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Die Zeit, die ist ein sonderbar Ding.

Wenn man so hinlebt, ist sie rein gar nichts.

Aber dann auf einmal, da spiirt man nichts als sie.
Sie ist um uns herum, sie ist auch in uns drinnen.

— Hugo von Hofmannsthal, Der Rosenkavalier
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Abstract

The cell constitutes the common structural and functional building block of all biological or-
ganisms. Enclosed within the cellular membrane are many macromolecules such as proteins
and nucleic acids that function in their ensemble as the molecular machinery that maintains
the metabolism and provides reproductive capabilities. Detailed knowledge about the structural
and dynamic nature of these macromolecules is the key to the understanding of life and many
diseases. Apart from experimental techniques, in theoretical biochemistry, valuable complemen-
tary approaches have been developed to investigate these molecular mechanisms with the help of
computer simulations. An important representative of these techniques are molecular dynamics
(MD) simulations, an approach that describes the atomistic interactions of biomolecules and their
chemical environment with a classical Newtonian model and allows to visualize the molecular
motions comparable to a fictive microscope operating at atomistic resolution. Groundbreaking
discoveries have been made with the help of molecular dynamics simulations in the past. Molec-
ular dynamics simulations are however limited by the available computational resources. This
often prevents the sampling of biomolecular processes occurring on slow timescales that cannot
be simulated in reasonable time. In this work, the basic theoretical concepts behind molecu-
lar dynamics simulations are introduced and modern techniques are reviewed, developed, and
applied that allow the enhanced sampling of otherwise inaccessible molecular processes. In par-
ticular the weighted ensemble method is critically reviewed, a statistical approach that acceler-
ates MD sampling along predefined reaction coordinates and rigorously reproduces both kinetic
and equilibrium properties. Important convergence issues, connected to the weighted ensemble
methodology, are discussed and an implementation of the algorithm is presented. An advanced
sampling approach is developed in order to predict structural binding modes of small ligand
molecules in the receptor binding site. The structural information about ligand/receptor com-
plexes is frequently relevant during the process of designing new drug molecules. In another
study, extensive MD simulations on an intrinsically disordered peptide are directly compared
to fluorescence spectroscopy measurements. Thereby, the modifications of conformational and
dynamical properties of biomolecules induced by fluorescence labeling are elucidated and useful
guidelines are developed to design future experiments such that the modifications on the system
remain negligible. Eventually, two biologically relevant proteins are investigated with molec-
ular dynamics simulations and the results are compared and complemented with experimental
findings. Both system have in common that they are not structurally rigid but possess highly
flexible regions of structural disorder rendering them interesting for molecular dynamics simu-
lations. The first study is targeting the signaling protein GTPase Rab1b that is involved in the
intracellular vesicle transport system. Rab1b acts as a molecular switch that is characterized by
the conformational transition of a functional switch region from structural disorder to order.
Bacteria of the species Legionella pneumophila exploit this mechanism by covalently attach-
ing an adenosine monophosphate to the tyrosine 77 residue of Rabib thereby reprogramming
the cellular supply system to promote their own reproduction. Umbrella sampling simulations
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demonstrate that the switching mechanism is hereby locked in the activate conformation. In a
second study the association mechanism of S-peptide and S-protein forming RNAse-S is inves-
tigated. While S-peptide is disordered in solution, it adopts a stable helical configuration when
bound to S-protein. Simulations reveal that an initial key contact between the disordered S-
peptide and S-protein is sufficient to induce the folding process on the surface of S-protein. An
alternative mechanism proposing that S-peptide adopts the native conformation before binding
to S-protein is ruled out.



Chapter 1

Introduction

1.1 Motivation

The field I entered in the last years is strongly connected to our sheer existence as living beings.
About 4 billion years ago, long before complex organisms populated the surfaces and oceans
of our planet, the first self-organizing chemical units with reproductive capabilities evolved [1].
Yet before these units were organized into cells, two fundamental paradigms of life arose from
purely chemical means. Information was stored in chemical molecules and together with the
capability to reproduce and propagate these information storing molecules, live was born. To-
day, we know two kinds of biological molecules that possess the capability to store information.
Both, the ribonucleic acid (RNA) and the deoxyribonucleic acid (DNA), are quite similar in their
chemical composition and occupy vital and complementary positions in modern cellular live.
Although initially it was unclear whether DNA preceded RNA on the evolutionary timeline or
vice versa, the widely accepted RNA world hypothesis postulates, that the first macromolecule
igniting the processes of life was indeed RNA [2—4]. Laboratory experiments, based on the find-
ing of Miller et al. in 1955 showed that simple biochemical molecules like sugars, amino acids,
or nucleotide bases are formed in prebiotic conditions from a few simple chemical ingredients
that are believed to have been present in the prebiotic world. However in early experiments,
the efficiency of ribonucleotides synthesis was too low to strongly support the RNA world hy-
pothesis [5-8]. Recent studies successfully increased the efficiency of synthesis of activated
pyrimidine ribonucleotides in prebiotically plausible conditions [9]. Another ground breaking
discovery, awarded with the Nobel price in chemistry for Altman and Cech in 1989, revealed that
certain RNA sequences possess catalytic properties, for which the term ribozym was introduced
[10-12]. Interestingly, it was found that important functional components of the ribosome, a
molecular machine that translates the information stored in RNA and synthesizes the encoded
proteins, are constructed from RNA themselves using proteins as scaffolding structures [13].
Additionally, a candidate for the molecular machine that catalyzes the type of polymerization
required for RNA replication fully constructed from RNA was recently found [14]. Emerging
from the RNA world, the next step in evolution included most probably the surrounding of self-
replicating RNA units with a self-assembling bilayer membrane formed from amphiphilic fatty
acids in proto-cells [15]. In modern cells with an increased level of complexity, the function of
storing the genetic code was mostly shifted from the single-stranded and non-redundant RNA
to the double-stranded redundant DNA molecule while RNA remained in other roles e.g. gene
regulation, signal transduction and as information transporters in the process of DNA transcrip-
tion and protein synthesis [16]. Proteins complement the catalytic functions of RNA by having
evolved to the “workhorses” in cellular life. Having divided the tasks of information storage and
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catalytic function among these classes of biomolecules, complex super-cellular life evolved using
cells as smallest common building block which enabled the diversification into different species.
The chemical building blocks of proteins are the family of amino acids which provided a larger
set of chemical diversity compared to the four nucleotides in RNA, with over 500 known mem-
bers from which 20 are commonly found in proteins [17]. The amino acids are linearly linked
to form a chain that folds to a functional protein after assembly. The first three dimensional
(3D) structure of a protein was solved 1958 for myoglobin and marked a scientific breakthrough
that established X-ray crystallography as a standard technique to solve protein structures until
today [18]. During his work on RNAse-A, Christian Anfinsen discovered eventually that the
amino acid sequence encodes the folded structure and thereby the function of proteins [19]. The
folding process arranges functional amino acid side-chains in space such that specific chemical
reactions can be catalyzed or, more generally, interactions with other molecules are enabled. In
cases where the folding process ends in a non-native state, serious malfunction in the organism
are often the consequence [20, 21].

1.2 Molecular dynamics simulations

Anfinsen’s dogma, that the native structure and function of proteins is determined by the amino
acid sequence, largely increased the interest in structural information about proteins and other
biomolecules. It has become clear that a fundamental understanding of structural properties
of biomolecules on an atomistic level is the key to the understanding of cellular life and the
investigation of many diseases. Since the first protein structure was solved by X-ray crystallog-
raphy, a multitude of alternative experimental techniques for structure determination has been
developed [22-28]. In parallel, computational chemists developed methods to describe molecu-
lar structure and motions in proteins and other biopolymers theoretically. This thesis is focused
on the application and development of methods describing molecular motions over time with
the help of molecular dynamics (MD) simulations. A brief introduction to the underlying the-
oretical concepts behind MD simulations shall be given in this chapter. MD simulations are
sometimes termed to be a computational microscope as they provide access to the dynamic pro-
cess in biomolecules at atomistic resolution [29, 30]. The approach complements experimental
techniques that are usually unable to access both atomic position and dynamics at the same time.
The information how biomolecules rearrange and change their structure over time is however a
crucial point for understanding the mechanism underlying cellular live. Although the theory of
quantum mechanics constitutes currently the most accurate theoretic description of molecular
processes, its application is limited to simple systems with a small number of atoms and to rel-
atively short time scales due to computational constraints [31]. Therefore, molecular dynamics
simulations provide an alternative pathway to simulate molecular motions of larger systems on
longer timescales, embedded in a classical Newtonian corset. The concept of MD is based on the
approximation of Born and Oppenheimer, that proposes the wave function in the Schrédinger
equation of molecular systems to be separable in two independent electronic and nuclear contri-
butions [32].

Wior = \Ilelectronic X \Ijnuclear (1'1)

The Born-Oppenheimer approximation justifies a separation of timescales to treat molecular
dynamics as the motions of the slow and heavy nuclei and independently from the fast fluctua-
tions of the electrons. Despite this separation ansatz, the quantum mechanical treatment of large
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molecular systems remains still too expensive to be used for the long timescales that matter for
biological macromolecules. Therefore the motions of nuclei are modeled in MD simulations with
the classical description of massive particles obeying Newtons second law.

—

F=m-& (1.2)

Atoms are represented in this approach by massive point particles with Cartesian coordinates
of their nuclei while the electronic contributions are accounted for with a mean field approach
by assigning partial charges to the point particles. These partial charges account for the non-
uniform electron distribution in molecules due to the varying electronegativity of different atoms
in a covalently bonded neighborhood and are typically unphysical fractions of the elementary
charge e [33]. This approach however ignores the effect of electronic polarisability, the process
by which the electronic distribution of the molecules spontaneously responds to the environ-
mental electric field. As in some cases the inclusion of polarisability effects is crucial for an
accurate representation of biochemical processes, efforts are undertaken to include them into
modern MD approaches [34]. Having reduced the level of detail for molecular systems down to
classical massive particles, the interactions between these atoms need to be modeled. Forces in

1 k
.Z .‘7 Oijk
>
T j
J

Figure 1.1: Intramolecular interactions in molecular dynamics force fields. From left to right, bond, angle
and dihedral interactions are shown. Atoms are represented as black spheres with indices
1, ], k,l and covalent bonds are indicated as black lines. Grey arrows show the direction of the
potential force.

molecular systems are represented by potential functions, representing the various interactions
between covalently bonded and non-bonded atoms. The sum of bonded and non-bonded po-
tential functions, acting in a molecular system define a so-called force field in MD terminology.
The class of bonded or intramolecular interactions in molecular dynamics simulations involve
typically at least the following three potentials [35]

1 2
Voona(rij) = 5kij (Tij = 7“5?) (1.3)
1 2
Vangle (0ijr) = ikijk (Hijk - 95?;1) (1.4)
Viihedral (®ijk1) = Kijm (1 + cos <n¢ijkl — ¢§?;)€l)> : (1.5)

Figure 1.1 depicts the motivation and application of these three potentials to covalently bound
atoms. Covalent bonds, evolving from shared electrons between atoms i, j, are modeled as har-
monic potential with a force constant £;; (equation 1.3). The application of bond potentials repro-
S)) between atoms, however the geometric structure of molecules
is not fully described in equilibrium by only covalent bond potentials. To account for this fact

duces the equilibrium distance r
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further potentials based on angles between three next neighbor atoms i, j, k and dihedral angles
between four atoms i, j, k, [ are typically introduced (equations 1.4, 1.5). While the angle poten-
tial is again harmonic with force constant £;;, and equilibrium angle 92(;),1 the dihedral potential
models the periodicity of a flip around the dihedral connection in form of a periodic cosine func-
tion with » minima per turn and a phase shift qﬁgjo.,)cl. The cosine function is offset by 1 to avoid a
change of sign and a force constant ;i is defined.

The interactions between atoms that are not in a direct covalent relationship are typically mod-
eled by two non-bonded interactions. The pairwise electrostatic interaction between atoms i, j
with partial charges ¢;, g; is described by the Coulomb potential (equation 1.6). Furthermore, as
the cores of atoms ¢, j are positively charged and are surrounded by a negatively charged electron
cloud, they interact via induced dipoles with each other, leading to a short range attractive van
der Waals interaction that scales with distance T?j. At close distances, on the other hand, the van
der Waals attraction is replaced by a strong repulsion due to the Pauli principle of overlapping
electron orbitals. This repulsion is modeled with a distance dependence TZ»IJ-Z. The combination of
induced dipole attraction and Pauli repulsion results in the Lennard-Jones potential (equation

1.7).

N
i - - qiq;
7‘/(:(:.)3110mb(w17 T 7$N) = Z # (16)
gz eoTi
N ~(12) (6)
‘/L(Jz)(ml,...,xN) = Z ri? — Tg‘ (1.7)
Ji#i Y Y

All these potential functions define parameters to characterize the specific interaction between
different atoms in a molecular environment. For bonded potentials (1.3, 1.4, 1.5) these are the
force constants k;;, k;j, kijri, the equilibrium distances TEJQ), 91(;2, ¢g‘)/)~cl’ and the number of min-
ima n per periodic flip in the dihedral potential. For non-bonded interactions (1.6, 1.7) these are
the partial charges of the atoms ¢; and the Lennard—Jones parameters C’Z-(f ), C’i(-w). The entirety
of these parameters defines a molecular dynamics force field and the process of parametrization
is a non-trivial problem. It is typically achieved by fitting the parameters to experimental results
or results from ab initio quantum mechanics calculations. As the complex quantum mechanic
mechanisms in molecular systems are only coarsely modeled by the relatively small number of
classical potential functions, it is difficult to reproduce all sorts of different molecular situations
with only one set of parameters (i. e. with a single force field). Therefore the parametrization of
force fields is an ongoing process and a plethora of different MD force fields has been proposed,
specifically designed for the simulation of different molecular situations and environments [36-
42].

Having defined the forces acting in a many particle molecular system, Newtons second law 1.2
can be iteratively solved for small time steps in order to simulate the atomic motions over time
[43]. However, the algorithm would yet still only represent a IV particle system at constant total
energy E and volume V. In the thermodynamic world of biomolecules however, other quantities
like the temperature or pressure need to be controlled by coupling the system to an external bath.

The instantaneous temperature at time ¢ is defined in statistical physics over the velocity v; of
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the N particles and their degrees of freedom N¢

2

N
m;v;
T(t) =) N (1.8)
=0

The quantity in 1.8 which can be directly adjusted in MD simulations are the velocities v; (as
the masses m; are constant in the classical picture). Thermostat algorithms therefore adjust the
temperature to stay close to the reference temperature Ty of the surrounding bath by rescaling
the particles velocities on-the-fly such that Ty = (7'(t)). Several thermostat algorithms have
been proposed in the past [44-47]. Another quantity that may be coupled to an external bath is
the pressure p. The scalar pressure p is defined in statistical physics as the trace of the pressure
tensor p divided by 3. The instantaneous pressure tensor p(t) is defined as the sum of the kinetic
energy tensor and the virial tensor at time ¢

N N

1 L L =

p(t) = v ZmiviviT + ZTZ]FZ? and p(t) =Tr(p(t)) /3. (1.9)
i i<j

Both, velocities #; and positions (implicitly in the distance vector 77; between atoms 4, j) con-
tribute to the pressure determination and can again be adjusted during the molecular dynamics
simulation with the help of barostatic algorithms [44, 45, 48].

1.3 Outline

This thesis deals with a variety of loosely linked topics that build on common ground being situ-
ated in the field of biomolecules investigated with molecular dynamics simulations. The concept
of MD simulations is applied and developed in different directions. Methods and detailed infor-
mation about the used techniques are given in the respective chapters as they are required. In the
first two chapters the limits of current molecular dynamics simulations are discussed with regard
to the difficulties of abundant sampling and convergence. These chapters focus on the general is-
sues of finite sampling of biomolecular systems and the different advanced sampling approaches
that have been designed to bypass these problems. In chapter 2 the state of the art of advanced
sampling methods is reviewed. These methods are designed to accelerate and enhance the sam-
pling of specific molecular processes of interest that are otherwise inaccessible to molecular dy-
namics simulations. The discussed methods include different variations of the replica exchange
methodology, simulated annealing, or meta-dynamics. In chapter 3 the weighted ensemble (WE)
methodology is thoroughly reviewed and described, elucidating all advantages and drawbacks
of the approach. Weighted ensemble differs from other standard advanced sampling methods by
the design features to not require modifications of the Hamiltonian or a rupture in the physical
continuity of trajectories. It is therefore apt to reproduce the statistically exact dynamic proper-
ties of the simulated system. A complete and efficient implementation of the WE methodology in
python has been developed in the course of this thesis and is presented in appendix A. After the
review of state of the art advanced sampling approaches and a technical introduction into the WE
methodology, the development of a replica exchange based technique that allows the study of
receptor-ligand binding processes including full flexibility of the binding partners and an explicit
inclusion of solvation effects is presented in chapter 4. The approach enhances the sampling of
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putative ligand-receptor complexes in order to identify energetically favorable binding modes.
The generic design provides a potential utility to predict binding structures during the design of
drug molecules inhibiting active sites of known receptors. A connection between experimental
fluorescence techniques and MD simulations is drawn in chapter 5. Fluorescence spectroscopy
techniques have become important tools for the experimental investigation of conformational
dynamics in biomolecules. However these techniques require the covalent attachment of label-
ing molecules to the target molecule. By combining MD simulations with photoinduced electron
transfer fluorescence correlation spectroscopy (PET-FCS) experiments, the significant effect of
fluorescence labeling on the conformational dynamics of small biomolecules is revealed. The
results may be used to minimize the influence of labeling when designing new fluorescence ex-
periments. In the chapters 6 and 7 two MD studies of biologically relevant protein systems are
discussed. The first study (chapter 6) explains the effect of posttranslational modifications on the
conformational switching mechanism of the cellular signaling protein Rabib. The modification
is effected by the bacterial enzyme DrrA/SidM of Legionella pneumophila in order to exploit the
intracellular vesicle transport system of the host cell to promote the replication of the bacterium
inside the host. It is found that the posttranslational modification locks the switching mecha-
nism of Rab1b in the active signaling conformation due to the additional negative charge that is
introduced by the modification. The results may also have implications for the mechanistic un-
derstanding of conformational switching in other signaling proteins. The second study (chapter
7) investigates the association mechanism of the protein complex RNAse-S. RNAse-S consists of
the larger fragment S-protein and the smaller S-peptide. While intrinsically disordered in solu-
tion, S-peptide adopts a stable helical fold upon the association to S-protein. The exact mecha-
nism, whether S-peptide adopts the native conformation before binding to S-protein or whether
folding to the native structure occurs after initial key contacts are formed, is investigated.
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Chapter 2

Exploring biomolecular dynamics and
interactions using advanced sampling
methods

Molecular dynamics (MD) and Monte Carlo (MC) simulations have emerged as a valuable
tool to investigate statistical mechanics and kinetics of biomolecules and synthetic soft matter
materials. However, major limitations for routine applications are due to the accuracy of the
molecular mechanics force field and due to the maximum simulation time that can be achieved
in current simulations studies. For improving the sampling, a number of advanced sampling
approaches have been designed in recent years. In particular, variants of the parallel tempering
replica-exchange methodology are widely used in many simulation studies. Recent methodolog-
ical advancements and a discussion of specific aims and advantages are given. This includes
improved free energy simulation approaches and conformational search applications.

2.1 Introduction

Molecular simulations are a versatile tool to study the dynamics of soft matter systems, polymeric
materials, and biological macromolecules [30, 50]. Differing in their level of spatial resolution,
simulations can include electrons explicitly as spatial wave function or as density function in the
framework of the density functional theory. Due to the large size of biological macromolecules
and many soft matter systems it is often desirable to only use the positions and momentum of
whole atoms as variables. In this case the interactions are described by a classical force field
based on the coordinates of atom centers. The atom-centered potentials include the average
effect of electrons and are often based, at least in part, on experimental parameterization. Res-
olution level and associated computational demand can be even further reduced by considering
whole chemical groups as single units and defining effective interactions between such coarse-
grained centers of a system [51, 52]. By combining these force fields with the classical equations
of motion, molecular dynamics (MD) simulations [50] can model the dynamics of soft matter
systems or biological macromolecules. Alternatively, relevant conformational states of a molec-
ular system can be generated with Monte Carlo (MC) methods [53]. The choice of the simulation
ensemble depends on the physical framework. Although it is, in principle, possible to generate
configurations of a system compatible with arbitrary statistical ensembles, the great majority of
simulation studies are performed under conditions that are compatible with a canonical or an
isobaric-isothermal ensemble. An ultimate goal is to extract realistic kinetic and thermodynamic

Parts of this chapter have been published in [49]
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quantities from simulations and to associate it with atomic resolution structural data. To extract
accurate thermodynamic and kinetic data, the sampling of relevant states during molecular sim-
ulations is of uttermost importance. Standard simulation algorithms often sample only a limited
range of the relevant configurations of a given system during the available simulation time [54—
56]. The improvement of simulation sampling techniques has been the major aim of advanced
or enhanced sampling techniques developed in recent years [55, 56]. The number of studies in
this area has increased dramatically, allowing only the discussion of a subset of important de-
velopments in the present review. It should be emphasized that many aspects of identifying and
sampling thermodynamically relevant conformational states in a molecular system also play a
role in other many body problems, including systems that are treated quantum mechanically
(QM). Therefore, ideas and principles discussed in this chapter may also be of relevance to other
fields of numerical and soft condensed matter physics.

2.2 Molecular mechanics force fields to study biomolecular and
soft matter systems

The standard form of a classical force field was introduced in chapter 1 and shall be rewritten
below,
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In such a model, atomic interactions are approximated by atom-centered model functions that
include bonded (first three summations in equation 2.1) and non-bonded contributions (last term
in the aforementioned equation). To control the bond lengths (b) and bond angles (f) of the
macromolecule quadratic energy terms with force constants (k; and ky, respectively) matching
experimental vibrational frequencies are used. A combination of periodic terms is used to con-
trol dihedral torsion angles 7. The non-bonded interactions are described by van der Waals and
Coulomb terms (as a double sum over all non-bonded pairs of atoms).The form of the energy
function of a molecule allows a rapid calculation of the potential energy and also the calculation
of forces necessary for performing MD simulations based on the numerical solution of the equa-
tions of motion. It is possible to explicitly include solvent molecules and ions around the solute
molecule during the simulations. However, the explicit inclusion of a large amount of water can
increase the computational demand and requires long simulations to equilibrate the solvent and
ion atmosphere. Accounting implicitly for solvent effects can accelerate simulations and can also
improve the convergence of calculated thermodynamic averages. Most implicit solvent models
are based on macroscopic electrostatic concepts (assigning different dielectric constants to the
interior and surrounding of a solute) or hydration shell models that are based on the accessible
surface of a given solute. In the former case approximate solutions of the Poisson-Boltzmann
equation or solutions to the Generalized Born model for a macromolecule are most frequently
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applied [57, 58]. However, new hardware and design of special computer architectures dra-
matically extended simulation time and maximum size of a simulation system including explicit
solvent [30, 50—61]. Due to the availability of new hardware and design of special computa-
tional architectures [60] it is now possible to simulate systems with thousands or even millions
of atoms and reaching simulation timescales in the micro-second regime (for systems with thou-
sands of atoms). In special cases even milliseconds have been reached for small solvated protein
molecules [61]. However, for routine applications the maximum simulation time is still a major
limitation and is, in many cases, not sufficient to cover all relevant conformational or configura-
tional states of a biomolecular or polymeric system. Although of major importance and coupled
to the sampling problem, the question of how accurately a classical force field of the form given
herein can describe a realistic molecular system is not discussed in the current review. Instead,
the sampling of relevant conformational states is the main focus.

2.3 Sampling problem in molecular simulations

Synthetic polymeric molecules and biopolymers consist of long chain molecules typically involv-
ing rotatable chemical bonds. Molecular dynamic simulations allow only for small variations of
bond lengths and bond angles of biopolymers, since large force field constants are keeping all
relevant conformational states close to equilibrium geometry with respect to these variables.
Conformational changes mainly arise from the bond rotation or dihedral angle change at se-
lected positions along the polymer, possibly resulting in different conformational states that are
separated by steric energy barriers. Since each building block of a polymer can contain several
possible dihedral substates, the number of states for the polymeric system can grow exponentially
with the polymer length. The underlying energy function is often termed the energy landscape
of the polymeric system. To extract thermodynamic and kinetic quantities from simulations it is
necessary to visit most or preferably all relevant states of the system. This task can be difficult or
even impossible depending on the size of the system and the character of the underlying energy
landscape [54]. For example, even for small systems the relevant conformational regimes with
low associated conformational energy can be separated by large energy barriers (figure 2.1, left
panel). On the time scale of hundreds of nanoseconds up to microseconds that can currently
be covered by MD simulations, conformational transitions between stable states can still be rare
events [30, 59]. In addition, even in cases with small potential energy barriers between stable
states the large number of states by itself can create barriers. This is, for example, the case if the
crossing of a barrier is associated with a reduction of the number of accessible states (entropic
barrier). In such cases the lowering of energy barriers or increase of the temperature may not
help to overcome the sampling bottleneck. In recent years, the field of biomolecular simulations
has witnessed a revolution in terms of the maximum reachable simulation time scale. By means
of new special purpose computer hardware [60, 61] it has become possible to run MD simula-
tions up to the millisecond regime and beyond for not too large protein or polymer systems.
Reversible folding and unfolding could be modeled for a set of 12 small proteins basing on a well
parameterized molecular mechanics force field [60]. Such studies did not only offer many new
insights into the atomic details of the protein folding process but also showed that molecular
mechanics force fields include the essence of the important interactions realistically enough to
allow the reversible folding of several different protein molecules. A drawback of brute force
applications to tackle a simulation challenge is the extremely large computational demand and
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still limited availability. However, significant progress has been achieved not only in the design
of new computer hardware but also in the development of new and smart sampling algorithms
[55, 56] with the aim to sample more relevant states of a system in shorter time or with more
limited computational resources, which is the focus of the topological review. In the first part of
the review we give an overview on the various methods that have been proposed to overcome
the conformational sampling problem during molecular simulations. For example, simulated an-
nealing techniques open a large conformational space at high simulation temperatures to finally
select low energy states by cooling down the system [62—64]. Second, potential scaling methods
aim to lower barriers during energy minimization or an MD simulation [65-69] by scaling down
the original potential or replacing it by a soft core potential. Third, conformational flooding [70]
and meta-dynamics methods [71] specifically enhance sampling along one selected collective co-
ordinate or a set of collective degrees of freedom of a molecular system. Alternatively, the locally
enhanced sampling method makes use of multiple conformational copies of a selected region of a
molecule to generate a mean field and thus to propagate the system [72]. Finally, example appli-
cations give an overview of types of problems and systems that benefit from enhanced sampling
methods.

2.4 Advanced sampling approaches

2.4.1 Simulated annealing and tempering methods

The sampling problem has been recognized as a major issue since the initial developments of MC
and MD simulations methods and their application to large polymeric molecule systems [54].
The simulation temperature is one commonly used classical parameter to control the ability to
overcome barriers of the potential energy during simulations. In simulated annealing techniques
[62-64] the system starts at a high temperature to escape from local minima in a rough energy
landscape and is subsequently slowly cooled down to preferably move to the regime of the global
minimum of the energy function. The technique is widely used in structural biology to generate
3D structures of biomolecules compatible with experimental data. In fact, basically every ex-
perimental biomolecular structure determination involves such a computational modeling step
applied to a starting structure to maximize the agreement with experimental data [64]. It typi-
cally requires encoding the experimental data as an additional force field penalty term such that
a structure with optimal agreement with respect to experiment minimizes this penalty term. For
example, in the case of the structure determination using x-ray crystallography the experimental
data represent the electron density of the crystal structure, and a realistic structure model should
be compatible with the measured electron density or measured structure factor [64]. During the
modeling process the structure factor of the structural model is estimated (by Fourier transfor-
mation of the model) and compared to the experimental structure factor. The corresponding
difference is included as a force field penalty term that needs to be minimized during the struc-
ture optimization process. Another common method of structure determination uses nuclear
magnetic resonance (NMR) spectroscopy and allows the derivation of short range distances and
contacts in a molecular structure [73]. The experimentally determined distances can be included
during a molecular simulation approach as restraints (typically as harmonic force field penalty
terms with a minimum at the experimentally measured distance). Similar to structure determi-
nation with x-ray crystallography, the other force field terms limit the sampling of conformers
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to structures compatible with the chemical and sterical geometry of the polymer [64, 73]. In re-
cent years many new experimental techniques for obtaining limited or low-resolution structural
data on flexible molecules, intermediate states, or very large assemblies have been developed.
Often no high resolution crystal structure can be determined in these cases. The most important
techniques include cryo-electron-microscopy (cryoEM), which provides low to medium (near
atomistic) resolution data on the electron density distribution [74]. Other examples are small
angle x-ray scattering (SAXS) [75], which provides low resolution information on the shape and
fluorescence energy transfer (FRET) [76, 77] that allows the estimation of distances between flu-
orophors in a molecule. These techniques are increasingly used not only to study biomolecules
[78] but also to investigate many synthetic polymers or other soft matter systems. In general, the
optimization of generated structures with respect to the experimental data may require escaping
from local minima on the path to a set of conformers compatible with all experimental data. As a
standard technique, simulations are initially started from a high temperature allowing the cross-
ing of large energy barriers and are subsequently cooled down slowly in a simulated annealing
protocol. A final comparison of the generated structures with the available experimental data
allows retaining only those final structures fully compatible with experimental data. Starting
such a simulated annealing optimization process from many different starting conformations
can also be used to get an impression on how accurately a polymer structure is defined by the
experimental data. Equivalent techniques are also used to generate model structures based on
similarity (homology) to a known biomolecular structure (called a template structure). In such
cases the experimentally derived restraints are derived from the stereo-chemistry and geometry
of the structural template [79]. The realistic and optimal inclusion of such data during structure
generation has emerged as an important task in structural biology. Since the often sparse exper-
imental data are insufficient to uniquely define an atomistic structure it is necessary to combine
it with the most realistic simulation conditions, including, for example, the surrounding solvent
explicitly and treating molecular interactions accurately. The high initial temperatures used in
simulated annealing approaches may interfere with the presence of explicit water molecules
during MD simulations and also can disturb the conformation in directions not controlled by
the limited experimental input data. Here, it is necessary to design combinations with other ad-
vanced sampling methods that do not disturb the simulated structure in undesirable directions.
Some of the techniques discussed here could be useful to tackle this important task. Even though
high temperatures in MD simulation can help to overcome energy barriers, kinetically trapped
conformational states still can result from the cooling process. Hence, simulations do not guar-
antee the localization of a globally optimal state even if experimentally derived restraints are
respected. However, in general, high simulation temperatures dramatically increase the number
of relevant conformational states compared to low temperatures for a given polymer system. This
is a simple consequence of the functional form of the Boltzmann factor and the density of states
as a function of the energy. At high simulation temperatures the sampled states are dominated
by entropy (availability of states) and less by the relative potential energy of states. In the case
of the inclusion of experimental data in the form of energy penalty terms, it is possible to signif-
icantly limit the accessible conformational states even at high simulation temperatures. Without
such constraints high temperature simulations sample mainly states outside the regime that are
of physical importance at lower temperatures, where relative energies of states dominate. Hence,
simulated annealing may not be efficient for sampling problems that do not include (experimen-
tally derived) restraints to keep the sampled states reasonably close to a regime of interest. An
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interesting technique to accelerate sampling in selected collective variables during MD simula-
tions is the temperature accelerated MD simulation [80]. In this technique a restraining potential
is added to keep the sampled states close to conformations along the selected collective variable.
It is possible to separate the motion using the Langevin equation into a part along the collec-
tive degrees of freedom and orthogonal coordinates. By using higher temperatures and typically
larger viscosities for motions along the collective degrees of freedom, one can overcome energy
barriers along the collective variables of interest more easily. However, the approach requires a
selection of a collective variable of interest prior to the simulation. Switching between different
simulation temperatures can alternatively be done continuously, as in the simulated tempering
approach [81]. Initially, a discrete set of temperatures is chosen such that the lowest temperature
represents the temperature of interest and at the highest temperature all relevant barriers can be
crossed. At frequent intervals the temperature of a single simulation is switched to a higher or
lower level and then continued. A switch in simulation temperature is accepted according to the
following acceptance rule that preserves a canonical sampling at the selected temperatures:

Prccept(i — j) = min {1, Ee— [ﬁjV(F)—ﬁiV(F')] } (2.2)
W

Unfortunately, the simulated tempering method requires the estimation of appropriate weights
W; (depending on the effective accessible conformational space at each temperature) for each
temperature switch in advance of the production simulation. However, several methods have
been recently proposed to iteratively adjust these weights on the fly during the simulation [82,
83]. Compared to simulated annealing in simulated tempering the system continuously enters
high temperatures and low temperatures, increasing the chance of crossing barriers but still being
able to select relevant low energy states. However, one should keep in mind that, overall, the
system spends only a fraction of the total simulation time at the desired physical temperature of

interest.

2.4.2 Scaling or deforming the force field energy function to improve
sampling

Temperature is, however, not the only parameter that can be scaled to overcome energy bar-
riers during a simulation. Scaling the original potential or replacing it with soft core potential
has also proven successful to enhance conformational sampling during molecular simulations
[65-69]. Alternatively, a boosting potential can be added whenever the potential energy of the
sampled configuration falls below a preset energy threshold. This approach, termed accelerated
MD simulation [84], also effectively lowers the difference in potential energy between low en-
ergy regimes and potential energy barriers. Any scaling of selected potential energy terms or
boosting of certain energy contributions may, however, lead to a distorted energy landscape that
does not preserve the structure and the distribution of minima of that of the original force field.
Hence, it can lead to sampling of regions of the conformational space not relevant for the original
potential energy landscape. Thus, in high dimensional coordinate space, states of little relevance
for the temperature or Hamiltonian of interest may be significantly oversampled. This can also
lead to a shift of the free energy difference between folded and unfolded states of a peptide or
protein [66, 84]. In general, Boltzmann reweighting of the sampling on a deformed potential
energy landscape can be used to recover the state distribution at the original energy function.
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However, similar to the estimation of a free energy change associated with the modification of a
Hamiltonian (free energy perturbation), the result depends strongly on the overlap of the sam-
pling in the deformed potential energy landscape with respect to the sampling at the original
force field (or desired temperature).
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Figure 2.1: llustration of a hypothetical energy landscape for a biopolymer along a selected reaction coor-
dinate for conformational transitions. Starting at conformation A, the sampling is restricted to
regions in the vicinity of A at low simulation temperature (marked blue), whereas crossing of
large energy barriers becomes possible at higher temperatures (left panel). In meta-dynamics
simulations biasing potentials (indicated in blue) are added to the force field during a simu-
lation (right panel). The biasing potentials in the form of Gaussian functions are centered at
already visited positions along the reaction coordinate and drive the simulation to explore new
conformations along a reaction coordinate. Eventually, the process results in a flat free energy
surface and allows extraction of the free energy function along the reaction coordinate as the
sum of the Gaussian biasing potentials (with opposite sign).

2.4.3 Conformational flooding and meta-dynamics approaches

Although atomistic simulations provide the positions and momentum of each individual atom
as a function of time, it is often desirable to focus on a more limited set of variables that are of
physical interest or can be directly compared with experiments. In simple cases such variables
can be (1D reaction coordinate) and may correspond to a distance between the termini of a poly-
mer molecule or represent the radius of gyration of a flexible macromolecule. Motion in such
variables requires the simultaneous and collective change of many atom positions. Along these
collective coordinates the free energy landscape can contain significant free energy penalties
and barriers. A classical method to guide a system along a selected collective coordinate is the
umbrella sampling (US) method [85, 86] where one adds an appropriate biasing potential to the
force field to attract the system toward a desired region along the collective variable (e. g. a pre-
set distance between the ends of a polymer). Typically, one uses a simple quadratic (harmonic)
biasing potential:

V('F) = Voriginal(F) + Vi)ias(D(F)) (2'3)

with typically

N |

V:bias(D(f‘)) = (D(F) - l)ref)2 (2'4)

Here, D(7) indicates the selected collective variable that is the function of the atom coor-
dinates r, and D,f corresponds to a preset reference value along the collective variable. The
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biasing potential drives the sampling of states close to regimes of interest along D(7). It is also
possible to extract the associated potential of mean force or change in free energy along the
collective variable [87]. The US is widely used for extracting free energy changes but less as
an advanced sampling method to improve the sampling in MD simulations in general. Confor-
mational flooding [70, 88] and meta-dynamics methods [71] have been designed to specifically
enhance sampling along one selected collective coordinate or a set of collective degrees of free-
dom of a molecular system. In contrast to the US method only a starting point for the simulations
is required, and the interest is to explore the sampling along selected collective degrees without
any preset interval or limit on the coordinate. Conformational flooding in its original form en-
hances sampling without pre-definition of a reaction coordinate of interest [70]. It makes use
of a repulsive potential derived from soft principal components of motion of a system to drive
the system away from the current conformational state along soft collective degrees of freedom
[70, 88]. In meta-dynamics typically a 1D collective direction of interest must be provided. An
additional key feature of meta-dynamics is to use the history of the simulation to flatten the free
energy landscape and to guide the sampling away from already visited regimes of the conforma-
tional space. Similar in spirit and developed before meta-dynamics, in the local elevation method
[89] a progressively changing biasing potential in the dihedral angles is added to the force field
to drive the system away from already visited conformations. In meta-dynamics simulations po-
tential functions of Gaussian shape are added to the force field along the collective coordinate
in preset intervals [71]. The Gaussian functions are typically centered at the current sampling
point along the reaction coordinate and act as a biasing potential to destabilize the conforma-
tional regime currently sampled in the simulation (illustrated in figure 2.1, right panel). This leads
to a smoothing of the free energy landscape and ultimately results in a flat energy surface (along
the collective coordinate) [go]. The final sum of the Gaussian functions (with a negative sign)
represents the free energy function along the reaction coordinate [71, 91]. The meta-dynamics
technique and several variants have been used frequently to enhance conformational sampling
along a selected reaction coordinate [56]. Typically it is used in combination with 1D reaction
coordinates and is less efficient in case of higher dimensions. As a recent extension of the orig-
inal meta-dynamics approach, the well tempered meta-dynamics method allows a controlled
inclusion of Gaussian biasing functions during the meta-dynamics process [92]. Controlled by
parameter AT, the height of deposited Gaussians decreases over sampling time, resulting in orig-
inal meta-dynamics sampling for large AT For large AT the original meta-dynamics method
is recovered. In addition, other variants like the multiple walker method have been combined
with meta-dynamics to improve sampling along a reaction coordinate. In the multiple walker
method many simulations are started in parallel at different initial conditions along the reaction
coordinate and the accumulation of Gaussian functions to smooth the energy landscape is com-
bined, which allows a faster convergence [93]. The adaptive biasing force (ABF) method aims at
offsetting the mean force along a selected reaction coordinate by adding an appropriate biasing
force during the simulation to overcome associated barriers [94], which can help to overcome
barriers along the reaction coordinate. The iterative adaptation of the biasing force leads to an
accelerated sampling and better convergence of the mean force along the reaction coordinate
that, upon integration, can be used to obtain the free energy change along the collective vari-
able. Similar to the US method the ABF and related techniques have been developed mainly
to improve free energy calculations but less to improve sampling of conformations in general.
Recent efforts have been directed toward simplifying the setup of biasing potentials to control
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and manipulate collective variables that form the basis of meta-dynamics and related simulation
approaches. For example, Bonomi et al. have designed the PLUMED package [95] that can be
combined with several common MD packages such as GROMACS [96], Charmm [97], or Amber
[98] to provide access to several types of collective variables useful in meta-dynamics or other
restraint simulation techniques. Examples of available collective variables are selected principal
components of motion obtained from an unrestrained MD simulation, the relative orientation of
subsets of atoms, or the number of atom-atom contacts relative to a reference set of contacts. A
similar effort by Fiorin et al. [99] termed the COLVARS module is an integral component of the
NAMD package [100] and also available for the LAMMBS program package [101]. The develop-
ment of such modules is very helpful for the investigation of sometimes very complex collective
degrees of freedom for which an enhanced statistical sampling of relevant states is desired.

2.4.4 Temperature for replica-exchange and parallel tempering simulations

In recent years, the replica-exchange MD (REMD) and parallel tempering methodologies have
evolved to form the most widely applied and most popular advanced sampling approaches. The
REMD simulation is setup by running several replicas (copies) of a simulation system parallel
and independently using classical MC or MD approaches at different simulation temperatures
or using force field variants (see the following paragraph on Hamiltonian replica exchange sim-
ulations). Originally, the approach was developed for simulations of spin glass systems in 1986
[102]. The applicability to improve the sampling of peptide and protein structures was proven
in the late 1990s by extending it to peptide and protein simulations using MC [103] and MD ap-
proaches [104, 105]. Since then many efforts of further improving the REMD method have been
aimed to enhance sampling along specific sets of conformational variables and to reduce the com-
putational demand. In the standard application selected pairs of replicas (usually neighbors in
the range of parallel running simulations) are exchanged with a specified (Metropolis) transition
probability (figure 2.2). An exchange between two replicas is accepted with the probability P
according to a Metropolis criterion and rejected otherwise.

1 VA <0

A yas g Mh A== B HET) -HE (@9

P(?‘Z‘ —)T'j) = {

In simulated tempering the switch in temperatures of a single system requires the determina-
tion of appropriate weights for accepting or rejecting a temperature change. In replica exchange
simulations this is avoided since one exchanges between two equilibrated simulations that run
at different temperatures. The canonical distribution of sampled states is not disturbed by the
exchanges between replicas [106]. Conformational variety arises from the random walk in the
simulation temperature that allows conformations trapped in local minima to exchange with
structures running in replicas at higher sampling temperature. Hence, due to the exchanges it
is possible to improve sampling in each replica. However, the height and type of barriers of the
molecular system have a significant influence on the efficiency of the REMD simulation [107]. If
the energy barriers are not higher than the thermal energy per degree of freedom it is unlikely
that T-REMD will improve sampling compared to the same number of regular cMD simulations
performed at the reference temperature [107, 108]. The form of the energy landscape also in-
fluences the performance of replica-exchange MC as has been shown for two different potential
landscapes. Parallel tempering was shown to be very effective in a double well potential, but the
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performance increased only slightly for a ‘golf course’ potential corresponding to a flat surface
interrupted by several local deep minima [109]. When sampling systems with mostly entropic
barriers, regular cMD can perform even better than T-REMD simulations [110] because high tem-
peratures favor the high-entropy regime [111]. Exchange attempts between replicas and their
acceptance frequency are of critical importance for parallel tempering simulations, since sam-
pling benefits mostly arise from replica conformations visiting different conditions. Guarantee-
ing frequent exchanges is a fundamental prerequisite for enabling effective diffusion of replica
conformations in the temperature range. It is typically evaluated as the round trip time for a
replica to visit all temperatures of the replica ladder [112—-114]. The exponential distribution of
temperatures forms the standard procedure. However, other schemes taking the heat capacity
of the system explicitly into account [115] or optimizing the exchanges rates on the fly have
also been described [116]. It is not necessary to limit the exchanges to direct neighbors in the
replica ladder. Accelerated ‘diffusion’ of conformers among replicas can be achieved by allowing
exchanges between any pair of temperature conditions [117, 118]. To speed up the round trip
rate and to prevent the formation of conformational clusters that are usually forming close to
exchange bottlenecks, in the convective replica-exchange method [119, 120] one ‘stick’ replica is
randomly selected at the beginning of an exchange cycle and exchange with its right neighbor
is attempted at every updated state iteration until the exchange is accepted. The stick replica is
driven in one direction until it reaches the endpoint replica, followed by reversing the exchange
direction until the other endpoint is visited and reversed again to complete the round trip. Then,
another replica is chosen as the new stick replica. This method alleviates the crossing of states
over exchange bottlenecks and was found to accelerate mixing by a factor of two in some cases.
Alternatively, the exchange mechanism can be modified by means of the Independence Sampling
method [121]. In an MC-like manner the algorithm performs metropolis exchanges between ran-
domly selected replica pairs. This process is repeated during one updated state iteration to calcu-
late the energetically optimal state transition matrix. For IV replicas, this stimulated annealing
of the exchange energy was found to be efficient for N3 and N® repetitions. No matter how
the exchanges are attempted the acceptance of exchanges between replicas requires sufficient
overlap of sampled potential energies. For a given system the sampled distribution of energies
varies with the temperature. The fluctuations in the sampled energies compared to the average
energy decreases with the square root of the number of degrees of freedom. Relative to the mean
the distribution becomes sharper with increasing system size. Hence, a given temperature range
is only covered by overlapping energy distributions if the number of replicas increases with
size of the system. In turn, longer total simulation times are also necessary to allow sufficient
diffusion of all replicas among the increased number of replicas. This may also demand larger
computational resources. Of course, by increasing the exchange attempt rate the total number
of exchanges within a fixed total simulation time can be enlarged. This may indeed improve the
sampling of relevant states as recent studies suggested [122—-124]. It is expected to enhance the
diffusion in the temperature ladder and, in turn, may improve the overall sampling (per sim-
ulation time interval). However, a small exchange interval may also lead to highly correlated
exchanges, meaning that the restarted system configuration has not adapted to the new simu-
lation conditions before a new exchange attempt. Typically, a minimum time interval of ~ 1 ps
is often used for allowing relaxation of the system after attempting a replica-exchange [125]. It
is also important to note that the simulation thermostat (temperature control algorithm) of the
replica runs can also influence the efficiency of T-REMD simulations and can create simulation
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artifacts [126, 127]. Some common velocity scaling schemes, in particular, do not guarantee a
canonical sampling of states in each replica [127]. In addition, the order of performing exchanges
between neighboring replicas can influence the efficiency of T-REMD simulations [128]. To re-
duce the excessive number of necessary replicas for proteins or long peptides systems, implicit
solvent continuum models (e. g. Generalized Born (GB) model) [129] or a coarse-grained descrip-
tion of the protein [130] can be used to eliminate solvent degrees of freedom. The accuracy of
current implicit solvent models may, however, fall short of providing a realistic description of
the structure and dynamics of biomolecular systems [131, 132]. In hybrid explicit/implicit sol-
vent models exchange probabilities are calculated in a continuum model while the simulation
of each replica includes explicit solvent [133]. Here, the mean response of the implicit solvent
to the solute conformation, which largely contributes to the exchange criterion, can differ sig-
nificantly from the instantaneous potential energy of the full system with explicit water of the
T-REMD simulation. It remains elusive how this potentially interferes with the conformational
sampling in each replica run. Another method couples the solute to a heat bath that varies with
the replicas, while the solvent is in all replica simulations coupled to the reference temperature
only [134]. This concept can be extended to assign different temperatures for different degrees of
freedom of the solute [135]. The number of replicas can be further decreased if only the complete
solute molecule or important collective modes of motion of the solute (typically extracted from
a principal component analysis) are coupled to the simulation heat bath controlling the replica
runs. This is, in spirit, similar to the self-guided Langevin (SGDL) dynamics method. In this
method low frequency motions of a system are accelerated (by coupling to a higher temperature
bath) while keeping the high frequency motions due to the harder degrees of freedom at a lower
temperature [136]. Combined with replica-exchanges this approach can accelerate the sampling
in a reference simulation lacking a self-guiding contribution. One should, however, keep in mind
that using heat baths of different temperatures to control different parts of a simulation system
can result in non-physical (non-equilibrium) replica runs without a canonical equilibrium sam-
pling in each replica (compared to conventional REMD). Furthermore, unpredictable artifacts
within each replica simulation might be caused by the artificial temperature gradients at the
solute—solvent interface (or between different degrees of freedom of the system). To avoid these
problems the temperature of parts of the system can be effectively increased by means of the
solute-tempering REMD method developed by Berne and coworkers [137]. Since this involves in
essence the scaling of parts of the Hamiltonian, it is discussed in the paragraph on Hamiltonian
replica exchange (H-REMD).

Alternatively, the performance of T-REMD can be improved by coupling the highest replica to
a reservoir of conformations generated independently prior to the REMD simulation and com-
monly via an implicit solvent model. Randomly selected conformers from this reservoir can
exchange with the highest temperature replica of the T-REMD and thus promote conformational
sampling. Improved sampling compared to conventional T-REMD was observed for exchanges
with a Boltzmann (equilibrated) or non-Boltzmann reservoir [138—140]. For some applications
covering a wide range of temperatures throughout the full simulation is unnecessary. Then, T-
REMD simulations can, for example, refine the structure of a protein by starting with a small set
of replicas at high temperatures, which is subsequently cooled down until the lowest temperature
replica has reached the target temperature [141]. In contrast to the standard simulated annealing
technique, not only a single but also a set of promising conformations are kept throughout the
REMD simulation and cooled down to the low target temperature. Recently, numerical schemes

21



Chapter 2 Exploring biomolecular dynamics and interactions using advanced sampling methods

have been developed that mimic a T-REMD protocol without actually performing the T-REMD
simulation [108, 142, 143]. These methods are extremely valuable for investigating the efficiency
of new REMD methods and variants.
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Figure 2.2: In replica-exchange MD simulations (REMD) several copies of a system (indicated as chain
molecules of varying conformation) are simulated in parallel at different temperatures or under
the control of different force fields (Hamiltonians, indicated by different colors). At preset
intervals exchanges between neighboring replicas are attempted that are accepted or rejected
according to the Metropolis criterion.

2.4.5 Hamiltonian replica-exchange approaches

The temperature is not the only parameter that can be varied in replica-exchange simulations:
the force field or Hamiltonian of the system can also be scaled along the replica ladder. For this
case the exchange criterion that preserves canonical sampling among the replicas is:

1 VA <0

A YA ith A=8 (M (7)) + H (75) — H (75) — H'(75)] (2.6)

P(TZ'—>T‘J‘):{

This Hamiltonian replica-exchange criterion can be transformed into the parallel tempering cri-
terion if the force field is scaled linearly, H* = \;H, along the replicas:

A= BNHE) = HEE)) — N (H(T) — H))]

= (BN = ;) [H(:5) = () 7

which is equivalent to the parallel tempering method (see section 2.4.4). In a classical simula-
tion, however, the force field is typically a function consisting of several additive terms (equation
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2.1). As a consequence the Boltzmann factor of a given system state can be split into a product of
Boltzmann factors for each energy term. Only energy terms that differ in neighboring replicas af-
fect the Boltzmann factors and enter into the Metropolis exchange criterion. Hence, Hamiltonian
replica-exchange MD (H-REMD) simulations have the advantage of scaling parts of the force field
among the replicas while preserving canonical sampling in each replica. This decreases the effec-
tive system size considered at every attempted exchange and can reduce the number of required
replicas [55, 144]. In contrast, the temperature is a property of the whole system and the num-
ber of required replicas to cover a given temperature range increases rapidly with system size.
Scaling different parts of the Hamiltonian among the replica runs has been explored in several
variants of the H-REMD technique. One strategy is to identify and scale the main energy terms
that are responsible for conformational energy barriers of a simulation system. For example,
the non-bonded interactions of the solute—solute and solute—solvent interactions can cause such
barriers for conformational transitions and have been scaled among the replicas either linearly
[145] or by using a soft-core potential [146]. Although very effective in reducing sterical barri-
ers, the approach generates many conformations with partially overlapping atoms in the higher
replicas where van der Waals interactions are reduced by soft core interactions or decreased van
der Waals radii. As sterical energies of these conformers may be very high in the lower repli-
cas (closer to the original force field), the exchange rates between neighboring replica runs may
decrease drastically. This in turn might be compensated with an increased number of interme-
diate replica conditions. Alternatively for the solute-tempering method [137, 147-149], the sys-
tem energy is divided into separate interaction components corresponding to solvent-solvent,
solute—solvent, and solute—solute interactions. In a typical application the solute-solvent and
solute—solute interactions are then linearly reduced in the replica runs, which is equivalent to an
effective simulation temperature increase in the scaled part of the system. Since it is possible to
control the ‘effective simulation temperature’ or scaling of just the solute or of both the solute
and the solute—solvent interactions, the desired temperature range can be covered by a smaller
number of replicas. Promising initial results on peptide systems were not confirmed for protein
folding when the method was less efficient than standard T-REMD [147]. The method was re-
fined recently by modifying only the intra-molecular interactions in each of the replicas [148]. In
further variations the solute tempering methods often differ in the type of ‘tempered’ or scaled
interactions [149]. For example, domain motions of a protein can be studied by including domain
interactions with the solvent in the tempered part but by excluding the intra-domain interactions
[150]. This can lead to improvement in the sampling of domain-domain arrangements and can
prevent the sampling of states that affect the individual protein domains through unfolding or
refolding.

In T-REMD simulations the number of replicas and the spacing in simulation temperature can
be pre-calculated or at least estimated to adjust a desired exchange rate between neighboring
replicas (see last paragraph). The Boltzmann factor of every state in the system is affected by a
change in temperature to the same degree (change in beta in the Boltzmann factor). In the case
of H-REMD this is not necessarily the case since typically just parts of the Hamiltonian differ be-
tween replicas. For example, consider scaling of only the repulsive core of a set of atoms among
the replicas in the H-REMD simulation (e. g. up to the van der Waals radius of the atoms [151]),
then for many system configurations (those that do not involve atom overlaps of the scaled set of
atoms) the energy difference between replicas will be zero, resulting in a high exchange/accep-
tance rate. For those system configurations that involve atom overlaps the exchange acceptance
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is, however, strongly affected by the type and degree of scaling. Even little changes in atom over-
lap can result in large energy differences between neighboring replicas and affect the acceptance
probability. Hence, the exchange probability in case of H-REMD is determined by the fraction of
system configurations that are influenced by modification of the Hamiltonian and within those
configurations by the type and degree of Hamiltonian modification per replica. In the general
case, it is difficult to determine these factors in advance of a simulation. In practice it is useful
to perform test simulations for a given system or to adapt the scaling of the Hamiltonian among
the replicas on the fly during the simulation to optimize exchange rates and the number of round
trips (see below).

Several H-REMD approaches try to diminish energy barriers that occur in certain types of
biomolecule, e.g. in peptides and proteins or in nucleic acids. For example, the dihedral an-
gle biasing-potential (BP-REMD) method [152] uses a dihedral angle biasing potential specific
for peptides to facilitate peptide main chain transitions (figure 2.3). Energy barriers that may
prevent dihedral transitions (soft degrees of freedom) of peptides in standard MD simulations
are reduced along the replica ladder. The biasing potentially is derived from MD simulations
on small peptide model compounds in explicit solvent. Biasing potentials in the replica runs
gradually increase among the replicas, allowing transitions at high levels of biasing. Because
of the exchange criterion’s independence from the solvent molecules the method requires fewer
numbers of replicas than T-REMD simulations. The method was successfully applied to peptide
and protein folding problems [152, 153] and also to the refinement of protein model structures
[154]. Related methods for specific enhancement of dihedral transitions by scaling van der Waals
interactions between one and four neighbors in peptide bonds have also been described [155].
The approach can also enhance conformational sampling of coupled nucleic acid backbone states
[156, 157]. It is also possible to optimize the biasing potential applied in each replica run on the
fly during the REMD simulation [156, 158]. In this case the biasing potential is adjusted during
equilibration and is then used in a subsequent REMD production phase. Variants of the dihedral
angle BP-REMD approach have also been developed for improved sampling of carbohydrate-
based polymers [159, 160]. Conformational sampling also improves by means of the resolution
exchange approach, where a biomolecule is represented as a combination of a coarse-grained
force field and a fully atomistic model (possibly also including explicit solvent molecules). The
degree of coarse graining increases along the replica ladder defined completely by the atomistic
model in the lowest replica and by the coarse-grained representation in the highest replica run
[161]. The coarse-grained model typically increases the conformational sampling in the higher
replicas (because of fewer barriers). A wider sampling can also be achieved in the atomistic ref-
erence system due to the exchanges with higher replicas. The performance, however, depends
sensitively on the overlap of the sampled states at the coarse-grained level with the relevant
states in the all-atom representation. The flexibility of proteins can be estimated using the elas-
tic network model (ENM). In particular for large-scale backbone motions such coarse-grained
models are useful. To combine the low resolution information provided by ENM models with
high-resolution atomistic MD simulations the ENM-coupled REMD approach has been developed
[162, 163]. Again, a biasing potential is constructed considering the soft collective degrees of free-
dom (i. e. eigenmodes with small eigenvalue from the ENM calculations). This biasing potential
is used in H-REMD simulations to improve the sampling of large-scale motions in multi-domain
protein molecules.

As described, in meta-dynamics Gaussian potentials are added to the force field to adaptively
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bias MD simulations along selected reaction coordinates [71]. The reaction coordinates can cor-
respond to different types of variables such as number of hydrogen bonds or radius of gyration
or number of atomic contacts in a biomolecule. The sampling in meta-dynamics can be further
accelerated by running replicas under the control of different biasing potentials and to adapt the
biasing potentials on the fly. It has been demonstrated that such approaches lead to faster folding
simulations using a small number of replicas [164, 165].
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Figure 2.3: Application of the H-REMD simulation technique to enhance the sampling of RNAse S-peptide
conformations. The S-peptide is a fragment of a ribonuclease enzyme that adopts an alpha-
helical conformation in complex with a partner molecule (RNAse S protein) to form a func-
tional enzyme. In the absence of a binding partner the S-peptide is unstructured. During
conventional MD simulations only conformations with an intact alpha-helical core of the pep-
tide are sampled, indicated as root-mean square deviation (RMSD) from the full alpha-helical
structure and several snapshots illustrated as cartoons (upper panel). The lower panel indi-
cates the sampling in the reference replica of the H-REMD simulation starting from the same
fully helical S-peptide structure. Along the replicas a biasing potential that promoted peptide
backbone dihedral transitions (biasing potential REMD) has been added [152, 153, 166]. As a
result a much larger variety of peptide conformations can be sampled (indicated as snapshots)
in much shorter simulation times compared to conventional MD simulations (compare upper
and lower panels).
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2.5 Application of REMD simulations to improve free energy
calculations

Besides applying REMD approaches for improving conformational sampling of stably folded
biopolymers or to simulate structure formation processes (described in the previous sections),
it is also possible to combine it with free energy simulations. The free energy change of an al-
chemical transformation to annihilate or create a chemical group or to perform a conformational
transition can be determined using free energy perturbation or thermodynamic integration meth-
ods [167]. For example, a chemical group can be inserted, varying the reaction coordinate A from
o to 1 along the replica ladder. For A = 0 the force field terms affecting the inserted group are
turned off and are gradually, via not necessarily physical intermediates, turned on to their full
strength at the replica with A = 1. Convergence of the free energy can only be obtained if all
relevant conformational states for each of these intermediates are appropriately sampled [168,
169]. Improvement of convergence can often be achieved if exchanges between intermediates are
possible to prevent trapping of sampled states. Free energy simulations with exchanges of the
sampled states along the reaction coordinate are equivalent to H-REMD simulations. Combining
replica-exchange and alchemical free energy methods to allow exchanges between intermediate
states can today be seen as a standard approach. In many cases convergence of thermodynamic
integration simulations [167-170] and free energy perturbation simulations [171, 172] or US
[172-177] can be improved without further computational costs. This allows for a more accurate
determination of both relative free energy differences from the addition or removal of chemical
groups as well as absolute binding free energies of complete ligands [178-181]. Convergence can
be further improved by multi-dimensional replica-exchange (e.g. in temperature and Hamilto-
nian) [180, 182], yet at higher computational costs due to the increase in the number of replicas.
In this case H-REMD is performed along the alchemical variable and sampling of other degrees
of freedom can be improved by T-REMD in each interval of the alchemical variable.

2.6 Future directions

Advanced sampling techniques such as meta-dynamics and REMD simulations have found
widespread applications to enhance conformational sampling and to improve the extraction of
thermodynamic quantities from molecular simulations. In the current review only a fraction
of the recently developed methods could be covered and the selection is necessarily biased by
our own preferences. Although sampling in conventional simulations has benefited from the
progress in computer hardware there is still a high demand for further development of improved
algorithms to increase the sampling of relevant states in a molecular system. The aim of most
recent efforts was to reduce the number of replicas for covering a desired temperature range
for optimizing the performance of T-REMD simulations. The performance of the method can be
enhanced by optimizing the possible exchanges at simulation intervals and allowing exchanges
beyond nearest neighbors. Recent new approaches also involved the continuous adaptation and
on-the-fly optimization of replica temperatures during the simulations [183, 184]. A significant
advantage of the H-REMD approach is the possibility of varying only parts of the force field
function among the parallel running replicas. Since the temperature is a property of the whole
system such a separation of the force field into a contribution that varies among replicas and a
constant part is not possible for T-REMD unless an equilibrium canonical sampling is not desired.
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A major focus of new H-REMD methods is improved sampling of specific systems or of specific
parameters of biomolecules including selected collective variables or the enhanced sampling of
different dihedral angle states. Future development will most likely include even more structural
knowledge of specific systems and may also include biasing potentials adapting to the system
of interest to optimize sampling, exchanges, and round trip times during the simulation. Many
recent methodological developments explore new application areas such as docking of ligands
to proteins [171, 185, 186] or combining H-REMD with T-REMD to perform multi-dimensional
REMD [187, 188]. The H-REMD methodology has also evolved toward a standard method for im-
proving the convergence of free energy calculations. New developments also involve the combi-
nation with T-REMD [180] or solute tempering [189] to further improve convergence. One of the
most important areas for applications is still the simulation of structure formation (folding) or
proteins and other biomolecules or biopolymeric materials [54, 55, 190, 191]. The application of
advanced sampling methods and of REMD methods in particular has contributed significantly to
the understanding of the mechanism of structure formation and to characterizing possible inter-
mediate states of the process. REMD simulations are an effective tool to study both biomolecules
that form stable 3D structures and intrinsically disordered protein systems [192—198] that form
the major part of the proteins in eukaryotic cells and that are difficult to investigate experimen-
tally. Undoubtedly numerous new applications will give new insights into structure and function
of biomolecules as well as into other soft matter systems in the years to come.
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Chapter 3
Weighted Ensemble

3.1 Introduction

Energy barriers of different nature often prevent the sampling of interesting processes in
biomolecular systems with MD simulations. The folding pathway of a polypeptide chain e. g.
starting from its primary structure after mRNA translation over initial secondary structure for-
mation to the functional folded protein involves several barrier transitions. The entropic search of
the polypeptides backbone to discover the correct folding pathway out of a tremendous ensemble
of possible backbone conformations is one fundamental barrier type. The paradox fact, that the
protein can discover the correct folding configuration in finite time despite of the amount of pos-
sible conformations has been termed after its discoverer the Levinthal paradox [199]. Another
principle barrier a protein chain has to overcome is of enthalpic nature. Functional chemical
groups of sidechains or the backbone itself need to change their isomeric states or release wrong
intra-chain contacts which may have formed on the way to the correct fold. As the crossing of
barriers is typically not a guided or directed process but occurs randomly based on the Brownian
motions of the molecule and its environment, it is a time consuming process. The waiting time
for barrier crossing events is directly linked to the height of the free energy barrier (figure 3.1).
A first order approximation for the rate to overcome the activation energy AG?_, ; in chemi-
cal reactions was developed by Arrhenius (equation (3.1)) [200]. The equation depicts, that the
probability to transition a barrier within a certain amount of time, decreases exponentially with
the free energy height, making barrier transition a rare event in some cases.

kasp = AemAChon/(T) (3.1)

Methods accelerating the sampling of rare events are of great interest in the field of molecu-
lar dynamics simulations, as they enable the access to timescales otherwise inaccessible with
given computational capabilities. In particular the accelerated sampling of enthalpic barriers has
been tackled in the past with a variety of advanced sampling techniques, to calculate thermo-
dynamic quantities e. g. the free energy difference between two states. In order to circumvent
the long waiting times of a system to transition between thermodynamic states of interest, a
modified Hamiltonian is frequently used to actively drive the system along an artificial path-
way connecting the states. Arbitrary pathways can be devised without the requirement to be
physical meaningful creating a class of so called alchemical sampling techniques [201]. In order
to determine the free energy difference between bound and unbound mode of a ligand which
binds to a receptor protein, the ligand may either be transferred form the binding pocket to bulk
solution by gradually removing all interaction terms between the ligand and the rest of the sys-
tem in one state and restoring them in the other [202]. Alternatively the ligand may as well be
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Figure 3.1: Schematic depiction of a one-dimensional free energy landscape separating two thermody-
namic states A and B. The activation free energy to transition the barrier from state A to B
is given by AG%4 _, g and determines the transition rate k4, g. The free energy difference be-
tween the two states is given by AGT and has no influence on the transition rate in direction
A — B. The activation energy of a transition in the inverse direction AGiB _, 4 is defined by
the sum of the two energies AGZ _.p + AGT. The total free energy difference between the
two states only affects the upstream rate kp_, 4.

pulled out of the binding pocket by an additional force which can later be corrected for with
the Weighted Histogram Analysis Method (WHAM) [203, 204]. The class of advanced sampling
techniques which require the modification of the Hamiltonian was reviewed in detail in chapter
2. Although these methods are statistically exact and yield accurate results for thermodynamic
quantities when converged, the dynamic properties of the system are altered with the Hamilto-
nian in a way that kinetic information is lost and no longer can be rigorously extracted. This is
particularly disadvantageous, when the speed of barrier transitions is of special interest for the
system e. g. when determining kinetic on- and off-rates of ligand binding,.

Huber and Kim developed the Weighted Ensemble (WE) method to enhance the sampling of
infrequent events along certain reaction coordinates without modifying the Hamiltonian [205].
The method will be described in detail in the following section. The basic idea is, not to propa-
gate a single long trajectory which only rarely transitions the barrier of interest, but to concur-
rently sample an ensemble of trajectories distributed along a reaction coordinate in such a way
that barrier transition can be observed frequently. The method ensures equal sampling along
the transition pathway by splitting the reaction coordinate in a number of equally sized bins
and by keeping the number of trajectories residing in one bin constant. With the trajectories
having assigned individual statistical weights, the unbiased dynamics can be extracted from the
ensemble of trajectories. This allows in principle the determination of not only the thermody-
namic stability of states, but also the associated kinetic information of transition pathways. After
its invention in 1996, weighted ensemble has sunk into oblivion in the scientific community to
be revived ten years later by the Zuckerman group and being continuously refined since then
[206]. Several extensions have since been proposed e.g. the probability reweighting scheme
to accelerate equilibration of the statistical weights in the bin space or an approach to obtain
kinetic information from equilibrium simulations using history dependent probability weights
[207, 208]. The method has succeeded in obtaining kinetic rates and path ensembles in several
steady state or equilibrium studies on relatively simple or coarse-grained systems [206, 209-215].
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Figure 3.2: Free energy landscapes of a one-dimensional particle coupled to a thermodynamic bath. Two
states A and B are defined with an intermediate region I of width d;. The two panels depict
how different shapes of the intermediate barrier impact the time, the particle spends in the
intermediate region /.

In this chapter, we aim to review the fundamental principles of the Weighted Ensemble method
and to illustrate the underlying algorithms step-by-step.

3.2 The weighted ensemble method

3.2.1 Transition state theory

Before diving into the description of the WE methodology, we want to introduce some basic
concepts of the transition state theory of chemical reactions which will become useful later. The
left panel of figure 3.2 schematically depicts a particle in a one-dimensional free energy landscape
coupled to a bath. The particle can reside in two states A, B and the intermediate region I which
lies on the transition barrier between the two minima. The transition rate k4_, g is defined as
the inverse average waiting time of the system in state A to reach state B. When running a MD
simulation on our model system, we can extract these first passage times as follows. Whenever
the particle enters state A (crosses the border to A) we assign a transition flag « to the trajectory,
specifying that the system is currently in the transition A — B and start counting the time 7, it
takes to reach state B the next time. When the particle enters state B (crosses the border to B)
the transition flag is switched to ( the transition time 7, is stopped and stored. Having assigned
the transition flag 3 the trajectory is then in transition B — A and the transition time 73 is
started to be recorded until the trajectory enters A for the next time. Note that the transition
flag « (or B) is not changed when the trajectory exits state A (or B) into the intermediate region
I and returns back into A (B) without having visited the respective other state in the meantime.
By collecting many transition events and associated first passage times 7 we can then average
the mean first passage time (74, p). This method to extract mean first passage times from MD
simulations is termed simple counting [216-218]. The mean first passage time leads us directly
to the definition of the transition rate for both directions

1 o NA—>B
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kasp = { (3.2)

1=0
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For a two state system like in figure 3.2 and a single continuous MD trajectory, the numbers of
transitions N4, 5, Np_, 4 deviates maximally by +1 as the system propagates back and forth
between the two states. At the limit of many transitions we can therefore safely assume N4_,p =
Np_a = N. It is important to note, that thermodynamic states A and B in figure 3.2 can
be arbitrarily defined by setting the borders of the states on the reaction coordinate. Typically,
thermodynamic states are not intrinsic properties of thermodynamic systems, but can be defined
by any choice of connected phase space regions in a multidimensional phase space. Often, the
choice is motivated by the topology of the associated phase space region e. g. a minimum (stable
state) or a maximum (transition state) that entails a biological function. The accurate definition
of states is de facto a problem when comparing kinetic or static properties of thermodynamic
systems, obtained by different experimental or theoretical approaches as states are often only
indirectly described by experimental measurements, rendering the exact translation to phase
space regions difficult. Having defined the transition rates between two thermodynamic states,
we can rewrite the Arrhenius equation (3.1) to yield the free energy difference between A and
B

kp_a = < (3:3)

k

AGh, = —ksTIn [ 222 (3.4)
k’B—>A

Although in the literature the transition rate between state A and B is typically defined as in

equations (3.2) and (3.3), we are free to introduce a second definition of the transition rate which

will become useful later when introducing transition rates in weighted ensemble. We define our

transition rate k' as
N A—B

Khop == (3.5)
Np_a

We use the index  in the same way as in figure 3.1 for defining the free energy difference between
A and B. The rate k' is based again on the number of transitions N and the total times 4 and
tp the system resides in the respective states. It only indirectly includes information about the
barrier region I separating the states being intrinsically included in the number of transitions /V.
In figure 3.2 we have depicted two different free energy profiles for the one-dimensional particle
system. We now want to show, that our two definitions for the transition rates k£ and kT become
equal in the limit of a vanishing intermediate region d; — 0 and full coverage of the phase space
by states A and B. By inspection of equations (3.5) and (3.2) we see that the equality of rates
requires the condition

N ' N
Z Tai =lA = Z ta (3-7)
i i

to be fulfilled. We have split the total time ¢ 4 the system resides in A into a sum of individual
residence times ¢4 ; like we would inspect them when observing the system for a long time
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ttot- From the definitions of the mean passage time and the residence time follow directly that
Tai = ta,; in case of d; — 0 and therefore

{kasp =kl | dr =0}

(3-8)
{kpsa =kb_ 4 | dr =0}

3.2.2 The weighted ensemble algorithm

In this section we want to introduce the fundamental algorithm of weighted ensemble as it was
described by Huber and Kim [205]. To accelerate the frequency of barrier crossing events (fig-
ure 3.1) without modifying the Hamiltonian of the system, the phase space is discretized into
n bins by, ..., b, along the reaction coordinate (figure 3.4). The choice of bin size and number
of bins is arbitrary but may affect the convergence as we will see later. Although we describe
the algorithm on the example of an one dimensional free energy landscape and define the bin
boundaries along the one dimensional reaction coordinate, any multidimensional combination
of reaction coordinates may be used to define bin boundaries. It is however important that the
whole phase space is covered by bins. The basic idea of the algorithm is to populate all bins with
the same number of trajectories M to provide equal sampling along the binned coordinate. In
the one dimensional example each trajectory contains a single particle that is propagated with
an MD integrator in the one dimensional free energy landscape. From time to time the WE
algorithm evaluates to location of the particles on the reaction coordinate and stops the prop-
agation of some trajectories in bins with large population while creating copies of trajectories
in weakly populated bins in a process called resampling. Statistical weights w; are assigned to
the trajectories with the sum of all weights being 1 to account for the probability of the particle
to reside in a respective bins. These steps are performed in a round based algorithm with two
steps per iteration. First, all trajectories are propagated with a stochastic diverging MD integra-
tor for a time 7. Secondly, the location of the particles in the trajectories are evaluated and the
trajectories are assigned to the respective bins. As the particles migrate freely between the bins
during the MD propagation, the trajectories need to be reassigned to bins after every propaga-
tion step (figure 3.3). After the reassignment, trajectories in bins with little population are copied
to provide better sampling in these areas and deleted in bins with large trajectory population to
save computational resources in areas with abundant sampling. To increase and decrease the
number of trajectories within the bins, two methods are required. With the splitting routine, a
trajectory within a bin is randomly selected according to its statistical weight w meaning that
trajectories carrying high weight have a higher chance to be selected than trajectories with low
weight. The coordinates and velocity of the particle are then duplicated and a clone trajectory
is forked. Both, parent and child, get assigned half of the original statistical weight of the par-
ent w/2. This procedure is repeated until the desired number of trajectories M is reached in
every bin. Bins with no trajectories in them are unaffected by the splitting routine and remain

T
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Figure 3.3: Schematic depiction of the two basic steps performed during a WE iteration.
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Figure 3.4: The two resampling steps in weighted ensemble simulations.

empty whereas bins with more than M trajectories are submitted to a routine that decreases the
number of trajectories in them. Within the validity of the diverging propagation algorithm this
splitting process constitutes a valid representation of the evolution of the trajectory ensemble in
phase space, as long as the total probability corresponding to the configuration in phase space
remains unaffected. The detailed scheme of how many copies of the configuration are created
and how the probability is distributed is in principal arbitrary and may only affect the efficiency
of the sampling. At the same time, merging of trajectories in highly populated bins is necessary
to prevent accumulation of a large number of trajectories in regions of low free energy. This step
is crucial for the algorithm, as it avoids spending a high amount of sampling effort on regions of
the reaction coordinate where sampling is abundant. Additionally it prevents an explosion of the
total number of trajectories created by the splitting routine. It is realized by stopping the propa-
gation of certain trajectories and attributing the corresponding probabilities to other trajectories
within the same bin which are chosen to be continued. Mere deletion of trajectories would vio-
late the conservation of probability within a closed thermodynamic system. So whenever a bin
contains more than M trajectories one of them is randomly selected for deletion according to its
inverse normalized weight. A second surviving trajectory is randomly selected (according to its
weight) and gets assigned the weight of the deleted trajectory plus its own weight, thereby con-
serving the overall probability. This process is repeated until the number of trajectories reaches
eventually M. The resampling process of combining and splitting trajectories in the bin space is
depicted in figure 3.4.

The setup of a WE simulation typically starts from one primal trajectory bearing the statistical
weight wo = 1. This trajectory is the split in its starting bin until M copies are generated which
are then propagated for the first time step 7. To ensure that trajectories containing identical
particles positions and velocities diverge over time, a stochastic propagator is required as e. g. the
stochastic Langevin or Brownian dynamics integrators. The particles migrate along the reaction
coordinate over time and eventually populate the whole bin space while transporting probability
via their statistical weights along the reaction coordinate. The equilibrium is reached when the
detailed balance condition is met and the average net flux of probability over bin boundaries
vanishes. From the average distribution of probabilities the free energy profile can be calculated

34



3.2 The weighted ensemble method

along the bins b; according to

M
G(b;) = —kgTIn(Py,)n + ¢, with By, = Z W p,- (3.9)
=0

The bin probability P, is calculated from the sum of weights of all trajectories residing in bin by
and with a constant c. The calculation of equilibrium properties like the potential of mean force
(PMF) along the binning coordinate can be extracted as an intrinsic property of the weighted
ensemble method. However, as mentioned before, the Hamiltonian is not modified by the ap-
proach and the kinetic properties of the system are therefore conserved. We will see in the next
section how transition rates can be extracted from a weighted ensemble simulation.

3.2.3 History based rate calculation

The transition rate between two dense phase space regions (or in the WE terminology between
two bins ¢, j) has been introduced in equations (3.5), (3.6). The rate definition has been shown in
(3.8) to be equal with equations (3.2), (3.3) in case that the phase space regions i, j are topologi-
cally connected. We can write the transition rate between bins ¢, j in the weighted ensemble bin
space as
Nij  Nij/tor  (Fij)n
17 ti/teot (Pi)n
For reasons of convenience we introduce a shorter index notation ij for transition events i — j.
In order to translate the rate definition from the MD “simple counting” method to the probability
weight based WE terminology, we introduced the total simulation time ¢y of a continuous MD
simulation. By expanding the fraction in (3.10) with ¢, we directly see that the denominator
becomes the fraction of residence time in state (or bin) ¢ over the total simulation time ¢,; which
represents at equilibrium the probability (F;) to find the system in this state. The instantaneous
probability P; can be extracted from the sum over all trajectories in bin b; in an equilibrated WE

simulation as
P = Z w;j. (3.11)
JEb;

kij = k;;fj = (3.10)

This probability might however strongly fluctuate with the particles/trajectories and their asso-
ciated weights in b; among different iterations. To improve the quality of the estimate, P; needs
to be averaged over a series of independent iterations N yielding the equilibrium probability
(P;)n. The numerator in (3.10) on the other hand becomes the fraction of the number of tran-
sitions ¢ — j over the total simulation time #,; having the units of a rate. We introduce the
average probability flux which is the probability transport per time

()= = Lipy (3.2)

Ltot T

Again the averaging has to be performed over multiple iterations /N. The reason for this is, that
the instantaneous flux only includes transitions times of order 7. Only transition events faster
than the iteration time step would be included which may be shorter than the intra bin relaxation
time. The transition time distribution would be cut after longer transition times 7;; > 7 and not
accounted for in the average flux which would give a statistically non rigorous transition rate &;;.
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This leads directly to the problem that the rate definition (3.10) does not hold the criterion (3.8)
for transition events between not connected phase space/bin regions. In order to track transition
events that occur on timescales above the iteration time 7 and to circumvent the problem, that the
history information about trajectories that need to travel over multiple bins to reach the target
state B is lost after each WE iteration, a history based method to derive transition rates has been
introduced [208]. We can derive the weighted ensemble definition of history based rates directly
from the continuous MD definition of transition rates between states A and B (equation (3.2)).

T 1  Nap/tee  {(F(A—B|a)x e
AT rap) T Nas T Nas T (P M
~ Z TAB,i Z TAB i/ttot
Nap = =0

Here, we have split up the mean first passage time in a sum over the individual passage times
TAB,i normalized by the number of transitions /N4 p. Again we expanded the term with the total
simulation time #4; in the picture of a MD simulation in order to translate the individual terms to
probabilities and fluxes in a WE simulation. The denominator results in the probability P(«) to
find the system in the transition event A — B averaged over multiple iterations N. By design the
probability to find the system in either one transition direction {a | A — B} or {# | B — A}
is P(a) + P(B) = 1 when considering only two states and after all trajectories have visited at
least one of the two states (when starting the initial WE trajectory in the intermediate region, the
direction of the transition is yet undefined). The definition of probability flux from A to B in the
numerator has to be generalized compared to the simpler case of connected states in equation
(3.10). F(A — B | ) denotes the probability transport in B per time under the condition, that
the arriving trajectories have previously visited state A before entering B.

The extraction of history based transition events from WE simulations is similar to the picture
we gave for continuous MD simulations to estimate passage times from single trajectories. WE
trajectories (or particles in our one dimensional picture) are tagged with a history flag o when-
ever they enter state A and a flag 5 whenever they enter state B. When trajectories get merged,
the flag of the deleted trajectory is eliminated and only the weight is transferred to the surviving
trajectory. When a trajectory is split on the other hand, the two children get half of the weight of
their parent and inherit the history flag. It is important that the history flag is deleted upon merg-
ing, as it is intrinsically linked to the trajectories history and can not be transferred to another
trajectory in contrast to the statistical weight. Contravention against this concept would intro-
duce spurious, unphysical history transport in phase space and distort the kinetic properties of
the transition rate. To evaluate eventually the average probability flux from (F(A — B | a))n
in the WE simulation, the associated weights of trajectories with flag o entering state B need to
be counted and averaged over multiple iterations N.

3.2.4 Probability reweighting

The probability flow along the reaction coordinate is a time consuming process. Weighted En-
semble simulations are typically started from a single trajectory that is located in one of the bins.
Returning to our one dimensional model system, let us assume, that the initial trajectory starts
in bin by which is located in state A (figures 3.2, 3.4). The initial trajectory has assigned all proba-
bility weight wg = 1 and is propagated with the WE algorithm. To estimate the time dependence
of the probability transport in the bin space and to reach the equilibrium probability distribution
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Figure 3.5: Probability equilibration in a two-state model system with and without probability reweighting

approach. All weights start in state A with P4(t =0) = 1.

reflecting the free energy profile (equation (3.9)), we can treat the probability transport between
A and B as a system of coupled first order reactions

dPa(t) _ —kapPa(t) + kpaPp(t)
deEt) e
o = kBaPp(t) + kapPal(t).

These two coupled ordinary differential equations describe the evolution in time of probabilities
Py p in the two states. When the equilibrium is reached, the net flux of probabilities vanishes
according to the detailed balance criterion (dP4 p/dt = 0) [219]. If the phase space is divided in
only two state A and B the probability of finding the system in either one state is P4 + Pp =
1. Using these conditions, we can then condense the two equations (3.14) to a single ordinary
differential equation

dPa(t)

dt

= —kapPa(t) + kpa(1 — Pa(t)) (3.15)

and give the solution

_ kpa+kapexp(—(kap + kpa)t)

Py(t
A®) kap +kpa

Pa(t=0). (3.16)

We find, that the process to reach the equilibrium probability distribution in weighted ensemble
simulations is subjected to an exponential decay. The relaxation time constant of the decay is
given by the inverse sum of rates to = 1/(kap + kpa). Depending on the transition rates, this
process typically involves many iterations and is not accelerated by the WE method itself. Figure
3.5 exemplarily depicts the temporal evolution of the probability in states A and B of a two state
model system with a free energy landscape similar to figure 3.4 and the states stretching over the
two minima. As predicted in equation (3.16) the probabilities exponentially decay over several
thousands of WE iterations until reaching the flux equilibrium after about 5000 iterations in this
example.
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In order to accelerate the time consuming process of reaching the equilibrium probability dis-
tribution in WE simulations, the probability reweighting method has been developed by Bhatt
et al. [207]. It is based on the assumption, that the steady state equilibrium between neigh-
boring bins is only weakly coupled to the global equilibrium of the probability distribution.
Therefore, the local inter-bin rates k;; between next neighboring bins can be estimated from
an unequilibrated WE system according to equation (3.10). Although we have shown, that the
given rate definition is only equivalent to the generic mean first passage time rate of next neigh-
bor bins, it is still frequently used in the probability reweighting approach to calculate rates of
non-neighboring bins under the assumption that the transition rates to farther apart bins decay
quickly with the bin distance and have therefore only weak influence on the equilibrium flux
equations which we will introduce now. The equilibrium detailed balance condition for a system
of n bins can be written as a coupled linear equation system of ordinary differential equations
based on a first order rate model.

dp, n n |
= — Zkl,ipl + Z k‘j’lpj =0
7

dt
J#1
. . (3.17)
dp, |
G =~ 2 FniPat D kinP; =0,
i j#En
With the additional constraint of probability normalization
N |
Y p=1 (3.18)
i
In matrix representation, equation (3.17) reads
—>i ki ken ksn oo kg »
) =Y ko kso .- kno LTS
. i P,
kl,n k?,n k?),n : - El kn,i

where o is the n dimensional null vector. In this representation it becomes obvious, that the
contribution of next neighbor rates is concentrated on the main diagonal decaying quickly in the
extra diagonal elements. In a WE simulation, to reach the equilibrium, the P; are the unknown
variables, while under the given assumptions, the rate matrix K can be quickly estimated accord-
ing to (3.10) over several iterations. Therefore by solving the (overdetermined) linear equation
system comprised of (3.19)/(3.17) and (3.18) with a standard solver algorithms e. g. Gauss elimina-
tion or singular value decomposition [220], an on the fly estimate for the equilibrium probability
distribution in the n bins can be given after every iteration of the WE algorithm (the solution of
the linear equation system (3.19) scales with the number of bins n? which constitutes a negligible
effort compared to the MD sampling power required per bin). By adjusting the weights of trajec-
tories in all bins accordingly, the equilibrium probability distribution is reached by the system

38



3.3 Convergence bottlenecks in Weighted Ensemble

much quicker compared to the pure diffusion process (equation (3.14)). It is important to note,
that the probability reweighting algorithm yields only a rough estimate of the equilibrium proba-
bility distribution due to inaccurate evaluation of transition rates between non-neighboring bins.
It is therefore typically switched off after a several equilibration iterations during the WE simu-
lations and should be followed by a second equilibration phase with the (statistically not exact)
probability reweighting method turned off (In example figure 3.5 reweighting would be typically
switched off after ~ 300 iterations). Note further, that the probability reweighting method can
in principle even be applied when only a subset s of all bins n is yet explored by the WE trajec-
tories. The rate matrix K is then only of size s x s. However, it may occur that one or multiple
transition rates k;; among close distance bins become zero or very small numbers even after
averaging them over multiple iterations, rendering the rate matrix K singular or its numerical
solution unstable. This often indicates an inappropriate bin setup with high inter- or intra-bin
free energy barriers which may be mitigated by readjusting bin boundaries, the number of bins,
or the WE iteration time step 7. In figure 3.5 the situation of probability equilibration in an one
dimensional two-state model is depicted for a WE simulation with and without the probabil-
ity reweighting method being applied. The simulation with probability reweighting reaches the
probability equilibrium significantly faster than the simulation without probability reweighting.

3.3 Convergence bottlenecks in Weighted Ensemble

Although the Weighted Ensemble method yields statistically rigorous sampling of the phase
space, the convergence of WE simulations often critically depends on various parameters [221].
In this section, we aim to critically review a number of convergence and sampling bottlenecks
intrinsically linked to the WE methodology. Several examples affecting the sampling efficiency
will be discussed in the following which potentially deplete or even reverse the accelerating effect
of WE on sampling and convergence if not mitigated.

3.3.1 Intra-bin barriers

The WE method involves the discretization of one or multiple reaction coordinates into a bin
structure. However the discretization itself strongly affects the convergence properties and the
time scale on which the system relaxes to equilibration. A fundamental principle of the algorithm
is to accelerate the crossing of major energetic barriers by discretizing the reaction pathway on
the barrier in several bin areas and to provide equal sampling in each of these bins by split-
ting and merging trajectories, therefore increasing the probability to observe barrier transition
events. Although the principle assumption is valid, the discretization itself is in general not a
trivial task which involves the definition of the number of bins M and the spacing between bins
respectively. Especially when the free energy landscape is rugged or unknown, the accurate
placement of bins can strongly affect sampling efficiency and represents therefore a critical part
of the setup. Figure 3.6 depicts again our well known one dimensional two-state model system
with a rugged energetic landscape involving a high barrier peak in bin by. Apparently the effect
on the equilibration time scale is significant as the given bin setup fails to focus the sampling
effort on the major transition barrier separating states A and B. Assuming a total number of
trajectories Nt in all bins, the WE algorithm may even perform worse than Nt individual MD
simulations as in the WE approach, only the fraction of trajectories located in by sample the
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Figure 3.6: Intra-bin barriers are an equilibration bottleneck and reduce the relaxation time scale of the
global probability distribution in bin space down to the slowest intra-bin probability transport
timescale.

peak barrier transition while the remaining trajectories spend their sampling effort on shallower
areas in phase space. It is an intrinsic problem of the WE approach, that the appropriate posi-
tioning of bin boundaries requires prior knowledge about the free energy profile along the bin
coordinate. However it might be possible to conceive a binning mechanism which consumes the
current knowledge about the bin space on-the-fly to adjust bin boundaries adaptively. Note in
this context again that bin boundaries do not necessarily need to be isotropically spaced along
the reaction coordinate. It is therefore possible to increase the number of bins in regions of steep
free energy profile while covering flat free energy barriers with large bins.

3.3.2 Orthogonal barriers

Although inefficient binning along the reaction coordinate may produce intra-bin barriers that
potentially eliminate the sampling advantage of the WE approach, possible mitigation may arise
from a readjustment of bin boundaries or the increase of the number of bins in the region in
question. Another less obvious class of intra-bin barriers that defies such mitigation approaches,
are barriers orthogonal to the binning coordinate. Figure 3.7 depicts the top view of a two dimen-
sional free energy landscape in contour line representation with coordinates x, y and two defined
states A, B. The bins discretize the = coordinate in 5 bins and the two global minima are located
in b; and b5 respectively states A and B. For a particle to overcome the predominant barrier of
> 5 kgl separating the global minima, the transition pathway runs mainly along the y coor-
dinate. The binning coordinate does not reflect the predominant reaction coordinate and does
therefore not improve the sampling of barrier transition events. Neither increasing the number
of bins nor shifting the bin boundaries provides an effective countermeasure to circumvent this
intrinsic issue. A possible approach to reinstate the advantages of WE, would be the binning
along both coordinates x, y or the redefinition of the binning coordinate along the predominant
transition pathway. Expanding binning to multiple dimensions is however mostly limited to a
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Figure 3.7: Orthogonal barrier crossing in weighted ensemble simulations does not profit from the accel-
erated sampling along the reaction coordinate and reduces the sampling efficiency down to the
slowest orthogonal reaction barrier.

small number of additional dimensions, as the overall sampling effort scales exponentially with
[ L, Ni per number of bins N; in n dimensions. One further drawback of all re-binning mitiga-
tion approaches however is the fact that complete information about the free energy landscape
and the association pathway is required but typically not available beforehand.

3.3.3 Conformational flooding

Another class of issues that negatively affects sampling efficiency is the conformational flood-
ing of bins. This issue requires an additional degree of freedom in the system that has not been
present in the one dimensional toy systems so far. It occurs in situations where a molecule can
adopt alternative conformations of significant lifetime. Assuming a case where the association
process of a ligand/receptor complex should be simulated with WE and the ligand can adopt two
predominant conformations c; and cp. While the ligand may sample both conformations in so-
lution, only the ¢; conformation binds to the receptor in a conformational selection mechanism,
while on the other hand the conformation ca does not fit sterically into the binding pocket. Fig-
ure 3.8 depicts the WE setup of the given system. In the optimal case the WE simulation should
be started with an ensemble of ligand conformations in bin by that reflects the equilibrium dis-
tribution of ligand conformations. Upon propagation, the unexplored bins are consecutively
populated by splitting those trajectories which first arrive in unpopulated bins. Let us assume
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Figure 3.8: Schematic depiction of conformational flooding in WE simulations in case of the association
pathway of a ligand/receptor system.

in this example that randomly conformation cy reaches b; first and is split until the number of
trajectories per bin n = 3 is reached leading to a population consisting only of conformations
¢ in bin by. This over-representation of one (random) conformation at the exploration frontier
in bin space effects a self-reinforcing population selection mechanism in successively populated
bins at the exploration barrier caused by the splitting routine. This effect gets even worse when
the transition timescale of the ligand to change its conformation is much larger than the dif-
fusion timescale of trajectories from one end of the bin space to the other. Once all the bins
have been populated by the WE algorithm, the relaxation time to reach the equilibrium popu-
lation of ligand conformations slows down to the relaxation timescale of ligand conformations
as these conformational transitions are not specifically accelerated by the approach. The exam-
ple of conformational flooding accurately depicts the fact that even when carefully setting up
the bin spacing in a weighted ensemble simulation the time scale to reach the equilibrium may
strongly suffer from any orthogonality in the system. Conformational flooding can be consid-
ered as a special form of orthogonal barrier and a possible mitigation could be binning of relevant
conformations along an additional reaction coordinate in conformation space. This mitigation
however again increases the dimensionality of the bin space and thereby potentially reduces the
overall sampling efficiency and requires prior knowledge about the conformational equilibrium
ensemble of the ligand.

3.4 Discussion

The weighted ensemble (WE) methodology constitutes an interesting alternative to the domain
of widely accepted advanced sampling approaches (see chapter 2). The elegant design allows
improved sampling of kinetic and equilibrium properties along preselected reaction coordinates.
The WE approach does not demand the modification of the system Hamiltonian which in return
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conserves kinetic properties. These can be rigorously extracted without requiring additional
non-rigorous models e. g. fitting of barrier transitions kinetics with exponential rate models or
the definition of Markov state models [222, 223]. Interesting proceedings have enhanced the
WE approach over the last years e. g. the development of history based transition rates and the
probability reweighting method to accelerate reaching the equilibrium probability distribution
[207, 208]. Yet, the approach has not achieved the breakthrough to become a widely accepted
and applied technique in the community of molecular dynamics scientists. We presented three
scenarios of transport bottlenecks in equilibrium WE simulations that depict one fundamental
drawback of WE simulations and might be a reason why mainly simple systems comprising a
low number of orthogonal degrees of freedom have been published in the literature. For sim-
ple model applications, the approach yields improved sampling along the reaction coordinate,
however as soon as system properties orthogonal to the binned coordinates strongly affect the
equilibrium, the efficiency to reach the equilibrium drops to the slowest orthogonal relaxation
timescale. The introduction of appropriate binning along the orthogonal coordinates in order to
mitigate this effect is limited due to the exponential explosion of sampling effort introduced by
every additional binning coordinate. The main issue of the WE approach is however not the fact
that orthogonality may affect the sampling efficiency but that the impact of orthogonality is of-
ten difficult to detect in multi-dimensional biomolecular systems. Although all sorts of molecular
dynamics simulations in principle suffer from this problem, WE simulations in particular may
even perform worse than brute force MD approaches, when orthogonal effects drive the system
to states far from the equilibrium (conformational flooding) or consume precious computational
resources by sampling trivial phase space regions instead of focusing the sampling effort on im-
portant barrier transitions (orthogonal and intra bin barriers). Despite these drawbacks the WE
methodology provides in principle a straight forward way to discover transition pathways in
complex biomolecular systems without altering the Hamiltonian in an unphysical way. This fact
has been first discovered by Dickson et al. who developed the WEXPLORE software which aims
at exploring physical transition pathways along binning coordinates without claiming that the
generated transition pathway ensemble has reached the equilibrium [214, 215]. A ready to use
software framework WESTPA has emerged from the Zuckerman lab providing easy access to the
WE methodology for a large community of simulators [213]. WESTPA interfaces with popular
molecular dynamics software suites such as Amber, Gromacs, and more. For the sake of gaining
a better understanding and in order to implement the basic principles of the WE algorithm com-
bined with elegant parallelization routines, we developed in the course of this work our own WE
software suite hd WE which is purely written in python code and therefore provides a maximum
of portability to alternative operating system platforms. This is in contrast to WESTPA which
contains in its code base a mixture of both Linux shell scripts and python code impeding a port-
ing to other platforms. A plugin framework is provided with hdWE which strongly simplifies
the interfacing with any MD software package (see Appendix A).
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Chapter 4

Protein-ligand docking using Hamiltonian
replica exchange simulations with soft core
potentials

Molecular dynamics (MD) simulations in explicit solvent allow studying receptor-ligand bind-
ing processes including full flexibility of the binding partners and an explicit inclusion of sol-
vation effects. However, in MD simulations the search for an optimal ligand-receptor complex
geometry is frequently trapped in locally stable non-native binding geometries. A Hamiltonian
replica-exchange (H-REMD) based protocol has been designed to enhance the sampling of puta-
tive ligand-receptor complexes. It is based on softening non-bonded ligand-receptor interactions
along the replicas and one reference replica under the control of the original force field. The effi-
ciency of the method has been evaluated on two receptor-ligand systems and one protein-peptide
complex. Starting from misplaced initial docking geometries the H-REMD method reached in
each case the known binding geometry significantly faster than a standard MD simulation. The
approach could also be useful to identify and evaluate alternative binding geometries in a given
binding region with small relative differences in binding free energy.

—>
<

H(A=0.0) H(A=0.3) H(A=0.5)

Figure 4.1: Schematics of protein-ligand docking with H-REMD based soft core scaling of non-bonded
protein-ligand interactions. Ligand (L) and Receptor (R) are depicted in a key-lock representa-
tion. Non-bonded interactions of the ligand are scaled along the replicas to overcome energetic
barriers of misplaced conformations in the higher replicas (represented by large \). Energeti-
cally favorable conformations are swapped back to the reference replica at A = 0.

Parts of this chapter have been published in [224]
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4.1 Introduction

The design and identification of putative drug molecules can greatly benefit from the prediction
of the structure of ligand-receptor complexes [225, 226]. It involves the computational dock-
ing of possible ligand molecules to cavities or ligand binding pockets on the surface of a target
biomolecule. The docking search is typically performed without explicit inclusion of the sur-
rounding solvent and no or only limited inclusion of receptor flexibility [162, 227]. Predicted
complexes are evaluated by simple scoring functions that include geometrical fit and different
energetic contributions [162, 225, 227]. It is frequently possible to correctly predict the recogni-
tion site on the receptor protein but the placement of the ligand can significantly deviate from
the experimentally observed geometry [228, 229]. The approximations inherent to the scoring
function may not allow precise and realistic distinction between different sterically possible com-
plex structures [230]. Furthermore, explicit solvent molecules are mostly neglected in docking
approaches to accelerate the computations. However, water molecules can play a significant role
in ligand-receptor recognition.

Molecular Dynamics (MD) simulations in explicit solvent offer a possible route for the re-
finement of incorrectly placed ligands in the binding site. In an MD simulation full atomistic
flexibility of both partners (ligand and receptor) can be considered and solvent effects can be
included more realistically by explicit waters compared to the approximate scoring functions
used in typical docking searches [231, 232]. Indeed, in ultra-long MD simulations it has been
demonstrated that the complete process of ligand binding to a receptor cavity can be explored
[233, 234]. However, such simulations require many microseconds of simulation time and the
ligand can still be trapped for long times in metastable states separated by high-energy barriers
from other realistic binding geometries. For practical applications it would be desirable to ac-
celerate the MD search without loss in the accuracy of representing the system and the aqueous
environment. In Hamiltonian replica exchange MD (H-REMD) simulations the force field of the
system is modified in parallel replica runs that exchange with a reference simulation under the
control of the original force field.

An advantage of H-REMD compared to the more common variation of the temperature among
replicas (T-REMD) is the possibility to vary only part of the Hamiltonian of the system among
replicas. This allows acceleration of transitions along selected degrees of freedom of the system
typically requiring fewer replicas compared to T-REMD [166]. A variaty of H-REMD approaches
have been described scaling different parts of the force field depending on the specific sampling
task [145, 154, 164, 235-240]. Due to the variety of choices, it is not always clear which part
of the Hamiltonian to modify among replicas in order to best tackle a given sampling problem.
However, in case of ligand-receptor interactions the trapping of the ligand on the surface of a
receptor molecule at a non-native locally stable placement is due to non-bonded interactions of
the ligand and receptor (or with the solvent). In order to improve the sampling of relevant ligand-
receptor structures in MD-refinement simulations, we have applied H-REMD based on softening
the ligand-receptor interactions along the replicas. Such softening of non-bonded interactions
has been used already to improve the conformational sampling of molecules in solution [145,
235] but not for ligand-receptor docking in explicit solvent. It allows for a broader sampling and
accelerated barrier crossing in the replicas which in turn improves the sampling of relevant states
in the reference replica. The technique is able to generate a pool of possible ligand orientations
in a known binding pocket and to discriminate among those which are energetically favorable.
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Significantly better sampling of relevant states compared to standard MD simulations was ob-
served. It is further demonstrated that the method is applicable to the refinement of peptide-
protein complexes where side chain placement is uncertain and only backbone conformations
are known approximately.

4.2 Methods

4.2.1 H-REMD Docking

Energetic and entropic driving forces of ligand-receptor complex formation are closely linked to
the representation of solvent molecules and ions and often demand a more accurate treatment
than given by simplified docking algorithms. MD simulations have the potential to become a
valuable tool for elucidating the association of ligand-receptor complexes. Seminal studies of ul-
tralong MD simulations on special purpose machines reproduced in a proof of principle manner
the binding event of small ligands to receptor molecules [233, 234]. Recent speedup of MD algo-
rithms with graphics processing units (GPUs) allowed the production of ys binding trajectories
on readily affordable hardware [241]. The computational effort, however, is still tremendous.
The major drawback of MD simulations is the incapability of scanning the relevant phase space
region in reasonable computing time due to energy barriers. In order to accelerate the generation
of conformations and to rapidly scan relevant areas in the ligand-receptor free energy landscape
a Hamiltonian replica exchange (H-REMD) method was employed.

The method accelerates the searching of possible ligand binding modes in a known binding
site by scaling the non-bonded interactions of the ligand with the rest of the system. A coupling
coordinate )\ is introduced to connect the unmodified Hamiltonian Ha of the system with a
Hamiltonian Hp where all non-bonded interactions of the ligand with the rest of the system
are turned off (dummy ligand). The transition from the Ha to the Hp regime is mapped to
parallel replica simulations at different A; values. The reference simulation at A = 0 is connected
to replicas at higher A values by the H-REMD technique [167] as depicted in Figure 4.1. The
increment of A between the replica has to be chosen such that sufficient phase space overlap
ensures reasonable exchange rates. To avoid numerical instabilities at A values close to 1 and o,
the Hamiltonians are connected with soft core scaling potentials [242, 243].

4.2.2 Simulation Setup

Simulations were performed with an in house implementation of H-REMD in GROMACS release
4.5 and with release 4.6 of GROMACS which includes the implementation of H-REMD and is
significantly faster than release 4.5. Structural data was taken from PDB files and processed with
the GROMACS toolchain [96, 244] to solvate the proteins in a truncated octahedron water box
with periodic boundary conditions. Crystal water and ions were removed from the PDB file in
order to not overlap with manually generated initial ligand placements for FKBP-52 but crystal
water was kept for FKBP-12 and MHC class I. FKBP-52 was cleaved after residue Gly139 to obtain
the ligand binding subdomain solely. Hydrogen atoms provided by the PDB files were discarded
and automatically assigned by the gromacs tool pdb2gmx which derived protonation states for
all residues. No possible differences in protonation states between bound and unbound receptor
protein were considered. The Amber parmggSB forcefield [245] was used in conjunction with the
TIP3P water model [246]. Forcefield parameters for the ligand molecules were parametrized in

47



Chapter 4 Protein-ligand docking

the general Amber forcefield GAFF [247] with the Antechamber software package [248]. Coun-
terions were added to render the system electrostatically neutral. The box dimensions were
adjusted with an initial minimum distance of 1 nm of the solute to the box boundaries. Energy
minimization via steepest decent was performed with a convergence criterion of 20k steps or
100 k] mol—1 nm—1 followed by an equilibration simulation in the NVT ensemble for 250 ps and a
time step size of 1fs. A second equilibration phase of the same duration and step size adapted the
system to 1.01 bar in constant pressure NPT ensemble. The equations of motion during equilibra-
tion were integrated with the leap-frog integrator (MD). Temperature was coupled to the system
with the velocity rescale thermostat [47] at 298 K and the Berendsen barostat [45] was used for
NPT. During energy minimization and equilibration simulations non-hydrogen atoms of the pro-
tein were restraint in space with a harmonic potential at force constant of 1000 k] mol—1 nm—2.
The bond lengths of H atoms were constrained with the Linear Constraint Solver [249] with a
coupling matrix extension order of 12 (4 in production run) as proposed in Ref. [47] Electrostatic
interactions were calculated with the particle-mesh Ewald algorithm [250] with a grid spacing
of 0.12 nm and cubic B-spline interpolation. The Lennard-Jones interactions were switched to
zero after 0.8 nm and a cutoff at 0.gnm. Long-range dispersion correction resulting from the
truncated Lennard-Jones interactions was applied to pressure and energy.

4.2.3 Hamiltonian Replica Exchanges

The replica exchange docking simulations were performed with the stochastic velocity Verlet
[251] integrator which handles the temperature coupling implicitly (298 K). The Parrinello-
Rahman barostat [48] (1.01bar) was used to generate an NPT ensemble. A 2fs time step was
used. The non-bonded ligand interactions (with receptor and solvent) were scaled in each replica
using the soft core scaling method [242, 243] with o« = 0.3 the soft core power p = 1.0 and an
interaction radius of o = (C12/ Cﬁ)l/ 6 or 0 = 0.25 when Van der Waals parameters C5 or Cg
were zero.

‘/;oﬁcore(r) = (1 - )\)VA(rA) + )‘VB(TB)
1
ra = (agq AP +7°)° (4.1)

rg = (aag(l — AP+ 7“6)%

The parameter A allows a smooth scaling of the non-bonded interactions with A = o repre-
senting the reference states with all interactions switched on and A = 1 the state with all ligand
atoms represented as (noninteracting) dummy atoms. To avoid sampling of completely unreal-
istic ligand placements (with large possible overlap with receptor atoms) a maximum A = 0.54
was used in the highest of 10 replicas and ) increased in each replica by A\ = 0.06. Test sim-
ulations indicated that this step size resulted in a reasonable exchange acceptance rate of about
20%. Replica exchanges were attempted every 1000 steps among neighboring replicas (\; and
Ai+1 where ¢ was alternating between odd or even replica numbers). A further increase of the
maximum A > (.54 resulted in a rapid drop of the exchange acceptance rates because many
conformations with close ligand-receptor atom-atom distance (and large non-bonded overlap
energies in neighboring replicas with smaller A values) were sampled. Note, that the soft core
scaling of the electrostatic interactions was only performed for the real space interaction. Due
to the shift factor a the non-bonded potential is shifted in realspace which can lead to slight

48



4.3 Results and Discussion

discontinuities of the electrostatic interactions at the cutoff radius (in the replicas but not in the
reference replica with the original force field that was used for all the analysis of the simulations).

Starting positions for protein-ligand compounds were generated either by manually rotating
and translating the ligand in its binding pocket or by running a continuous MD simulation at
A = 0.54 and subsequent energy minimization using the full force field. The down scaling of
ligand-receptor interactions can cause dissociation of the ligand from the receptor surface. In
order to prevent the dissociation of the ligand from the receptor especially in the high A replica
windows, a position restraint based on the center of mass (COM) pull code was implemented in
GROMACS. A harmonic potential f(r) with force constant kcom = 1000 k] mol—1 nm—2 along the
connection vector of the COMs of ligand and protein was applied when the actual COM distance
r moved farther than a penalty value d away from the equilibrium distance rq.

kcom(r_req+d)27 r <Teq—d
f(r) = keom(r —Teq — d)?, 7 >req+d (4.2)
0, Teq_dgrgreq"‘d

We adjusted the penalty value to d = 0.7 nm.

4.2.4 Test systems

The human FKBP protein (FKBP-52) in complex with the high-affinity ligand FK506 (PDB code
4LAX) and a complex with the lower affinity ligand SB3 [252] (in complex with FKBP-12, PDB
code 1FKG) served as test systems for the H-REMD docking simulations. The dissociation con-
stant of SB3 (1,3-Diphenyl-1-Propyl-1-(3,3-Dimethyl-1,2-Dioxyphenyl)-2-Piperidine Carboxy-
late) and the FKBP domain is K4 = 10nM compared to K4 = 0.4nM of the native FKBP in-
hibitor FK506. Refinement of docked peptides was tested on the peptide binding domain of a
murine MHC class I molecule in complex with a viral antigen (PDB code 2VAB). The antigen
sequence is FAPGNYPAL and is derived from the Sendai virus nucleoprotein (324-332), SEV-9

[253].

4.3 Results and Discussion

4.3.1 FKBP ligand-receptor complexes

MD simulations have been used in the past to refine docked ligand-receptor complexes [254—
256]. In order to evaluate the capability of continuous MD (cMD) simulations for refining docked
ligand-receptor complexes simulations were started from two initial ligand placements denoted
as W1 and W2 that deviated by 0.5 and 0.4nm of RMSDligand from the native FKBP-FK506 com-
plex (Figure 4.2). The root mean-square deviation (RMSDhgand) corresponds to the deviation of
the ligand atoms from the native structure after best superposition of the receptor structure onto
the receptor of the native complex. An RMSD i1 of less than 0.3 nm was considered as a near-
native binding mode. In order to provide a fair comparison with the H-REMD approach, 10 in-
dependent simulations of 20 ns duration for each starting structure W1 and W2 were performed.
Starting velocities for each run were assigned randomly according to the Maxwell distribution
at temperature 298 K. The cMD simulation setup was chosen such that approximately the same
computational resources were used for the comparative H-REMD run with 10 replicas.
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Figure 4.2: Starting (left panels) and final (right panels) W1 and W2 structures for H-REMD simulations
of FKBP-52 protein in complex with ligand FK506 Tacrolimus (sticks). Protein backbone struc-
tures of FKBP-52 are aligned with the crystal structure (PDB Code 4LAX) and the native ligand
binding mode is colored green.

For the first starting structure W1, all cMD simulations were unsuccessful to move the ligand
closer to the known binding configuration within 20 ns simulation time (Figure 4.3A). A cluster
analysis revealed that simulations were kinetically trapped in the initial ligand configuration or
moved away from the native binding mode (Figure 4.3B).

For the second structure W2, two ¢cMD simulations explored the native binding mode after
5ns and 10ns respectively, however the majority of trajectories moved away from the native
ligand conformation and were trapped in metastable non-native binding modes (Figure 4.3A).
The cluster representing the native binding mode covers approximately 10% of the joined 200 ns
W2 trajectories but is not the largest cluster.

In contrast to the cMD simulations, the H-REMD simulations resulted in both cases in a rapid
drop of the RMSDy;4,,4 With respect to the native complex structure within less than 1 ns in case
of initial structure W2 and 1.3 ns simulation time in case of start structure W1 (Figure 4.3). A
cluster analysis of the sampled states in the replica under the control of the original force field
identified in both cases ligand placements with an RMSDyjg,,4 < 0.3 nm as most populated states
within 15 ns H-REMD simulations (Figure 4.3B).

The ligand binding modes sampled at the final stage of the two H-REMD simulations starting
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Figure 4.3: H-REMD simulations of FK506 binding to the FKBP-52 protein. Two starting conformations
W1 (upper row) and W2 (lower row) of FK506 ligand were used to initially feed H-REMD
and control MD simulations (start structures are shown in Figure 2). (A) RMSDj;55,q of FK506
versus crystal structure for the H-REMD reference replica (left panel) and 10 continuous MD
runs (right panel). The FKBP-52 backbone was aligned with respect to the crystal structure
prior to RMSDyj4,,q calculations. (B) Relative population of the seven largest clusters for H-
REMD and MD simulations, respectively, vs. RMSDj;45nq- The cluster occupancy is the fraction
of cluster members over all frames and gives a measure of the relative cluster size. Binding
modes are clustered with the single-linkage method and the cluster RMSDj;,,,q to reference
crystal structure was calculated for the cluster member with smallest average RMSDyjg,,4 to all
other structures of the cluster. MD runs have been concatenated to one 200 ns trajectory for
W1 and W2, respectively, before clustering.
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Figure 4.4: H-REMD simulations of FKBP-12 in complex with ligand SB3. (A) Pool of initial SB3 confor-
mations for H-REMD (shaded orange) superimposed onto the crystal structure (green). (B)
Cluster analysis of SB3 binding modes observed in the reference H-REMD window (blue boxes
correspond to near native solutions). Average structures of the three most populated clusters
are illustrated (predicted ligand as orange vs. native ligand in green stick representation).

from different initial placements differed in RMSD};4,5,4- The placement that was reached from the
second start structure W2 reached a considerably lower RMSDj;g,nq than the simulation starting
from W1 (Figure 4.3). Inspection of the binding pocket indicated that differences in the side chain
conformations of the receptor in the binding pocket are a likely reason for the alternative ligand
placements. The Tyrg2 side chain hindered the (1S,2S)-2-Methoxycyclohexanol motive of FK506
from moving in the correct configuration (see W1 right panel in Figure 4.2). It should be noted,
that during H-REMD only the receptor-ligand interactions were scaled along the replicas but
not the side chain-side chain interactions in the binding region. This indicates that the H-REMD
approach rapidly identifies near-native binding modes of the FKBP-52-FK506 complex. However,
a full equilibration could not be achieved since alternative binding modes still competed during
the 15ns in the reference replica and for both start structure cases slightly different receptor
conformations evolved during the search.

For the second test system FKBP-12 with ligand SB3 an alternative strategy was evaluated.
Instead of starting from only one ligand-receptor complex different start structures (one in each
replica) were used. Each start structure had an RMSDyg,,4 > 0.4 nm from the native binding mode.
Application of 10 independent cMD simulations (each 20 ns) resulted in kinetically trapped com-
plex structures and none of the simulations reached any near-native complex geometry (supp.
Material, Figure S1). In contrast, cluster analysis of the H-REMD application resulted in several
notable near-native binding modes in the reference replica (Figure 4.4). Cluster 3 was close to the
crystal structure binding mode with RMSDy5,,4 < 0.2 nm. Noteworthy, cluster 5 which showed
a quasi symmetric flip of the two phenyl rings in the SB3 1,3-diphenylprobyl subunit compared
to crystal structure was otherwise very similar to the experimental geometry (see Figure 4.4).
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A 20ns H-REMD simulation on the crystal structure swapped after 15ns an alternative binding
mode with a rearranged loop region into the reference replica. This binding mode survived for
the last 5ns in the lower A replica and was present in the reference replica after its first occur-
rence with a 5% probability. This mode was not found in a standard MD simulation starting from
the FKBP-12-SB3 crystal structure (data not shown). However, the observation of alternative
binding modes for the SB3 ligand with lower affinity compared to the first ligand-receptor sys-
tem in line with previous ultra-long MD simulations on the same system [257]. It indicates that
the present approach could be especially useful to identify putative alternative binding modes
for a ligand in shorter simulation time than standard MD simulations.

For a fully equilibrated simulation the relative populations of conformational clusters should
directly reflect the relative free energies of the clusters. Hence, the accumulation of ligand place-
ments in the most populated cluster can be used to identify the most likely binding mode in the
typical case when the native complex is not known. Indeed, in case of the high-affinity FKBP-
FK506 complex the most populated clusters corresponded to the near-native complex (although
not with a large gap relative to alternative placements) and its population was larger for the sec-
ond half compared to the first half of the H-REMD simulation. However, for the second system
the near native geometry was sampled but not as most populated cluster (Figure 4.4). In practical
applications one is interested to identify putative binding modes as quickly as possible and will
not be able to run simulations to full equilibration. It is therefore useful to look into alternative
strategies to identify the most likely near-native geometry, eg. by re-scoring of sampled ligand-
receptor geometries. Interestingly, for the present systems the average ligand-receptor interac-
tion energy showed a correlation with the deviation of the ligand from the near-native placement
(see supp. Material Figure S2). Near-native sampled complexes of FKBP-FK506 showed on aver-
age a more favorable interaction energy compared to complexes with larger deviation from the
native placement. Presumably this is due to an optimal complementarity of interactions in the
native binding placement. For the FKBP-SB3 system the near native placement and an alter-
native configuration at RMSDyjgang~ 0.5 nm showed similar interaction energies (supp. Material
Figure S2). Hence, for the present cases the interaction energy could be used (besides of cluster
population) as a criterion to select possible near-native binding modes. Note, however, that the
binding affinity is in general not only determined by direct ligand-receptor interactions but also
by other energetic and entropic contributions.

4.3.2 Refinement of a MHC class | peptide-protein complexes

MHC class I proteins play a central role in the recognition of antigenic peptides and their repre-
sentation to the immune system. Class I proteins contain a narrow cleft between two a-helices to
bind antigenic peptides of 8-10 residues with an extended backbone structure [258]. The receptor
conformation and bound peptide backbone conformation is similar for most antigenic peptides
of the same length which is confirmed by over 170 crystallized structures in the Protein Data
Bank. It offers the possibility to test the H-REMD method on predicting the side chain structure
for an approximately known peptide backbone conformation. A peptide start structure with
extended backbone and randomized side chain conformations was generated and energy mini-
mized in the binding groove to remove possible sterical clashes (Figure 4.5). The ligand backbone
conformation was weakly restrained to the reference coordinates of the crystal structure with
a force constant of 1000 kJ mol—1 nm—2 which allowed backbone conformational fluctuations of
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Figure 4.5: MHC class I protein in complex with viral antigen SEV-9. The MHC class I protein backbone
structure is aligned with the crystal structure (PDB Code 2VAB). The native antigen peptide
configuration is colored green. On the left side the starting structure for MD and H-REMD
simulations is indicated in red. The right panel shows the average structure representing the
second largest cluster (orange) obtained after H-REMD simulation (green: native ligand con-
formation). The RMSDy;,,,,,4 of the predicted structure is below 0.2nm with respect to the native

ligand placement.
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Figure 4.6: RMSDy;,, 4 Vs. simulation time for MD simulation and reference replica of the H-REMD simu-
lation of MHC class I protein in complex with viral protein fragment SEV-9. Simulations were
started from a starting structure shown in Figure 4.5. The ligand conformation is trapped near
its starting conformation by sterical barriers during the whole MD simulation. In the H-REMD
reference window a lower RMSD configuration is already found within < 0.5 ns equilibration.
Only two main binding modes survive in the reference replica after o.5ns which differ mainly

in the side chain rotamer of Phei.

54



4.4 Conclusions

+o.05nm. In a standard MD simulation of 20 ns the peptide was trapped over the whole simula-
tion time close to the initial conformation due to sterical barriers in the narrow binding cleft of
MHC class I protein (Figure 4.6). The cluster analysis for ligand conformations found only one
cluster with more than one member. The average structure was similar to the starting structure
(Figure 4.5). In contrast, the H-REMD simulations sampled the correct binding mode with most
side chains in near-native rotameric states in less than 3ns. Already during the equilibration
phase a conformation with lower ligand RMSD than the starting structure was swapped in the
reference replica and only two relevant clusters survived for the rest of the simulation. The two
clusters differed mainly in the side chain rotamer of the Phe1 peptide residue. Similar to the FKBP
systems (previous paragraphs) a noteworthy correlation of the peptide-receptor interaction en-
ergy with respect to deviation from the native complex structure was found (supp. Material Figur
S2) indicating that also in this case the interaction energy could serve as an additional criterion
to select realistic docking structures.

4.3.3 Additional Information

RMSDy;ga44 plots of 10 independent MD simulations on the FKBP-12-SB3 complex are depicted
in figure 4.7. The RMSDyjg,,q Was calculated with respect to the native complex. In addition, the
correlation of RMSDj;g,nq With interaction energy between ligand and receptor for all three test
systems is shown 4.8. The correlation was calculated from the reference replica of the H-REMD
simulations.

4.4 Conclusions

The realistic prediction of ligand-receptor binding geometries is an important goal of in silico
drug discovery. Molecular docking methods are widely used to generate and evaluate puta-
tive binding geometries mostly employing simple scoring functions that include flexibility of

FKBP-SB3 MD

RMSD [nm]

Time [ns]

Figure 4.7: Deviation of the SB3 ligand (RMSDy;4,,4) With respect to the placement in the native complex in
10 independent continous MD simulations of 20 ns duration (indicated by different line colors)
on the FKBP-12-SB3 complex starting from different starting structures. Each simulation was
trapped in non-native placements and no near native binding geometry (with RMSDj;55nq <
0.5 nm) was sampled.
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Figure 4.8: Correlation of the deviation of the ligand from the native placement (in terms of RMSDj;55n4)
and interaction energy between ligand and receptor molecules for conformations sampled in
the reference replica during H-REMD simulations. Plots are shown for all three systems inves-
tigated by the H-REMD docking approach.

the binding partners and solvation of the ligand and receptor binding site only approximately.
MD simulations on the other hand include both full flexibility of binding partners and explicit
solvation of partner molecules and are increasingly being used for studying ligand-receptor as-
sociation events. The major drawback of standard MD simulations, however, is the large compu-
tational demand coupled with sampling mostly irrelevant states before reaching a native binding
mode. High energy barriers separating favorable putative binding geometries prevent the iden-
tification of near-native binding modes in reasonable sampling times. In order to accelerate
the search we tested an H-REMD approach based on soft core scaling non-bonded interactions
between partners along the replicas. Similar approaches have already been used to enhance
conformational sampling of isolated molecules [145, 235] in explicit solvent but not to refine pu-
tative ligand-receptor complex structures. The approach requires a smaller number of replicas
compared to standard temperature (T-)REMD because the scaling affects only a small fraction of
the system. For the present test cases ten replicas were sufficient to significantly reduce barriers,
enhance sampling and still allow reasonable exchange rates between neighboring replicas. The
method was tested on three systems including a peptide-protein complex. In all cases signifi-
cant improvement of initially misplaced ligand-receptor complexes and side chain placements in
case of the peptide-protein complex was obtained. In contrast, standard MD simulations largely
failed on the test cases to refine the initial conformations. The approach is especially powerful to
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sample a broader range of possible ligand-receptor complex structures compared to standard MD
simulation. A full equilibration of sampled states was still not achieved for the ligand-receptor
complexes since different distributions of sampled states were obtained depending on the start
structure (e. g. in the FKBP-FK506 system). This can be attributed in part to limited sampling but
may also be due to alternative receptor conformations evolving during the simulations starting
from different initial ligand placements.

A possible extension of the approach is to not only scale ligand-receptor interactions among
replicas but also the interactions between side chains of the receptor in the vicinity of the ligand
binding site which could result in a simultaneous enhanced sampling of alternative receptor
conformations. It should be noted that the computational demand of the approach is much higher
than of standard docking tools. However, it should also be emphasized that the approach is not
intended for systematic evaluation of thousands of putative ligands or binding modes but to refine
a small fraction of preselected putative docking geometries (e.g. obtained form a systematic
docking run). With increasing efficiency of MD simulations such approach can become a valuable
alternative to simple scoring methods of docking geometries that largely neglect the dynamics
of partners and do not include explicit solvent molecules.

Another interesting possible application is the generation of alternative binding geometries for
a given ligand in a binding site that are of similar binding free energy. We identified an alterna-
tive binding mode of the FKBP-12-SB3 system in a H-REMD simulation that started from crystal
structure configuration. The finding agrees with previous MD studies which identified alterna-
tive binding modes for the same complex [257]. The population of different binding modes in a
given binding site reflects the relative stability of these modes and may give hints which inter-
actions (chemical groups on the ligand or possible chemical ligand modifications) may stabilize
or destabilize a given binding geometry.
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Chapter 5

Covalent dye attachment influences the
dynamics and conformational properties of
flexible peptides

Fluorescence spectroscopy techniques like Forster resonance energy transfer (FRET) and fluo-
rescence correlation spectroscopy (FCS) have become important tools for the in vitro and in vivo
investigation of conformational dynamics in biomolecules. These methods rely on the distance-
dependent quenching of the fluorescence signal of a donor fluorophore either by a fluorescent
acceptor fluorophore (FRET) or a non-fluorescent quencher, as used in FCS with photoinduced
electron transfer (PET). The attachment of fluorophores to the molecule of interest alters the
molecular properties and may affect the relevant conformational states and dynamics especially
of flexible biomolecules like intrinsically disordered proteins (IDP). Using the intrinsically disor-
dered S-peptide as a model system, we investigate the impact of terminal fluorescence labeling on
the molecular properties. We perform extensive molecular dynamics simulations on the labeled
and unlabeled peptide and compare the results with in vitro PET-FCS measurements. Experi-
mental and simulated timescales of end-to-end fluctuations were found in excellent agreement.
Comparison between simulations with and without labels reveal that the 7-stacking interaction
between the fluorophore labels traps the conformation of S-peptide in a single dominant state,
while the unlabeled peptide undergoes continuous conformational rearrangements. Further-
more, we find that the refolding rate of S-peptide is decreased by at least one order of magnitude
by the fluorophore attachment. Our approach combining experimental and in silico methods pro-
vides a benchmark for the simulations and reveals the significant effect that fluorescence labeling
can have on the conformational dynamics of small biomolecules. The presented protocol is not
only useful to compare PET-FCS experiments with simulation results but provides a strategy to
minimize the influence on molecular properties when designing fluorescence labeling.

5.1 Introduction

Changes in the three dimensional structure on various timescales are an omnipresent feature of
proteins and other biopolymers. Fluorescence spectroscopy techniques provide a useful toolset
to investigate the dynamics and extent of these structural rearrangements in vitro and in vivo
[259-263]. One of the most common approaches is the use of Forster resonance energy transfer

This study was performed in collaboration with the research group of Prof. Don C. Lamb, Department Chemie,
Physikalische Chemie, Ludwig-Maximilians-Universitat Miinchen. PET-FCS and CD spectrum measurements were
performed by Anders Barth and Alvaro H. Crevenna.
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(FRET) between two fluorophores attached to the molecule of interest [264]. The radiationless
transfer of energy from the excited donor dye to the red-shifted acceptor dye depends on the
relative orientation and distance between the fluorophores. Its high sensitivity in the range of
20-100 A renders the effect interesting for experimental determination of distances at the molec-
ular scale. Another example of radiation-less energy transfer is photoinduced electron transfer
(PET) [2509, 260, 265-268]. The excited-state energy may dissipate via electron transfer from the
fluorophore to the quencher or vice versa, depending on the redox potentials of the excited state
fluorophore and quencher. Relaxation to the ground state then occurs non-radiatively by charge
recombination of the radical donor/acceptor ion pair. The timescale of the PET reaction resides
in the range of femtoseconds to picoseconds [269, 270] which is significantly faster than the flu-
orescence lifetime of the fluorophores of typically a few nanoseconds [271, 272]. The efficiency
of PET decays exponentially with distance on the length scale of a few A, showing effectively an
all-or-nothing quenching behaviour. PET enables the in vitro time resolved detection of closed
and open contacts between fluorophore and quencher in proteins and other biomolecules. Due to
the on-off characteristics of PET, it is commonly used with fluorescence correlation spectroscopy
(FCS) [273] to study the timescale of the dynamic changes of the fluorescence signal. FCS is based
on the analysis of the time correlation of the detected signal and is thus sensitive to all processes
that affect the fluorescence signal. Most commonly FCS is being used to study the diffusion prop-
erties of molecules [274], but it is also a powerful tool to study conformational dynamics when
combined with FRET or PET [275, 276].

In proteins, tryptophan is the only naturally occurring amino acid which possesses photo-
physical properties that enable fluorescence quenching through PET [277]. If tryptophan is not
part of the protein sequence, a PET experiment requires the artificial inclusion of a Trp residue in
the region of interest by either mutation or the adherence of an additional residue. Trp residues
which might interfere in an undesirable way with the fluorophore need to be deleted from the
protein. The labeling of proteins with fluorophores usually requires modification of the protein
sequence. Typically, labeling is performed by reacting a maleimide derivative of the fluorescent
dye with cystein residues in the protein. To achieve specificity, this approach requires the re-
moval of natural cystein residues or the introduction of additional cystein residues by mutation.
Other labeling approaches target amino groups or rely on bioorthogonal labeling strategies based
on the addition of unnatural amino acids [278]. After attaching the fluorphore to the molecule
of interest, careful control measurements have to be performed to ensure that the photophysi-
cal properties are not altered by the local environment, and that no sticking interactions occur
which would impair the rotational freedom of the fluorophore.

Although fluorescence techniques have been applied successfully on a variety of systems [262,
279, 280], usually little information is available to what extent the structural or dynamical prop-
erties of the studied system are modified by the attachment of the fluorescence labels. Molecular
dynamics studies can help in the interpretation of experimental results and detection of potential
artifacts introduced by the dye label [281-283]. As the fluorophores typically exceed the size of
naturally occurring amino acids, it is expected that at least the local diffusivity is modified. Fur-
thermore, many readily available fluorophores contain rigid ring systems which function as light
absorbing centers (e. g. oxazine derivatives MR121, Atto655 and Atto Oxa11) and potentially fa-
cilitate hydrophobic or 7-stacking interactions with other aromatic ring structures especially of
the quencher. A significant influence of the fluorescent label on the local structure, the confor-
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mational dynamics and the overall functionality of the protein can thus usually not be excluded,
and careful controls have to be performed to ensure the validity of the experimental results.

In the present study we conducted a comparative in vitro and in silico study on the 14 amino
acid long truncated S-peptide, which historically served as a model system for intrinsically dis-
ordered peptides [284—288]. We N-terminally attached fluorophore Atto655 and added a trypto-
phan residue to the C-terminus serving as a fluorescence quencher [259]. For the labeled pep-
tide the fluorescence quenching autocorrelation was measured and analyzed with respect to the
dynamic contribution, which is a measure for the end-to-end dynamics of the peptide chain.
Additionally, we performed extensive, continuous molecular dynamics (MD) simulations on S-
peptide with and without the fluorescence labels, to provide atomistic insight into the dynamic
and conformational regime of the peptides.

Quantitative agreement of the experimental quenching autocorrelation of labeled S-peptide
and in silico results was obtained. Comparison of the simulations reveals, that the dynamical
and conformational regime of S-peptide was significantly altered by the attachment of Atto6s5
and Trp1s. This study sheds light on systematic modifications of macromolecular properties
introduced by fluorescence labeling and provides valuable insight for the design of future fluo-
rescence spectroscopy experiments.

5.2 Results

5.2.1 MD simulations

Labeled and unlabeled versions of S-peptide were extensively simulated with molecular dynamics
simulations (MD) for 30 ps. To give qualitative insight in the refolding dynamics of intrinsically
disordered S-peptide, the evolution of the RMSD with respect to the starting structure was calcu-
lated (Figure 5.1) and trajectories were visually inspected. To allow direct comparison between
RMSD regimes of both systems, the RMSD was only calculated for residues 1 to 14 (without
Atto6s5 and Trp1s).

Unlabeled S-peptide rapidly fluctuated between conformational modes on the timescale of sev-
eral nanoseconds as expected for an intrinsically disordered peptide. Fluctuation of the RMSD
indicated no stable conformation surviving in the microsecond time regime throughout the
whole simulation. Labeled S-peptide, however, showed a significantly reduced bandwidth of
RMSD fluctuations with several plateaus in the RMSD evolution. Visual inspection confirmed
metastable states surviving for several microseconds during the trajectory. Many configurations
revealed close contacts between the two ring systems of terminal Atto6s5 and Trp15 indicating
a strong stacking interaction that traps the system in a quenched state. After about 12 ps the
backbone locked into a stable 3-sheet like configuration and remained in this state until finally
folding to a -sheet structure after 29 ps (see Figures 5.1,5.2 and conformational regime clusters
#1 and #4).

5.2.2 Conformational regime

Conformations from MD trajectories were clustered for both systems separately to quantify the
impact of labeling on the conformational regime. Clustering along the RMSD was performed
with the single-linkage algorithm using a RMSD cutoff of 0.25 nm and 10° frames from each
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Figure 5.1: The RMSD of heavy atoms of residues 1-14 with

respect to the unfolded starting structure for

simulations with (lower panel) and without (upper panel) labels. The mean structures of the
respectively four largest clusters are shown and their cluster index is indicated (#). Additionally
the timestamp of the clusters mean structures occurrence during the simulation is indicated at
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Figure 5.3: Experimentally obtained FCS curve and model fit function for labeled S-peptide. Indicated
are the four main time regimes of the relevant processes. I: Photon antibunching, II: Chain
dynamics, III: Photophysics, IV: Diffusion.

trajectory [289]. Clusters were sorted and numbered by their frequency of occurrence and the
distribution of the ten biggest clusters is shown in Figure 5.2.

As expected, cluster sizes of unmodified S-peptide reflect the typical conformational behavior
of an intrinsically disordered peptide. The decrease in probability with increasing cluster index
is relatively moderate suggesting low free energy differences between neighboring clusters. A
total of about 4700 clusters was found where S-peptide adopted even the configuration of the
largest cluster only during 6% of the total simulation time. The mean structures of the first four
clusters are depicted in figure 5.1 and give insight into the variability of conformations.

With the attachment of Atto655 and Trpis to the termini of S-peptide, the conformational
behavior however changed significantly. The variability of clusters narrowed down to about
1000 different clusters, with many showing stacked Atto655/Trp15 configurations. The largest
cluster, found between 12-29 ps, dominates the conformational regime with a probability of over
60% and indicates a shift from intrinsic disorder to a meta stably folded peptide, reducing the
conformational variability significantly. Three out of four mean structures of the largest clusters
show strong stacking interaction between terminal labels (figure 5.1).

5.2.3 PET-FCS measurements

The dye-quencher dynamics of labeled S-peptide were measured with a PET-FCS setup experi-
mentally. The full PET-FCS correlation function is shown in Figure 5.3. Since FCS is sensitive
to all processes that affect the fluorescence signal, multiple phenomena are observed (Regimes
I-IV). Photon antibunching is observed on the timescale of the fluorescence lifetime of ~ 2 ns,
a typical property of quantum emitters [290]. Diffusion through the confocal volume occurs
on timescales between several tenths of ps to ms, depending on the size of the observation vol-
ume and the diffusion coefficient of the molecule. Most fluorescent dyes can undergo intersys-
tem crossing from the excited singlet state into a dark triplet state with lifetimes in the range
of several ps. Any conformational dynamics are superimposed onto these processes. The fast
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Figure 5.4: Atto655/Trp1s fluorescence quenching autocorrelation data fitted with a two-state exponential
model function. Data and fits are shown for MD simulations (A, B) and experimental PET-FCS
measurement (C). (A) Data from MD calculated over the whole simulation time (30 ps). (B)
Initial 12 ps of MD data omitted. (C) Dynamic part of the correlation curve from experimental
PET-FCS measurement (red) overlayed with the fitted MD data collected after 12 ps (black).

chain dynamics of intrinsically disordered peptides or unfolded proteins usually occur on the
submicrosecond timescale [291], while slower conformational dynamics involving large confor-
mational rearrangements usually take place in the range of ms to s [292].

The quenching contribution to the correlation function is indicated in regime II (Figure 5.3). To
determine the timescales of the chain dynamics, we fit the correlation function with a model ac-
counting for the listed contributions (Equation (5.3)). By careful inspection of the weighted resid-
uals of our correlation fit function, we find, that the addition of a second dynamic contribution
to the model function improves the quality of the fit significantly (Figure 5.7). It remains how-
ever unclear, whether the second component arises from an alternative conformational regime
of S-peptide (see discussion). Therefore, we limit our discussion to the average timescale and
overall amplitude of the two components, because the length of the MD simulation is not suffi-
cient to address the existence of two dynamic contributions. To directly compare the measured
dynamics to the correlation functions obtained from MD, we isolate the dynamic contribution by
dividing the correlation function by the contributions of diffusion, photophysics and antibunch-
ing (Figure 5.4 B). We converted the observed amplitude and relaxation time to off- and on-rates
by equations (5.4) and (5.5) yielding an off-rate k,g = 5.0 ps—1 and an on-rate ko, = 7.4 ps—1.

5.2.4 Fluorescence quenching

Configurations of Atto655/Trp15 from simulation were classified as “dark” state when the dis-
tance between the geometric centers of their ring compounds was below a quenching distance
of r* < 0.55 nm or as fluorescent otherwise [293, 294]. The quenching autocorrelation function
was fit to a two-state kinetic model (Equation (5.1)). Due to the global conformational rearrange-
ments of S-peptide during the initial 12 ps and the associated metastable states with lifetimes in
the microsecond regime, the convergence of quenching autocorrelation data was insufficient. Es-
pecially large correlation times 7 > 500 ns suffered from the lack of sampling (Figure 5.4, A). The
long-lived metastable states however dominated the quenching dynamics resulting in relaxation
timescales of 7,, = 391 ns (Table 5.1).

Because S-peptide locked in a quasi-stable folded 5-sheet like configuration after 12 ps simula-
tion time, we decided to treat the initial 12 ps as equilibration time and recalculate the quenching
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‘ Quenching B Fluorescence ‘

Figure 5.5: Quenched and fluorescent conformations in the timeframe between 27.5-28.0 s are shown
over time. Although the backbone conformation was locked in cluster #1 during this timeslot,
spontaneous unstacking of Atto655/Trp15 was observed. Two exemplary structures shortly be-
fore and after an unstacking event are shown below. The stacked (grey) configuration quenches
the Atto6s5 fluorescence, while the unstacked (red) configuration allows fluorescence. Un-
stacking was observed to occure on sub nanosecond timescales.

autocorrelation for only the second part of the simulation with subsequently refitting the two-
state model (Figure 5.4, B). The resulting quenching relaxation timescale of 7, = 72 ns was about
4-5 times faster as dye and quencher could not diffuse far away from each other by the confined
(-sheet like backbone structure. In the investigated simulation time window (12-30 ps) no global
backbone rearrangements of S-peptide were observed and lifetimes of quenching states of the flu-
orescence labels were found in the range of hundreds of nanoseconds (see Figure 5.5). Omitting
the initial 12 ps as equilibration also led to a significant improvement of coincidation between the
two-state exponential fit model and the simulation data especially for long relaxation times 7,.
Similar to PET-FCS data treatment we also calculated on and off rates by equations (5.4) and (5.5)
from fluorescence amplitude and relaxation time. Comparative data between experiment and
simulation for fitted relaxation parameters and rates are shown in Table 5.1. We find that the
quenching dynamics for simulation data after 12 ps are in good agreement with the experimen-
tal results.

ar | 7ons] | kon (s | Ko [us™!]
PET-FCS 0.67 80.4 7.4 5.0
MD > 12 ps 0.65 72.1 8.4 5.5
MD all 0.71 391.3 1.5 1.1

Table 5.1: Relaxation time scales (7,) and amplitudes (a,) of the fluorescence autocorrelation fitted with an
exponential two-state model. Data is shown for experimental PET-FCS measurements and MD
simulations. For PET-FCS data, the sum of amplitudes and the average relaxation time of the
two dynamic components are shown. Additionally relaxation times and amplitudes have been
converted to microscopic on and off rates of the related quenching process with formulas (5.4),
(5.5). The rates accord with the average opening and closing frequency of quenching contact
formation between dye and quencher in labeled S-peptide.
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Figure 5.6: Mean residue elliptisity from circular dichroism spectra of labeled S-peptide with and without
Atto6ss stacking partner Trpis. The peak at 22onm indicates residual a-helix formation in
labeled S-peptide without Trp1s.

5.2.5 Refolding dynamics

To characterize the effect of the fluorescent labels on the dynamics of S-peptide, we analyzed
the end-to-end distance d of the peptide as a measure for the refolding dynamics. The distance d
was calculated between C-f atoms of residues Lys1 and Asp14 again for both systems with and
without labels. We split the distance ensemble in two regimes, to characterize the switching dy-
namics between a folded and unfolded regimes of S-peptide. Distances d < 1.3 nm at immediate
contact were assigned to a “close” regime while distances d > 2.5 nm were assigned to an “open”
regime. By counting the number of transitions from one regime to the other and dividing it by
the total simulation time, a mean refolding rate of opening and closing events of the peptide was
calculated. For S-peptide without labels a refolding rate of 34.9 ps— was found while refolding
dynamics for labeled S-peptide were slowed by more then one order of magnitude to 2.7 ps—1.
Note, that this refolding rate definition only roughly correlates with the k,, and k.g rates of
quenching contact formation which are related to fluorescence autocorrelation model via for-
mulas (5.4), (5.5). The quenching rates describe the frequency of opening and closing quenching
contact between fluorophore Atto655 and quencher Trp1s. This rates can be extracted from both
experiment and simulations and serve to compare the agreement between those. However, to
compare the dynamics between simulations with and without fluorescence labels, we defined a
two-state model (open/close) based on a feature that both systems have in common.
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5.2.6 Circular dichroism spectra

To identify to what extend the S-sheet conformation that labeled S-peptide adopts in simulation
is part of the equilibrium regime and to measure the modification in the conformational regime
by dye-quencher interactions, we measured circular dichroism spectra of labeled S-peptide and
compared it with the spectrum of S-peptide labeled with Atto6s5 but without Trp15 (Figure 5.6).
When Trp1s is added to the peptide the peak at 220 nm vanishes, indicating an increase in (-
sheet structure induced by the m-stacking interaction between the termini. The CD spectrum
reveals that the conformational regime is not dominated by only (3-sheet structures but includes
contributions of helical and random coil conformations. This supports the results from the 30 ps
simulation where labeled S-peptide adopted 3-sheet conformation only during a fraction of the
simulation time and exposed random coil backbone configurations otherwise (Figure 5.1, cluster
#1).

5.3 Discussion

The interpretation of fluorescence spectroscopy measurements depends on the assumption that
the artificial attachment of fluorophores does not alter the conformations and dynamics of the
target molecule itself. We performed comparative MD simulations and PET-FCS measurements
on fluorescently labeled 14 residue S-peptide, serving as a model system of an intrinsically dis-
ordered peptide. Our results reveal that the labeling strongly affects both the conformational
and dynamical properties of S-peptide, shifting it from the disordered conformational regime to
a semi-stable fold with 3-sheet content. The reason is the strong 7-stacking interaction between
the rigid ring systems of Atto655 and Trp1s, which traps the termini of the peptide to remain at
close distance. This effect may occur with many widely used fluorophores containing rigid ring
systems as their light absorbing centers that facilitate stacking interactions with other aromatic
ring structures.

The agreement between quenching correlation functions from MD simulations and PET-FCS
measurement is surprisingly good, although only when skipping the initial 12 ps of the MD tra-
jectory as equilibration time (Table 5.1). As the starting structure of labeled S-peptide was chosen
from the regime of the unlabeled S-peptide (helical structure), we assumed that the system re-
quires some time to reach equilibrium and treated the initial 12 ps as equilibration time, thereby
dividing the dynamic S-peptide regime in two characteristic regimes. The first part of the sim-
ulation was dominated by global backbone rearrangments and slow quenching dynamics as the
peptide backbone continously stretched and refolded. During the second part the S-peptide back-
bone locked into a meta-stable fold with only the label side chains stacking interaction opening
and closing from time to time. Simulation time, however, is finite, therefore it remains unclear
to what degrees these two regimes contribute to the equilibrium regime. As we reproduce good
agreement between simulation and experiment for the second regime with faster quenching dy-
namcis, we assume that S-peptide preferably resides in this regime. However, the fit quality
of experimental PET-FCS data can be improved by adding an additional dynamic term with a
slower relaxation coefficient. We speculate, that this second dynamic term might correspond to
the regime of global rearrangments seen in the initial part of MD simulations.

The good agreement between experiment and simulation is even more surprising as the
quenching state is judged only by a simple distance criterion which was proposed earlier by Va-
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iana et al. [293] and was based on a fit of fluorophore MD trajectories to correlation spectroscopy
data. However, previous studies successfully demonstrated that the connection between atom-
istic MD simulations and experimental PET-FCS measurements can be drawn with such a simple
criterion [294]. Gaining a more detailed understanding of the relation between dye-quencher
orientation and fluorescence quenching would require to derive redox potentials for single MD
frames via quantum chemical calculations. However we use the experimental PET-FCS mea-
surements only for the validation of our labeled S-peptide simulations, whereas the comparison
between simulations with and without labels reveal the stark influence of fluorescence labeling
on the peptide dynamic and conformational regime. Our circular dichroism measurements on
labeled and unlabeled S-peptide strongly support these findings.

The influence of the local environment on the photophysical properties of fluorophores is a
well-known artifact and can be addressed experimentally. Changes in the absorption and emis-
sion spectra or quantum yield (and related, lifetime) all affect the Forster radius in FRET experi-
ments, requiring careful control measurements. It is additionally crucial that the rotational free-
dom of the fluorophore is not compromised by geometric hindrance, specific interactions with
aromatic rings, or electrostatic or hydrophobic interactions, as the FRET efficiency critically de-
pends on the relative orientation of donor and acceptor fluorophores. The rotational freedom of
the fluorophore can be addressed by means of the fluorescence anisotropy [295]. Our study, on
the other hand, sheds light on the effect of the chemical modification on the target biomolecule.
Certain considerations need to be taken into account to prevent that the fluorescence label affects
the conformational and dynamical properties of the target biomolecule in an undesirable way. In
particular PET-FCS experiments, which intrinsically require that fluorophore and quencher can
come at close proximity, suffer from possible interactions between them. The influence of spe-
cific dye-quencher or dye-dye interactions on conformational dynamics is especially pronounced
when unstructured systems like unfolded or unstructured proteins as presented here are stud-
ied, for which PET and FRET are often the method of choice. In general, it should be good
advise to use fluorescence labeling only in systems where the size of the dye is significantly
smaller than the target molecule to avoid that a single dye interaction dominates the conforma-
tional properties. The position for the fluorescent label should be chosen in a well-structured and
solvent-exposed part of the protein sequence to minimize the influence on the local structure and
dynamics, especially when partly disordered proteins are studied. We demonstrate that MD is
a valuable tool to quantitatively analyze PET-FCS experiments and relate the measurements to
atomistic details. Furthermore, simulations provide a useful strategy to predict the influence of
labeling configurations on systematic properties when designing fluorescence experiments.

5.4 Methods

5.4.1 Molecular Dynamics

Two simulations of S-peptide with and without labels were started from extended peptide con-
formations. The periodic box boundaries were set at minimal distance of 1 nm to the peptide. The
peptide was parametrized with the Amberggsb-ILDN forcefield [42]. Parameters for the Atto6s5
fluorophore were generated as follows. First the electron density was calculated using Gaus-
sianog [296] with B3LYP [297, 298] at 6-31G” basis set level [299], second the partial charges
were generated with the restraint electrostatic potential protocol (RESP) [300]. Finally, atom
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types and bonded/nonbonded parameters were assigned from the general amber forcefield GAFF
[247]. Both systems were energy minimized and equilibrated in NPT ensemble (298 K, 1.01 bar)
after the addition of explicit solvent Tip3P water molecules [246]. Respectively four positive and
negative counter ions were added to the solution keeping the box charge neutral. The production
run was performed at timestep of 3 fs with the GROMACS 5.0 [96, 244] MD software suite using
the velocity rescaling thermostat in NVT ensemble (298 K) [301].

5.4.2 Peptide synthesis

The 14 amino acid truncated S-peptide (KETAA AKFER QHMD) was used as a model system
for an intrinsically disordered peptide [284-287]. To fluorescently label the S-peptide for PET-
FCS measurements, the fluorophore Atto655 was attached to the N terminus and an additional
Tryptophan was added to the C terminus serving as a fluorescence quencher [260]. The resulting
sequence of labeled S-peptide was Atto655 KETAA AKFER QHMDW. Peptide synthesis, labeling
and purification was performed as described previously [302].

5.4.3 PET-FCS Measurements

PET-FCS measurements were performed on a custom-built confocal single-molecule fluorescence
microscope. The sample was excited with a diode laser (LDH-D-C-640, PicoQuant) operated in
continuous wave mode at an average laser power of 280 pW as measured before the aperture of
the objective. The fluorescence signal was passed through a pinhole and split on two avalanche
photodiodes (SPCM-AQR-14, Perkin Elmer Optoelectronics) by a 50:50 beam splitter to avoid
detector dead time in a Hanbury Brown-Twiss-type detector arrangement [303]. Fluorescence
signal was passed through an emission filter (ET670/30, AHF Analysentechnik). The range of the
emission filter was chosen as to avoid detector crosstalk due to the breakdown flash of the APDs
[304]. Individual photon arrival times were recorded with 16 ps resolution using time-correlated
single photon counting (TCSPC) hardware (HydraHarp4oo, PicoQuant). S-peptide was dissolved
in standard PBS buffer with 0.005% Tween-20 to prevent sticking to the cover slide surface, and
diluted to a final concentration of ~ 1 nM. FCS data was collected over a time of 16 h at room
temperature.

5.4.4 Quenching Autocorrelation

Configurations of Atto655/Trp15 from simulation were classified as “dark” state when the dis-
tance between the geometric centers of their ring compounds was below the quenching distance
of r* < o0.55 nm or as fluorescent otherwise [293, 294]. To calculate the quenching autocorrela-
tion 10° frames from the 30 ps MD trajectory were analyzed. The quenching signal autocorrela-
tion data was then fitted with a two-state model of single exponential signal decay

Gayn(T) = are*T/TT (5.1)

where a, is the amplitude and 7, the relaxation time constant of the quenching relaxation auto-
correlation.
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5.4.5 FCS Data Analysis

The second order intensity cross-correlation function G;;(7) between two channels 7 and j is

defined by:

(L)t + 7))
(L) (1)

where I;(t) is the intensity in channel ¢ at time ¢, 7 is the time lag and () denotes time av-
eraging. Cross-correlation functions between the two detectors were computed using custom-
written software based on a multiple-tau correlation algorithm [305]. Error bars are determined
by splitting the measurement into ten segments of equal length and computing the standard er-
ror of mean of the correlation functions. Fitting of the correlation function was performed in
MATLAB (The Mathworks, Inc.) using the non-linear least squares fit routine by minimizing the
weighted residuals. Confidence intervals (95%) of determined parameters are computed from the
covariance matrix obtained from the fit procedure. FCS curves are fit using a model accounting
for photon antibunching, triplet kinetics and diffusion, as well as one or two additional bunching
terms for the observed kinetics:

~ 2\ £\ 12
= (1+— 1
s (1) ()

T =
<1 1= T€TT> (1 +ape /T + ar,ze_T/TT’2> (5-3)

Gi;(1) = (5.2)

where a,.; /o are the amplitudes and 7,.; /, the relaxation time constants of the quenching re-
laxation autocorrelation [277], 7p is the diffusion time constant, N is the average number of
particles in the focus, v = 273/2 is a correction factor accounting for the shape of the confocal
volume, p is the ratio of axial to lateral size of the confocal volume, 77 is the triplet time constant
and T is the triplet fraction. The parameters of the dynamic quenching term are related to the
off- and on-rates of the quenching process by [306]:

1
Tr = m (5-4)
koff
Ay = Foon (5'5)

In terms of the system at hand, k., and k¢ can be interpreted as the microscopic rate constants
of end-to-end contact formation and dissociation.

5.5 Supplementary experimental results

5.5.1 Control measurements

We characterized the labeled S-peptide in terms of fluorescence lifetime and anisotropy with
respect to a control construct without tryptophan (Figure 5.8 A and B). The fluorescence lifetime
of Atto655 changed slightly upon attachment to the peptide from 1.8 ns for the free dye (data not
shown) to 2.18 ns. Upon addition of the tryptophan, the lifetime decreased slightly to 2.05 ns,
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T1 Ay T2 Az
37+ 5ns 0.32£0.05 120 £ 11 ns 0.35£0.05
N TD p TAB AAB TT T
0.411£0.001 | 51.4+£0.2 us | 4.284+0.05 | 1.67£0.05ns | 0.91+£0.02 | 244+0.2 us | 0.085 £ 0.003

Table 5.2: Fit results for PET-FCS measurement. Parameters as described in the main text. Errors are given
as 95% confidence intervals.

which is due to dynamic quenching on the timescale of the fluorescence lifetime [260]. Using the
Stern-Volmer equation [307], the dynamic quenching rate k, can be calculated from the quenched
and unquenched lifetime 7, and 7, as:

1 -1

kg=1y — Ty

(5.6)

This yields a relaxation time for the dynamic quenching process of ~35 ns, in very good
agreement with the observed fast quenching constant. No significant change in the fluores-
cence anisotropy was observed upon addition of the tryptophan, thus the rotational movement
of the dye is not affected by the quenching interaction. Upon removal of the tryptophan, the dy-
namic quenching term disappears (Figure 5.8 C). Still, a small triplet amplitude is detected even
in the absence of tryptophan. To confirm that the observed amplitude is indeed caused by photo-
physics, we performed a series of measurements at different excitation powers (Figure 5.8 D-F).
The only significant change in the obtained correlation functions was the triplet amplitude (see
Figure 5.8 F and inset in Figure 5.8 D), whereas the other kinetic amplitudes showed no power

dependence (Figure 5.8 E).

5.5.2 Circular dichroism

CD measurements were performed on a Jasco J-715 spectrophotometer at 25°C. Labeled S-
peptide with and without Trp15 was solvated at 1 mg ml—1 concentration in DPBS buffer (Sigma-
Aldrich). The samples were measured in a quartz cell with 0.2 mm path lenght. Data is expressed
in terms of mean residue molecular elliptisity [f],. CD data was smoothed using a Savitzky-
Golay-Filter with order 3 and a window of 10 nm [308].
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Figure 5.7: Fit of the experimental correlation function using a model accounting for one kinetic compo-
nent (A) and two kinetic components (B). The weighted residuals show that one kinetic com-
ponent is not sufficient to describe the observed dynamics. The x?2,, goodness-of-fit measure
changes from 2.80 to 1.09 upon inclusion of a second kinetic component. The Bayesian infor-
mation criterion (BIC) is significantly lowered from 765 to 340, justifying the inclusion of the
second kinetic component.
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Figure 5.8: (A) Normalized intensity decays for S-peptide. The lifetime changes from 2.2 ns to 2.1 ns upon
addition of the tryptophan residue. (The lifetime of free Atto6s5 dye is 1.8 ns) (B) The time-
resolved fluorescence anisotropy shows no significant change. (C) PET-FCS curves reveal no
dynamic term in the control construct, although a small triplet fraction is visible. Measurement
performed at 100 uW laser power. (D-E) Testing for power dependence of observed bunching
terms reveals that only the triplet term at ~ 3 ps depends on laser power, while the kinetic
terms are not affected. (A1) Amplitude for ~ 45ns component. (A2) Amplitude for ~ 130ns
component.
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Chapter 6

Adenylylation of Tyr77 stabilizes Rab1b
GTPase in an active state: A molecular
dynamics simulation analysis

The pathogenic pathway of Legionella pneumophila exploits the intracellular vesicle transport
system via the posttranslational attachment of adenosine monophosphate (AMP) to the Tyr77
sidechain of human Ras like GTPase Rabib. The modification, termed adenylylation, is per-
formed by the bacterial enzyme DrrA/SidM, however the effect on conformational properties
of the molecular switch mechanism of Rab1ib remained unresolved. In this study we find that
the adenylylation of Tyr77 stabilizes the active Rab1b state by locking the switch in the active
signaling conformation independent of bound GTP or GDP and that electrostatic interactions
due to the additional negative charge in the switch region make significant contributions. The
stacking interaction between adenine and Phe4s however, seems to have only minor influence
on this stabilisation. The results may also have implications for the mechanistic understanding
of conformational switching in other signaling proteins.

6.1 Introduction

The orchestration of intracellular protein interaction networks requires tight temporal and spa-
tial regulation in order to maintain homeostasis and to react to changing environmental condi-
tions. Small Ras-like GTPases (guanosine triphosphate phosphohydrolases), also referred to as
G-proteins, play a pivotal role in the coordination of intracellular signaling by acting as binary
molecular switches [310]. The discrimination between the active and inactive state is achieved
by differential co-factor binding: GTPases are in the active (“on”) state when bound to guanosine
triphosphate (GTP), but inactive (“off”) when complexed with guanosine diphosphate (GDP). Sig-
naling is promoted by the binding and recruitment of effector proteins that specifically interact
with the active state of the GTPase. Due to their fundamental role in coordinating signaling it is
not very surprising that many intracellularly replicating bacterial pathogens have evolved with
mechanisms to interfere with GTPase activities and thereby promote their survival [311]. Among
several activity modulating strategies, the covalent attachment of additional functional groups
(also referred to as posttranslational modifications (PTMs)) appears to be particularly prominent
and interesting. We and others have previously observed that the pathogenic bacterium Le-
gionella pneumophila covalently modifies the human G-protein Rab1b via the posttranslational
attachment of adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to the side

Parts of this chapter have been published in [309]
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chain of residue Tyr77 with the help of the bacterial protein DrrA (also known as SidM). This en-
zymatic adenylylation (also termed AMPylation) exploits the intracellular vesicle transport sys-
tem of its host cell [312]. It has been observed that adenylylation of small GTPases can abrogate
the interaction with GAPs [312] or downstream effectors [313, 314]. In particular, adenylylation
of Rab1 blocks the access of the human GAP TBC1D2o0 and the Legionella GAP LepB in vitro [312,
315, 316]. Thus, Rab1 adenylylation appears to stabilize the G-protein in the active GTP-state by
inhibiting GAP-mediated GTP-hydrolysis. It is, however, less obvious whether the adenylylated
Rab1 protein also maintains an active conformation that is in principle capable of interacting
with GTP-state specific cellular factors. The activity state of a GTPase is communicated to in-
teraction partners mainly via two highly important regulatory regions that are referred to as
switch I and switch IL In the inactive GDP-bound state, these regions are structurally disordered
but they become highly conformationally restrained in the active GTP-bound form. Interacting
molecules very sensitively probe the switch conformations and thus can bind specifically either
the GDP- or the GTP-state. Interestingly, the adenylylated residue Tyr77 of Rab1 is located in
the switch Il region and consequently the question arises as to how this modification may affect
the configurational ensemble of the switch II and/or switch I regions. The X-ray structure of
the AMP-Rab1:GTP complex revealed a stacking interaction of the adenine base of the adeny-
lylated Tyr77 of switch II with a highly conserved phenylalanine (Phe4s) side chain [312]. This
interaction may suggest that Tyr77-adenylylation fixes switch II in a defined and active-state
like conformation. Furthermore, we have observed recently that the deadenylylation reaction of
AMP-Rab1 by SidD is independent of the nucleotide-state of the G-protein, i.e. AMP-Rab1:GDP
and AMP-Rab1:GTP show no difference in their substrate properties [317].

This observation is a very astonishing finding since most GTPase interacting molecules very
sensitively discriminate between the GDP- and GTP-states by binding only to the inactive or
the active switch conformations, respectively. The lack of discrimination of SidD between the
GDP- and GTP-states of AMP-Rab1 may therefore suggest that the switch regions are locked in
identical conformations. Consequently, adenylylation of Rab1ib could force the switch regions
into the active conformation even if the protein is actually in the GDP-state possibly due to the
stacking interaction with the Phegs residue observed in the crystal structure.

In order to elucidate this mechanism we performed extensive continuous Molecular Dynamics
(MD) and Umbrella Sampling (US) based free energy simulations to compare the influence of
adenylylation on Rabib conformational states bound to either GTP or GDP. The simulations
indicate a stabilizing effect of the Tyr77 adenylylation on the active form of Rab1ib even in the
presence of GDP. In addition, electrostatic energy analysis of conformational ensembles close to
the active states vs. states representing the inactive form reveals that electrostatic interactions
make the major favorable contribution to the active state stabilization in the presence of the Tyr77
adenylylation. The simulation study indicates that stabilizing effects of side chain modifications
in GTPases (not necessarily close to the GTP/GDP binding site) might not only be mediated by
contacts but also indirectly e. g. by electrostatic interactions. The result may also have important
implications for understanding the influence of other modifications on signaling proteins.
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6.2 Results

6.2.1 Molecular Dynamics simulations and in vitro deadenylylation assay on
Rab1b

In order to elucidate the influence of the bound nucleotide and adenylylation of Tyr77 on the
conformational flexibility and stability of Rab1b we first performed a series of continuous (c)MD-
simulations in explicit solvent. The simulations were started from the crystal structure of the GTP
bound form with native or adenylylated residue Tyr77 (i.e. AMP covalently attached to the OZ
atom of Tyr77). Starting structures in complex with GDP with or without Tyr77 modification
were generated in silico by removing the corresponding atoms from the crystal structure. In all
simulations the protein structure remained overall close to the starting conformation with an
overall backbone root-mean-square deviation (RMSD) of < 0.2 nm with respect to the crystal
structure (Figure 6.1). The calculated root-mean-square-fluctuation (RMSF) of the switch I and I
regions showed larger fluctuations in the GDP vs GTP complexes but no sign of unfolding, e. g.
towards the inactive form in the presence of GDP (Figure 6.2).

The Mg?* ion stayed close to the initial placement in simulations with either GTP or GDP
bound to Rab1b. In simulations with GTP two water molecules persisted in the close vicinity of
Mg?* exposing the oxygen atom which carries the negative partial charge to the Mg ion (Figure
6.3). This induced a local shielding effect of the two positive charges by the dipole field of the
water molecules. These water molecules were also found in the crystal structure of Rab1ib [318].
The cavity arising from the hydrolysis of GTP to GDP (i.e removal of the y-phosphate from
GTP) was filled with a third water molecule which persisted throughout all simulations with
GDP bound to Rabib. Residues Ser3g, Thrqo and Tyr37 located in the switch I region formed
persistent H-bonds with the y-phosphate during the simulation in line with the X-ray structure
[318]. Also in agreement with experiment, one persistent H-bond between «y-phosphate and the
backbone of switch II residue Gly66 was observed.

The X-ray structure of the AMP-Rabib:GppNHp complex revealed a planar packing of the
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Figure 6.1: Root-mean-square deviation (RMSD) of protein backbone with respect to the AMP-
Rab1b:GppNHp X-ray structures of four cMD simulations for different Rabib systems. The
flexible five N- and C-terminal residues were excluded from the RMSD calculations, respec-
tively. The initial conformations were well conserved throughout the 600 ns simulations which
is reflected in a RMSD below 0.2 nm for all simulations.
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Figure 6.2: Average root mean square fluctuations (RMSF) of Rabib C-a atoms in GTP and GDP bound
form taken from 600 ns MD simulations. The difference of both curves highlights the change
in flexibility depending on the present nucleotide. The removal of the y-phosphate destabi-

lizes switch I and II regions due to the loss of hydrogen bonds network and the shift in the
electrostatic field.

switch |

Figure 6.3: Noncovalent interaction network of GTP bound to Rab1ib observed during Molecular Dynam-
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ics simulations. GTP is depicted as atom-color-coded sticks while Rab1b is indicated as blue
cartoon. The bound magnesium ion is shown as a green sphere. Rab1b residues forming bonds
with GTP are shown as sticks. The y-phosphate group of GTP forms 3 hydrogen bonds with
switch I residues Tyr37, Ser3g, and Thrgo of Rabib. One additional bond is formed between
switch II residue Gly66 and GTP. The nucleotide is further stabilized in the binding pocket by

two salt bridges formed with core residue Lys21. Two water molecules build a charge shielding
shell around Mg?™ ion and are tightly bound during all the simulations.
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Figure 6.4: Probability distribution of sampled distances between the C3-atom of residues 45 and the ade-
nine double ring structure of AMP-Tyr77 during cMD simulations. A short distance (below 0.7
nm) indicates a stacking interaction between the adenine and residue 45. Sampling of larger
distances corresponds to non-contacting states.

highly conserved Phe4s phenyl ring with the adenine double ring of adenylylated Tyr77 which
suggests a functionally relevant m-stacking interaction [312]. Based on this suggestion additional
600 ns simulations of the adenylylated Rab1ib mutant F45A (Rab1b(F45A)) in the presence of ei-
ther GDP or GTP were performed and compared with simulation results of wild type AMP-Rab1b.
Again, neither the GTP nor the GDP bound case resulted in significant structural changes in the
switch regions during the simulation time (see Figure 6.1). However, the conformational sam-
pling of the adenine base attached to Tyr77 is altered by the F45A mutation: A histogram plot of
distances between the C3-atom of residue 45 and the adenine double ring of AMP-Tyr77 reveals
a significant loss of the stacking interaction between the Alags side chain and the adenine ring
in the Rab1b(F45A) mutant compared to wild-type (both in the GTP or GDP bound case, Figure
6.4). Cluster analysis indicated a dominating cluster for AMP-Rab1b with about 74% of all frames
representing a stacking interaction between Phe4s and AMP when GTP was bound and slightly
less with bound GDP (see Figure 6.4, 6.5A). For the F45A mutant the clustering revealed that the
AMP modification gains conformational freedom visiting a broader range of configurations (Fig-
ure 6.5, C,B, and D: three of the five largest clusters). Importantly, the average distance between
AMP group and residue 45 is considerably larger in case of the F45A mutation compared to the
wild type (Figure 6.4) incompatible with an effective stacking interaction.

In order to probe its relevance for the switch mechanism we performed enzymatic deadeny-
lylation reactions of preparatively modified AMP-Rabib. We have observed previously that
the deadenylylation enzyme SidD does not discriminate between GDP- and GTP-bound AMP-
Rabib [317]. However, SidD shows much weaker activity toward the synthetic adenylylated
switch II peptide TITYAMPYRGAHGC in comparison to AMP-Rab1b:GTP (ks / K (peptide) =
150 M—1s—1 vs. keor/ Kp(AMP-Rab1b:GTP) = 5 X 105 M—1 s—1) (Figure 6.7) [319]. This obser-
vation is a strong indication that SidD requires the recognition of specific structural elements
in Rab1b rather than merely binding to the adenylylated tyrosine. The structural specificity of
SidD in particular and since GTPase-binding proteins and enzymes usually discriminate very
sensitively activity states by probing the conformations of the switch regions, the hypothesis
was derived that adenylylation locks both GDP- and GTP-forms in the same conformation. If
the Phegs5-adenine interaction was relevant for this locking effect, a F45A substitution would be
expected to promote conformational segregation and thus affect SidD catalytic rates (resulting
in preference of AMP-Rab1(F45A):GTP over AMP-Rab1(F45A):GDP). However, the differences
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Figure 6.5: Stacking interactions between the adenine double ring of adenylylated Tyr77 with the phenyl
ring of Phe4s observed during 600 ns continuous MD simulation of AMP-Rab1b:GTP. Cluster-
ing of AMP-Tyr77 orientations indicated stacked conformations (largest conformational clus-
ter) occurring in 74% of the whole simulation trajectory (A). The stacking interaction, how-
ever, is greatly reduced in the simulation of the F45A mutation. The decoupled AMP sidechain
showed high flexibility and visited various states at increased distance to Alags during a 600 ns
simulation of the mutant. The three largest clusters are depicted (B,C,D).

in catalytic deadenylylation of AMP-Rab1(F45A):GppNHp vs AMP-Rab1(F45A):GDP were neg-
ligible (Figure 6.7) and thus similar (active) conformations of the switch regions in the AMP-
Rab1(F45A) proteins are expected. Consequently, the Phe45 may not contribute significantly to
rigidifying the conformations of adenylylated Rab1 in both activity states, suggesting that other
molecular effects are predominant in locking the conformational states.

6.2.2 Free energy calculation of switch region unfolding reveals stabilization
by adenylylation

In order to directly probe the effect of chemical modification and/or mutation of Rab1b on the
transition between active and inactive states (conformational ensembles), we performed Um-
brella Sampling (US) free energy simulations. This approach permits to induce conformational
transitions associated with the active and inactive states using a penalty potential to unfold the
switch region during simulations. It also allowed us to calculate the associated change in free en-
ergy (also termed potential of mean force: PMF) for the transition and how it depends on adeny-
lylation and on bound nucleotide. As a reaction coordinate for the US simulations the mean
deviation of a set of distances within the switch II region from the active state was employed
(dRMSD coordinate, illustrated in Figure 6.6 and explained in detail in the Methods section). A
small reference dRMSD results in sampling of conformations close to the active GTPase con-
formation whereas unfolding of the switch region is induced with increasing reference dRMSD
(modified in 14 umbrella windows from D§' = onm to D¥ = 0.4nm). In order to improve the
convergence of the US simulations frequent replica exchanges between neighboring US windows
were allowed (H-REUS technique, see Methods). The calculated PMF showed reasonable conver-
gence after 8o ns of data gathering time in each US window (Figure 6.9). The active state ensemble
is represented by conformations close to the minimum of the calculated free energy curve (Figure
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Figure 6.6:

Figure 6.7:

O Rablb
@ Rab5A
@ Rab3d

(A) Hlustration of the set of distances which contributed to the dRMSD bond network in order
to bias the unfolding of the switch Il region. Contributing atoms are highlighted as red spheres,
the distances are shown as dashed lines. Rab1b is shown in its active conformation taken from
X-ray structure (PDB code 3NKV) but without adenylylation. (B) Superimposed structures of
Rabib homologs human RAS-related proteins Rabsd (PDB code 2GF9) and Rabsa (PDB code
3CLV) in GDP bound form with a representative inactive state snapshot from dRMSD US sim-
ulations. The snapshot agrees qualitatively with unfolded features of switch I and switch II
regions observed in the Rabib GDP bound homologs.
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Kinetics of deadenylylation (A) Deadenylylation of AMP-Rab1b:GTP and the adenylylated pep-

tide TITY 5;p YRGAHGC by SidD revealing a significant preference for the adenylylate pro-
tein. Demodification of AMP-Rab1b:GTP (5pM) or peptide (50 uM) were initiated with cat-
alytic amounts of SidD (50 nM or 500 nM, respectively). Deadenylylation was monitored using
the change in intrinsic tryptophan fluorescence (AMP-Rab1b:GTP) or by quantifying reaction
products on reversed phase chromatography (peptides). Data were fitted to a single expo-
nential function. Inset: Comparison of reaction progress on long time scales. For compari-
son, the reaction progress curve for 5 pM peptide-AMP with 50 nM SidD (grey) was simulated
as described in methods. (B) Deadenylylation of Rabib AMP-Rab1b(F45A):GDP (green) and
AMP-Rab1b(F45A):GppNHp (black) by SidD. Deadenylylation of 1 pM Rab1b was initiated by
addition of 100 nM SidD and monitored via intrinsic tryptophan fluorescence.
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Figure 6.8: The effect of different modifications in Rab1b on the unfolding free energy of switch II along
the dRMSD coordinate. Only the inactive Rab1b:GDP form has a significantly lower unfolding
free energy of the switch II region compared to the other Rab1b modifications. The removal of
the Phe4s stacking interaction with adenylylated Tyr77 by F45A mutation shows no notable
difference in the unfolding free energy profile compared to the AMP-Rab1b:GDP version.

6.8) at small dRMSD (below 0.15nm). Already at dRMSD > 0.15 nm the switch region starts to
unfold. The definition of a dRMSD range for the inactive state was based on the comparison with
GDP bound GTPase X-ray structures and their associated dRMSD values (0.2 nm for the set of
distances, which is also close to the plateau regime observed in the calculated free energy curves,
Figure 6.8). Note, that during the US simulations along the dRMSD coordinate an ensemble of
conformations at the regime of the inactive state was sampled (Figure S4). Hence, the simula-
tions support the view that the inactive state is not represented by a single stable conformation
but compatible with various unfolded conformations. In all systems the unfolding process re-
sulted in an increase in free energy along the reaction coordinate (Figure 6.8). However, in case
of an unmodified Rab1b:GDP the free energy increase was significantly (about 14 kJ/mol) smaller
than in case of a bound GTP. The calculated free energy changes were also tested with respect
to changes in the force constants used to control the dRMSD deviation from a reference during
the US simulations (supp. Information, Figure Ss5). For increasing or lowering the force constant
by a factor of 2 or 4, respectively, almost the same free energy change (within ~ 3kJmol-1,
supp. Information, Figure S5) was obtained indicating the calculated PMFs are robust with re-
spect to changes in the force constants used in the US simulations. In addition, the presence of
the adenylylated Tyr77 appears to stabilize the active state of the GTPase for both the GTP and
GDP bound cases (Figure 6.8). The calculated free energy change for the AMP-Rab1b:GDP case
is similar to the Rab1b:GTP curve. For Rab1ib:GDP a consecutive unfolding was found starting
with the switch II helix unfolding in lower dRMSD replica and followed by switch I at higher
dRMSD indicating a coupling of both conformational regimes. Unfolding simulations of switch
II revealed that the major conformational rearrangement occurred in the N-terminal part of the
helix between residues Gly66 and Tyr77 (see MD-snapshot in Figure 6.6). In addition to the wild
type Rab1b protein, free energy simulations were also performed on the F45A mutation of AMP-
Rab1b:GDP. Surprisingly, the unfolding characteristics of the F45A mutant were similar to the
AMP-Rab1b:GDP simulation indicating that the observed transient stacking between AMP and
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Difference electrostatic unfolding energy ¢  AAFEouomb  AA Ereaction-field AAF: a1
AMP-Rab1b:GDP — Rab1b:GDP —2.6+1.8 22.44+10.4 19.84+12.2
Rab1b:GTP — Rab1b:GDP —-1.5+14 30.5+£104 29.0+11.8

a values are given in [kJ/mol]

Table 6.1: Electrostatic contributions to the mean energy difference of inactive vs. active conformational
ensembles of Rab1b:GDP in the presence or absence of the adenylylation at Tyr77 based on
FDPB calculations (see Methods for details). A positive AAFE indicates a stronger favorisation
of the active form (relative to inactive) for the adenylylated variant (equivalent to a relative
stabilization of the inactive ensemble vs active ensemble in the absence of adenylylation). The
energetic contributions are split into two contributions for direct Coulomb interactions and the
electrostatic solvation (reaction field) term, respectively. The top row shows the relative elec-
trostatic stabilization of the wildtype vs. the adenylylated Rab1ib (both with GDP bound). The
second row indicates the corresponding electrostatic energy differences for active vs inactive
conformations in case of GTP vs. GDP bound to Rab1b (indicating an electrostatic stabilization
of the active conformational ensemble by the presence of GTP compared to GDP).

Pheys (observed in the cMD simulations) may not be of dominant importance for stabilizing the
active state (Figure 6.8).

6.2.3 Electrostatic effects of adenylylation affect Rab1b conformations

Since the proposed stacking interaction between Phe4s and the adenine base appeared not to be
of major significance for stabilizing the switch region, we aimed at analyzing the electrostatic
effects resulting from the presence of AMP on Rab1ib conformations. The adenylylated Tyr77
residue is located in the switch II region relatively far from the GTP binding site. In order to
investigate the influence of long-range electrostatic interactions we compared the electrostatic
energy of Rab1b in the active and inactive states. The electrostatic energies were calculated for an
ensemble of conformations extracted from the AMP-Rab1b:GDP umbrella sampling simulations
with dRMSD values of around 0.1 nm representing the active state. A conformational ensemble of
unfolded switch II region with dRMSD around o.25nm represented the inactive conformational
ensemble. Snapshots were taken from the trajectories every 0.6 ns skipping the initial 12 ns to
account for equilibration. Electrostatic contributions can be split into Coulomb interactions be-
tween atoms belonging to Rab1b in the different ensembles (termed Coulomb contributions) and
secondary interactions of the protein atoms with the surrounding solvent (termed electrostatic
solvation or reaction field contribution). Both average contributions can differ in the active ver-
sus inactive ensembles depending on distances between charges (Coulomb contribution) and
accessibility to solvent (solvation or reaction field contribution). The total electrostatic energy is
given as a sum of these two contributions.

The Coulomb contributions and solvent induced reaction field contributions were calculated
with the finite-difference Poisson-Boltzmann (FDPB) approach and a continuum solvent repre-
sentation (see Methods for details). In order to focus on the influence of adenylylation and to
minimize the numerical error of the FDBP solutions, the calculations were repeated after re-
placing the adenylylated residue 77 with an unmodified Tyr residue in the active and inactive
ensembles. This procedure does not account for possible differences in the sampled ensembles
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System AAG AG
AMP-Rab1b:GDP 20.1 32.1
AMP-Rab1b(F45A):GDP 25.6 37.6
AMP-Rab1b:GTP 14.7 26.7

Rab1b:GTP 18.8 30.8

Rab1b:GDP - 12.0

Table 6.2: Calculated relative free energy differences of unfolding the switch II region with respect to
Rab1b:GDP (AAG) and absolute unfolding free energy (AG) in [kJ/mol] from US simulations.
The absolute unfolding free energies AG were calculated by integrating the PMF for the ac-
tive regime (corresponding dRMSD range 0.08—0.12 nm) and the inactive regime (dRMSD range
0.21-0.26 nm) and substracting the values. The free energy of unfolding for the Rab1b:GDP case
was again substracted from AG values to get relative AAG.

between adenylylated and unmodified Rab1b but allows to focus directly on the adenylylation
effect.

While the direct Coulomb interactions favor the unfolded structure of AMP-Tyr77 compared
to unmodified Tyr77 by about —2.6 kJ mol—1, the inverse effect was observed for the reaction
field contribution with about 22.4 kJ mol—1 (Table 6.1). In total, the wildtype Rab1b:GDP inactive
ensemble of switch II is favored electrostatically by 19.8 k] mol—1 compared to AMP-Rab1b:GDP.
The calculated difference in electrostatic energy is consistent with the PMF unfolding curves
(suggesting a free energy difference of about 20 kJ mol—1, Table 6.2) and provides a possible en-
ergetic explanation for the stabilizing effect of AMP on the switch regions. Although not at the
focus of the present study we also compared the mean electrostatic energy of Rabib:GTP ver-
sus Rab1b:GDP in active versus inactive ensembles using the same procedure. In this case the
calculations predicted a strong favorisation of the inactive ensemble vs. active ensemble of the
Rab1b:GDP complex relative to the Rab1b:GTP complex by 29.0 k] mol—1 (Table 6.1). This result
predicts that electrostatic interactions stabilize an active state ensemble (relative to the inactive
state ensemble) considerably more in the presence of GTP versus GDP (in agreement with the
experimental observation). Note, that the same trend was also found for calculations using an
internal dielectric constant of 2 or 4 for the protein (see supp. Material Table S1) which in part
accounts for the possible relaxation of the protein charge distribution upon removal of the Tyr77
modification or switch from GTP to a bound GDP in the trajectory analysis. It is also consistent
with the calculated trend from the free energy simulations which predicted a relative stabiliza-
tion free energy of 18.8 kJ mol—1 (Table 6.2). Note, that an agreement is not necessarily expected
because other energetic and entropic contributions also contribute to the relative stabilities of
inactive and active conformational ensembles. These contributions are accounted for the in free
energy simulations but not in the electrostatic energy calculations.

6.3 Discussion

The molecular mechanism how adenylylation of residue Tyr77 within the switch Il region affects
the active and inactive conformations of Rab1b has not been addressed previously. Here, we em-
ployed MD and free energy simulations to characterize the conformational flexibility and stability

82



6.3 Discussion

of Rab1b in different GDP/GTP states in dependence of Tyr77 adenylylation. On the time scale
of 600 ns of our continuous MD simulations similar flexibility patterns of the different Rab1ib nu-
cleotide complexes were found. The observed hydrogen bonding pattern and location of water
molecules was compatible with available experimental structures [312]. In case of Tyr77 adeny-
lylation, the adenine group of AMP stacked on the neighboring Phegs for a significant fraction
of the simulation time but also other states with fully solvent exposed AMP group were sampled.
A F45A substitution in silico resulted in the elimination of this 7-stacking interaction and in-
creased the conformational flexibility of Tyr77-AMP. The modified and unmodified Rab1ib:GDP
complexes showed generally larger fluctuations in the switch I and switch Il regions compared to
GTP-bound complexes. However, no spontaneous unfolding of the switch regions characteristic
for an inactive conformation in the presence of GDP was observed on the time scale of the cMD
simulations. This is not surprising since the estimated time scale of such changes is in the range
of tenth of seconds [320-322].

In order to still calculate the free energy change associated with a transition to the inactive
state we employed US based on a dRMSD coordinate that allows gradual unfolding of the switch
region and transition to conformations representing the inactive state. The sampled inactive
conformations agreed qualitatively well with switch II helix and switch I loop regions found in
related Ras-GTPases (X-ray structures of the GDP bound form of Rab proteins , PDB codes 2GFo,
3CLV and 4Q21, Figure 6.6) [323]. The simulations predicted in all cases an increase of the free
energy towards unfolding of the switch region. Although this may support a view that Rab1b
behaves as a non-classical GTPase there is are many experimental studies that demonstrate that
Rab1b indeed operates by a classical GTPase-mode. This is supported by the crystal structure of
a homologous Rabia GTPase (more than 95% sequence identity to Rab1b) in the presence of GDP
(PDB code 2FOL) which indicates an unfolded and disordered structure of the switch regions. In
addition, it has been shown that several Rab1 effector proteins (such as Mical-1, Mical-2C, Mical-
3C, Golgin84, GM130, p115, Rabaptins) favor the GTP-bound state over the GDP state [324-331].
In addition, the GDP-specific Rab-binding protein GDI has been shown in several instances that
it does not bind to the GTP-state but only interacts with the inactive GDP Rab1b form [332,
333]. These results indicate that Rabib significantly differs in its conformations between the
GDP- and GTP-states since effectors (GTP-specific) and GDI (GDP-specific) discriminate unam-
biguously between the activity states. Our US simulations along the dRMSD coordinate did not
reveal a single compact conformation representing the inactive state but suggest a largely disor-
dered more solvent exposed ensemble of conformations. It is well known that current molecular
mechanics force fields overestimate the stability of compact states even of disordered proteins
[334, 335]- In turn this might cause an artificial over-stabilization of the folded compact states of
the switch regions. Nevertheless, the calculated free energy change associated with a transition
from an active to an inactive state was significantly smaller in the presence of GDP compared to
GTP confirming that the relative change for the transition is in qualitative agreement with the
experimental observation.

Furthermore, the US simulations showed that the adenylylation of Tyr77 stabilizes the active
state relative to the inactive state regardless of GDP or GTP binding. The free energy costs of
unfolding the switch region (AMP-Rab1:GDP to Rab1:GDP) were similar to the level obtained
for Rab1b:GTP (Rab1:GTP to Rab1:GDP). This result agrees with an interpretation that Tyr77
adenylylation could lock Rab1b in an active conformation in the AMP-modified form [312, 317].
Hypothetically, the stacking interaction of the AMP group with the Phe4s observed in the ex-
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perimental X-ray structure [312] and during the cMD simulations may be involved in this stabi-
lization. However, a similar calculated free energy change associated with the unfolding process
was obtained for a F45A mutation in silico, suggesting that base stacking is not the major con-
tribution to conformational stabilization of AMP-Tyr77. An analysis of the electrostatic energy
of the active and inactive states revealed that the presence of the adenylylation destabilizes the
ensemble of the inactive conformations mainly due to a reduced electrostatic solvation (solvent
reaction field) contribution. In combination with our observation, that the geometric coordina-
tion of the adenine group of AMP does not impair the stabilization of the active state ensemble
we assume, that mainly the inclusion of an additional negative charge in switch II located at the
phosphate group of AMP modifies the electrostatic field such that the reaction of surrounding
dielectric solvent molecules inhibits a transition to the inactive ensemble.

The combination of MD simulations and in vitro enzymatic activity assays suggest that adeny-
lylation of Rab1 at switch II tyrosine 77 significantly changes conformational transitions of the
GTPase domain. As a consequence, the G-protein surprisingly adopts an active-like conforma-
tion in both nucleotide states and thus AMP-modification may in this instance uncouple Rab-
activation from the conventional cyclic GDP-GTP-binding. Generally, the effects of PTMs on
the conformations of small GTPases using structural or computational methods are only poorly
characterized. In one study, Kalbitzer and coworkers used 1H and 31P nuclear magnetic reso-
nance (NMR) spectroscopy to investigate the consequences of Thr3s-glycosylation of H-Ras to
gain insight into structural consequences of this particular PTM [336]. Their work supported an
earlier model from crystallographic studies of glycosylated H-Ras that suggested a disordering of
switch I due to interference with Mg?* coordination and Tyr32-nucleotide interactions [337]. In
this respect, glycosylation impaired effector protein binding by promoting a disordered switch I
state and by sterically interfering with protein-protein interactions. Rab1 adenylylation appears
to have the opposite effect and actually promotes the active conformations of the switch region.
It will be interesting to see whether other modifications of small GTPases (i. e. adenylylation of
Cdcg2 on Thr3s or Tyr3z2, phosphocholination of Rabib on Ser76 [313, 314, 338]) will have similar
conformational consequences.

Our study indicates that chemical modifications located at a distance from the nucleotide bind-
ing site of a Rab1b protein may considerably affect the conformational equilibrium of active and
inactive states. In addition to contacts in the neighborhood of the modification, long range elec-
trostatic interactions contribute significantly to stabilizing an active signaling state which may
also be relevant for understanding the influence of other modifications on the signaling mecha-
nism in other signaling proteins.

6.4 Methods

6.4.1 Molecular Dynamics Simulation Setup

The crystal structure of the Rab1b protein with an Adenosinmonophosphate (AMP) moiety cova-
lently attached to OZ atom of Tyr77 in complex with the GTP analog Phosphoaminophosphonic
Acid Guanylate Ester (GNP) (PDB code 3NKV) served as start structure for the simulations. The
nitrogen atom in GNP bridging the beta to the gamma phosphate group was replaced by an oxy-
gen atom which resulted in the AMP-Rab1b:GTP complex model structure. For simulations on
unmodified Rabib or bound to GDP the AMP modification and/or the «-phosphate group were
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removed to create start structures of the Rab1b:GTP, AMP-Rab1b:GDP, and Rabib:GDP com-
plexes, respectively. All simulations were performed with the GROMACS molecular dynamics
software suite release version v4.6 [96, 244]. The Amber ffggsb-ILDN forcefield [42] was used for
the protein and parameters for guanosine nucleotides GDP and GTP were taken from Carlson et
al. [339]. Partial charges for the adenylylated Tyr77 residue were calculated using Gaussianos
[296] with B3LYP [297, 298] with the 6-31G™ basis set level [299] and a total charge of —1e
following the restraint electrostatic potential (RESP) protocol [300]. The antechamber program
[248] of the AmberTools13 package [98] in combination with the general amber forcefield GAFF
[247] was used to assign atom types and bonded parameters. The system topologies were finally
prepared with the tleap tool from the AmberTools13 software package and then translated to
Gromacs topology files via acype [340]. To render the systems charge neutral sodium ions were
added and the protein was solvated with the TIP3P water model [246] in a truncated octahedron
box with periodic boundary conditions and a minimum distance of 1 mm from solute to the box
boundaries.

6.4.2 Simulation protocol

After the setup procedure, energy minimization with the steepest decent algorithm was
performed until one convergence criterion of either 20k steps or a maximum force below
100 k] mol—1 nm—1 was reached. The minimization was followed by two short equilibration runs
of each 150 ps duration at a time step of 1 fs, primarily in the NVT and then in the NPT ensemble.
All heavy backbone atoms were restraint in space with a harmonic potential at force constant
of 1000 k] mol—1 nm—2 to avoid conformational rearrangements whilst equilibration. The equa-
tions of motions were solved according to the leap-frog integrator (MD) and the Particle Mesh
Ewald (PME) algorithm was used to calculate long range electrostatics [250] with a grid inter-
polation up to the order of 6 (4 in NPT and production run) and FFT grid spacing of 0.12 nm.
The Lennard-Jones interactions were switched to zero after 1.0 nm with a cutoff value of 1.1 nm
for both Lennard—Jones and real space electrostatic interactions. The temperature was adapted
to a reference of 298 K with the velocity rescale [47] algorithm and pressure in the NPT equili-
bration phase was controlled with the Berendsen barostat [45] to equal 1.01 bar. For production
runs the time step size was increased to 2fs and the Parinello-Rahman barostat was applied
[48]. A long range dispersion correction for energy and pressure was applied to account for the
error introduced by truncated Lennard-Jones interactions. The LINear Constraint Solver [249]
with a coupling matrix extension order of 12 (4 in production run) constrained the bond lengths
involving H atoms.

6.4.3 Stacking interaction between Phe45 and AMP-Tyr77 sidechains

Sidechain conformations of AMP-Tyr77 were clustered for the 60oons trajectories of systems
Rab1b:GTP, Rab1b:GDP, Rab1b(F45A):GTP, and Rab1b(F45A):GDP in order to characterise the
prevalence of the 7-stacking interaction between adenine double ring of AMP-Tyr77 with the
phenyl ring of Phey4s. The protein trajectories were aligned before clustering of the AMP-Tyr77
sidechain was performed using the single linkage method with a RMSD cutoff of 0.07 nm as im-
plemented in g_cluster of the GROMACS toolchain. Additionally the distance between C/3 atom
of residue 45 and the center of mass of the adenine double ring has been monitored over time
and a histogram was calculated by splitting the observed distance range in 100 bins (Figure 6.4).
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6.4.4 Free energy simulations based on the root mean square deviation of a set
of intramolecular distances

The root mean square deviation of a set of distances (ARMSD) obtained during the simulation with
respect to the same set of distances in a reference structure was used as reaction coordinate. In
contrast to Cartesian RMSD this reaction coordinate does not require a superposition step and
is invariant under rotation. An additional advantage is that it is possible to include only subsets
of distances that are spatially separated in the dRMSD coordinate (e.g. only local short range
distances) which would require several superposition operations if using the Cartesian RMSD as
reaction coordinate. The collective variable is defined as the RMS sum over a set of NV interatomic
distances d; with a reference distance d;g (equation 6.1).

1 & 2
D(d;) = N Z <di - dw) (6.1)

The spring like biasing potential which emerges from the dRMSD (equation 6.2) is expanded
to two reference dRMSD values D' and DF which are linearly connected over a coordinate
A and allows for the calculation of a Potential of mean Force (PMF) curve along this coupling

coordinate.

2
Vi@ = (Dla) - (- pf - a0f (6:2)

The biasing potential was used to perform umbrella sampling (US) free energy simulations
along the reaction coordinate A. The simulations were carried out with an in-house implemen-
tation of the dRMSD potential in the GROMACS v4.6 software. In order to improve the sampling
of relevant conformational states along the dRMSD coordinate during US simulations replica
exchanges between simulations of neighboring A values were introduced (REUS-technique).
Replica exchanges were attempted every 1000 steps alternating between odd and even indexed
neighboring replica pairs to avoid that one system state could swap with more than one replica
window per exchange step. The force constant for the harmonic dRMSD potential function was
set to a value of 1000 k] mol—1 nm—2 and the reference dRMSD was changed in equidistant steps
from D64 = o.onm to D§ = 0.40nm in the replica windows. The number of 14 replica windows
was adjusted in test simulations such that exchange rates higher than 30 % were recorded. In or-
der to seed the reference distances for the distance pairs which accounted to the JRMSD, average
distances were calculated from the 600 ns cMD simulations. The PMF along the dRMSD coor-
dinate was calculated with the WHAM [341] algorithm implemented by Grossfield et al. [342],
using 100 bins and a tolerance of 1 X 107> K]J.

6.4.5 Electrostatic energy calculations

The electrostatic energy of Rabib conformations in different modification and in the presence
of different nucleotides was calculated using the finite-difference Poisson Boltzmann (FDPB) ap-
proach implemented in the APBS software package [343]. Structures representing the active
state (represented by replica window with average dRMSD =~ (.1 nm with respect to the crystal
start structure) and the inactive state (replica with dRMSD ~ (.25 nm) were obtained as snap-
shots from the trajectories every 600 ps skipping the initial 12 ns to account for equilibration. All
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water molecules and surrounding ions were removed and the linearized FDPB was solved for
each snapshot with the APBS software package [343] using a two-stage focusing (initial bound-
ary conditions were calculated with the multiple Debye-Hiickel option) and a final grid spacing
of 0.3 A. The divalent Mg?>* was included in the continuum electrostatics calculation as it has
a significant effect on the local electrostatic field of the nucleotide binding site and the nearby
switch regions and was found to be conserved in its binding site throughout all simulations.
A dielectric constant of ¢ = 80 for solvent was used [344] for protein in water was used. A
permittivity of € = 1 in the protein was used to directly compare with the explicit solvent sim-
ulations which employ a vacuum permittivity and implicitly include orientational polarisation
effects since a trajectory of conformations was analysed. Electrostatic energy calculations for
the AMP-Rab1b:GDP ensemble in inactive and active states were repeated after replacing the
adenylylated residue 77 with tyrosine (resulting in Rab1b:GDP structures) in order to estimate
the electrostatic contribution of the AMP modification to the switch opening. This procedure
minimizes all errors of electrostatic energy calculations which arise from the grid representation
of the molecules because the investigated structures differ only in the presence or absence of the
AMP group but not in the coordinates of all other atoms (placement relative to the grid). The
same protocol was applied to inactive and active conformations of the Rab1b:GTP ensembles and
subsequent in silico mutation to Rab1b:GDP by deletion of the y-phosphate in GTP, in order to
give an estimate for the electrostatic contribution of GTP vs. GDP to the switch I/II stability.

6.4.6 Protein Expression and Purification

Rab1b proteins, SidD37_350 and DrrAg_533 were produced as described previously [312, 317, 332].
In brief, SidD37_350 and DrrAg ¢, were cloned in a pET19 vector with N-terminal Hexahistidine-
tag (Hisg-tag) and a tobacco etch virus cleavage site. Protein production in E. coli BL21 Codon-
Plus (DE3)-RIL cells was induced by addition of 0.5 mM IPTG overnight at 20 °C. Purification
was achieved by Nickel affinity chromatography including cleavage of the Hisg-tag and final
gel filtration in 20 mM HEPES pH 7.5; 100 mM NaCl; 2mM DTE; 1 mM MgCl,. Rab1b,_,., pro-
teins were produced in a pMAL vector with N-terminal Hisz-MBP tag and a tobacco etch virus
cleavage site. Rab1b mutant proteins were generated by site-directed mutagenesis. Protein pro-
duction in E. coli BL21 CodonPlus (DE3) cells was induced by addition of 0.5 mM IPTG overnight
at 20 °C. Purification was achieved by Nickel affinity chromatography including cleavage of the
Hisg-MBP-tag and final gel filtration in 20 mM HEPES pH 8.0; 50 mM NaCl; 2 mM DTE; 1 mM
MgCly; 10 uM GDP.

6.4.7 Preparative nucleotide exchange

Nucleotide exchange of Rab1b proteins was performed as described earlier [312]. In brief, Rab
proteins were incubated with 5 mM ethylendiamintetraacetid acid (EDTA) and a 20 times molar
excess of nucleotide at 25 °C for at least 2 hours in exchange buffer (20 mM HEPES pH 8.0; 50 mM
NaCl, 2 mM DTE). Excess nucleotide was removed by using a PD-10 column (GE Healthcare) in
storage buffer (20 mM HEPES pH 8.0; 50 mM NaCl, 2 mM DTE; 1 mM MgCl,; 10 pM nucleotide).
Completeness of the exchange was verified by reversed phase HPLC analysis.
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Figure 6.9: Convergence of PMF along the global dRMSD coordinate for AMP-Rab1b:GDP system over
time. The cumulative PMF is plotted every 1ons and the initial 5ns are excluded from the
calculation for equilibration. PMF does not change by more than 0.1 k] mol-1 ns— after ap-
proximately 8o ns.

6.4.8 Preparative Adenylylation

Preparative adenylylation of Rab1b was performed as described previously [312]. In brief, Rab1ib
was incubated with a 2.5 molar excess of ATP and an 0.01 molar ratio of DrrAg_,,, at room tem-
perature. Completeness of the reaction was verified by mass spectrometry. The modified protein
was purified by size exclusion chromatography (20 mM HEPES pH 8.0; 50 mM NaCl, 2 mM DTE;
1mM MgCl,; 10 pM GDP).

6.4.9 Deadenylylation of Peptide-AMP by SidD

Deadenylylation of the switch II peptide TITY 5pp YRGAHGC by SidD3;_ 35, was analyzed in a
time-dependent manner by reversed phase chromatography using an Aeris C4 widepore column
(Phenomenex) on a Shimadzu HPLC system. Peptide (50 pM) was incubated with o.5 pM SidD at
25 °C and subjected to reversed phase HPLC analysis at indicated time points. A binary gradient
of 100% H50 containing 0.01% trifluoracetic acid (TFA) and 100% acetonitrile containing 0.01%
TFA from 5 to 25% acetonitrile at 1 ml min—1 flow rate was used to elute peptides. Peptides were
detected by measuring tyrosine absorption at 274 nm. The progress curve of 5 uM peptide-AMP
by 50 nM SidD was calculated in OriginPro v8.6G (OriginLab, Northampton, MA) using a 10 times
lower rate constant.

6.4.10 Deadenylylation assay

Deadenylylation by SidD,,_,., was measured using the change in tryptophan fluorescence as
reported previously [345] in a Fluoromax-3 spectrophotometer (HORIBA Jobin Yvon) (excitation
at 297 nm; emission at 340 nm). Start of the deadenylylation reaction was induced by adding
50nM and 100nM of SidD,._,., to 5uM Rabib,_,,, Q67A and 1 uM Rabib F45A in 20 mM
HEPES pH 7.5, respectively; 50 mM NaCl; 5 mM MgCly; 2 mM DTE at 25 °C.

3-174
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6.4.11 Convergence of dRMSD simulations

In order to estimate the required simulation time to obtain well converged potential-of-mean-
force (PMF) curves for simulations with a dRMSD biasing potential on the switch II region,
we tested different simulation times of up to 120ns per dRMSD interval (window) with 14
replica windows on the unmodified Rab1b:GDP system biasing the unfolding of switch II along
the dRMSD coordinate. The cumulative PMF along the dRMSD coordinate was plotted every
1ons (figure 6.9). We found that the PMF change was smaller than 1k]Jmol-1 per 10ns or
0.1kJmol-1ns—1 after approximately 8ons. Accordingly, following these benchmark results
we chose a simulation time of 8o ns for all dRMSD H-REUS simulations. The convergence crite-
rion of 0.1 k] mol—1 ns—1 for the change in PMF per simulation time was met by all dRMSD PMF
simulations within the 8ons .

System differences €protein AAEoulomb AA Ereaction-field AAFEa

AMP-Rab1b:GDP — Rab1b-GDP 1 —26+1.8 2244+104 1984122
AMP-Rab1b:GDP — Rab1b-GDP 2 -1.3+0.9 16.2+9.4 1494103
AMP-Rab1b:GDP — Rab1b-GDP 4 —-0.7+£0.5 99+£76 9.2£8.1
Rab1b:GTP — Rab1ib-GDP 1 —-15+14 30.5+104 29.0+11.8
Rabib:GTP — Rabib-GDP 2 —-0.8+£0.7 189+13.5 18.1+£13.2
Rab1b:GTP — Rabib-GDP 4 —04+04 11.6 £7.7 11.2£8.1

Table 6.3: Electrostatic contributions to the mean energy difference of inactive vs. active conformational
ensembles of Rab1b:GDP in the presence or absence of the adenylylation at Tyr77 based on
FDPB calculations (see Methods for details). Energies have been calculated for three different
dielectric constants in protein (¢ = 1,2,4). The reaction field stabilizes the active conforma-
tion more when AMP or GTP are present and the effect is reproducible for different protein
permittivities €yroein. The reduction in calculated energy differences with increasing e results
the increasing similarity of solvent and solute permittivity. The conformations that were used
for FDPB calculations were extracted from simulations in explicit solvent using a dielectric per-
mittivity of € = 1 which therefore is the correct permittivity for comparison with MD results.
AAF values are given in [kJ/mol].
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Figure 6.10: An ensemble of conformations representing the transition from active to inactive state. Switch

II is colored in dark blue, the rest of Rabib is colored light blue. Snapshots are taken from
different replicas of the dRMSD H-REUS simulations.
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Figure 6.11: Different force constants for the dRMSD biasing potential (equation 2) have been tested for

90

unfolding of switch II region exemplarily on the Rab1b:GDP system. Force constants k are
given in [kJ mol—1 nm—2]. The biasing potential was increased in 14 steps from a reference
value of R()4 = 0.0 to RF = 0.65 (in production runs R¥ = 0.40 was used). Note that the
effective force constant acting on a dRMSD atom pair is k.g = k/N with the number of atom
pairs N = 11 resulting from the derivative of the biasing potential after d;. The resulting
PMFs converge for force constants over 250 k] mol—1 nm—2. At even lower force constant of
100 k] mol—1 nm—2 the biasing potential is unable to unfold switch II region resulting in no
sampling of the inactive configurations.



Chapter 7

From Chaos to Order: The association
process of RNAse-S studied by Molecular
Dynamics Simulations

S-peptide undergoes a transitions from intrinsic disorder to an ordered helical state upon bind-
ing to its partner S-protein when forming the complex RNAse-S. Although RNAse-S is one of
the most studied protein systems, the driving principles of the association mechanism are still
not understood in full detail [346]. We use Molecular dynamics (MD) and advanced sampling
approaches to investigate the binding process of the 14 residue S-peptide at atomic resolution.
Our results complement the picture drawn by published literature. In agreement with experi-
ment we find significant conformational fluctuations of the isolated S-peptide compatible with
a disordered regime and only little residual helical structure. Based on this solution regime and
with the help of two simplified diffusive models we rebut that S-peptide binds to S-protein via
a conformational selection mechanism. With systematic in silico Alanine scanning we uncover
that the major contribution to complex stability emerges from the C-terminal helical turn con-
sisting of residues 8-13 while the N-terminal residues 1-7 contribute only little. Comparative
simulations of S-protein in presence and absence of S-peptide reveal that isolated S-protein un-
dergoes a global pincer like conformational change that narrows the S-peptide binding cleft. This
conformational change is reversed by S-peptide association which also stabilizes conformational
fluctuations in S-protein. In complex, the N-terminal helix of S-peptide unfolds and refolds re-
peatedly revealing that helix is only part of the equilibrium regime for these residues while the
C-terminal residues are tighly confined the conformation that is found in the X-ray structure.
This is in line with speculations from previous studies that helix formation constitutes the final
step of the association process. We ultimately simulate 100 trajectories of S-peptide fragment
consisting of residues 8-14 positioned in the close vicinity of the S-protein binding site. While
in the majority of simulations S-peptide diffuses away from the binding site, many of those tra-
jectories that attach to the S-protein surface, form initial native contacts with residues Phe8 or
Met13. We assume that the initial anchoring of these residues is followed by helix formation
of S-peptide on the surface which agrees with experimental findings that at least Phe8 plays an
important role for the transition state.

7.1 Introduction

The initial stage in proteolysis of bovine pancreatic ribonuclease (RNAse-A) is a hydrolytic cleav-
age of the protein backbone between residues 20 and 21 by the serine protease subtilisin that con-
serves catalytic activity in the resulting complex RNAse-S [347, 348]. RNAse-S consists of the
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smaller N-terminal fragment S-peptide,.,, (residues 1-20) and the larger C-terminal S-protein
(residues 21-124). In complex, S-peptide residues 15-21 are coordinated in a disordered flexible
loop region while the N-terminal residues 1-14 adopt an ordered helical conformation similar
to the conformation in RNAse-A [349, 350]. However when unbound in solution the confor-
mational regime of S-peptide is governed by intrinsic disorder [284-286, 351]. How S-peptide
transitions from the disordered regime to the ordered helical state upon association to S-protein,
is still not fully understood, despite the plethora of studies RNAse-S has been subjected to in
the past [346]. Essentially two distinct association mechanisms have been proposed [352]. The
induced fit hypothesis assumes that binding and folding of S-peptide to its native structure is cou-
pled such that folding occurs simultaneously or quickly after initial contacts with the S-protein
surface are formed. On the other hand the conformational selection hypothesis expects S-peptide
to recurrently adopt the native conformation in solution and to bind only then to S-protein. The
question has been targeted within a variety of studies to investigate first principles of disorder
to order transitions induced by peptide binding.

Systematic truncation studies of the S-peptide sequence by Finn and Hofmann have shown
that the first 14 residues of S-peptide,_,, are sufficient to fully restore enzymatic activity [353].
Their study further revealed that the smallest possible motive to recover RNAse-S activity is
S-peptideg_,,, however only at high molar surplus. Later a study with Alanine mutations of
residues which did not contact S-protein led to a simplified analog of S-peptide,.,; forming a
native like complex with S-protein at slightly reduced activity and ten fold higher dissociation
constant (AEAAAAKFARAHMAA compared to the native KETAAAKFERQHMDS) [354, 355].
These findings together with the X-ray structures of RNAse-S complex emphasized the impor-
tance of residues His12, Met13, and Phe8 functioning as scaffolding residues for S-peptide where
additionally His12 participates in the enzymatic breakdown mechanism of RNA [349, 350, 356].
Their side chains represent 64% to the S-peptide surface area that becomes buried in complex
and strongly interact with the hydrophobic patch at the S-protein binding surface [323, 357]. N-
terminal residues (1-7) on the other hand only weakly affect the specific binding mechanism and
complex stability as was shown by their replacement with Alanine. Tritium exchange measure-
ments further suggested that helix unzipping without unbinding of S-peptide occurs as a native
state fluctuation in RNAse-S, an effect which is enhanced at both low pH and salt concentra-
tion [358]. Removal of Lys1 has no large effect on activity and dissociation but removal of Gluz,
which forms a salt bridge with Argio in the crystal that potentially stabilizes the helix, increases
dissociation by a factor of 4 [357].

A sidechain replacement study measuring the effect on binding kinetics by Goldberg and Bald-
win later identified Phe8 as key residue to stabilize the transition state [352]. While Phe8Ala mu-
tation strongly affected both binding kinetics and complex stability the mutation of Met13 and
His12, two other complex stabilizing residues, had only little effect on k,, leading to the assump-
tion that native interaction between these residues and S-protein are not present in the transition
state. The authors however were not decisive whether the transition state requires residual helix
content from disordered S-peptide prior to association. To illuminate this question, they pro-
posed an experiment that should locally destabilizes S-peptide helix properties and measure the
effect on association kinetics [359]. Such an experiment was performed by Bachmann et al. by
replacing amino bonds in the S-peptide backbone with thioxo bonds. The local helix destabi-
lization revealed that the effect on association rates ko, is weak for most backbone positions
except for Phe8 which reduced wildtype association rates by a factor of two. Helix destabiliza-
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tion however affected complex stability at least when included in residues Lys7 to His12 [288].
They concluded that the initial recognition does not require helical packing in S-peptide and that
folding occurred on the surface of S-protein.

In this work we carefully review the literature on RNAse-S with regard to complex formation
and complement the general picture with in silico experiments. We use Molecular Dynamics
(MD) simulations to quantify the disordered conformational ensemble of unbound S-peptide .,
and draw connections to other studies. Based on these findings we take an alternative approach
of two simple diffusion models to discuss and rule out the conformational selection hypothesis.
We perform computational Alanine scanning on the S-peptide ,.,, sequence and identify Met13,
His12, and Phe8 as important complex stabilizers, in good agreement with experiment. Surpris-
ingly we find that Argio contributes also significantly to complex stability, a residue which is
located in the minimal binding motive of S-peptides.,, required for RNAse-S activity. A com-
parative simulation of S-protein with and without S-peptide bound, reveals that the S-protein
structure is stabilized by S-peptide binding and the binding site is narrowed in absence of S-
peptide. In agreement with predictions on helix unzipping we find that the salt bridge between
Argio and Glu2 which stabilizes the N-terminal helix opens and closes in the equilibrium lead-
ing to unfolding and refolding of the native helix in residues 1-7 while in the meantime residues
8-14 remain firmly bound to their native sites. Although the time scale of association hinders the
simulation of the full pathways of S-peptide ,.,, association, we perform 100 independent simu-
lations of the shorter fragment S-peptides.,, starting in the proximity of the S-protein binding
site. We find that Phe8 or Met13 bind first to the hydrophobic pocket in the S-protein binding
site at their native position serving as the earlier predicted anchor prior to S-peptide folding.

7.2 Results and Discussion

7.2.1 Intrinsic disorder of S-peptide

The key characteristic in the association mechanism of RNAse-S is the intrinsic disorder of un-
bound S-peptide in solution. To investigate the conformational regime and to answer the ques-
tion how often S-peptide adopts the bound helix conformation yet before interacting with S-
protein we performed an extensive 10 ps continuous MD simulation on unbound S-peptide ,_,,
at 298 K (see Figure 7.1). During the whole simulation time S-peptide underwent a continuous
refolding process, thereby sampling a variety of diverse conformations. The metastable confor-
mations possessed lifetimes of at most several hundreds of nanoseconds before undergoing the
next global structural transformation. An average fraction of helicity of 17% with most of the
helical content being confined to residues Lys7 to Argio was found (figure 7.1). Measuring the
root mean square deviation (RMSD) to the native bound S-peptide conformation over time re-
vealed that less than 0.5% of the configurations were closer than o.5 nm. The before mentioned
conformational selection mechanism would require that conformations close to the bound one
are sampled which was the case in our simulations only during 0.5% of the time. Otherwise a
coupled binding and folding mechanism would pose no such restrictions to the conformational
regime of unbound S-peptide.

Altough sampling of the dynamic regime was certainly not exhaustive during the 10 ps simula-
tion, the simulation draws a picture of the intrinsically disordered S-peptide in solution that was
expected and outlined previously in experiments: The increased helicity between residues Lys7
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Figure 7.1: The helicity per residue over time of freely diffusing S-peptide ,_,, calculated from a 10 ps con-
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and Argio of S-peptide is in good agreement with '°N relaxation parameter measurements on
the 22 residue recombinant variant of S-peptide by Alexandrescu et al. which resulted in a com-
parable helicity profile [360]. Interestingly, early measurements on the 20 residues S-peptide ,_,,
revealed, that even at low temperatures helix formation stops before Thri17 possibly near Met13,
the residue where helix propagation stops in RNAse-S [361]. In our simulations we used trun-
cated S-peptide,_,, which could explain that helix propagation stops already at residue Argio
as for short peptides, the terminal residues have increased entrophic freedom resulting in a de-
creased propensity to be ordered. S-peptide is known to have overall helicity values of 22-30%
at low temperatures o °C down to only 5% at 25 °C [351, 360—-362]. Furthermore, Kim and Baldwin
reported for isolated S-peptide ,_,, that the helix propagation is terminated closely after residue
Met13 and their data suggested helix formation in isolated S-peptide ,_,, to be limited to the same
regions as in complex with S-protein [361]. Experimental evidence that the helix is stabilized at
low pH and high salt (1 M) and model building studies suggested that a salt bridge formation
between Glug- and His12+ might be the reason [362, 363] which has been refuted later and was
also not found in our simulation [364]. Our finding that the region of increased helicity largely
overlaps with the minimal required motive S-peptide 5 ,, to restore RNAse-S activity, leads to
the speculation that increased packing in the region where transition state formation is expected
to happen might be a requirement for complex formation. Note, that the transmutation among
conformational states of S-peptide occurred on a timescale of several hundreds of nanoseconds
in our simulation. This might be a hint that folding timescales of S-peptide on the S-protein
surface reside in the same order of magnitude or are possibly even slower which would in turn
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render the full simulation of S-peptide association events difficult with the currently available
simulation capabilities.

7.2.2 Diffusion controlled models for the S-peptide association

Two distinct mechanisms have been proposed for the binding mechanism of RNAse-S namely
conformational selection and induced fit [288]. While for the induced fit mechanism, the con-
formation of S-peptide is not relevant for the initial association event, the conformational se-
lection mechanism requires, that the disordered S-peptide adopts the bound conformation in
solution previous to binding. Our previous results, however, showed that only less than 1% of
the conformations sampled by S-peptide in solution are close to the bound conformation which
drastically reduces the probability to form an encounter complex in case of a conformational
selection mechanism. With the help of two diffusion based models, we estimate an upper limit
for the association rate of S-peptide binding to S-protein under the fictitious assumption that S-
peptide always adopts the bound conformation in solution. Our approach thereby neglects first
the intrinsic disorder of S-peptide and simulates the optimal conditions of a conformational se-
lection mechanism. The estimated rates are then compared to the experimentally derived value
of kon = 4.4 X 10° M—1s—1 [288]. Under the assumption that the association mechanism is a
conformational selection, we reduce the resulting rates by two orders of magnitude to include
the effect of intrinsic disorder of S-peptide in solution. As in both models boundary conditions
are used which define a very generous reaction condition and include only the diffusion con-
trolled part of the association pathway, the real association rates are expected to be even further
reduced by the subsequent binding process. By comparison with the experimental rate we then
find, whether or not a conformational selection mechanism can be ruled out based on our simple
diffusive models.

We first apply an analytic diffusion model which was originally invented by Schlosshauer et
al. to predict association rates for protein—protein complexes in cases where binding partners are
rigid and the binding mechanism is mainly diffusion controlled [365, 366]. Long-range electro-
static interactions between the binding partners are neglected in the model although S-peptide
has a net charge of 41 at physiologic pH that can be assumed to decelerate the association ki-
netics with the positively charged binding region on S-protein due to electrostatic repulsion.
Experimental results have confirmed this speculation as the ko, rate of S-peptide slows down
with decreasing salt concentration [288]. The model treats the binding partners as rigid spheres
which can react when they contact with the reactive regions of their surface. The reactive re-
gions are defined by polar angles of the spherical representation of the binding partners (04 p,
see figure 7.2). In addition to contact, the reactive patches have to be orientated axially within
certain tolerances (§¢o, 0 x0). The diffusive properties of the binding partners are treated via their
translational and rotational diffusion constants.

We used the sum of the radii of gyration as contact distance and for the calculation of rota-
tional diffusion constants with the Stokes-Einstein formula. Translational diffusion constants
were extracted from continuous MD simulations by fitting the root mean square displacement
(see methods). The most critical and difficult to justify parameters of the model are the size of the
reactive patches of the binding partners and the axial orientation tolerances. Based on a set of
parameters fitted by Schlosshauer et al. on a variety of protein-protein complexes we calculated
kon rates for several sizes of reactive patches (6 ) and tolerances (d¢g, d X0, see table 7.3). The
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Figure 7.2: Coordinate definition for the analytic diffusion model of Schlosshauer et al. [365]. S-protein
and S-peptide are represented as spheres of radii Ra, Rp for which the radii of gyration were
used. Binding occurs when r < R, + Rp and the reactive patches (defined by polar angles
04 p) align within certain axial tolerances (d¢g, dx0).

resulting association rates greatly depend on the choice of reaction parameters. For extremely
large reactive patch size and tolerance (e. g. a5, d¢g, dxo = 60°) the rate can be boosted to arbi-
trarily fast association, however, parameters close to the maximum found by Schlosshauer et al.
[366] in a set of protein—protein complexes (64 B, d¢g, d X0 = 20°) give a reasonable upper diffu-
sive limit for the association rate of RNAse-S ko, (ana) = 5.5 x 10° M—1s—1, This is about one
order of magnitude faster than measured in experiment, but would rule out the conformational
selection mechanism because less than 1% of the encounter complexes match the reaction crite-
rion and retard therefore the association kinetics estimate by at least two orders of magnitude
being then one order of magnitude slower than the experimental value. A coupled folding and
binding mechanism on the other hand involves a subsequent folding step to the native structure
which can be expected to slow down the estimated association rate thereby potentially matching
the experiment. The model provides a reasonable upper limit for the diffusion controlled associ-
ation rate to form the encounter complex, that we can safely assume to be further slowed down
to the total association rate when encounter complex subsequently folds to the native mode.
Although the analytic model given by Schlosshauer is inherently correct, its validity strongly
depends on the accurate choice of reaction parameters. We therefore applied a second numeric
model based on Brownian Dynamics (BD) simulations in order to estimate association rates as
presented by Northrup et al. [367, 368]. In this model, BD simulations were initiated with a
starting distance between the binding partners at which pairwise interactions are negligible.
The simulations are terminated when the binding partners diffuse either away to a larger dis-
tance threshold or satisfy the reaction criterion for which a distance root mean square deviation
of dRMSD < 5A from the native X-ray structure involving four interface residues was cho-
sen (see table 7.2). Electrostatic interactions between the binding partners were accounted for
by solving the Poisson-Boltzmann equation. The final k., rate was then calculated from a set
of 2 X 105 trajectories resulting in ko, (BD) = 1.0 X 107 M—1s—1 (100 mM NaCl). The reaction
criterion was weak enough that encounter complexes did not form van der Waals contacts be-
tween S-protein and S-peptide but ensured a reasonable orientation of the binding partners. The
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resulting rate should therefore be interpreted as an upper limit estimate for the diffusion from
bulk into a pre-bound encounter complex requiring subsequent binding steps to form the native
complex. The real ko, rate to the native complex can be safely assumed to be lower than this
estimate. Again the result rules out the conformational selection model as a reduction of at least
two orders of magnitude (due to subsequent binding steps and S-peptide conformations) leads to
binding kinetics slower than those measured in experiment. In order to investigate the influence
of salt concentration on the association kinetics, we performed a second BD run with electro-
static interactions at 10 mM NaCl. Similar to findings of Bachmann et al. we find an association
rate kon(BD) = 4.4 X 10®° M—15—1 at 10 mM NaCl that slows down with decreasing salt concen-
tration (compared to ko (BD) = 1.0 X 10” M—1s—1 at 100 mM NaCl). The effect arises from the
positive net charges of both S-peptide ,_,, (+1) and the S-protein binding site. The slight electro-
static repulsion gets damped at high salt concentration allowing S-peptide to form the encounter
complex more often.

7.2.3 Free energy calculations on S-peptide Alanine mutants

Residues Phe8, His12, and Met13 of S-peptide are known to contribute strongly to RNAse-S com-
plex stability [369]. Folding studies with a fluorescently labeled S-peptide ,.,. further revealed
that Phe8 has a predominant effect on the transition state stability and was identified as a key
residue to form specific contact between S-peptide and S-protein during the transition state [352].
To investigate the effect of specific sidechain interactions between S-peptide and the hydropho-
bic binding site of S-protein on the complex stability, we performed a systematic computational
Alanine scan on the complete sequence of S-peptide and measured the contribution to the bind-
ing free energy.

The results of the free energy calculations are shown in table 7.1 and are in good agreement
with available data from experimental binding studies [288, 352]. The systematic underestimation
of the difference binding affinities of about 3—4 kJ mol—1 may be partly attributed to a residual
effect of the helical starting structures especially for the free S-peptide mutations which would
require more conformational equilibration in order to reflect the intrinsic behavior in solution.
However also other free energy studies using the same Amber-g9gsb forcefield found that the
calculated binding affinities were slightly below the experimental results which indicates a sys-
tematic cause by the forcefield [370]. As expected the largest sidechain contribution to complex
stability is found for the Alanine substitution of scaffolding residue Phe8 in good agreement
with previous findings. To our surprise Argio adds the second largest contribution (at signifi-
cant errors tough) to the binding free energy only then followed by the documented stabilizers
Met13 and His12. This is surprising as it was not expected after experimental substitution of
ArgioPhe by Bachmann et al. [288] resulted in only 2.6 k], however this measurement was made
in 1% DMSO compared to the other substitutions as the authors claimed this would increase
S-peptide solubility however DMSO is known to modify binding properties in proteins [371].
Additionally the ArgioPhe mutation may result in completely different binding properties com-
pared to ArgioAla. Mutation of Gluz reveals only weak contribution to the binding affinity
although the salt bridge formation with Argio in the bound state would have been expected to
have higher impact on the binding affinity. One reason might be that mutation simulations in
unbound S-peptide were started from native X-ray structure biasing the helical state of the other-
wise intrinsically disordered S-peptide. Salt bridge formation between Gluz-Argio was expected
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Mutation ~ AAG®[kJ/mol]  AAG®P[k]/mol]

Aspi4Ala —1.07£3.26 -
Met13Ala 10.32 4+ 0.35 15.58 +0.19
His12Ala 7.87£0.90 11.08 £0.34
Glni11Ala 1.86 +0.44 —
ArgioAla 11.62 £2.71 —
GlugAla —3.65+ 0.89 —
Phe8Ala 25.87 + 0.64 29.06 + 0.50
Lys7Ala —0.66 £+ 0.59 -
Thr3Ala 0.80 £ 0.31 -
GluzAla 242+ 2.72 —

Table 7.1: Difference free energy of binding of S-peptide Alanine mutations. Experimental data from Bald-
win et al. [352] measured at pH 6.7, 10 mM Mops, 9.9 °C.

to increase complex stability by stabilizing the N-terminal turns of S-peptide helix but our results
indicate a minor importance to binding affinity. The major contribution to binding affinity arises
from residues between Phe8 and Met13. In particular N-terminal residues before Phe8 have only
weak influence on complex stability. This agrees with previous findings that the reduction in
binding free energy by N-terminal truncation amounts only 6.3 kJ mol-: for S-peptide,.,, and
10.5 kJ mol—1 for S-peptide; ,, compared to a total binding energy of ~ 37 k] mol— for wildtype
S-peptide,.,, [288, 372].

There is an ongoing debate about the role of His12 protonation state in the association process
which we want to briefly review. The acid-base properties of the imidazole ring in His12 play
a critical role in the catalytic mechanism of RNAse-S [356]. Its protonation state is affected by
substrate binding and respectively two pK, values were measured with and without substrate
presence in the active site [373]. While the pK, = 5.75 without substrate is close to the p/,
value of the His sidechain in solution [374], the presence of the substrate shifts the tendency of
His12 to be protonated to pK, = 7.0 [375]. When no substrate is bound the His12-0 tautomer
was speculated to be hydrogen bonded to the hydroxyl oxygen of Thrgs [376]. Studies on the
C-peptide lactone (CPL), the N-terminal residues 1-13 of RNAse-A, revealed that the helix is un-
stable at standard conditions (26 °C, ionic strength 100 uM) partial helix formation is conserved
at low temperatures (1 °C, ionic strength 100 uM) [363, 377]. At these low temperatures the helix
stability of S-peptide was found to strongly correlate with the pH but melts out rapidly with in-
creasing temperature being independent of temperature above 30 °C even at low pH being [363].
It has been speculated that the residual helix content may be caused by a salt bridge formation
between residues Glug- and His12+ at low pH, a salt bridge that is not present in the crystal
structure [363]. This hypothesis has been proven wrong by experiments with C-peptide analogs
and our simulations on free S-peptide ,,, [364]. An interaction between His12 and Phe8 has
been identified to increase the helix stability at low temperature while stabilizing effect from the
protonation of His12 imidazole ring at low pH arose mainly from favorable interactions with
the helix backbone [378]. Later studies postulated that a ring interaction between Phe8 and
His12+ is the primary mechanism by which His12 stabilizes the C-peptide helix [379]. This led
to the hypothesis that the C-peptide sequence might contain sufficient information to act as an
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Figure 7.3: Calculated difference free energy of binding for Alanine mutants of the three His12 tautomers
compared with experimental results. Experimental values are Ref.! from Baldwin et al. (pH
6.8) [352] and Ref.* from Bachmann et al. (pH 6) [288]. Simulated values are derived from free
energy perturbation (FEP) combined with H-REMD.

autonomous folding unit [379]. The effect of Hisi2 protonation on the association transition
state and complex stability remained unresolved. We performed free energy calculations to de-
termine to what degree complex stability is affected by Ala substitutes of His12 tautomers and
His12+ mimicking low pH. Comparing the difference binding affinities of our simulations with
experimental His12Ala mutations studies reveals that the His12-9 tautomer is the predominant
protonation state during S-peptide/S-protein complex formation (figure 7.3). Our results show,
that the protonation of Hisi2+ at low pH is unfavorable for the complex stability although the
helix stability of S-peptide in solution was previously found to be increased. This is in good
agreement with the experimental finding, that association kinetics are slowed down at low pH
confirming the hypothesis that little helical structure is present in the transition state [288] and
impedes previous assumptions that S-peptide acts as autonomous folding unit prior to associa-
tion [379]. Additionally, the deceleration of association kinetics at low pH is amplified by the
increased electrostatic repulsion between S-peptide (net charge increased to 2+ due to charged
His12+) and the positively charged S-protein binding site.

7.2.4 Conformational regimes of S-protein and S-peptide

Circular dichroism specra of RNAse-S and S-protein indicated the same composition of secondary
structure elements of S-protein and RNAse-S (pH 6.8, 10 °C) and a similar spectrum of S-protein
at temperature below 30° with slight modifications at increased temperature [380, 381]. While
the predicted difference in secondary structure of S-protein in absence of S-peptide is only small,
we investigate possible changes in the tertiary structure by performing 1 ps MD simulation of
S-protein in presence and absence of bound S-peptide. The conformational regime found for
S-protein bound to S-peptide is very similar to the X-ray structure of RNAse-S with a RMSD
of S-protein mostly below 0.2 nm (figure 7.4, B) which is in good agreement with experimental
observations [380]. In the absence of S-peptide however, S-protein underwent a structural rear-
rangement of its global conformation. The hydrophobic S-peptide binding site narrowed down
by a pincer-like closing motion of helix I and [3-sheet II with a concurrent distortion of 3-sheet
I serving as a rotational axis (figure 7.4, A). The transition occurred rapidly after S-peptide was
removed within the first 200 ns of the simulation. S-protein also showed increased flexibility and
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Figure 7.4: Cartoon illustration of the pincer-like conformational transition of S-protein in absence of S-
peptide (A). The hydrophobic binding site of S-peptide is narrowed by the upward moving
B-sheet II and the downward motion of Helix I. Helix II is stretched during this process and
unfolds. The RMSD of the S-protein backbone with respect to X-ray structure is shown in (B)
both for simulations in presence and absence of S-peptide bound to S-protein. The N-terminal
five residues (21-25) of S-protein were removed from the RMSD calculation to mitigate noise
from terminal fluctuations. The conformational transition occurs within the first 50 ns of the
simulation without S-peptide bound. The distance between S-protein residues Asn34 in Helix
I and Vals7 in the hydrophobic pocket (C) is measured in both simulations with and without
S-peptide present (D). The compression of the binding pocket in S-protein is characterized by
a shortening of this distance by more then o.5 nm when S-peptide is absent. Running averages
are depicted in both RMSD and distance plots as solid lines while the actual data points are
shown as light shades.

was conformationally less confined than RNAse-S which led to higher fluctuations in RMSD. The
compression of the binding site was visualized over the distance between Helix I residue Asn34
and S-peptide binding site residue Vals7 (figure 7.4, C). When S-peptide was removed, the dis-
tance decreased by more than o.5 nm (figure 7.4, D). In presence of S-peptide on the other hand,
the S-protein structure and the whole complex became inherently stabilized. We speculate, that
the narrowed binding region potentially decelerates the mean first passage time of binding but
not necessarily affects the second order kinetics of S-peptide association. The finding is surpris-
ing as to our knowledge a conformational change of S-protein coupled to S-peptide association
has not been reported in the literature so far in particular as no X-ray structure of S-protein alone
is currently available.

In our simulation of RNAse-S on the other hand, the salt bridge between sidechains Argio
and Gluz in S-peptide opened after about 50 ns and unlocked a flexible regime for the N-terminal
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Figure 7.5: RMSD of S-peptide during a 5ps simulations of RNAse-S. Two RMSDs are calculated with
respect to X-ray structure for S-peptides residues Lys1-Lys7 (orange) and residues Phe8-Asp14
(blue). Snapshots of the RNAse-S are shown above to visualize the partial unzipping of N-
terminal S-peptide helix. S-peptide residues 1-7 are shown in orange cartoon, residues 8-14
are shown as blue cartoon and S-protein is shown in white cartoon representation. Running
averages are depicted as solid lines while actual data points are visualized as light shades.

residues 1-7 including uncoiling of the involved helical turn. Partial helix unzipping fluctuations
of bound S-peptide were previously detected by tritium exchange experiments in the native state
of RNAse-S without delivering an atomistic explanation and strongly support our findings. The
effect was found to be enhanced at both low pH and low salt [358]. It was further speculated,
that helix formation represents the final step of the association event [288]. Based on these
findings, we performed another 5ps simulation of RNAse-S to investigate to what extent un-
zipping fluctuations of S-peptide helix are part of the equilibrium ensemble in solution (figure
7.5). The C-terminal residues 8-14 remained close to the crystal structure conformation includ-
ing RNAse-S catalytic residues His12 during the whole simulation. The stability was provided by
Phe8 sidechain as the N-terminal residue of this stable motive which remained firmly attached
to the hydrophobic S-protein binding pocket formed by Vals4, Val108, Phe120 and Pro117 serv-
ing as an stabilizing anchor for the following residues 9-14. Residues 1-7 however, that feature
little contact with S-protein, rearranged their conformation by unzipping and refolding the N-
terminal helix (figure 7.5). The helix stabilizing salt bridge formed between Gluz and Argio,
which is present in crystal structure, repeatedly opened and closed during the simulation and
revealing alternative conformations of the N-terminal tail of S-peptide where in particular the
positively charged tail interacted with charged alternative sites on S-protein and S-peptide. Af-
ter about 4 ps the S-peptide formed again a helical structure with closed Gluz-Argio salt bridge
and all native contacts restored very similar to the X-ray structure. Our results provide evidence
that in equilibrium, S-peptide continuously unfolds and refolds the helical part between residues
1-7 while the C-terminal residues 8-14 are tightly confined to the X-ray conformation. The salt
bridge between Argio and Glu2 that was expected to increase helix stability is only a temporary
feature in the RNAse-S complex. This finding is confirmed by studies on a simplified S-peptide
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analog which formed a catalytically active complex with S-protein but lacked the salt bridge
between Argio and Gluz which indicates that the salt bridge formation is of minor importance
for the RNAse-S complex and activity [355]. Note, that catalytic activity is even conserved after
removal of Lys1 and Gluz in S-peptide ,_,, [353].

7.2.5 S-peptideg_,, association simulations

Based on experiments with truncated S-peptide, which revealed that S-peptide g_,, constitutes
the minimal required motive to restore catalytic activity with S-protein, however at strongly
reduced activity of only 11% compared to S-peptide ,_,, and at a surplus of 8000:1 molar ratio
to S-protein, we designed a setup to simulate the initial step in S-peptide/S-protein recognition
with atomistic MD simulations [353]. Due to the weak activity of S-peptide g_,, we included the
complex stabilizing residue Met13 and the additional negatively charged Asp14 to overcome the
slight electrostatic repulsion which is found unfavorable for the transition state formation. This
is in line with the fact that already the addition of Met13 in S-peptides.,, strongly increased
the activity in the truncation studies [353]. We assume that S-peptide 5 ,, includes all essential
binding features and removal of the N-terminal residues is justified as they form an ensemble of
metastable states in equilibrium including N-terminal helix unzipping. We assume therefore that
these residues are not involved in the primal step of the association pathway. To test whether
the complex of S-protein and S-peptide g_,, exhibits similar stability as with S-peptide ,_,,
performed a 1ps simulation starting from truncated X-ray structure. Indeed, S-peptideg_,, re-
mained firmly bound without notable rearrangements of the complex structure (data not shown).
In particular the catalytic sidechain of His12 and the scaffolding residue Phe8 remained in an X-
ray structure like configuration, supporting the finding that enough structural information is
conserved in the S-peptide 5, motive to restore RNAse-S activity.

We simulated 100 trajectories with S-peptide 4_,, positioned close to the binding site but with-
out direct van der Waals contacts between S-peptide and S-protein to identify potential common
features of the binding pathway and investigate the recognition step (see methods). Of the ini-
tial 100 trajectories, 79 were abandoned when S-peptide diffused away from the proximity of
the binding site. The remaining 21 trajectories were terminated after 1 ps of simulation time.
Although only in one trajectory S-peptide g_,, formed an X-ray structure like complex with S-
protein most of the 21 trajectories revealed a common binding feature. In 12 out of the 21 sim-
ulations the scaffolding residue Phe8 bound to the hydrophobic pocket in the S-protein binding
site formed by residues Valg7y, Valsg, lle106, Val108, Pro117, and Phe12o (See figure 7.6) and in
further 5 trajectories complex stabilizer Met13 bound to this pocket instead. This initial anchor-
ing to the binding site successfully hindered S-peptide to diffuse away from the binding site in
those cases. This finding confirms earlier speculations that at least hydrophobic residue Phe8
serves as an initial anchor for the subsequent folding of S-peptide on the surface of S-protein
[288, 359]. In one trajectory S-peptide adopted a helical conformation and subsequently bound
to the X-ray like pose forming crystal structure like RNAse-S in an conformational selection
manner (See figures 7.6, 7.7, trajectory 10). We assume however, that neither the sampling time
nor the number of simulated trajectories is sufficient to allow the drawing of a concluding picture
of the binding mechanism. Especially as structural rearrangements of S-peptide on the S-protein
surface occurred on the timescale of several hundreds of nanoseconds. While looking at the pin-
cer like structural change of S-protein that narrows the S-peptide binding site, we found several

we
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Figure 7.6: The distance of residues Phe8 (blue) and Met13 (orange) to the center of the hydrophobic pocket
in S-protein formed by residues Valyg7, Valsg, lle106, Val108, Pro117, and Phe12o. The distance
is measured for those 21 out of 100 simulations of S-peptideg_,, association where S-peptides.,,
remained closer than 1.8 nm to the binding site during the 1 ps simulation time. The running
average over 10ns is depicted as solid line, actual data is shown transparently. A distance of
about 0.5 nm corresponds to the native side chain pose of Phe8 in the RNAse-S complex.

trajectories where in particular the flexibility of helix I hindered some S-peptide residues to lock
into their native binding site (figure 7.7 depicts the S-protein/S-peptide ¢_,, conformation after
1 ps simulation time). We speculate that this global conformational change in S-protein limits
association kinetics by impeding the hydrophobic collapse of S-peptide on the binding surface
to form the helical turn in residues 8-14.

7.3 Conclusion

This study aims to complement and complete the picture of the mechanism underlying complex
formation of S-peptide with S-protein and the associated transition from disorder to order of
S-peptide conformations. Combining the present knowledge and our findings this picture can
be summarized as follows: In the absence of S-peptide, S-protein undergoes a pincer like confor-
mational rearrangement that narrows the cleft where S-peptide binds. The conformational rear-
rangement comes at increased flexibility of the whole protein. This behavior is reversed upon
S-peptide association and helix formation. While intrinsically disordered in solution S-peptide
folds on the surface of S-protein after formation of initial key contacts of residues Phe8 or Met13
with the hydrophobic pocket in the S-protein binding site. The hypothesis that conformational
selection is the predominant association pathway can safely be ruled out by considerations based
on two diffusion models. It is however still unclear whether increased helicity in the region of
residues 7-10 as found in experiment and our simulations is a requirement for complex forma-
tion. At least when helix propensity at Phe8 is decreased in experiment, the association rate
is halved [288] which might arise from both retarded folding on the surface or conformational
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Figure 7.7: Final snapshots of S-peptides.,, association simulations of those 21 out of 100 simulations where
S-peptides ,, remained close to the binding site of S-protein. S-peptides ,, is shown in blue
cartoon with residues Met13 and Phe8 highlighted as orange stick. S-protein is depicted as
white surface with the hydrophobic patch in the S-peptide binding site colored in light orange.

selection of the C-terminal helix turn of S-peptide (residues 8-12). The helix formation of the
N-terminal residues 1-7 on the other hand seems to be the final step in the association process.
This helical turn can be stabilized by a salt bridge formation between residues Argio and Gluz
but in equilibrium the N-terminal tail of S-peptide undergoes continuous conformational rear-
rangements with the helix being only one out of many allowed conformations in the native state
ensemble. This behavior contrasts with the C-terminal residues 8-13 which remain tightly con-
fined to their positions in complex and contribute most to binding affinity. By comparing free
energy simulations of His12 mutation to Alanine with experimental free energy differences we
find that His12+ protonation slightly defavours complex stability and association kinetics and
that the predominant protonation state during complex formation must be the N-§ tautomer.
Interestingly we find, in agreement with experiment, that diffusion of S-peptide into the vicinity
of the S-protein binding site is slightly slower at low salt concentration, an effect which evolves
presumably from the damping of repulsive electrostatics between positively charged S-protein
and S-peptide. At high S-peptide concentrations, the reaction becomes concentration indepen-
dent which shows that the concentration dependent encounter complex formation is followed
by a concentration independent structural rearrangement [352, 358].

The question remains why S-peptide requires the N-terminal residues although they do not
remain in a stable helical fold in RNAse-S and their mutation to Alanine has only little or no im-
pact on complex stability. Possibly, the N-terminal residues increase the specificity of S-peptide
and prevent unspecific sticking to the S-protein surface or formation of inactive complex con-
figurations as found in our association simulations of S-peptides.,,. Definitely, their presence
strongly improves the catalytic activity of RNAse-S.
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7.4 Methods

7.4.1 Preparations

We used the crystal structure of wild-type bovine pancreatic RNAse A as starting conformation
for our simulations (PDB Code 1FS3). Residues 15 to 20 were removed to produce the complex
of RNAse-S as those residues were found to be unimportant for both binding and enzymatic ac-
tivity [357]. Superimposition of crystal structures of RNase-S (PDB Code 2RNS) with RNase A
showed identical conformations within the estimated errors which of 0.05 A [323] which ren-
ders any of the X-ray structures a valid starting point for the simulations. X-ray water molecules
were kept and the protein was solvated in a rhombic dodecahedron box with periodic bound-
ary conditions and rendered electrostatically neutral by the inclusion of chloride ions. Atomic
interactions were parametrized with the Amber ffggsb-ILDN forcefield [42] and the TIP3P [246]
explicit solvent model. To account for the correct ionisations states of acidic and basic residues,
we carefully performed a pK, computation with the Karlsberg++ web server [373, 382] and in-
cluded the resulting protonation states at pH = 7.0 in the setup. Simulations were performed
with the GROMACS 4.6 molecular dynamics software package [96, 244]. Simulations of unbound
S-peptide were always started from the bound configuration (residues KETAAAKFERQHMD in
PDB 1FS3) with stripped of S-protein and crystal waters if not indicated differently.

7.4.2 Simulation protocol

Following the setup procedure, energy minimization with the steepest decent algorithm was per-
formed to remove steric clashes until one of the two convergence criteria was reached (20 k steps
or the maximal force below 100 k] mol—1 nm—1). The system was then heated to 303K in the NVT
ensemble for 150 ps with the velocity rescaling thermostat [47] and equilibrated at standard con-
dition pressure 1.01 bar in a NPT ensemble using the Berendsen barostat [45] for another 150 ps.
During equilibration the time step for the leap-frog integrator was set to 1 fs and increased to 2 fs
for the production runs. Production runs were performed with the Parinello-Rahman barostat
[48]. Longrange electrostatic interactions were treated with the Particle Mesh Ewald (PME) al-
gorithm [250] with grid interpolation of 6th order (4 during production runs) and a fast Fourier
transform spacing of 0.12 nm. Short range interactions were switched off with a cutoff distance
of 1.1 nm and the error introduced by the truncation of Lennard—Jones interactions to pressure
and energy was mitigated with a long-range dispersion correction. LINCs at a coupling matrix
extension order of 12 (4 in production) was applied to covalent bonds comprising hydrogen atoms
[249]. To prevent undesired conformational rearrangements of the protein during the equilibra-
tion, backbone atoms were restraint to their X-ray structure position with a force constant of
100 k] mol—1 nm—2.

7.4.3 Free energy calculations for Alanine mutations

The difference free energy of binding associated with the mutation of S-peptide residues to Ala-
nine were simulated with a H-REMD free energy protocol as described previously [370]. In
brief, interactions of the mutated sidechain with the rest of the system were gradually switched
off while interactions of the Alanine methyl group were simultaneously turned on via a coupling
coordinate A based on a dual topology approach [383]. Both non-bonded van der Waals and
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Distance S-peptide S-protein

dy Phe8 Leus1
do Phe8 Phe12o0
ds Aspi4 Tyr26
dy Alajg Val116

Table 7.2: Residue pairs that defined the distances d; in the dRMSD calculation. The dRMSD was used as
the reaction criterion between S-peptide and S-protein in the BD based association model.

electrostatic interactions were represented by softcore potentials (ovs. = 0.3, 05, = 0.25 and a
softcore power of 6) [242, 243]. The transformation was performed along 21 equidistant X steps
and replica exchange was attempted every 1000 time steps. In order to calculate difference free
energies of binding, the mutation was simulated twice, once in S-peptide/S-protein complex and
once in unbound S-peptide. Each A window was simulated for 20ns and to account for con-
formational rearrangements especially in unbound S-peptide, the initial 5ns were skipped for
the free energy calculations. The free energy difference between wild type and Alanine mutant
was then estimated with the Bennett Acceptance Ratio method [384]. All windows were started
from the X-ray configuration of the RNAse-S complex with removed loop residues 15 to 20 (PDB
code 1FS3) and removed S-protein for mutations in unbound S-peptide. Errors were estimated by
splitting the data in five blocks assuming uncorrelated sampling amongst those and calculating
the mean variance. The corresponding change in binding affinities for the mutations was then
calculated as the difference free energy of mutating the residue once in RNAse-S complex and
once in unbound S-peptide.

7.4.4 Association simulations

To generate an ensemble of conformations a 1 us simulation was performed of S-peptide 5_,, in
water. S-peptide structures from this ensemble were then isotropically positioned on a 10nm
shell around S-protein and Brownian Dynamics simulations were performed. The BD simula-
tions were terminated either when S-peptide diffused away to a 12 nm radius or came close to
the binding site of S-protein. The criterion for close configurations was measured as the dis-
tance root mean square displacement (dARMSD) of pairs of residue distances listed in table 7.2
and reference distances of 0.4 nm. Whenever the dRMSD was below 0.9 nm, the BD simulation
was terminated. BD simulations were performed until a set of 100 starting structures with close
S-peptide/S-protein separation was generated. These configurations were the solvated in TIP3P
water [246] at 100 mM NaCl and minimized and equilibrated for 100 ps at 298 K and 1.01 bar in
an NPT simulation. Hydrogen mass repartitioning was used [385] to support a simulation time
step of 0.4fs. The 100 equilibrated conformations were subsequently simulated for either 1 ps
in an NVT ensemble or terminated when the center of mass (COM) of S-peptide diffused away
from the binding site of S-protein (COM of residue Valg7) by more than 2 nm. Trajectories where
S-peptide remained close to the binding site were further analyzed.
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7.4.5 Diffusion controlled association rate calculation

We wrote an in house software implementation for the protein-protein association rate calcu-
lation based on a purely diffusion controlled model of two spheres with orientation restraints
as it was presented by Schlosshauer et al. [365]. Translational diffusion constants for both S-
protein and S-peptide were estimated from continuous MD simulations of 0.4 ps and 1.3 ps du-
ration by measuring the mean square displacement over time and fitting the Einstein relation
[386]. The resulting values Dg{%’;gtem = 2.75(696) Azns—1 and D;r%%;ude = 67.24(788) A2 ns—1
were found. Rotational diffusion constants were estimated from the Stokes-Einstein relation
D™t = kgT/67nR with a viscosity of n = 8.9Nsm—2 and 7' = 300K (D! Cprotein = 3-3°1sT!
and Dgolgeptlde = 24.0°ns—1). For the contact radii R we calculated the average radius of gyra-
tion over the continuous MD trajectories and plugged them into the relation for the rotational
diffusion constant (Rs.protein = 14.7A and Rspeptide = 7.6 A). kon values for different an-
gular restraints d¢g, dx0, 92, and 69 were calculated. It should be noted, that even the upper
limit of 20° resulted in an increase of the association rate of only about one order of magnitude
(kon = 5.5 X 10° M—1s-1). The absolute theoretical diffusion limited association rate for two
uniformly reactive spheres is given by Smoluchovskis formula kp = 47 D R with the relative dif-
fusion constant D = D+ Dp and the reaction contact distance of the two spheres R = R+ Rp

[387]. The infinite series of rotation matrix integrations was truncated after N = 40 (Equation
7.1).

7.4.6 Analytic Schlosshauer model

For the calculation of association rates we applied a model system consisting of two spheres in
full diffusion controlled limit. The model assumes that reaction occurs when the spheres are at
contact distance R = Ra+Rp. To account for the fact that for proteins, the reaction can only take
place if the binding partners are facing each other with their binding site various constraints can
be applied. A often used assumption describes the reactive part of the surface with a polar angle
Oap a so called reactive patch which has to be aligned before reaction [387, 388]. Schlosshauer
derived a even more general expression for the ko, rate which includes also the requirement for
an axial alignment of the two reactive patches defined by angle restraints d¢g, dxo (see figure

7.2) [365].

kon = D(Rag/87%)*x

Kl+1/2(5 )
“a—R
ao HE‘: Kiy1/2(8%) — §* Kpy3/2(8%)
271
iyl Z < Z llb( h _l?n>> ] (7.1)
n=-—1 m=—Iq

with 1,1, = 167(20 + 1)(20; + 1)(2l2 4 1) and £ quantifying the extent of diffusion control in
the reaction where x — o0 in the full diffusion controlled limit. The K/, are the modified

107



Chapter 7 From Chaos to Order: The association process of RNAse-S

bessel functions of the second kind. ( (l) fil _l?n) is the Wigner 35 symbol and
6 0
A sin(md sin(nd ) )
Cn = (m %0) (n X0) / sin(0)d%,, (04)d0 / sin(0s)d"2,,_,(65)d6s.  (7.2)
0 0

The relative translational diffusion constant is defined as the sum of the two respective diffusion
constants D = Dp + Dg. The diffusion dependent variable £* is given as

Dzot 1r30t 1/2
* = 1 1 . .
3 R[h(h-l— ) D +la(l2 + 1) D ] (7.3)
The integral over Euler angles ag is given as
ao = (4m)*3¢0dxo(1 — cos 63)(1 — cos ) (7.4)

with Wigner’s small d!, (6) rotation matrix. We truncated the infinite sum over indices 1, 1, I
after N = 40 as the relative change of k., per additional iteration dropped under 1%. The
nomenclature in the literature is ambiguous as the K/ are also sometimes termed modified
Bessel functions of the third kind [365, 388]. To avoid ambiguity the modified Bessel functions
of the second kind used here are defined according to Solc and Stockmeyer [389] as:

l
Kip12(@) = Ky 2(2) Z Fmi® " (7.5)
m=0

with the Bessel function of order 1/2,
Kyy(x) = (n/22)!% 7" (7.6)
and the recurrence relation for the coefficients x,,
Km+1l = Emi—1+ 2L+ 1)kpm—1; with 0<m <. (7.7)
Initial values are given by

Km, = 0, m > (7.8)
Koy = 1, Ky = (20 = 1)L (7.9)

Equation (7.1) was numerically solved with an in house software implementation written in
python.

7.4.7 Brownian Dynamics Simulations

Brownian Dynamics (BD) simulations [368] were used to estimate the rate of S-peptide to form
an encounter complex for the scenario of a conformational selection mechanism. The electro-
static potential around S-protein was first calculated by solving the Poisson Boltzmann equation
at 298 K and a relative permittivity of water ¢ = 78.5 with the ABPS software package [390]. The
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0% 0%  d¢0  Oxo  kon [MT'sT!

10 10 10 10 4.1 x 10°
15 15 15 15 1.7 x 106
10 30 15 15 3.0 x 106
20 20 20 20 5.5 x 108
60 60 60 60 6.8 x 108

Table 7.3: Association rates of S-peptide to S-protein for several reactive patches sizes and axial orientation
tolerances. Angular constraints 09, 60%, d¢o, o are denoted in degrees.

electrostatic potential was saved on a grid around the centered S-protein to calculate electro-
static interactions during the BD simulations. Effects of S-peptide on the electrostatic field were
neglected. To smooth the surface of the binding partners, hydrogen atoms were removed during
the BD simulation and their charge was added to the connected heavy atoms. Spacial exclusion
between S-peptide and S-protein was set to an atomic collision distance of 2 A. BD simulations
were started with randomly oriented S-peptide at a distance of b = 100 A from the center of
mass (COM) of S-protein where interactions were isotropic and negligible and terminated when
either S-peptide diffused away from S-protein by more than ¢ = 120 A or when the encounter
complex was formed. When the distance root mean square deviation (dRMSD) of four residue
distances between S-peptide and S-protein (table 7.2) became smaller than dRMSD < 5A the
configuration was counted as encounter complex. The dRMSD (Equation (7.10)) was calculated
from N = 4 atomic distances d; between the binding interface of S-protein and S-peptide thereby
simultaneously ensuring reasonable orientation and separation of the encounter complex.

N
1
dRMSD = , | ;(di — dip)? (7.10)

The reference distances d;y were taken from the X-ray structure of RNAse-S. The rate of forming
the encounter complex was then calculated with the method proposed by Northrup et al. [367]

EES = 41 DobBss (7.11)

where Dy is the relative diffusion constant of the binding partners which was calculated from
Stokes—Einstein relation from the radii of gyration and

BBD (7.12)
1—(1-psp)A

6002

with fpp being the fraction of encounter complexes formed during all started BD trajectories
and

A=-. (7.13)
q
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Conclusion and Outlook

When Karplus, Levitt, and Warshel received the Nobel price in chemistry in 2013 for their con-
tributions in the field of molecular dynamics simulations and particularly the combination of
different levels of theory in multiscale approaches, the field of computational biochemistry in
general crossed an important border on its way to becoming a widely accepted theory outside
the boundaries of a specialized scientific community. When asked for a simple description of his
work, Nobel price laureate Martin Karplus answered after winning the price: “If you like to know
how a machine works, you take it apart, we do that for molecules” He inherently included in
his statement the picture of molecular dynamics being a computational microscope that enables
scientists to investigate the structural and dynamical processes of biological molecules at atom-
istic resolution. The track of success of molecular dynamics simulations that recently climaxed
in the Nobel price award started back in the late 1950’s when the age of computers was mak-
ing its first steps. When the first stereochemical structures of larger biomolecules were solved,
experimentalists used models of plastic balls and sticks to visualize the spatial arrangement of
atoms and bonds between them. Electron density maps calculated from X-ray diffraction data
were frequently visualized with manual drawings. A publication from the early years of protein
structure determination, investigating the structure of the protein—protein complex RNAse-S by
Wyckhoff et al. in 1967 gives a good impression how tedious this process must have been at
the time before computers came into play [391]. Nowadays, computer programs are not only
performing the calculations to determine molecular structures or serve as a visualization plat-
form but even allow the simulation of molecular structure formation directly in silico. Currently
the simulation of complete folding pathways of proteins is limited on standard hardware but
the development of Anton, a special purpose molecular dynamics computer, permitted already
in 2011 a glimpse into this future when successfully simulating the folding pathways of several
fast-folding proteins on the millisecond timescale [60]. This might soon be possible on readily
available standard hardware if the industrial ambition of developing faster computer hardware
continues with the current speed, a progress which just recently enabled simulations of reason-
able protein sizes for several microseconds on graphics processing units (GPUs). In principle, the
structure prediction of proteins simply starting from the knowledge of the genetic information
that encodes the protein sequence would then be possible by the abundant simulation of folding
pathway ensembles, thereby potentially replacing the complex and time consuming processes in-
volved in the experimental structure determination by a generic computer simulation. On other
scientific frontiers like the field of drug development, the simulation of binding affinities and as-
sociation pathways for a large number of potential drug candidates could replace cost intensive
high-throughput screening techniques in the laboratory. The simulation techniques for this are
already nowadays available and have proven their predictive capabilities on the small scale.

In that sense, the future sounds like a world where simulators might one day completely re-
place experimentalists in a lab coat. Although this is certainly thinkable for specialized appli-
cations, theory and experiment have ever been bonded together in the progress of science and
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certainly will be in the future. The reason is, that physics, chemistry, and biology are empiric sci-
ences that develop theories to describe the world based on experiences and measurements which
are obtained from experiments. The predictions of theoretic models therefore require the nor-
mative power of experimental measurements to improve their quality in a most probably never
ending feedback loop. Although current models already have proven their predictive quality
in many situations they are still incomplete. That counts for the description of molecules with
quantum mechanics calculations (the best theoretic description of molecules currently available)
and obviously even more for the classical modeling of atoms as balls connected by springs in
molecular dynamics simulations. Systematic errors are inherent in these models and are difficult
to quantify, may they evolve from incomplete description of physical processes or just be a mat-
ter of numeric discretization. The dependence on experiments might first seem a drawback of
theoretic models in general but it constitutes the most powerful paradigm in empirical sciences.
It is based on the recognition that the provability of theories is logically excluded as their models
are solely based on a finite series of limited empirical observations. Theories therefore can either
be falsified by rebutting their predictions with an experiment or the predictions are confirmed by
the experiment but the theory itself will never be proven correct. A theory remains valid as long
as its predictions are not contradicted by experimental results. The quality of our current models
and computational limitations resulting in insufficient sampling are typical reasons why simula-
tors have often difficulties with their results being considered equal by experimental colleagues.
This is well reflected by the fact that predictive simulation studies are rarely found in high impact
peer reviewed journals. If they make their way into these journals, they are typically strongly
connected to experimental findings or have reproductive character. This sometimes seduces ex-
perimentalists to sit on a high horse claiming that their results represent the real world a believe
that is certainly often justified (they may be interpreted incorrectly though), however thereby
ignoring the predictive power inherent in simulations. Simulations can provide a comfortable
shortcut compared to experiment that ideally sharpens the eye of the experimentalists by telling
them where to look at and by delivering alternative insight. On the other hand, simulators some-
times lift off the ground of empiricism and neglect the fact that their results remain predictions
and require experimental confirmation. For the sake of an improved scientific progress and in
order to close the confidence gap between these two species of scientists, we need strong com-
munication and tight collaboration between both worlds.

In this thesis a series of studies is presented showing, that simulations and experiments are at
their best when tightly coupled together. Inspired by experimental work of the group of Thomas
Kiethaber we approached the association mechanism of RNAse-S with molecular dynamics sim-
ulations. RNAse-S is a product of the proteolytic cleavage of RNAse-A which is according to a
review by Ronald T. Raines from 1998 the “most extensively studied enzyme of the 20th century”
[346]. RNAse-S is formed when the smaller S-peptide binds to its larger partner S-protein. S-
peptide is an intrinsically disordered peptide in solution but adopts an helical conformation when
bound to S-protein. Despite of the groundbreaking experimental work of the Kiethaber group
and others, the complete association process is still not fully understood. By carefully comparing
our simulation results with the vast amount of experimental studies around RNAse-S we vali-
dated every step of our proceeding. With a simple diffusion model calculation we could rule out
one of the two proposed binding mechanisms and confirm the interpretation of the Kiethaber
study. But our simulations also indicated additional, so far unknown effects. Not only S-peptide
seems to undergo a conformational transition upon binding, but also its larger partner S-protein



which has been expected to be conformationally stable undergoes a global conformational re-
arrangement. Discussions with our collaborators in the Kiethaber group resulted in the idea of
measuring this prediction in vitro with the help of an small angle X-ray scattering experiment.
Theoretically predicted scattering curves seem promising that the effect could be visible in such
an experiment. Also our simulations indicate that S-peptide forms an initial key contact with
S-protein with specific anchoring residues first before folding on the surface to the native heli-
cal conformation. This mechanism has been suspected in the past and could be produced under
the "computational microscope” but would be difficult to observe with experimental techniques
otherwise. However the sampling capabilities of molecular dynamics simulations performed on
GPUs of the latest generation are still not sufficient to sample complete association pathways of
S-peptide to S-protein in an unmodified forcefield as full association occurs on timescales above
tens of microseconds.

Our study on the switching mechanism of Rab1b is based on an experimental finding, that
bacteria of the species Legionella pneumophila express the enzyme DrrA/SidM to introduce a
posttranslational modification in Rab1ib by adenylylating the Tyrosine residue 77. Aymelt Itzen
and his group challenged us whether we could come up with a reasonable model about what
this modification effects in Rabib and in particular how the switching mechanism is affected.
Based on umbrella sampling simulations and Poisson-Boltzmann calculations we found that the
switching mechanism of Rab1b is locked in its active configuration by the posttranslational mod-
ification, providing a mechanism for the bacterium to interact with the vesicle trafficking control
system of the host cell. We find that the effect is mainly caused by the negative charge of the
modification which is introduced into the functional switch region of Rab1ib. Interestingly, an-
other bacterial enzyme SidD has been identified that removes the adenylylation from Rab1b and
thereby reinstates the original cellular control mechanism. In the meantime our explanation of
the modified switching mechanism could be fully confirmed by preliminary nuclear magnetics
resonance spectra of adenylylated and wild type Rab1b in their GDP (inactive) and GTP (active)
form. Interestingly, further preliminary results from simulations and experiments indicate that
another posttranslational modification, the posphocholination of neighboring residue Serine 76
which is net charge neutral, has no impact on the structural coordination of Rab1b.

An impressive example how simulations may help experimentalists to figure out the issues
inherently drowsing in experimental techniques is given in our study on fluorescence labeling
of S-peptide. While discussing about the possibilities of a fluorescence spectroscopy study of the
S-peptide/S-protein association process with collaborators of the Don Lamb group, we realized,
that S-peptide might be too small to be fluorescently labeled without significantly influencing
the conformations and dynamics. We asked ourselves whether it might be possible to identify
such a modification in silico and whether such simulations could be confirmed by connecting
them to experimental fluorescence spectroscopy measurements. We used continuous molecular
dynamics simulations to investigate the conformational and dynamical regime of S-peptide with
and without the fluorescence labels being attached. We validated the results of the simulation
of labeled S-peptide by comparing them with the experimental PET-FCS measurements. The
successful validation allowed us to compare the simulated conformational and dynamical regimes
between labeled and unlabeled S-peptide. The impact of the labeling was found to be surprisingly
strong. Not only the diffusive properties of S-peptide were heavily affected but the peptide was
also locked in a metastable 5-sheet configuration during the simulations caused by a short-range
stacking interaction between the fluorescence labels. In order to confirm the findings from the
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simulations, we measured the circular dichroism spectrum of both the labeled and unlabeled S-
peptide and found accordance with our predictions from the simulations. This study highlights
the potential of molecular dynamics simulations to help experimentalists to identify whether a
measurement technique itself modifies the behavior of the measured system, an effect which is
often difficult to access by solely experimental means.

In a further study, we developed a protocol to identify ligand binding modes in the receptor
binding site with simulations. With regard to the field of drug design it is quite possible, that
parts of the work which is currently performed in the laboratory might soon be replaced by such
simulation protocols. With high-throughput screening techniques, large libraries of thousands of
drug candidates are frequently checked in a trial and error approach for their binding capabilities
to the drug target. This process is both expensive and time consuming. The theoretic concepts
and protocols to calculate binding affinities of drug candidates on the computer are already avail-
able but they are computationally still too expensive to be applied on the large scale. However
these computational approaches promise more than to be one day just a cheaper replacement for
the lab techniques. They give access to detailed atomistic insight in the dynamic processes oc-
curring in the binding pocket. Such information paves the way to the sophisticated and specific
design of drug molecules instead of the brute force trial and error testing of thousands ligands.

The progress in the understanding of life will in the future even stronger depend on the in-
teraction between different groups of scientists be they experimentalists or theoreticians. Tools
and simulation protocols need to be developed in order to shortcut often time consuming, expen-
sive, and error prone laboratory techniques. Yet, simulation techniques are capable to provide
valuable insight into biomolecular processes that is otherwise difficult to obtain in experiment.
However molecular dynamics simulations still require improvements especially in terms of force-
field parametrization and the inclusion of additional physical effects in order to strengthen their
predictive power and their accurate representation of molecular processes. Experiments are the
ultimate instance to check these predictions for their validity in the real world.
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Appendix A

hdWE: A hyper-dimensional Weighted
Ensemble implementation

In the course of this thesis, we developed from scratch an implementation of the weighted
ensemble methodology. The original idea was to allow the simultaneous simulation of multiple
binning coordinates in one WE setup, therefore we came up with the name hyper-dimensional
Weighted Ensemble or short hdWPE for the implementation, a name which is admittedly somewhat
extravagant. The code is purely written in Python 2 to guarantee a maximum of platform inde-
pendence and provide an easy start for coding newcomers who want to understand and expand
the implementation. The WE algorithm is subdivided in two basic parts: While the bookkeep-
ing of bin structures, WE iterations, analysis of bin coordinates, and stochastic weights w; of
the trajectories is handled by the hdWE program itself, the molecular dynamics simulations are
outsourced to an external MD software suite (e. g. AMBER, Gromacs). This subdivision allowed
us to focus our efforts on the design and performance improvement of the WE implementation
itself while taking advantage of state of the art MD implementations at the same time. Two
key benefits of this approach should be noted. First, as the weighted ensemble does not require
modifications of the Hamiltonian, we rely on the fastest available implementations of pure MD
algorithms which are nowadays typically accelerated with the help of General Purpose graphics
processing Units (GPUs) and allow us to access timescale of several ps for a typical biomolecular
system of ~ 50000 atoms. Second, during the propagation step of a WE iteration, the trajec-
tories are completely independent from each other and can therefore be propagated in multiple
parallel MD threads for the next WE time step 7 (figure 3.3). This form of trivial parallelizability
is an intrinsic advantage of the WE algorithm. After the trajectories have been propagated, their
end structures are evaluated with respect to their new position on the binning coordinates and
resorted into the bins. Then the trajectories are split and merged according to the resampling
mechanism to ensure that the bins are evenly filled. Eventually the algorithm reenters the MD
propagation step.

A.1 Implementation details

In this section we want to briefly outline the important data structures and the hierarchy among
them to provide insight into the design of the hdWE program. At the lowest hierarchical level, the
WE algorithm organizes a number of trajectories which are evenly distributed along the binning
coordinate. Trajectories are represented in hdWE as an instance of the class Segment (). For

The full source code of hdWE was released under the license terms of the GPLv3 and can be obtained from
https://github.com/enzyx/hdWE
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the better understanding, we want to look at a pseudo code representation of this class, which is
reduced to the principle features.

class Segment(object):
def __init__(self, probability, parent_iteration_id,
parent_bin_id, parent_segment_id,
iteration_id, bin_id, segment_id):

self.probability = probability # float

self .parent_iteration_id = parent_iteration_id # int
self.parent_bin_id = parent_bin_id # int
self.parent_segment_id = parent_segment_id # int
self.bin_id = bin_id # int
self.segment_id = segment_id # int
self.iteration_id = iteration_id # int
self.coordinates = None # list of floats

A Segment () object is located and identifiable in time and bin space with three ids defining
the iteration (iteration_id), bin (bin_id) and position in the bin (segment_id). In addition
to that, the segment stores information about its recent history in the variables prefixed with
parent_. The ids define the position of a segment in the bin data structure above and are di-
rectly linked to a trajectory coordinate file. The statistical weight w; of the trajectory assigned
by the WE algorithm is stored in probability and the coordinate(s) of the trajectory on the
binning coordinate(s) are stored in as an array in coordinates, e. g. in case of a single binning
coordinate, the array contains only one element. The segments are organized in the Bin () class,
containing an array segments of segment instances.

class Bin(object):

def __init__(self, iteration_id, bin_id, target_number_of_segments,
coordinate_ids):
self.iteration_id = iteration_id # int
self.bin_id = bin_id # int
self.target_number_of_segments = \

target_number_of_segments # int

self.coordinate_ids = coordinate_ids
self.segments = [1
self.initial_segments = []
self.resampling history =[]

The Bin() is again identifiable via iteration_id and bin_id which are redundantly stored in
the segment instances for simple access to identifiers. The bin class carries information about
its position along the binning coordinate(s) in the coordinate_ids array and stores the target
number of segments. In order to preserve the full history about segments being merged and split
during the resampling procedure, a copy of the segments array is storedin initial segments
before resampling. Every step of the resampling process is stored in the resampling history
array. The resampling elements in this array are instances of the classes Split () or Merge()
containing mainly segment_ids of the merged and split segments.
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class Merge(object):
surviving segment: The index of the surviving segment
deleted_segments: List of segment_ids which are
deleted probability
def __init__(self, surviving_segment_id, deleted_segments_ids):
self.surviving_ segment_id = surviving_ segment_id
self.deleted_segments_ids = deleted_segments_ids

def getType(self):
return type(self).__name__

class Split(object):
parent_segment: segment_id of the split segment
m: Number of segments which result from splitting
def __init__(self, parent_segment_id, m):
self .parent_segment_id = parent_segment_id
self.m = m

def getType(self):
return type(self).__name__

The WE algorithm is round based and the underlying data structure representing one WE round
is the class Tteration(). The iteration class stores information about the binning coordinates
(boundaries) which are referenced by the bin instances inbin. coordinate_ids. The iteration
counter is stored in iteration_id and the list of bin instances in the bins array.

class Iteration(object):
def __init__(self, iteration_id, boundaries, n_starting_structures):

self.iteration_id = iteration_id # int
self.boundaries = boundaries # array
self.bins = [1

Having introduced the data structure hierarchy, we now can analyze the main program loop in
hdWE. For educational reasons, we skip the setup routines and jump directly into a pseudo-code
representation. The code has been slightly simplified in terms of call parameters and additional
function calls, compared to the actual hdWE implementation, to keep the level of detail at a
minimum and focus on the essentials of the WE routine.

for iteration_counter in range(MAX_ITERATIONS) :
# 1. Intialize iteration and sort segments into bins
iterations.append(Iteration(iteration_counter,
iterations[-1]))
resorting.copyBinStructureToLastIteration(iterations)
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resorting.resort(iterations)

# 2. Backup the segments lists of all bins
for this_bin in iterations[-1]:
this_bin.backupInitialSegments()

# 3. Resampling (split/merge trajectories)
resampler.resample(iterations[-1])

# 4. Reweighting
reweighter.doProbabilityReweighting(iterations)

# 5. Run MDs
md_module.runMDs (iterations[-1])

# 6. Calculate Segment Coordinates
md_module.calcCoordinates(iterations[-1])

The loop runs over a predefined number of WE iterations MAX_ITERATIONS and the instances
of the Iteration() class are stored in the iterations array. First, a new instance of
Iteration() is created and appended to the iterations list. The resorting instance pro-
vides functions to copy the bins and segments of the previous iteration to our new iteration
object. Because segments have been propagated with MD at the end of the previous iteration,
the trajectories (segments) have new coordinates in the bin spaces and need to be assigned to
the bins with the resorting. resort () routine. If a trajectory accessed a previously empty bin
region during the last iteration, a new bin instance is generated on-the-fly. In a second step, the
segments list in the bins is backed up to the initial_segments list before the resampling rou-
tine merges and splits segments. The reweighting routine can (optionally) be applied, readjusting
the probability weights of the segments. Internally, the reweighting routine calculates the aver-
aged rate matrix over a given number of iterations. Then the algorithm enters the propagation
step which is handled by the md_module which provides an interface to the external Molecular
Dynamics program. The MD_module () class functions as a wrapper to different MD programs
on a plugin basis. The specific call syntax of the individual MD programs is hidden behind gen-
eral function calls (e.g. runMDs (), calcCoordinates) which have to be implemented when
aiming to support an alternative MD software package in hdWE. The ultimate step in the main
loop is the calculation of the new bin coordinates (md_module.calcCoordinates()) for the
propagated trajectories to allow resorting them into bins in the subsequent iteration.

A.2 Usage of hdWE

In this section, we briefly present the individual steps required to setup and perform a WE sim-
ulation with the hdWE program and the Amber molecular dynamics software [98]. hdWE uses
a global configuration file (hdwE. conf) to define the WE simulation parameters. Its syntax is
based on the python module ConfigParser. The following example shows a configuration file
to simulate the binding process of a ligand to a protein with WE using the distance between
protein and ligand as binning coordinate.
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[hdWwE]

workdir = /work/dir/path/
starting-structures = ./pro-lig.rst7
jobname = pro-lig
segments-per-bin = 10
max-iterations = 10000
boundaries = 10.0 12.0 14.0 16.0 18.0 20.0
sample-region = -99999 99999
keep-coords-frequency = 100
keep-trajectory-files = False
resampling-mode = westpa
merge-threshold = 0.01
compress-iteration = False
number-of-threads =38

[amber]

topology-path = pro-lig.top
infile-path = pro-lig.in
coordinate-masks = pro-lig.mask
binary = pmemd.cuda
cuda_visible_devices =0,1,2,3
parallelization-mode = mpi

mpirun = /usr/bin/mpirun -np 4

The workflow initially requires the setup of topology and coordinate files of the protein and
ligand system with the AMBER package. Instructions on the setup protocol can be found in the
AMBER manual. The resulting topology (pro-1ig. top), coordinate (pro-1ig. top), and Amber
run file pro-1ig. in have to be specified in the WE configuration file. The workdir parameter
points to the directory where hdwk searches for files and writes the output of the WE simulation.
In order to calculate the binning coordinate(s) from the MD trajectories, hdWE relies on the
Amber tool cpptraj. The syntax for cpptraj input files is documented in the Amber manual
and can be any type of coordinate. To specify one ore multiple binning coordinates, an Amber
mask has to be written to the pro-1ig.mask input file in one line per coordinate.

distance d :1-367 :LIG

In this example, the protein is defined by residues 1-367 while the ligand molecule is identified
with the residue name LIG. The out directive for the definition of the cpptraj output file will
automatically be added by hdwk. The bin boundaries are then defined with the boundaries pa-
rameter. In our example we have 7 bins covering distances by = {d | 0 < d < 10},b; = {d |
10 <d<12},...,bs = {d |20 < d < oo }. The bins are open at their endpoints covering the
whole phase space up to the region specified in sampling-region. In our case we just specified
a numerically large range compared to the system size. The units of the distance are taken from
cpptraj which uses A for distances. If multiple binning coordinates are used, additional coordi-
nate boundaries are specified in a comma separated list format. The target number of trajectories
per bin is given in segments-per-bin and is required by the resampling routine to define, how
often trajectories are to be split or merged. max-iterations gives the number of WE itera-
tions and the additional flags keep-trajectory-files and keep-coords-frequency spec-
ify, whether the trajectory output files are stored and at how often the coordinate files resulting
from each WE iteration are stored. The amber binary pmemd. cuda should be in the $PATH vari-
able of the shell, alternatively a full path can be specified. hdwE starts multiple pmemd programs
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in parallel via a mpi pipeline, therefore the user can fine tune the parallelization via the mpirun
command which may also run on multiple nodes via the --host or --hostfile flag of mpirun.
Parallelization is switched on with the parallelization-mode parameter and the available
GPUs are defined over the cuda_visible_devices parameter which is translated internally to
the CUDA_VISIBLE_DEVICES shell variable. After having setup the configuration file, the sim-
ulation is ready to be started with hdwE. When calling hdwE with the flag -h from a terminal, it
outputs an overview of the available command line options.

usage: hdWE.py [-h] [-c FILE] [-d] [-a | -o] [-n]

[ [\ /7
l— L INN /N /)
[ "N/ 1NN\ N/ /|
[ I G B e R AN A

[ B B L VA VA |

A hyperdimensional weighted ensemble simulation implementation.

optional arguments:

-h, --help show this help message and exit

-c FILE, --conf FILE The hdwWE configuration file

-d, --debug Turn debugging on

-a, --append continue previous iterations (use parameters from conf
file when --read is given)

-0, --overwrite overwrite previous simulation data

-n, --new-conf Read new boundaries from config file when --append is
used

In our example of a protein-ligand complex formation, the command to initiate the simulation
would be

hdwe.py -c hdwE.conf

The program creates two output directories pro-1ig-log and pro-1ig-run containing log files
of every iteration in the first and the trajectory/coordinate files in the second folder. The iter-
ation log filenames are the zero padded iteration indices with the filename extension .iter
(e.g. 00000000.iter, 00000001.iter). The naming scheme for the coordinate and trajec-
tory output files is assembled again from zero padded iteration, bin, and trajectory index (e. g.
file 00000034_00002_00013. rst7 identifies as segment 13 of bin 2 in iteration 34). hdWwE pro-
vides a set of tools to analyze the results of a WE simulation. In the given example the transition
rates between arbitrary states can be calculated with the ana_TraceFlux program.

ana_TraceFlux -1 pro-lig-log --state-A 0 10 --state-B 18 99999 -B 1000 -bs 500
The program requires the log file directory of the WE simulation and the definition of state
intervals along the binning coordinate. The -B flag effects that the initial 1000 WE iterations
are skipped as equilibration for the analysis. ana_TraceFlux performs error analysis according
to the statistical bootstrapping method, and therefore splits the data in blocks of size -bs 500
[392]. The ana_BinPMF tool calculates the PMF along the binning coordinate.

ana_BinPMF.py -1 pro-lig-log -o pmf.dat

It again requires the path of the log file directory and an optional output filename. The PMF data
is stored as an ASCII file which can be conveniently visualized with standard plotting software.
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Appendix B

Distance based RMSD potential in
GROMACS

In chapter 6 the influence of Tyr77 adenylylation on the conformational regime of Rab1ib was
investigated with the help of umbrella sampling (US) molecular dynamics simulations combined
with the replica exchange (RE) technique. As reaction coordinate to unfold the switch regions
in Rab1b a distance based root mean square deviation (IRMSD) potential was chosen and imple-
mented natively in GROMACS version 4.6. The sampling along the dRMSD coordinate provides
a powerful tool to investigate conformational changes of biomolecules and we want to briefly
introduce the fundamental concepts as well as an application note of our dRMSD implementation
in GROMACS.

B.1 Theory

The dRMSD coordinate is defined as the mean deviation of a set of distances d; from their refer-
ences d;o. The distances d; are typically defined between pairs of atoms a;1, a;2 and the reference
distances correspond to a target molecular structure. We write the definition of the dRMSD (D)
as

N
D(dy,...,dN) = %Z(di — dip)? (B.1)

where the index ¢ runs over all distances between N atom pairs which contribute to D. The
dRMSD is similar to the root mean square deviation (RMSD), which describes the deviation of
a set of coordinates from their reference position and is often applied in the field of molecular
dynamics to analyze the conformational evolution of molecules in simulations. Despite their sim-
ilarity in definition and applicability, the dRMSD coordinate offers significant advantages over
the RMSD with respect to software implementation and algorithmic performance. The main rea-
son is, that distances between atom pairs can be trivially extracted during a MD simulation, as
they are invariant from the rotation and translation of the molecule. The RMSD on the other
hand, requires the molecular structure to be superimposed with its reference structure to elimi-
nate the rotational and translational contributions and to yield only the internal conformational
deviation from the reference. The superimposition step requires the determination of a transla-
tion vector to align the centroids of the molecules current and reference structures and an optimal
rotation matrix for rotational alignment. The Kabsch algorithm provides a fully analytic solution

The full source code can be obtained from https://github.com/enzyx/gromacs-4.6-drmsd
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for the alignment problem [393, 394]. However, its application involves the numerical solution
of a linear equation system, which is not always numerically stable. Furthermore, when used as
a reaction coordinate in MD simulations, the superimposition has to be performed during every
step of the MD algorithm, constituting additional computational cost. Therefore the dRMSD co-
ordinate constitutes typically the safer to implement choice which delivers better computational
performance over RMSD. In order to perform an US simulation along the dRMSD coordinate,
a potential has to be defined, which traps the simulation at a specific point along the reaction
coordinate. Frequently, a spring like potential is used in the form

V(di,...,dy) = %kO(D(dl,...,dN) —Dy)”. (B.2)

with a reference dRMSD Dy and a force constant kg. In order to translate the dRMSD potential to
forces which can be applied to the atoms in a MD simulation, we keep in mind that the distances
d; are functions of the atom pair coordinates 771, 7j2.

di = di(Ti1,Ti2) = |Fin — Tiz| = V/(Ti1 — Ti2)? (B.3)
The forces on the Cartesian atom coordinates x;1, Y1, 2:1 and ;9, ¥;2, 2;2 of atoms a;1, a;o in-

volved in distance d; are taken from the total derivative of D with respect to the atom coordinate
€. g Ti;

AV (di,...,dx)
F, =——— T
il dl’ﬂ
ko D(dy,...,dn)— Dy Ti1 — Ti2 (B.4)
_ M. (d; — dp) - “L 22
N ' D(d,...,dy) ( 0) d;
= _Fxm

According to Newtons 3rd law, the equal force on x1; acts on x2; in opposite direction. In vec-
torial form, equation B.4 may be rewritten as

- ky D(d;)— Dy di

Having extracted the forces, the dRMSD potential can then be applied on a MD simulation. In
order to drive a system between two states A and B however, we need to extend D with infor-
mation about the endpoints A, B. Endpoints in terms of dRMSD can be defined by different sets
of reference distances df(‘], df for the two states. The sets of reference distances may represent
two different conformations of the molecule of interest for example. To control the potential
between the endpoints, a scaling parameter A € [0, 1] is introduced. The A\ dependent dRMSD
coordinate is then defined as

1 N 2
D(di, ) = | % > (di — (1= N\)d — Adfg)) (B.6)

The system is driven to the endpoint A if A = 0 and to B if A = 1 by linearly switching be-

tween the reference distance sets. The A dependent dRMSD potential is further extended by two
reference dRMSDs D{', DE and takes the form

2
V(di,\) = ’?(D(di, A) = (1-A)Dg - ADE?) (B.7)
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Again the forces on Cartesian coordinates of atoms a;1, a;2 have the form e. g. for z;1, ;2

dV (d;, \)
Py, =——02
il dxz‘l
_ ko D(di, ) — (1 - \)Dg' — ADF
- N D(d;, \) (B.8)
(ds = (1= N — 2d) - 22

——F

T2

When performing US simulations with several A windows along the reaction coordinate, the
Replica Exchange technique may be applied in addition to enhance the diffusion of conforma-
tions between the end points and accelerate the discovery of alternative structures. This may be
necessary especially as the conformational space that “fulfills” a certain dRMSD condition may
vary at different A values.

B.2 Application notes

The input files of GROMACS have been extended by several parameters to setup a Hamiltonian
Replica Exchange Umbrella Sampling simulation (H-REUS). The simulation parameters are ad-
justed in the configuration file syntax (. mdp) and the following additional parameters are avail-
able.

drmsd-pot:

yes
Enable distance based RMSD potential.

no
Disable distance based RMSD potential.

drmsd-ref: (0.0) [nm]
Reference distance RMSD

drmsd-refB: (drmsd-ref) [nm]
Reference distance RMSD for state B

drmsd-ko: (1000.0) [k) mol~! nm~—?]
Force konstant of the distance RMSD potential

nstdrmsdpout: (100)
Frequency of writing distance RMSD potential output (unimplemented yet)

The dRMSD potential can be turned on and off with the drmsd-pot switch. The parameters
drmsd-ref, drmsd-refB and drmsd-k0 correspond to the reference dRMSD values D', Df
and the force constant kg in equation B.7. The standard units of GROMACS have to be used
for the parameters as indicated. Atom pairs and their reference distances are defined in a
dedicated section in the system topology file (.top). The position of the additional section
[ drmsd_restraints ] in the topology file is not relevant. An exemplary definition of three
distances has the following representation
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[ drmsd_restraints ]

; ai aj type do doB
9 39 1 0.5 0.6
19 49 1 0.5 0.6
29 59 1 0.5 0.6

The first line represents the section header, while the second line is a comment (prefixed with the
escape character “;” in GROMACS topology files). The subsequent lines are organized in white
space separated columns. The first and second columns indicate the atom indices of a1, a;o defin-
ing the distance d;. The third column is internally used by GROMACS to identify the bond type
and should always be 1. The reference distances d4), d53 are given in the last two columns. The
different A windows in a replica exchange simulation are controlled with the . mdp file parameter

bonded-lambdas:
Zero, one or more lambda values for which Delta H values will be determined
and written to dhdl.xvg every nstdhdl steps. Values must be between o and 1.
Only the bonded interactions are controlled with this component of the lambda
vector.

E.g. for a setup with 6 equidistant A windows, the input line would be

bonded-lambdas = 0.00 0.20 0.40 0.60 0.80 1.00

To enable the A control, the . mdp file parameter free-energy must be set to yes. The rest of the
system setup and the production run follows the standard GROMACS guidelines. As the dRMSD
implementation is natively integrated in the replica exchange framework of GROMACS, it can
be combined with other techniques requiring modifications to the Hamiltonian e. g. free energy
calculations or temperature replica exchange [370].

The dRMSD implementation makes full use of the MPT and OpenMP paradigms in GROMACS.
However, the long-range interaction between far distant atom pairs may break the domain de-
composition mechanism used in GROMACS to parallelize large systems [395, 396]. Therefore
the user can either opt for the particle domain decomposition scheme with the mdrun flag -pd or
decide to use only OpenMP to parallelize the propagation within a single A window while using
MPI to manage parallelization on the higher replica exchange level. An error message is shown
to the user when the setup violates these requirements.

The output files, the dRMSD results are directed to, are defined with the -drmsd flag. A typical
run command of mdrun using 6 MPI hosts for the A windows with each 16 OpenMP threads to
parallelize the internal force calculation and propagation would be:

mpirun -n 6 mdrun -multi 6 -ntomp 16 -replex 1000 \
-deffnm protein_ -s protein_.tpr -drmsd drmsd_.xvg

The dRMSD output is directed to the files (drmsd_0.xvg, drmsd_1.xvg, ...)and stored in
the standard Asc11 based GROMACS . xvg file format. The current A value, the reference dRMSD
values and the force constants are stored in the file header. The simulation data is written in three
columns, saving the simulation time stamp ¢, the dRMSD value D(t), and the associated dRMSD
potential V' (D(t)). In order to calculate a potential of mean force along the dRMSD coordinate,
these files can be conveniently analyzed with the Weighted Histogram Analysis method (WHAM)

[341].
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Symbols and Abbreviations

Symbols and constants

S Entropy
' Helmbholtz free energy
G Gibbs free energy
T  Temperature
p  Pressure
V' Volume
kg Boltzmann constant
B 1/(keT)
Constants
€0 Vacuum Permittivity
140 Vacuum Permeability
e Electron Charge
kg Boltzmann constant
T Pi

8.8542 x 102 F/m
A7 x 1077 N/A?
1.6022 x 10719 C
1.3807 x 10723 J/K
1

16 arctan(%) — 4arctan(535)
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Abbreviations

ABF
AMBER
APBS
BD

cMD
dRMSD
FDPB
GDP
GROMACS
GTP
H-REMD
H-REUS
MC

MD
NPT
NVT
PDB
PMF
PTM
oM
REMD
RMSD
T-REMD
UsS

WE
WHAM
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Adaptive Biasing Force

Assisted Model Building with Energy Refinement (Software) [98]
Adaptive Poisson-Boltzmann Solver (Software) [343]
Brownian Dynamics

continous Molecular Dynamics

distance Root Mean Square Deviation

Finite Difference Poisson-Boltzmann

Guanosine Diphosphate

GROningen Machine for Chemical Simulations (Software) [96, 244]
Guanosine Triphosphate

Hamiltonian Replica Exchange Molecular Dynamics
Hamiltonian Replica Exchange Umbralla Sampling

Monte Carlo

Molecular Dynamics

Constant number of particles (N), pressure (P), temperature (T)
Constant number of particles (N), volume (V), temperature (T)
Protein Data Bank

Potential of Mean Force

Post Translational Modification

Quantum Mechanics

Replica Exchange Molecular Dynamics

Root Mean Square Displacement

Temperature Replica Exchange Molecular Dynamics

Umbrella Sampling

Weighted Ensemble

Weighted Histogram Analysis Method



List of Figures

1.1 Intramolecular interactions in molecular dynamics simulations . . . . . ... .. 7

2.1 [llustration of a hypothetical free energy landscape and the meta-dynamics

methodscheme . . . . . . .. ... ... ... 17
2.2 Scheme of the replica exchange MD (REMD) method . . . . . . . ... ... ... 22
2.3 Application of the Hamiltonian replica exchange MD (H-REMD) method to the

intrinsically disordered S-peptide . . . . . . . ... ... oL 25
3.1 One-dimensional free energy landscape of a thermodynamic two-state model . . 30
3.2 Transitions times on different free energy landscapes . . . . ... .. ... ... 31
3.3 Schematic depiction of the two basic steps performed during a WE iteration .. 33
3.4 The two resampling steps in weighted ensemble simulations . . . .. ... ... 34
3.5 Equilibration of weights in a two-state model system with and without

probability reweighting . . . . . .. ... L Lo 37
3.6 Intra-bin barriers in WE simulations as equilibration bottleneck . . .. ... .. 40
3.7 Orthogonal barrier crossing in weighted ensemble simulations . . . . ... ... 41
3.8 Conformational flooding in Weighted Ensemble simulations . . ... ... ... 42
4.1 Schematics of protein-ligand docking with H-REMD . . . . . .. ... ... ... 45
4.2 Starting and final structures of FKPB-52 and FK506 Tacrolimus complex

refinement with H-REMD docking . . . . . .. .. ... ... .. ... ...... 50
4.3 Comparative results from H-REMD docking and continuous MD of the model

complex FKBP-52/FK506 . . . . . . . . .. ... ... 51
4.4 H-REMD simulations of FKBP-12 in complex withSB3 . . . . . .. ... ... .. 52
4.5 MHC class I protein in complex with viral antigen SEV-9 before and after

H-REMD refinement . . . . . . . . . . . . . .. . i 54
4.6 RMSDyjgang of H-REMD and MD simulations of MHC class I protein with viral

protein peptide SEV-9 . . . . . ... 54

4.7 'The SB3 RMSDj;gang With respect to native complex in 10 continous MD simulations 55
4.8 Correlation of RMSDj;gan4 and interaction energy between ligand and receptor

molecules. . . . . ... e 56
5.1 RMSD of residues 1-14 for labeled and unlabeled S-peptide simulations . . . . . 62
5.2 The population size of the ten largest clusters of S-peptide simulations . . . . . . 62
5.3 Experimentally obtained FCS curve and model fit function for labeled S-peptide 63
5.4 Atto655/Trp1s fluorescence quenching autocorrelationdata . . . . . . ... ... 64
5.5 Quenched and fluorescent S-peptide conformations . . . ... ... ... .. .. 65
5.6 Mean residue elliptisity from circular dichroism spectra of labeled S-peptide

with and without Atto6s5 . . . . . . . . . . . ... 66

127



5.7
5.8

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9

6.10
6.11

7.1
7.2
7-3
7-4

7-5
7.6

7-7

Fit of the experimental S-peptide correlation function using models accounting
for one and two kinetic components . . . . ... ... Lo L
Experimental results from S-peptide PET-FCS measurements . . . . .. ... ..

RMSD of protein backbone with respect to X-ray structure of cMD Rab1b systems

Average RMSF of Rab1ib C-a atoms in GTP and GDP bound form . . . . . . . ..
Noncovalent interaction network of GTP bound toRabib . . . . . . ... .. ..
Probability distribution of interaction distances between AMP-Tyr77 and Phe4s
inRabib. . . . . .
Stacking interactions between the adenylylated Tyr77 with Phegs in Rabib . . .
Rabib switch I region unfolding . . . . . ... ... ... ... ... .......
Kinetics of deadenylylation of Rabib . . . . . . .. ... ... . o000
Effect modifications in Rab1ib on the unfolding free energy of switchII.. . . . . .
Convergence of PMF along the global dRMSD coordinate for AMP-Rab1b:GDP
System . . . ..o e
Simulated ensemble of active and inactive conformations of switch IT in Rabib .
Dependency of dRMSD switch IT unfolding on force constants & . . . . . . . ..

Helicity per residue over time of freely diffusing S-peptide,.,, . .. .. ... ..
Coordinate definition for an analytic diffusionmodel . . . . . . .. ... ... ..
Difference free energy of binding for Alanine mutants of three His12 tautomers
Mlustration of the pincer-like conformational transition of S-protein in absence
of S-peptide . . . . . . ..
RMSD of S-peptide during a 5 pus simulations of RNAse-S . . .. ... ... ...
The distance of residues Phe8 (blue) and Met13 (orange) to the center of the
hydrophobic pocket in S-protein . . . . . ... ... Lo
Final snapshots of S-peptideg_,, association simulations of those 21 out of 100
simulations where S-peptideg_,, remained close to the binding site of S-protein .

List of Tables

128

Relaxation time scales (7,) and amplitudes (a,) of the fluorescence
autocorrelation of labeled S-peptide fitted with an exponential two-state model
Fit results for PET-FCS measurement. Parameters as described in the main text.

Errors are given as 95% confidence intervals. . . . . . .. ... ... ... ...

Electrostatic contributions to the mean energy difference of inactive vs. active
conformational ensembles of Rab1b:GDP in the presence or absence of Tyr77

adenylylation . . . . ... ...
Free energy differences of unfolding the switch I region in Rabib . . . . . . . ..

72
72

75
76
76

77
78
79

79
8o

88

90
90

65

71

81
82



List of Tables

6.3 Electrostatic contributions to the mean unfolding energy at different electrostatic

permittivities. . . . . . ... 89
7.1 Difference free energy of binding of S-peptide Alanine mutations . . . ... ... 98
7.2 Distances for the BD model reaction criterion . . . ... ... ... ... ..... 106

7.3 Association rates of S-peptide to S-protein calculated from an analytic diffusion
model and solved for different reactive patches sizes and axial orientation tolerances 109

129






List of Publications

Peer-Reviewed Publications

(1]

(2]

(3]

R. Bomblies, M. P. Luitz, and M. Zacharias. “Molecular Dynamics Analysis of 4E-BP2
Protein Fold Stabilization Induced by Phosphorylation”. Journal of Physical Chemistry B
(2016), in press.

R. Bomblies, M. P. Luitz, and M. Zacharias. “Mechanism of pKID/KIX Association Studied
by Molecular Dynamics Free Energy Simulations”. Journal of Physical Chemistry B 120.33
(Apr. 2016), pp. 8186-8192.

M. P. Luitz, R. Bomblies, E. Ramcke, A. Itzen, and M. Zacharias. “Adenylylation of Tyr77
stabilizes Rab1ib GTPase in an active state: A molecular dynamics simulation analysis”.
Scientific reports 6 (Jan. 2016), p. 19896.

M. Luitz, R. Bomblies, K. Ostermeir, and M. Zacharias. “Exploring biomolecular dynamics
and interactions using advanced sampling methods”. Journal of Physics: Condensed Matter
27.32 (July 2015), p. 323101.

M. P. Luitz and M. Zacharias. “Protein-Ligand Docking Using Hamiltonian Replica Ex-
change Simulations with Soft Core Potentials”. Journal of Chemical Information and Mod-
eling 54.6 (May 2014), pp. 1669—1675.

M. P. Luitz and M. Zacharias. “Role of tyrosine hot-spot residues at the interface of
colicin Eg and immunity protein 9: A comparative free energy simulation study”. Proteins:
Structure, Function, and Bioinformatics 81.3 (Mar. 2013), pp. 461-468.

Book Chapters

(1]

C. N. Cavasotto, R. Bomblies, M. Luitz, and M. Zacharias. “Free Energy Calculations of
Ligand-Protein Binding”. In: In Silico Drug Discovery and Design: Theory, Methods, Chal-
lenges, and Applications. CRC Press, 2015, pp. 313-335.

Publications in Preparation

(1]

(2]

F. Zeller, M. P. Luitz, R. Bomblies, and M. Zacharias. “Accurate Multi-scale Simulation
of Receptor-drug Association Kinetics: Application to Neuramidase Inhibitors”. under
review at Angewandte Chemie International Edition (2017).

R. Bomblies, M. P. Luitz, S. Scanu, T. Madl, and M. Zacharias. “Transient Helicity in
Intrinsically Disordered Axin-1 Depends on Force Field”. in preparation (2017).

131


http://dx.doi.org/10.1021/acs.jpcb.6b08597
http://dx.doi.org/10.1021/acs.jpcb.6b08597
http://dx.doi.org/10.1021/acs.jpcb.6b01792
http://dx.doi.org/10.1021/acs.jpcb.6b01792
http://dx.doi.org/10.1038/srep19896
http://dx.doi.org/10.1088/0953-8984/27/32/323101
http://dx.doi.org/10.1088/0953-8984/27/32/323101
http://dx.doi.org/10.1021/ci500296f
http://dx.doi.org/10.1021/ci500296f
http://dx.doi.org/10.1002/prot.24203
http://dx.doi.org/10.1002/prot.24203

List of Publications

(3]

[4]

M. P. Luitz, A. Barth, A. H. Crevenna, R. Bomblies, D. Lamb, and M. Zacharias. “Cova-
lent Dye Attachment Influences the Dynamics and Conformational Properties of Flexible
Peptides”. Submitted to Plos One (2017).

M. P. Luitz, R. Bomblies, and M. Zacharias. “From Chaos to Order: The Association Pro-
cess of RNAse-S Studied by Molecular Dynamics Simulations”. in preparation (2017).

Conferences

[1]

[10]

132

F. Zeller, R. Bomblies, M. P. Luitz, and M. Zacharias. “Influenza Neuraminidase In-
hibitor Binding Studied by Molecular Dynamics Simulations”. SFB863 Meeting. Forces
in Biomolecular Systems (Nov. 2015). Kreuth, Germany, Conference Talk.

M. P. Luitz, R. Bomblies, and M. Zacharias. “From Chaos to Order: The Association Pro-
cess of RNAse-S studied by MD Simulations”. SFB1035 Annual Meeting. Conformational
Switches (July 2015). Garching, Germany, Poster Presentation.

R. Bomblies, M. P. Luitz, and M. Zacharias. “The Mechanism of pKID-KIX Complex For-
mation studied by Molecular Dynamics Simulations”. SFB1035 Annual Meeting. Confor-
mational Switches (July 2015). Garching, Germany, Poster Presentation.

R. Bomblies, M. P. Luitz, and M. Zacharias. “The Mechanism of pKID-KIX Complex For-
mation studied by Molecular Dynamics Simulations”. SFB1035 International Conference.
Conformational Switches (May 2015). Venice, Italy, Poster Presentation.

M. P. Luitz, R. Bomblies, and M. Zacharias. “From Chaos to Order: The Association Pro-
cess of RNAse-S studied by MD Simulations”. SFB1035 International Conference. Confor-
mational Switches (May 2015). Venice, Italy, Poster Presentation.

M. P. Luitz, R. Bomblies, M. Zacharias, E. Bender, and A. Itzen. “Conformational Tran-
sitions in Switch Regions of the Ras-Like GTPase Rab1B Studied by Free Energy Simula-
tions”. Biophysical Society Meeting (Jan. 2015). Baltimore, USA, Conference Talk.

R. Bomblies, M. P. Luitz, and M. Zacharias. “Characterization of Transiently Stable Struc-
tural Motifs in Intrinsically Disordered Proteins using Free Energy Simulations”. Biophys-
ical Society Meeting (Jan. 2015). Baltimore, USA, Poster Presentation.

M. P. Luitz, R. Bomblies, and M. Zacharias. “From Chaos to Order: The Association Path-
way of RNAse-S”. Biophysical Society Thematic Meeting. Disordered Motifs and Domains
in Cell Control (Oct. 2014). Dublin, Ireland, Poster Presentation.

R. Bomblies, M. P. Luitz, and M. Zacharias. “The Mechanism of pKID-KIX Complex For-
mation Studied by Molecular Dynamics Simulations”. Biophysical Society Thematic Meet-
ing. Disordered Motifs and Domains in Cell Control (Oct. 2014). Dublin, Ireland, Poster
Presentation.

M. P. Luitz, R. Bomblies, and M. Zacharias. “In silico investigation of posttranslational
Tyr77 modification on Rab1b switching mechanism”. SFB1035 Annual Meeting. Confor-
mational Switches (July 2014). Garching, Germany, Poster Presentation.



Conferences

R. Bomblies, M. P. Luitz, and M. Zacharias. “Coupled Association and Structure Forma-
tion studied by Molecular Dynamics Simulations”. SFB1035 Annual Meeting. Conforma-
tional Switches (July 2014). Garching, Germany, Poster Presentation.

R. Bomblies, M. P. Luitz, and M. Zacharias. “MD Studies on Intrinsically Disordered Pro-
teins”. SFB1035 PhD retreat. Conformational Switches (Apr. 2014). Spitzingsee, Germany,
Conference Talk.

M. P. Luitz, R. Bomblies, and M. Zacharias. “Coupled Folding and Association: RNAse-S
and pKID-KIX studied with MD Simulations”. Faltertage (Oct. 2013). Regensburg, Ger-
many, Poster Presentation.

M. P. Luitz, R. Bomblies, and M. Zacharias. “Coupled Folding and Association: RNAse-S
and pKID-KIX studied with MD Simulations”. SFB1035 Annual Meeting. Conformational
Switches (July 2013). Garching, Germany, Poster Presentation.

M. P. Luitz, R. Bomblies, and M. Zacharias. “Association of Intrinsically Disordered Pro-
teins: A Case Study of RNAse-S”. SFB1035 PhD retreat. Conformational Switches (Mar.
2013). Aschau, Germany, Conference Talk.

133






Bibliography

(1]

(2]

(3]

(4]

E. A. Bell, P. Boehnke, T. M. Harrison, and W. L. Mao. “Potentially Biogenic Carbon Pre-
served in a 4.1 Billion-Year-Old Zircon”. Proceedings of the National Academy of Sciences

112.47 (Oct. 2015), pp. 14518-14521.

L. Orgel. “Evolution of the Genetic Apparatus”. Journal of Molecular Biology 38.3 (Dec.
1968), pp. 381-393.

F. Crick. “The Origin of the Genetic Code”. Journal of Molecular Biology 38.3 (Dec. 1968),
Pp- 367-379-

L. E. Orgel. “Some Consequences of the RNA World Hypothesis”. Origins of life and evo-
lution of the biosphere 33.2 (2003), pp. 211-218.

S. L. Miller. “Production of Some Organic Compounds under Possible Primitive Earth
Conditions1”. Journal of the American Chemical Society 77.9 (1955), pp. 2351-2361.

C. Ponnamperuma and N. W. Gabel. “Current Status of Chemical Studies on the Origin
of Life”. Space life sciences 1.1 (1968), pp. 64—96.

Y. Wolman, W. J. Haverland, and S. L. Miller. “Nonprotein Amino Acids From Spark Dis-
charges and Their Comparison With the Murchison Meteorite Amino Acids”. Proceedings
of the National Academy of Sciences 69.4 (1972), pp. 809—811.

J. L. Bada. “New insights into prebiotic chemistry from Stanley Miller’s Spark Discharge
Experiments”. Chemical Society Reviews 42 (5 2013), pp. 2186—2196.

M. W. Powner, B. Gerland, and J. D. Sutherland. “Synthesis of Activated Pyrimidine
Ribonucleotides in Prebiotically Plausible Conditions”. Nature 459.7244 (May 2009),
pp- 239-242.

K. Kruger, P. J. Grabowski, A. J. Zaug, ]J. Sands, D. E. Gottschling, and T. R. Cech. “Self-

Splicing RNA: Autoexcision and Autocyclization of the Ribosomal RNA Intervening Se-
quence of Tetrahymena”. Cell 31.1 (1982), pp. 147-157.

S. Altman. “A View of RNase P”. Molecular Biosystems 3 (9 2007), pp. 604—607.

P. G. Higgs. “RNA Secondary Structure: Physical and Computational Aspects”. Quarterly
Reviews of Biophysics 33.3 (Aug. 1, 2000), pp. 199—253.

V. Ramakrishnan, B. T. Wimberly, D. E. Brodersen, W. M. Clemons, R. J. Morgan-Warren,
A.P. Carter, C. Vonrhein, and T. Hartsch. Nature 407.6802 (Sept. 2000), pp. 327-339.

W. K. Johnston, P. J. Unrau, M. S. Lawrence, M. E. Glasner, and D. P. Bartel. “RNA-
Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Exten-
sion”. Science 292.5520 (2001), pp. 1319-1325.

L. A. Chen. “GE Prize-Winning Essay: The Emergence of Cells During the Origin of Life”.
Science 314.5805 (Dec. 2006), pp. 1558-1559.

135


http://dx.doi.org/10.1073/pnas.1517557112
http://dx.doi.org/10.1073/pnas.1517557112
http://dx.doi.org/10.1016/0022-2836(68)90393-8
http://dx.doi.org/10.1016/0022-2836(68)90393-8
http://dx.doi.org/10.1016/0022-2836(68)90392-6
http://dx.doi.org/10.1016/0022-2836(68)90392-6
http://dx.doi.org/10.1023/A:1024616317965
http://dx.doi.org/10.1023/A:1024616317965
http://dx.doi.org/10.1021/ja01614a001
http://dx.doi.org/10.1007/BF00924231
http://dx.doi.org/10.1039/C3CS35433D
http://dx.doi.org/10.1038/nature08013
http://dx.doi.org/10.1038/nature08013
http://dx.doi.org/http://dx.doi.org/10.1016/0092-8674(82)90414-7
http://dx.doi.org/10.1039/B707850C
https://www.cambridge.org/core/article/rna-secondary-structure-physical-and-computational-aspects/76EA22C14AD6C2866D565E4967ADBD77
https://www.cambridge.org/core/article/rna-secondary-structure-physical-and-computational-aspects/76EA22C14AD6C2866D565E4967ADBD77
http://dx.doi.org/10.1038/35030006
http://dx.doi.org/10.1126/science.1060786
http://dx.doi.org/10.1126/science.1137541

Bibliography

[16]

[17]

(18]

[19]

[20]

[21]

[22]

136

P. Forterre. “The two ages of the {RNA} world, and the transition to the {DNA} World: A
Story of Viruses and Cells”. Biochimie 87.9—10 (2005). Facets of the {RNA} world, pp. 793~
803.

I. Wagner and H. Musso. “New Naturally Occurring Amino Acids”. Angewandte Chemie
International Edition in English 22.11 (Nov. 1983), pp. 816-828.

J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C. Phillips. “A
Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis”. Na-
ture 181.4610 (Mar. 1958), pp. 662—666.

C. B. Anfinsen. “Principles that Govern the Folding of Protein Chains”. Science 181.4096
(1973), pp. 223-230.

F. Chiti and C. M. Dobson. “Protein Misfolding, Functional Amyloid, and Human Disease”.
Annu. Rev. Biochem. 75.1 (June 2006), pp. 333—366.

M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N. Taddei, G. Ram-
poni, C. M. Dobson, and M. Stefani. “Inherent Toxicity of Aggregates Implies a Common
Mechanism for Protein Misfolding Diseases”. Nature 416.6880 (Apr. 2002), pp. 507-511.

J. Lipfert and S. Doniach. “Small-Angle X-Ray Scattering from RNA, Proteins, and Protein
Complexes”. Annual Review of Biophysics and Biomolecular Structure 36.1 (June 2007),
pp. 307—-327.

L. M. Jackman and S. Sternhell. Application of Nuclear Magnetic Resonance Spectroscopy
in Organic Chemistry: International Series in Organic Chemistry. Elsevier, 2013.

V. V. Volkov and D. L. Svergun. “Uniqueness of ab Initio Shape Determination in Small-
Angle Scattering”. Journal of Applied Crystallography 36.3 (Apr. 2003), pp. 860—864.

P. Bernadd, E. Mylonas, M. V. Petoukhov, M. Blackledge, and D. L. Svergun. “Structural
Characterization of Flexible Proteins Using Small-Angle X-ray Scattering”. Journal of the
American Chemical Society 129.17 (2007). PMID: 17411046, pp. 5656—-5664.

S.J. Opella and F. M. Marassi. “Structure Determination of Membrane Proteins by NMR
Spectroscopy”. Chemical Reviews 104.8 (Aug. 2004), pp. 3587-3606.

J. Frank. “Single-Particle Imaging of Macromolecules by Cryo-Electron Microscopy”. An-
nual Review of Biophysics and Biomolecular Structure 31.1 (June 2002), pp. 303-319.

P. Unwin and R. Henderson. “Molecular Structure Determination by Electron Microscopy
of Unstained Crystalline Specimens”. Journal of Molecular Biology 94.3 (May 1975),
PP- 425—440.

E. H. Lee, J. Hsin, M. Sotomayor, G. Comellas, and K. Schulten. “Discovery Through the
Computational Microscope”. Structure 17.10 (Oct. 2009), pp. 1295-1306.

R. O. Dror, R. M. Dirks, J. Grossman, H. Xu, and D. E. Shaw. “Biomolecular Simulation: A
Computational Microscope for Molecular Biology”. Annu. Rev. Biophys. 41.1 (June 2012),
PP- 429—452.

H. M. Senn and W. Thiel. “QM/MM Methods for Biomolecular Systems”. Angewandte
Chemie International Edition 48.7 (2009), pp. 1198—1229.


http://dx.doi.org/10.1016/j.biochi.2005.03.015
http://dx.doi.org/10.1016/j.biochi.2005.03.015
http://dx.doi.org/10.1002/anie.198308161
http://dx.doi.org/10.1002/anie.198308161
http://dx.doi.org/10.1038/181662a0
http://dx.doi.org/10.1038/181662a0
http://dx.doi.org/10.1126/science.181.4096.223
http://dx.doi.org/10.1126/science.181.4096.223
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
http://dx.doi.org/10.1038/416507a
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132655
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132655
http://dx.doi.org/10.1107/s0021889803000268
http://dx.doi.org/10.1021/ja069124n
http://dx.doi.org/10.1021/ja069124n
http://dx.doi.org/10.1021/cr0304121
http://dx.doi.org/10.1146/annurev.biophys.31.082901.134202
http://dx.doi.org/10.1146/annurev.biophys.31.082901.134202
http://dx.doi.org/10.1016/0022-2836(75)90212-0
http://dx.doi.org/10.1016/0022-2836(75)90212-0
http://dx.doi.org/10.1016/j.str.2009.09.001
http://dx.doi.org/10.1146/annurev-biophys-042910-155245
http://dx.doi.org/10.1146/annurev-biophys-042910-155245
http://dx.doi.org/10.1002/anie.200802019
http://dx.doi.org/10.1002/anie.200802019

Bibliography

[34]

(35]

M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. Annalen der Physik
389.20 (1927), pp. 457-484.

L. Pauling. “The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the
Relative Electronegativity of Atoms”. Journal of the American Chemical Society 54.9 (1932),
Pp- 3570-3582.

C. M. Baker. “Polarizable Force Fields for Molecular Dynamics Simulations of
Biomolecules”. Wiley Interdisciplinary Reviews: Computational Molecular Science 5.2
(2015), pp. 241-254.

D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to Appli-

cations. Vol. 1. Elsevier (formerly published by Academic Press), 2002, pp. 1—638. ISBN:
0-12-267351-4.

S. L. Mayo, B. D. Olafson, and W. A. Goddard. “DREIDING: A Generic Force Field for
Molecular Simulations”. The Journal of Physical Chemistry 94.26 (1990), pp. 8897-8909.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C.
Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. “A Second Generation Force Field
for the Simulation of Proteins, Nucleic Acids, and Organic Molecules”. Journal of the
American Chemical Society 117.19 (1995), pp. 5179—-5197.

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. “Development and Testing of the
OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Lig-
uids”. Journal of the American Chemical Society 118.45 (1996), pp. 11225-11236.

C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren. “A Biomolecular Force
Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-
Field Parameter Sets 53A5 and 53A6”. Journal of Computational Chemistry 25.13 (2004),
pp- 1656—1676.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. “Development and
Testing of a General Amber Force Field”. Journal of Computational Chemistry 25.9 (2004),
pp- 1157-1174.

A. Pérez, 1. Marchan, D. Svozil, J. Sponer, T. E. C. III, C. A. Laughton, and M. Orozco.

“Refinement of the {fAMBER} Force Field for Nucleic Acids: Improving the Description of
o/y Conformers”. Biophysical Journal 92.11 (2007), pp. 3817-3829.

K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, and D. E.
Shaw. “Improved Side-Chain Torsion Potentials for the Amber Ffg9SB Protein Force
Field”. Proteins: Structure, Function, and Bioinformatics 78.8 (2010), pp. 1950—1958.

L. Verlet. “Computer "Experiments” on Classical Fluids. I. Thermodynamical Properties
of Lennard-Jones Molecules”. Physical Review 159.1 (1967), pp. 98—103.

H. C. Andersen. “Molecular Dynamics Simulations at Constant Pressure and/or Temper-
ature”. The Journal of Chemical Physics 72.4 (1980), p. 2384.

H.J. C.Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. “Molec-
ular Dynamics With Coupling to an External Bath”. The Journal of Chemical Physics 81

(1984), pp. 3684-3690.

137


http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1021/ja01348a011
http://dx.doi.org/10.1021/ja01348a011
http://dx.doi.org/10.1002/wcms.1215
http://dx.doi.org/10.1002/wcms.1215
http://dx.doi.org/10.1021/j100389a010
http://dx.doi.org/10.1021/ja00124a002
http://dx.doi.org/10.1021/ja00124a002
http://dx.doi.org/10.1021/ja9621760
http://dx.doi.org/10.1002/jcc.20090
http://dx.doi.org/10.1002/jcc.20090
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1529/biophysj.106.097782
http://dx.doi.org/10.1002/prot.22711
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1063/1.439486
http://dx.doi.org/10.1063/1.448118
http://dx.doi.org/10.1063/1.448118

Bibliography

[46]

[47]

(48]

[49]

138

S.Nosé. “A Unified Formulation of the Constant Temperature Molecular Dynamics Meth-
ods”. The Journal of Chemical Physics 81.1 (1984), pp. 511-519.

G. Bussi, D. Donadio, and M. Parrinello. “Canonical Sampling Through Velocity Rescal-
ing” The Journal of Chemical Physics 126.1 (Jan. 2007), pp. 014101-7.

M. Parrinello and A. Rahman. “Polymorphic Transitions in Single Crystals: A New Molec-
ular Dynamics Method” Journal of Applied Physics 52 (1981), pp. 7182—7190.

M. Luitz, R. Bomblies, K. Ostermeir, and M. Zacharias. “Exploring biomolecular dynamics
and interactions using advanced sampling methods”. Journal of Physics: Condensed Matter
27.32 (July 2015), p. 323101.

M. Karplus and J. A. McCammon. “Molecular Dynamics Simulations of Biomolecules”.
Nature Structural Biology 9.9 (Sept. 2002), pp. 646—652.

S. Riniker, J. R. Allison, and W. F. van Gunsteren. “On Developing Coarse-Grained Mod-
els for Biomolecular Simulation: A Review”. Physical Chemistry Chemical Physics 14.36
(2012), p. 12423.

M. G. Saunders and G. A. Voth. “Coarse-Graining Methods for Computational Biology”.
Annual Review of Biophysics 42.1 (May 2013), pp. 73-93.

S. Keskin. “Gas Adsorption and Diffusion in a Highly CO2 Selective Metal-Organic
Framework: Molecular Simulations”. Molecular Simulation 39.1 (Jan. 2013), pp. 14—24.

K. Tai. “Conformational Sampling for the Impatient”. Biophysical Chemistry 107.3 (Feb.
2004), pp. 213-220.

K. Ostermeir and M. Zacharias. “Advanced Replica-Exchange Sampling to Study the Flex-
ibility and Plasticity of Peptides and Proteins”. Biochimica et Biophysica Acta (BBA) - Pro-
teins and Proteomics 1834.5 (May 2013), pp. 847-853.

C. Abrams and G. Bussi. “Enhanced Sampling in Molecular Dynamics Using Metadynam-
ics, Replica-Exchange, and Temperature-Acceleration”. Entropy 16.1 (Dec. 2013), pp. 163—
199.

F. Fogolari, A. Brigo, and H. Molinari. “The Poisson-Boltzmann Equation for Biomolecular
Electrostatics: A Tool for Structural Biology”. Journal of Molecular Recognition 15.6 (2002),
Pp- 377-392.

D. Bashford and D. A. Case. “Generalized Born Models of Macromolecular Solvation Ef-
fects”. Annual Review of Physical Chemistry 51.1 (Oct. 2000), pp. 129—-152.

X. Daura, B. Jaun, D. Seebach, W. F. van Gunsteren, and A. E. Mark. “Reversible Peptide
Folding in Solution by Molecular Dynamics Simulation”. Journal of Molecular Biology
280.5 (July 1998), pp. 925-932.

K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw. “How Fast-Folding Proteins Fold”.
Science 334.6055 (Oct. 2011), pp. 517-520.

S.Piana, K. Lindorff-Larsen, and D. E. Shaw. “Protein Folding Kinetics and Thermodynam-
ics From Atomistic Simulation”. Proceedings of the National Academy of Sciences 109.44
(July 2012), pp. 17845-17850.


http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1088/0953-8984/27/32/323101
http://dx.doi.org/10.1088/0953-8984/27/32/323101
http://dx.doi.org/10.1038/nsb0902-646
http://dx.doi.org/10.1039/c2cp40934h
http://dx.doi.org/10.1039/c2cp40934h
http://dx.doi.org/10.1146/annurev-biophys-083012-130348
http://dx.doi.org/10.1080/08927022.2012.700485
http://dx.doi.org/10.1016/j.bpc.2003.09.010
http://dx.doi.org/10.1016/j.bpc.2003.09.010
http://dx.doi.org/10.1016/j.bbapap.2012.12.016
http://dx.doi.org/10.1016/j.bbapap.2012.12.016
http://dx.doi.org/10.3390/e16010163
http://dx.doi.org/10.3390/e16010163
http://dx.doi.org/10.1002/jmr.577
http://dx.doi.org/10.1002/jmr.577
http://dx.doi.org/10.1146/annurev.physchem.51.1.129
http://dx.doi.org/10.1006/jmbi.1998.1885
http://dx.doi.org/10.1006/jmbi.1998.1885
http://dx.doi.org/10.1126/science.1208351
http://dx.doi.org/10.1073/pnas.1201811109
http://dx.doi.org/10.1073/pnas.1201811109

Bibliography

[63]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing”.
Science 220.4598 (May 1983), pp. 671-680.

P.J. M. van Laarhoven and E. H. L. Aarts. “Simulated Annealing”. Simulated Annealing:
Theory and Applications (1987), pp. 7-15.

A. T. Brunger, P. D. Adams, and L. M. Rice. “Annealing in Crystallography: A Powerful
Optimization Tool”. Progress in Biophysics and Molecular Biology 72.2 (Aug. 1999), pp. 135—
155.

J. Kostrowicki and H. A. Scheraga. “Application of the Diffusion Equation Method for
Global Optimization to Oligopeptides”. Journal of Physical Chemistry 96.18 (Sept. 1992),
PP- 74427449

T. Huber, A. E. Torda, and W. F. van Gunsteren. “Structure Optimization Combining Soft-
Core Interaction Functions, The Diffusion Equation Method, and Molecular Dynamics”.
The Journal of Physical Chemistry A 101.33 (Aug. 1997), pp. 5926—5930.

K. Tappura, M. Lahtela-Kakkonen, and O. Teleman. “A New Soft-Core Potential Func-
tion for Molecular Dynamics Applied to the Prediction of Protein Loop Conformations”.
Journal of Computational Chemistry 21.5 (2000), pp. 388—397.

R. Riemann and M. Zacharias. “Reversible Scaling of Dihedral Angle Barriers During
Molecular Dynamics to Improve Structure Prediction of Cyclic Peptides”. Journal of Pep-
tide Research 63.4 (Apr. 2004), pp. 354—364.

R. N. Riemann and M. Zacharias. “Refinement of Protein Cores and Protein-Peptide Inter-
faces Using a Potential Scaling Approach”. Protein Engineering Design and Selection 18.10
(Aug. 2005), pp. 465-476.

O. F. Lange, L. V. Schifer, and H. Grubmiiller. “Flooding in GROMACS: Accelerated Bar-
rier Crossings in Molecular Dynamics”. Journal of Computational Chemistry 27.14 (2006),
pp- 1693—1702.

A. Laio and M. Parrinello. “Escaping Free-Energy Minima”. Proceedings of the National
Academy of Sciences 99.20 (Sept. 2002), pp. 12562—12566.

C. Simmerling, J. L. Miller, and P. A. Kollman. “Combined Locally Enhanced Sampling and
Particle Mesh Ewald as a Strategy To Locate the Experimental Structure of a Nonhelical
Nucleic Acid”. Journal of the American Chemical Society 120.29 (July 1998), pp. 7149-7155.

H.-L. Liu and J.-P. Hsu. “Recent Developments in Structural Proteomics for Protein Struc-
ture Determination”. Proteomics 5.8 (May 2005), pp. 2056—2068.

J. L. S. Milne, M. J. Borgnia, A. Bartesaghi, E. E. H. Tran, L. A. Earl, D. M. Schauder, J.
Lengyel, J. Pierson, A. Patwardhan, and S. Subramaniam. “Cryo-Electron Microscopy - A
Primer for the Non-Microscopist™. FEBS Journal 280.1 (Dec. 2012), pp. 28—45.

C. E. Blanchet and D. I. Svergun. “Small-Angle X-Ray Scattering on Biological Macro-
molecules and Nanocomposites in Solution”. Annual Review of Physical Chemistry 64.1
(Apr. 2013), pp. 37-54.

R. Roy, S. Hohng, and T. Ha. “A Practical Guide to Single-Molecule FRET”. Nature Methods
5.6 (June 2008), pp. 507-516.

139


http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/978-94-015-7744-1_2
http://dx.doi.org/10.1007/978-94-015-7744-1_2
http://dx.doi.org/10.1016/s0079-6107(99)00004-8
http://dx.doi.org/10.1016/s0079-6107(99)00004-8
http://dx.doi.org/10.1021/j100197a057
http://dx.doi.org/10.1021/j100197a057
http://dx.doi.org/10.1021/jp9708916
http://dx.doi.org/10.1002/(SICI)1096-987X(20000415)21:5<388::AID-JCC5>3.0.CO;2-M
http://dx.doi.org/10.1111/j.1399-3011.2004.00110.x
http://dx.doi.org/10.1111/j.1399-3011.2004.00110.x
http://dx.doi.org/10.1093/protein/gzi052
http://dx.doi.org/10.1093/protein/gzi052
http://dx.doi.org/10.1002/jcc.20473
http://dx.doi.org/10.1002/jcc.20473
http://dx.doi.org/10.1073/pnas.202427399
http://dx.doi.org/10.1073/pnas.202427399
http://dx.doi.org/10.1021/ja9727023
http://dx.doi.org/10.1002/pmic.200401104
http://dx.doi.org/10.1111/febs.12078
http://dx.doi.org/10.1146/annurev-physchem-040412-110132
http://dx.doi.org/10.1146/annurev-physchem-040412-110132
http://dx.doi.org/10.1038/nmeth.1208
http://dx.doi.org/10.1038/nmeth.1208

Bibliography

[77]

(86]

(87]

140

E. Sisamakis, A. Valeri, S. Kalinin, P. J. Rothwell, and C. A. Seidel. “Accurate Single-
Molecule FRET Studies Using Multiparameter Fluorescence Detection”. Single Molecule
Tools, Part B:Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods

(2010), pp. 455-514.

B. John. “Comparative Protein Structure Modeling by Iterative Alignment, Model Build-
ing and Model Assessment”. Nucleic Acids Research 31.14 (July 2003), pp. 3982—3992.

A. Fiser. “Template-Based Protein Structure Modeling”. Computational Biology (2010),
pp- 73794

L. Maragliano and E. Vanden-Eijnden. “A Temperature Accelerated Method for Sampling

Free Energy and Determining Reaction Pathways in Rare Events Simulations”. Chemical
Physics Letters 426.1-3 (July 2006), pp. 168—175.

E. Marinari and G. Parisi. “Simulated Tempering: A New Monte Carlo Scheme”. Euro-
physics Letters (EPL) 19.6 (July 1992), pp. 451-458.

S. Park and V. S. Pande. “Choosing Weights for Simulated Tempering”. Physical Review E
76 (1 July 2007), p. 016703.

P. H. Nguyen, Y. Okamoto, and P. Derreumaux. “Communication: Simulated Tempering

With Fast on-the-fly Weight Determination”. Journal of Chemical Physics 138.6 (2013),
p- 061102.

D. Hamelberg, J. Mongan, and J. A. McCammon. “Accelerated Molecular Dynamics:
A Promising and Efficient Simulation Method for Biomolecules”. Journal of Chemical
Physics 120.24 (2004), p. 11919.

G. Torrie and J. Valleau. “Nonphysical Sampling Distributions in Monte Carlo Free-
Energy Estimation: Umbrella Sampling”. Journal of Computational Physics 23.2 (Feb.
1977), pp- 187-199.

J. Kéastner. “Umbrella Sampling”. WIREs Computational Molecular Science 1.6 (May 2011),
PP- 932—942.

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman. “The
Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. L.
The Method”. Journal of Computational Chemistry 13.8 (Oct. 1992), pp. 1011—-1021.

H. Grubmiiller. “Predicting Slow Structural Transitions in Macromolecular Systems: Con-
formational Flooding”. Physical Review E 52.3 (Sept. 1995), pp. 2893-2906.

T. Huber, A. E. Torda, and W. F. van Gunsteren. “Local Elevation: A Method for Improving
the Searching Properties of Molecular Dynamics Simulation”. ¥ Computer-Aided Mol Des
8.6 (Dec. 1994), pp. 695-708.

A. Laio, A. Rodriguez-Fortea, F. L. Gervasio, M. Ceccarelli, and M. Parrinello. “Assess-
ing the Accuracy of Metadynamics”. Journal of Physical Chemistry B 109.14 (Apr. 2005),
pp. 6714-6721.

G. Bussi, A. Laio, and M. Parrinello. “Equilibrium Free Energies from Nonequilibrium

Metadynamics”. Physical Review Letters 96.9 (Mar. 2006).

A. Barducci, G. Bussi, and M. Parrinello. “Well-Tempered Metadynamics: A Smoothly
Converging and Tunable Free-Energy Method”. Physical Review Letters 100.2 (Jan. 2008).


http://dx.doi.org/10.1016/s0076-6879(10)75018-7
http://dx.doi.org/10.1016/s0076-6879(10)75018-7
http://dx.doi.org/10.1016/s0076-6879(10)75018-7
http://dx.doi.org/10.1093/nar/gkg460
http://dx.doi.org/10.1007/978-1-60761-842-3_6
http://dx.doi.org/10.1007/978-1-60761-842-3_6
http://dx.doi.org/10.1016/j.cplett.2006.05.062
http://dx.doi.org/10.1016/j.cplett.2006.05.062
http://dx.doi.org/10.1209/0295-5075/19/6/002
http://dx.doi.org/10.1209/0295-5075/19/6/002
http://dx.doi.org/10.1103/PhysRevE.76.016703
http://dx.doi.org/10.1103/PhysRevE.76.016703
http://dx.doi.org/10.1063/1.4792046
http://dx.doi.org/10.1063/1.4792046
http://dx.doi.org/10.1063/1.1755656
http://dx.doi.org/10.1063/1.1755656
http://dx.doi.org/10.1016/0021-9991(77)90121-8
http://dx.doi.org/10.1016/0021-9991(77)90121-8
http://dx.doi.org/10.1002/wcms.66
http://dx.doi.org/10.1002/wcms.66
http://dx.doi.org/10.1002/jcc.540130812
http://dx.doi.org/10.1103/physreve.52.2893
http://dx.doi.org/10.1007/bf00124016
http://dx.doi.org/10.1007/bf00124016
http://dx.doi.org/10.1021/jp045424k
http://dx.doi.org/10.1021/jp045424k
http://dx.doi.org/10.1103/physrevlett.96.090601
http://dx.doi.org/10.1103/physrevlett.100.020603

Bibliography

[96]

[97]

(98]
[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and M. Parrinello. “Efficient Reconstruc-
tion of Complex Free Energy Landscapes by Multiple Walkers Metadynamics”. Journal of
Physical Chemistry B 110.8 (Mar. 2006), pp. 3533-3539.

E. Darve, D. Rodriguez-Gémez, and A. Pohorille. “Adaptive Biasing Force Method for
Scalar and Vector Free Energy Calculations”. Journal of Chemical Physics 128.14 (2008),
p- 144120.

M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio,
F. Marinelli, F. Pietrucci, R. A. Broglia, and et al. “PLUMED: A Portable Plugin for
Free-Energy Calculations With Molecular Dynamics”. Computer Physics Communications
180.10 (Oct. 2009), pp. 1961-1972.

B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. “GROMACS 4: Algorithms for
Highly Efficient, Load-Balanced, and Scalable Molecular Simulation”. Journal of Chemical
Theory and Computation 4.3 (Mar. 2008), pp. 435-447.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
“CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Cal-
culations”. Journal of Computational Chemistry 4.2 (1983), pp. 187-217.

D. Case et al. Amber 13. University of California, San Francisco, 2012.

G. Fiorin, M. L. Klein, and J. Hénin. “Using Collective Variables to Drive Molecular Dy-
namics Simulations”. Molecular Physics 111.22-23 (Dec. 2013), pp. 3345-3362.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D.
Skeel, L. Kalé, and K. Schulten. “Scalable Molecular Dynamics With NAMD”. Journal of
Computational Chemistry 26.16 (2005), pp. 1781-1802.

S. Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics”. Journal of
Computational Physics 117.1 (Mar. 1995), pp. 1—-19.

R. H. Swendsen and J.-S. Wang. “Replica Monte Carlo Simulation of Spin-Glasses”. Phys-
ical Review Letters 57.21 (Nov. 1986), pp. 2607—2609.

T. Okabe, M. Kawata, Y. Okamoto, and M. Mikami. “Replica-Exchange Monte Carlo
Method for the Isobaric-Isothermal Ensemble”. Chemical Physics Letters 335.5-6 (Mar.
2001), pp. 435-439.

U. H. Hansmann. “Parallel Tempering Algorithm for Conformational Studies of Biological

Molecules”. Chemical Physics Letters 281.1-3 (Dec. 1997), pp. 140—150.

Y. Sugita and Y. Okamoto. “Replica-Exchange Molecular Dynamics Method for Protein
Folding”. Chemical Physics Letters 314.1-2 (Nov. 1999), pp. 141-151.

Y. Okamoto. “Generalized-Ensemble Algorithms: Enhanced Sampling Techniques for
Monte Carlo and Molecular Dynamics Simulations”. Journal of Molecular Graphics and
Modelling 22.5 (May 2004), pp. 425-439.

C. Predescu, M. Predescu, and C. V. Ciobanu. “On the Efficiency of Exchange in Parallel
Tempering Monte Carlo Simulations”. The Journal of Physical Chemistry B 109.9 (2005).
PMID: 16851481, pp. 4189-4196.

141


http://dx.doi.org/10.1021/jp054359r
http://dx.doi.org/10.1021/jp054359r
http://dx.doi.org/10.1063/1.2829861
http://dx.doi.org/10.1063/1.2829861
http://dx.doi.org/10.1016/j.cpc.2009.05.011
http://dx.doi.org/10.1016/j.cpc.2009.05.011
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1002/jcc.540040211
http://dx.doi.org/10.1080/00268976.2013.813594
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1103/physrevlett.57.2607
http://dx.doi.org/10.1103/physrevlett.57.2607
http://dx.doi.org/10.1016/s0009-2614(01)00055-0
http://dx.doi.org/10.1016/s0009-2614(01)00055-0
http://dx.doi.org/10.1016/s0009-2614(97)01198-6
http://dx.doi.org/10.1016/s0009-2614(99)01123-9
http://dx.doi.org/10.1016/j.jmgm.2003.12.009
http://dx.doi.org/10.1016/j.jmgm.2003.12.009
http://dx.doi.org/10.1021/jp045073+
http://dx.doi.org/10.1021/jp045073+

Bibliography

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

142

D. M. Zuckerman and E. Lyman. “A Second Look at Canonical Sampling of Biomolecules
Using Replica Exchange Simulation”. Journal of Chemical Theory and Computation 2.4
(July 2006), pp. 1200-1202.

J. Machta. “Strengths and Weaknesses of Parallel Tempering”. Physical Review E 80.5 (Nov.
2009).

H. Nymeyer. “How Efficient Is Replica Exchange Molecular Dynamics? An Analytic Ap-
proach”. Journal of Chemical Theory and Computation 4.4 (Apr. 2008), pp. 626—636.

R. Denschlag, M. Lingenheil, and P. Tavan. “Efficiency Reduction and Pseudo-
Convergence in Replica Exchange Sampling of Peptide Folding—Unfolding Equilibria”.
Chemical Physics Letters 458.1-3 (June 2008), pp. 244-248.

W. Nadler, J. H. Meinke, and U. H. E. Hansmann. “Folding Proteins by First-Passage-
Times-Optimized Replica Exchange”. Physical Review E 78.6 (Dec. 2008).

D. Gront and A. Kolinski. “Efficient Scheme for Optimization of Parallel Tempering Monte
Carlo Method”. Journal of Physics: Condensed Matter 19.3 (Jan. 2007), p. 036225.

M. J. Abraham and J. E. Gready. “Ensuring Mixing Efficiency of Replica-Exchange Molec-
ular Dynamics Simulations”. Journal of Chemical Theory and Computation 4.7 (July 2008),
pp- 1119—1128.

S. Trebst, M. Troyer, and U. H. E. Hansmann. “Optimized Parallel Tempering Simulations
of Proteins”. Journal of Chemical Physics 124.17 (2006), p. 174903.

W. Nadler and U. H. E. Hansmann. “Optimized Explicit-Solvent Replica Exchange Molec-
ular Dynamics from Scratch” Journal of Physical Chemistry B 112.34 (Aug. 2008),
pp- 10386—10387.

F. Calvo. “All-Exchanges Parallel Tempering”. Journal of Chemical Physics 123.12 (2005),
p- 124106.

P. Brenner, C. R. Sweet, D. VonHandorf, and J. A. Izaguirre. “Accelerating the Replica
Exchange Method Through an Efficient All-Pairs Exchange”. Journal of Chemical Physics
126.7 (2007), p. 074103.

G. F. Signorini, E. Giovannelli, Y. G. Spill, M. Nilges, and R. Chelli. “Convective Replica-
Exchange in Ergodic Regimes”. Journal of Chemical Theory and Computation 10.3 (Mar.
2014), pp- 953-958.

Y. G. Spill, G. Bouvier, and M. Nilges. “A Convective Replica-Exchange Method for Sam-

pling New Energy Basins”. Journal of Computational Chemistry 34.2 (Sept. 2012), pp. 132—
140.

J. D. Chodera and M. R. Shirts. “Replica Exchange and Expanded Ensemble Simulations as
Gibbs Sampling: Simple Improvements for Enhanced Mixing”. Journal of Chemical Physics
135.19 (2011), p. 194110.

D. Sindhikara, Y. Meng, and A. E. Roitberg. “Exchange Frequency in Replica Exchange
Molecular Dynamics”. Journal of Chemical Physics 128.2 (2008), p. 024103.

D. J. Sindhikara, D. J. Emerson, and A. E. Roitberg. “Exchange Often and Properly in
Replica Exchange Molecular Dynamics”. Journal of Chemical Theory and Computation 6.9
(Sept. 2010), pp. 2804-2808.


http://dx.doi.org/10.1021/ct0600464
http://dx.doi.org/10.1021/ct0600464
http://dx.doi.org/10.1103/physreve.80.056706
http://dx.doi.org/10.1103/physreve.80.056706
http://dx.doi.org/10.1021/ct7003337
http://dx.doi.org/10.1016/j.cplett.2008.04.114
http://dx.doi.org/10.1103/physreve.78.061905
http://dx.doi.org/10.1088/0953-8984/19/3/036225
http://dx.doi.org/10.1021/ct800016r
http://dx.doi.org/10.1021/ct800016r
http://dx.doi.org/10.1063/1.2186639
http://dx.doi.org/10.1021/jp805085y
http://dx.doi.org/10.1021/jp805085y
http://dx.doi.org/10.1063/1.2036969
http://dx.doi.org/10.1063/1.2036969
http://dx.doi.org/10.1063/1.2436872
http://dx.doi.org/10.1063/1.2436872
http://dx.doi.org/10.1021/ct401033g
http://dx.doi.org/10.1021/ct401033g
http://dx.doi.org/10.1002/jcc.23113
http://dx.doi.org/10.1002/jcc.23113
http://dx.doi.org/10.1063/1.3660669
http://dx.doi.org/10.1063/1.3660669
http://dx.doi.org/10.1063/1.2816560
http://dx.doi.org/10.1021/ct100281c
http://dx.doi.org/10.1021/ct100281c

Bibliography

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[137]

[138]

N.-V. Buchete and G. Hummer. “Peptide Folding Kinetics From Replica Exchange Molec-
ular Dynamics”. Physical Review E 77.3 (Mar. 2008).

X. Periole and A. E. Mark. “Convergence and Sampling Efficiency in Replica Exchange
Simulations of Peptide Folding in Explicit Solvent”. Journal of Chemical Physics 126.1
(2007), p. 014903.

E. Rosta and G. Hummer. “Error and Efficiency of Simulated Tempering Simulations”.
Journal of Chemical Physics 132.3 (2010), p. 034102.

E. Rosta, N.-V. Buchete, and G. Hummer. “Thermostat Artifacts in Replica Exchange
Molecular Dynamics Simulations”. Journal of Chemical Theory and Computation 5.5 (May

2009), pp. 1393-1399.

M. Lingenheil, R. Denschlag, G. Mathias, and P. Tavan. “Efficiency of Exchange Schemes
in Replica Exchange”. Chemical Physics Letters 478.1-3 (Aug. 2009), pp. 80—84.

A. Onufriev, D. Bashford, and D. A. Case. “Exploring Protein Native States and Large-Scale
Conformational Changes With a Modified Generalized Born Model”. Proteins: Structure,
Function, and Bioinformatics 55.2 (Mar. 2004), pp. 383-394.

Y. Chebaro, X. Dong, R. Laghaei, P. Derreumaux, and N. Mousseau. “Replica Exchange
Molecular Dynamics Simulations of Coarse-Grained Proteins in Implicit Solvent”. Journal
of Physical Chemistry B 113.1 (Jan. 2009), pp. 267-274.

H.Nymeyer and A. E. Garcia. “Simulation of the Folding Equilibrium of -Helical Peptides:
A Comparison of the Generalized Born Approximation With Explicit Solvent”. Proceed-
ings of the National Academy of Sciences 100.24 (Nov. 2003), pp. 13934—-13939.

R. Zhou. “Free Energy Landscape of Protein Folding in Water: Explicit vs. Implicit Sol-
vent”. Proteins 53.2 (Sept. 2003), pp. 148—161.

W. Xu, T. Lai, Y. Yang, and Y. Mu. “Reversible Folding Simulation by Hybrid Hamiltonian
Replica Exchange”. Journal of Chemical Physics 128.17 (2008), p. 175105.

X. Cheng, G. Cui, V. Hornak, and C. Simmerling. “Modified Replica Exchange Simulation
Methods for Local Structure Refinement”. Journal of Physical Chemistry B 109.16 (Apr.
2005), pp. 8220-8230.

M. B. Kubitzki and B. L. de Groot. “Molecular Dynamics Simulations Using Temperature-
Enhanced Essential Dynamics Replica Exchange”. Biophysical Journal 92.12 (June 2007),
Pp- 4262—4270.

X. Wu, M. Hodoscek, and B. R. Brooks. “Replica Exchanging Self-Guided Langevin Dy-
namics for Efficient and Accurate Conformational Sampling”. Journal of Chemical Physics
137.4 (2012), p. 044106.

P. Liu, B. Kim, R. A. Friesner, and B. J. Berne. “Replica Exchange With Solute Tempering:
A Method for Sampling Biological Systems in Explicit Water”. Proceedings of the National
Academy of Sciences 102.39 (Sept. 2005), pp. 13749—13754.

A. Okur, D. R. Roe, G. Cui, V. Hornak, and C. Simmerling. “Improving Convergence of
Replica-Exchange Simulations through Coupling to a High-Temperature Structure Reser-
voir”. Journal of Chemical Theory and Computation 3.2 (Mar. 2007), pp. 557-568.

143


http://dx.doi.org/10.1103/physreve.77.030902
http://dx.doi.org/10.1063/1.2404954
http://dx.doi.org/10.1063/1.2404954
http://dx.doi.org/10.1063/1.3290767
http://dx.doi.org/10.1021/ct800557h
http://dx.doi.org/10.1021/ct800557h
http://dx.doi.org/10.1016/j.cplett.2009.07.039
http://dx.doi.org/10.1002/prot.20033
http://dx.doi.org/10.1002/prot.20033
http://dx.doi.org/10.1021/jp805309e
http://dx.doi.org/10.1021/jp805309e
http://dx.doi.org/10.1073/pnas.2232868100
http://dx.doi.org/10.1073/pnas.2232868100
http://dx.doi.org/10.1002/prot.10483
http://dx.doi.org/10.1063/1.2911693
http://dx.doi.org/10.1021/jp045437y
http://dx.doi.org/10.1021/jp045437y
http://dx.doi.org/10.1529/biophysj.106.103101
http://dx.doi.org/10.1529/biophysj.106.103101
http://dx.doi.org/10.1063/1.4737094
http://dx.doi.org/10.1063/1.4737094
http://dx.doi.org/10.1073/pnas.0506346102
http://dx.doi.org/10.1073/pnas.0506346102
http://dx.doi.org/10.1021/ct600263e

Bibliography

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[149]

[150]

[151]

[152]

144

J. Z. Ruscio, N. L. Fawzi, and T. Head-Gordon. “How Hot? Systematic Convergence of the
Replica Exchange Method Using Multiple Reservoirs”. Journal of Computational Chem-
istry (2009), NA-NA.

A. E. Roitberg, A. Okur, and C. Simmerling. “Coupling of Replica Exchange Simulations
to a Non-Boltzmann Structure Reservoir”. Journal of Physical Chemistry B 111.10 (Mar.
2007), pp- 2415—2418.

S. Kannan and M. Zacharias. “Simulated Annealing Coupled Replica Exchange Molecular
Dynamics — An Efficient Conformational Sampling Method”. Journal of Structural Biology
166.3 (June 2009), pp. 288—294.

W. Zheng, M. Andrec, E. Gallicchio, and R. M. Levy. “Simple Continuous and Discrete
Models for Simulating Replica Exchange Simulations of Protein Folding”. The Journal of
Physical Chemistry B 112.19 (2008). PMID: 18251533, pp. 6083—6093.

W. Zheng, M. Andrec, E. Gallicchio, and R. M. Levy. “Simulating Replica Exchange Sim-
ulations of Protein Folding With a Kinetic Network Model”. Proceedings of the National
Academy of Sciences 104.39 (Sept. 2007), pp. 15340—15345.

H. Fukunishi, O. Watanabe, and S. Takada. “On the Hamiltonian Replica Exchange
Method for Efficient Sampling of Biomolecular Systems: Application to Protein Struc-
ture Prediction”. Journal of Chemical Physics 116.20 (2002), p. 9058.

R. Affentranger, I. Tavernelli, and E. E. Di Iorio. “A Novel Hamiltonian Replica Exchange
MD Protocol to Enhance Protein Conformational Space Sampling”. Journal of Chemical
Theory and Computation 2.2 (Mar. 2006), pp. 217-228.

J. Hritz and C. Oostenbrink. “Hamiltonian Replica Exchange Molecular Dynamics Using
Soft-Core Interactions”. Journal of Chemical Physics 128.14 (2008), p. 144121.

X. Huang, M. Hagen, B. Kim, R. A. Friesner, R. Zhou, and B. J. Berne. “Replica Exchange
with Solute Tempering: Efficiency in Large Scale Systems”. Journal of Physical Chemistry
B 111.19 (May 2007), pp. 5405—5410.

L. Wang, R. A. Friesner, and B. J. Berne. “Replica Exchange with Solute Scaling: A More
Efficient Version of Replica Exchange with Solute Tempering (REST2)”. Journal of Physical
Chemistry B 115.30 (Aug. 2011), pp. 9431-9438.

P. Liu, X. Huang, R. Zhou, and B. J. Berne. “Hydrophobic Aided Replica Exchange: an
Efficient Algorithm for Protein Folding in Explicit Solvent”. Journal of Physical Chemistry
B 110.38 (Sept. 2006), pp. 19018-19022.

S. L. C. Moors, S. Michielssens, and A. Ceulemans. “Improved Replica Exchange Method
for Native-State Protein Sampling”. Journal of Chemical Theory and Computation 7.1 (Jan.
2011), pp. 231-237.

S. G. Itoh, i. Okumura, and Y. Okamoto. “Replica-Exchange Method in Van Der Waals Ra-
dius Space: Overcoming Steric Restrictions for Biomolecules”. Journal of Chemical Physics
132.13 (2010), p. 134105.

S. Kannan and M. Zacharias. “Enhanced Sampling of Peptide and Protein Conformations

Using Replica Exchange Simulations With a Peptide Backbone Biasing-Potential”. Pro-
teins: Structure, Function, and Bioinformatics 66.3 (Nov. 2006), pp. 697—706.


http://dx.doi.org/10.1002/jcc.21355
http://dx.doi.org/10.1002/jcc.21355
http://dx.doi.org/10.1021/jp068335b
http://dx.doi.org/10.1021/jp068335b
http://dx.doi.org/10.1016/j.jsb.2009.02.015
http://dx.doi.org/10.1016/j.jsb.2009.02.015
http://dx.doi.org/10.1021/jp076377+
http://dx.doi.org/10.1021/jp076377+
http://dx.doi.org/10.1073/pnas.0704418104
http://dx.doi.org/10.1073/pnas.0704418104
http://dx.doi.org/10.1063/1.1472510
http://dx.doi.org/10.1021/ct050250b
http://dx.doi.org/10.1021/ct050250b
http://dx.doi.org/10.1063/1.2888998
http://dx.doi.org/10.1021/jp068826w
http://dx.doi.org/10.1021/jp068826w
http://dx.doi.org/10.1021/jp204407d
http://dx.doi.org/10.1021/jp204407d
http://dx.doi.org/10.1021/jp060365r
http://dx.doi.org/10.1021/jp060365r
http://dx.doi.org/10.1021/ct100493v
http://dx.doi.org/10.1021/ct100493v
http://dx.doi.org/10.1063/1.3372767
http://dx.doi.org/10.1063/1.3372767
http://dx.doi.org/10.1002/prot.21258
http://dx.doi.org/10.1002/prot.21258

Bibliography

[153]

[154]

[155]

[156]

[157]

[159]

[160]

[161]

[162]

[164]

[165]

[166]

S. Kannan and M. Zacharias. “Folding Simulations of Trp-Cage Mini Protein in Explicit
Solvent Using Biasing Potential Replica-Exchange Molecular Dynamics Simulations”.
Proteins: Structure, Function, and Bioinformatics 76.2 (Aug. 2009), pp. 448—460.

S.Kannan and M. Zacharias. “Application of Biasing-Potential Replica-Exchange Simula-
tions for Loop Modeling and Refinement of Proteins in Explicit Solvent”. Proteins: Struc-
ture, Function, and Bioinformatics 78.13 (Aug. 2010), pp. 2809—2819.

Y. Mu. “Dissociation Aided and Side Chain Sampling Enhanced Hamiltonian Replica Ex-
change”. Journal of Chemical Physics 130.16 (2009), p. 164107.

J. Curuksu and M. Zacharias. “Enhanced Conformational Sampling of Nucleic Acids by a
New Hamiltonian Replica Exchange Molecular Dynamics Approach”. Journal of Chemical
Physics 130.10 (2009), p. 104110.

M. Kara and M. Zacharias. “Influence of 8-Oxoguanosine on the Fine Structure of DNA
Studied with Biasing-Potential Replica Exchange Simulations”. Biophysical Journal 104.5
(Mar. 2013), pp. 1089-1097.

K. Ostermeir and M. Zacharias. “Hamiltonian Replica-Exchange Simulations With Adap-
tive Biasing of Peptide Backbone and Side Chain Dihedral Angles”. Journal of Computa-
tional Chemistry 35.2 (Oct. 2013), pp. 150—158.

S. K. Mishra, M. Kara, M. Zacharias, and J. Koca. “Enhanced Conformational Sampling
of Carbohydrates by Hamiltonian Replica-Exchange Simulation”. Glycobiology 24.1 (Oct.
2013), pp. 70—-84.

D. S. Patel, R. Pendrill, S. S. Mallajosyula, G. Widmalm, and A. D. MacKerell. “Confor-
mational Properties of a- or B-(1—6)-Linked Oligosaccharides: Hamiltonian Replica Ex-
change MD Simulations and NMR Experiments”. Journal of Physical Chemistry B 118.11
(Mar. 2014), pp. 2851-2871.

E. Lyman and D. M. Zuckerman. “Resolution Exchange Simulation with Incremental
Coarsening”. Journal of Chemical Theory and Computation 2.3 (May 2006), pp. 656—666.

M. Zacharias. “Combining Elastic Network Analysis and Molecular Dynamics Simula-
tions by Hamiltonian Replica Exchange”. Journal of Chemical Theory and Computation
4.3 (Mar. 2008), pp. 477-487.

K. Ostermeir and M. Zacharias. “Hamiltonian Replica Exchange Combined With Elastic

Network Analysis to Enhance Global Domain Motions in Atomistic Molecular Dynamics
Simulations”. Proteins: Structure, Function, and Bioinformatics 82.12 (Oct. 2014), pp. 3410-

3419.

S. Piana and A. Laio. “A Bias-Exchange Approach to Protein Folding”. Journal of Physical
Chemistry B 111.17 (May 2007), pp. 4553—4559.

P. Cossio, F. Marinelli, A. Laio, and F. Pietrucci. “Optimizing the Performance of Bias-

Exchange Metadynamics: Folding a 48-Residue LysM Domain Using a Coarse-Grained
Model”. Journal of Physical Chemistry B 114.9 (Mar. 2010), pp. 3259—3265.

K. Ostermeir and M. Zacharias. “Advanced Replica-Exchange Sampling to Study the Flex-
ibility and Plasticity of Peptides and Proteins”. Biochimica et Biophysica Acta 1834.5 (2013),

pp- 847-853.

145


http://dx.doi.org/10.1002/prot.22359
http://dx.doi.org/10.1002/prot.22796
http://dx.doi.org/10.1002/prot.22796
http://dx.doi.org/10.1063/1.3120483
http://dx.doi.org/10.1063/1.3086832
http://dx.doi.org/10.1063/1.3086832
http://dx.doi.org/10.1016/j.bpj.2013.01.032
http://dx.doi.org/10.1016/j.bpj.2013.01.032
http://dx.doi.org/10.1002/jcc.23476
http://dx.doi.org/10.1002/jcc.23476
http://dx.doi.org/10.1093/glycob/cwt093
http://dx.doi.org/10.1093/glycob/cwt093
http://dx.doi.org/10.1021/jp412051v
http://dx.doi.org/10.1021/jp412051v
http://dx.doi.org/10.1021/ct050337x
http://dx.doi.org/10.1021/ct7002258
http://dx.doi.org/10.1021/ct7002258
http://dx.doi.org/10.1002/prot.24695
http://dx.doi.org/10.1002/prot.24695
http://dx.doi.org/10.1021/jp067873l
http://dx.doi.org/10.1021/jp067873l
http://dx.doi.org/10.1021/jp907464b
http://dx.doi.org/10.1016/j.bbapap.2012.12.016
http://dx.doi.org/10.1016/j.bbapap.2012.12.016

Bibliography

[167]

[168]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[179]

[180]

146

C.J. Woods, J. W. Essex, and M. A. King. “The Development of Replica-Exchange-Based
Free-Energy Methods”. Journal of Physical Chemistry B 107.49 (Dec. 2003), pp. 13703-
13710.

I. V. Khavrutskii and A. Wallqvist. “Improved Binding Free Energy Predictions from

Single-Reference Thermodynamic Integration Augmented with Hamiltonian Replica Ex-
change”. Journal of Chemical Theory and Computation 7.9 (Sept. 2011), pp. 3001-3011.

D. K. Shenfeld, H. Xu, M. P. Eastwood, R. O. Dror, and D. E. Shaw. “Minimizing Thermo-
dynamic Length to Select Intermediate States for Free-Energy Calculations and Replica-
Exchange Simulations”. Physical Review E 80.4 (Oct. 2009).

M. P. Luitz and M. Zacharias. “Protein-Ligand Docking Using Hamiltonian Replica Ex-
change Simulations with Soft Core Potentials”. Journal of Chemical Information and Mod-

eling 54.6 (June 2014), pp. 1669—1675.

Y. Meng, D. Sabri Dashti, and A. E. Roitberg. “Computing Alchemical Free Energy Differ-
ences with Hamiltonian Replica Exchange Molecular Dynamics (H-REMD) Simulations”.
Journal of Chemical Theory and Computation 7.9 (Sept. 2011), pp. 2721-2727.

K. Ostermeir and M. Zacharias. “Rapid Alchemical Free Energy Calculation Employing
a Generalized Born Implicit Solvent Model”. Journal of Physical Chemistry B 119.3 (Jan.
2015), pp. 968-975.

J. Curuksu, J. Sponer, and M. Zacharias. “Elbow Flexibility of the kt38 RNA Kink-Turn
Motif Investigated by Free-Energy Molecular Dynamics Simulations”. Biophysical Journal
97.7 (Oct. 2009), pp. 2004-2013.

J. C. Gumbart, B. Roux, and C. Chipot. “Standard Binding Free Energies from Computer
Simulations: What Is the Best Strategy?” Journal of Chemical Theory and Computation 9.1

(Jan. 2013), pp. 794—802.

J. C. Gumbart, B. Roux, and C. Chipot. “Efficient Determination of Protein—Protein Stan-
dard Binding Free Energies from First Principles”. Journal of Chemical Theory and Com-
putation 9.8 (Aug. 2013), pp. 3789—-3798.

F. Zeller and M. Zacharias. “Adaptive Biasing Combined with Hamiltonian Replica Ex-
change to Improve Umbrella Sampling Free Energy Simulations”. journal of Chemical
Theory and Computation 10.2 (Feb. 2014), pp. 703-710.

F. Zeller and M. Zacharias. “Efficient Calculation of Relative Binding Free Energies by
Umbrella Sampling Perturbation”. Journal of Computational Chemistry 35.31 (Sept. 2014),
Pp- 2256—2262.

T. Rodinger, P. L. Howell, and R. Pomeés. “Calculation of Absolute Protein-Ligand Bind-
ing Free Energy Using Distributed Replica Sampling”. Journal of Chemical Physics 129.15
(2008), p. 155102.

W. Jiang, M. Hodoscek, and B. Roux. “Computation of Absolute Hydration and Binding
Free Energy with Free Energy Perturbation Distributed Replica-Exchange Molecular Dy-
namics”. Journal of Chemical Theory and Computation 5.10 (Oct. 2009), pp. 2583-2588.

W. Jiang and B. Roux. “Free Energy Perturbation Hamiltonian Replica-Exchange Molec-

ular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations”.
Journal of Chemical Theory and Computation 6.9 (Sept. 2010), pp. 2559-2565.


http://dx.doi.org/10.1021/jp0356620
http://dx.doi.org/10.1021/jp0356620
http://dx.doi.org/10.1021/ct2003786
http://dx.doi.org/10.1103/physreve.80.046705
http://dx.doi.org/10.1021/ci500296f
http://dx.doi.org/10.1021/ci500296f
http://dx.doi.org/10.1021/ct200153u
http://dx.doi.org/10.1021/jp506367y
http://dx.doi.org/10.1021/jp506367y
http://dx.doi.org/10.1016/j.bpj.2009.07.031
http://dx.doi.org/10.1016/j.bpj.2009.07.031
http://dx.doi.org/10.1021/ct3008099
http://dx.doi.org/10.1021/ct3008099
http://dx.doi.org/10.1021/ct400273t
http://dx.doi.org/10.1021/ct400273t
http://dx.doi.org/10.1021/ct400689h
http://dx.doi.org/10.1021/ct400689h
http://dx.doi.org/10.1002/jcc.23744
http://dx.doi.org/10.1002/jcc.23744
http://dx.doi.org/10.1063/1.2989800
http://dx.doi.org/10.1063/1.2989800
http://dx.doi.org/10.1021/ct900223z
http://dx.doi.org/10.1021/ct1001768

Bibliography

[181]

[182]

[183]

[188]

[190]

[191]

[192]

(193]

[194]

M. Lapelosa, E. Gallicchio, and R. M. Levy. “Conformational Transitions and Convergence
of Absolute Binding Free Energy Calculations”. Journal of Chemical Theory and Compu-
tation 8.1 (Jan. 2012), pp. 47-60.

Y. Sugita, A. Kitao, and Y. Okamoto. “Multidimensional Replica-Exchange Method for
Free-Energy Calculations”. Journal of Chemical Physics 113.15 (2000), p. 6042.

M. S. Lee and M. A. Olson. “Comparison of two Adaptive Temperature-Based Replica
Exchange Methods Applied to a Sharp Phase Transition of Protein Unfolding-Folding”.
Journal of Chemical Physics 134.24 (2011), p. 244111.

M. A. Olson and M. S. Lee. “Evaluation of Unrestrained Replica-Exchange Simulations
Using Dynamic Walkers in Temperature Space for Protein Structure Refinement”. PLOS
ONE 9.5 (May 2014). Ed. by Y. Zhang, e96638.

K. Wang, J. D. Chodera, Y. Yang, and M. R. Shirts. “Identifying Ligand Binding Sites and
Poses Using GPU-accelerated Hamiltonian Replica Exchange Molecular Dynamics”. Jour-
nal of Computer Aided Molecular Design 27.12 (Dec. 2013), pp- 989—1007.

A. de Ruiter and C. Oostenbrink. “Protein-Ligand Binding from Distancefield Distances
and Hamiltonian Replica Exchange Simulations”. Journal of Chemical Theory and Com-
putation 9.2 (Feb. 2013), pp. 883-892.

N. M. Henriksen, D. R. Roe, and T. E. Cheatham. “Reliable Oligonucleotide Conforma-
tional Ensemble Generation in Explicit Solvent for Force Field Assessment Using Reser-
voir Replica Exchange Molecular Dynamics Simulations”. Journal of Physical Chemistry
B 117.15 (Apr. 2013), pp. 4014—4027.

C. Bergonzo, N. M. Henriksen, D. R. Roe, J. M. Swails, A. E. Roitberg, and T. E. Cheatham.
“Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble
of an RNA Tetranucleotide”. Journal of Chemical Theory and Computation 10.1 (Jan. 2014),
PP- 492—499.

L. Wang, B. J. Berne, and R. A. Friesner. “On Achieving High Accuracy and Reliability in
the Calculation of Relative Protein-Ligand Binding Affinities”. Proceedings of the National
Academy of Sciences 109.6 (Jan. 2012), pp. 1937-1942.

K. Lindorff-Larsen, N. Trbovic, P. Maragakis, S. Piana, and D. E. Shaw. “Structure and
Dynamics of an Unfolded Protein Examined by Molecular Dynamics Simulation”. Journal
of the American Chemical Society 134.8 (Feb. 2012), pp. 3787-3791.

F. Jiang and Y.-D. Wu. “Folding of Fourteen Small Proteins with a Residue-Specific Force
Field and Replica-Exchange Molecular Dynamics”. Journal of the American Chemical So-
ciety 136.27 (July 2014), pp. 9536-9539.

C. K. Fisher and C. M. Stultz. “Constructing Ensembles for Intrinsically Disordered Pro-
teins”. Current Opinion in Structural Biology 21.3 (June 2011), pp. 426—431.

M. Cecchini, F. Rao, M. Seeber, and A. Caflisch. “Replica Exchange Molecular Dynamics
Simulations of Amyloid Peptide Aggregation”. Journal of Chemical Physics 121.21 (2004),
p- 10748.

M. Han and U. H. E. Hansmann. “Replica Exchange Molecular Dynamics of the Ther-
modynamics of Fibril Growth of Alzheimer’s AB42 Peptide”. Journal of Chemical Physics
135.6 (2011), p. 065101.

147


http://dx.doi.org/10.1021/ct200684b
http://dx.doi.org/10.1021/ct200684b
http://dx.doi.org/10.1063/1.1308516
http://dx.doi.org/10.1063/1.3603964
http://dx.doi.org/10.1371/journal.pone.0096638
http://dx.doi.org/10.1371/journal.pone.0096638
http://dx.doi.org/10.1007/s10822-013-9689-8
http://dx.doi.org/10.1007/s10822-013-9689-8
http://dx.doi.org/10.1021/ct300967a
http://dx.doi.org/10.1021/ct300967a
http://dx.doi.org/10.1021/jp400530e
http://dx.doi.org/10.1021/jp400530e
http://dx.doi.org/10.1021/ct400862k
http://dx.doi.org/10.1021/ct400862k
http://dx.doi.org/10.1073/pnas.1114017109
http://dx.doi.org/10.1073/pnas.1114017109
http://dx.doi.org/10.1021/ja209931w
http://dx.doi.org/10.1021/ja209931w
http://dx.doi.org/10.1021/ja502735c
http://dx.doi.org/10.1021/ja502735c
http://dx.doi.org/10.1016/j.sbi.2011.04.001
http://dx.doi.org/10.1063/1.1809588
http://dx.doi.org/10.1063/1.1809588
http://dx.doi.org/10.1063/1.3617250
http://dx.doi.org/10.1063/1.3617250

Bibliography

[195]

[196]

[197]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

148

P. Anand, F. S. Nandel, and U. H. E. Hansmann. “The Alzheimer’s B Amyloid (Af[sub 1-
39]) Monomer in an Implicit Solvent”. Journal of Chemical Physics 128.16 (2008), p. 165102.

P. H. Nguyen, M. S. Li, and P. Derreumaux. “Effects of All-Atom Force Fields on Amy-
loid Oligomerization: Replica Exchange Molecular Dynamics Simulations of the AB16-22
Dimer and Trimer”. Physical Chemistry Chemical Physics 13.20 (2011), p. 9778.

Y. Chebaro, N. Mousseau, and P. Derreumaux. “Structures and Thermodynamics of
Alzheimer’s Amyloid-f AB(16-35) Monomer and Dimer by Replica Exchange Molecular
Dynamics Simulations: Implication for Full-Length A Fibrillation”. Journal of Physical
Chemistry B 113.21 (May 2009), pp. 7668-7675.

H.-L. Chiang, C.-J. Chen, H. Okumura, and C.-K. Hu. “Transformation Between o-
Helix and -Sheet Structures of One and Two Polyglutamine Peptides in Explicit Water
Molecules by Replica-Exchange Molecular Dynamics Simulations”. Journal of Computa-
tional Chemistry 35.19 (May 2014), pp. 1430-1437.

R. Zwanzig, A. Szabo, and B. Bagchi. “Levinthal’s Paradox.” Proceedings of the National
Academy of Sciences 89.1 (Jan. 1992), pp. 20—22.

H. Eyring. “The Activated Complex in Chemical Reactions”. The Journal of Chemical
Physics 3.2 (1935), p. 107.
M. R. Shirts, D. L. Mobley, and J. D. Chodera. “Chapter 4 Alchemical Free Energy Calcu-

lations: Ready for Prime Time?” In: ed. by D. Spellmeyer and R. Wheeler. Vol. 3. Annual
Reports in Computational Chemistry. Elsevier, 2007, pp. 41-59.

J. Wang, Y. Deng, and B. Roux. “Absolute Binding Free Energy Calculations Using Molec-
ular Dynamics Simulations with Restraining Potentials”. Biophysical Journal 91.8 (Oct.
2006), pp. 2798-2814.

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman. “The
Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I.
The Method”. Journal of Computational Chemistry 13.8 (Oct. 1992), pp. 1011-1021.

H.-J. Woo and B. Roux. “Calculation of Absolute Protein-Ligand Binding Free Energy
From Computer Simulations”. Proceedings of the National Academy of Sciences 102.19 (May
2005), pp. 6825-6830.

G. A. Huber and S. Kim. “Weighted-Ensemble Brownian Dynamics Simulations for Pro-
tein Association Reactions”. Biophysical Journal 70.1 (Jan. 1996), pp. 97—110.

B. W. Zhang, D. Jasnow, and D. M. Zuckerman. “Efficient and Verified Simulation of a
Path Ensemble for Conformational Change in a United-Residue Model of Calmodulin.”
Proceedings of the National academy of Sciences 104.46 (Nov. 2007), pp. 18043-8.

D. Bhatt, B. W. Zhang, and D. M. Zuckerman. “Steady-State Simulations using Weighted
Ensemble Path Sampling” Journal of Chemical Physics 133.1 (July 2010), p. 014110.

E. Suérez, S. Lettieri, M. C. Zwier, C. A. Stringer, S. R. Subramanian, L. T. Chong, and D. M.
Zuckerman. “Simultaneous Computation of Dynamical and Equilibrium Information Us-
ing a Weighted Ensemble of Trajectories”. Journal of Chemical Theory and Computation
10.7 (2014). PMID: 25246856, pp. 2658-2667.


http://dx.doi.org/10.1063/1.2907718
http://dx.doi.org/10.1039/c1cp20323a
http://dx.doi.org/10.1021/jp900425e
http://dx.doi.org/10.1021/jp900425e
http://dx.doi.org/10.1002/jcc.23633
http://dx.doi.org/10.1002/jcc.23633
http://dx.doi.org/10.1073/pnas.89.1.20
http://dx.doi.org/10.1073/pnas.89.1.20
http://dx.doi.org/10.1063/1.1749604
http://dx.doi.org/10.1063/1.1749604
http://dx.doi.org/10.1529/biophysj.106.084301
http://dx.doi.org/10.1529/biophysj.106.084301
http://dx.doi.org/10.1002/jcc.540130812
http://dx.doi.org/10.1073/pnas.0409005102
http://dx.doi.org/10.1073/pnas.0409005102
http://dx.doi.org/10.1016/S0006-3495(96)79552-8
http://dx.doi.org/10.1073/pnas.0706349104
http://dx.doi.org/10.1063/1.3456985
http://dx.doi.org/10.1021/ct401065r
http://dx.doi.org/10.1021/ct401065r

Bibliography

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

D. Bhatt and D. M. Zuckerman. “Heterogeneous Path Ensembles for Conformational
Transitions in Semiatomistic Models of Adenylate Kinase”. Journal of Chemical Theory
and Computation 6.11 (2010), pp. 3527-3539.

J. L. Adelman, A. L. Dale, M. C. Zwier, D. Bhatt, L. T. Chong, D. M. Zuckerman, and
M. Grabe. “Simulations of the Alternating Access Mechanism of the Sodium Symporter
Mhp1” Biophysical Journal 101.10 (Nov. 2011), pp. 2399—407.

M. C. Zwier, J. W. Kaus, and L. T. Chong. “Efficient Explicit-Solvent Molecular Dy-
namics Simulations of Molecular Association Kinetics: Methane/Methane, Na+/Cl-,
Methane/Benzene, and K+/18-Crown-6 Ether”. Journal of Chemical Theory and Computa-
tion 7.4 (2011), pp. 1189-1197.

J. L. Adelman and M. Grabe. “Simulating Rare Events Using a Weighted Ensemble-Based
String Method”. The Journal of Chemical Physics 138.4 (2013), p. 044105.

M. C. Zwier, J. L. Adelman, J. W. Kaus, A. J. Pratt, K. F. Wong, N. B. Rego, E. Suarez,
S. Lettieri, D. W. Wang, M. Grabe, D. M. Zuckerman, and L. T. Chong. “WESTPA: An
Interoperable, Highly Scalable Software Package for Weighted Ensemble Simulation and
Analysis”. Journal of Chemical Theory and Computation 11.2 (2015), pp. 800—-809.

A. Dickson and L Charles L. Brooks. “WExplore: Hierarchical Exploration of High-
Dimensional Spaces Using the Weighted Ensemble Algorithm”. Journal of Physical Chem-
istry B 118.13 (2014), pp. 3532—3542.

A. Dickson, A. M. Mustoe, L. Salmon, and C. L. Brooks. “Efficient in silico exploration of

RNA interhelical conformations using Euler angles and WExplore”. Nucleic Acids Research
42.19 (Oct. 2014), pp. 12126—-12137.

R. W. Pastor and M. Karplus. “Inertial Effects in Butane Stochastic Dynamics”. Journal of
Chemical Physics 91.1 (1989), pp. 211-218.

R.J. Loncharich, B. R. Brooks, and R. W. Pastor. “Langevin dynamics of peptides: The fric-
tional dependence of isomerization rates ofN-acetylalanyl-N?-methylamide”. Biopolymers
32.5 (May 1992), pp. 523-535.

Y. Zhang and R. W. Pastor. “A Comparision of Methods for Computing Transition Rates

from Molecular Dynamics Simulation”. Molecular Simulation 13.1 (1994), pp. 25—-38.

J. C. Maxwell. “On the Dynamical Theory of Gases”. Philosophical Transactions of the Royal
Society of London 157 (Jan. 1867), pp. 49—88.

J. E. Gentle. Numerical Linear Algebra for Applications in Statistics. Springer New York,
1998.

B. W. Zhang, D. Jasnow, and D. M. Zuckerman. “The “weighted Ensemble” Path Sam-

pling Method Is Statistically Exact for a Broad Class of Stochastic Processes and Binning
Procedures”. The Journal of Chemical Physics 132.5, 054107 (2010).

J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schiitte, and
F. Noé. “Markov Models of Molecular Kinetics: Generation and Validation”. The Journal
of Chemical Physics 134.17, 174105 (2011).

149


http://dx.doi.org/10.1021/ct100406t
http://dx.doi.org/10.1021/ct100406t
http://dx.doi.org/10.1016/j.bpj.2011.09.061
http://dx.doi.org/10.1021/ct100626x
http://dx.doi.org/10.1021/ct100626x
http://dx.doi.org/10.1063/1.4773892
http://dx.doi.org/10.1021/ct5010615
http://dx.doi.org/10.1021/jp411479c
http://dx.doi.org/10.1021/jp411479c
http://dx.doi.org/10.1093/nar/gku799
http://dx.doi.org/10.1093/nar/gku799
http://dx.doi.org/http://dx.doi.org/10.1063/1.457508
http://dx.doi.org/http://dx.doi.org/10.1063/1.457508
http://dx.doi.org/10.1002/bip.360320508
http://dx.doi.org/10.1002/bip.360320508
http://dx.doi.org/10.1080/08927029408022182
http://dx.doi.org/10.1098/rstl.1867.0004
http://dx.doi.org/10.1098/rstl.1867.0004
http://dx.doi.org/http://dx.doi.org/10.1063/1.3306345
http://dx.doi.org/10.1063/1.3565032
http://dx.doi.org/10.1063/1.3565032

Bibliography

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

150

S. Kirmizialtin and R. Elber. “Revisiting and Computing Reaction Coordinates with Direc-
tional Milestoning”. The Journal of Physical Chemistry A 115.23 (2011). PMID: 21500798,
pp- 6137-61438.

M. P. Luitz and M. Zacharias. “Protein-Ligand Docking Using Hamiltonian Replica Ex-
change Simulations with Soft Core Potentials”. Journal of Chemical Information and Mod-
eling 54.6 (May 2014), pp. 1669—1675.

H. Park, J. Lee, and S. Lee. “Critical Assessment of the Automated AutoDock as a New
Docking Tool for Virtual Screening”. Proteins: Structure, Function, and Bioinformatics 65.3
(2006), pp. 549-554.

T. J. A. Ewing, S. Makino, A. G. Skillman, and L. D. Kuntz. “DOCK 4.0: Search Strategies
for Automated Molecular Docking of Flexible Molecule Databases”. Journal of Computer-
Aided Molecular Design 15.5 (2001), pp. 411—428.

M. Totrov and R. Abagyan. “Flexible Ligand Docking to Multiple Receptor Conforma-
tions: A Practical Alternative”. Current Opinion in Structural Biology 18.2 (2008), pp. 178—
184.

M. Zacharias. “ATTRACT: Protein—protein Docking in CAPRI using a Reduced Protein
Model”. Proteins: Structure, Function, and Bioinformatics 60.2 (2005), pp. 252—256.

G. Kuzu, O. Keskin, A. Gursoy, and R. Nussinov. “Expanding the Conformational Selection
Paradigm in Protein-Ligand Docking”. English. In: Computational Drug Discovery and
Design. Ed. by R. Baron. Vol. 819. Methods in Molecular Biology. Springer New York,
2012, pp. 59—74. ISBN: 978-1-61779-464-3.

A. H. Keeble, L. a. Joachimiak, M. J. Maté, N. Meenan, N. Kirkpatrick, D. Baker, and C.
Kleanthous. “Experimental and Computational Analyses of the Energetic Basis for Dual
Recognition of Immunity Proteins by Colicin Endonucleases.” Journal of Molecular Biol-
0gy 379-4 (June 2008), pp. 745-759.

S. Samsonov, J. Teyra, G. Anders, and M. T. Pisabarro. “Analysis of the impact of solvent
on contacts prediction in proteins”. BMC Struct. Biol. 9.1 (2009), pp. 1-11.

M. H. Ahmed, F. Spyrakis, P. Cozzini, P. K. Tripathi, A. Mozzarelli, J. N. Scarsdale, M. A.
Safo, and G. E. Kellogg. “Bound Water at Protein-Protein Interfaces: Partners, Roles and
Hydrophobic Bubbles as a Conserved Motif”. PLOS ONE 6.9 (Sept. 2011), e24712.

R. O. Dror, A. C. Pan, D. H. Arlow, D. W. Borhani, P. Maragakis, Y. Shan, H. Xu, and D. E.
Shaw. “Pathway and Mechanism of Drug Binding to G-Protein-Coupled Receptors”. Proc.
Natl. Acad. Sci. 108.32 (2011), pp. 13118—13123.

Y. Shan, E. T. Kim, M. P. Eastwood, R. O. Dror, M. A. Seeliger, and D. E. Shaw. “How Does
a Drug Molecule Find Its Target Binding Site?” Journal of the American Chemical Society
133.24 (2011), pp. 9181-9183.

J. Hritz and C. Oostenbrink. “Hamiltonian Replica Exchange Molecular Dynamics Using
Soft-Core Interactions”. Journal of Chemical Physics 128.14, 144121 (2008), p. 144121.

L. Wang, R. A. Friesner, and B. J. Berne. “Replica Exchange with Solute Scaling: A More
Efficient Version of Replica Exchange With Solute Tempering (REST2)”. Journal of Phys-
ical Chemistry B 115.30 (2011), pp. 9431-9438.


http://dx.doi.org/10.1021/jp111093c
http://dx.doi.org/10.1021/jp111093c
http://dx.doi.org/10.1021/ci500296f
http://dx.doi.org/10.1021/ci500296f
http://dx.doi.org/10.1002/prot.21183
http://dx.doi.org/10.1002/prot.21183
http://dx.doi.org/10.1023/A:1011115820450
http://dx.doi.org/10.1023/A:1011115820450
http://dx.doi.org/10.1016/j.sbi.2008.01.004
http://dx.doi.org/10.1016/j.sbi.2008.01.004
http://dx.doi.org/10.1002/prot.20566
http://dx.doi.org/10.1016/j.jmb.2008.03.055
http://dx.doi.org/10.1016/j.jmb.2008.03.055
http://dx.doi.org/10.1186/1472-6807-9-22
http://dx.doi.org/10.1371/journal.pone.0024712
http://dx.doi.org/10.1073/pnas.1104614108
http://dx.doi.org/10.1073/pnas.1104614108
http://dx.doi.org/10.1021/ja202726y
http://dx.doi.org/10.1021/ja202726y
http://dx.doi.org/10.1063/1.2888998
http://dx.doi.org/10.1021/jp204407d
http://dx.doi.org/10.1021/jp204407d

Bibliography

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[247]

[248]

[249]

[250]

S. G. Itoh, H. Okumura, and Y. Okamoto. “Replica-Exchange Method in van der Waals Ra-
dius Space: Overcoming Steric Restrictions for Biomolecules”. Journal of Chemical Physics

132.13, 134105 (2010), p. 134105.
S. Kannan and M. Zacharias. “Enhanced Sampling of Peptide and Protein Conformations

Using Replica Exchange Simulations With a Peptide Backbone Biasing-Potential”. Pro-
teins: Structure, Function, and Bioinformatics 66.3 (2007), pp. 697-706.

J. Curuksu and M. Zacharias. “Enhanced Conformational Sampling of Nucleic Acids by a
New Hamiltonian Replica Exchange Molecular Dynamics Approach”. Journal of Chemical
Physics 130.10, 104110 (2009), p. 104110.

M. Zacharias. “Combining Elastic Network Analysis and Molecular Dynamics Simula-
tions by Hamiltonian Replica Exchange”. Journal of Chemical Theory and Computation
4.3 (2008), pp. 477-487.

I. Buch, T. Giorgino, and G. De Fabritiis. “Complete Reconstruction of an Enzyme-
Inhibitor Binding Process by Molecular Dynamics Simulations”. Proc. Natl. Acad. Sci.
108.25 (2011), pp. 10184—10189.

M. Zacharias, T. P. Straatsma, and J. A. McCammon. “Separation-Shifted Scaling, a New
Scaling Method for Lennard—Jones Interactions in Thermodynamic Integration.” Journal
of Chemical Physics 100.12 (1994), pp. 9025-9031.

T. C. Beutler, A. E. Mark, R. C. van Schaik, P. R. Gerber, and W. F. van Gunsteren. “Avoiding
Singularities and Numerical Instabilities in Free Energy Calculations Based on Molecular
Simulations” Chemical Physics Letters 222 (1994), pp. 529—539.

D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen.
“GROMACS: Fast, Flexible, and Free”. Journal of Computational Chemistry 26.16 (2005),
pp. 1701-1718.

V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling. “Compar-

ison of Multiple Amber Force Fields and Development of Improved Protein Backbone
Parameters”. Proteins: Structure, Function, and Bioinformatics 65.3 (2006), pp. 712—725.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. “Com-
parison of Simple Potential Functions for Simulating Liquid Water”. Journal of Chemical
Physics 79.2 (1983), pp. 926—935.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. “Development and
Testing of a General Amber Force Field”. Journal of Computational Chemistry 25.9 (2004),
pp- 1157-1174.

J. Wang, W. Wang, P. A. Kollman, and D. A. Case. “Automatic Atom Type and Bond
Type Perception in Molecular Mechanical Calculations”. Journal of Molecular Graphics
and Modelling 25.2 (2006), pp. 247-260.

B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije. “LINCS: A Linear Constraint
Solver for Molecular Simulations”. Journal of Computational Chemistry 18.12 (Sept. 1997),
pp. 1463-1472.

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. “A Smooth
Particle Mesh Ewald Method.” Journal of Chemical Physics 103.19 (1995), pp. 8577-8593.

151


http://dx.doi.org/10.1063/1.3372767
http://dx.doi.org/10.1063/1.3372767
http://dx.doi.org/10.1002/prot.21258
http://dx.doi.org/10.1002/prot.21258
http://dx.doi.org/10.1063/1.3086832
http://dx.doi.org/10.1063/1.3086832
http://dx.doi.org/10.1021/ct7002258
http://dx.doi.org/10.1021/ct7002258
http://dx.doi.org/10.1073/pnas.1103547108
http://dx.doi.org/10.1073/pnas.1103547108
http://link.aip.org/link/?JCPSA6/100/9025/1
http://link.aip.org/link/?JCPSA6/100/9025/1
http://dx.doi.org/10.1016/0009-2614(94)00397-1
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1002/prot.21123
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1016/j.jmgm.2005.12.005
http://dx.doi.org/10.1016/j.jmgm.2005.12.005
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
http://dx.doi.org/10.1063/1.470117

Bibliography

[251]

[252]

[253]

[254]

[259]

[260]

[261]

[262]

[263]

[264]

152

W. F. van Gunsteren and H. J. C. Berendsen. “A Leap-Frog Algorithm for Stochastic Dy-
namics”. Molecular Simulation 1 (1988), pp. 173—185.

D. A. Holt, J. I. Luengo, D. S. Yamashita, H. J. Oh, A. L. Konialian, H. K. Yen, L. W.
Rozamus, M. Brandt, and M. J. a. Bossard. “Design, Synthesis, and Kinetic Evaluation of
High-Affinity FKBP Ligands and the X-Ray Crystal Structures of their Complexes with
FKBP12”. Journal of the American Chemical Society 115.22 (1993), pp. 9925-9938.

D. Fremont, M. Matsumura, E. Stura, P. Peterson, and I. Wilson. “Crystal Structures of
Two Viral Peptides in Complex With Murine MHC Class IH-2Kb”. Science 257.5072 (1992),
Pp.- 919-927.

C.Dominguez, R. Boelens, and A. M. J.J. Bonvin. “‘HADDOCK: A Protein-Protein Docking

Approach Based on Biochemical or Biophysical Information”. Journal of the American
Chemical Society 125.7 (2003), pp. 1731-1737.

A. D.J. van Dijk and A. M. J. J. Bonvin. “Solvated Docking: Introducing Water Into the
Modelling of Biomolecular Complexes”. Bioinformatics 22.19 (2006), pp. 2340—2347.

G. R. Smith, M. J. Sternberg, and P. A. Bates. “The Relationship Between the Flexibility of
Proteins and Their Conformational States on Forming Protein-Protein Complexes With
an Application to Protein-Protein Docking”. Journal of Molecular Biology 347.5 (2005),

pp- 1077—-1101.

H. Fujitani, Y. Tanida, M. Ito, G. Jayachandran, C. D. Snow, M. R. Shirts, E. J. Sorin, and
V. S. Pande. “Direct Calculation of the Binding Free Energies of FKBP Ligands”. Journal
of Chemical Physics 123.8, 084108 (2005), p. 084108.

M. Zacharias and S. Springer. “Conformational Flexibility of the MHC Class I v1-c2 Do-
main in Peptide Bound and Free States: A Molecular Dynamics Simulation Study”. Bio-
physical Journal 87.4 (2004), pp. 2203-2214.

H. Neuweiler and M. Sauer. “Using Photoinduced Charge Transfer Reactions to Study
Conformational Dynamics of Biopolymers at the Single-Molecule Level”. Current phar-
maceutical biotechnology 5.3 (2004), pp. 285-298.

S. Doose, H. Neuweiler, and M. Sauer. “Fluorescence Quenching by Photoinduced
Electron Transfer: A Reporter for Conformational Dynamics of Macromolecules”.
ChemPhysChem 10.9-10 (2009), pp. 1389—1398.

E. A. Jares-Erijman and T. M. Jovin. “FRET Imaging”. Nature biotechnology 21.11 (2003),
Pp- 1387-1395.

S. Weiss. “Fluorescence Spectroscopy of Single Biomolecules”. Science 283.5408 (1999),
pp. 1676—1683.

T. Ha. “Single-Molecule Fluorescence Resonance Energy Transfer”. Methods 25.1 (Sept.
2001), pp. 78-86.

T. Forster. “Zwischenmolekulare Energiewanderung und Fluoreszenz”. Annalen der
Physik 437.1-2 (1948), pp. 55-75.

G. J. Kavarnos. Fundamentals of Photoinduced Electron Transfer. Vol. 98. Wiley-VCH, Oct.
1994.


http://dx.doi.org/10.1080/08927028808080941
http://dx.doi.org/10.1021/ja00075a008
http://dx.doi.org/10.1126/science.1323877
http://dx.doi.org/10.1126/science.1323877
http://dx.doi.org/10.1021/ja026939x
http://dx.doi.org/10.1021/ja026939x
http://dx.doi.org/10.1093/bioinformatics/btl395
http://dx.doi.org/10.1016/j.jmb.2005.01.058
http://dx.doi.org/10.1016/j.jmb.2005.01.058
http://dx.doi.org/10.1063/1.1999637
http://dx.doi.org/10.1063/1.1999637
http://dx.doi.org/10.1529/biophysj.104.044743
http://dx.doi.org/10.1529/biophysj.104.044743
http://dx.doi.org/10.2174/1389201043376896
http://dx.doi.org/10.2174/1389201043376896
http://dx.doi.org/10.1002/cphc.200900238
http://dx.doi.org/10.1038/nbt896
http://dx.doi.org/10.1038/nbt896
http://dx.doi.org/10.1126/science.283.5408.1676
http://dx.doi.org/10.1126/science.283.5408.1676
http://dx.doi.org/10.1006/meth.2001.1217
http://dx.doi.org/10.1006/meth.2001.1217
http://dx.doi.org/10.1002/andp.19484370105
http://dx.doi.org/10.1002/andp.19484370105

Bibliography

[268]

[269]

[270]

[271]

[272]

[279]

[280]

G.J. Kavarnos and N. J. Turro. “Photosensitization by Reversible Electron Transfer: Theo-
ries, Experimental Evidence, and Examples”. Chemical Reviews 86.2 (Apr. 1986), pp. 401-

449.
A. Weller. “Photoinduced Electron Transfer in Solution: Exciplex and Radical Ion Pair

Formation Free Enthalpies and their Solvent Dependence”. Zeitschrift fiir Physikalische
Chemie 133.1 (Jan. 1982), pp. 93—98.

A.P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T.
Rademacher, and T. E. Rice. “Signaling Recognition Events with Fluorescent Sensors and
Switches”. Chemical Reviews 97.5 (Aug. 1997), pp. 1515-1566.

D. Zhong, S. K. Pal, C. Wan, and A. H. Zewail. “Femtosecond Dynamics of a Drug—Protein
Complex: Daunomycin with Apo Riboflavin-Binding Protein”. Proceedings of the National
Academy of Sciences 98.21 (2001), pp. 11873-11878.

X. Li, R. Zhu, A. Yu, and X. S. Zhao. “Ultrafast Photoinduced Electron Transfer Between

Tetramethylrhodamine and Guanosine in Aqueous Solution”. The Journal of Physical
Chemistry B 115.19 (2011), pp. 6265-6271.

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefit, and S.
Weiss. “The Power and Prospects of Fluorescence Microscopies and Spectroscopies”. An-
nual review of biophysics and biomolecular structure 32.1 (2003), pp. 161-182.

P. Tinnefeld and M. Sauer. “Branching Out of Single-Molecule Fluorescence Spectroscopy:
Challenges for Chemistry and Influence on Biology”. Angewandte Chemie International
Edition 44.18 (2005), pp. 2642—2671.

E. L. Elson and D. Magde. “Fluorescence Correlation Spectroscopy. I. Conceptual Basis
and Theory”. Biopolymers 13.1 (1974), pp. 1—27.

E. L. Elson. “Fluorescence Correlation Spectroscopy: Past, Present, Future”. Biophysical
Journal 101.12 (Dec. 2011), pp. 2855-2870.

H. Sahoo and P. Schwille. “FRET and FCS-Friends or Foes?” ChemPhysChem 12.3 (Feb.
2011), pp. 532-541.

S. Felekyan, S. Kalinin, H. Sanabria, A. Valeri, and C. A. M. Seidel. “Filtered FCS:

Species Auto- and Cross-Correlation Functions Highlight Binding and Dynamics in
Biomolecules”. ChemPhysChem 13.4 (Mar. 2012), pp. 1036-1053.

M. Sauer and H. Neuweiler. “PET-FCS: Probing Rapid Structural Fluctuations of Pro-
teins and Nucleic Acids by Single-Molecule Fluorescence Quenching”. Fluorescence Spec-
troscopy and Microscopy: Methods and Protocols (2014), pp. 597-615.

S. Milles, S. Tyagi, N. Banterle, C. Koehler, V. VanDelinder, T. Plass, A. P. Neal, and E. A.
Lemke. “Click Strategies for Single-Molecule Protein Fluorescence”. Journal of the Amer-
ican Chemical Society 134.11 (Mar. 2012), pp. 5187-5195.

E. Haustein and P. Schwille. “Fluorescence Correlation Spectroscopy: Novel Variations
of an Established Technique”. Annual Review of Biophysics and Biomolecular Structure 36
(2007), pp. 151-169.

W. Moerner and D. P. Fromm. “Methods of Single-Molecule Fluorescence Spectroscopy
and Microscopy”. Review of Scientific Instruments 74.8 (2003), pp. 3597-3619.

153


http://dx.doi.org/10.1021/cr00072a005
http://dx.doi.org/10.1021/cr00072a005
http://dx.doi.org/10.1524/zpch.1982.133.1.093
http://dx.doi.org/10.1524/zpch.1982.133.1.093
http://dx.doi.org/10.1021/cr960386p
http://dx.doi.org/10.1073/pnas.211440298
http://dx.doi.org/10.1073/pnas.211440298
http://dx.doi.org/10.1021/jp200455b
http://dx.doi.org/10.1021/jp200455b
http://dx.doi.org/10.1146/annurev.biophys.32.110601.142525
http://dx.doi.org/10.1146/annurev.biophys.32.110601.142525
http://dx.doi.org/10.1002/anie.200300647
http://dx.doi.org/10.1002/anie.200300647
http://dx.doi.org/10.1002/bip.1974.360130102
http://dx.doi.org/10.1016/j.bpj.2011.11.012
http://dx.doi.org/10.1016/j.bpj.2011.11.012
http://dx.doi.org/10.1002/cphc.201000776
http://dx.doi.org/10.1002/cphc.201000776
http://dx.doi.org/10.1002/cphc.201100897
http://dx.doi.org/10.1007/978-1-62703-649-8_27
http://dx.doi.org/10.1007/978-1-62703-649-8_27
http://dx.doi.org/10.1021/ja210587q
http://dx.doi.org/10.1021/ja210587q
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132612
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132612
http://dx.doi.org/10.1063/1.1589587

Bibliography

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[290]

[291]

[292]

[293]

154

L. Daidone, H. Neuweiler, S. Doose, M. Sauer, and J. C. Smith. “Hydrogen-Bond Driven
Loop-Closure Kinetics in Unfolded Polypeptide Chains.” PLoS Computational Biology 6.1
(Jan. 2010), €1000645.

G. F. Schroder, U. Alexiev, and H. Grubmiller. “Simulation of Fluorescence Anisotropy
Experiments: Probing Protein Dynamics.” Biophysical Journal 89.6 (Dec. 2005), pp. 3757-
3770.

M. Hoefling, N. Lima, D. Haenni, C. A. M. Seidel, B. Schuler, and H. Grubmiiller.
“Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polypro-
lines through a Hybrid Atomistic Simulation and Monte Carlo Approach”. PLOS ONE 6.5
(May 2011), e19791.

F. Finn, J. Dadok, and A. Bothner-By. “Proton Nuclear Magnetic Resonance Studies of
the Association of Ribonuclease S-Peptide and Analogs with Ribonuclease S-Protein”.
Biochemistry 11.3 (1972), pp. 455—461.

M. Bastos, J. H. Pease, D. E. Wemmer, K. P. Murphy, and P. R. Connelly. “Thermody-
namics of the Helix-Coil Transition: Binding of S15 and a Hybrid Sequence, Disulfide
Stabilized Peptide to the S-Protein”. Proteins: Structure, Function, and Bioinformatics 42.4
(2001), pp. 523-530.

R. Cole and J. P. Loria. “Evidence for Flexibility in the Function of Ribonuclease A”. Bio-
chemistry 41.19 (2002), pp. 6072—6081.

G. R. Marshall, J. A. Feng, and D. ]J. Kuster. “Back to the Future: Ribonuclease A”. Peptide
Science 90.3 (2008), pp. 259—277.

A. Bachmann, D. Wildemann, F. Praetorius, G. Fischer, and T. Kiethaber. “Mapping Back-
bone and Side-Chain Interactions in the Transition State of a Coupled Protein Folding
and Binding Reaction”. Proceedings of the National Academy of Sciences 108.10 (2011),
PP- 3952—3957-

F. Murtagh and P. Contreras. “Algorithms for Hierarchical Clustering: An Overview”.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2.1 (2012), pp. 86—
97

U. Mets, J. Widengren, and R. Rigler. “Application of the Antibunching in Dye Fluores-
cence: Measuring the Excitation Rates in Solution”. Chemical Physics 218.1-2 (May 1997),
pPp- 191-198.

D. Nettels, I. V. Gopich, A. Hoffmann, and B. Schuler. “Ultrafast Dynamics of Protein
Collapse From Single-Molecule Photon Statistics.” Proceedings of the National Academy
of Sciences of the United States of America 104.8 (Feb. 2007), pp. 2655-2660.

S. Weiss. “Measuring Conformational Dynamics of Biomolecules by Single Molecule Flu-
orescence Spectroscopy”. Nature Structural Biology 7.9 (Sept. 2000), pp. 724-729.

A. C.Vaiana, H. Neuweiler, A. Schulz, J. Wolfrum, M. Sauer, and J. C. Smith. “Fluorescence
Quenching of Dyes by Tryptophan: Interactions at Atomic Detail From Combination of
Experiment and Computer Simulation”. Journal of the American Chemical Society 125.47

(2003), pp. 14564-14572.


http://dx.doi.org/10.1371/journal.pcbi.1000645
http://dx.doi.org/10.1371/journal.pcbi.1000645
http://dx.doi.org/10.1529/biophysj.105.069500
http://dx.doi.org/10.1529/biophysj.105.069500
http://dx.doi.org/10.1371/journal.pone.0019791
http://dx.doi.org/10.1371/journal.pone.0019791
http://dx.doi.org/10.1021/bi00753a025
http://dx.doi.org/10.1002/1097-0134(20010301)42:4<523::AID-PROT100>3.0.CO;2-B
http://dx.doi.org/10.1002/1097-0134(20010301)42:4<523::AID-PROT100>3.0.CO;2-B
http://dx.doi.org/10.1021/bi025655m
http://dx.doi.org/10.1021/bi025655m
http://dx.doi.org/10.1002/bip.20845
http://dx.doi.org/10.1002/bip.20845
http://dx.doi.org/10.1073/pnas.1012668108
http://dx.doi.org/10.1073/pnas.1012668108
http://dx.doi.org/10.1002/widm.53
http://dx.doi.org/10.1002/widm.53
http://dx.doi.org/10.1016/s0301-0104(97)00040-2
http://dx.doi.org/10.1016/s0301-0104(97)00040-2
http://dx.doi.org/10.1073/pnas.0611093104
http://dx.doi.org/10.1073/pnas.0611093104
http://dx.doi.org/10.1038/78941
http://dx.doi.org/10.1021/ja036082j
http://dx.doi.org/10.1021/ja036082j

Bibliography

[294]

[295]

[296]
[297]

(298]

[299]

[300]

(301]

[302]

[303]

[304]

[305]

[306]

[307]

[308]

F. Noé, S. Doose, L. Daidone, M. Lollmann, M. Sauer, J. D. Chodera, and J. C. Smith. “Dy-
namical Fingerprints for Probing Individual Relaxation Processes in Biomolecular Dy-
namics With Simulations and Kinetic Experiments”. Proceedings of the National Academy
of Sciences 108.12 (2011), pp. 4822—4827.

S. Sindbert, S. Kalinin, H. Nguyen, A. Kienzler, L. Clima, W. Bannwarth, B. Appel, S.
Miiller, and C. A. M. Seidel. “Accurate Distance Determination of Nucleic Acids via
Forster Resonance Energy Transfer: Implications of Dye Linker Length and Rigidity”.
Journal of the American Chemical Society 133.8 (Mar. 2011), pp. 2463-2480.

M. J. Frisch et al. Gaussian 09 Revision D.o1. Gaussian Inc. Wallingford CT 2009.

A. D. Becke. “Density-Functional Exchange-Energy Approximation With Correct
Asymptotic Behavior”. Physical Review A 38 (6 Sept. 1988), pp. 3098—3100.

C. Lee, W. Yang, and R. G. Parr. “Development of the Colle-Salvetti Correlation-Energy
Formula Into a Functional of the Electron Density”. Physical Review B 37 (2 Jan. 1988),
pp- 785-789.

P. Hariharan and J. Pople. “The Influence of Polarization Functions on Molecular Orbital

Hydrogenation Energies”. Theoretica Chimica Acta 28.3 (1973), pp- 213—222.

C. I Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman. “A Well-Behaved Electrostatic
Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP
Model”. Journal of Physical Chemistry 97.40 (1993), pp. 10269—10280.

G. Bussi, D. Donadio, and M. Parrinello. “Canonical Sampling Through Velocity Rescal-
ing”. The Journal of chemical physics 126.1 (2007), p. 014101.

A. H. Crevenna, N. Naredi-Rainer, D. C. Lamb, R. Wedlich-Séldner, and J. Dzubiella. “Ef-
fects of Hofmeister Ions on the a-Helical Structure of Proteins”. Biophysical Journal 102.4
(Feb. 2012), pp. 907-915.

R. H. Brown and R. Twiss. “A Test of a New Type of Stellar Interferometer on Sirius”.
Nature 178.4541 (1956), pp. 1046—1048.

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter. “The Breakdown Flash of Silicon
Avalanche Photodiodes-Back Door for Eavesdropper Attacks?” Journal of Modern Optics
48.13 (Nov. 2001), pp. 2039—-2047.

S. Felekyan, R. Kithnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker, and C. A. M. Seidel.
“Full Correlation From Picoseconds to Seconds by Time-Resolved and Time-Correlated
Single Photon Detection”. Review of Scientific Instruments 76.8 (2005), p. 083104.

H. Neuweiler, C. M. Johnson, and A. R. Fersht. “Direct Observation of Ultrafast Folding
and Denatured State Dynamics in Single Protein Molecules” Proceedings of the National
Academy of Sciences 106.44 (Nov. 2009), pp. 18569—18574.

J. R. Lakowicz. Principles of Fluorescence Spectroscopy. Springer Science & Business Media,
Dec. 2007.

N. J. Greenfield. “Using Circular Dichroism Spectra to Estimate Protein Secondary Struc-
ture” Nature Protocols 1.6 (2006), pp. 2876—2890.

155


http://dx.doi.org/10.1073/pnas.1004646108
http://dx.doi.org/10.1073/pnas.1004646108
http://dx.doi.org/10.1021/ja105725e
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1007/BF00533485
http://dx.doi.org/10.1021/j100142a004
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1016/j.bpj.2012.01.035
http://dx.doi.org/10.1016/j.bpj.2012.01.035
http://www.cmp.caltech.edu/refael/league/hanbury.pdf
http://dx.doi.org/10.1080/09500340108240905
http://dx.doi.org/10.1080/09500340108240905
http://dx.doi.org/10.1063/1.1946088
http://dx.doi.org/10.1073/pnas.0910860106
http://dx.doi.org/10.1073/pnas.0910860106
http://dx.doi.org/10.1038/nprot.2006.202

Bibliography

[309]

[310]

(311]

(312]

[313]

[314]

[315]

[318]

(319]

(320]

(321]

(322]

156

M. P. Luitz, R. Bomblies, E. Ramcke, A. Itzen, and M. Zacharias. “Adenylylation of Tyr77
stabilizes Rabib GTPase in an active state: A molecular dynamics simulation analysis”.
Scientific reports 6 (Jan. 2016), p. 19896.

J. Cherfils and M. Zeghouf. “Regulation of Small GTPases by GEFs, GAPs, and GDIs”.
Physiol. Rev. 93.1 (2013), pp. 269—309.

K. Aktories. “Bacterial protein toxins that modify host regulatory GTPases”. Nat. Rev.
Micro. Biol. 9.7 (2011), pp. 487-498.

M. P. Miiller, H. Peters, J. Blumer, W. Blankenfeldt, R. S. Goody, and A. Itzen. “The Le-
gionella Effector Protein DrrA AMPylates the Membrane Traffic Regulator Rabib”. Sci-
ence 329.5994 (2010), pp. 946-949.

C. A. Worby, S. Mattoo, R. P. Kruger, L. B. Corbeil, A. Koller, J. C. Mendez, B. Zekarias, C.

Lazar, and J. E. Dixon. “The Fic Domain: Regulation of Cell Signaling by Adenylylation”.
Molecular Cell 34.1 (2009), pp. 93—-103.

M. L. Yarbrough, Y. Li, L. N. Kinch, N. V. Grishin, H. L. Ball, and K. Orth. “AMPylation
of Rho GTPases by Vibrio VopS Disrupts Effector Binding and Downstream Signaling”.
Science 323.5911 (2009), pp. 269—272.

A. K. Haas, S.-i. Yoshimura, D. J. Stephens, C. Preisinger, E. Fuchs, and F. A. Barr. “Anal-
ysis of GTPase-activating proteins: Rab1 and Rabg3 are key Rabs required to maintain a

functional Golgi Complex in Human Cells”. Journal of Cell Science 120.17 (2007), pp-. 2997-
3010.

A. Ingmundson, A. Delprato, D. G. Lambright, and C. R. Roy. “Legionella pneumophila
proteins that regulate Rabi1 Membrane Cycling”. Nature 450.7168 (2007), pp. 365—369.

M. P. Miiller, A. V. Shkumatov, L. K. Oesterlin, S. Schoebel, P. R. Goody, R. S. Goody, and A.
Itzen. “Characterization of Enzymes from Legionella pneumophila Involved in Reversible
Adenylylation of Rab1 Protein”. 7. Biol. Chem. 287.42 (2012), pp. 35036—35046.

M. Milburn, L. Tong, A. deVos, A. Brunger, Z. Yamaizumi, S. Nishimura, and S. Kim.
“Molecular switch for signal transduction: structural differences between active and in-
active forms of protooncogenic Ras Proteins”. Science 247.4945 (1990), pp. 939-945.

C. Smit, J. Blumer, M. F. Eerland, M. F. Albers, M. P. Miiller, R. S. Goody, A. Itzen, and
C. Hedberg. “Efficient Synthesis and Applications of Peptides containing Adenylylated
Tyrosine Residues”. Angewandte Chemie International Edition 50.39 (2011), pp. 9200—9204.

C. Kotting, A. Kallenbach, Y. Suveyzdis, A. Wittinghofer, and K. Gerwert. “The GAP argi-
nine finger movement into the catalytic site of Ras Increases the Activation Entropy”.
Proceedings of the National Academy of Science 105.17 (2008), pp. 6260—-6265.

B.J. Grant, A. A. Gorfe, and J. A. McCammon. “Ras Conformational Switching: Simulating
Nucleotide-Dependent Conformational Transitions with Accelerated Molecular Dynam-
ics”. PLoS Computational Biology 5.3 (Mar. 2009), €1000325.

R. A. Phillips, J. L. Hunter, J. F. Eccleston, and M. R. Webb. “The Mechanism of Ras GTPase
Activation by Neurofibromin”. Biochemistry 42.13 (2003), pp. 3956—3965.


http://dx.doi.org/10.1038/srep19896
http://dx.doi.org/10.1152/physrev.00003.2012
http://dx.doi.org/10.1038/nrmicro2592
http://dx.doi.org/10.1038/nrmicro2592
http://dx.doi.org/10.1126/science.1192276
http://dx.doi.org/10.1126/science.1192276
http://dx.doi.org/10.1016/j.molcel.2009.03.008
http://dx.doi.org/10.1126/science.1166382
http://dx.doi.org/10.1242/jcs.014225
http://dx.doi.org/10.1242/jcs.014225
http://dx.doi.org/10.1038/nature06336
http://dx.doi.org/10.1074/jbc.M112.396861
http://dx.doi.org/10.1126/science.2406906
http://dx.doi.org/10.1002/anie.201103203
http://dx.doi.org/10.1073/pnas.0712095105
http://dx.doi.org/10.1371/journal.pcbi.1000325
http://dx.doi.org/10.1021/bi027316z

Bibliography

(323]

[324]

[325]

[330]

[331]

[332]

(333]

(334]

(335]

[336]

G. Privé, M. Milburn, L. Tong, A. de Vos, Z. Yamaizumi, S. Nishimura, and S. Kim. “X-ray
Crystal Structures of Transforming p21 Ras Mutants Suggest a Transition-State Stabiliza-
tion Mechanism for GTP Hydrolysis”. Proceedings of the National academy of Sciences 89.8

(Apr. 1992), pp. 3649-3653.

A. Diao, D. Rahman, D. J. Pappin, J. Lucocq, and M. Lowe. “The coiled-coil membrane
protein golgin-84 is a novel rab effector required for Golgi Ribbon Formation”. Journal of
Cell Biology 160.2 (2003), pp. 201-212.

J. Fischer, T. Weide, and A. Barnekow. “The MICAL Proteins and Rab1: A Possible Link to
the Cytoskeleton?” Biochemical and Biophysical Research Communications 328.2 (2005),
Pp- 415-423.

N. Hyvola, A. Diao, E. McKenzie, A. Skippen, S. Cockcroft, and M. Lowe. “Membrane
targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases”. EMBO
Journal 25.16 (2006), pp. 3750-3761.

B. D. Moyer, B. B. Allan, and W. E. Balch. “Rab1 Interaction with a GM130 Effector Com-
plex Regulates COPII Vesicle cis-Golgi Tethering”. Traffic 2.4 (2001), pp. 268—276.

M. Rosing, E. Ossendorf, A. Rak, and A. Barnekow. “Giantin interacts with both the small
GTPase Rab6 and Rab1”. Experimental Cell Research 313.11 (2007), pp. 2318-2325.
T. Weide, J. Teuber, M. Bayer, and A. Barnekow. “MICAL-1 Isoforms, Novel Rab1 Interact-

ing Proteins”. Biochemical and Biophysical Research Communications 306.1 (2003), pp. 79—
86.

T. Weide, M. Bayer, M. Koster, J.-P. Siebrasse, R. Peters, and A. Barnekow. “The Golgi
matrix protein GM13o0: a specific interacting partner of the small GTPase rabib”. EMBO
Reports 2.4 (2001), pp. 336—341.

R. Valsdottir, H. Hashimoto, K. Ashman, T. Koda, B. Storrie, and T. Nilsson. “Identification
of rabaptin-5, rabex-5, and GM130 as putative effectors of rab33sb, a regulator of retro-
grade traffic between the Golgi apparatus and ER”. FEBS Letters 508.2 (2001), pp. 201—
209.

S. Schoebel, L. K. Oesterlin, W. Blankenfeldt, R. S. Goody, and A. Itzen. “RabGDI displace-
ment by DrrA from Legionella is a Consequence of its Guanine Nucleotide Exchange
Activity”. Molecular Cell 36.6 (2009), pp. 1060—-1072.

Y.-W. Wu, L. K. Oesterlin, K.-T. Tan, H. Waldmann, K. Alexandrov, and R. S. Goody. “Mem-
brane targeting mechanism of Rab GTPases Elucidated by Semisynthetic Protein Probes”.
Nature Chemical Biology 6.7 (2010), pp. 534—540.

S. Piana, A. G. Donchev, P. Robustelli, and D. E. Shaw. “Water Dispersion Interactions
Strongly Influence Simulated Structural Properties of Disordered Protein States”. Journal
of Physical Chemistry B 119.16 (2015), pp- 5113—-5123.

R. B. Best and J. Mittal. “Free-energy landscape of the GB1 Hairpin in All-Atom Explicit
Solvent Simulations with Different Force Fields: Similarities and Differences”. Proteins
79.4 (2011), pp. 1318-1328.

M. Geyer, C. Wilde, J. Selzer, K. Aktories, and H. R. Kalbitzer. “Glucosylation of Ras by
Clostridium sordellii Lethal Toxin: Consequences for Effector Loop Conformations ob-
served by NMR Spectroscopy”. Biochemistry 42.41 (2003), pp- 11951-11959.

157


http://dx.doi.org/10.1073/pnas.89.8.3649
http://dx.doi.org/10.1073/pnas.89.8.3649
http://dx.doi.org/10.1083/jcb.200207045
http://dx.doi.org/10.1083/jcb.200207045
http://dx.doi.org/10.1016/j.bbrc.2004.12.182
http://dx.doi.org/10.1016/j.bbrc.2004.12.182
http://dx.doi.org/10.1038/sj.emboj.7601274
http://dx.doi.org/10.1038/sj.emboj.7601274
http://dx.doi.org/10.1034/j.1600-0854.2001.1o007.x
http://dx.doi.org/10.1016/j.yexcr.2007.03.031
http://dx.doi.org/10.1016/S0006-291X(03)00918-5
http://dx.doi.org/10.1016/S0006-291X(03)00918-5
http://dx.doi.org/10.1093/embo-reports/kve065
http://dx.doi.org/10.1093/embo-reports/kve065
http://dx.doi.org/10.1016/S0014-5793(01)02993-3
http://dx.doi.org/10.1016/S0014-5793(01)02993-3
http://dx.doi.org/10.1016/j.molcel.2009.11.014
http://dx.doi.org/10.1038/nchembio.386
http://dx.doi.org/10.1021/jp508971m
http://dx.doi.org/10.1021/jp508971m
http://dx.doi.org/10.1002/prot.22972
http://dx.doi.org/10.1002/prot.22972
http://dx.doi.org/10.1021/bi034529v

Bibliography

(337]

(338]

(339]

[340]

[341]

[342]

[343]

[344]

[345]

[346]

(347]

[349]

[350]

158

L. R. Vetter, F. Hofmann, S. Wohlgemuth, C. Herrmann, and 1. Just. “Structural conse-
quences of mono-glucosylation of Ha-Ras by Clostridium Sordellii Lethal Toxin”. Journal
of Molecular Biology 301.5 (2000), pp. 1091-1095.

S. Mukherjee, X. Liu, K. Arasaki, J. McDonough, J. E. Galan, and C. R. Roy. “Modulation of
Rab GTPase Function by a Protein Phosphocholine Transferase”. Nature 477.7362 (2011),
pp- 103—106.

K. L. Meagher, L. T. Redman, and H. A. Carlson. “Development of polyphosphate pa-

rameters for use with the AMBER Force Field”. Journal of Computational Chemistry 24.9
(2003), pp. 1016-1025.

A. Sousa da Silva and W. Vranken. “ACPYPE - AnteChamber PYthon Parser interfacE”.
BMC Research Notes 5.1 (2012), p. 367.

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman. “Multidi-
mensional Free-Energy Calculations Using the Weighted Histogram Analysis Method”.
Journal of Computational Chemistry 16.11 (1995), pp. 1339—1350.

A. Grossfield. WHAM: An Implementation of the Weighted Histogram Analysis Method.
Version Revision: 7153.

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon. “Electrostatics of
Nanosystems: Application to Microtubules and the Ribosome”. Proc. Natl. Acad. Sci. U.S.A.
98.18 (2001), pp. 10037-10041.

L.Li, C.Li, Z. Zhang, and E. Alexov. “On the Dielectric “Constant” of Proteins: Smooth Di-
electric Function for Macromolecular Modeling and Its Implementation in DelPhi”. Jour-
nal of Chemical Theory and Computation 9.4 (2013), pp. 2126—2136.

P.R. Goody, K. Heller, L. K. Oesterlin, M. P. Miller, A. Itzen, and R. S. Goody. “Reversible
phosphocholination of Rab proteins by Legionella Pneumophila Effector Proteins”. EMBO
Journal 31.7 (2012), pp. 1774-1784.

R. T. Raines. “Ribonuclease A”. Chemical Reviews 98.3 (1998). PMID: 11848924, pp. 1045-
1066.

F. M. Richards. “On the Enzymic Activity of Subtilisin-Modified Ribonuclease”. Proceed-
ings of the National Academy of Sciences of the United States of America 44.2 (1958),
pp. 162—166.

F. M. Richards and P. J. Vithayathil. “The Preparation of Subtilisin-Modified Ribonucle-
ase and the Separation of the Peptide and Protein Components”. Journal of Biological
Chemistry 234 (6 1959), pp. 1459—1465.

H. Wyckoff, K. D. Hardman, N. Allewell, T. Inagami, L. Johnson, and F. M. Richards. “The
Structure of Ribonuclease-S at 3.5A Resolution”. Journal of Biological Chemistry 242.17
(1967), pp- 3984-3988.

H. Wyckoft, D. Tsernoglou, A. Hanson, J. Knox, B. Lee, and F. M. Richards. “The Three-
Dimensional Structure of Ribonuclease-S Interpretation of an Electron Density Map at a
Nominal Resolution of 2A”. Journal of Biological Chemistry 245.2 (1970), pp. 305—328.


http://dx.doi.org/10.1006/jmbi.2000.4045
http://dx.doi.org/10.1006/jmbi.2000.4045
http://dx.doi.org/10.1038/nature10335
http://dx.doi.org/10.1038/nature10335
http://dx.doi.org/10.1002/jcc.10262
http://dx.doi.org/10.1002/jcc.10262
http://dx.doi.org/10.1186/1756-0500-5-367
http://dx.doi.org/10.1002/jcc.540161104
http://dx.doi.org/10.1073/pnas.181342398
http://dx.doi.org/10.1073/pnas.181342398
http://dx.doi.org/10.1021/ct400065j
http://dx.doi.org/10.1021/ct400065j
http://dx.doi.org/10.1038/emboj.2012.16
http://dx.doi.org/10.1038/emboj.2012.16
http://dx.doi.org/10.1021/cr960427h
http://dx.doi.org/10.1021/cr960427h
http://www.jstor.org/stable/89422
http://www.jstor.org/stable/89422
http://www.jstor.org/stable/89422

Bibliography

[351]

[352]

(353]

[354]

[355]

[356]

[361]

[362]

[363]

[364]

G. S. Ratnaparkhi, S. K. Awasthi, P. Rani, P. Balaram, and R. Varadarajan. “Structural and
Thermodynamic Consequences of Introducing a-aminoisobutyric Acid in the S peptide
of Ribonuclease S”. Protein engineering 13.10 (2000), pp. 697-702.

J. M. Goldberg and R. L. Baldwin. “A Specific Transition State for S-peptide Combining
With Folded S-protein and Then Refolding”. Proceedings of the National Academy of Sci-
ences of the United States of America 96.5 (1999), pp. 2019—2024.

F. M. Finn and K. Hofmann. “Studies on Polypeptides. XXXIII. Enzymic Properties of Par-
tially Synthetic Ribonucleasesi-4”. Journal of the American Chemical Society 87.3 (1965),
pp. 645-651.

A. Komoriya and I. Chaiken. “Sequence Modeling Using Semisynthetic Ribonuclease S”
Journal of Biological Chemistry 257.5 (1982), pp. 2599—2604.

H. C. Taylor, A. Komoriya, and I. M. Chaiken. “Crystallographic Structure of an Active,
Sequence-Engineered Ribonuclease”. Proceedings of the National Academy of Sciences
82.19 (1985), pp. 6423-6426.

C. M. Cuchillo, M. V. Nogues, and R. T. Raines. “Bovine Pancreatic Ribonuclease: Fifty
Years of the First Enzymatic Reaction Mechanism”. Biochemistry 50.37 (2011), pp. 7835~
7841.

F. M. Finn and K. Hofmann. “S-peptide-S-protein System. Model for Hormone-Receptor
Interaction”. Accounts of Chemical Research 6.5 (1973), pp. 169—176.

A. A. Schreier and R. L. Baldwin. “Mechanism of Dissociation of S-peptide From Ribonu-
clease S”. Biochemistry 16.19 (1977), pp. 4203—4209.

J. M. Goldberg and R. L. Baldwin. “Kinetic Mechanism of a Partial Folding Reaction. 2.
Nature of the Transition State”. Biochemistry 37.8 (1998), pp. 2556—2563.

A. T. Alexandrescu, K. Rathgeb-Szabo, W. Jahnke, T. Schulthess, R. A. Kammerer, and
K. Rumpel. “15N Backbone Dynamics of the S-peptide from Ribonuclease A in its free
and S-protein Bound Forms: Toward a Site-Specific Analysis of Entropy Changes upon
Folding”. Protein Science 7.2 (1998), pp. 389—402.

P.S. Kim and R. L. Baldwin. “A helix stop signal in the isolated S-peptide of ribonuclease
A”. Nature 5949 (1984), pp- 329-334.

M. Rico, ]J. Santoro, F. Bermejo, J. Herranz, J. Nieto, E. Gallego, and M. Jimenez. “Ther-
modynamic Parameters for the Helix—Coil Thermal Transition of Ribonuclease-S-peptide
and Derivatives From 1th-Nmr Data”. Biopolymers 25.6 (1986), pp. 1031-1053.

A. Bierzynski, P. S. Kim, and R. L. Baldwin. “A Salt Bridge Stabilizes the Helix Formed
by Isolated C-peptide of RNase A”. Proceedings of the National Academy of Sciences 79.8
(1982), pp. 2470-2474.

K. R. Shoemaker, P. S. Kim, D. N. Brems, S. Marqusee, E. J. York, I. M. Chaiken, J. M.

Stewart, and R. L. Baldwin. “Nature of the Charged-Group Effect on the Stability of the
C-peptide Helix”. Proceedings of the National Academy of Sciences 82.8 (1985), pp. 2349—

2353.

159


http://dx.doi.org/10.1093/protein/13.10.697
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC26729/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC26729/
http://dx.doi.org/10.1021/ja01081a043
http://dx.doi.org/10.1021/ja01081a043
http://dx.doi.org/10.1021/bi201075b
http://dx.doi.org/10.1021/bi201075b
http://dx.doi.org/10.1021/ar50065a004
http://dx.doi.org/10.1021/bi00638a012
http://dx.doi.org/10.1021/bi972403q
http://dx.doi.org/10.1002/pro.5560070220
http://dx.doi.org/10.1038/307329a0
http://dx.doi.org/10.1002/bip.360250605

Bibliography

[365]

[366]

[367]

[368]

[369]

[370]

[371]

(372]

(373]

(374]

(375]

[376]

(377]

[378]

160

M. Schlosshauer and D. Baker. “A General Expression for Bimolecular Association
Rates with Orientational Constraints”. The Journal of Physical Chemistry B 106.46 (2002),

pp- 12079-12083.
M. Schlosshauer and D. Baker. “Realistic Protein—protein Association Rates From a Sim-

ple Diffusional Model Neglecting Long-Range Interactions, Free Energy Barriers, and
Landscape Ruggedness”. Protein Science 13.6 (2004), pp. 1660—1669.

S. H. Northrup, S. A. Allison, and J. A. McCammon. “Brownian Dynamics Simulation of
Diffusion Influenced Bimolecular Reactions”. The Journal of Chemical Physics 80.4 (1984),
pp- 1517-1524.

D. L. Ermak and J. McCammon. “Brownian Dynamics With Hydrodynamic Interactions”.
The Journal of chemical physics 69.4 (1978), pp. 1352—1360.

F. M. Richards, H. Wyckoff, W. Carlson, N. Allewell, B. Lee, and Y. Mitsui. “Protein Struc-
ture, Ribonuclease-S and Nucleotide Interactions”. In: Cold Spring Harbor Symposia on
Quantitative Biology. Vol. 36. Cold Spring Harbor Laboratory Press. 1972, pp. 35-43.

M. P. Luitz and M. Zacharias. “Role of tyrosine hot-spot residues at the interface of col-
icin E9 and Immunity Protein 9: A Comparative Free Energy Simulation Study”. Proteins:
Structure, Function, and Bioinformatics 81.3 (2013), pp. 461—468.

A. Tjernberg, N. Markova, W. J. Griffiths, and D. Hallén. “DMSO-related Effects in Protein
Characterization”. Journal of biomolecular screening 11.2 (2006), pp. 131-137.

G. S. Ratnaparkhi and R. Varadarajan. “Thermodynamic and Structural Studies of Cav-
ity Formation in Proteins Suggest That Loss of Packing Interactions Rather Than the
Hydrophobic Effect Dominates the Observed Energetics”. Biochemistry 39.40 (2000),

pp- 12365-12374.

G. Kieseritzky and E.-W. Knapp. “Optimizing pKA Computation in Proteins with pH
Adapted Conformations”. Proteins: Structure, Function, and Bioinformatics 71.3 (2008),
PP- 1335-1348

J. L. Markley. “Observation of Histidine Residues in Proteins by Nuclear Magnetic Reso-
nance Spectroscopy”. Accounts of Chemical Research 8.2 (1975), pp. 70—80.

B. Borah, C. W. Chen, W. Egan, M. Miller, A. Wlodawer, and J. S. Cohen. “Nuclear Mag-
netic Resonance and Neutron Diffraction Studies of the Complex of Ribonuclease A with
Uridine Vanadate, a Transition-State Analog”. Biochemistry 24.8 (1985), pp. 2058—-2067.

D. E. Walters and A. Allerhand. “Tautomeric States of the Histidine Residues of Bovine
Pancreatic Ribonuclease A. Application of Carbon 13 Nuclear Magnetic Resonance Spec-
troscopy.” Journal of Biological Chemistry 255.13 (1980), pp. 6200—6204.

J. E. Brown and W. A. Klee. “Helix-Coil Transition of the Isolated Amino Terminus of
Ribonuclease”. Biochemistry 10.3 (1971), pp. 470—476.

M. Dadlez, A. Bierzynski, A. Godzik, M. Sobocinska, and G. Kupryszewski. “Conforma-
tional Role of His-12 in C-peptide of Ribonuclease A”. Biophysical chemistry 31.1 (1988),
pp- 175-181.


http://dx.doi.org/10.1021/jp025894j
http://dx.doi.org/10.1021/jp025894j
http://dx.doi.org/10.1110/ps.03517304
http://dx.doi.org/10.1063/1.446900
http://dx.doi.org/10.1063/1.446900
http://dx.doi.org/10.1063/1.436761
http://dx.doi.org/10.1002/prot.24203
http://dx.doi.org/10.1002/prot.24203
http://dx.doi.org/10.1177/1087057105284218
http://dx.doi.org/10.1021/bi000775k
http://dx.doi.org/10.1021/bi000775k
http://dx.doi.org/10.1002/prot.21820
http://dx.doi.org/10.1002/prot.21820
http://dx.doi.org/10.1021/ar50086a004
http://dx.doi.org/10.1021/bi00329a038
http://dx.doi.org/10.1021/bi00779a019
http://dx.doi.org/10.1016/0301-4622(88)80023-1
http://dx.doi.org/10.1016/0301-4622(88)80023-1

Bibliography

(389]

[390]

[391]

[392]

(393]

K. R. Shoemaker, R. Fairman, D. A. Schultz, A. D. Robertson, E. J. York, J. M. Stewart,
and R. L. Baldwin. “Side-Chain Interactions in the C-peptide Helix: Phe 8 — His 12+”.
Biopolymers 29.1 (1990), pp. 1—11.

A. M. Labhardt. “Secondary Structure in Ribonuclease: I. Equilibrium Folding Transitions
Seen by Amide Circular Dichroism”. Journal of molecular biology 157.2 (1982), pp. 331-
355-

D. Loftus, G. O. Gbenle, P. S. Kim, and R. L. Baldwin. “Effects of Denaturants on Amide

Proton Exchange Rates: A Test for Structure in Protein Fragments and Folding Interme-
diates”. Biochemistry 25.6 (1986), pp. 1428-1436.

B. Rabenstein and E.-W. Knapp. “Calculated pH-Dependent Population and Protonation
of Carbon-Monoxy-Myoglobin Conformers”. Biophysical Journal 80.3 (2001), pp. 1141—
1150.

D. A. Pearlman and B. G. Rao. “Free Energy Calculations: Methods and Applications”.
In: Encyclopedia of Computational Chemistry. John Wiley & Sons, Ltd, 2002. ISBN:
9780470845011.

C. H. Bennett. “Efficient Estimation of Free Energy Difference from Monte Carlo Data”.
Journal of Computational Physics 22 (1976), pp. 245-268.

C. W. Hopkins, S. Le Grand, R. C. Walker, and A. E. Roitberg. “Long-Time-Step Molec-
ular Dynamics through Hydrogen Mass Repartitioning”. Journal of Chemical Theory and
Computation 11.4 (2015). PMID: 26574392, pp. 1864—1874.

M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford university press,
1989.

G. Schreiber, G. Haran, and H. Zhou. “Fundamental Aspects of Protein-Protein Associa-
tion Kinetics”. Chemical Reviews 109.3 (2009). PMID: 19196002, pp. 839-860.

H.-X. Zhou. “Brownian Dynamics Study of the Influences of Electrostatic Interaction
and Diffusion on Protein-Protein Association Kinetics.” Biophysical journal 64.6 (1993),
p. 1711.

K. Solc and W. H. Stockmayer. “Kinetics of Diffusion-Controlled Reaction Between

Chemically Asymmetric Molecules. II. Approximate Steady-State Solution”. International
Journal of Chemical Kinetics 5.5 (1973), pp- 733-752.

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon. “Electrostatics of
Nanosystems: Application to Microtubules and the Ribosome”. Proceedings of the National
Academy of Sciences 98.18 (2001), pp. 10037-10041.

H. Wyckoff, K. D. Hardman, N. Allewell, T. Inagami, L. Johnson, and F. M. Richards. “The
structure of ribonuclease-S at 3.5 A resolution”. Journal of Biological Chemistry 242.17
(1967), pp. 3984-3988.

H. R. Kunsch. “The Jackknife and the Bootstrap for General Stationary Observations”.
Annals of Statistics 17.3 (Sept. 1989), pp. 1217-1241.

W. Kabsch. “A Solution for the Best Rotation to Relate Two Sets of Vectors”. Acta Crys-
tallographica, Section A: Foundations of Crystallography 32.5 (Sept. 1976), pp. 922—-923.

161


http://dx.doi.org/10.1002/bip.360290104
http://dx.doi.org/10.1016/0022-2836(82)90238-8
http://dx.doi.org/10.1016/0022-2836(82)90238-8
http://dx.doi.org/10.1021/bi00354a036
http://dx.doi.org/10.1016/S0006-3495(01)76091-2
http://dx.doi.org/10.1016/S0006-3495(01)76091-2
http://dx.doi.org/10.1016/0021-9991(76)90078-4
http://dx.doi.org/10.1021/ct5010406
http://dx.doi.org/10.1021/ct5010406
http://dx.doi.org/10.1021/cr800373w
http://dx.doi.org/10.1016/S0006-3495(93)81543-1
http://dx.doi.org/10.1016/S0006-3495(93)81543-1
http://dx.doi.org/10.1002/kin.550050503
http://dx.doi.org/10.1002/kin.550050503
http://dx.doi.org/10.1073/pnas.181342398
http://dx.doi.org/10.1073/pnas.181342398
http://dx.doi.org/10.1214/aos/1176347265
http://dx.doi.org/10.1107/S0567739476001873
http://dx.doi.org/10.1107/S0567739476001873

Bibliography

[394] W.Kabsch. “A Discussion of the Solution for the Best Rotation to Relate Two Sets of Vec-
tors”. Acta Crystallographica, Section A: Foundations of Crystallography 34.5 (Sept. 1978),
pp- 827—-828.

[395] S.Liem, D. Brown, and J. Clarke. “Molecular Dynamics Simulations on Distributed Mem-
ory Machines”. Computer Physics Communications 67.2 (1991), pp. 261-267.

[396] K. ]J. Bowers, R. O. Dror, and D. E. Shaw. “The Midpoint Method for Parallelization of
Particle Simulations”. The Journal of Chemical Physics 124.18, 184109 (2006).

162


http://dx.doi.org/10.1107/S0567739478001680
http://dx.doi.org/10.1107/S0567739478001680
http://dx.doi.org/10.1016/0010-4655(91)90021-C
http://dx.doi.org/10.1063/1.2191489

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Molecular dynamics simulations
	Outline

	Exploring biomolecular dynamics and interactions using advanced sampling methods
	Introduction
	Molecular mechanics force fields to study biomolecular and soft matter systems
	Sampling problem in molecular simulations
	Advanced sampling approaches
	Simulated annealing and tempering methods
	Scaling or deforming the force field energy function to improve sampling
	Conformational flooding and meta-dynamics approaches
	Temperature for replica-exchange and parallel tempering simulations
	Hamiltonian replica-exchange approaches

	Application of REMD simulations to improve free energy calculations
	Future directions

	Weighted Ensemble
	Introduction
	The weighted ensemble method
	Transition state theory
	The weighted ensemble algorithm
	History based rate calculation
	Probability reweighting

	Convergence bottlenecks in Weighted Ensemble
	Intra-bin barriers
	Orthogonal barriers
	Conformational flooding

	Discussion

	Protein-ligand docking
	Introduction
	Methods
	H-REMD Docking
	Simulation Setup
	Hamiltonian Replica Exchanges
	Test systems

	Results and Discussion
	FKBP ligand-receptor complexes
	Refinement of a MHC class I peptide-protein complexes
	Additional Information

	Conclusions

	Covalent dye attachment on flexible peptides
	Introduction
	Results
	MD simulations
	Conformational regime
	PET-FCS measurements
	Fluorescence quenching
	Refolding dynamics
	Circular dichroism spectra

	Discussion
	Methods
	Molecular Dynamics
	Peptide synthesis
	PET-FCS Measurements
	Quenching Autocorrelation
	FCS Data Analysis

	Supplementary experimental results
	Control measurements
	Circular dichroism


	Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state
	Introduction
	Results
	Molecular Dynamics simulations and in vitro deadenylylation assay on Rab1b
	Free energy calculation of switch region unfolding reveals stabilization by adenylylation
	Electrostatic effects of adenylylation affect Rab1b conformations

	Discussion
	Methods
	Molecular Dynamics Simulation Setup
	Simulation protocol
	Stacking interaction between Phe45 and AMP-Tyr77 sidechains
	Free energy simulations based on the root mean square deviation of a set of intramolecular distances
	Electrostatic energy calculations
	Protein Expression and Purification
	Preparative nucleotide exchange
	Preparative Adenylylation
	Deadenylylation of Peptide-AMP by SidD
	Deadenylylation assay
	Convergence of dRMSD simulations


	From Chaos to Order: The association process of RNAse-S
	Introduction
	Results and Discussion
	Intrinsic disorder of S-peptide
	Diffusion controlled models for the S-peptide association
	Free energy calculations on S-peptide Alanine mutants
	Conformational regimes of S-protein and S-peptide
	S-peptide8-14 association simulations

	Conclusion
	Methods
	Preparations
	Simulation protocol
	Free energy calculations for Alanine mutations
	Association simulations
	Diffusion controlled association rate calculation
	Analytic Schlosshauer model
	Brownian Dynamics Simulations


	Conclusion and Outlook
	hdWE: A hyper-dimensional Weighted Ensemble implementation
	Implementation details
	Usage of hdWE

	Distance based RMSD potential in GROMACS
	Theory
	Application notes

	Symbols and Abbreviations
	List of Figures / List of Tables
	List of Publications
	Bibliography

