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A geostatistical method for the analysis and prediction of air quality time series: 

application to the Aburrá Valley region 

 

Abstract 

A geostatistical method was developed to analyze air pollution time series in the Aburrá 

Valley (Colombia) at different time scales (diurnal, weekly and yearly) and use this 

information for estimation of missing values or prediction purposes. The method was 

based on the calculation of omnidirectional semivariograms, by using time as 

coordinates in a geographical space, thus obtaining the air pollution variability 

associated to the different pollution cycles. The resulting semivariograms were valid 

until small lag distances. The kriging technique was afterwards applied for the 

estimation of missing data (interpolation) or the prediction of future events 

(extrapolation). The selected method was able to accurately capture the diurnal, weekly 

and monthly variability of PM10, PM2.5 and NO2 in the Aburrá Valley. Satisfactory 

results were obtained by using the method for the prediction of PM2.5 during days at 

which the Colombian Air Quality Norm was exceeded (Index of Agreement = 0.85; R
2
 

= 0.55) 
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1 Introduction 

Air pollution is one of the biggest environmental concerns in urban areas. The adverse 

effects of air pollutants such as NOx, particulate matter, CO, O3, or SO2 to the 

population (especially vulnerable groups like children, pregnant women, and elderly 

people) have been widely investigated and tested, especially regarding cardio-

respiratory diseases (Hoek et al., 2013; Raaschou-Nielsen et al., 2013; WHO, 2006).  

In the developed world air quality levels have improved throughout the last decades, 

what is mainly associated with the reduction of emissions due to better control 

technologies (EEA, 2015; EPA, 2015). However, there are still urban areas worldwide 

where air pollution levels have not yet been sufficiently controlled and this represents 

an enormous hazard for their population. This is mainly the case in fast growing cities in 

the developing world, where emissions and population grow at a fast rate (Cohen et al., 

2005). It has been estimated that about 88% of all premature deaths associated to air 

pollution occur in low income countries (WHO, 2014).  

Besides that, non-anthropogenic variables also have a significant influence on the 

pollution levels in cities. Urban areas located in terrains with a complex topography 

(e.g. valley bottoms, mountain slopes or mountain basins) often experience high 

pollution episodes, because of a limited removal of pollutants. This is caused by 

topographic barriers which reduce the effect of wind dispersion, thus resulting in higher 

pollution levels in inter-mountain regions when compared with what would be expected 

in flat locations (Rendón et al., 2014; Steyn et al., 2013). The boundary layer depth is 

also highly influenced by the effects of a complex topography. Extremely high pollution 

concentrations can often be observed in mountain regions during episodes of 

atmospheric stability (Anttila et al., 2015). This makes the monitoring, analysis, control 

and management of air pollution in these areas a complicated environmental issue for 

scientist, authorities and technicians. 

Considering this, the analysis of air quality data and critical pollution episodes of cities 

in mountain regions is a very relevant topic in the atmospheric research. This is 

especially important for big cities in developing countries, which also face other 

problems like a rapid population growth, a partially uncontrolled urban development 
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and the pressure of multiple emission sources (high traffic, presence of industrial 

facilities, use of fuels with low quality, etc.). In the Andean Region in South America 

there are several big cities (over 1 million inhabitants) which are in this situation, both 

facing anthropogenic pressures that affect the air quality and are located in terrains with 

high topographical complexity. One of these cities is Medellín, in the Aburrá Valley 

Region in Colombia, and it will be the focus of the present study as long data series are 

available.  

A special characteristic of air pollution is the temporal variability of pollutants. Studies 

in very different locations like Northern China, Augsburg,  Massachusetts or Tenerife 

have shown that air pollution concentrations can highly vary (differences of 100% and 

more between different periods) when comparing different seasons, times of the day or 

days of the week (Baldasano et al., 2014; Gu et al., 2013; Ji et al., 2014; Padró-Martínez 

et al., 2012). The strong temporal variability of air pollutants represents a challenge for 

air quality management, because average values cannot characterize exposure levels of 

the population. Therefore a deep knowledge about the temporal patterns of air pollution 

in cities is needed for improved air quality and health management. 

Recently, for the Aburrá Valley a complex temporal pattern for rainfall has been 

observed. There is a strong variability at monthly, daily and yearly rainfalls over the 

study region and there are evidences of phase locking among the different time scales. 

While for the period between May-September most of the precipitation is observed 

during the night (between 22:00-04:00), during the rest of the months the highest 

rainfall events occur in the afternoon hours between 13:00-17:00 (Figure 1). Effects of  

El Niño Southern Oscillation (ENSO), mesoscale convective systems and the diurnal 

cycle of insolation are probably combined to create this phenomenon (Poveda et al., 

2015). It is possible that such patterns could also be present in data of air pollutants of 

Medellín, either caused by the rain pattern via outwash or caused by the same factors 

that also create the rain pattern. Therefore it is important to define an adequate 

methodological framework to obtain the temporal distribution of air pollutants at 

different time scales (daily, monthly, yearly cycles).   
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Figure 1: Diurnal and annual rainfall cycle in Aburrá Valley. Rainfall percentage for hourly time steps, 

during different months (Poveda et al., 2015) 

Since 2003 the city of Medellín has been measuring the most important air pollutants at 

different locations. This information can be used to identify the temporal trends that 

describe air pollution levels in the city, considering the high temporal variability of 

these values. For this purpose multi-annual data series have to be analyzed. Time series 

have the special property that “[the] correlation between adjacent points in time is best 

explained in terms of a dependence of the current value on past values” (Shumway & 

Stoffer, 2011, p. 2). This means that temporally dependent measurements are not 

independent from each other (what is usually an assumption in classical statistics) and 

therefore statistical methods taking into account autocorrelation have to be applied for a 

successful analysis.  

Statistical methods like distributed lag models, autoregressive moving average 

(ARMA), autoregressive integrated moving average (ARIMA), Discrete Fourier 

Transform, Spectral Analysis, State-Space Models or Principal Components Analysis 

(PCA) have been widely used for time series analysis in different scientific disciplines 

(Shumway & Stoffer, 2011). Most of these methods make use of the temporal 

autocorrelation of the data for the analysis. Geostatistical analysis is also commonly 

applied for autocorrelated data, however mostly from a spatial perspective. That means 

geostatistical approaches usually account for the spatial autocorrelation of 

measurements. On the contrary, in the present investigation a geostatistical approach 

will be used for the time series analysis of air quality data (PM10, PM2.5 and NO2) of the 

city of Medellín and the surrounding Aburrá Valley. The applied analysis utilizes two 
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time dimensions (day and hour of the day or day and month of the year) in place of the 

two spatial dimensions latitude and longitude. In other words, diurnal-annual plots 

(similar to Figure 1) or diurnal-weekly plots are analyzed like a spatial map. The main 

goal of the investigation is to detect the principal temporal patterns of air pollutants of 

the city, as well as to find the variability cycles affecting the pollution levels. This can 

be further used for prediction purposes or data reconstruction   

Consequently, the objectives of the master project are the following: 

i) Determination of temporal cycles of air pollution (PM10, PM2.5 and NO2) and 

meteorological data for the city of Medellín and the Aburrá Valley, at daily, 

weekly and monthly scales. 

ii) Development of a method for analysis of air pollution data series by using a 

geostatistical approach, which allows the estimation of missing values and the 

prediction of future events      

iii) Application and evaluation of the performance of the method for selected 

periods of the air pollution datasets in the Aburrá Valley  

2 Literature overview 

2.1 Air pollution in Medellín and the Aburrá Valley 

Medellín is one of the cities with the highest air pollution levels in Colombia 

(Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010). Because of this, 

research institutions have been concerned with this topic during the last years. The city 

has an air quality monitoring network working since 2003, which measures major air 

pollutants in Medellín on an hourly basis. Based on the information obtained by this 

network and on the different analyses performed by universities and other institutions, 

several research studies have been published about air quality and air pollution in 

Medellín and its surroundings. Some of the most important studies are presented below. 

Air pollution in Medellín follows clear temporal patterns, which principally depend on 

emission sources and meteorological conditions in the valley surrounding the city. 

Bedoya and Martínez (2009) found a clear daily pattern for the principle air pollutants 

of the city (PM10, NOx, SOx), which can be associated with the traffic peaks throughout 



5 

 

the day. A yearly cycle of the air pollution was also observed in this study. The detected 

concentration oscillations within a period of 6 months might result from differences in 

the emission sources or from meteorological phases influencing the pollutants’ 

concentration levels.  

Zapata et al. (2015) identified a daily pattern for the pollutants PM10 and PM2.5, with the 

highest peak in the morning hours and a second large peak during the evening. The 

effect of ENSO was also investigated to understand the yearly differences in the 

concentrations of particulate matter. Yearly variations in the concentrations of 

PM10/PM2.5 in Medellín are not significantly associated with the by El Niño 

phenomenon. However, a very clear annual cycle was observed for the period 2007-

2013 (bimodal cycle), which is probably linked to the effect of complex interactions 

between meteorology and emissions. 

Different kinds of exposure and vulnerability analyses have also been performed for the 

city of Medellín. Concentrations of air pollutants above thresholds recommended by 

health organizations have been observed in zones of Medellín affected by multiple 

emission sources, like the Medellín city center. These pollution levels increase the risk 

to suffer from respiratory or cardiac diseases, especially when considering vulnerable 

population strata who are continuously exposed to these hazards (Gaviria et al., 2012; 

Orduz et al., 2013). Research is still needed to determine the temporal factors affecting 

the exposure and vulnerability levels regarding air pollution. 

Finally, Londoño et al. (2015) used a geostatistical approach for the spatial 

characterization of PM10 in Medellín. Monthly values were analyzed for a 5 year period 

(2003-2007) in 9 stations along the Aburrá Valley. Different variogram models were 

applied to simulate the spatial distribution of the pollutants in the study area and then 

utilized for a kriging interpolation. J-bessel and Hole effect were the best possible 

models obtained. This study demonstrates that a geostatistical approach can be helpful 

for the analysis of air quality data in Medellín The temporal autocorrelation of the data 

was however not considered in the analysis. Further efforts are needed to obtain detailed 

temporal patterns of air pollutants at different time scales (especially daily and yearly 

cycles and their interactions).   
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2.2 Geostatistics and time series analysis  

Geostatistics and its tools –variography and kriging- have not been commonly used for 

time series analysis so far. However, Iaco et al. (2013) argue that linear Geostatistics are 

clearly linked to time series analysis, especially in the statistical approach where the 

Box–Jenkins methodology (Box & Jenkins, 1976), based on the autocorrelation 

function (ACF), is applied. Even though the variogram has not been generally used in 

time series analysis, the literature shows that it can be successfully applied for the 

analysis of stationary (Gevers, 1985; Ma, 2004) and non-stationarity (Cressie, 1988) 

time related data. This is the case because variograms can properly describe stochastic 

processes. 

A geostatistical approach for time auto correlated data has several advantages over 

traditional time series analysis methods. A detailed literature review about this topic by 

Iaco et al. (2013) suggested the following advantages: 1) the variogram is able to 

describe a wider class of stochastic processes than the ACF (e.g. second-order stationary 

stochastic processes); 2) unlike the estimation of covariance, it is not necessary to know 

the expected value of the stochastic process to calculate the variogram. This assures the 

unbiasedness of its estimator; 3) geostatistics is useful for the identification of trends 

and periodicities of the data, because of the capacity of the variogram to capture the 

details of its structure; 4) the variogram can assess the different scales of variation 

which are typical for time series; and 5) geostatistics is able to handle time series with 

missing data better than other methods of time series analysis. 

During the last years geostatistics has been applied more frequently for time series 

analysis in various scientific disciplines. The multiple advantages of variography have 

contributed to its propagation in scientific research and its application under different 

methodological approaches.        

In the field of hydrology variograms have been used to estimate the variation of the 

uncertainty of streamflow rating curves over time. For that, discharge estimations at 

multiple time stages were analyzed through variography (Jalbert et al., 2011). The 

elements that describe a variogram (nugget, sill and range) were used to represent the 

small scale variation, the variance of the random variable and the long term variation of 



7 

 

the uncertainty. This approach was considered robust, due to the capacity of variograms 

to capture trends in the data and different temporal correlation structures.  

Variography has also been applied in hydrological research to detect and attribute 

changes in data series, in the context of a changing climate. Change detection and 

attribution is a complex task for non-linear systems, such as hydrometeorological 

systems. The methodology used by Chiverton et al. (2015) was based on the calculation 

of empirical variograms and its application to moving windows in a river flow time 

series. This allowed the identification of changes and its adequate attribution (e.g. 

changes caused by meteorological forcing). Different relevant values like seasonality, 

measurement error and sub-daily variability were obtained by using this method. 

Another scientific field where the use of variograms plays an important role is the 

reconstruction and interpretation of very long time series. Enzi et al. (2014) 

reconstructed time series of extraordinary snowfall episodes in Italy over 300 years, by 

applying a geostatistical approach. They used variography to determine the temporal 

autocorrelation of snow recurrence into the time domain. By choosing a hole-effect 

model for the empirical semivariogram, the non-stationarity of the data was reflected. 

This method showed the internal structure of the time data very accurately. Meanwhile, 

the challenge of analyzing misaligned irregular time series has also been resolved 

through the application of variograms. In a research study of Greenland ice core data 

(Doan et al., 2015) empirical variograms were used to integrate data at different 

temporal resolutions and observe the variability of the time series. In result of this 

procedure consistent ice core data series were obtained.  

Furthermore, variogram analysis has been used to handle complex data at multi 

spatiotemporal scales. Computer simulations of chemical catalytic reaction face the 

problem that different time scales must be coupled into a consistent model. The research 

done by Gur et al. (2016) shows the role of variography in addressing this issue. A 

wavelet-based model was developed, which allows the temporal up- and downscaling of 

data. Empirical variograms were used to determine data sets with convergent statistics, 

observe the autocorrelation of data series, estimate the temporal variation of the data 

and define the length of cycles for prediction purposes. As a result of this study, a robust 

model for simulation of multi temporal scale catalytic reactions was obtained.  
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Finally, in the specific field of atmospheric research, Iaco et al. (2013) proposed a 

geostatistical method for the estimation of missing values and the prediction of future 

pollution events for NO2 time series. Hourly NO2 values measured over one month were 

used to calculate empirical variograms that represent the temporal variability of the data 

at different time scales (hourly, daily, weekly variation). The kriging technique was then 

applied, using the selected hole effect variogram model, for estimation of missing 

values (data interpolation, imputation) or for prediction purposes (extrapolation) of the 

NO2 hourly values. This research showed the flexibility of kriging for reconstruction of 

air quality time series and its accuracy for predicting air pollution events.    

This brief literature review highlights the multiple application fields of geostatistical 

techniques for time series analysis and its flexibility for addressing research topics like: 

calculation of time series uncertainty, estimation of missing values and prediction of 

future events, integration of data at multi temporal scales, reconstruction of very long 

time data sets, detection and attribution of changes. In consequence, a geostatistical 

approach was considered as reliable for the analysis of air quality time series and was 

applied for the air pollution data of the Aburrá Valley.  

3 Materials and methods 

3.1 Area of study 

The city of Medellín is located alongside the Aburrá Valley, which is a narrow valley in 

the Colombian Andean mountains. Together with another eight municipalities they form 

the Metropolitan Area of the Aburrá Valley (AMVA). This metropolitan region extends 

over 60 km and has a variable width between 10 and 20 km. Its coordinates are 6.0° - 

6.5° latitude north and 75.2-75.7° longitude west. The AMVA has a total population of 

3.594.198 and Medellín is its most populated city with a population of 2.486.723 

(DANE, 2007).   
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Figure 2: Location of the Metropolitan Area of Aburrá Valley (AMVA) and the city of Medellín. The 

hatched area on the map represents the urban areas of AMVA (mainly located in Medellín municipality) 

The Aburrá Valley has a medium height of around 1500 m, with variations from 1400 m 

in Barbosa (North) until 1800 m in Caldas (South). The valley is surrounded by 

mountains with a maximum height of more than 3000 m and plateaus between 2000-

2600 m. The valley is dominated by the basin of the Medellín river, which crosses the 

city of Medellín from south to north. The orographic conditions of the region favor the 

development of thermal inversion layers in the valley during the early morning hours, 

especially in Medellín downtown (Laverde, 1988). Under such conditions air pollution 

episodes can occur, due to a low dispersion of pollutants produced with increasing 

stability.         

A distribution of precipitation with two peaks can be observed in the research area: two 

rainy seasons between April-May and October-November and two drier seasons the rest 

of the months. The bimodal regime shapes the monthly differences in the rainfall 

amount, with minimum monthly values around 50mm/month and maximum values over 

200mm/month. The mean temperature is around 22°C, with low seasonal variability 

(less than 1.5°C between maximum and minimum monthly temperatures). Temperature 

variability can be observed because of height differences alongside the Aburrá Valley 

and due to the day-night regime. 
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The AMVA is a highly dynamic metropolitan region with a continuously growing 

population.  Between 1993 and 2005 the region had a population increase of 25%, while 

for the period 2005-2012 an increase of 10% was estimated (Gobernación de Antioquia, 

2013). Most of this increase corresponds to the city of Medellín, where over 65% of the 

total population is concentrated. Furthermore,  the AMVA is the second most important 

industrial region of Colombia, with most of the industrial facilities concentrated in the 

south of the valley (Betancur et al., 2001). Finally, the vehicular fleet of the region has 

been growing at very fast rates lately. Between 2000 and 2011 the number of vehicles 

increased from 300,000 to 800,000. Vehicles and industries are the principle sources of 

air pollutants in the Aburrá Valley, what can be associated to the socioeconomic 

development of the region during the last years (AMVA, 2012).    

As a consequence of its industrial characteristics and its complex orography, the urban 

areas of the Aburrá Valley are constantly faced with air quality problems. The principle 

pollution problems are caused by PM10 and PM2.5, mostly in the municipality of 

Medellín and other municipalities located in the south. These two pollutants have 

exceeded the values considered as healthy by air quality guidelines during the last years 

and are therefore an issue of concern for the environmental authorities (UNAL, 2015; 

UPB, 2013).       

3.2 Data description 

The Air Quality Network of The Metropolitan Area of the Aburrá Valley (REDAIRE
1
) 

has been in charge of air quality monitoring in Medellín and the AMVA since the year 

2003. It consists of 22 fixed and 1 mobile measuring stations (Figure 3), combining 

automatic and semiautomatic sampling techniques. The stations are distributed 

alongside the Aburrá Valley, with 14 of those stations being equipped with automatic 

samplers for the monitoring of air pollutants (PM10, PM2.5, NO, NO2, O3 and SO2) and 

meteorological variables (temperature, relative humidity, solar radiation, wind speed, 

wind direction, precipitation and atmospheric pressure). The automatic monitoring 

stations provide information for all variables of interest at hourly intervals, what allows 

a detailed analysis of air pollution patterns at different time scales.  

                                                 
1
 Additional information about the air quality network and its measurement procedures are available on: 

http://www.metropol.gov.co/CalidadAire/Paginas/redaire.aspx 
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Figure 3: Location of the automatic monitoring stations of REDAIRE alongside the Aburrá Valley 

All data used for this master’s thesis have been sampled and validated by REDAIRE, 

following strict quality assurance and quality control procedures. From the entire 

datasets, following criteria were used for the selection of the data included in the study: 

 Only data sampled by automatic stations was included 

 PM10 and PM2.5 were selected due to their major contribution to air pollution 

problems in the Aburrá Valley. NO2 has also been selected because it is both a 

primary and a secondary air pollutant and therefore its temporal variability is 

of special interest. All other pollutants were excluded   

 The automatic stations have been recording data for all air pollutants since 

2012 (before that only PM10 was registered). For that reason data recorded 

from 2012 onwards was used.  

Consequently, hourly values of PM10, PM2.5, NO2 (expressed in units of mass 

concentration of pollutants in µg∙m
-3

) and meteorological variables measured by the 

automatic stations of REDAIRE for the period October 2012-September 2015 were 

used for this investigation. Only stations with complete air quality data series for the 
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entire period were considered, to avoid a temporal bias in the analysis. Following this 

condition, samples collected by the station EST-METR were removed from the 

analysis.    

3.3 Methodology  

3.3.1 Exploratory data analysis 

Exploratory data analysis was performed as a first approach for the determination of 

temporal trends of air pollutants and meteorological variables. Daily average values 

were examined over the entire time period to detect the most general patterns associated 

with short and long term variability. A Generalized Additive Model (GAM) was used 

for the calculation of smooth trends for the entire study period, based on the daily 

values. For this purpose the mgcv package (Wood, 2011) was used, which automatically 

finds the most appropriate smoothing fit for the trends by using natural splines. 

Diurnal, day of the week and monthly variation plots were generated for the area of 

interest. Additionally, contour plots were created for a comparison of hourly profiles of 

pollutants and meteorology during different months of the year. The interactions 

between the two different time scales could also be visualized through this method.      

The results of this analysis allowed for initial conclusions about the temporal cycles 

dominating the air pollution behavior in the Aburrá Valley and the city of Medellín, as 

well as the principal factors influencing its variation. The complete exploratory data 

analysis was performed with the statistical software R (R Development Core Team, 

2015). The R packages ‘openair’ (Carslaw & Ropkins, 2012) and ‘lattice’ (Sarkar, 

2008) were used for the generation of special plots.        

3.3.2 Variogram analysis  

Based on the results of the previous section, a variographic analysis for the air 

pollutants time series (PM10, PM2.5 and NO2) was performed. The basic element of 

variography is the empirical semivariogram, which according to Cressie (1993) is 

defined as  
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𝛾(ℎ) =
1

2|𝑁(ℎ)|
∑ (𝑍(𝑠𝑖) − 𝑍(𝑠𝑗))

2
𝑁(ℎ)   ,              (1) 

where N(h) denotes the set of pairs of observations i and j separated by distance h, 

|N(h)| is the number of distinct elements of N(h) and Z is the value observed at a point s.  

Since the variogram is usually used for spatial analysis, all terms are related with 

distances between points in the geographical space. However, for this research the 

distance h represents the time separation between 2 measurements of the data series, 

thus allowing an analysis of the variability of pollutants in the temporal (not spatial) 

dimension.  

For a geostatistical analysis of such temporal data the empirical semivariogram was 

used to estimate the theoretical semivariogram, which is valid for all possible time 

distances h. The theoretical variogram is usually described by three parameters:  

nugget:  y-intercept of semivariogram, represents the small scale variation or the 

measurement error of the data, 

sill: value at which the variogram levels off and when the lag distance tends to 

infinity, 

range:  lag distance at which the sill is reached; autocorrelation is presumably 0 after 

this point.  

There are many different theoretical semivariogram models proposed in the literature 

(Journel & Huijbregts, 1978). For the analysis of air pollutants in the Aburrá Valley two 

types of models were tested: spherical (equation 2) and Gaussian model (equation 3). 

The chosen models are some of the most typically used models in geostatistics and can 

be applied in multiple research questions due to their flexibility. The formulas for the 

selected models are presented below: 

Spherical model (||h|| being the Euclidean distance between two points in ℝ1
, ℝ2

, or ℝ3
) 

with nugget co, sill (co+cs) and range as: 

𝛾ℎ = {

0,                                                                                         ℎ = 0,                

𝑐0 + 𝑐𝑠{(3/2)(‖𝒉‖/𝑎𝑠) − (1/2)(‖𝒉‖/𝑎𝑠)
3},          0 < ‖ℎ‖ ≤ 𝑎𝑠,

𝑐0 + 𝑐𝑠,                                                                              ‖ℎ‖ ≥ 𝑎𝑠,          
                   (2) 
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Gaussian model (||h|| being the Euclidean distance between two points in ℝ1
, ℝ2 

and ℝ3
) 

with nugget co, sill (co+cg) and range ag:  

𝛾ℎ = {
0,                                                                                    ℎ = 0,

𝑐0 + 𝑐𝑔 {1 − exp (−(‖𝒉‖/𝑎𝑔)
2
} ,                     ℎ ≠ 0,

                             (3) 

Multiple methods (Cressie, 1993) can be used to obtain a best model fit, when selecting 

the theoretical semivariogram and its parameters (nugget, sill and range). For this 

research study a combination of automatic and “fit by eye” methods were used. The 

automatic fit was based on the weighted least squares method, which minimizes the sum 

of squared residuals with different weights, depending on the number of data pairs and 

the lag distances.  

The eyefit method was performed for improving the automatic fit outputs. This was 

done when the parameters of the theoretical semivariogram from the automatic fit 

highly differed from the expected results, based on the knowledge of the data. For this 

method an automatic fit was first performed and its results were taken as start values to 

manually fit the most accurate model parameters.  The R package gstat (Pebesma, 2004) 

was used for the estimation of the empirical and theoretical semivariograms. RMSE 

values were calculated to test the accuracy of the model outputs.         

3.3.3 Kriging of PM10, PM2.5 and NO2 temporal data  

Kriging is an interpolation method commonly used in geostatistics. It relies on the 

knowledge of the autocorrelation of observed data to make inferences on unobserved 

values of a random process (Journel & Huijbregts, 1978; Matheron, 1963). The kriging 

method uses the theoretical semivariogram to predict a value Z0 based on the weighted 

observations Z at the sample points i by following Eq. (4)  

𝑍̂0 = ∑ 𝜆𝑖 × 𝑍𝑖
𝑛
𝑖=1 ,                (4) 

where λi are unknown real coefficients (weights). In the case of Ordinary Kriging the 

weights are obtained by solving the following kriging system: 
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⋮
𝛾𝑛0

1 ]
 
 
 
 

  ,              (5) 

where γij=0.5Var(Zi - Zj), γi0=0.5Var(Zi – Z0)  and μ is a Lagrange multiplier. In 

Ordinary Kriging the best predictor 𝑍̂0 is obtained by minimizing the mean square 

prediction error.  In the case of time series i and j represent the different time points in 

the temporal dimension.    

Semivariogram analysis and kriging were mainly used to analyze and interpolate the 

interaction of the diurnal and seasonal variation of air quality parameters. This analysis 

was based on the long-term mean averages per month and hour to derive the general 

pattern. The cyclic nature of diurnal and seasonal variation, which has no predefined 

starting point, had to be considered in the analysis to avoid artifacts at arbitrarily 

defined starting points like the end of the previous day or the end of the previous year. 

To this end, the data were recycled prior to analysis. After analysis and kriging, the 

recycled parts were deleted again to arrive at a kriged representation of the diurnal and 

seasonal variation without distortions and artifacts at the margins of the day and of the 

year. This is illustrated in Figure 4. It has to be noted that the semivariance has to 

become zero at a lag of 12 months in the seasonal domain and at a lag of 24 hours in the 

diurnal domain due to the use and recycling of long-term averages for each month and 

hour. 

For the joint analysis of the seasonal and the diurnal variation, the months were used as 

y coordinates and the hours of the day as x coordinates (Figure 4). This leads to two 

problems. (i) In contrast to geographical coordinates, both coordinates have different 

units. (ii) It is rather unlikely that the autocorrelation length during a day is identical to 

the autocorrelation length during a year. To account for these problems, anisotropic 

semivariograms were calculated that either strictly followed the x coordinate or the y 

coordinate. For kriging, omnidirectional semivariograms were necessary. These were 

obtained by scaling the x coordinate and the y coordinate in a way that both directional 

semivariograms became identical at least up to the maximum lag that was needed 

during kriging. It turned out that both directional semivariograms became near identical, 
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if the diurnal coordinate was hourly scaled while the seasonal coordinate was monthly 

scaled (see Results). The omnidirectional semivariogram should not be used for other 

purposes than kriging and may only be interpreted at short lags (maximum distance of 

4). Its interpretation becomes especially invalid at a lag of 12, for which the 

semivariance in the seasonal domain must be zero while a large semivariance can be 

expected in the diurnal domain because this lag would include the difference between 

midday and midnight. 

 

Figure 4: Recycling of data to avoid artifacts at the start and end of the diurnal cycle and of the seasonal 

cycle. The yellow area displays the recycled data taken from the green area. The data of both, the green 

and the yellow area were then used for semivariogram analysis and kriging. The x coordinates represent 

the hours of day and the y coordinate the months of a year.           

The same analysis and the developed procedure for the construction of omnidirectional 

semivariograms were repeated for kriging at smaller time intervals, i.e. for the joint 

analysis of the weekly and diurnal pollution cycles. In this case the x coordinates 

corresponded to the hour of the day and the y coordinates to the days of the week 

(Monday-Sunday). This analysis was performed to obtain the pollution variability 

within a week cycle, what is needed for prediction or estimation of missing values at 

day-distances. 

   

13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12

Jul

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

May

Jun



17 

 

Additionally to the study of the interactions between, diurnal, weekly and yearly 

variation of air pollutants, kriging was used as a tool for 1) estimation of missing values 

(interpolation); and 2) prediction of air pollution concentrations in the Aburrá Valley 

(extrapolation). Since the calculated omnidirectional semivariograms were only valid at 

small lag distances in x (hours) and y (months or days of the week) directions, the 

prediction or estimation of missing values was performed for short time windows (i.e. 

adjacent months or days of the week). The calculation of the target values through the 

developed method is shown schematically in Figure 5.  

 

Figure 5: Scheme of the values used for the kriging procedure. The green cells represent the observed 

values, the red cell the missing data and the arrows the maximum distance considered for kriging   

For the calculation of every missing value, kriging was performed by only using data at 

very short distances (in this representation a maximum distance of 2). In the example, 

the missing value at hour 6/month 12 is calculated based on the data of months 4-5 and 

7-8 and the hours 10-11 and 13-14. Notice how the kriging method makes use of both 

the diurnal and the yearly pollution cycles. This type of procedure is considered 

adequate for the modelling of air quality data of the Aburrá Valley, due to similar 

behavior of the diurnal pollution cycle at different months of the year and days of the 

week (see Results 4.1.3 and 4.3.2). In study regions with high variability of the diurnal 

cycle this method would not be effective. In the case of the prediction of values an 

extrapolation was actually performed. Only data observed prior to the target values was 

used for the kriging procedure. Similarly to the estimation of missing data, short time 

distances were used for the calculation.               
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Estimation of missing data and prediction was performed for all months of year 2014. 

This year was chosen because of data availability for all months and presence of 

pollution events. Hourly average values for every month were used as input data. The 

results were afterwards compared with the observed values to test the accuracy of the 

model. In addition, specific days in February-March 2014 and 2015 (periods where 

exceedances of the Colombian Air Quality Norm were observed) were also simulated. 

Model evaluation was performed based on the following criteria: R
2
, RMSE and Index 

of Agreement. Additionally, the distribution of the residuals was tested for normality. 

The kriging interpolation and the statistical analysis were performed using the R 

package gstat 

Before the semivariograms of air pollutants were calculated and kriging interpolation 

was performed, the pollution datasets were transformed to obtain normally distributed 

data, which is required for an optimal applicability of geostatistical methods. PM10, 

PM25 and NO2 values corresponding to hour, day of the week and month averages were 

checked for normality based on histograms and the Lilliefors-Test. The Box-Cox 

method (Box & Cox, 1964) was used to select the best possible value for the 

transformation. A fourth root power transformation was applied for all air pollutants, 

with the resulting values showing normal distribution (see Appendix 7.3 for histograms 

and normality tests). To avoid ambiguity, the fourth root transformed data will be called 

rPM10, rPM2.5 and rNO2 in the Results section. After kriging the results were back 

transformed to obtain the definite concentrations of air pollutants.        

4 Results and discussion 

4.1 Air pollutants and meteorology explorative analysis 

4.1.1 Seasonal variations  

A yearly periodicity in the air pollution data was found for the Aburrá Valley. During 

the study period the pollutants PM10, PM2.5 and NO2 continuously showed their highest 

daily averages during February-March. After these pollution maximums the 

concentrations decreased until the yearly minima around June-July and then started to 

increase again to complete the yearly pollution cycle (Figure 6). This yearly periodicity 
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was more pronounced and stable for PM10 and PM2.5 than for NO2. For PM10 and PM2.5 

the described periodicity practically did not show any alterations during the three years 

of analysis. Meanwhile, the pollution cycle of the pollutant NO2 changed over the years. 

In 2013 the differences between seasonal maximum and minimum values were small 

and the expected trend was difficult to identify. On the contrary, during the years 2014 

and 2015 NO2 concentrations followed the same pollution cycle as PM10 and PM2.5 and 

the yearly peaks were considerable higher than the minimum daily averages (around 4-

times higher both in 2014 and 2015).   

During the pollution peaks in February-March the Colombian Norm of Air Quality for 

PM2.5 (50 [μg∙m
-3

]
 
daily average) was exceeded more than 10 times in 2014 and 2015, 

while the PM10 Norm (100 [μg∙m
-3

]
 
daily average) was only exceeded in rare occasions 

(3 times during the entire study period). In the case of NO2 the seasonal peaks did not 

represent a danger for the population, since the observed levels were considerably lower 

than the suggested threshold (150 [μg∙m
-3

]
 
daily average). 

 

Figure 6: Seasonal distribution of PM10, PM2.5 and NO2 in the Aburrá Valley. Daily averages [μg∙m
-3

] and 

smooth curves (Oct. 2012 - Sep. 2015). The dashed lines show the Colombian Air Quality Norm for PM10 

and PM2.5   

Additionally to the pollution cycles presented in Figure 6, the corresponding statistics to 

the seasonal trends are summarized in Table 1. Twice as much of the variability of 

PM2.5 as of the two other pollutants was explained though the yearly periodicity. The 
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concentrations of PM10 and NO2 were also influenced by this seasonal effect, but to a 

lesser degree than PM2.5  

Table 1: Output statistics of the Generalized Additive Model (GAM) for PM10, PM2.5 and NO2.  

Calculations based on daily averages [μg∙m
-3

].   

 

 

 

The yearly periodicity of the meteorological parameters solar radiation, wind speed, 

temperature and precipitation was not homogenous among them and similarities in 

comparison with the air pollution periodicity were difficult to identify. Solar radiation 

was the meteorological variable which showed the most similar periodical behavior 

compared with the air pollution patterns. Inversely to the pollutants’ concentrations, the 

radiation peaks occurred during the months of June-July and the minimum values 

around January-February. For wind speed and temperature a consistent seasonal trend 

over the 3 years of analysis was difficult to identify, because of higher short term 

variability than long term periodicity. Finally, rainfall peaked around May and October-

November. However, the yearly periodicity of rain was not similar to the one of air 

pollutants in the Aburrá Valley.  

 

Pollutant  
Estimated degrees 

of freedom 

Adjusted R-

squared  

Deviance explained 

[%] 

PM10 8.78 0.15 15.9 

PM2.5 8.89 0.31 31.5 

NO2 8.64 0.15 15.3 
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Figure 7: Seasonal distribution of meteorological variables in the Aburrá Valley. Daily averages and 

smooth curves (Oct. 2012 - Sep. 2015): solar radiation [W∙m
-2

], wind speed [m∙s
-1

], air temperature [°C] 

and rainfall amount [mm∙day
-1

] 

According to the orography of the study region, the main winds came from the North-

East direction and crossed to the South alongside the Aburrá Valley (Figure 8). Under 

favorable atmospheric conditions this kind of winds helped to disperse accumulated air 

pollutants in the valley. The wind roses varied little among the different months of the 

year. In all cases, the predominant winds came from North-East direction, while winds 

coming from the South, South-West and West directions had the lowest frequency. 

Differences in wind speed were also low, with monthly average values ranging between 

1.14-1.22 [m∙s
-1

]. The temporal trends observed for air pollutants could not be found for 

wind speed/direction at a monthly scale.        

  

Figure 8: Wind roses for the Aburrá Valley. The graph on the left presents all data for the study period, 

while in the graph on the right the data has been divided into the different months of the year  

4.1.2 Hourly, weekly and monthly distribution  

All pollutants exhibited a maximum peak value around 07:00-10:00 and a second, less 

pronounced peak in the evening hours (18:00-21:00) (Figure 9). This bimodal behavior 

was associated with the morning and evening traffic flows in the Aburrá Valley, as 
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observed by Zapata et al. (2015). During the afternoon pollutants were generally 

reduced, which can be partly explained by less stable atmospheric conditions (solar 

radiation and wind speed maximum values). Minimum values during the night matched 

the minimum in traffic flow at late hours.      

  

  

  

Figure 9: Hourly distribution of air pollutants and meteorological variables in the Aburrá Valley 

Wind speed and temperature showed the expected daily cycle, with maximum hourly 

values after midday and daily minima just before sunrise (06:00). Because of the 

latitude of the study region near the equator this daily profile presented low variability 

around the year. On the contrary, the rainfall profile showed a pronounced pattern. Rain 

events occurred mainly during the afternoon hours (15:00-17:00) and around midnight 

(23:00-02:00). This behavior is typical for precipitation in the Aburrá Valley region.  

The comparison between hourly, weekly and monthly distributions of PM10, PM2.5, NO2 

(Figure 10) allowed a better understanding of the interactions between the different time 

scales. The daily profiles of all pollutants showed a bimodal regime with a morning and 

an evening peak. This profile was very similar for all weekdays (Monday-Friday) and 
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even Saturdays. Only Sundays had considerable lower pollutants’ concentrations 

associated to lower anthropogenic activities (vehicular traffic, industrial production). 

This indicates a strong dependency of the hourly distribution of pollutants on the 

emission sources and their temporal variability. 

The monthly distribution of air pollutants showed maximum mean values around March 

and minimum monthly values in June-July. The differences between minimum and 

maximum monthly values were large, reaching 33% for NO2 (28.2 - 37.4 μg∙m
-3

), 40% 

for PM10 (47.3 - 66.4 μg∙m
-3

) and 85% for PM2.5. These differences can hardly be 

explained by variations in the emission sources alone and could be related to changes in 

the atmospheric stability. This effect has been observed in similar Colombian regions 

(González-Duque et al., 2015), however further research regarding this topic is needed 

for the Aburrá Valley.             
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Figure 10: Daily, weekly and monthly time variation PM10, PM2.5 and NO2. Mean values [μg∙m
-3

] 

4.1.3 Yearly and diurnal cycles  

For the observance of air pollution and meteorological cycles their yearly and diurnal 

distributions were combined. The maximum hourly peak for air pollutants values was 

observed between 08:00-10:00, with no exception for all the months of the year. The 

diurnal cycle also showed a secondary peak during the evening, however it was much 

more pronounced for NO2 in comparison with PM10 and PM2.5. The daily cycle did not 

present important variations over the year, March being the month with the maximum 

pollution concentrations for all pollutants. During this month the pollution levels were 

constantly high at all hours.  

The lowest air pollution levels occurred in June-July, at afternoon hours (14:00-16:00). 

This could be associated with two combined effects: favorable atmospheric conditions 

during afternoon hours (reduction of hourly values) and lower traffic emissions during 

the holiday season (decrease in the monthly averages). The lowest monthly average 

concentrations occurred during these months. The differences between total minimum 

and maximum pollution values were very high (+169% PM10, +294% PM2.5 and +233% 

NO2). 

Wind speed and solar radiation showed a consistent diurnal cycle during the different 

months. This was expected because of the proximity of the study region to the earth’s 

equator. Maximum values occurred in June-July, between 14:00-16:00 for wind speed 

and in July-August between 12:00-13:00 for solar radiation. Minimum values for both 
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variables were observed in June-July, just before sunrise. On the contrary, there were 

large variations in the daily profile of precipitation over the year. Between May-October 

there was presence of rainfall events at late night hours and the rest of the months the 

events occurred mainly in the afternoon. This shift in the diurnal precipitation profile 

agrees with the observations by Poveda et al. (2015). Between 07:00-13:00 very low 

rainfall amounts were recorded. 

  

  

  

Figure 11: Yearly and diurnal cycle of air pollutants and meteorology in the Aburrá Valley. PM10 [μg∙m
-

3
], PM2.5 [μg∙m

-3
], NO2 [μg∙m

-3
], precipitation [mm∙h

-1
], wind speed [m∙s

-1
] and temperature [°C].  

Throughout this section hourly, weekly and monthly distribution profiles for air 

pollutants and meteorology in the Aburrá Valley were presented. However, a clear 

relationship between these variables could not be identified. A variogram analysis is 

therefore needed for an effective description and prediction of PM10, PM2.5 and NO2.  

4.2 Variogram analysis 

4.2.1 Diurnal and yearly cycles 

Semivariograms of the long trend pollution variation (hourly and monthly averages) for 

the pollutants PM10, PM2.5 and NO2 were calculated. The results for PM2.5 and NO2 are 
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presented in detail in this section. Results for PM10 were very similar to those of PM2.5 

and are therefore not shown here, but can be found in Appendix 7.1.  

Empirical semivariograms 

The empirical semivariogram of rPM2.5 (Figure 12a) when using time during the day as 

x coordinate and month as y coordinate showed two maximum semivariances at lag 

distances of around 7 and 21 respectively, where the unit of the lag may be hours or 

months or a combination of both. It is rather unlikely that the diurnal pattern is the same 

as the seasonal pattern. However, this approach was necessary to interpolate and extract 

the variation of the diurnal pattern over seasons (months) by kriging. The prerequisite 

for doing so is that the diurnal semivariogram is sufficiently similar to the seasonal 

semivariogram for short lags that play a role during kriging. The comparison of Figure 

12b and 12c showed that this was the case up to a lag of 4 (either months or hours). 

Thus, the overall semivariogram can be used up to a lag of 4 (either months or hours) 

for simultaneously kriging the variation of the diurnal pattern over months. 

For the interpretation of the diurnal and the seasonal variation at lags longer than 4, the 

semivariograms on directional bands 90° (strictly hourly values) and 0° (strictly 

monthly values) have to be used (Figure 12b and c). The maximum semivariance (total 

sill) was similar for the monthly and the hourly semivariogram, indicating that the 

maximum variation during the year was about the same as the maximum variation 

during the day. Furthermore, both semivariograms showed a bimodal behavior 

indicating that the day or the year was separated in four phases, two of which were 

characterized by high values and two with low values. This bimodal behavior appeared 

to be more pronounced during the year than during the day although the differences 

were small. 
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Figure 12: Semivariogram of the diurnal and yearly rPM2.5 cycle: a) distance = hour *month; b) distance = 

hour; c) distance = month; γ-value [(μg∙m
-3

)
0.5

] 

Similarly to rPM2.5, the hourly and monthly semivariograms for rNO2 which combined 

hourly and monthly average values could be compared up to a lag of 4 (Figure 13 b-c). 

The semivariance at month 4 equals the semivariance at hour 2, meaning that up to this 

distance the semivariance of the diurnal cycle is twice higher as the semivariance of the 

yearly cycle. This ratio was considered for the calculation of the semivariogram and 

allowed kriging to be applied up to lag of 4. The combined semivariogram showed three 

peaks at lag distances of around 7, 12 and 21. The additional peak in comparison to the 

rPM2.5 semivariogram is associated to the presence of a second pronounced daily peak 

value in the NO2 data (during the early evening hours) in comparison with only one 

very pronounced peak by PM2.5 (in the morning).  The higher variability of the NO2 

diurnal cycle (concentration differences between morning peak and night valley of over 

150%, see Figure 9) was also reflected in the presence of continuous semivariance 

values > 0.03 between lag distances of 6 and 22.   

a) 

b) c) 
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Figure 13: Semivariogram of the diurnal and yearly rNO2 cycle: a) distance = hour*month; b) distance = 

hour; c) distance = month; γ-value [(μg∙m
-3

)
0.5

] 

The semivariogram corresponding to the yearly cycle of rNO2 showed analogous 

patterns to the one observed for rPM2.5, with two maximum semivariance values at lag 

distances of 4 and 8 months, respectively. This indicates that a general yearly cycle 

influenced the pollution levels in the Aburrá valley, yet up to a different degree for 

PM2.5 and NO2. The yearly pollution cycle had a stronger effect on PM2.5 than on NO2.   

Two semivariance peaks associated with the difference between pollution 

concentrations at morning peaks and night valleys were found at lag distances of 6 and 

16 hours in the diurnal semivariogram. The diurnal cycle had a bigger effect over the 

concentrations of NO2 than the yearly cycle. The semivariogram corresponding to the 

hourly variation of this pollutant showed maximum γ-values of 0.05, while the 

maximum semivariance for monthly values lied around 0.010 (at month 4 and 9). At a 

lag distance of 2 hours the semivariance of the diurnal cycle equaled the maximum of 

the yearly-cycle semivariogram, showing the maximum distance up to which an 

omnidirectional semivariogram is valid.     

 

a) 

b) c) 
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Theoretical semivariograms 

Omnidirectional semivariograms were calculated using the method described in section 

3.3.3. In Figure 12(b, c) and Figure 13(b, c) the first peak of the monthly semivariogram 

for both pollutants is observed at a distance of 4 month. This was the maximum distance 

taken for the month-coordinate. The equivalent semivariance for the hour-coordinates 

lied for rPM2.5 at a distance of 4 hours and for rNO2 at a distance of 2 hours. 

Considering this, the theoretical semivariogram for rPM2.5 was calculated until a 

maximum distance of 4 hours and 4 months, without any further data manipulation. On 

the contrary, by the rNO2 dataset the hours were multiplied by 2 and then the 

semivariogram was calculated until a distance of 4 hours and 4 months, thus obtaining a 

valid semivariogram that simultaneously included the diurnal and yearly variability of 

air pollutants. A lag distance of 0.5 was chosen for the data pairs. A maximum cutoff 

value of 6 was selected. 

Figure 14 presents the theoretical semivariograms obtained for rPM2.5 and rNO2. In both 

cases the fit was accurate and matched the γ-values obtained from the empirical 

semivariograms with precision. The nugget had a value of 0 for rPM2.5 and rNO2, 

meaning that the averaging of values (hourly + monthly averages) eliminated the 

measurements error of the air quality samples. The γ-values of the range lied by 

expected values of 6.0 (Table 2). Finally, a much higher sill than the nugget was 

associated with the significant effect of the diurnal and yearly cycles over the pollution 

concentration and its variability in the Aburrá Valley.  

 

 

 

 



30 

 

 

 

Figure 14: Theoretical semivariogram models for rPM2.5 and rNO2 diurnal and yearly cycles. γ-value 

[(μg∙m
-3

)
0.5

]  and distance [hour*month]  

Table 2: Parameters for the theoretical semivariograms of rPM2.5 and rNO2 diurnal/yearly cycles.  

 rPM2.5 rNO2 

Semivariogram 

model 

Gaussian  

(automatic) 

Spherical 

(automatic + eyefit) 

Nugget [(μg∙m
-3

)
2
] 0.0007 0.0 

Sill [(μg∙m
-3

)
2
] 0.028 0.015 

Range [(hour*month] 3.66 6 

RMSE [(μg∙m
-3

)
2
] 0.0002 0.0028 

The calculated semivariogram models properly described the variability of air pollutants 

related to diurnal and yearly cycles, thus allowing its application for kriging procedures. 

Additionally, in the next section the results of semivariogram models based on a higher 

time resolution will be presented 

4.2.2 Diurnal and weekly cycles 

Complementary to the semivariograms calculated for the diurnal and yearly pollution 

cycles, a variographic analysis was performed based on the diurnal and weekly cycles of 

air pollutants. For this purpose, the average values used for the calculation of the 
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semivariogram (coordinates x and y) corresponded to the hour of the day (diurnal cycle) 

and the day of the week, from Monday to Sunday (weekly cycle). The results of this 

analysis allowed a better understanding of the short term variability of the main 

pollutants in the Aburrá Valley.  

Empirical semivariograms 

The empirical semivariogram of the diurnal and weekly cycle of rPM2.5 (Figure 15a) 

showed two maximum semivariances at lag distances of around 7 and 18 respectively. 

The first peak corresponded to the maximum variability associated to the diurnal cycle, 

while the second peak is produced by the combination between the diurnal cycle and the 

weekly cycle and their maximum and minimum values (e. g. differences between a 

Wednesday morning and a Sunday afternoon). The weekly cycle differs highly from the 

diurnal cycle, as it was expected. However, until a lag distance of 2 the semivariance of 

the weekly cycle equaled the semivariance of the diurnal cycle, meaning that until this   

lag the variability of rPM2.5 was as much influenced by the hourly variability as by the 

differences between days of the week.  The overall semivariogram could therefore be 

used up to a lag of 2 for simultaneous kriging of variation of the diurnal and weekly 

cycle. 

The semivariograms on directional bands 90° (strictly hourly values) and 0° (strictly 

weekday values) showed a higher effect of the hourly cycle than the weekly cycle over 

rPM2.5 variability. The maximum semivariance (total sill) at 7 hours was around 4 times 

bigger than the corresponding maximum of the weekly cycle, thus indicating the 

importance of the diurnal peaks over pollution events in the area of study. Furthermore, 

the semivariogram of weekdays peaked at distances of 2 and 4 days, which was related 

to rPM2.5 minimum values on Sundays and high differences compared to the rest of the 

days with the exception of Mondays which was influenced by the pollution decrease on 

Sundays and presented the second lowest rPM2.5 concentrations of all weekdays.   

. 
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Figure 15: Semivariogram of the diurnal and weekly rPM2.5 cycle: a) distance = hour *day; b) distance = 

hour; c) distance = day; γ-value [(μg∙m
-3

)
0.5

] 

Similarly to rPM2.5, the combined semivariogram of the weekly and diurnal cycles of 

rNO2 presented two peaks at lag distances around 7 and 19 (Figure 16). The first peak 

was produced by the maximum diurnal semivariance at 7-hours distance and the second 

peak combined the effect of the diurnal and the weekly cycle. The second semivariance 

peak was less pronounced by rNO2 compared to rPM2.5, what could be explained by a 

general lower effect of the weekly cycle over the total variability of rNO2.   

 

a) 

b) c) 

a) 
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Figure 16: Semivariogram of the diurnal and weekly rNO2 cycle: a) distance = hour *day; b) distance = 

hour; c) distance = day; γ-value [(μg∙m
-3

)
0.5

] 

The strictly 0° rNO2 pollution semivariogram showed a nearly identical pattern to the 

corresponding rPM2.5 semivariogram, with 2 semivariance peaks at lag distances of 2 

and 4 days. A common weekly cycle could be observed for the air pollutants in the 

Aburrá Valley, where the minimum pollution concentrations occurred in Sundays and 

Mondays, while the pollution maximum values were observed at Fridays/Saturdays. 

This pattern was constant over the study period and did not change greatly throughout 

the different phases of the year (the air pollutants showed the same pattern during 

pollution peaks in March and yearly minima in June).     

The weekly cycle for rPM2.5 and rNO2 could be successfully captured by the 0° 

semivariogram with similar results for both pollutants, showing that a general pattern 

based on the differences between Sundays (and to a lesser degree Mondays) and the rest 

of the days dominated the pollution concentrations in the area of study. The weekly 

cycle, in combination with the hourly pollution distribution, captured the variability of 

air pollutants’ concentrations at short term intervals (days within a same week, at 

different hours).   

Theoretical semivariograms 

Omnidirectional semivariograms of the combined diurnal and weekly pollution cycle 

were calculated using the same method as in section 4.1.2. The directional 

semivariograms of the diurnal and weekly cycles, both for rPM2.5 and rNO2, showed 

that at a lag distance of 2 the semivariance of the diurnal cycle equaled the semivariance 

of the weekly cycle. Considering this, the theoretical semivariograms for rPM2.5 and 

rNO2 were calculated until a maximum distance of 2 hours and 2 days. Besides the 

b) c) 
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definition of the maximum possible distance no further data manipulation was 

performed. A lag distance of 0.5 was chosen for the data pairs.  

The fitted omnidirectional semivariograms matched the empirical rPM2.5 and rNO2 with 

high precision (very low RMSE values of 0.0003 and 0.001, respectively, Table 3). The 

theoretical semivariograms of both pollutants showed very similar patterns (Figure 17), 

thus indicating that the combination of the diurnal and weekly pollution cycles until the 

selected lag distance affected the pollution concentrations of rPM2.5 and rNO2 in a 

similar way. The nugget for the theoretical semivariograms was near 0 in both cases and 

the range lied at values around 3, what was expected considering that the maximum 

selected distance was 2, both in x (hour) and y (day of the week) direction.   

Even though the theoretical semivariograms of rPM2.5 and rNO2 presented almost 

identical patterns, the total sill of rNO2 was twice as high as rPM2.5. The combined 

weekly/diurnal cycle influenced the pollution concentrations under a common schema, 

however to a different degree depending on the air pollutant. rNO2 presented a higher 

variability under the influence of this common cycle. NO2 showed during the 3-year 

study period higher differences than PM2.5 between Sundays and rest of the days (Figure 

10) and also the diurnal cycle of this pollutant was less stable; this was accurately 

reflected though the omnidirectional semivariogram.  

Table 3: Parameters for the theoretical semivariograms of PM2.5 and NO2 diurnal/weekly cycles 

 PM2.5 NO2 

Semivariogram 

model 

Gaussian  

(automatic) 

Gaussian 

(automatic) 

Nugget [(μg∙m
-3

)
0.5

] 0.0004 0.0014 

Sill [(μg∙m
-3

)
0.5

] 0.016 0.031 

Range [(hour*month] 3.257 3.111 

RMSE [(μg∙m
-3

)
0.5

] 0.00031 0.0010 
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Figure 17: Theoretical semivariogram models for rPM2.5 and rNO2 diurnal and weekly cycles. γ-value 

[(μg∙m
-3

)
0.5

]  and distance [hour*day] 

Throughout this section the temporal cycles that have an effect over the pollution levels 

in the study area (diurnal, weekly, yearly cycles) were explored by using a variographic 

analysis. Its results allowed the calculation of theoretical semivariograms, which can be 

used for the study of interactions of air quality patterns at different time scales, 

estimation of missing values or prediction purposes. The next section of this 

investigation presents the results of this procedure.     

4.3 Kriging for time series analysis, missing data estimation and prediction 

4.3.1 Kriging modelling at diurnal/yearly scale 

The theoretical semivariograms of the diurnal and yearly pollution cycles were used for 

imputation and prediction of PM10 and NO2 values by using the kriging method. Before 

kriging was applied for specific time periods, the general validity of the model 

assumptions was tested by cross validation. Its results confirmed that the selected 

method was valid for the time interpolation of hourly and monthly averages of rPM2.5 

and rNO2. In both cases, the model residuals presented a normal distribution (Figure 18 

rPM2.5 

rNO2 
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and Figure 19)  and the coefficients of determination between observed and predicted 

values were near 1 (R
2
 = 0.965 for the rPM2.5 model and R

2
 = 0.9332 for the rNO2 

model) 

   

Figure 18: Results of the cross validation for the rPM2.5 kriging model diurnal and yearly cycle: a) 

correlation between observed and predicted values; b) Density plot of model residuals and p-value of 

Lilliefors-Test; c) Q-q plot of model residuals 

   

Figure 19: Results of the cross validation for the rNO2 kriging model diurnal and yearly cycle: a) 

correlation between observed and predicted values; b) Density plot of model residuals and p-value of 

Lilliefors-Test; c) Q-q plot of model residuals. Cross validation performed with data corresponding to 

year 2014 

Furthermore the kriging models were applied to reconstruct the diurnal and yearly 

cycles of air pollution in the Aburrá Valley in a similar way than what was presented in 

section 4.1.3 (air pollution contour plots). The advantage of kriging over contour plots is 

that the cycles can be reconstructed even if the air pollution datasets are incomplete and 

the interpolation between values is based on a robust model (the semivariogram). The 

diurnal and yearly distribution of PM2.5 and NO2 for year 2014 modeled through a 

geostatistical approach showed that despite the rather similar diurnal pattern of both 

pollutants and the rather similar seasonal pattern of the pollutants, both behaved slightly 
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differently when combining the time domains (Figure 20). The diurnal pattern was 

rather weak for PM2.5 in March, while NO2 did not show this deviation. The reason for 

this phenomenon was related to the fact that during March PM2.5 accumulated in the 

Aburrá Valley, thus producing average concentrations of > 30 [μg∙m
-3

] during all hours 

of the day. In the case of NO2 the night levels remained however low because this 

pollutant rapidly decreases in the absence of emission sources.    

The sunset peak was considerably more pronounced for NO2 than for PM2.5. NO2, in 

general, showed a stronger diurnal variability than PM2.5 with lower values at night 

hours. Both pollutants have an afternoon depression, which is most pronounced in July, 

associated with the yearly maximum values of solar radiation and wind speed and 

therefore with less stable atmospheric conditions.    

 

Figure 20: Kriging interpolation of the yearly and diurnal cycle of PM2.5 [μg∙m
-3

] and NO2 [μg∙m
-3

]. 2014 

hourly and monthly averages were used for the interpolation  

Estimation of missing data 

Based on the general validity of the kriging interpolation procedure for PM2.5 and NO2 

pollution cycles, the quality of the developed model as a modelling tool for air pollution 

was tested. Two scenarios were analyzed: estimation of missing values and pollution 

prediction.     

It is a common phenomenon in air quality monitoring that because of technical 

problems a monitoring station stops working during prolonged time intervals or its 

records are not considered as valid. In this case it is crucial to reconstruct the datasets by 

calculating the missing data. The accuracy of the kriging technique for this purpose was 

tested for the available data in the Aburrá Valley. 
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Coefficients of determination (R
2
) between observed and simulated values for all 

months, with the exception of September and October for NO2, reached values >0.9 

(Table 4), indicating that the estimated values for each month reproduced the diurnal 

pollution cycle with accuracy. The months with the best simulation results for PM2.5 

were March and July, while in September and October the least accurate results were 

obtained. Good estimation results for March are of extreme importance for the overall 

quality of the model, considering that the highest pollution concentrations in the Aburrá 

are constantly observed during this month. On the contrary, the estimated values in 

September-October were too low in comparison with the observed values (monthly 

estimated averages >30% lower than observed values). This reflects that the model was 

unable to estimate the rapid increase of the pollution concentrations after the yearly 

minimum values in June-August. However, since the coefficients of determination 

remained high, the estimation of missing values for September-October could be 

improved by using a correction factor based on the difference between simulated and 

observed values.  

Meanwhile, the model could simulate missing NO2 values with high accuracy in April-

May, but showed difficulties with the estimation of missing values in March. A 

correction for this month will therefore be needed for future simulation, because of the 

existing pollution peaks during March. The high coefficient of determination achieved 

(R
2
 = 0.93) indicates that the model was able to capture the daily pollution profile 

accurately, however with a bias towards lower pollution concentrations than the real 

values. This could be improved through the calculation of a correction factor for this 

month.   

Table 4: Evaluation of the kriging model for estimation of missing PM2.5 and NO2 data. Results for 

average hourly values Jan-Dec 2014.  

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

P
M

.2
.5
 

Mean observed 

value [μg∙m
-3

] 
29.7 38.2 40.5 28.0 24.1 19.7 20.0 23.3 27.8 32.1 32.9 34.0 

Mean simulated 

value [μg∙m
-3

] 
21.0 31.7 35.8 32.2 32.9 26.2 19.9 18.7 18.7 20.8 24.4 28.4 

Coeff. determ. R
2
 0.96 0.95 0.98 0.98 0.91 0.95 0.97 0.96 0.93 0.90 0.97 0.96 

RMSE [μg∙m
-3

] 8.8 6.7 5.0 4.2 8.9 6.7 1.4 4.8 9.3 11.5 8.7 5.9 

Index of Agreement 0.58 0.69 0.87 0.87 0.63 0.76 0.99 0.85 0.63 0.55 0.66 0.82 
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N
O

.2
 

Mean observed 

value [μg∙m
-3

] 
33.0 39.5 42.8 37.9 38.7 29.6 30.9 30.9 36.7 37.1 34.9 32.9 

Mean simulated 

value [μg∙m
-3

] 
25.4 30.4 28.6 35.1 37.4 32.8 30.6 28.6 29.1 30.6 28.7 30.9 

Coeff. determ. R
2
 0.90 0.97 0.93 0.93 0.93 0.93 0.93 0.97 0.65 0.62 0.90 0.98 

RMSE [μg∙m
-3

] 8.1 9.3 14.4 3.7 3.0 4.1 2.4 2.6 9.2 8.8 7.2 2.3 

Index of Agreement 0.75 0.81 0.62 0.95 0.98 0.94 0.98 0.96 0.74 0.78 0.85 0.98 

The observed and simulated values for the hourly PM2.5 and NO2 averages in March are 

presented in Figure 21. The simulated diurnal cycle of both pollutants followed with 

high accuracy the observed diurnal cycle, thus showing that the selected geostatistical 

model was reliable and stable for the study area. The model could simulate PM2.5 almost 

perfectly (maximum differences around 7 [μg∙m
-3

] between observed and predicted 

value) and could therefore be applied for estimation of missing data in the Aburrá 

Valley. For an accurate prediction of NO2 a correction factor must be included in future 

calculations to avoid its bias towards the simulation of lower values than the reality.  

   

Figure 21: Observed and estimated missing data March 2014. PM2.5 [μg∙m
-3

] and NO2 [μg∙m
-3

] hourly 

averages 

Prediction of air pollution 

Besides the estimation of missing data for long data series, the accuracy of kriging for 

the prediction of NO2 and PM2.5 diurnal averages for all months of the year was tested. 

Prediction of monthly averages of air pollutants would be very useful for the 

environmental authorities to determine in advance if actions for the reduction of air 

pollutants’ emissions are needed for a specific month. 

The results of the evaluation criteria for the prediction of PM2.5 and NO2 are 

summarized in Table 5. For PM2.5 the coefficient of determination showed values for all 
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months > 0.8. Together with high values of the Index of Agreement (> 0.8 in all cases 

with the exception of February and April) this indicates that the kriging interpolation 

was able to correctly predict both the variability of PM2.5 concentration during the 

diurnal pollution cycle, as well as the differences between months. March was predicted 

with very high accuracy; this is important for the overall accuracy of the model, 

considering that March is the month with the highest monthly pollution averages in the 

Aburrá Valley.     

The accuracy by the prediction of NO2 was a little lower compared to PM2.5. The month 

with the best results was April, while September showed the least accurate predictions. 

September is a difficult month for the simulation of NO2, due to its characteristics as a 

transitional period between pollution cycles. While in 2013 September presented the 

highest monthly NO2 average concentrations of the year, in 2013 and 2015 it showed 

lower values than March, April or May. Furthermore, the diurnal cycle of pollution was 

well captured by the kriging prediction, what is reflected by values for the Index of 

Agreement > 0.75, with the exceptions of September and January  

Table 5: Evaluation of the kriging model for prediction of PM2.5 and NO2. Results for average hourly 

values Jan-Dec 2014.  

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

P
M

.2
.5
 

Obs. Value [μg∙m
-3

] 29.7 38.2 40.5 28.0 24.1 19.7 20.0 23.3 27.8 32.1 32.9 34.0 

Sim. value [μg∙m
-3

] 25.4 29.2 39.5 38.3 21.8 20.7 16.3 17.8 22.4 26.9 30.3 29.8 

Coeff. determ.R
2
 0.82 0.94 0.85 0.90 0.82 0.91 0.95 0.88 0.90 0.92 0.89 0.89 

RMSE [μg∙m
-3

] 4.8 9.2 4.2 10.5 3.3 2.2 4.3 6.0 5.8 5.5 3.5 5.0 

Index of Agreement 0.77 0.56 0.87 0.59 0.88 0.94 0.87 0.80 0.77 0.79 0.90 0.85 

N
O

.2
 

Obs. Value [μg∙m
-3

] 33.0 39.5 42.8 37.9 38.7 29.6 30.9 30.9 36.7 37.1 34.9 32.9 

Sim. value [μg∙m
-3

] 23.4 30.0 34.5 38.4 34.0 34.8 26.8 27.9 27.2 31.9 33.4 31.7 

Coeff. determ.R
2
 0.95 0.93 0.97 0.87 0.88 0.73 0.90 0.81 0.80 0.78 0.83 0.94 

RMSE [μg∙m
-3

] 9.7 10.0 8.5 3.3 6.0 7.1 5.0 4.9 10.3 6.9 4.4 2.5 

Index of Agreement 0.72 0.75 0.83 0.96 0.90 0.85 0.92 0.89 0.69 0.86 0.94 0.98 

The prediction of the diurnal cycle of pollutants during March is detailed in Figure 22. 

PM2.5 values, especially the morning peaks, were predicted with high accuracy. The 

difference between maximum observed and maximum predicted values was < 5 [μg∙m
-

3
], thus indicating the liability of the selected model to predict the average diurnal cycle 

of PM2.5 during the most polluted month of the year. The model was also able to 

correctly predict the average pollution decrease at afternoon hours and the second, less 
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pronounced pollution peak after 20:00. Meanwhile, the prediction of the diurnal 

pollution cycle of NO2 in March captured the typical variability throughout the day, 

however with a bias to predict lower pollution values (around 10 [μg∙m
-3

]) than the 

observed concentrations. As the differences between observed and predicted were 

constant for the diurnal cycle of March, the prediction accuracy of NO2 could by 

improved by the calculation of a correction factor.  

 

Figure 22: Observed and predicted values March 2014. PM2.5 [μg∙m
-3

] and NO2 [μg∙m
-3

] hourly averages 

4.3.2 Kriging modeling at diurnal/weekly scale 

After the analysis of the yearly and diurnal pollution cycle, kriging was also applied to 

detect the interactions between the diurnal and the weekly cycles of PM2.5 and NO2. 

Therefore the general validity of the model assumptions had to be tested by cross 

validation. The results of the cross validation showed a normal distribution of the 

residuals, both for rPM2.5 and rNO2 (Figure 23 and Figure 24).  The coefficients of 

determination between observed and predicted values when using all available data for 

the interpolation were near 1 (R
2
 = 0.973 for the rPM2.5 model and R

2
 = 0.9554 for the 

rNO2 model) 
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Figure 23: Results of the cross validation for the rPM2.5 kriging model diurnal and weekly cycle: a) 

correlation between observed and predicted value; b) Density plot of model residuals and p-value of 

Lilliefors-Test; c) Q-q plot of model residuals 

   

Figure 24: Results of the cross validation for the rNO2 kriging model diurnal and yearly cycle: a) 

correlation between observed and predicted value; b) Density plot of model residuals and p-value of 

Lilliefors-Test; c) Q-q plot of model residuals. Cross validation performed with data corresponding to 

year 2014 

The interactions between the diurnal and weekly air pollution cycles of PM2.5 and NO2 

for year 2014 were reconstructed by applying kriging interpolation based on the 

corresponding semivariogram models. The diurnal cycle of PM2.5 and NO2 behaved 

quite similar during the morning peak hours, but in the early evening hours the NO2 

peak was considerably higher than the PM2.5 peak. During afternoon hours the presence 

of rain events is common in the Aburrá Valley. Rain has a higher wash out effect over 

PM2.5 and therefore the afternoon pollution valley for this pollutant is more pronounced 

than for NO2. Meanwhile at late night NO2 presented very low concentrations, because 

of it strong dependency on emissions sources, which at this time of the day are usually 

at their lowest point. PM2.5 on the contrary accumulates for longer time periods in the 
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Aburrá Valley and therefore the pollution produced by the second traffic peak at the 

evening remained almost constant until the early morning hours.  

The weekly cycle did not have a considerable effect over the diurnal cycle. From 

Monday to Sunday the maximum daily concentrations were observed between 07:00-

09:00, with no exception. The evening PM2.5 and NO2 peaks also showed constant 

patterns throughout the different weekdays. The weekly cycle showed a constant 

increase in the average pollution concentrations from Monday to Friday, were absolute 

maximum PM2.5 and NO2 concentration were observed. On Saturdays there was a low 

decrease in the concentrations and finally on Sundays the weekly minima were reached, 

starting again with the weekly cycle. The continuous increase between Monday-Friday 

was associated to a gradual accumulation of pollutants due to continuous emissions 

during working days. Due to the reduction of emission levels on weekends the 

concentrations of air pollutants decreased drastically from Friday until Sunday.           

    

Figure 25: Kriging interpolation of the yearly and diurnal cycle of PM2.5 [μg∙m
-3

] and NO2 [μg∙m
-3

].  2014 

hourly and day of the week averages were used for the interpolation 

Estimation of missing values 

The diurnal cycle of air pollutants in the Aburrá Valley showed a constant average 

behavior of its peaks and minimum hourly values independently form the day of the 

week being analyzed. Considering the stability of this pollution pattern, PM2.5 and NO2 

concentrations for days with high pollution levels (February-March 2014 and 2015) 

were simulated by the application of kriging, under the method detailed in section 3.3.3. 

The target values corresponded in all cases to Fridays, which is usually the day of the 

week with the highest pollution levels (Figure 11 and Figure 25).    
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In the first simulation, the target values in February-March were considered as missing 

data and calculated by kriging interpolation. It should be noted that in 6 out of the 8 

selected days exceedances of the Colombian Air Quality for PM2.5 were observed.  

PM2.5 was accurately simulated for all selected days with the exception of March 13
th

 

2014, for which the peak concentrations at morning hours were not captured by the 

model (Figure 26). Especially important for the assessment of the model were the 

simulations for March 7
th

 2014 and Feb. 27
th

 2015 which showed the highest PM2.5 

concentrations for the study period. In both cases the development of the morning peak 

was accurately reproduced by the model and reached values only 10-15 [μg∙m
-3

] below 

the recorded concentrations.  

 

Figure 26: Observed and simulated values by the estimation of PM2.5 missing data. Hourly values [μg∙m
-3

] 

for every day of analysis 

The model was also capable of capturing the diurnal variability of the PM2.5 

concentrations in the Aburra Valley, what was confirmed by a high Index of Agreement 

of 0.92 (Table 6). The diurnal cycle of PM2.5 was almost constant during the 8 days of 

analysis. The maximum daily values varied significantly between days, yet the morning 

and the evening peaks were observed every day approx. at the same time. Because of 

the stable diurnal behavior of PM2.5 the kriging interpolation was able to deliver good 

results based on the information of the adjacent days.  

Estimation of missing NO2 data delivered less accurate results than for PM2.5, thus 

showing lower values for the coefficient of determination R
2
 and the Index of 

Agreement (Table 6). Though the RMSE was relatively low (11.1 [μg∙m
-3

]), what 

indicates that the average concentrations over an entire day were correctly captured, the 
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model was not entirely consistent, overestimating the observed concentrations during 

some days and in other occasions being unable to capture the maximum daily peaks 

(therefore the lower R
2
 value compared to PM2.5). The difficulties of the model for the 

estimation of missing NO2 data were associated with a less stable diurnal pattern of this 

pollutant. By the majority of simulated days the diurnal cycle showed the expected 

maximum peak during the morning and a secondary, less pronounced peak at evening 

hours. However, during days like February 28
th 

2014 and February 20
th

 2015 the 

concentrations reached their hourly peaks during the evening hours (at not on early 

morning, as it was expected). These changes in the diurnal cycles generated difficulties 

to obtain better results by applying kriging interpolation. When the expected diurnal 

pattern was observed (e.g. March 14
th

 2014 and February 20
th

 2015) the entire diurnal 

cycle was accurately reproduced by the model 

 

Figure 27: Observed and simulated values by the estimation of NO2 missing data. Hourly values [μg∙m
-3

] 

for every day of analysis 

Table 6: Evaluation of the kriging model for estimation of PM2.5 and NO2 missing data. Results for 8 

selected days in February-March 2014-2015 

 

 

 

Prediction of air pollution 

The developed model was additionally tested for prediction of PM2.5 and NO2 

concentrations. Kriging was therefore used as an extrapolation method, i.e. the target 

pollutant 
Coefficient of 

determination R
2
 

RMSE 

[μg∙m
-3

] 

Index of 

Agreement 

PM25 0.77 10.1 0.92 

NO2 0.47 11.1 0.82 
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values were calculated based on the previous days only. The model was able to predict 

with good accuracy the PM2.5 concentrations for the days of analysis (R
2 

= 0.55 and 

RMSE = 13.57 [μg∙m
-3

], Table 7). Especially accurate predictions were observed for 

following days: February 21
th 

2014, March 7
th

 2014 and February 27
th

 2015, which was 

the day with the highest overall air pollution concentrations (Figure 28).  On the 

contrary, the model showed difficulties to represent the diurnal variability of PM2.5 for 

February 20
th

 2015 and March 13
th

 2015. These differences in the model accuracy 

depend on how stable the diurnal pollution pattern was in the days preceding the 

prediction. The high Index of Agreement for the simulated values (0.85) shows that the 

model was in most of the cases capable of both predicting the hourly variations of 

PM2.5, as well as the peak values observed during the days of analysis.             

 

Figure 28: Observed and simulated values by PM2.5 prediction. Hourly values [μg∙m
-3

] for every day of 

analysis 

The applied model showed a lower performance for the prediction of NO2 hourly values 

compared to PM2.5. A low performance was observed particularly by the prediction of 

the evening values. This was related with considerable variations in the diurnal NO2 

cycle and the resultant differences between morning and evening peak values. As a 

result of this, the model over- or underestimated the NO2 concentrations when 

predicting the diurnal cycle (relatively low R
2
 = 0.27). Nevertheless, in most of the 

cases the differences between observed values lied within ranges that can be considered 

as acceptable (± 15 [μg∙m
-3

]; RMSE = 15.24 [μg∙m
-3

]).          
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Figure 29: Observed and simulated values by NO2 prediction. Hourly values [μg∙m
-3

] for every day of 

analysis 

Table 7: Evaluation of the kriging model for prediction of PM2.5 and NO2. Results for 8 selected days in 

February-March 2014-2015 

 

 

 

 

5 Conclusions: summary and outlook 

Throughout this study the temporal variability of air pollution and meteorological data 

in the Aburrá Valley was studied, as well as how these patterns can be used for 

estimation of missing data and prediction purposes. The principle conclusions of the 

master project are presented below:   

Pollution and meteorology cycles in the Aburrá Valley 

Daily, weekly and yearly air pollution cycles were detected for the area of study. The 

diurnal cycle showed two pollution peaks during the day: a daily maximum in the early 

morning and a second, less pronounced peak in the evening. The peaks of the diurnal 

cycle were probably associated with the traffic flow throughout the day.  

The weekly cycle of air pollutants showed similar values between Monday-Saturday 

and a very pronounced decrease on Sundays associated to the reduction of the emission 

sources. Because of a gradual accumulation of the air pollution levels inside the Aburrá 

pollutant 
Coefficient of 

determination R
2
 

RMSE 

[μg∙m
-3

] 

Index of 

Agreement 

PM25 0.55 13.57 0.85 

NO2 0.27 15.24 0.70 
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Valley, Friday was in average the day with the highest concentrations in the study 

period. The observed weekly cycle was constant during the different months of the year, 

thus showing no evident interaction with the yearly cycle. 

A yearly periodicity of the air pollution concentrations showed monthly peaks on 

February-March and yearly minima in June-July. The monthly variability depends on 

differences of the monthly average emissions (less traffic flow in June-July because of 

the holiday season) but probably also on the accumulation of pollutants in February-

March because of higher atmospheric stability; further research is needed regarding this 

hypothesis. PM2.5 was the pollutant that was influenced the most by this seasonal effect 

when compared with PM10 and NO2.  

All the meteorological variables with the exception of rainfall presented the expected 

behavior for regions near the equator. The diurnal cycle was stable throughout the year, 

with daily maximum values for temperature, solar radiation and wind speed around 

midday. The monthly variations of meteorological variables were low and not affected 

by an interaction with the diurnal cycle. A clear association between meteorological and 

air pollution could not be observed.          

Geostatistical method for air pollution time series analysis 

A variogram analysis was used for the integration of the diurnal and- weekly 

(alternatively, diurnal and- yearly) cycles of air pollutants. The different time scales 

were considered as coordinates in a geographical space and analyzed based on the 

theoretical principles of geostatistics, i.e. calculation of semivariograms and kriging 

interpolation. It was observed on the calculated semivariograms that at short lag 

distances, the overall variability of air pollution is equally dependent on the short time 

scale (diurnal cycle) as on the long time scale (weekly/yearly cycle).  

Consequently, omnidirectional semivariograms were used to represent the air pollution 

variability related to the different temporal cycles in the Aburrá Valley, as well as the 

interactions between the different time scales. Spherical and Gaussian models were 

chosen for the calculation of the omnidirectional semivariograms, achieving a very 

accurate model fit between empirical and theoretical semivariograms.  
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Kriging was tested as a technique for time series reconstruction, estimation of missing 

data or prediction of air pollutants in the Aburrá Valley. Since the omnidirectional 

semivariograms were only valid at small lag distances, kriging was performed within a 

short delimited neighborhood (maximum distances of 4 hours /days /months). Model 

criticism showed validity of the model assumptions. Normal distribution was obtained 

for the model residuals and the R
2
 values by cross validation were > 0.95 in all cases)    

Very accurate results were obtained for estimation of missing data or prediction of 

typical diurnal cycles for different months of the year (interaction between diurnal and 

yearly pollution cycles). PM2.5 showed the best results both for prediction and 

estimation of missing data; however differences in the accuracy of the model were 

identified among the months. The least accurate results were obtained for September 

and October, which are considered as transitional months between yearly maximum and 

minimum values. On the contrary, March, the month with the highest pollution 

concentrations in the Aburrá Valley, was simulated with high accuracy, especially for 

PM2.5 (R
2
 > 0.9).   

Kriging simulations for specific days in February-March showed good accuracy for 

PM2.5 prediction or estimation of missing data. The developed method was able to 

capture the diurnal variability, as well as the very high pollution peaks that can be 

observed during these months (Index of Agreement > 0.85). Lower stability of the 

diurnal cycle of NO2 affected the modelling accuracy for this pollutant. The diurnal 

cycle of NO2 is usually more unstable because it does not only depend on emission 

sources and meteorology (like PM10 and PM2.5), but also on the balance of the ozone 

cycle.       

The developed kriging method for air pollution data in the Aburrá Valley was reliable 

for the reconstruction of data series, analysis of interactions between time scales and 

estimation of missing data and prediction purposes. It analyzed and combined the 

variability of the different pollution cycles by the calculation of the semivariograms. As 

this method only uses a small neighborhood of values for the calculation of the target 

data, it strongly relies on the stability of the diurnal pollution cycle to obtain accurate 

simulations. Therefore this model should not be applied for study regions where high 

variability of the diurnal cycle over the year is expected. However, the modelling 
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procedure presented in this master project could be replicated for other big cities in the 

Andean region, where the diurnal pollution cycle does not change considerably 

throughout the year (because of their location near the equator) and is moderately stable 

due to strong dependency of air pollutants on anthropogenic emission sources at a local 

scale.  

Improvement of the accuracy of the model could be possible by integrating the effect of 

meteorological variables into the kriging regression (as covariates). Besides that, 

independent semivariograms could be calculated after grouping the data depending on 

characteristics like: urban or rural monitoring point; Sundays and rest of the weekdays; 

rainy days or dry days; major emission sources, etc. This will depend on the major focus 

of the analysis and the availability of input data. The modeling procedure presented 

throughout this study could nonetheless be retained in view of the robust theoretical 

background of the selected approach.   

A special advantage of the developed geostatistical method is that it allows integrating 

two different time dimension (i.e. hours/months or hours/days) for the prediction and 

estimation of missing data. This is not possible by the application of commonly used 

methods for time series analysis. This characteristic was of great importance for the 

analysis of air quality data in the Aburrá Valley, which showed differentiated cycles at 

diurnal, weekly and yearly scales 

In conclusion, the established method was able to identify the pollution cycles in the 

Aburrá Valley and used this information for statistical modelling purposes. Its precision 

was especially high for PM2.5, the pollutant which most often exceeded the Colombian 

Air Quality Norm during the period of study and is therefore of major concern for 

environmental authorities. The developed modelling procedure is flexible and could be 

applied in other cities, as a good alternative to the complex numerical models 

commonly used for the prediction of air pollution in the Andean region. Further 

research will be needed to identify the ideal parameters and grouping factors to obtain 

the most accurate predictions. 
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7 Appendix 

7.1 Results of PM10 Variogram Analysis  

Variogram Analysis for PM10 was performed using the same procedure as for PM2.5 and 

NO2. The theoretical semivariogram of the combined yearly and diurnal cycle was valid 

until a distance of 4 months/hours, whereby the semivariance until 4 hours was twice 

higher as the corresponding semivariance at a distance of 4 months. The resulting 

theoretical omnidirectional semivariogram and its parameters are presented in Figure 

A.1 and Table A.1 

Table A.1: Parameters for the theoretical semivariogram of rPM10 diurnal/yearly cycles. 

rPM10 

Semivariogram model Spherical (automatic) 

Nugget [(μg∙m
-3

)
0.5

] 0.0 

Sill [(μg∙m
-3

)
0.5

] 0.007 

Range [(hour*month] 4.11 

RMSE [(μg∙m
-3

)
0.5

] 0.001 

     

 

 

Figure A.1: Theoretical semivariogram model for rPM10 diurnal and yearly cycles. γ-value [(μg∙m
-3

)
0.5

]  

and distance [hour*month]  
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The theoretical semivariogram for the combined diurnal and weekly cycle and its 

parameters (Figure A.2 and Table A.2) was valid until a distance of 2 hours/weekdays. 

Until this distance the semivariance of the diurnal cycle was equal to the semivariance 

of the weekly cycle  

 

Table A.2: Parameters for the theoretical semivariogram of rPM10 diurnal/weekly cycles 

rPM10 

Semivariogram model Gaussian (automatic) 

Nugget [(μg∙m
-3

)
0.5

] 0.0007 

Sill [(μg∙m
-3

)
0.5

] 0.024 

Range [(hour*month] 3.13 

RMSE [(μg∙m
-3

)
0.5

] 0.001 

 

 

 

Figure A.2: Theoretical semivariogram model for rPM10 diurnal and weekly cycles. γ-value [(μg∙m
-3

)
0.5

]  

and distance [hour*week]  
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7.2 Kriging for PM10 

The kriging interpolation between diurnal and yearly cycle and diurnal and weekly 

cycle delivered very similar results to the PM2.5 profiles. This was expected, given the 

strong correlation between both pollutants. The PM10 cycles are shown in Figure A.3   

 

Figure A.3: Kriging interpolation of the yearly and diurnal cycle (left) and weekly and diurnal cycle 

(right) of PM10 [μg∙m
-3

]. 2014 data used for the interpolation 

The results of the kriging method for prediction of average diurnal profiles for every 

month of the year are summarized in Table A.3. Table A.4 presents the evaluation of 

kriging prediction for selected days in February-March.  

 

Table A.3: Evaluation of the kriging model for prediction of PM10. Results for average hourly values Jan-

Dec 2014.  

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

P
M

.1
0
 

Mean observed 

value [μg∙m
-3

] 
53.3 66.2 67.5 53.0 48.2 45.8 46.1 47.1 52.7 56.1 54.5 55.4 

Mean simulated 

value [μg∙m
-3

] 
44.8 50.3 62.2 63.9 49.4 44.4 41.7 42.9 43.7 48.6 52.0 50.8 

Coeff. determ. R
2
 0.85 0.92 0.82 0.88 0.98 0.98 0.99 0.97 0.96 0.91 0.94 0.97 

RMSE [μg∙m
-3

] 9.5 16.3 7.2 11.5 2.6 2.6 5.5 5.8 9.4 8.1 3.9 5.0 

Index of Agreement 0.81 0.65 0.90 0.78 0.98 0.99 0.95 0.94 0.83 0.87 0.97 0.95 

 

Table A.4: Evaluation of the kriging model for prediction of PM10. Results for 8 selected days in 

February-March 2014-2015 

 

 

 

 

 

pollutant 
Coefficient of 

determination R
2
 

RMSE 

[μg∙m
-3

] 

Index of 

Agreement 

PM10 0.46 19.3 0.82 
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A graphical comparison between observed and predicted PM10 values is presented in 

Figure A.4 and A.5. The kriging method was capable of accurately predict the diurnal 

variability of PM10 

 

 

Figure A.4: Observed and predicted values March 2014. PM10 [μg∙m
-3

] hourly averages 

 

Figure A5: Observed and simulated values by PM10 prediction. Hourly values for every day of analysis 
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7.3 Data Transformation of PM2.5 and NO2 

Lilliefors-Tests were applied to check for normal distribution in the PM2.5 and NO2 data. 

The untransformed data presented a non-normal distribution. A power transformation 

(fourth root) was applied to obtain normally-distributed data. After the transformation 

the data showed normal distribution. The fourth root transformed data was used for the 

calculation of semivariograms. The results of the transformation are summarized in 

Figure A.6 and Table A.5   

  

  
Figure A.6: PM25 and NO2 histograms before and after data transformation: a) PM2.5 original data; b) 

PM2.5 data fourth root transformed;  c) NO2 original data; d) NO2 data fourth root transformed 

Table A.5: p-values of Lilliefors test for PM25 and NO2. Original data and fourth root transformation 

 

 

 

 

  

pollutant 
p-value 

Original Data 

p-value 4th-root 

transformation 

PM25 1.363e-08 0.4858 

NO2 7.219e-14 0.4187 

a)

a 

b)

b 

c)

= 

d) 
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