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Tail dependence of recursive max-linear models
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Abstract

Recursive max-linear structural equation models with regularly varying noise variables are considered. Their
causal structure is represented by a directed acyclic graph (DAG). The problem of identifying a recursive
max-linear model and its associated DAG from its matrix of pairwise tail dependence coefficients is discussed.
For example, it is shown that if a causal ordering of the associated DAG is additionally known, then the
minimum DAG representing the recursive structural equations can be recovered from the tail dependence
matrix. For the relevant subclass of recursive max-linear models, identifiability of the associated minimum
DAG from the tail dependence matrix and the initial nodes is shown. Algorithms find the associated
minimum DAG for the different situations. Furthermore, given a tail dependence matrix, an algorithm
outputs all compatible recursive max-linear models and their associated minimum DAGs.
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regular variation, structural equation model, extreme value theory, tail dependence coefficient
2010 MSC: 60G70, 05C75, 62-09, 65S05

1. Introduction

Causal inference is fundamental in virtually all areas of science. Examples for concepts established over
the last years to understand causal inference include structural equation modeling (see e.g. Bollen, 1989;
Pearl, 2009) and graphical modeling (see e.g. Lauritzen, 1996; Spirtes et al., 2000; Koller and Friedman,
2009).

In extreme risk analysis it is especially important to understand causal dependencies. We consider recur-
sive max-linear models (RMLMs), which are max-linear structural equation models whose causal structure
is represented by a directed acyclic graph (DAG). Such models are directed graphical models (Pearl, 2009,
Theorem 1.4.1); i.e., the DAG encodes conditional independence relations in the distribution via the (di-
rected global) Markov property. RMLMs were introduced and studied in Gissibl and Klüppelberg (2017).
They may find their application in situations when extreme risks play an essential role and may propagate
through a network, for example, when modeling water levels or pollution concentrations in a river or when
modeling risks in a large industrial structure. In Einmahl et al. (2017) a RMLM was fitted to data from the
EURO STOXX 50 Index, where the DAG structure was assumed to be known.

In this paper we assume regularly varying noise variables. This leads to models treated in classical multi-
variate extreme value theory. The books by Beirlant et al. (2004), de Haan and Ferreira (2006), and Resnick
(1987, 2007) provide a detailed introduction into this field. A RMLM with regularly varying noise variables is
in the maximum domain of attraction of an extreme value (max-stable) distribution. The spectral measure of
the limit distribution, which describes the dependence structure given by the DAG, is discrete. Every max-
stable random vector with discrete spectral measure is max-linear (ML), and every multivariate max-stable
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distribution can be approximated arbitrarily well via a ML model (e.g. Yuen and Stoev, 2014, Section 2.2).
This demonstrates the important role of ML models in extreme value theory. They have been investi-
gated, generalized, and applied to real world problems by many researchers; see e.g. Schlather and Tawn
(2002), Wang and Stoev (2011), Falk et al. (2015), Strokorb and Schlather (2015), Einmahl et al. (2012),
Cui and Zhang (2017), and Kiriliouk (2017).

One main research problem that is addressed for restricted recursive structural equation models, where
the functions are required to belong to a specified function class, is the identifiability of the coefficients
and the DAG from the observational distribution. Recently, particular attention in this context has been
given to recursive structural equation models with additive Gaussian noise; see e.g. Peters et al. (2014),
Ernest et al. (2016), and references therein. For RMLMs this problem is investigated in Gissibl et al. (2017).
In the present paper we discuss the identifiability of RMLMs from their (upper) tail dependence coefficients
(TDCs).

The TDC, which goes back to Sibuya (1960), measures the extremal dependence between two ran-
dom variables and is a simple and popular dependence measure in extreme value theory. Methods to
construct multivariate max-stable distributions with given TDCs have been proposed, for example, by
Schlather and Tawn (2002), Falk (2005), Falk et al. (2015), and Strokorb and Schlather (2015). Somehow
related we identify all RMLMs with the same given TDCs.

1.1. Problem description and important concepts

First we briefly review RMLMs and introduce the TDC formally. We then describe the idea of this work
in more detail and state the main results.

Max-linear models on DAGs

Consider a RMLM X = (X1, . . . , Xd) on a DAG D = (V, E) with nodes V = {1, . . . , d} and edges
E = {(k, i) ∶ i ∈ V and k ∈ pa(i)}:

Xi = ⋁
k∈pa(i)

ckiXk ∨ ciiZi, i = 1, . . . , d, (1)

where pa(i) denotes the parents of node i in D and cki > 0 for k ∈ pa(i)∪ {i}; the noise variables Z1, . . . , Zd,
represented by a generic random variable Z, are assumed to be independent and identically distributed
with support R+ ∶= (0,∞) and regularly varying with index α ∈ R+, abbreviated by Z ∈ RV(α). Denoting
the distribution function of Z by FZ , the latter means that

lim
t→∞

1 − FZ(xt)
1 −FZ(t)

= x−α

for every x ∈ R+. Examples for FZ include Cauchy, Pareto, and log-gamma distributions. For details and
background on regular variation, see e.g. Resnick (1987, 2007).

The properties of the noise variables imply the existence of a normalizing sequence an ∈ R+ such that for
independent copies X

(1), . . . , X
(n) of X,

a−1
n

n

⋁
ν=1

X
(ν) d
→M , n →∞, (2)

where M is a non-degenerate random vector with distribution function denoted by G and all operations are
taken componentwise. Thus X is in the maximum domain of attraction of G; we write X ∈MDA(G). The
limit vector M (its distribution function G) is necessarily max-stable: for all n ∈ N and independent copies

M (1), . . . , M (n) of M , the distributional equality anM + bn
d= ⋁n

ν=1 M (ν) holds for appropriately chosen
normalizing sequences an ∈ Rd

+ and bn ∈ Rd. In the present situation we have an = (n1/α, . . . , n1/α) and
bn = (0, . . . , 0). Furthermore, M is again a RMLM on D, with the same weights in (1) as X and standard
α-Fréchet distributed noise variables, i.e.,

FZ(x) = Φα(x) = exp{−x−α}, x ∈ R+.
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A proof of (2) as well as an explicit formula for G and its univariate and bivariate marginal distributions
can be found in Appendix A.2, Proposition A.2.

In what follows we summarize the most important properties of X presented in Gissibl and Klüppelberg
(2017) which are needed throughout the paper. Every component of X can be written as a max-linear
function of its ancestral noise variables:

Xi = ⋁
j∈An(i)

bjiZj, i = 1, . . . , d, (3)

where An(i) = an(i)∪{i} and an(i) are the ancestors of i in D (Gissibl and Klüppelberg, 2017, Theorem 2.2).
For i ∈ V , bii = cii. For j ∈ an(i), bji can be determined by a path analysis of D as explained in the following.
Throughout we write k → i whenever D has an edge from k to i. With every path p = [j = k0 → k1 → . . . →

kn = i] we associate a weight, which we define to be the product of the edge weights along p multiplied by
cjj . The coefficient bji is then the maximum weight of all paths from j to i. In summary, we have for i ∈ V

and j ∈ an(i),
bji = ⋁

p∈Pji

dji(p) with dji(p) ∶= ck0k0

n−1

∏
ν=0

ckν kν+1
, (4)

where Pji is the set of all paths from j to i. For all i ∈ V and j ∈ V ∖ An(i) we set bji = 0. We call
the coefficients bji ML coefficients (MLCs) and summarize them in the ML coefficient matrix (MLCM)
B = (bij)d×d. For the reachability matrix R of D, whose ji-th entry is one if j ∈ An(i) and zero else, we find

R = sgn(B), (5)

where sgn denotes the signum function and is taken componentwise. As a consequence, the ancestors and
descendants of every node in D can be obtained from B.

Not all paths are needed for computing bji in (4). We call a path p from j to i max-weighted path from
j to i if it realizes the maximum in (4), i.e., if bji = dji(p). The concept of max-weighted paths is essential.
This has been worked out in Gissibl and Klüppelberg (2017). For example, max-weighted paths may lead to
more conditional independence relations in the distribution of X than those encoded by D via the Markov
property (Gissibl and Klüppelberg, 2017, Remark 3.9). RMLMs where all paths are max-weighted play a
central role in this paper; we call them recursive max-weighted models (RMWMs).

Further DAGs and weights may exist such that X satisfies (1); for a detailed characterization of these
DAGs and weights, see Theorem 5.4 of Gissibl and Klüppelberg (2017). The smallest DAG of this kind is
the one that has an edge k → i if and only if (iff) this is the only max-weighted path from k to i in D
(Gissibl and Klüppelberg, 2017, Remark 5.2(ii) and Theorem 5.4(a)). We call this DAG DB, the minimum
ML DAG of X. It can be determined from B (Gissibl and Klüppelberg, 2017, Theorem 5.3). The other
DAGs representing X in the sense of (1) are those that have at least the edges of DB and the same
reachability matrix. For edges contained in DB, the weights from (1) are uniquely defined by B. From these
weights the weights for the other edges can be derived.

Remark 1.1. The random vector X and its distribution are characterized by the distribution FZ of the
noise variables and the max-linear dependence structure induced by D. So computing the max-stable limit
distribution G concerns only the marginal limits, whereas the max-linear dependence structure remains
always the same (cf. also the proof of Proposition A.2). This restrictive dependence structure of X can be
generalized naturally within the framework of multivariate regular variation. See Resnick (1987, 2007) for
background on multivariate regular variation.

In the literature various equivalent formulations of regular variation for random vectors can be found.
The extent of a possible generalization can be probably best understood when considering an equivalent
representation of the dependence in a regularly varying vector. A random vector X ∈ Rd

+ is regularly varying
with index α ∈ R+ iff there exists a random vector Θ with values in S

d−1 = {x ∈ Rd
+ ∶ ∥x∥ = 1}, where ∥ ⋅ ∥ is

any norm in R
d
+, such that for every x ∈ R+,

P(∥X∥ > tx, X/∥X∥ ∈ ⋅)
P(∥X∥ > t)

v
→ x−α

P(Θ ∈ ⋅), t →∞. (6)

3



The notation
v
→ stands for vague convergence on the Borel σ-algebra of Sd−1. We immediately find from (6)

that the dependence structure of X is for moderate values of ∥X∥ arbitrary; only when ∥X∥ becomes large,
the dependence structure becomes that of Θ. When assuming that the dependence structure in the limit is
max-linear given by D and the marginal limits are α-Fréchet (with an appropriate scale parameter), then
X ∈ MDA(G) with G still as in Proposition A.2; hence, X would have the same TDCs as in the present
less general framework. So similarly to the flexibility of the margins, expressed by Z ∈ RV(α), there would
also be flexibility in the dependence structure.

In this paper the restriction to the limiting max-linear dependence provides a sufficient model as the
focus lies on the causal structure in terms of the DAGs. This allows for a more concise notation and makes
the focus of the paper more transparent. ◻

The tail dependence matrix of X

For i ∈ V we denote the distribution function of component Xi of the RMLM X by Fi and its generalized
inverse by F←i (u) = inf{x ∈ R+ ∶ F (x) ≥ u} for 0 < u < 1. The TDC between Xi and Xj is then given by the
limit

χ(i, j) = lim
u↑1

P(Xi > F←i (u) ∣Xj > F←j (u)).
We summarize all TDCs in the tail dependence matrix (TDM) χ = (χ(i, j))d×d.

Defining the standardized MLCM of X by

B = (bij)d×d
∶= ( bα

ij

∑k∈An(j) bα
kj

)
d×d

, (7)

the TDC between Xi and Xj can be computed as

χ(i, j) = χ(j, i) = ∑
k∈An(i)∩An(j)

bki ∧ bkj . (8)

By (5) and (7) it is the sum of the pairwise minima of the i-th and j-th column of B. A proof of (8) is given
in Appendix A.2. There we implicitly show that X and the limit vector M from (2) have the same TDM
χ.

The TDC χ(i, j) is zero iff i and j do not have common ancestors. Therefore, the initial nodes of D
(i.e., the nodes without parents ) constitute a set V0 of maximum cardinality such that χ(i, j) is zero for all
distinct i, j ∈ V0. This property turns out to be helpful when identifying from χ. We also show that χ(i, j)
is zero iff Xi and Xj are independent, which is reminiscent of the multivariate Gaussian distribution with
its equivalence between independence and zero correlation.

Obviously, when investigating χ, understanding the structure of B is essential. Not surprisingly, B

inherits structural properties from B. For example, B is again a MLCM of a RMLM on the same DAG D,
and its columns add up to one. Properties of B, which we use throughout this paper, are summarized in
Appendix A.1, Lemma A.1.

Identifiability from χ

The main goal of this paper is to investigate how far the dependence structure of X and the DAG D can
be recovered from the TDM χ. We call two RMLMs that have the same TDM χ-equivalent. For example,
X and the limit vector M from (2) are χ-equivalent. The set

{(̃bij)d×d ∈ Rd×d
+ ∶ b̃ij = βjb

1/α̃

ij for all i, j ∈ V and βj ∈ R+} (9)

contains the MLCMs of all RMLMs that have the same standardized MLCM B as X and regularly varying
noise variables with index α̃ ∈ R+; this can be verified by using Theorem 5.7 of Gissibl and Klüppelberg
(2017). Obviously, all the corresponding RMLMs are also χ-equivalent to X. Therefore, given χ only, we
can never identify the true representations (1) and (3) of X and the DAG D.
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The RMLM X has the same minimum ML DAG DB as every RMLM with MLCM B (Lemma A.1(e)).
As a consequence, DB can be determined from B (cf. Gissibl and Klüppelberg, 2017, Theorem 5.3). This
raises the question of whether B and, hence, the minimum ML DAG of X are identifiable from χ. The
answer is generally no, quite simply due to the symmetry of χ.

Example 1.2. [B is not identifiable from χ]
Consider two RMLMs on the DAGs D1 and D2 with standardized MLCMs

1 2D1 B1 = (1 b

0 1 − b
) and B2 = (1 − b 0

b 1
) 1 2 D2

for some b ∈ (0, 1). For both we find the same TDCs: χ(1, 1) = χ(2, 2) = 1 and χ(1, 2) = χ(2, 1) = b. ◻

We show, however, that B can be computed recursively from χ and some additional information on the
DAG D. This may be its reachability matrix R but also only a causal ordering σ; i.e., σ is a permutation on
V = {1, . . . , d} such that σ(j) < σ(i) for all i ∈ V and j ∈ an(i). If X is max-weighted, then B is identifiable
from χ and the initial nodes V0 of D.

The question also arises which RMLMs are all χ-equivalent to X and what their minimum ML DAGs
are. Since by (9) every MLCM of a RMLM with TDM χ can be obtained from its particular standardized
version, it suffices to clarify which the standardized MLCMs of all RMLMs with TDM χ are. To this end we
use the identifiability results mentioned above to develop an algorithm that computes these matrices from
χ. The proposed procedure can be considerably simplified for RMWMs.

Another interesting point is how DAGs of χ-equivalent RMLMs relate to each other. Here we also
investigate the RMWMs as a relevant subclass of RMLMs separately. For example, an initial node in a
DAG of a RMWM is again an initial node in a DAG of a χ-equivalent RMWM or it nust be a terminal node
(i.e., a node without descendants).

Our paper is organized as follows. We provide some basic results in Section 2. For a RMLM X we
investigate its TDM χ and link it to its standardized MLCM B and its associated DAG D. Here we discuss
the situations when two components of X have zero tail dependence. We also introduce the important
concept of χ-cliques, which allows us to identify potential initial node sets in D from χ. Section 3 is devoted
to RMWMs. We point out the specific properties of χ which lead to the identifiability of B from χ and
the initial nodes. We also present necessary and sufficient conditions on a matrix to be the TDM of a
RMWM. In Section 4 we then study different identifiability problems based on χ. We propose algorithms
to compute B from χ and some further information on D such as a causal ordering. We also explain how
the standardized MLCMs of all RMLMs that have TDM χ can be determined. In Section 5 we consider
χ-equivalent RMLMs and analyze relationships between them and their DAGs. We use these results to
investigate whether RMWMs on different DAGs can be χ-equivalent at all and if so under which conditions.
Section 6 concludes.

Note that all recursion formulas presented in the paper are well-defined, since we work with DAGs.
Throughout we illustrate our findings with examples for the (standardized) MLCM of a RMLM on a given
DAG. It can be verified by Theorem 4.2 or Corollary 4.3(a) of Gissibl and Klüppelberg (2017) that the
presented matrices are indeed MLCMs of RMLMs on the particular DAGs. Moreover, we use the following
notation throughout the paper. We denote the ancestors, parents, and descendants of node i in D by an(i),
pa(i), and de(i), respectively. We define An(i) ∶= an(i) ∪ {i}, Pa(i) ∶= pa(i) ∪ {i}, and De(i) ∶= de(i) ∪ {i}.
For (possibly random) ai ∈ R we set ⋁i∈∅ ai = 0 and ∑i∈∅ ai = 0. We generally consider statements for i ∈ ∅
as invalid.

2. The recursive max-linear model and its tail dependence matrix

In this section for a RMLM X on a DAG D, we highlight some relations between its TDM χ, its
standardized MLCM B, and the DAG D. They prove particularly useful when we identify the RMLMs that
are χ-equivalent to X in Section 4.4 or investigate DAGs of χ-equivalent RMLMs in Section 5.
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2.1. The tail dependence coefficients and max-weighted paths

We start with lower and upper bounds for the TDC between two components of X such that in D the
two corresponding nodes are connected by a path. We also show that max-weighted paths lead to simple
expressions for the TDCs and to nice relationships between them. It is precisely these properties that
motivate us to consider RMWMs in detail later on.

Lemma 2.1. Let i ∈ V and j ∈ an(i).
(a) We have 0 < bji

bjj

≤ χ(j, i) with equality iff there is a max-weighted path from every k ∈ An(j) to i

passing through j. In that case, χ(i, j) = ∑k∈An(j) bki.

(b) We have χ(i, j) ≤ ∑k∈An(j) bki < 1.
(c) Let k ∈ de(j) ∩ an(i). If there is a max-weighted path from every ℓ ∈ An(j) to k and from every

ℓ ∈ An(j) to i passing through j as well as from every ℓ ∈ An(k) to i passing through k, then

χ(j, i) = χ(j, k)χ(k, i) < χ(j, k) ∧ χ(k, i). (10)

Proof. As An(j) ⊆ An(i), we have by (8), χ(j, i) = ∑k∈An(j) bki ∧ bkj .

(a) For k ∈ An(j), by Lemma A.1(d), (f),
bkjbji

bjj

≤ bki∧bkj with equality iff there is a max-weighted path from

k to i passing through j. With this, using also Lemma A.1(b), (a), we obtain χ(j, i) ≥ bji

bjj
∑k∈An(j) bkj =

bji

bjj

> 0 with equality iff there is a max-weighted path from every k ∈ An(j) to i passing through j. In that

case Lemma A.1(d) yields χ(j, i) = ∑k∈An(j)
bkjbji

bjj

= ∑k∈An(j) bki.

(b) As An(j) ⊊ An(i), by Lemma A.1(a), (b) we find χ(j, i) ≤ ∑k∈An(j) bki < ∑k∈An(i) bki = 1.
(c) The equality in (10) follows from (a) and Lemma A.1(d), the inequality then from the strict inequality
in (b).

In the proof of Lemma 2.1 we have used that for i ∈ V , k ∈ an(i), and j ∈ an(k), D has a max-weighted

path from j to i passing through k iff bji =
bjkbki

bkk

(Lemma A.1(d)). As to the equality in (10), one could

expect that the MLCs can be replaced by the corresponding TDCs. The following example disproves this.
In particular, it proves that the converse of Lemma 2.1(c) is not true in general and also that we may have
the equality in (10) although k /∈ de(j) ∩ an(i).
Example 2.2. [χ(j, i) = χ(j, k)χ(k, i) is neither necessary nor sufficient for bji =

bjkbki

bkk

]

(1) Consider a RMLM on D1 with standardized MLCM

B =

⎛⎜⎜⎜⎝

1 0 0.4 0.3
0 1 0.4 0.25
0 0 0.2 0.125
0 0 0 0.325

⎞⎟⎟⎟⎠
.

1

4

3

2 D1

As b24 = b23b34

b33

, the path [2 → 3 → 4] is max-weighted. Computing χ we find χ(2, 4) < χ(2, 3)χ(3, 4).
That is, χ(2, 4) ≠ χ(2, 3)χ(3, 4) although there is a max-weighted path from 2 to 4 passing through 3.

(2) Now consider a RMLM on D1 with standardized MLCM

B =

⎛⎜⎜⎜⎝

1 0 0.1 0.085
0 1 0.8 0.5
0 0 0.1 0.04
0 0 0 0.375

⎞⎟⎟⎟⎠
.
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The path [2→ 3→ 4] is not max-weighted, since b23b34

b33

≠ b24. However, we have χ(2, 3)χ(3, 4) = χ(2, 4).
In summary, χ(2, 3)χ(3, 4) = χ(2, 4) although there is no max-weighted path from 2 to 4 passing
through 3.

(3) Finally, consider a RMLM on D2 with standardized MLCM

B =

⎛⎜⎜⎜⎝

1 0 1/3 1/6
0 1 1/3 1/3
0 0 1/3 0
0 0 0 1/2

⎞⎟⎟⎟⎠
.

1

4

3

2 D2

Here we find χ(1, 3)χ(3, 4) = χ(1, 4); but 3 is not an ancestor of 4. According to this the equality in
(10) may hold although k /∈ de(j) ∩ an(i). ◻

2.2. The tail dependence coefficients and the initial nodes

In this section we mainly investigate how χ and D relate to each other.
Two components of X are independent iff the TDC between them is zero. We link these two properties

with the relationship between the two corresponding nodes in D.

Theorem 2.3. Let X be a RMLM on a DAG D = (V, E) with TDM χ and i, j ∈ V . Then the following
statements are equivalent:

(a) Xi and Xj are independent.
(b) An(i) ∩An(j) = ∅.
(c) χ(i, j) = 0.

Proof. The equivalence between (a) and (b) follows from representation (3) for Xi and Xj and the dis-
tributional properties of the noise variables. The one between (b) and (c) is immediate by (8) and
Lemma A.1(a).

Remark 2.4. (i) Let R be the reachability matrix of D. The ij-th (ji-th) entry of RT R equals the
cardinality of An(i) ∩ An(j). Thus by Theorem 2.3, sgn(χ) = sgn(RT R). That is, we learn from
χ(i, j) > 0 only that An(i)∩An(j) ≠ ∅ but not whether i and j are connected by a path as is the case
for the (standardized) MLCs (Lemma A.1(a) and (5), respectively).

(ii) In the more general framework of Remark 1.1, parts (a) and (b) of Theorem 2.3 would have to be
replaced by
(a’) Xi and Xj are asymptotically independent; i.e., the corresponding components of the limit vector

in (2) are independent.
(b’) The dependence structure in the limit is given by a DAG, in which An(i) ∩An(j) = ∅.
The equivalence between (a’) and (c) is a well-known result in extreme value theory; see e.g. Theo-
rem 6.2.3 and the subsequent remark in de Haan and Ferreira (2006). ◻

In what follows we investigate the relationship between χ and the initial nodes V0 of D. This is motivated
by the fact that a RMLM is recursively defined by the structure of D. For example, to obtain representation
(3) of X from its representation (1) recursively, we would start with representation (3) of the components
Xi with i ∈ V0. Then by proceeding iteratively we would substitute the parental variables in (1) by their
representation (3). Such an iterative procedure starting with the initial nodes could also identify all RMLMs
which have (the given) TDM χ.

The TDC between two components of X simplifies considerably when in D one of the corresponding
nodes is an initial node. If both nodes are initial nodes, then the TDC between them is zero. We provide
these and further related results.

Lemma 2.5. (a) For distinct i, j ∈ V0, χ(i, j) = 0.
(b) Let W ⊆ V such that χ(i, j) = 0 for all distinct i, j ∈W . Then ∣W ∣ ≤ ∣V0∣.
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(c) For i ∈ V and j ∈ V0, An(i) ∩ V0 = {k ∈ V0 ∶ χ(k, i) > 0} and De(j) = {k ∈ V ∶ χ(j, k) > 0}.
(d) For i ∈ V and j ∈ V0, χ(j, i) = bji.

Proof. (a) and (c) follow from the fact that initial nodes have no ancestors and Theorem 2.3.
(b) Assume that ∣W ∣ > ∣V0∣. Since for every i ∈ V there is some j ∈ An(i) ∩ V0, we have j ∈ An(i1) ∩An(i2)
for some j ∈ V0 and distinct i1, i2 ∈W . As An(i1)∩An(i2) ≠ ∅, again by Theorem 2.3, χ(i1, i2) ≠ 0. This is,
however, a contradiction to the fact that χ(i1, i2) = 0 as i1, i2 ∈W . Hence, ∣W ∣ ≤ ∣V0∣.
(d) As An(j) = {j}, we obtain from (8) by Lemma A.1(a), (f), χ(j, i) = ∑d

k=1 bki ∧ bkj = bji ∧ bjj = bji.

From Lemma 2.5(a), (b) we learn that V0 is one of the node sets of maximum cardinality such that for
every two distinct nodes, the TDC between their corresponding components of X is zero. We introduce a
concept which allows us to determine these sets from χ by a graph. For an illustration of these notions, we
refer to Example 4.12 below.

Definition 2.6. Let χ be the TDM of a RMLM on a DAG D.
(a) We call the undirected graph that has nodes V and an edge between k and i iff χ(k, i) > 0, χ-graph.

Let Dχ be the complement of the χ-graph (for the definition of the complement of an (undirected) graph,
see e.g. Diestel, 2010, Chapter 1.1) and W ⊆ V .

(b) We call W a χ-clique if it is a clique in Dχ (for the definition of a clique in a graph, see e.g.
Koller and Friedman, 2009, Definition 2.13).

(c) We call W a maximum χ-clique if it is a maximum clique of Dχ; i.e., W is a clique in Dχ such that
no clique in Dχ with higher cardinality exists. ◻

The χ-graph associated with the TDM χ of X corresponds to the covariance graph of the random vector
X introduced in Cox and Wermuth (1993), in which two (distinct) nodes are connected by an edge iff their
corresponding components are dependent (cf. Theorem 2.3). In the non-Gaussian case, however, the name
covariance graph is misleading.

The following theorem is an immediate consequence of Definition 2.6 and Lemma 2.5(a), (b).

Theorem 2.7. Let X be a RMLM on a DAG D with TDM χ. Then the set V0 is a maximum χ-clique.

Theorem 2.7 raises the question of how V0 is related to possible other maximum χ-cliques.

Lemma 2.8. Let W be a maximum χ-clique.
(a) There is only one bijection ϕ ∶ V0 →W such that for every j ∈ V0, χ(j, ϕ(j)) > 0 and χ(j, i) = 0 for all

i ∈W ∖ {ϕ(j)}.
(b) Let ϕ be the bijection from (a). Then for j ∈ V0, An(ϕ(j)) ∩ V0 = {j} and De(j) ∩W = {ϕ(j)}. In

particular, if j ≠ ϕ(j), then D has a path from j to ϕ(j).
(c) Let i, j ∈ V ∖W . If χ(i, j) < ∑k∈W χ(k, i) ∧ χ(k, j), then V0 ≠W .

Proof. (a) Since maximum χ-cliques have the same cardinality, we know from Theorem 2.7 that ∣V0∣ = ∣W ∣.
As for every i ∈W , An(i) ∩ V0 ≠ ∅, it suffices by Lemma 2.5(c) to show that ∣De(j) ∩W ∣ = 1 for j ∈ V0. We
first assume that ∣De(j) ∩W ∣ > 1. Using Theorem 2.3 similarly as in the proof of Lemma 2.5(b) yields a
contradiction. Hence, ∣De(j) ∩W ∣ ≤ 1. As ∣V0∣ = ∣W ∣, ∣De(j) ∩W ∣ = 1 must hold.
(b) follows from (a) and Lemma 2.5(c).
(c) Assume that V0 =W . Using Lemma A.1(a) and Lemma 2.5(d) we obtain from (8)

χ(i, j) = d

∑
k=1

bki ∧ bkj ≥ ∑
k∈W

χ(k, i) ∧ χ(k, j).
Since this contradicts the conditions of (c), V0 and W must be different.

3. The recursive max-weighted model and its tail dependence matrix

In this section we focus on RMWMs, i.e., RMLMs where all paths are max-weighted. We first present
some structural properties of a RMWM X on a DAG D with standardized MLCM B. We then investigate
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its TDM χ and show that the assumption of all paths in D being max-weighted involves simple relations
between the TDCs and the (standardized) MLCs. Finally, we give necessary and sufficient conditions on a
matrix to be the TDM of a RMWM on a given DAG.

3.1. Some structural properties of a recursive max-weighted model

All RMLMs on polytrees are RMWMs simply because in a polytree there is at most one path between
every two (distinct) nodes (see also Gissibl and Klüppelberg, 2017, Example 3.2). Furthermore, a RMWM
can be constructed on every DAG, as the following example shows. Note the particularly simple structure
of the RMLM introduced by it.

Example 3.1. [The homogeneous model]
Let D = (V, E) be a DAG with V = {1, . . . , d} and Z1, . . . , Zd as in (1). Consider the RMLM defined by

Xi ∶=
1

∣An(i)∣1/α ( ⋁k∈pa(i)

∣An(k)∣1/αXk ∨Zi), i = 1, . . . , d.

We find that every path p from j to i has the same weight dji(p) = ∣An(i)∣−1/α. As a consequence, every
path is max-weighted and X is a RMWM. Its representation (3) is given by

Xi =
1

∣An(i)∣1/α ⋁
j∈An(i)

Zj, i = 1, . . . , d.

For the TDC from (8) between Xi and Xj , we have

χ(i, j) = ∑
k∈An(i)∩An(j)

1

∣An(i)∣ ∧
1

∣An(j)∣ =
∣An(i)∩An(j)∣
∣An(i)∣ ∨ ∣An(j)∣ .

If j ∈ an(i), then this reduces to χ(i, j) = ∣An(j)∣/∣An(i)∣. Finally, by Proposition A.2 the components of
the limit vector M introduced in (2) are standard α-Fréchet distributed. ◻

Recall from the Introduction the prominent role of the minimum ML DAG DB of X, which equals the

minimum ML DAG DB of a RMLM with MLCM B (Lemma A.1(e)). The fact that X is max-weighted

ensures that DB only depends on sgn(B) but not on the precise values of the standardized MLCs. Since

sgn(B) is the reachability matrix of D ((5) and Lemma A.1(a)), DB can be determined from pure graph
theoretical properties. To clarify this we introduce a basic concept in graph theory, which goes back to
Aho et al. (1972).

Definition 3.2. Let D be a DAG.
(a) An edge k → i is redundant if D has another path from k to i.
(b) The DAG Dtr obtained from D by deleting its redundant edges is called transitive reduction of D. ◻

Since DB has an edge k → i iff this is the only max-weighted path from k to i in D, the fact that D has
only max-weighted paths yields part (i) of the following remark. By Definition 3.2 and Lemma A.1(a) (ii)
is a consequence of (i).

Remark 3.3. Let Dtr be the transitive reduction of D.
(i) The DAGs DB and Dtr coincide.

(ii) DB is the DAG with the minimum number of edges that has reachability matrix sgn(B).
(iii) Even if X is a RMLM but not max-weighted, it may happen thatDB = Dtr with all paths max-weighted

in DB. In that case all results presented in this section hold with respect to Dtr. ◻
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3.2. Properties of the tail dependence coefficients of a recursive max-weighted model

The following result points out the simple structure of χ. It follows from Lemma 2.1(a), (c), since in D
all paths are max-weighted.

Lemma 3.4. Let i ∈ V .
(a) For j ∈ An(i), χ(j, i) = bji

bjj

= ∑k∈An(j) bki = ∑k∈An(j) bkkχ(k, i).
(b) For k ∈ an(i) and j ∈ an(k), χ(j, i) = χ(j, k)χ(k, i) < χ(j, k) ∧ χ(k, i).
(c) For j ∈ an(i) and some path [j = k0 → k1 → ⋯→ kn = i], χ(j, i) = ∏n−1

ν=0 χ(kν , kν+1).
The equality χ(j, i) = χ(j, k)χ(k, i) for some j ∈ An(i)∩An(k) does not necessarily imply that k ∈ An(i)

(cf. part (3) of Example 2.2). For RMWMs, however, whenever these products hold for all j ∈ An(i) ∩
An(k) ∩ V0, where V0 are again the initial nodes in D, we can conclude that k ∈ An(i).
Proposition 3.5. For i, k ∈ V , k ∈ An(i) iff χ(j, i) = χ(j, k)χ(k, i) for all j ∈ An(i)∩An(k) ∩ V0.

Proof. Assume that χ(j, i) = χ(j, k)χ(k, i) for all j ∈ An(i)∩An(k)∩V0. We first show that χ(ℓ, i) ≤ χ(ℓ, k)
for every ℓ ∈ An(i) ∩An(k). We obtain for j ∈ An(ℓ) ∩ V0, using the assumptions and Lemma 3.4(b),

χ(k, i) = χ(j, i)
χ(j, k) =

χ(j, ℓ)χ(ℓ, i)
χ(j, ℓ)χ(ℓ, k) =

χ(ℓ, i)
χ(ℓ, k) .

Hence, χ(ℓ, i) = χ(ℓ, k)χ(k, i) and χ(ℓ, i) ≤ χ(ℓ, k). Together with Lemma 3.4(a) we then find from (8)

χ(k, i) = ∑
ℓ∈An(k)∩An(i)

bℓℓ(χ(ℓ, k) ∧ χ(ℓ, i)) = ∑
ℓ∈An(k)∩An(i)

bℓℓχ(ℓ, i) = χ(k, i) ∑
ℓ∈An(k)∩An(i)

bℓℓχ(ℓ, k).

By the assumptions and Theorem 2.3 χ(k, i) > 0 so that∑ℓ∈An(k)∩An(i) bℓℓχ(ℓ, k) = 1. As 1 = ∑ℓ∈An(k) bℓℓχ(ℓ, k)
(Lemma 3.4(a)) and bℓℓχ(ℓ, k) > 0 for all ℓ ∈ An(k) (Lemma A.1(a) and Theorem 2.3), we have An(i) ∩
An(k) = An(k). This finally implies that An(k) ⊆ An(i), equivalently k ∈ An(i).

The converse statement holds due to Lemma 3.4(b).

In Lemma 3.4(a) we have written the positive standardized MLCs as functions of themselves and TDCs.
We now present expressions for them only in terms of TDCs.

Proposition 3.6. For i ∈ V and j ∈ An(i),
bji = χ(j, i) − ∑

k∈an(j)

λjkχ(k, i) with λjk = 1 − ∑
ℓ∈de(k)∩an(j)

λjℓ. (11)

Proof. As by Lemma 3.4(a) bji = χ(j, i)−∑k∈an(j) bki, it suffices to show that∑k∈an(j) λjkχ(k, i) = ∑k∈an(j) bki.
Using again Lemma 3.4(a) yields

∑
k∈an(j)

λjkχ(k, i) = ∑
k∈an(j)

λjk ∑
ℓ∈An(k)

bℓi.

Noting that k ∈ an(j) and ℓ ∈ An(k) iff ℓ ∈ an(j) and k ∈ De(ℓ) ∩ an(j), we can interchange the two
summation operators to obtain

∑
k∈an(j)

λjk ∑
ℓ∈An(k)

bℓi = ∑
ℓ∈an(j)

bℓi ∑
k∈De(ℓ)∩an(j)

λjk = ∑
ℓ∈an(j)

bℓi(λjℓ + ∑
k∈de(ℓ)∩an(j)

λjk) = ∑
ℓ∈an(j)

bℓi,

where we have used the definition of λjℓ for the last equality.

Before we give an example of representation (11), we summarize some characteristics of the coefficients
λjk. Denoting by patr(j) the parents of j in the transitive reduction Dtr of D, we have λjk = 1 for k ∈ patr(j)
as de(k)∩an(j) = ∅. For k ∈ an(j)∖patr(j) it can be verified that λjk ≠ 0 iff there exists no k̃ ∈ de(k)∩an(j)
such that ∣De(k̃) ∩ patr(j)∣ = ∣De(k) ∩ patr(j)∣.
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Example 3.7. [On representation (11)]
Consider a RMWM X on the DAG D depicted below, and note that here D = Dtr. We determine, as an
example, representation (11) for the MLCs b36,66 and b98,99:

b36,66 = χ(36, 66)− χ(35, 66), b98,99 = χ(98, 99)− χ(34, 99)− χ(66, 99)− χ(97, 99)+ χ(2, 99)+ χ(35, 99).

1 2 35 36 37 . . . 65 66 98 99

3 4 5 . . . 33 34

67 68 . . . 96 97

D

◻

We address again the interrelations between the TDCs and prove that every TDC can be written as
linear combination of minima of two TDCs.

Proposition 3.8. For i, j ∈ V ,

χ(i, j) = ∑
k∈An(i)∩An(j)

µij,k(χ(k, i) ∧ χ(k, j)) with µij,k = 1 − ∑
ℓ∈de(k)∩An(i)∩An(j)

µij,ℓ. (12)

Proof. Applying Lemma 3.4(a) and Lemma A.1(b), (d) we obtain for k ∈ An(i) ∩An(j),
χ(k, i) ∧ χ(k, j) = bki

bkk

∧
bkj

bkk

= ( bki

bkk

∧
bkj

bkk

)( ∑
ℓ∈An(k)

bℓk) = ∑
ℓ∈An(k)

bℓkbki

bkk

∧
bℓkbkj

bkk

= ∑
ℓ∈An(k)

bℓi ∧ bℓj .

With this we then have

∑
k∈An(i)∩An(j)

µij,k(χ(k, i) ∧ χ(k, j)) = ∑
k∈An(i)∩An(j)

µij,k ∑
ℓ∈An(k)

bℓi ∧ bℓj.

Using that k ∈ An(i)∩An(j) and ℓ ∈ An(k) iff ℓ ∈ An(i)∩An(j) and k ∈ De(ℓ)∩An(i)∩An(j) to interchange
the summation operators similarly as in the proof of Proposition 3.6 and the definition of µij,ℓ similarly as
the one of λjℓ there, we finally find (12).

For i, j ∈ V denote by lca(i, j) the lowest common ancestors of i and j; i.e., k ∈ lca(i, j) iff k ∈ An(i)∩An(j)
and D has no path from k to another node in An(i) ∩ An(j). For µij,k from (12) we have µij,k = 1 for
k ∈ lca(i, j) as in that case de(k) ∩ An(i) ∩ An(j) = ∅. It can be verified that µij,k = 0 for k ∈ (An(i) ∩
An(j))∖lca(i, j) iff there exists some k̃ ∈ de(k)∩An(i)∩An(j) such that ∣De(k̃)∩lca(i, j)∣ = ∣De(k)∩lca(i, j)∣.
With this, if j ∈ An(i), then µij,j = 1 and µij,k = 0 for k ∈ an(j). Thus in that case the right-hand side of the
first equality in (12) is equal to χ(j, i)∧χ(j, j) = χ(j, i), and representation (12) is trivial. Note the analogy
of the coefficients µij,k to the coefficients λjk in (11).

Example 3.9. [On representation (12)]
Consider a RMWM on the DAG D depicted below. We present, as an example, representation (12) for the
TDCs χ(95, 96) and χ(96, 97):

χ(95, 96) =χ(33, 95)∧ χ(33, 96),
χ(96, 97) =χ(33, 96)∧ χ(33, 97)+ χ(64, 96)∧ χ(64, 97)+ χ(94, 96)∧ χ(94, 97)

− χ(34, 96)∧ χ(34, 97)− χ(2, 96)∧ χ(2, 97).
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1 2 34 35 36 . . . 63 64

96

97

3 4 5 . . . 32 33

65 66 . . . 93 94

95

D

◻

We conclude this section with necessary and sufficient conditions on a matrix to be the TDM of a RMWM
on a given DAG D. To be such a matrix, the ij-th (ji-th) entry of the matrix must satisfy a property
depending on the relationship between i and j in D. For example, based on Theorem 2.3, it must be zero iff
An(i)∩An(j) = ∅. By Lemma A.1(e), Remark 3.3(i), and Theorem 5.4 of Gissibl and Klüppelberg (2017),
a RMWM on D is a RMWM on every DAG that has reachability matrix R of D. Consequently, it would
be sufficient to specify R and to require the four conditions below for any DAG with reachability matrix R

such as the transitive reduction Dtr of D.

Theorem 3.10. Let D = (V, E) be a DAG with nodes V = {1, . . . , d} and reachability matrix R. Let
χ = (χ(i, j))d×d be a symmetric matrix with ones on the diagonal. For i ∈ V define bii ∶= 1−∑k∈an(i) bkkχ(k, i)
recursively. Then χ is the TDM of a RMWM X on D iff the following conditions hold:

(a) sgn(χ) = sgn(RT R).
(b) For all i ∈ V , bii > 0.
(c) For all i ∈ V , j ∈ an(i), and k ∈ de(j) ∩ pa(i), χ(j, i) = χ(j, k)χ(k, i).
(d) For all i, j ∈ V such that i /∈ An(j) and j /∈ An(i) but An(i) ∩An(j) ≠ ∅,

χ(i, j) = ∑
k∈An(i)∩An(j)

bkk(χ(k, i) ∧ χ(k, j)).

In that case bii is the i-th diagonal entry of the standardized MLCM B of X. Furthermore, for i, j ∈ V ,
bji = 0 if j ∈ V ∖An(i), and bji = bjjχ(j, i) if j ∈ an(i).
Proof. Assume that χ is the TDM of a RMWM X on D. The statements (a) and (c) follow from
Remark 2.4(i) and Lemma 3.4(b). By Lemma 3.4(a) bii is the i-th diagonal entry of the standardized MLCM
B of X. Since all bii are positive according to Lemma A.1(a), assertion (b) holds. The representation of
χ(i, j) in (d) is again a consequence of Lemma 3.4(a).

Assume now that (a)-(d) hold. For every i ∈ V define bji ∶= bjjχ(j, i) for all j ∈ an(i) and for all

j ∈ V ∖ An(i), bji ∶= 0. We first show that B = (bij)d×d is the MLCM of a RMWM on D, where weights

from its representation (1) are given by cii ∶= bii and cki ∶= bki

bkk

= χ(k, i) for i ∈ V and k ∈ pa(i). As

sgn(χ) = sgn(RT R) and bii > 0, the weights cki for i ∈ V and k ∈ Pa(i) are positive, which is a necessary
condition for them by the definition of a RMLM in (1). Let p = [j = k0 → k1 → . . . → kn = i] be a path in D.
Using (c) iteratively yields

dji(p) = cjj

n−1

∏
ν=0

ckν ,kν+1
= bjj

n−1

∏
ν=0

χ(kν , kν+1) = bjjχ(j, k2)n−1

∏
ν=2

χ(kν , kν+1) = . . . = bjjχ(i, j) = bji.

This implies that B = (bij)d×d is the MLCM of a RMWM X. Since it suffices to specify one RMLM that
has TDM χ, we may assume that Z ∈ RV(1). Denoting the TDM of X by χ = (χ(i, j))d×d, it remains to
show that χ = χ. Since the diagonal entries of χ equal one, the equality of the diagonal entries is obvious.
For i, j ∈ V such that An(i) ∩ An(j) = ∅, the ij-th (ji-th) entries of χ and χ are zero and, hence, equal
due to condition (a) and Theorem 2.3. The matrix B is the standardized MLCM of X as α = 1 and
bii = 1−∑k∈an(i) bki for every i ∈ V . Thus for i ∈ V and j ∈ an(i) we have by Lemma 3.4(a) and the definition
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of B that χ(j, i) = bji

bjj

= χ(i, j). Finally, for i, j ∈ V such that j /∈ An(i) and i /∈ An(j) but An(i)∩An(j) ≠ ∅,

using Lemma 3.4(a), the result shown before, and condition (d), we obtain

χ(i, j) = ∑
k∈An(i)∩An(j)

bkk(χ(k, i) ∧ χ(k, j)) = ∑
k∈An(i)∩An(j)

bkk(χ(k, i) ∧ χ(k, j)) = χ(i, j).

In Example 5.5 below we present a possible application of Theorem 3.10.

Remark 3.11. In Theorem 3.10 the coefficients bii can also be defined by 1−∑k∈an(i) λikχ(k, i) with λik as
in (11). We give a sketch of a proof of this assertion: we show that λik = 1 −∑ℓ∈de(k)∩an(i) λℓk and use this
to verify that if (c) holds, then the assertion is valid as well. Moreover, condition (d) can be replaced by

(d’) For all i, j ∈ V such that i /∈ An(j) and j /∈ An(i) but An(i) ∩An(j) ≠ ∅,

χ(i, j) = ∑
k∈An(i)∩An(j)

µij,k(χ(k, i) ∧ χ(k, j)) with µij,k as in (12).

By going through the proof of Theorem 3.10, we observe that this can be done due to the representation of
χ(i, j) in (12). ◻

4. Identifiability problems based on the tail dependence matrix of a recursive max-linear

model

Throughout this section we assume that the TDM χ of a RMLM X on a DAG D with standardized
MLCM B is given. We first show the identifiability of B from χ and the reachability matrix R of D. We
then assume that the reachability relation of D is not fully known but only a causal ordering σ. This still
leads to identifiability of B from χ. We also investigate whether B can be recovered from χ and the initial
nodes V0 of D. It turns out that this is generally not possible, but we verify it for RMWMs. We prove the
different identifiability results by providing algorithms which compute B from χ and the additionally known
information on D. Finally, based on these results we present an approach, which finds the standardized
MLCMs of all RMLMs with TDM χ. Since this method simplifies for RMWMs considerably, we give an
adapted and modified version for this subclass of RMLMs.

4.1. Identifiability from the tail dependence matrix and the reachability matrix

The following algorithm computes B from χ and R recursively. The rows of B are filled up successively
until B is obtained, where the number of ancestors determines the order in which the rows are treated. The
existence of such an algorithm proves the identifiability of B from χ and R.

Algorithm 4.1. [Find B from χ and R]
For ν = 0, . . . , d − 1,

for j ∈ V such that ∣an(j)∣ = ν, set

bji = 0 for all i ∈ V ∖De(j) and bji = χ(j, i) − ∑
k∈an(j)

bki ∧ bkj for all i ∈ De(j). (13)

Eq. (13) follows from Lemma A.1(a), (8), and Lemma A.1(f). If X is max-weighted, then by Lemma 3.4(a)
(13) can be replaced by

bji = 0 for all i ∈ V ∖De(j), bjj = 1 − ∑
k∈an(j)

bkj , and bji = bjjχ(j, i) for all i ∈ de(j). (14)

To avoid the iterative loop, we can also use (11) for computing the diagonal entries of B. Note, however,
that this requires to calculate the coefficients λjk appearing in (11) recursively as well.
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4.2. Identifiability from the tail dependence matrix and a causal ordering

So far we have dealt with the identifiability from χ and the reachability matrix R of D. Here we
investigate the identifiability from χ and a causal ordering σ of D. If R is given, then we know for every
two (distinct) i, j ∈ V whether there is a path from j to i; but from σ we only learn that there is no path
from j to i if σ(j) > σ(i).

There exists a causal ordering for every DAG due to the acyclicity (see also Diestel, 2010, Appendix A).
However, it is not necessarily unique. For example, the DAG D1 from Example 2.2 has the identity function
on V = {1, 2, 3, 4} and the permutation σ̃ on V given by σ̃(2) = 1, σ̃(1) = 2, σ̃(3) = 3, σ̃(4) = 4 as causal
orderings.

The DAG D has a causal ordering which can be completely described by its initial nodes V0 and χ as
follows.

Lemma 4.2. We denote the initial nodes by V0 = {i1, . . . , i∣V0 ∣} and define V i
0
∶= {k ∈ V0 ∶ χ(k, i) > 0} for

i ∈ V . Then D has a causal ordering σ such that

σ(iν) = ν for ν = 1, . . . , ∣V0∣ and for all i, j ∈ V , σ(j) < σ(i) whenever ∣V j
0
∣ < ∣V i

0
∣. (15)

Proof. Recall from Lemma 2.5(c) that V
j

0
= An(j) ∩ V0 and V i

0
= An(i) ∩ V0. With this it is not difficult to

see that D has such a causal ordering.

Now we give an iterative procedure which computes B from χ and σ. Obviously, this proves the identi-
fiability of B from χ and σ. Here the rows of B are also filled up successively, where the order of the nodes
given by σ defines the order in which the rows are treated.

Algorithm 4.3. [Find B from χ and σ]
For ν = 1, . . . , d,

for j ∈ V such that σ(j) = ν, set

bji = 0 for all i ∈ V such that σ(j) > σ(i),
bji = χ(j, i) − ∑

k∶σ(k)<σ(j)

bki ∧ bkj for all i ∈ V such that σ(j) ≤ σ(i). (16)

Eq. (16) can be obtained from (8) by using Lemma A.1(a), the definition of a causal ordering, and
Lemma A.1(f).

4.3. Identifiability of recursive max-weighted models from the tail dependence matrix and the initial nodes

In what follows we assume X to be max-weighted. Then recalling Lemma 2.5(c), Proposition 3.5 involves
a procedure to determine R from χ and V0. Since Algorithm 4.1 computes B from χ and R, we can identify
B from χ and V0. This is usually not possible outside the class of RMWMs.

Example 4.4. [B is generally not identifiable from χ and V0]
Consider two RMLMs on D1 and D2 with standardized MLCMs B1 and B2 given by

1

2 3

D1

B1 =
⎛⎜⎝

1 0.2 0.3
0 0.8 0.4
0 0 0.3

⎞⎟⎠ and B2 =
⎛⎜⎝

1 0.2 0.3
0 0.4 0
0 0.4 0.7

⎞⎟⎠ .

1

3 2

D2

We find by Lemma A.1(d) that none of the two models is max-weighted. Since both have the same χ and
D1 and D2 share the same initial node V0 = {1}, we cannot distinguish between B1 and B2 based on χ and
V0. ◻
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Proceeding as suggested by Proposition 3.5 to recover R from χ and V0 is very tedious, since many
conditions may need to be verified. Therefore, we introduce an alternative method which computes B from
χ and V0: we first determine a causal ordering σ of D and apply then Algorithm 4.3 to obtain B. From
the next proposition we learn how a causal ordering σ of D can be computed from χ and V0; note that we
encountered property (i) in (15).

Proposition 4.5. Let V i
0

for i ∈ V be as in Lemma 4.2. Every permutation σ on V such that for all i, j ∈ V ,
(i) σ(j) < σ(i) whenever ∣V j

0
∣ < ∣V i

0
∣ and

(ii) σ(j) < σ(i) whenever ∣V j
0
∣ = ∣V i

0
∣ and maxk∈V i

0

χ(k, i) <max
k∈V

j

0

χ(k, j)
is a causal ordering of D.

Proof. Assume that σ is no causal ordering of D, i.e., σ(j) > σ(i) for some i ∈ V and j ∈ an(i). Recall from
Lemma 2.5(c) that V

j
0
= An(j) ∩ V0 and V i

0
= An(i) ∩ V0. As j ∈ an(i), V

j
0
⊆ V i

0
. But then because of the

properties of σ, V
j

0
= V i

0
and max

k∈V
j

0

χ(k, j) ≤ max
k∈V

j

0

χ(k, i). Assume now that j ∈ V
j

0
, and note that

i /∈ V
j

0
as j ∈ an(i). Then, since for i1, i2 ∈ V the TDC χ(i1, i2) = 1 iff i1 = i2 (cf. (8) and Lemma A.1(a)), we

find 1 = max
k∈V

j

0

χ(k, j) ≤ max
k∈V

j

0

χ(k, i) < 1. This contradiction proves that j /∈ V
j

0
, which implies again

that V
j

0
= an(j)∩V0. As max

k∈V
j

0

χ(k, j) ≤max
k∈V

j

0

χ(k, i), χ(k, j) ≤ χ(k, i) for some k ∈ an(j)∩V0. Observe

from Lemma 3.4(b) that j /∈ an(i), since otherwise χ(k, i) < χ(k, j). This, however, contradicts our original
assumption, and σ must be a causal ordering of D.

Finally, we clarify the precise steps of our approach to determine B from χ and V0.

Algorithm 4.6. [Modification of Algorithm 4.3 for RMWMs: find B from χ and V0]
1. Find a causal ordering σ of D from χ and V0:

for ν = 1, . . . , ∣V0∣,
find all j ∈ V such that ∣V j

0
∣ = ∣{k ∈ V0 ∶ χ(k, j) > 0}∣ = ν and summarize them in the set Aν ;

sort the nodes k1, . . . , k∣Aν ∣ from Aν such that

max
ℓ∈V0

χ(ℓ, k1) ≥ max
ℓ∈V0

χ(ℓ, k2) ≥ . . . ≥ max
ℓ∈V0

χ(ℓ, k∣Aν ∣);
for µ = 1, . . . , ∣Aν ∣,

set σ(kµ) = ∑ν−1
λ=1 ∣Aλ∣ + µ, where ∑0

λ=1 ∶= 0.
2. Apply Algorithm 4.3 to obtain B from χ and σ.

Observe from Proposition 4.5 that every permutation σ on V which can be chosen in step 1. is indeed
a causal ordering of D.

4.4. Identifiability from the tail dependence matrix

We now combine the previous results to find the standardized MLCMs of all RMLMs that have TDM χ.
In the first part we deal with general RMLMs. Because of the identifiability properties derived in Section 4.3,
we assume in the second part that χ is the TDM of a RMWM. We provide an algorithm, which outputs
the standardized MLCMs of all RMWMs that have TDM χ.

(General) recursive max-linear models

Every permutation σ̃ on V = {1, . . . , d} is a causal ordering of a DAG with nodes V but not necessarily
of a DAG that corresponds to a RMLM with TDM χ. But if this is the case, then applying Algorithm 4.3
with σ = σ̃ yields the corresponding standardized MLCM B. This suggests the following procedure to prove
the existence of a RMLM which has TDM χ and whose associated DAG has causal ordering σ̃: first apply
Algorithm 4.3 with σ = σ̃, and check then whether the obtained matrix B is the standardized MLCM of a
RMLM which has TDM χ and whose associated DAG has causal ordering σ̃. In the second step it is enough
to verify that B is the MLCM of a RMLM, which can be done by Theorem 5.7 of Gissibl and Klüppelberg
(2017).
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Lemma 4.7. Let σ̃ be a permutation on V and B the matrix obtained by applying Algorithm 4.3 with σ = σ̃.
If B is the MLCM of a RMLM (RMWM), then B is the standardized MLCM of a RMLM (RMWM) which
has TDM χ and whose associated DAG has causal ordering σ̃.

Proof. Let X be the RMLM (RMWM) with MLCM B and Z ∈ RV(1). Its existence is guaranteed as B is
the MLCM of a RMLM (RMWM). We show that X has standardized MLCM B and TDM χ as well as
that its associated DAG D has causal ordering σ̃. Recall from (5) that sgn(B) is the reachability matrix of
D. Thus by (16) σ̃ is a causal ordering of D and bii = 1−∑k∈an(i) bki for every i ∈ V . As the latter holds and

α = 1, B is the standardized MLCM of X. The fact that X has TDM χ also follows from (16).

Lemma 4.7 suggests a “naive” method to find the standardized MLCMs of all RMLMs that have TDM χ:
for every permutation on V compute the matrix B from Algorithm 4.3, and check whether it is the MLCM
of a RMLM; if so, then B is the standardized MLCM of a RMLM with TDM χ. However, the number of
permutations on V to be investigated can often be significantly reduced. By Theorem 2.7 and Lemma 2.8(c)
the set of all maximum χ-cliques W (see Definition 2.6) such that χ(i, j) ≥ ∑k∈W χ(k, i) ∧ χ(k, j) for all
i, j ∈ V ∖W contains the initial node sets of all DAGs underlying RMLMs with TDM χ. So it suffices to
investigate the causal orderings of DAGs that have such initial nodes W . But also the number of causal
orderings to be investigated for every such set W can be reduced further by Lemma 4.2: it is enough to
consider those permutations on V , which satisfy the properties σ has in (15) with V0 = W . The following
algorithm describes the precise steps of an approach to find the standardized MLCMs of all RMLMs with
TDM χ.

Algorithm 4.8. [Find all B from χ]
1. Find all maximum χ-cliques:

(a) find the complement Dχ of the χ-graph;
(b) find all maximum cliques of Dχ.

2. For every maximum χ-clique W = {i1, . . . , i∣W ∣},
(a) check χ(i, j) ≥ ∑k∈W χ(k, i) ∧ χ(k, j) for all i, j ∈ V ∖W ;

if not, then there is no RMLM with TDM χ on a DAG with initial nodes W ;
else,
(b) for every permutation σ̃ on V = {1, . . . , d} such that

σ̃(iν) = ν for ν = 1, . . . , ∣W ∣ and
σ̃(j) < σ̃(i) whenever ∣{k ∈W ∶ χ(k, j) > 0}∣ < ∣{k ∈W ∶ χ(k, i) > 0}∣,

i. apply Algorithm 4.3 with σ = σ̃;
ii. check whether B obtained in i. is the MLCM of a RMLM; for instance using Theorem 5.7

of Gissibl and Klüppelberg (2017);
if not, then there is no RMLM with TDM χ on a DAG with causal ordering σ̃;
else, B is the standardized MLCM of a RMLM with TDM χ.

When the algorithm returns a standardized MLCM B of a RMLM with TDM χ in step ii., then it is not
necessary to perform steps i., ii. for further permutations on V which are causal orderings of DAGs with
reachability matrix sgn(B), since all of them would lead to the same B. For the application of Algorithm 4.8,
we have assumed so far that χ is the TDM of a RMLM. If this is not the case, Algorithm 4.8 would not
produce any output. The same applies to Algorithm 4.11 below if χ is not the TDM of a RMWM.

One could drop step 2.(a) and perform step 2.(b) for all maximum χ-cliques. However, the performance
of step 2.(a) can be very effective.

Example 4.9. [Not all maximum χ-cliques are initial node sets]
Consider the TDM χ of a RMLM on the DAG D depicted below. Note that such a RMLM is max-weighted,
since D is a polytree (cf. Section 3.1). Theorem 2.3 yields that the sets {1}, . . . ,{1000} are the maximum
χ-cliques. For every k ∈ {2, . . . , 999} we know from Lemma 3.4(b) that χ(1, 1000) < χ(1, k) ∧ χ(k, 1000).
The property tested in step 2.(a) is therefore not fulfilled for the maximum χ-cliques W ∈ {{2}, . . . ,{999}}.
However, we can verify by Lemma 3.4(b) that it is fullfilled for W ∈ {{1},{1000}}. Consequently, step 2.(b)
needs only be performed for W ∈ {{1},{1000}} and not for the other 998 maximum χ-cliques.
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1 2 . . . 999 1000D
◻

It is indeed necessary to perform step ii., i.e., to verify that a matrix B obtained in i. is a MLCM of a
RMLM.

Example 4.10. [Not every B obtained in ii. belongs to a RMLM]
Consider the TDM

χ =
⎛⎜⎝

1 1/10 1/3
1/10 1 13/30
1/3 13/30 1

⎞⎟⎠ .

Performing steps i. and ii. of Algorithm 4.8 with σ̃ being the identity function on V = {1, 2, 3} and also with
σ̃ given by σ̃(1) = 1, σ̃(3) = 2, σ̃(2) = 3 (note that these permutations are really tested in step 2.(b)), we find

B1 =
⎛⎜⎝

1 1/10 1/3
0 9/10 1/3
0 0 1/3

⎞⎟⎠ and B2 =
⎛⎜⎝

1 1/10 1/3
0 17/30 0
0 1/3 2/3

⎞⎟⎠ .

As can be verified by Theorem 4.2 of Gissibl and Klüppelberg (2017)), the matrix B1 is the MLCM of a
RMLM on the DAG D1 depicted in Example 4.4. Although sgn(B2) is the reachability matrix of a DAG,
namely of the DAG D2 from Example 4.4, which is a necessary property of a matrix to be the MLCM of a
RMLM according to (5), it is no MLCM of a RMLM. ◻

Recursive max-weighted models

Assume now that χ is the TDM of a RMWM. We modify and adapt Algorithm 4.8 to obtain a procedure
which outputs the standardized MLCMs of all RMWMs with TDM χ. Among the maximum χ-cliques which
we find in step 2.(a) of Algorithm 4.8 are the initial node sets of the DAGs underlying the RMWMs that
have TDM χ. We learn from Proposition 4.5 and Lemma 4.7 that a maximum χ-clique is such an initial
node set iff the matrix B obtained by Algorithm 4.6 is the MLCM of a RMWM. In that case, B is obviously
the standardized MLCM of a RMWM with TDM χ. These observations lead to the following procedure.

Algorithm 4.11. [Modification of Algorithm 4.8 for RMWMs: find all B from χ]
1. Find all maximum χ-cliques (cf. step 1. of Algorithm 4.8).
2. For every maximum χ-clique W ,

(a) check χ(i, j) ≥ ∑k∈W χ(k, i) ∧ χ(k, j) for all i, j ∈ V ∖W ;
if not, then there is no RMWM with TDM χ on a DAG with initial nodes W ;
else,

i. apply Algorithm 4.6 with V0 =W ;
ii. check the following properties for the matrix B obtained in i.:

- sgn(B) is the reachability matrix of a DAG

- for all i ∈ V , j ∈ an(i), and k ∈ de(j) ∩ pa(i), bji =
bjkbki

bkk

if not, then there is no RMWM with TDM χ on a DAG with initial nodes W ;
else, B is the standardized MLCM of a RMWM with TDM χ.

That the properties we verify for the matrix B in step ii. are sufficient for B to be the MLCM of a
RMWM can be verified by Corollary 4.3(a) of Gissibl and Klüppelberg (2017).

To conclude this section, we highlight the essential steps of Algorithm 4.11 with an example.

Example 4.12. [The class of RMWMs is not closed under χ-equivalence]
Consider the TDM
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χ =

⎛⎜⎜⎜⎝

1 0 0.2 0
0 1 0.6 0.5

0.2 0.6 1 0.5
0 0.5 0.5 1

⎞⎟⎟⎟⎠
.

1 2

3 4 Dχ

We read from the complement Dχ of the χ-graph that the sets W1 = {1, 2} and W2 = {1, 4} are the maximum
χ-cliques. Applying Algorithm 4.6 with V0 =W1 and V0 =W2, we get the matrices

1 2

3 4D1

B1 =

⎛⎜⎜⎜⎝

1 0 0.2 0
0 1 0.6 0.5
0 0 0.2 0
0 0 0 0.5

⎞⎟⎟⎟⎠
and B2 =

⎛⎜⎜⎜⎝

1 0 0.2 0
0 0.5 0.1 0
0 0 0.2 0
0 0.5 0.5 1

⎞⎟⎟⎟⎠
.

1 4

3 2 D2

The matrix B1 is the MLCM of a RMWM on D1, whereas B2 is not the MLCM of a RMWM, but it is
the MLCM of a RMLM on D2. Therefore, all RMWMs with TDM χ have the same standardized MLCM
B1, and D1 is their associated DAG. Furthermore, all these models are χ-equivalent to the RMLMs with
standardized MLCM B2. ◻

5. χ-equivalent recursive max-linear models and their DAGs

In this section we mainly present interrelations between DAGs of χ-equivalent RMLMs.
One of the best known equivalence relations on the set of DAGs is certainly the Markov equivalence:

two DAGs are Markov equivalent if they entail the same conditional independence relations through the
Markov property; for a characterization of such DAGs, see e.g. Verma and Pearl (1990). The associated
DAG of a recursive linear Gaussian structural equation model can be identified from the distribution only
up to a Markov equivalence class (under the assumption of faithfulness; see e.g. Spirtes and Zhang (2016)).
In the following example we discuss the relation between χ-equivalence of RMLMs and Markov equivalence
of their associated DAGs.

Example 5.1. [The difference between χ-equivalence of RMLMs and Markov equivalence of their DAGs]
(1) Undirected graphs underlying Markov equivalent DAGs coincide. Example 4.12 clarifies that this

does not hold for DAGs of χ-equivalent RMLMs. Such DAGs are therefore not necessarily Markov
equivalent.

(2) For the TDCs of a RMLM X on D1, which is always a RMWM, we have by Lemma 3.4(b) that
χ(1, 3) < χ(1, 2) ∧ χ(2, 3). Since D2 has initial node 2, by Lemma 2.8(c) there cannot be a RMLM
that is χ-equivalent to X on D2. Thus although the DAGs D1 and D2 are Markov equivalent, there
exist no χ-equivalent RMLMs on D1 and D2.

(3) As can be verified by Theorem 3.10, RMLMs on the Markov equivalent DAGs D1 and D3 are always
χ-equivalent. This shows that there can be χ-equivalent RMLMs on Markov equivalent DAGs.

1 2 3 D1 1 2 3 D2 3 2 1 D3

◻

DAGs of χ-equivalent RMLMs have the same number of initial nodes, since the initial node sets of such
DAGs are maximum χ-cliques, which have the same cardinality by definition. We learn from Algorithm 4.3
that if the standardized MLCMs of two χ-equivalent RMLMs differ, then the causal orderings of their
associated DAGs must also differ. So for these two DAGs there exist nodes i, j ∈ V such that one DAG has
a path from j to i and the other has one from i to j. We provide further properties of two DAGs underlying
χ-equivalent RMLMs.
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Proposition 5.2. Let X and X̃ be χ-equivalent RMLMs on DAGs D and D̃, respectively. We denote the
initial nodes in D and D̃ by V0 and Ṽ0, the ancestors of i by an(i) and ãn(i), and the descendants of i by
de(i) and d̃e(i).

(a) There is only one bijection ϕ ∶ V0 → Ṽ0 such that for every j ∈ V0, χ(j, ϕ(j)) > 0 and χ(j, j̃) = 0 for all
j̃ ∈ Ṽ0 ∖ {ϕ(j)}.

Let ϕ be the bijection from (a) and j ∈ V0.
(b) We have An(ϕ(j)) ∩ V0 = D̃e(ϕ(j)) ∩ V0 = {j}. In particular, if j ≠ ϕ(j), then D has a path from j to

ϕ(j), and D̃ has one from ϕ(j) to j.
(c) We have De(j) = D̃e(ϕ(j)).
(d) For i ∈ V , Ãn(i)∩ Ṽ0 = {ϕ(j) ∶ j ∈ An(i)∩ V0}.

Proof. (a) is immediate by Lemma 2.8(a), since Ṽ0 is a maximum χ-clique.
(b) Since Ṽ0 is a maximum χ-clique, according to Lemma 2.8(b), An(ϕ(j)) ∩ V0 = {j}. Note that for every
j̃ ∈ Ṽ0, χ(̃j, ϕ−1(̃j)) > 0 and χ(̃j, j) > 0 for all j ∈ V0 ∖ {ϕ−1(̃j)}, where ϕ−1

∶ Ṽ0 → V0 denotes the inverse of
ϕ. As V0 is a maximum χ-clique, we therefore have again by Lemma 2.8(b) that D̃e(i)∩ V0 = {ϕ−1(i)} with
i = ϕ(j), which is obviously equivalent to D̃e(ϕ(j)) ∩ V0 = {j}.
(c) Let i ∈ De(j). By (b) j ∈ An(ϕ(j)) ∩ An(i) and, consequently, by Theorem 2.3 χ(ϕ(j), i) > 0.
Lemma 2.5(c) then yields that i ∈ D̃e(ϕ(j)). Hence, De(j) ⊆ D̃e(ϕ(j)). From this, by reversing the roles of
D and D̃ and noting that χ(̃j, ϕ−1(̃j)) > 0 for all j̃ ∈ Ṽ0, we observe that D̃e(ϕ(j)) ⊆ De(j).
(d) can be verified by (c).

Recursive max-weighted models

Now we consider χ-equivalent RMWMs and investigate their DAGs. Because of Theorem 2.7, Algorithm 4.6,
and Lemma A.1(e), if a TDM χ of a RMWM has one maximum χ-clique W , all RMWMs with TDM χ (the
models are then χ-equivalent by definition) have the same standardized MLCM and, hence, the same mini-
mum ML DAG, which again has initial nodes W . By Algorithm 4.6 the initial nodes of DAGs of χ-equivalent
RMLMs with different standardized MLCMs must also differ. We present further interrelationships between
DAGs of χ-equivalent RMWMs with regard to their initial nodes.

Theorem 5.3. Let X and X̃ be χ-equivalent RMWMs on DAGs D and D̃, respectively. We denote by V0

and Ṽ0 the initial nodes in D and D̃ and by V∞ and Ṽ∞ their terminal nodes. Let ϕ ∶ V0 → Ṽ0 be the bijection
from Proposition 5.2(a) and j ∈ V0 such that j ≠ ϕ(j).

(a) We have ϕ(j) ∈ V∞. In particular, Ṽ0 ⊆ (V0 ∩ Ṽ0) ∪ V∞.
(b) If p = [j = k0 → k1 → . . . → kn−1 → kn = ϕ(j)] is a path in the transitive reduction Dtr of D, then

p̃ = [ϕ(j) = kn → kn−1 → . . . → k1 → k0 = j] is a path in the transitive reduction D̃tr of D̃.

Proof. We denote by an(i) and ãn(i) the ancestors of i in D and D̃ and by de(i) and d̃e(i) its descendants.
(a) Assume that ϕ(j) /∈ V∞. Consequently, by Proposition 5.2(b) D has a path from j to some i ≠ ϕ(j)
passing through ϕ(j). Replacing V0 by Ṽ0, we learn from the the proof of Lemma 2.8(c) that χ(j, i) ≥
χ(ϕ(j), j) ∧ χ(ϕ(j), i). But this contradicts Lemma 3.4(b). Hence, ϕ(j) ∈ V∞.
(b) Let p be a path in Dtr. To prove that p̃ is a path in D̃tr, because of the properties of D̃tr, it suffices to
show that for ν = 0, . . . , n−1, kν+1 ∈ ãn(kν) and d̃e(kν+1)∩ãn(kν) ≠ ∅. Recalling from Proposition 5.2(b) that
An(ϕ(j))∩V0 = {j}, we observe that An(kν)∩An(kν+1)∩V0 = {j}. We then obtain from Proposition 5.2(d)
that Ãn(kν) ∩ Ãn(kν+1) ∩ Ṽ0 = {ϕ(j)}. By Lemma 3.4(b) we have χ(kν , ϕ(j)) = χ(kν , kν+1)χ(kν+1, ϕ(j)).
As Ãn(kν) ∩ Ãn(kν+1) ∩ Ṽ0 = {ϕ(j)}, using Proposition 3.5 then proves that kν+1 ∈ ãn(kν). To show that
d̃e(kν+1) ∩ ãn(kν) ≠ ∅, assume the converse. Let ℓ ∈ d̃e(kν+1) ∩ ãn(kν). By reversing the roles of Dtr and
D̃tr and noting that for every j̃ ∈ Ṽ0, χ(̃j, ϕ−1(̃j)) > 0 and χ(̃j, j) > 0 for all j ∈ V0 ∖ {ϕ−1(̃j)}, where
ϕ−1
∶ Ṽ0 → V0 denotes the inverse of ϕ, we know from above that then kν ∈ an(ℓ) and ℓ ∈ an(kν+1), i.e.,

de(kν) ∩ an(kν+1) ≠ ∅. But this is in contradiction to the fact that p is a path in Dtr. Hence, D̃tr must
contain p̃.

In the next example we use Theorem 5.3 to find RMWMs that are χ-equivalent to a given one.
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Example 5.4. [Continuation of Example 3.7: find χ-equivalent RMWMs]
By Theorem 2.3 the sets {1}, . . . ,{99} are the maximum χ-cliques. Since 99 is the only terminal node in D,
it may be the only initial node of a DAG that underlies a potential RMWM with the same TDM χ as X

and differs from D. Thus the DAG

99 98 66 65 . . . 37 36 35 2 1

34 33 . . . 5 4 3

97 96 . . . 68 67

is the transitive reduction D̃tr of such a DAG. To verify the existence of a RMWM with TDM χ on a DAG
whose transitive reduction is D̃tr, we may compute the matrix B from (14) and check then whether it is the
MLCM of a RMWM. ◻

We conclude this section with an example investigating whether a RMWM on a known DAG is χ-
equivalent to a RMWM on another given DAG.

Example 5.5. [The existence of χ-equivalent RMWMs on given DAGs]
We consider a RMWM X with TDM χ on D1 and clarify when X is χ-equivalent to a RMWM on D2. Note
that all RMLMs on D1 and on D2 are max-weighted. By Theorem 3.10 we find

χ(1, 2) = 0, χ(1, 4) = 0, χ(1, 3) > 0, 1 − χ(1, 3)− χ(2, 3) > 0, 1 − χ(2, 4) > 0, χ(3, 4) = χ(2, 3)∧ χ(2, 4) > 0

and also that χ is the TDM of a RMWM on D2 iff

χ(1, 2) = 0, χ(1, 4) = 0, χ(1, 3) > 0, 1 − χ(1, 3) − χ(3, 4) > 0, 1 − χ(2, 4) > 0, χ(2, 3) = χ(2, 4) ∧ χ(3, 4) > 0.

This implies that X is χ-equivalent to a RMWM on D2 iff χ(2, 3) = χ(3, 4).
As shown in Example 4.12 the matrix χ given therein is the TDM of a RMWM on D1. As χ(2, 3) =

0.6 ≠ χ(3, 4) = 0.5, such a model cannot be χ-equivalent to a RMWM on D2. Of course, we already know
this from Example 4.12.

1 2

3 4D1

1 4

3 2 D2
◻

6. Conclusion

A RMLM is not restricted to heavy-tailed noise variables, but is defined in Gissibl and Klüppelberg
(2017) for independent noise variables with support R+. Only, if the noise variables are heavy-tailed, the
TDM is meaningful (not identical to 0) for modeling the dependence structure in a RMLM.

In this heavy-tailed setting, we considered the problem of identifying a RMLM X on a DAG D from its
TDM χ. Simply because of the symmetry of χ, the identifiability of X is not possible in general. RMLMs
with arbitrary index of regular variation and MLCM whose column sums are also arbitrary have TDM χ. As
our focus was on the causal structure of X represented by D, we concentrated on the standardized model,
where the index of regular variation is one and the columns of its MLCM B add up to one. We showed
that B can be recovered from χ and some additional information on D such as the full reachability relation
or only a causal ordering. In these situations we can also determine the minimum ML DAG DB of X,
the smallest DAG which represents the recursive max-linear dependence structure of X. We developed an
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algorithm which outputs the standardized MLCMs of all RMLMs having TDM χ. Moreover, we found the
RMWMs as a relevant subclass of RMLMs. The simple structure of their TDMs allows for identifiability
of B and DB from χ and the initial nodes of D. This led to a simpler approach to find the standardized
MLCMs of all RMWMs with TDM χ.

Future work will focus on statistical properties of RMLMs.
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A. Appendix

A.1. Properties of the standardized max-linear coefficient matrix of a recursive max-linear model

We summarize some properties of the standardized MLCM B defined in (7), which are used throughout
the paper.

Lemma A.1. Let X be a RMLM on a DAG D with MLCM B and standardized MLCM B.
(a) We have sgn(B) = sgn(B).
(b) For i ∈ V , ∑k∈An(i) bki = ∑

d
k=1 bki = 1.

(c) The matrix B is the MLCM of a RMLM on D.

(d) For i ∈ V , k ∈ an(i), and j ∈ an(k), bji ≥
bjkbki

bkk

with equality iff there is a max-weighted path from j to

i passing through k.

(e) The minimum ML DAGs DB and DB coincide.
(f) For distinct i, j ∈ V , bjj > bji.

Proof. (a) and (b) are immediate consequences of the definition of B and (5).
(c) can be verified by Theorem 4.2 of Gissibl and Klüppelberg (2017).
(d) The inequality follows from (c) and Corollary 3.12 of Gissibl and Klüppelberg (2017) and the rest of

the statement from Theorem 3.10(a) of Gissibl and Klüppelberg (2017) and by observing that bji =
bjkbki

bkk

iff bji =
bjkbki

bkk
.

(e) is a consequence of Theorem 5.3 of Gissibl and Klüppelberg (2017) and the definition of B.
(f) For j ∈ V ∖An(i) we have immediately by (a) that bji = 0 < bjj . For j ∈ An(i) we obtain by parts (b)
and (d),

1 = ∑
k∈An(j)

bki + ∑
k∈An(i)∖An(j)

bki ≥
bji

bjj

∑
k∈An(j)

bkj + ∑
k∈An(i)∖An(j)

bki =
bji

bjj

+ ∑
k∈An(i)∖An(j)

bki.

Since An(i) ∖An(j) ≠ ∅ and bki > 0 for all k ∈ An(i) ∖An(j), we find 1 > bji

bjj

, equivalently bjj > bji.

A.2. Derivation of the tail dependence matrix of a recursive max-linear model

We first prove (2) and specify G and its univariate and bivariate marginal distributions.

Proposition A.2. Let X be a RMLM on a DAG D with MLCM B. Then X ∈MDA(G) with

G(x) = exp{ − d

∑
j=1

⋁
i∈De(j)

(bji

xi

)α}, x = (x1, . . . , xd) ∈ Rd
+
.

Let M = (M1, . . . , Md) be a random vector with distribution function G. Then for i, j ∈ V the distribution
functions of Mi and (Mi, Mj) are given by

Gi(xi) = exp{ − x−α
i ∑

j∈An(i)

bα
ji} and Gij(xi, xj) = exp{ − ∑

k∈An(i)∪An(j)

(bki

xi

)α ∨ (bkj

xj

)α}.
Proof. As Z ∈ RV(α), there exists a normalizing sequence an ∈ R+ such that for every x ∈ R+,

lim
n→∞

F n
Z (anx) = Φα(x) (A.1)
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(e.g. Resnick, 1987, Proposition 1.11). Using (3), the independence of the noise variables, and (A.1), we
obtain for x ∈ Rd

+
,

[P(X ≤ anx)]n = [P( ⋁
j∈An(i)

bjiZj ≤ anxi, i ∈ V )]n

= [P(Zj ≤ an ⋀
i∈De(j)

xi

bji

, j ∈ V )]n

=
d

∏
j=1

F n
Z (an ⋀

i∈De(j)

xi

bji

)

ÐÐÐ→

n→∞

d

∏
j=1

Φα( ⋀
i∈De(j)

xi

bji

) = G(x).
This proves that X ∈ MDA(G) (cf. Eq. (2)). Finally, the distribution functions of Mi and (Mi, Mj) are
obtained by letting all other components of x in G tend to ∞ and recalling (5).

Proof of (8). For every k ∈ V we have n(1 − Fk(ak,n)) → 1 as n →∞ with ak,n ∶= F←k (1 − 1
n
) = ( 1

1−Fk
)←(n).

Thus,

χ(i, j) = lim
n→∞

P(Xi > ai,n, Xj > aj,n)
1 − Fj(aj,n)

= lim
n→∞

n[1 − Fi(ai,n) + 1 − Fj(aj,n) − 1 + P(Xi ≤ ai,n, Xj ≤ aj,n)]
= 2 − lim

n→∞
n[1 − P(Xi ≤ ai,n, Xj ≤ aj,n)].

By Proposition 5.10(b), whose conditions are satisfied according to Proposition A.2, and Eq. (5.38) of
Resnick (1987), we find

χ(i, j) = 2 + log Gij((−1/ log Gi)←(1), (−1/ log Gj)←(1)),
where (−1/ log Gi)← and (−1/ log Gj)← denote the generalized inverses of the functions −1/ log Gi and
−1/ logGj . With the representations for Gi, Gj , and Gij from Proposition A.2, we then obtain by a
simple calculation

χ(i, j) = 2 − ∑
k∈An(i)∪An(j)

bki ∨ bkj .

Finally, using Lemma A.1(b), (a) yields

χ(i, j) = ∑
k∈An(i)∪An(j)

bki + ∑
k∈An(i)∪An(j)

bkj − ∑
k∈An(i)∪An(j)

bki ∨ bkj

= ∑
k∈An(i)∪An(j)

bki ∧ bkj = ∑
k∈An(i)∩An(j)

bki ∧ bkj .

We learn from this proof that X and the limit vector M from (2) have the same TDM, since M ∈MDA(G).
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