , (11)

c xy = 0 at y = 0 . (12)

Symmetry requires the partial derivatives of the total velocity, dif-

ferential velocity, normal components of the stress tensor, and

polymer number density with respect to the channel position to be

zero at the centerline. Furthermore, the value of the total momen-

tum balance Eq. (1) and the maximum of the total velocity at the

centerline require the shear stress and thus the xy-component of

the conformation tensor there to be zero. The normal components

of the total and differential velocities are required to be zero at the

wall to guarantee no flux of the material through the walls: 

v y = 	v y = 0 at y = H/ 2 . (13)

The tangential components of the total and differential veloci-

ties are set to zero at the wall if the wall has a no-slip condition: 

v x = 	v x = 0 at y = H/ 2 . (14)

We also considered the case of slip along the walls. We used

the standard linear Navier condition [11] , which relates the wall

shear stress to the wall velocity as follows, to illustrate how to ac-

count for the slip in our two-fluid framework: 

v p x = − k p σ
p 

xy , (15)

v s x = − k s σ
s 
xy , (16)
 N
here the constants k p and k s control the slip magnitude. These

onstants must be positive for the coordinate system placed as

hown in Fig. 1 . The following expressions for the tangential com-

onents of the kinematic state variables can be obtained if we in-

ert Eqs. (15) and (16) into Eqs. (7) and (8) : 

v x = v p x − v s x = −k p σ
p 

xy + k s σ
s 
xy at y = H/ 2 , (17)

 x = 

ρp 

ρ
v p x + 

ρs 

ρ
v s x = −k p 

ρp 

ρ
σ p 

xy − k s 
ρs 

ρ
σ s 

xy at y = H/ 2 . (18)

s evident from Eqs. (17) –(18) , we can easily impose wall slip on

ach phase by imposing the corresponding conditions on the to-

al and differential velocities. Note that the higher-order deriva-

ives appearing in the last term of Eq. (4) require special treat-

ent at the boundaries [32] . The conformation diffusion should

anish at the solid boundaries within a distance less than the ra-

ius of gyration because of the local surface effects and because

he diffusivity is essentially proportional to the normal thickness

f the polymer molecules. The thickness becomes zero as these

ecome flat to fit next to the surface. A detailed explanation can

e found in Mavrantzas and Beris [45] , where the main reason,

amely, the surface acting as a barrier prohibiting many inter-

al conformations, is mentioned along with an exact analysis for

 yy . These researchers showed that this quantity is proportional

o the normal to the wall thickness of the polymer chains and

oes to zero at the wall. Their findings are in excellent quanti-

ative agreement with the Monte Carlo results of Fitzgibbon and

cCullough [46] and the molecular dynamics simulations of Bitsa-

is and Hadziioannou [47] . In this manner, the use of any boundary

onditions on the conformation tensor, which are arbitrary in our

pinion, can be avoided. The best alternative would be to conduct

 microscopic analysis down to the monomer length scale next to

he wall, which would substantially increase the complexity of the

odel and its numerical solution. We do not make any assumption

ere on the shape of D nonloc and set this parameter equal to zero at

he walls and to one elsewhere for simplicity. This approach works

ell as long as the gradients of the conformation tensor are not

oo high. 

We work with dimensionless quantities, hereafter. The location

cross the gap is scaled by the channel height, ˜ y = y /H. Time is

caled by the characteristic relaxation time, ˜ t = t/λ1 . The extra

tress is scaled as ˜ σ = σ/G 0 , while the conformation tensor associ-

ted with the polymer is scaled as ˜ c = (K/k B T ) c . The polymer and

olvent number densities are normalized using the values at the

quilibrium state as ˜ n p = n p /n 0 p and ˜ n s = n s /n 0 p , respectively. The

imensionless parameters with respect to these scalings are the

ressure gradient ˜ P x = 	pH/LG 0 ; elasticity number E = G 0 λ
2 
1 
/ρH 

2 ;

atio of the molecular weight of the solvent to that of the poly-

er, χ = M s /M p ; viscosity ratio β = ηs /η0 , where η0 = G 0 λ1 is the

ero shear viscosity; boundary layer constant ˜ ξ = ηextra /η0 ; and ra-

io of the characteristic relaxation times ε = λ1 /λ2 . By assuming

n initially uniform polymer concentration in the flow field, the

otal polymer concentration corresponds to the initial local poly-

er concentration, and is, thus, given in weight percent by μ =
˜  0 p / ( ̃  n 0 p + χ ˜ n 0 s ) . The dimensionless diffusion coefficients are defined

s ˜ D = Dλ1 /H 

2 and 

˜ D nonloc = D nonloc λ1 /H 

2 . The dimensionless form

f the model equations can be found in Appendix A . 

The flow problem was solved using the numerical procedure

escribed in Hooshyar and Germann [37] . We used a Chebyshev

seudospectral collocation method [4 8,4 9] with 200 collocation

oints for spatial discretization and a second-order Crank–Nicolson

cheme [50] for temporal discretization. The nonlinear system of

iscretized algebraic equations was solved at each time step us-

ng an inverse-based incomplete lower–upper (ILU) preconditioned

ewton–Krylov solver [51,52] . 
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Fig. 2. Temporal evolution of the magnitude of the wall shear stress calculated for the Oldroyd-B model with β = 10 −5 and validation with the analytical solution using (a) 

different values of the pressure gradient with E −1 = 10 −5 and (b) different reciprocal elasticities with ˜ P x = −10 . 

4

 

c  

t  

t  

c  

c  

t  

b

 

s  

t  

n  

t  

s  

a  

i  

w  

a  

l  

t  

F  

o

 

t  

m  

y  

o  

ε  

c  

t  

T  

b  

t  

d  

c  

I  

p  

s  

u

 

t  

a  

n  

s  

t  

s  

d  

10-4 10-3 10-2 10-1 100 101 102

0

5

10

|σ
xy
|

t

αG=0

αG=0.4

αG=0.8

Fig. 3. Temporal evolution of the magnitude of the shear stress at the wall cal- 
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ε = 0 . 0025 , q = 1 . 46 , β = 10 −5 , χ = 10 −1 , and ˜ D = 
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. Results 

In this section, we analyze the behavior of the new model

omprising time evolution Eqs. (1) –(4) , the explicit expression of

he extra stress tensor provided in Eq. (6) , and the definitions of

he phase velocities provided in Eqs. (9) –(10) in a pressure-driven

hannel flow. First, we start with no slip, where the tangential

omponents of the total and differential velocities are required

o be zero at the wall, as formulated in Eq. (14) . The remaining

oundary conditions are provided in Eqs. (11) –(13) . 

First, we solved the Oldroyd-B model for the flow problem de-

cribed in Section 3 and compared the numerical results with the

ransient analytical solution of Waters and King [7] to validate the

umerical code. The Oldroyd-B model is a limiting case of the

wo-fluid model obtained by setting α = ε = 

˜ D = 

˜ D nonloc = 0 . Fig. 2

hows the temporal evolution of the magnitude of the shear stress

t the wall, which is manifested by damped oscillations converg-

ng to its steady-state value. The results are in excellent agreement

ith the analytical solution, thereby confirming the validity and

ccuracy of the numerical code. Furthermore, we observed that a

arger pressure gradient leads to an increase in the average magni-

ude of the wall shear stress and amplitude of the oscillations (see

ig. 2 a). Increasing E −1 has no effect on the steady state. Inertia

nly decreases the frequency of the oscillations ( Fig. 2 b). 

Second, we present how the model parameters affect the solu-

ion of the two-fluid model presented in Section 2 . The approxi-

ate values of the model parameters were determined in Hoosh-

ar and Germann [37] by fitting to the steady-state shear rheol-

gy of a 10 wt./wt.% (1.6M) polybutadiene solution [53] : α = 0 . 73 ,

= 0 . 0025 , q = 1 . 46 , χ = 10 −1 , and β = 10 −5 . The corresponding

onstitutive curve for the homogeneous shear flow can be found in

his paper. The boundary layers in the no-slip case are less steep.

herefore, smoothening the profiles was not necessary, and the

oundary layer constant was simply set to zero. Fig. 3 shows the

emporal evolution of the magnitude of the wall shear stress for

ifferent values of the anisotropy factor α. The most intense os-

illation is obtained for α = 0 , as expected from Duarte et al. [8] .

ncreasing this parameter dampens the oscillations faster. As ex-

ected, the steady-state value of the wall shear stress is slightly

maller for a larger value of α (i.e., for greater shear thinning). We

se α = 0 . 73 for all subsequent calculations. 

Fig. 4 shows the influence of the local diffusivity constant on

he temporal evolution of the absolute value of the shear stress

nd the polymer number density at the wall. Fig. 4 a shows that

either the transient evolution of the wall shear stress nor its

teady state significantly varied with the value of ˜ D . Fig. 4 b shows

hat the polymer concentration at the wall needs more time for

maller values of ˜ D to reach the steady state, which is indepen-

ent of this parameter. Increasing the value of the local diffusivity
 n
eveals two undershoots in this curve. The first undershoot occurs

t ˜ t � 0 . 05 , which corresponds to the time at which the oscilla-

ions of the shear stress and the x -component of the total and dif-

erential velocities are totally damped. The second undershoot for
˜ 
 � 0 . 1 corresponds to the fact that the velocity profile increases

o a temporary maximum at ˜ t � 3 ( Fig. 5 b). 

Fig. 5 presents the effect of diffusion on the temporal evolution

f the total velocity. In Fig. 5 a, we observe that the local velocity

or ˜ D = 10 −3 monotonically increases at each point in the flow do-

ain to the corresponding value of the steady state. The velocity

t the centerline for ˜ D = 10 −1 increases to a temporary maximum,

nd then decreases to the steady-state profile ( Fig. 5 b). However,

e do not expect this phenomenon to be observed experimentally

ecause the value of ˜ D is extremely large in this case. 

Fig. 6 shows how the nonlocal diffusivity influences the so-

ution. The parameter ˜ D nonloc does not substantially affect either 

he transient or the steady-state solution of the wall shear stress

 Fig. 6 a). The profiles of the polymer number density obtained for

ifferent values of ˜ D nonloc reach the steady state at approximately 

he same time ( Fig. 6 b). However, Fig. 6 c shows that a larger value

f ˜ D nonloc leads to a more uniform concentration profile in the 

teady state. The kinks separating the bands in this curve become

loser to the centerline as the nonlocal diffusivity decreases be-

ause of the lower stress diffusion. Interestingly, the value of ˜ D nonloc 

oes not greatly affect the steady-state velocity across the gap, as

hown in Fig. 6 d. We plot the xx − and xy -components of the con-

ormation tensor in the vicinity of the upper wall to confirm that

he selected shape of the nonlocal diffusivity results in a smooth

ear-wall dynamics ( Fig. 7 ). 
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Figs. 8 a–d show the effect of increasing the absolute value of

he pressure gradient on the steady-state profiles of the velocity,

hear stress, first normal stress difference, and polymer number

ensity across the gap, respectively. The velocity profile decreases

rom the centerline to the walls with a low shear band near the

enter and a high one near the walls. The sharp kink separating

hese bands is considerably smoother than that predicted by the

CM model [26] for wormlike micelles. No sharp transition is ob-

ained here even if ˜ D nonloc = 0 . The velocity profile for P x = −1 is

inear. The profile becomes plug-like as the magnitude of the pres-

ure gradient further increases. Moreover, the maximum value of

he velocity decreases. As required by the total momentum bal-

nce, the magnitude of the shear stress linearly increases from zero

t the centerline to its maximum at the wall, where this value

s larger for the larger absolute values of the pressure gradient.

he first normal stress difference monotonically increases from the

enter to a maximum value at the walls, which is larger for the

arger absolute values of the pressure gradient. This profile is dif-

erent from that predicted by the VCM model, which exhibits a
ocal maximum at the location of the kink because of the flow-

nduced breakage of the wormlike micelles (c.f., Fig. 12 of Cromer

t al. [26] ). The concentration bands shown in Fig. 8 d are predicted

y the two-fluid model for the same range of pressure gradients,

here the velocity profile assumes a plug-like shape. Increasing

he magnitude of the pressure gradient reduces the inhomogene-

ty of the concentration profile and moves the transition region to-

ard the centerline. The polymer concentration is higher at the

enter than at the wall, which is in agreement with the predic-

ions by Ianniruberto et al. [30] for semidilute entangled polymer

olutions below the onset of shear banding. The decrease of the

olymer concentration already occurs where the velocity profile is

lug-like. 

The volumetric flow rate is calculated using different values of

he pressure gradient with 

˜ D nonloc = 10 −3 , which results in a profile

ith a spurt at a critical value of the pressure gradient P x,cr � −1 . 5 .

he agreement of the ramp-up and ramp-down curves shown in

ig. 9 a confirms the uniqueness of the solution. The nonunique-

ess of the results indicated by the hysteresis in constitutive mod-
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Fig. 9. Effect of the pressure gradient on the (a) dimensionless volumetric flow rate with ˜ D nonloc = 10 −3 and (b) the value of the dimensionless volumetric flow rate in 

ramp-up tests with different values of ˜ D nonloc . The other nontrivial values of the model parameters are the same as those given in the caption of Fig. 5 a. 
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els showing a nonmonotonic flow curve under homogeneous con-

ditions is not observed here. This discrepancy is related to the dif-

ferent underlying mechanisms of the shear band formation and

must be experimentally verified in the future. Next, we examine

the influence of the nonlocal diffusivity constant on the ramp-up

test shown in Fig. 9 b. The critical pressure gradient is not affected

by this parameter. Furthermore, the value of the nonlocal diffusiv-

ity slightly changes the value of the flow rate in the region of the

spurt ( −3 � P x � −1 . 5 ). The smallest nonlocal diffusivity leads to

the largest flow rate in the shear banding regime, whereas the op-

posite behavior is observed in the linear viscoelastic regime. 

Fig. 10 shows the effect of ˜ D nonloc on the profile indicating the

relation between the pressure gradient and the location of the

kink separating the shear bands. We find that increasing the mag-

nitude of ˜ P x moves the kink toward the centerline. The inset of

Fig. 10 shows that the value of ˜ D nonloc only has a minor influ-

ence on this profile for ˜ P x ≥ −40 . As already discussed, in this

region and at fixed pressure gradient, the kink is closer to the

wall for a larger nonlocal diffusivity. However, a significant im-

pact is observed for large absolute values of the pressure gradient

( ̃  P x � −90 ). This finding is related to the fact that the shear bands

fade out at smaller absolute values of ˜ P x for larger ˜ D nonloc . 

Finally, we consider the effect of slip using Eqs. (17) –(18) . A

nontrivial positive value of the boundary layer constant ˜ ξ had to

be used to be able to numerically resolve the steep gradients of˜ 	v x . Fig. 11 shows the x -component of the total velocity (left col-

umn) and the differential velocity (right column) across the gap for

two different pressure gradients, namely, ˜ P x = 10 (top figures) and
˜ P x = 100 (bottom figures). The steady-state differential velocity in

the y -direction is zero. Therefore, we do not show the profile of
his component. Note that all components of the vector ˜ �v in the

o-slip case are zero at the steady state. We note that the param-

ter k s that controls the amount of wall slip of the solvent has no

ignificant effect if the results of k p = k s = 50 are compared with

hose of k p = 50 and k s = 0 . However, increasing the value of k p ,

he polymer slip results in a vertical downward shift of the whole

rofile of ̃  v x , thereby leading to a larger wall slip velocity. Interest-

ngly, the parameter ˜ P x has no effect on the shape of the profiles;

t only increases the magnitudes of ̃  v x and 

˜ 	v x . 

We examine the influence of this quantity below to demon-

trate that the selected value of ˜ ξ = 10 −3 had no effect on the re-

ults discussed in the preceding paragraph. Figs. 12 a–b show the

rofiles of the polymer number density and differential velocity,

espectively, in the x-direction across the channel for different ξ̃
alues. We observe that the profiles of ˜ n p are not affected. Up to

oderate values (i.e., for ˜ ξ � 10 −2 ), the boundary layer constant

as no influence on the profiles of ˜ 	v x in the region inside the

hannel. However, decreasing the ˜ ξ value leads to steeper gradi-

nts near the solid walls. 

. Conclusions 

This study examined the behavior of a new two-fluid model for

emidilute entangled polymer solutions in a pressure-driven chan-

el flow. The thermodynamic model was based on the hypothesis

hat diffusional processes are responsible for the shear band for-

ation in polymer solutions. An additional stress-diffusive term

as used to control the smoothness and uniqueness of the pro-

les. The advantage of the new model is that the differential ve-

ocity was treated as a state variable, which simplified the speci-

cation of the slip boundary conditions. The computational results

howed a plug-like profile of the velocity and concentration bands

or the same range of pressure gradients. Increasing the value of

he pressure gradient shifted the kink separating the shear bands

o the center. The steady-state profile of the first normal stress dif-

erence monotonically increased from the center of the channel

o a maximum value at the walls. The value of the nonlocal dif-

usivity constant did not significantly influence the total velocity

nd the wall shear stress. The polymer concentration showed the

ame temporal behavior for different values of the nonlocal diffu-

ivity constant. However, the steady-state solution was more uni-

orm when we used larger ˜ D nonloc . The results of the volumetric

ow rate calculated using different values of the pressure gradient

n the ramp-up and -down tests agreed, thereby confirming the

niqueness of the solution. This profile showed a spurt at a criti-

al pressure gradient, as experimentally observed in the pressure-

riven shear flows of polymeric materials. We also studied the ef-

ect of wall slip using the linear Navier slip model to illustrate

ow to account for slip in our two-fluid framework. We noticed
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hat the slip velocity of the solvent had no significant effect

n the solution, whereas changing the polymer slip vertically

hifted the velocity profile. The study results as well as the sim-

licity of the model encourage us to analyze the model behavior in

ore complex flows, such as contraction. Furthermore, a system-
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he hypothesis and predictions of the new model. 
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ppendix A 

The dimensionless forms of Eqs. (1) –(10) using the scalings in-

roduced in Section 2 are as follows: 

 

−1 ∂ ̃  v ˜ 

= −E −1 ˜ v · ˜ ∇ ̃

 v − ˜ ∇ ̃

 p + 

˜ ∇ · ˜ σ , (19) 

∂ t 
E −1 χ ˜ n s ̃  n p 

( ̃  n p + χ ˜ n s ) 
2 

(
∂ 

∂ ̃  t 
+ ̃

 v · ˜ ∇ 

)(˜ �v 
)

= 

χ ˜ n s 

˜ n p + χ ˜ n s 

{
−˜ ∇ ̃

 n p + 

˜ ∇ · ˜ σ
}

+ 

˜ n p 

˜ n p + χ ˜ n s 

{
˜ ∇ ̃

 n s + β ˜ ∇ 

2 ˜ v s 
}

− ˜ D ̃

 �v + 

˜ ξ∇ 

2 
(˜ �v 

)
, (20) 

∂ ̃  n p 

∂ ̃  t 
= −˜ ∇ · ( ̃  v p ˜ n p ) , (21) 

∂ ̃  c 

∂ ̃  t 
= − ˜ v p · ˜ ∇ ̃

 c + ̃

 c · ˜ ∇ ̃

 v p + 

(
˜ ∇ ̃

 v p 
)T ·˜ c 

− [ ( 1 − α) I + α˜ c ] · ( ̃  c − I ) − ε( tr ̃  c − 3 ) 
q 
( ̃  c − I ) 

+ 

˜ D nonl oc 

(̃
 c · ˜ ∇ 

(
˜ ∇ · ˜ σ p 

)
+ 

[
˜ ∇ 

(
˜ ∇ · ˜ σ p 

)]T ·˜ c 

)
, (22) 

˜ = ̃

 n p ( ̃  c − I ) + β[ ˜ ∇ ̃

 v s + ( ˜ ∇ ̃

 v s ) T ] , (23) 

 

 

p = ̃

 v + 

χ˜ n s ˜ n p + χ˜ n s ̃

 �v , (24) 
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 v s = ̃

 v − ˜ n p ˜ n p + χ˜ n s ̃

 �v . (25)
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