
GigE Vision Data Acquisition for Visual Servoing
using SG/DMA Proxying

Martin Geier, Florian Pitzl and Samarjit Chakraborty
Chair of Real-Time Computer Systems

Technical University of Munich, Germany
geier/pitzl/chakraborty@rcs.ei.tum.de

ABSTRACT
In many domains such as robotics and industrial automa-
tion, a growing number of Control Applications utilize cam-
eras as a sensor. Such Visual Servoing Systems increasingly
rely on Gigabit Ethernet (GigE) as a communication back-
bone and require real-time execution. The implementation
on small, low-power embedded platforms suitable for the
respective domain is challenging in terms of both computa-
tion and communication. Whilst advances in CPU and Field
Programmable Gate Array (FPGA) technology enable the
implementation of computationally heavier Image Process-
ing Pipelines, the interface between such platforms and an
Ethernet-based communication backbone still requires care-
ful design to achieve fast and deterministic Image Acqui-
sition. Although standardized Ethernet-based camera pro-
tocols such as GigE Vision unify camera configuration and
data transmission, traditional software-based Image Acqui-
sition is insufficient on small, low-power embedded platforms
due to tight throughput and latency constraints and the
overhead caused by decoding such multi-layered protocols.
In this paper, we propose Scatter-Gather Direct Memory Ac-
cess (SG/DMA) Proxying as a generic method to seamlessly
extend the existing network subsystem of current Systems-
on-Chip (SoCs) with hardware-based filtering capabilities.
Based thereon, we present a novel mixed-hardcore/softcore
GigE Vision Framegrabber capable of directly feeding a sub-
sequent in-stream Image Processing Pipeline with sub-mi-
crosecond acquisition latency. By rerouting all incoming
Ethernet frames to our GigE Vision Bridge using SG/DMA
Proxying, we are able to separate image and non-image data
with zero CPU and memory intervention and perform Im-
age Acquisition at full line rate of Gigabit Ethernet (i.e.,
125 Mpx/s for grayscale video). Our experimental evalua-
tion shows the benefits of our proposed architecture on a
Programmable SoC (pSoC) that combines a fixed-function
multi-core SoC with configurable FPGA fabric.

1. INTRODUCTION
In many domains such as robotics and industrial automa-
tion, an increasing number of Control Applications utilize
cameras to sense the plant state. Such Visual Servoing Sys-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESTIMedia’16, October 01-07, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN 978-1-4503-4543-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2993452.2993455

tems (VSSs) require real-time execution of both the Con-
trol Algorithm and the preceding Image Processing (IP)
Pipeline. Whilst traditional VSSs relied on PC-based Pro-
cessing Platforms with high-end CPUs (e.g., Intel Xeon),
there is an ever increasing demand for smaller, less expen-
sive and less power-hungry implementations. This demand
can be satisfied in a number of ways:
Refining IP Algorithms allows to reduce the computational
load by, e.g., trading accuracy, area or depth coverage for
performance. To compensate for that, recent approaches
fuse inputs from additional sensors (e.g., Inertial Measure-
ment Units) to Vision Features with impressive results [7].
New Processing Platforms such as NVIDIA’s Jetson TX1
(featuring a Tegra X1 SoC with 4+4 ARM Cores and an
up-to one TFLOPS GPU) combine the unparalleled floating
point performance of GPUs with a multi-core CPU system
and a small footprint (in terms of both size and power).
Refined Embedded Processing Platforms offer a growing num-
ber of increasingly complex CPU cores, often teamed with
fixed-function hardware accelerators as, e.g., ARM’s NEON
SIMD (Single Instruction, Multiple Data) coprocessor. This
slowly enables the implementation of computationally heavy
algorithms on such small, low-power platforms, although
their processing capabilities (most likely) will always lag be-
hind those of traditional PC-based Processing Platforms.
Refined Reconfigurable Processing Platforms such as mod-
ern pSoCs combine configurable FPGA fabric with fixed-
function hardcores delivering high processing speeds at low
power consumption. Such pSoCs are now readily available
from multiple vendors, e.g., the Xilinx Zynq-7000 or Al-
tera’s Arria series [29, 3]. In contrast to previous devices
with hardcore CPUs only (e.g., Xilinx’ Virtex-4 FX), cur-
rent pSoCs are much more CPU-focused and feature an ex-
tensive set of hardcores such as interconnects, SRAMs, DDR
memory controllers and various I/O peripherals (e.g., GigE,
USB, CAN, I2C and UART). Additionally, custom functions
can be implemented in the FPGA fabric as softcore blocks.

Whilst these advanced IP Algorithms and Processing Plat-
forms may deliver the required computational performance,
many industrial VSSs – due to their physically distributed
nature – also require fast, deterministic long-range com-
munication technologies to link sensing, processing and ac-
tuation components together. Over the last two decades,
Ethernet- and IPv4-based communication backbones have
seen widespread use, both for auxiliary management and
actual real-time process data [10]. The main reasons for
this are long range per segment, low component costs and
(partial to full) compatibility to existing infrastructures. Gi-
gabit Ethernet, in particular, is well suited for high-speed
image data and capable of transferring over, e.g., 130 uncom-
pressed RGB frames per second at VGA resolution. Stan-

19

dardized protocols for camera control and data transmission
such as GigE Vision [1] enable the integration of cameras and
IP components from multiple vendors and thus the design
of complex VSSs. Although modern smart cameras now al-
low for on-board execution of increasingly complex, vendor-
specific IP algorithms (potentially reducing the data rate),
many VSSs rely on traditional streaming cameras (trans-
mitting uncompressed video) due to cost and interoperabil-
ity reasons. Thus, fast and deterministic interfacing of such
Ethernet-based Communication Backbones to the aforemen-
tioned Processing Platforms is crucial for high-speed VSSs
to benefit from the fast-paced progress in both domains.

Traditionally, all OSI layers above the MAC (media access
control) sublayer are handled in software by device drivers
and IPv4 stack. This impacts both throughput and timing
determinism due to interference with other software tasks
that share CPUs, interconnects or memories. When tar-
geting modern Refined Reconfigurable Processing Platforms,
however, a hardware-centric and thus less interference-prone
approach for GigE Vision Image Acquisition can be identi-
fied – Its implementation, though, is a nontrivial task for
multiple reasons: With Ethernet and IPv4 being multi-lay-
ered, frame/packet-based protocols, Image Acquisition via
GigE Vision requires a lot more logic in contrast to tradi-
tional, simpler interfaces such as, e.g., CameraLink. In addi-
tion, the image data arrives at a line rate of up to 1Gb/s and
has to be both forwarded and processed with the smallest
possible latency to improve control performance. Whilst the
former challenge also exists for transmitting the actuation
signals (previously sent via, e.g., CAN), these signals usually
are low-speed but still require low latencies. Handling both
high-speed image and low-speed actuator data over one sin-
gle Ethernet interface makes a time- and resource-efficient
implementation even more challenging.

In this paper, we evaluate the Xilinx Zynq Programmable
SoC (Zynq) as such a Refined Reconfigurable Processing Plat-
form for high-speed VSSs and propose SG/DMA Proxying
as a generic method to extend and accelerate the network
subsystem of current SoCs (consisting of GigE controller,
device driver and IPv4 stack) with minimal changes. With
SG/DMA Proxying, incoming Ethernet frames (received by
a standard GigE controller) are rerouted to a custom core
(which performs user-defined, hardware-based filtering) and
all remaining frames are transparently forwarded to the un-
changed IPv4 stack. Based thereon, we present a novel hard-
ware-based, mixed-hardcore/softcore GigE Vision Frame-
grabber that enables both Image Acquisition from a stream-
ing (i.e., non-smart) camera at full line rate of Gigabit Eth-
ernet and subsequent in-stream Image Processing. To this
end, we supplement Zynq’s hardcore GigE controller with a
softcore GigE Vision Bridge to create a GigE Vision Frame-
grabber capable of separating image and non-image Ether-
net frames. Non-image frames are automatically sent to the
DDR memory and processed by OS and IPv4 stack as if
directly received. GigE Vision image frames, however, are
decoded, checked, converted to AXI4 stream format and sent
to the subsequent IP modules. We combine back-pressure
flow control and fully pipelined, one-clock-per-pixel Image
Filtering and Edge Detection to achieve in-stream process-
ing at 125 Mpx/s. In contrast to previous solutions based on
additional (softcore) Ethernet controllers primarily or even
exclusively used for Image Acquisition, our approach seam-
lessly integrates with both hardware (GigE controller) and
software (IPv4 stack) of current network subsystems. It thus
is not only resource-efficient but also capable of handling in-
coming non-image traffic without CPU intervention.

Using our proposed architecture we are able to implement
a high-speed, low-power VSS that operates at 178 frames
per second (fps) and is capable of stabilizing a Magnetic
Levitating Sphere used as a demonstration setup. The re-
sulting system is compared to a reference implementation
on a PC-based Processing Platform (PC) and a state-of-the-
art dual-core Refined Embedded Processing Platform (EPP)
both using traditional software-based Image Acquisition as
opposed to our hardware-based GigE Vision Framegrabber.
We show that our approach outperforms the traditional PC
and that the selected EPP – despite hand-optimized IP ker-
nels – is unable to satisfy the application requirements due
to acquisition and processing delays (caused by CPU, RAM
and interconnect congestion). As the proposed solution only
relies and depends on common architectural features, it is
suitable for other pSoCs (e.g., Altera Arria) and could also
be integrated in future SoCs. Furthermore, its modular and
generic design opens up many possibilities for future work,
such as support for multiple or encrypted camera streams.
In summary, the main contributions of this paper are

• Mixed-hardcore/softcore GigE Vision Data Acquisition
using SG/DMA Proxying with transparent Separation
of incoming Ethernet Frames into image and non-im-
age data at full line rate of Gigabit Ethernet and

• Design and Implementation of the entire Visual Ser-
voing System on a Refined Reconfigurable Processing
Platform (Zynq) with our reusable, hardware-based
GigE Vision Framegrabber and an in-stream mixed
hardware/software Image Processing Pipeline.

In addition, we present two traditional software-based im-
plementations of the Visual Servoing System on both

• a PC-based Processing Platform (AMD FX-6100 six-
core CPU with 8 GB RAM) used as a reference and

• a Refined Embedded Processing Platform (two ARM
Cortex-A9 CPUs with FPU/NEON coprocessor each).

The rest of this paper is organized as follows. Related work is
presented in Sec. 2. Next, we introduce both our Represen-
tative Use Case (Sec. 3) and Processing Platforms (PPs) in-
cluding regular SG/DMA operation (Sec. 4.1.2), and, based
thereon, describe mapping and implementation options of
the Visual Servoing Application on each PP (Sec. 4). Sec. 5
then presents our proposed system architecture for high-
speed VSSs featuring SG/DMA Proxying (Sec. 5.3.3) and
Sec. 6 shows an experimental evaluation for all three VSS
implementations. We finally conclude our work in Sec. 7.

2. RELATED WORK
Current pSoCs (e.g., the Xilinx Zynq series) are increasingly
used in various domains ranging from small mobile applica-
tions [16] to large distributed setups [18]. Their compu-
tational capabilities, versatile interfaces and power-efficient
design are promising for small, low-power VSSs, too, as tra-
ditional VSSs relied on high-end CPUs and often were lim-
ited by supply and cooling constraints. Due to the complex
architecture, the interconnect performance of current pSoCs
heavily depends on the communication pattern [25]. As the
amount of algorithm-intrinsic data of Image Processing Al-
gorithms varies by multiple orders of magnitude [15, 27], the
implementation of deterministic IP Pipelines remains chal-
lenging. In addition to these computational aspects valid for
both local and distributed VSSs, the latter also require fast,
reliable and long-range communication for image data.

20

Until recently, high-speed VSSs relied on locally connected
cameras with dedicated camera interfaces such as Camera-
Link or LVDS [15, 19]. Such systems operate at and beyond
1000 fps and, depending on lighting conditions, are primarily
limited by camera exposure and read out delays [31]. None
of these interfaces, however, are suitable for distributed in-
dustrial VSSs due to short maximum cable lengths and lim-
ited noise immunity. Over the last decade, several inter-
est groups (founded by camera, IC and platform vendors
such as Basler, EqcoLogic/Microchip and Matrox) thus de-
vised solutions for long-range camera connectivity including
recent high-speed interfaces capable of transferring up to
10 Gbit/s over 100 meters such as CoaXPress and GigE Vi-
sion 2.x [14, 1]. Although they solve the issue of limited
cable lengths for distributed VSSs, there still is a lack of
resource-efficient, fast, deterministic and generic Image Ac-
quisition solutions for Ethernet cameras on embedded plat-
forms suitable for small, low-power VSSs. On those plat-
forms, Ethernet is generally managed by software (via de-
vice drivers and IPv4 stack) [20, 22]. This imposes severe
restrictions on achievable maximum data rate and minimum
acquisition latency due to delays caused by process schedul-
ing, interrupts and congestion of CPUs, memories and inter-
connects. Therefore, more hardware-centric interfacing ap-
proaches have been evaluated on both FPGAs and pSoCs,
e.g., for network intrusion detection [17, 6] and transfer of
image data. Most solutions for image data, however, focus
on Image Transmission (i.e., converting the video stream
from the sensor’s local interface to the particular long-range
communication standard) for both serial (e.g., CameraLink
and CoaXPress) and Ethernet-based interfaces [30].

More recently, Image Transmission via GigE Vision is
supported by a few commercial softcores available for cur-
rent FPGA platforms [21, 23]. Although systems using hard-
ware-based Image Acquisition have been proposed [12, 11],
no data regarding their detailed mode of operation, resource
usage or acquisition latency has been published. Those
implementations rely on dedicated softcore Ethernet con-
trollers and thus not only are non-optimal in terms of both
FPGA resource usage and power consumption, but might
also lack support for generic (i.e., non-image) IPv4 traffic.
The optional receiver of the latter commercial solution for
Image Transmission [24], however, can be used as a reference
against which our proposed solution using SG/DMA Prox-
ying can be compared qualitatively. It requires a dedicated
softcore Ethernet controller, too, and supports non-image
IPv4 traffic via software callbacks from its proprietary GigE
Vision library that depends on the CPU to fetch every non-
image frame from a single receive buffer. Compared to our
solution, it requires a similar amount of FPGA resources and
should deliver equally low Image Acquisition latencies due
to its unbuffered stream output for image data. It should,
however, be noted that the resource consumption of our ar-
chitecture is currently dominated by an AXI interconnect
sourced from Xilinx. In real-world FPGA designs with ad-
ditional softcores, this interconnect can be shared with such
peripherals which greatly reduces its resource overhead and
makes our solution the more efficient one. Furthermore, our
Framegrabber relies on Zynq’s hardcore GigE controller and
thus benefits from the lower resource usage of hardcores in
terms of both power and area (compared to a pure softcore
implementation). As an additional advantage of SG/DMA
Proxying, our proposed architecture integrates seamlessly
with the network subsystem of current SoCs and thus is
capable of handling incoming non-image traffic without any
CPU intervention (as opposed to one callback per frame).

Figure 1: Experimental Setup – Plant and Visual
Servoing System with Processing Platform (bottom)

3. REPRESENTATIVE USE CASE
We evaluate the performance of all three PPs and their re-
spective Image Acquisition methods using a real-world Ex-
perimental Setup based on a Magnetic Levitating Sphere.
Continuous levitation is achieved via Visual Servoing, i.e.,
optically detecting the sphere’s current position followed by
computing the required actuation signal within the order
of milliseconds. Our resulting VSS (consisting of actuator,
sensor and the respective PP) relies on Gigabit Ethernet
as a Communication Backbone. With Ethernet now be-
ing widely used in industrial automation and many Visual
Servoing Applications requiring similar low-latency Image
Acquisition and Processing, our Experimental Setup thus
serves as a representative use case.

Fig. 1 shows our overall setup consisting of plant and the
VSS with its Ethernet-based Communication Backbone. All
VSS components are directly connected to a managed switch
(ALLNET 8894WMP) in default settings (i.e., RSTP, IGMP
and QoS features disabled). We assume that GigE Vision
frames are neither lost nor reordered on their way from
camera to PP. While this assumption holds true for sim-
ple topologies as long each link is below its saturation limit,
more complex setups will require techniques such as Quality
of Service (QoS) or Stream Reservation via AVB/TSN [13].

3.1 Actuator/Plant: Magn. Levitating Sphere
The demonstrator mainly consists of a steel hemisphere

(ø=40mm, h=60mm, w=160g) and an above-mounted dual-
coil electromagnet with matching supply and control unit.
Whilst one coil is continuously active, the other one is driven
with an adjustable current set over Ethernet via UDP/IPv4
(User Datagram Protocol/Internet Protocol version 4). Lev-
itation is achieved by controlling the current and thus the
resulting magnetic force Fmag such that it compensates the
sphere’s weight at all times. This yields a non-linear control
problem as Fmag ∝ d−2 with sphere-to-coil distance d.

Experiments with a nearly-zero latency sensor (i.e., a light
barrier) have shown that stable levitation is possible with
sampling rates as low as 125 Hz. With Visual Servoing,
however, the increased sensing delay (due to image acquisi-
tion and processing) requires compensation via higher rates.
This requirement depends not only on plant dynamics alone,
but also on both latency and accuracy of each of the three
application stages introduced in Sec. 3.3. Although these
factors are to some extend orthogonal and thus could be ex-
ploited both independently (e.g., by trading IP accuracy for
latency) and jointly (e.g., by co-designing IP and controller),
we, however, focus on the Image Acquisition stage.

21

Figure 2: Image Processing Pipeline of the Visual
Servoing System and selected Splitting Points

3.2 Sensor: AVT Mako GigE Vision Camera
We use an AVT Mako G-032B camera [2] mounted on

a rigid bracket to capture the sphere’s position. It has an
1/3 inch grayscale CCD sensor with a native resolution of
658 × 492 pixels and 12 bit depth. Reducing the region-
of-interest (ROI) allows for frame rates beyond 102 fps (at
maximum ROI) to over 700 fps (at minimum ROI). We use
a standard 5 mm wide-angle lens at an aperture of f/4.
The camera is interfaced via a single Gigabit Ethernet port
that also may carry the supply power (using Power over Eth-
ernet). Configuration and image acquisition is performed via
GigE Vision and its respective subprotocols, the GigE Vision
Control Protocol (GVCP) and the GigE Vision Streaming
Protocol (GVSP). Both implement dedicated retransmission
mechanisms as they are based on UDP (which itself does not
handle packet loss). Using GVCP the camera is configured
to an exposure time of 3 ms, a pixel depth of 8 bit and an
ROI of 325× 250 px which yields a frame rate of 178 fps in
continuous acquisition mode.

3.3 Visual Servoing Application: Overview
The Visual Servoing Application running on the respective
PP (Sec. 4.1) consists of three stages also shown in Fig. 1:

• Img. Acquisition: Initial camera configuration; Con-
tinuous capture of image data and transfer to IP stage

• Img. Processing: Continuous image preprocessing fol-
lowed by edge, contour and final object detection; Con-
version of object position to sphere-to-coil distance d

• Control Computation: Continuous computation of coil
current based on distance d to maintain levitation

Image Acquisition is responsible for initial camera con-
figuration via GVCP and subsequent continuous capture of
GVSP packets. It is supported by multiple closed-source
software packages, ranging from versatile tools (e.g., Math-
Works MATLAB, Matrox Imaging Library) to vendor-spe-
cific libraries (e.g., AVT Vimba; Sec. 4.2.1). Own imple-
mentations (in both software and hardware), however, are
also possible due to the standardized GigE Vision protocol.
This not only enables the implementation of our GigE Vision
Framegrabber (Sec. 5), but also makes the latter applicable
to a large variety of cameras.

The subsequent Image Processing stage (shown in Fig. 2)
detects the sphere in the acquired image and determines its
distance to the coil. As gradient-based IP algorithms like
the used edge detector are susceptive to image noise, im-
age smoothing is advisable [9]. We therefore use a 3 × 3
Gaussian kernel as preprocessing filter. It is followed by a
Canny Edge Detector with pixel gradient calculation, non-
maximum suppression, double thresholding and hysteresis
edge tracking units [8]. In the next step, edges are aggre-
gated into contours [26] for the following object detection.
The sphere is then identified based on properties of each
contour’s bounding box (i.e., width and area) and its posi-
tion is finally converted to the required distance d using a
linear mapping (created by offline calibration).

Figure 3: Zynq pSoC – PS I/Os (left), PS (center)
and PL with our Hardware Subsystem (right)

Please note that even though the Image Processing stage is
application-specific (i.e., tailored to the Magnetic Levitating
Sphere), it also is representative of those found in many
object-tracking VSSs relying on incremental data reduction.

Control Computation: We use a linearized plant model
and proportional–integral–derivative controllers with anti-
windup [28] to calculate the required current at each itera-
tion. Optimal controllers such as linear-quadratic regulators
can also be used to stabilize the plant, although an integral
term has to be added to compensate for actuator drift.

4. ARCHITECTURAL OPTIONS
In this paper, we compare three Processing Platforms (PPs)
for their ability to stabilize a Magnetic Levitating Sphere via
Visual Servoing. In addition to a PC-based PP as tradition-
ally used in VSSs (Sec. 4.1.1), we consider both an Embedded
and a (Refined) Reconfigurable PP (Sec. 4.1.2) to cover all
classes of PPs currently available to a VSS designer. The
development effort to map the Visual Servoing Application
(Sec. 3.3) to the individual PPs ranges from days for PC-
based (Sec. 4.2.1) and weeks for Embedded PP (Sec. 4.2.2)
to months for our proposed (mixed HW/SW) solution on
the Reconfigurable PP (Sec. 4.2.3). The latter, however, is
dominated by the one-time effort to develop both our GigE
Vision Framegrabber and the in-stream IP blocks. Adapt-
ing our framework to other Visual Servoing Applications re-
quires significantly less time as (at least) our Framegrabber
can be reused due to its standardized GigE Vision interface.

4.1 Platforms for Visual Servoing Systems

4.1.1 PC-based Processing Platform
A traditional PC-based Processing Platform (AMD FX-

6100, 8 GB RAM, Ubuntu 10.04, Linux 2.6.32) was used as
a reference platform. Using a fully fledged OS like Linux has
many advantages such as convenient interfacing (via device
drivers) and library availability, but also comes at the cost of
hard to predict processing latencies due to, e.g., scheduling.

4.1.2 Zynq as Embedded and Reconfigurable PP
Xilinx’ Zynq series pSoCs combine a hardcore Processor

System (PS) and an FPGA-based Programmable Logic (PL)
section. The fixed-function PS features two ARM Cortex-A9
CPUs (with an FPU/NEON coprocessor each) and various
peripherals (e.g., memory and I/O controllers) commonly
found in current embedded systems. The PL is based on the
architecture of current Xilinx FPGAs with two Configurable
Logic Blocks per (CLB) Slice, BRAMs, DSPs and additional
resources (e.g., clocking, I/O). As the PS is operational both
with and without the PL, we use the Zynq pSoC both as
CPU-only Embedded Processing Platform (PL disabled) and
as Reconfigurable Processing Platform (PS and PL active).

22

As shown in Fig. 3, PS and PL are connected via multiple
AXI-3 interfaces operating at up to 150 MHz [5]. A total of
four 32 bit general purpose (GP) ports are capable of data
rates of up to 600 MB/s each. The two GP master (M-GP)
ports are the only ones capable of initiating transfers from
PS (e.g., from CPUs or GigE controller) to PL. In addition
to the two GP slave (S-GP) ports, accesses from PL to PS
can be initiated over four high performance (HP) ports and
one Accelerator Coherency Port (ACP), all capable of up
to 1200 MB/s per port. Whilst both ACP and S-GP ports
are linked to the Slave Interconnect and thus able to access
every slave device within the PS (e.g., I/O peripherals), the
HP ports are only connected to off-chip DDR memory and
On-Chip Memory (OCM). The ACP is well suited for low-
latency transfers from PL to CPUs due to its connection
to the Snoop Controller (and thus to L1 and L2 caches)
and a cache-coherent mode relieving the CPUs from cache
management. To limit cache trashing, however, the amount
of data sent via ACP has to be controlled carefully.

Three components of Zynq’s PS not only exist in most
other current SoCs, too, but also are of particular interest
for our approach: Each FPU/NEON coprocessor is capable
of SIMD execution of floating point (FP) and integer oper-
ations. One instruction affects one or two 64-bit registers,
each holding two single-precision FP or eight 8-bit integer
values. Due to their parallel dataflow structure many IP al-
gorithms (e.g., convolutions) are well suited for such units.
The DDR Memory Controller uses a 32 bit data bus to inter-
face up to 1 GByte of external DDR memory at a maximum
frequency of 1066 MHz. As the upstream interconnects are
unable to handle the resulting theoretical DDR bandwidth
of 4264 MByte/s on one single port, the controller’s internal
arbiter features four independent ports that interface the
DDR memory to both PS (CPUs, GigE controller and other
bus masters) and PL (via ACP, S-GP and HP ports).
The two GigE controllers each implement an Ethernet MAC,
an RGMII interface for external PHYs and a Direct Mem-
ory Access (DMA) controller capable of standalone scatter-
gather (SG) transfers to and from memory. SG/DMA is
widely used in current SoCs to increase throughput and re-
duce CPU load, e.g., during both reception and transmission
of Ethernet frame data. Its mode of operation in receive
direction requires a particular system configuration (shown
in Fig. 4) and is as follows. During System Initialization,
IPv4 stack and Ethernet driver first allocate a continuous
memory range of n × 8 Bytes to be used as Receive Buffer
Queue (RxBufQ) with n being the desired number of Re-
ceive Buffers as chosen by the system designer. The RxBufQ
is a linear array of n Receive Buffer Descriptors (RxBufDs),
each containing 32 status bits (S), a 30 bit buffer pointer and
one bit each for Last (L) and Empty (E) flags. As a next
step, memory for each of the n Receive Buffers (RxBufs)
is individually allocated and the address of each RxBuf is
stored in the buffer pointer of the respective RxBufD. The
RxBufQ then contains n consecutive RxBufDs each point-
ing to one of the (potentially non-consecutive) n RxBufs.
Last, the Receive Buffer Queue Base Address (RXBufQBA)
Register of the PS GigE Controller is initialized with the
base address of the RxBufQ (i.e., the address of RxBufD 00)
and frame reception is enabled. During System Operation,
the PS GigE controller decodes incoming frames and buffers
them in an internal FIFO. Once a frame has been received,
the controller fetches the current RxBufD, waits until its
Empty flag is asserted, writes the frame to the RxBuf loca-
tion stored in the RxBufD and clears the RxBufD’s Empty
flag. Finally, the Receive Buffer Queue Pointer (once initial-

Figure 4: Memory Map and System Configuration
for Reception of Ethernet Frames via SG/DMA with
n = 64 buffers (GigE Controller → DDR memory)

ized with the RXBufQBA) is incremented by eight bytes to
set the new current RxBufD. In case the descriptor’s Last
flag was asserted, the pointer is reset to the RXBufQBA and
operation continues with RxBufD 00. On the software side,
the Ethernet driver maintains its own pointer to the current
RxBufD and performs periodic or interrupt-based checks on
the descriptor’s Empty flag. Once the RxBufD has been
filled via SG/DMA, the driver fetches the data from the
respective RxBuf and forwards it to the IPv4 stack for pro-
cessing. During receive operation the GigE controller thus
scatters the incoming data to (potentially non-consecutive)
RxBufs in memory, whilst the outgoing data is gathered from
(potentially non-consecutive) TxBufs during transmission.

We choose the ZC702 Evaluation Board from Xilinx with
the third-smallest Zynq device (7Z020), 1 GB RAM, a GigE
PHY and JTAG-via-USB interface for our evaluations. On
this device, CPUs and DDR RAM operate at 666 / 533 MHz.

4.2 Application Mapping & Implementation
Software-only implementations are used on both PC-based

PP (Sec. 4.1.1) and CPU-only Embedded PP. On the Re-
configurable PP (Sec. 4.1.2), however, we deploy the pro-
posed mixed HW/SW architecture including our GigE Vi-
sion Framegrabber and in-stream Image Processing blocks.

4.2.1 PC-based PP (SW): Linux, Vimba & OpenCV
The implementation on a Standard PC is mostly straight-

forward due to existing device drivers, IPv4 stack and soft-
ware libraries. Image Acquisition is performed via AVT’s
Vimba library whilst the subsequent IP Pipeline (according
to Fig. 2) is implemented using OpenCV 2.4.10. It bene-
fits from the CPU’s Streaming SIMD Extensions (SSE) for
Gaussian and Canny filter processing. Execution times are
measured via clock_gettime(CLOCK_MONOTONIC) at idle desk-
top and averaged across 10000 samples (variance < 10ns).

4.2.2 Emb. PP (SW): PetaLinux, Vimba & OpenCV
The implementation on the dual-core Embedded Process-

ing Platform (Zynq PS with PL disabled) is based on Xilinx’
PetaLinux OS (Release 14.4 with Linux 3.17) and builds
on a cross-compiled version of our Visual Servoing Appli-
cation. Camera handling and IP are similar to the PC-
based implementation (Sec. 4.2.1) with one key difference:
As OpenCV 2.4.10 lacks support for the NEON coprocessor,
a hand-optimized version of OpenCV 3.0.0-beta was evalu-
ated, too. Using the NEON coprocessor speeds up Gaussian
and Canny filtering by processing eight integers in parallel.

23

4.2.3 Mixed HW/SW System on Reconfigurable PP:
Hardware-based GigE Vision Image Acquisi-
tion and In-Stream IP / lwIP & OpenCV (SW)

As our experimental evaluation (Sec. 6) shows that even
a hand-optimized (software-only) implementation on Zynq’s
dual-core PS is unable to achieve a frame rate of 178 fps (i.e.,
execution time lower than 5.6 ms), hardware acceleration via
Zynq’s PL is required. At first glance, there are many vari-
ants for such a mixed hardware/software implementation as
each processing step (Image Acquisition; Gaussian filtering;
Canny, Contour and Object Detection; Control Computa-
tion) could be mapped to either hardware or software. Some
variants, however, already can be eliminated based on inter-
mediate results from the two software implementations and
their respective partial execution times.
Canny Edge Detection alone already takes over 5.6 ms when
implemented in software and thus requires (at least par-
tial) hardware acceleration. Its first three processing stages
(Fig. 2) are well suited for fast and resource-efficient imple-
mentation in FPGAs. The final step (hysteresis edge track-
ing), however, is more challenging due to its control-flow
dominated algorithm. It iterates over a list initialized with
all pixels that the preceding thresholding stage identified as
real edges (“strong”) and checks its neighborhood for pix-
els considered potential edges (“weak”). Each found weak
pixel is then marked as strong and added to the list whilst
the original pixel is removed from the list. This iterative
process continues until the list is empty. As this requires
complex control structures, multi-pass edge tracking is best
implemented in software [4]. Reducing the edge tracking to
a single pass greatly increases the risk of lost complex edges
and is inapplicable due to the sphere’s curved geometry.
Using such mixed HW/SW Canny Processing, the execution
time for edge detection is reduced to 1.6 ms. Combined with
the delays of software-based Image Acquisition (>0.9 ms due
to IPv4 stack overhead and full frame-buffering), Gaussian
filtering, transfer to Canny (>0.65 ms) and Contour Detec-
tion, the total execution time of 6.35 ms is still too high.
The additional use of hardware-based Gaussian Filtering re-
duces the execution time to 4.35 ms, which, although suffi-
cient for operation at 178 fps, is over 1.45 ms slower than the
implementation on the PC-based PP. Previous experiments
on this PP have shown that such additional delay has neg-
ative impact on the control performance of the VSS. When
taking into account additional latencies caused by network
interrupts, IPv4 stack and DDR memory congestion (due
to conflicting accesses from GigE controller and PS-to-PL
DMA), the need for a more robust, deterministic and future-
proof solution with lowest possible latency becomes clear.

We therefore propose the GigE Vision Framegrabber and
in-stream IP blocks presented in Sec. 5 to implement a Hard-
ware Subsystem capable of both Image Acquisition and Pro-
cessing at 125 Mpx/s. We evaluate three different options
where to split the IP Pipeline in hardware and software as
shown in Fig. 2. At first (Splitting Point #1), only Image
Acquisition via our GigE Vision Framegrabber is assigned
to hardware. As a second step (#2), the Hardware Sub-
system is extended with Gaussian filtering leaving Canny,
Contour and Object Detection in software. At last (#3),
we also map all non-iterative steps of Canny Edge Detection
(i.e., all but hysteresis edge tracking) to hardware resulting
in the architecture shown in Fig. 3. In all cases, the iter-
ative multi-pass hysteresis edge tracking, Contour Finding
and Object Detection are executed in software based on the
respective functions from OpenCV.

Figure 5: Architecture, Ports and System Integra-
tion of the GigE Vision Bridge

5. PROPOSED SYSTEM ARCHITECTURE
As our proposed system architecture relies on SG/DMA
Proxying which requires subtle, aligned changes in the net-
work subsystem of current SoCs, we first introduce its over-
all mode of operation and the resulting benefits (Sec. 5.1).
Based on the used software execution environment (Sec. 5.2),
we then present our proposed system architecture featuring
hardware-based Image Acquisition using SG/DMA Proxying
(Sec. 5.3) and in-stream Image Processing (Sec. 5.4).

5.1 VSS Architecture: Overview & Benefits
Fig. 3 shows the proposed system architecture for hard-

ware-based Image Acquisition and in-stream Image Process-
ing on Zynq pSoCs. Using SG/DMA Proxying, we extend
its hardcore PS GigE controller with a GigE Vision Bridge
implemented in the PL to separate image frames (i.e., those
containing GVSP data) from non-image frames. Non-image
frames are automatically forwarded to the external mem-
ory and processed by the IPv4 stack as if directly received
from the GigE controller. Image frames, however, remain in
the PL for either in-stream processing by a subsequent IP
Pipeline or assembly in a frame buffer (for operations on the
entire image such as rectification). Such hardware-based Im-
age Acquisition (Sec. 5.3) has the following key advantages:

• Reduction of cache and DDR memory congestions as
all high-speed image traffic is directly bypassed to PL

• Increased CPU availability (e.g., for IP functions) as
Image Acquisition is no longer handled in software

• Reduction of Image Acquisition Latency for all possible
IP Pipeline configurations (HW, HW/SW and SW)

• Low PL resource usage and high power efficiency due
to use of the hardcore GigE controller of the Zynq PS

• Wide applicability and low future design effort due to
GigE Vision compatibility of our acquisition solution

• Full support for other regular network applications as
non-image data is processed by the IPv4 stack as usual

We consider a hardware-based IP Pipeline capable of in-
stream processing (Sec. 5.4) in case it consumes and pro-
duces at least one pixel per clock cycle and only builds on
memories smaller than the image size (i.e., line buffers). Due
to their lack of image-sized buffers, such pipelines have low
latencies in terms of clock cycles (between the first pixel be-
ing consumed and the first pixel being produced) and thus
are well suited for latency and resource constrained VSSs.

5.2 Execution Environment
In contrast to the two previous software implementations

(based on Linux), we use a bare metal software environment
consisting of Xilinx’ standalone board support package and

24

our own hardware abstraction layer. This allows direct ac-
cess to crucial units such as our PL modules (GigE Vision
Bridge, Gauss and Canny filters), CPU MMUs and Snoop
Controller (both located in the PS). The latter two require
special configuration due to the inclusion of the GigE Vision
Bridge in the datapath from GigE controller to DDR RAM.
OpenCV 3.0.0-beta is ported to the standalone environment
using a replacement library that contains dummy functions
for all referenced system library functions (e.g., open()).
Even without support from an OS, we use both CPUs for
optimal performance and a fair comparison to the software-
only implementations. CPU0 runs the remaining IP blocks
(not implemented in the PL) which determine the current
sphere-to-coil distance d using OpenCV. The results are then
sent to CPU1 via a simple IPC mechanism using both off-
chip DDR memory for storage (of erroneous IP results only)
and PS On-Chip Memory for synchronization (via ARM in-
trinsics) and storage of d. CPU1 then takes care of Control
Computation (based on the received distance) and transmis-
sion of the actuation signal via Ethernet. To this end, we
use the lwIP IPv4 stack supplied by Xilinx with an extended
Ethernet driver for our GigE Vision Bridge. As all image-
related traffic is captured in hardware, lwIP only handles
low-speed, non-image network traffic. CPU1 additionally
performs initial camera configuration (via our own GVCP
library) and provides a TFTP server (for debugging).
Execution times are measured using the 64 bit Global Timer
shared by both CPUs and averaged across 10000 samples.

5.3 Hardware-based Image Acquisition using
GigE Vision Bridge & SG/DMA Proxying

5.3.1 Architecture and System Integration
Fig. 5 shows the architecture of the GigE Vision Bridge

(GEVB) and its interfaces to PS and PL. Transfers initi-
ated by the PS traverse its Slave Interconnect and travel
from PS to PL via one of the two M-GP ports (Fig. 3).
Whilst M-GP1 is used only for initial configuration of IP
and DMA modules, M-GP0 directly connects to the GEVB’s
AXI Slave interface. Internally, this port is distributed to
Configuration and Control Unit (CCU), a 16 Byte Ether-
net SG/DMA Descriptor (EthDsc) memory and a 4 kByte
Ethernet SG/DMA Receive RAM (EthRxRAM) via a Xil-
inx AXI interconnect. Whilst the CCU is once configured
by software during system initialization, both EthDsc mem-
ory and EthRxRAM are accessed by the PS GigE Controller
for each incoming Ethernet frame during system operation.
Based on the decision of the Frame Decoder, the received
frame is processed by either the Image Acquisition module
(for image data) or the Non-Image SG/DMA module (for
remaining traffic). Image data is sent to an AXI Stream in-
terface connected to the subsequent IP Pipeline in the PL
(i.e., Gauss filtering). Non-image data, however, leaves the
GEVB via an AXI master port, travels from PL to PS via the
HP0 port and is finally stored in the external DDR memory.

The CCU contains configuration registers for local IPv4
address and GVSP port number for camera communication
via GigE Vision and SG/DMA Queue Base Address (QBA)
for forwarding of non-image data. Various flags indicating
both regular operation and error conditions are mapped to
a status register and can also serve as interrupt sources by
setting the respective bit in an interrupt enable register. In-
terrupts are signaled to software via an interrupt request
(IRQ) line routed to the Generic Interrupt Controller.
The EthDsc memory contains two 8 Byte Buffer Descriptors
identical to those used by the PS GigE controller (Sec. 4.1.2).

Figure 6: Memory Map and System Configura-
tion for Hardware-based Image Acquisition using
SG/DMA Proxying – Incoming Ethernet Frames are
redirected to our GigE Vision Bridge which trans-
parently forwards non-image data to DDR memory

The EthRxRAM module combines a dual-port BRAM and
an AXI BRAM controller to form a byte-addressable mem-
ory with a write-only AXI and a read-only parallel port.
All three units (CCU, EthDsc memory and EthRxRAM) are
AXI slaves than can be accessed (i.e., read and written) from
the PS by CPUs and GigE controller via memory-mapped
I/O. The CCU controls the overall operation of the GEVB
via a finite-state machine (FSM) triggered each time the
EthDsc memory is updated by the PS GigE controller.

The three remaining modules perform the actual frame
processing and thus are connected to CCU (for configura-
tion and activation), EthDsc memory and EthRxRAM. As
all modules require random read access to the EthRxRAM, a
simple request/grant arbiter (not shown in Fig. 5) is used for
request serialization. The Frame Decoder is the only module
with no direct external connection as it operates purely on
information stored in EthDsc memory and EthRxRAM. In-
ternally, it uses a FSM to read and analyze the received Eth-
ernet frame and forwards the detection result to the CCU.
The Image Acquisition module consists of a control FSM
and a data mover which extracts and outputs the actual im-
age data to the AXI Stream interface. Although the Non-
Image SG/DMA module has the same internal layout, its
data mover is more complex as the latter drives the GEVB’s
AXI Master port (connected to the PS) and implements an
entire DMA engine capable of standalone scatter transfers
to DDR memory. As data is only sent to memory, support
for gather transfers from memory to GEVB is not required.

On the software side, the Ethernet driver supplied by Xil-
inx is replaced with a (slightly) modified version to facilitate
the inclusion of the GEVB in the receive datapath.

25

5.3.2 GigE Vision Bridge and System Initialization
During system initialization, IPv4 stack and our Ether-

net driver not only allocate n = 64 Receive Buffers and
an associated Receive Buffer Queue in DDR memory, but
also perform device configuration of PS GigE controller and
our GEVB in the PL. In contrast to regular receive opera-
tion as shown in Fig. 4, the RXBufQBA register of the PS
GigE controller (Sec. 4.1.2) is now set to the address of the
GEVB’s EthDsc memory. The PS GigE controller thus no
longer uses the RxBufQ in DDR memory, it instead queries
the EthDsc memory of the GEVB to determine the storage
locations for incoming Ethernet frame data. The address
of the RxBufQ in DDR memory, however, is now written
to the QBA register of the CCU. The GEVB finally initial-
izes the two Buffer Descriptors in its EthDsc memory with
the addresses of two 2 kByte Receive Buffers located in its
EthRxRAM, resulting in the configuration of RXBufQBA,
QBA and respective Receive Buffers shown in Fig. 6.

With this configuration, the PS GigE controller now trans-
fers all incoming Ethernet frames to the EthRxRAM of the
GEVB, which then filters all image data and stores the re-
maining data in DDR memory for processing by IPv4 stack.

5.3.3 System Operation using SG/DMA Proxying
Once an Ethernet frame has been received, the PS GigE

controller fetches the current Buffer Descriptor (BD) stored
in the EthDsc memory of the GEVB (step 1© in Fig. 7).
Unless the BD is marked empty (i.e., its E flag is set), the
controller continues to query the BD until the condition is
fulfilled. Once an empty BD is available, the controller
transfers the received Ethernet frame from its internal re-
ceive FIFO to the buffer address stored in the BD (step 2©).
As both BDs in the EthDsc memory have been initialized
with the addresses of the respective Receive Buffer in the
EthRxRAM of the GEVB, the Ethernet data now traverses
through the PS (via Central and Slave Interconnects) and
travels from PS to PL via the M-GP0 port. Previous ex-
periments have shown that each M-GP port is capable of
handling approximately three times the maximum data rate
generated by one GigE link and thus will not limit perfor-
mance. After the transfer has finished, the GigE controller
updates the BD and clears its E flag (step 3©) as the asso-
ciated Receive Buffer is now in use. In addition, it moves
to the next BD by incrementing its Receive Buffer Queue
Pointer (RX BufQ Pointer) by eight bytes.

The write access to the BD (step 3©) also triggers frame
processing within the GEVB. The CCU activates the Frame
Decoder which fetches the frame from the respective buffer
in the EthRxRAM for analysis. It identifies the received
frame based on frame length, local IPv4 address, protocol
types (IPv4 and UDP) and GVSP port number (step 4©).

Depending on the result, the frame is processed by either
Image Acquisition or Non-Image SG/DMA unit (with only
the non-image case being shown in Fig. 7). The former per-
forms additional identification steps to ensure the validity
of the received GVSP packet. It keeps track of the GVSP
state which is then used to verify packet type (i.e., leader,
payload or trailer), payload type and frame ID. Only if all
checks are passed, the image data is extracted and sent to
the subsequent IP modules via the AXI Stream port.
In case a non-image frame was detected, the CCU activates
the Non-Image SG/DMA module to write the frame to ex-
ternal DDR memory (step 5© in Fig. 7). To this end, the
module queries the current RxBufD in DDR memory until
its Empty flag is asserted (step 6©). Once the RxBufD is
marked empty, the module reads the received frame from

Figure 7: Control and Data Flow during Hardware-
based Image Acquisition with Transparent Forward-
ing of non-image data using SG/DMA Proxying

the respective buffer in the EthRxRAM, writes it to the
RxBuf location stored in the RxBufD (step 7©) and clears
the RxBufD’s Empty flag (step 8©). Additionally, the CCU
notifies the IPv4 stack via an interrupt request to the PS.

After this frame processing, the CCU frees the respective
EthRxRAM buffer by re-setting the Empty flag in EthDsc
memory and moves to the next RxBufD in DDR memory.
On the software side, IPv4 stack and our Ethernet driver
now process the non-image frame as if directly received from
the PS GigE controller (step 9©) as shown in Sec. 4.1.2.

5.4 Hardware-based In-Stream IP Pipeline
After reception by the GEVB, the image data is processed

by an in-stream 3 × 3 Gaussian filter. It uses a Gaus-
sian kernel with a standard deviation of 0.8 (which allows
for multiplication-free implementation as all coefficients are
powers of two) and pixel duplication for border handling.
To shorten the critical paths between Gauss and subsequent
Canny filters, a Stream Decoupler (SD) module registers
both data and bidirectional flow control signals. The first
three stages of Canny Edge Detection (Sec. 4.2.3) are per-
formed in-stream, too. Gradient calculation is implemented
via Sobel filters whilst non-maximum suppression relies on a
look-up table to determine gradient directions. The results
of the final double thresholding step are finally transferred
to the PS by a Xilinx AXI DMA core connected to the ACP.

All units of the hardware-based IP Pipeline process one
pixel per clock cycle whilst operating at 125 MHz. This re-
sults in a peak throughput of 125 Mpx/s which matches the
maximum data rate of the incoming GigE Vision packets.

26

6. EXPERIMENTAL EVALUATION
Tab. 1 shows measured frame rates and execution times of
each processing step in the IP Pipeline (see Sec. 3.3 and
Fig. 2) and control computation. Execution time for object
detection is always below 30 µs and thus not shown.

The implementation on the PC-based PP (Sec. 4.2.1) is
capable of achieving the required frame rate of 178 fps. As
expected, Image Processing (2.9 ms) dominates over control
computation (0.44µs) by several orders of magnitude. Al-
though the PP is capable of a frame rate beyond 340 fps,
the VSS is limited by the camera’s CCD sensor (Sec. 3.2).

The implementation on the Embedded PP (Sec. 4.2.2),
however, is unable to reach the required frame rates, both
using OpenCV 2.4.10 (configuration E1) and our hand-op-
timized version of OpenCV 3.0.0-beta (E2). Even though
execution times of the IP stages were halved by utilizing the
NEON coprocessor (from 21.3 ms to 10.5 ms), they are still
approximately two times longer than the required 5.62 ms.

On the Reconfigurable PP, we implement our proposed
system architecture featuring our GigE Vision Framegrab-
ber and the subsequent in-stream IP Pipeline. Whilst CPUs
and DDR memory operate at their respective maximum fre-
quencies of 666 MHz and 533 MHz (Sec. 4.1.2), the PL is
clocked at 125 MHz during our experiments. The result-
ing system outperforms the Embedded PP in all three IP
Pipeline configurations (Splitting Points #1-#3 in Fig. 2
and Sec. 4.2.3), although only configuration R3 is able to
reach the required frame rate. Configurations R1 and R2
suffer from high execution times of Gauss filtering and Canny
Edge Detection similar to the Embedded PP above. Con-
figuration R3 shows the benefit of hardware acceleration for
Image Acquisition, Gaussian filtering and all non-iterative
steps of Canny Edge Detection. Due to shorter execution
time (2.8 ms) and reduced jitter, this configuration even
outperforms the reference implementation on the PC-based
PP (2.9 ms), which results in improved control performance.
The total processing latency of the Hardware Subsystem
(measured from reception of the first Ethernet frame to out-
put of the first processed pixel) is less than 5.9 µs and thus
negligible compared to all execution times of the IP stages
in software. The frame rate of the VSS is again limited to
178 fps due to camera constraints. It should be noted that
the Hardware Subsystem itself is capable of processing up to
125 Mpx/s (i.e., full line rate of Gigabit Ethernet and result-
ing in over 1400 fps at the chosen resolution), whilst the sub-
sequent software-based processing supports up to 355 fps.

The execution times of the control computation on Em-
bedded and Reconfigurable PP differ by one order of mag-
nitude. This is caused by the integration of our GigE Vision
Framegrabber which reduces the number of interrupts that
need to be serviced. Traditional software-based Image Ac-
quisition (as used on the Embedded PP) yields one interrupt
per Ethernet frame. Due to image dimensions and maximum
payload size, this results in 58 interrupts per iteration (i.e.,
image). Using our GigE Vision Framegrabber and SG/DMA
Proxying, however, only one interrupt is triggered after an
entire image has been acquired and processed in hardware.

Tab. 2 shows the usage of PL resources on the Zynq 7Z020
pSoC. As our GigE Vision Frame Grabber relies on the exist-
ing hardcore PS GigE controller, only the small GigE Vision
Bridge has to be implemented in the FPGA fabric which
results in low resource usage of approximately one tenth
of the entire device. Thus, our approach is also suitable
for the smallest available device (7Z010) which features ap-
proximately one third of the resources available on the used

PP fps Gauss Canny Contour Total IP Control

PC 178 0.32 ms 2.24 ms 0.33 ms 2.9 ms 0.44 µs
E1 (v2.4) 45 5.17 ms 13.7 ms 2.43 ms 21.3 ms 3.22 µs
E2 (v3.0) 90 2.11 ms 7.12 ms 1.28 ms 10.5 ms 1.92 µs
R1 (VB) 110 1.96 ms 5.77 ms 1.16 ms 8.9 ms 0.29 µs
R2 (+G) 142

2.62 µs
5.84 ms 1.16 ms 7.0 ms 0.30 µs

R3 (+C) 178 1.58 ms 1.23 ms 2.8 ms 0.30 µs

Table 1: Frame Rates and Execution Times for
all Processing Platforms – PC-based (PC), Embed-
ded (Ex) and Reconfigurable (Rx)

Flip-Flops LUTs BRAMs
Total device resources (100%) 53,200 106,400 140

R1 (GigE Vision Bridge only) 5.73% 11.03% 6.43%
R2 (R1 plus Gauss) 5.83% 11.07% 7.14%
R3 (R2 plus Canny) 6.39% 13.15% 9.29%

Table 2: FPGA Resource Usage on Reconfigurable
Processing Platform (Xilinx Zynq 7Z020 pSoC)

7Z020. Furthermore, the addition of our in-stream Gaus-
sian filtering and Canny Edge Detection modules has only
minimal impact on total resource usage.

7. CONCLUSION
In this paper, we presented SG/DMA Proxying as a novel
approach to enable hardware-based Image Acquisition on
small, low-power Visual Servoing Systems suitable for both
CPU-only SoCs and current pSoCs such as Xilinx’ Zynq. By
supplementing the hardcore Ethernet controller of Zynq’s PS
with a softcore GigE Vision Framegrabber, we were able to
implement a high-speed VSS capable of both Image Acquisi-
tion up to 125 Mpx/s and subsequent mixed hardware/soft-
ware Image Processing up to 355 fps (limited by software).
Both CPU, memory and interconnect congestion and acqui-
sition latency were considerably reduced due to offloading
the Image Acquisition from software to hardware. As our
Framegrabber relies on the standardized GigE Vision proto-
col, it is applicable to a large variety of cameras. In addition,
it relies on Zynq’s Ethernet controller and thus benefits from
the lower power consumption of hardcores, although quan-
titative measurements are part of future work.

In contrast to all previous approaches, our solution seam-
lessly integrates with both hardware (GigE and memory
controller) and software (IPv4 stack) used in current SoCs.
It thus supports existing methods to reduce the CPU load
during frame reception (e.g., interrupt moderation) which
further increases system resilience in case of heavy incom-
ing traffic. In addition, this compatibility greatly reduces
the effort required to integrate the proposed architecture in
future hardware platforms or other software environments.

As our GigE Vision Framegrabber is both resource-effi-
cient and extensible, it is suitable for many future applica-
tions (e.g., integration in SoCs) and improvements such as
multi-camera support or the addition of authentication and
encryption for secured industrial networks. As a next step,
we intend to perform detailed power measurements on all
three PPs and replace our current software execution envi-
ronment with real-time Linux. The latter not only simplifies
further development, but also enables more flexible use of
the two CPUs due to extensive support for scheduling and
inter-process communication.

27

8. REFERENCES
[1] AIA. GigE Vision Main Page - AIA Vision Standards.

http://www.visiononline.org/vision-standards-details.
cfm?type=5.

[2] Allied Vision Technologies GmbH. Mako G-032
Gigabit Ethernet camera with Sony ICX424 CCD
sensor. https://www.alliedvision.com/en/products/
cameras/detail/g-032.html.

[3] Altera Corporation. SoCs - Portfolio.
https://www.altera.com/products/soc/portfolio.html.

[4] A. Amaricai, O. Boncalo, M. Iordate, and
B. Marinescu. A moving window architecture for a
hw/sw codesign based canny edge detection for fpga.
In 2012 28th International Conference on
Microelectronics (MIEL).

[5] ARM Ltd. AMBA Specifications. http://www.arm.
com/products/system-ip/amba-specifications.

[6] M. Barbareschi, A. De Benedictis, A. Mazzeo, and
A. Vespoli. Mobile traffic analysis exploiting a cloud
infrastructure and hardware accelerators. In 2014
Ninth International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC).

[7] A. Barry and R. Tedrake. Pushbroom stereo for
high-speed navigation in cluttered environments. In
2015 IEEE International Conference on Robotics and
Automation (ICRA).

[8] J. Canny. A computational approach to edge
detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-8(6):679–698, Nov 1986.

[9] R. Cope and P. Rockett. Efficacy of gaussian
smoothing in canny edge detector. Electronics Letters,
36(19):1615–1617, Sept 2000.

[10] P. Danielis, J. Skodzik, V. Altmann, E. Schweissguth,
F. Golatowski, D. Timmermann, and J. Schacht.
Survey on real-time communication via ethernet in
industrial automation environments. In 2014 19th
IEEE International Conference on Emerging
Technology and Factory Automation (ETFA).

[11] E. Gudis, G. van der Wal, S. Kuthirummal, S. Chai,
S. Samarasekera, R. Kumar, and V. Branzoi. Stereo
vision embedded system for augmented reality. In 2012
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW).

[12] W. He, K. Yuan, H. Xiao, and Z. Xu. A high speed
robot vision system with gige vision extension. In 2011
International Conference on Mechatronics and
Automation (ICMA).

[13] IEEE, Inc. IEEE 802.1 Time-Sensitive Networking
Task Group.
http://www.ieee802.org/1/pages/tsn.html.

[14] Japan Industrial Imaging Association. CoaXPress
Standard (JIIA CXP-001-2013), Version 1.1.
http://jiia.org/wp-content/themes/jiia/pdf/standard
dl/coaxpress/CXP-001-2013.pdf.

[15] J. Khalifat, A. Ebrahim, A. Adetomi, and T. Arslan.
A dynamic partial reconfiguration design for camera
systems. In 2015 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS).

[16] R. Konomura and K. Hori. Phenox: Zynq 7000 based
quadcopter robot. In 2014 International Conference on
ReConFigurable Computing and FPGAs (ReConFig).

[17] J. Korenek, P. Korcek, V. Kosar, M. Zadnik, and
J. Viktorin. A new embedded platform for rapid
development of network applications. In Proceedings of
the Eighth ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS
’12.

[18] P. Moorthy and N. Kapre. Zedwulf:
Power-performance tradeoffs of a 32-node zynq soc
cluster. In 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom
Computing Machines (FCCM).

[19] J. Muller, J. Muller, and R. Tetzlaff. The nerovideo
cnn video processing system. In 2014 14th
International Workshop on Cellular Nanoscale
Networks and their Applications (CNNA).

[20] D. Oswald, W. Li, L. Niu, J. Zhang, Y. Li, J. Yu, and
F. Sun. Implementation of fuzzy color extractor on ni
myrio embedded device. In 2014 International
Conference on Multisensor Fusion and Information
Integration for Intelligent Systems (MFI).

[21] Pleora Technologies Inc. iPORT NTx-GigE
Intellectual Property. http://www.pleora.com/
our-products/embedded-hardware/
iport-ntx-gige-intellectual-property.

[22] F. Schwiegelshohn and M. Hubner. Design of an
attention detection system on the zynq-7000 soc. In
2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFig).

[23] Sensor to Image GmbH. GigE Vision IP core XILINX.
https://www.s2i.org/webdownload/Download/
Datasheets/FPGA%20IP-Cores/GigE%20Core%
20Xilinx/GigECore%20Xilinx.pdf.

[24] Sensor to Image GmbH. GigE Vision IP Specification.
[Revision X-1.5.3; private communication].

[25] J. Silva, V. Sklyarov, and I. Skliarova. Comparison of
on-chip communications in zynq-7000 all
programmable systems-on-chip. IEEE Embedded
Systems Letters, 7(1):31–34, March 2015.

[26] S. Suzuki and K. Abe. Topological structural analysis
of digitized binary images by border following.
Computer Vision, Graphics, and Image Processing,
30(1):32 – 46, 1985.

[27] H. Tabkhi, M. Sabbagh, and G. Schirner.
Power-efficient real-time solution for adaptive vision
algorithms. Computers Digital Techniques, IET,
9(1):16–26, 2015.

[28] B. Wittenmark. Integrators, nonlinearities, and
anti-reset windup for different control structures. In
1989 American Control Conference.

[29] Xilinx Inc. All Programmable SoCs and MPSoCs.
http:
//www.xilinx.com/products/silicon-devices/soc.html.

[30] Xilinx Inc. High-Performance Machine Vision Systems
Using Xilinx 7 Series Technology.
http://www.xilinx.com/support/documentation/
white papers/wp453-machine-vision.pdf. [Revision
v1.0].

[31] Z. Ye, Y. He, R. Pieters, B. Mesman, H. Corporaal,
and P. Jonker. Bottlenecks and tradeoffs in high frame
rate visual servoing: A case study. The 12th IAPR
Conference on Machine Vision Applications
(MVA’11).

28

