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Abstract

In this work model order reduction (MOR) of differential algebraic equations (DAEs),
with focus on structured, linear time-invariant systems, is investigated. As usual in the
DAE-setting it is assumed, that the spectral projectors, which describe the structure
of the model, are available. Those allow a separation of the actual dynamics and the
involved algebraic equations which describe a constraint manifold to which the dynamics
are bounded.
While H2 pseudo-optimal reduction by the Krylov-based pseudo-optimal rational Krylov
(PORK) algorithm [42] is applied to the strictly proper part of the transfer function,
Lyapunov balanced truncation (BT) according to [9] is used to find a minimal realiza-
tion of the improper contribution. For this purpose the PORK algorithm, originally
developed for the reduction of ordinary differential equations, is revisited in the context
of strictly proper DAEs. As the original proof has to be modified, a detailed derivation
of the PORK algorithm is presented. Furthermore the combination with adaptive MOR
schemes like the stability-preserving, adaptive rational Krylov (SPARK) algorithm [30]
and the cumulative reduction (CURE) framework [42] is discussed.
One of the main tools used in this thesis are generalized Sylvester equations. It is shown
that they can be used to describe tangential-input rational Krylov subspaces, even in
the case of a singular descriptor matrix. Moreover a formulation of the H2 inner-product
of the transfer functions of two strictly proper DAEs via projected generalized Sylvester
equations is presented. Those results are essential for the proof of H2 pseudo-optimality
in PORK, but may also be useful in different contexts.
Finally an efficient overall-algorithm for the reduction of structured linear DAE-systems
of arbitrary index is presented, which adaptively chooses appropriate interpolation data
and reduced order. By means of several physically based models it is shown, that the
proposed technique is applicable to common technical problems, regardless of properness
or index of the given system. Furthermore the reduction of an artificially generated high-
index system is demonstrated.
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Kurzreferat

Diese Arbeit behandelt die Modellordnungsreduktion (MOR) von differential-algebra-
ischen Gleichungssystemen (DAEs), wobei der Fokus auf strukturierten und linear-zeit-
invarianten Systemen liegt. Wie üblich bei der Reduktion von DAEs wird davon ausge-
gangen, dass die spektralen Projektoren, welche die Struktur des Modells beschreiben,
zur Verfügung stehen. Diese erlauben eine Aufteilung in die eigentliche Dynamik und
einen Satz von algebraischen Gleichungen, welche eine Mannigfaltigkeit bestimmen auf
die die Dynamik beschränkt ist.
Während auf den streng properen Anteil der komplexen Übertragungsfunktion H2 pseu-
do-optimale Reduktion durch den Krylow-basierten pseudo-optimalen rationalen Kry-
low (PORK) Algorithmus [42] angewendet wird, stellt balanciertes Abschneiden (BT)
nach [9] eine Minimalrealisierung des nicht-properen Beitrags zur Verfügung. Hierzu
wird der PORK Algorithmus, ursprünglich für gewöhnliche Differentialgleichungssyste-
me entwickelt, für die Anwendung auf streng propere DAE-Systeme untersucht. Da der
ursprüngliche Beweis angepasst werden muss, wird in dieser Arbeit eine ausführliche Her-
leitung des PORK Algorithmus vorgestellt. Außerdem wird die Integration in adaptive
MOR-Methoden wie den stabilitäts-erhaltenden adaptiven rationalen Krylow (SPARK)
Algorithmus [30] und das kumulative Reduktionsverfahren (CURE) [42] untersucht.
Als Hauptwerkzeug dieser Arbeit dienen generalisierte Sylvestergleichungen. Es wird
gezeigt, dass diese zur Beschreibung von rationalen tangentialen-Eingangs-Krylow Un-
terräumen genutzt werden können, auch im Falle einer singulären Deskriptormatrix. Au-
ßerdem wird eine Formulierung des H2 inneren Produkts der Übertragungsfunktionen
zweier streng properer DAE-Systeme durch projizierte generalisierte Sylvestergleichun-
gen hergleitet. Diese Ergebnisse stellen wichtige Grundlagen für den Beweis von H2
pseudo-Optimalität durch den PORK Algorithmus dar. Durch ihre Allgemeingültigkeit
sind jedoch auch andere Anwendungen denkbar.
Schließlich wird ein effizienter Gesamtalgorithmus zur adaptiven Reduktion von struktu-
rierten linearen DAE-Systemen von beliebigem Index vorgestellt, welcher adaptiv passen-
de Interpolationsdaten und reduzierte Ordnung wählt. Numerische Ergebnisse anhand
verschiedener physikalisch motivierter Beispielmodelle zeigen, dass das vorgestellte Ver-
fahren auf typische Problemstellungen in der Technik (unabhängig von Index und Pro-
perheit) anwendbar ist. Außerdem wird die Funktionalität auch bei sehr hohem Index
anhand eines künstlich erstellten Modells gezeigt.
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Task Description

The computerized modeling of dynamical systems often results in a system of differen-
tial algebraic equations (DAEs), where the state variables are not independent from one
another but coupled by the algebraic equations, which implicitly describe a manifold
on which the dynamic of the system is constrained. Depending on the dynamics, the
constraints and the modeling procedure, DAEs of different indices arise, whereby index
1 DAEs often represent standard electrical circuits, index 2 discretized stokes equations
and mechanical systems with non-holonomic constraints and index 3 DAEs mechanical
systems with holonomic constraints. The general procedure for the reduction of DAEs
requires the computation of spectral projectors onto deflating subspaces, in order to sep-
arate the dynamic part from the algebraic, reduce the former while preserving the latter.
This procedure is numerically ill-conditioned and not feasible in general. However, if the
DAE has a certain structure, then it is possible to identify the dynamic and algebraic
part a-priori and adapt the reduction procedures themselves accordingly. Based on the
preprint by Castagnotto et al. from 2015, the student shall further investigate Krylov-
based reduction of structured DAEs of index 1 to 3. The tasks include a) equivalence of
Krylov-Sylvester and extension of the pseudo-optimal rational Krylov (PORK) algorithm
b) extension of the cumulative reduction (CURE) procedure and lastly c) extension of
the stability-preserving, adaptive rational Krylov (SPARK) algorithm.

Work Program

• Study Krylov based MOR methods in general, with a strong focus on stability-
preserving reduction using the CUREd SPARK algorithms.

• Study the general theory on DAEs, their properties and existing reduction proce-
dures. In this process, existing MOR algorithms for DAEs should be implemented
in the sssMOR toolbox and used for later benchmarking to the algorithms devel-
oped in the thesis.

• Show the equivalence between Krylov and Sylvester for DAEs. Based on this
result, extend the PORK algorithm.

• Extend the CURE procedure and the SPARK algorithm to higher index DAEs.

Garching, 30 September 2016

Supervisor Student
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Chapter 1

Introduction

1.1 Motivation

Since the invention of the first digital computers in the early 1940s, we observe a rapid
increase of available computational power. This progress is used to push the limits in
industrial and scientific applications: the ability to create large scale models allows to
control complex systems, while the refinement of the temporal resolution enables the
simulation of high-frequency dynamical effects.
Despite the increasing capabilities, there often is (and maybe will always be) a gap
between the desired and the actual performance especially in high-end applications. In
such cases one strives to push the available hardware to its limits. Thereby a main
obstacle is the computation time: caused by the introduction of multi-core processors
in the last decade, the advance in performance affects mainly parallel operations. Since
the simulation of a dynamical system is of sequential nature, an increase of the temporal
resolution typically involves greater computation times. Another bottleneck are the
memory requirements of large dynamical systems: Consider a dense matrix of dimension
106. Assuming 8 bytes per matrix entry (double-precision), one needs to store 8 terabytes
of data.
Although both aspects, computation time and memory consumption, may be accept-
able for few offline-simulations on a server-cluster, they are crucial when it comes to
a controlling application on an embedded device with limited resources and real-time
requirements. Similarly optimization tasks, which require lots of simulations, may also
hit the cost-benefit limits, even on a dedicated workstation. In order to handle large
dynamical systems while maintaining low computational efforts, methods for model or-
der reduction (MOR) were developed. Using this techniques, it is possible to simplify
the original full order model (FOM) in a preceding offline computation step, such that
a reduced order model (ROM) with similar behavior can be used to run fast simulations
or controlling tasks on real-time hardware.
The main goal of MOR is to obtain a ROM of small dimension, which approximates
the behavior of the FOM well, while preserving properties like stability or passivity [2,
p. 7]. In order to evaluate the error caused by the reduction, typically the input-output
behavior of the FOM and the ROM is compared in some chosen metric (e. g. the H∞ or
H2 norm). Numerical efficiency of the reduction process is another objective, otherwise
the benefits of MOR compared to simulating the FOM may be lost.

1



2 Chapter 1. Introduction

Depending on the type of the dynamical system, different reduction techniques exist.
Therefore a classification of the problem has to be made in advance. For this purpose
we consider linear partial differential algebraic equations which typically connect spacial
with temporal state-derivatives of a constrained technical system. In order to solve such
systems, a common approach (e. g. during a finite element analysis) is to discretize the
equations in space, such that only temporal derivatives remain. After this, one can
distinguish between two types of systems: those involving only differential equations,
called (linear) ordinary differential equations (ODEs), and those including additional
algebraic equations (constraints), called (linear) differential algebraic equations (DAEs).
DAEs occur in a big variety of technical applications like structural and multi-body dy-
namics, computational electro-magnetics or fluid mechanics [9, p. 2]. Because this work
discusses MOR from a mathematical point of view, it does not matter in which context
the model was generated. The results in the following chapters concern both, DAEs
and ODEs, therefore a short demonstrative example is used to show up the differences:
consider the circuit depicted in Figure 1.1, wherein r and c denote (linear) resistors and
capacitors respectively. Let the supply voltage u denote the system input, while the
voltages x1 and x2 compose the system state x = [x1, x2]T and add up to the output
y = x1 + x2.

r r

c cu x1 x2

S

Figure 1.1: Circuit example illustrating the difference between ODEs and DAEs: an
open switch S corresponds to an ODE-system, while the closed case can be expressed
by a DAE-system.

First assume the switch S to be open. The simple choice r = c = 1 allows to model the
dynamical system as[

1 0
0 1

] [
ẋ1

ẋ2

]
=
[
−2 1
1 −1

] [
x1

x2

]
+
[
1
0

]
u , y =

[
1 1

] [x1

x2

]
. (1.1)

Note that the leading matrix on the left hand side is regular, i. e. det( ... ) 6= 0. Although
the system states are coupled, they are not constrained, i. e. they are allowed to have
arbitrary values, which is why (1.1) is called an ODE-system.
Now consider the case of a closed switch S, bypassing the right resistor, which is equiv-
alent to adding the constraint x1

!= x2. Using again r = c = 1 allows to describe the
system through[

1 0
0 0

] [
ẋ1

ẋ2

]
=
[
−1

2 0
1 −1

] [
x1

x2

]
+
[1

2
0

]
u , y =

[
1 1

] [x1

x2

]
, (1.2)

where the lower part of the left equation is solely algebraic and guarantees x1 = x2. This
time the leading matrix on the left hand side is singular, i. e. det( ... ) = 0. Since we force



1.2. State of the Art 3

x1
!= x2, the system states have to be equal at any time. This especially holds for the

initial state at t = 0. Because (1.2) includes both, differential and algebraic equations,
it is called a DAE-system.
Note that within this demonstrative example it is possible to find an ODE-formulation
even in the case of a closed switch by reformulation of the state space model (known
as index reduction). This is because the system has a special property1, which will be
discussed in the following chapter and may not apply to the actual problem.
It is obvious, that the constraint x1 = x2 has great influence on the behavior of the
system since it describes the structure of the circuit. Therefore one should only reduce
the complexity related to the differential equations, while keeping the contribution of the
algebraic equations unchanged. Thus, the reduction of DAEs introduces an additional
goal: reduce the order of the given system, while transferring all constraints to the
ROM.

1.2 State of the Art

As mentioned in the previous section, there exist different techniques for MOR. Since
this work is related to linear dynamical systems, the most popular strategies are singular
value decomposition (SVD)-based and Krylov-based methods [4, p. 1096ff.]. One repre-
sentative of SVD-based MOR is balanced truncation (BT). This method uses a SVD to
obtain a balanced realization of the FOM, whereby the transformed system states are as
“good” controllable as observable. Because states which are “poorly” controllable and
observable only have weak influence on the input-output behavior of the system, they
can be truncated without introducing great approximation error.
The main advantage of BT is, that there exists a global upper error bound, which
can be computed a priori (i. e. after the SVD, but before the actual reduction) [2,
p. 212]. This allows the user to specify a tolerated approximation error, while the rest
of the reduction can be run automatically (i. e. without additional user-interaction).
Furthermore stability preservation is guaranteed [4, p. 1114]. A big disadvantage of BT
is its computational expense, since two Lyapunov equations of full-order dimension have
to be solved, which turns out to be numerically ill-conditioned [2, p. 220]. This makes
BT inappropriate for large-scale systems.
Another class of MOR-techniques, rational Krylov subspace methods, which belong to
the Krylov-based methods, use a different approach as they try to approximate the trans-
fer function in the frequency domain. Since this is realized by an interpolation through a
Laurent series, one speaks of moment matching or rational interpolation [2, p. 343,346].
Obviously the resulting approximation error depends heavily on the positioning and
count of interpolation points. It turns out that the proper choice of expansion points
(together with other interpolation data) is a major difficulty.
In comparison to BT, rational Krylov subspace methods are better suited for large-scale
systems due to their numerical efficiency [4, p. 1114]. Especially in the case of weakly
coupled dynamical systems (which are typical results of a finite element analysis), the
sparsity of the system matrices can be exploited. This enables the handling of huge
systems (as in the example given in the previous section with 106 degrees of freedom),

1Since the output y(t) does not depend explicitly on the input u(t), the system described by (1.2) is
strictly proper, i. e. it can be described by an ODE without feedthrough (see Corollary 2.31).



4 Chapter 1. Introduction

since sparse matrices occupy much less memory than dense matrices. Another advantage
is the freedom in choosing the interpolation parameters: if a frequency domain is of
special interest, one can place the interpolation points accordingly while in BT the
only user parameter is the desired reduced order or an overall error limit. As already
mentioned, this advantage can easily turn into a drawback, since the automatic choice
of appropriate interpolation data is difficult. Unfortunately there don’t exist universal
valid error estimators for rational Krylov subspace methods [4, p. 1098], such that the
resulting error remains unknown.2

In MOR, one strives to minimize the H∞ norm of the error system, since it describes
some kind of maximum deviation of the ROM from the FOM. Because it is difficult to
deal with the H∞ norm especially in the large-scale setting [42, p. 63], the H2 norm is
often used for evaluation instead. As there is currently (up to the author’s knowledge)
no analytic way to compute a H2 optimal ROM directly, iterative methods have been
investigated which make use of first-order optimality conditions (e. g. in [41]). One of
these methods is the well-known iterative rational Krylov algorithm (IRKA) [17, p. 627],
where the eigenvalues of the ROM are used to choose the interpolation points of the
next iteration step. Although IRKA delivers good results in many cases, convergence
and stability-preservation are not guaranteed in the general case. Another drawback is,
that the initialization has great influence on the performance [30, p. 49].
A different approach was followed by Thomas Wolf, who discussed the concept of H2
pseudo-optimality in his dissertation, [42] (earlier published in [43]). On the one hand
H2 pseudo-optimality is a weaker property than H2 optimality. On the other hand
there exists an analytic way to compute the H2 pseudo-optimal ROM directly (i. e.
without iteration) which can be efficiently implemented by the pseudo-optimal rational
Krylov (PORK) algorithm [42, p. 91]. Furthermore several sufficient conditions for
H2 pseudo-optimality are stated in [42, p. 87f.], which can be used to design similar
algorithms. Together with the stability-preserving, adaptive rational Krylov (SPARK)
algorithm for single-input, single-output (SISO)-systems introduced by Heiko Panzer in
his dissertation, [30] (earlier published in [31]), an iterative scheme, which automatically
chooses optimal interpolation points, can be implemented. This way, an (at least local)
H2 optimum can be found.
One advantage of SPARK over IRKA is, that it guarantees an asymptotically stable
ROM, since the reduced eigenvalues coincide with the mirrored images of the expansion
points (which are chosen in the open right half of the complex plane). Another one is,
that it perfectly fits into the cumulative reduction (CURE) framework, presented in [42]
(based on [44]), which allows a stepwise assembly of the ROM until the desired reduced
order is reached. Note that also IRKA can be combined with CURE as demonstrated
in [30, p. 73ff.], but the convergence and stability issues remain.
All mentioned methods are intended to work with ODE-systems. As one has to take
special care of the algebraic equations during the reduction of a DAE-system, different
variations and modifications of the currently available toolbox arose. The survey carried
out in [9] gives a good overview of currently available MOR-techniques for DAE-systems.
First of all SVD-based BT can be used for the reduction of DAEs. As in the ODE-
case various types and modifications exist, where Lyapunov balanced truncation is the
most common variation. The basic idea is to separately reduce the parts of the system

2Since the approximation error measured in the H2 norm includes the transfer function of the original
system (full order), an explicit computation may not be feasible.
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related to the differential and algebraic equations. For this purpose the so called spectral
projectors of the FOM have to be known. Note that there are also BT-methods, which do
not involve spectral projectors at all, but instead are again limited to small and medium
sized problems [9, p. 19].
Concerning rational Krylov subspace methods, IRKA has been adapted in [18, p. B1020]
for (local) H2 optimal reduction of DAEs. Again the FOM is separated into the dynamic
and algebraic part, thus the explicit knowledge of the spectral projectors is needed. Other
techniques, which do not depend on the explicit computation of spectral projectors, for
example those presented in [1] and [18, p. B1020ff.], make use of the special structure of
the given problem.
As stated in [9, p. 27], the computation of the spectral projectors is expensive and nu-
merically ill-conditioned especially in the large-scale setting. However, for certain types
of DAE-systems, the structure can be exploited to directly obtain analytic expressions.
Several examples, including semi-explicit systems of index3 1, stokes-like systems of in-
dex 2 and mechanical systems of index 1 and 3 are collected in [9, p. 27ff.]. Since the
spectral projectors are in general dense matrices, it should be avoided to store them as a
whole in the main memory [9, p. 27]. Fortunately they often inherit the block-structure
of the system matrices, therefore projector-vector products can be performed block-wise,
such that the sparsity of the system matrices is exploited again which leads to an efficient
implementation [9, p. 27].

1.3 Tasks, Goals and Assumptions

Since well-established MOR-techniques like BT or IRKA have already been ported to
the case of DAE-systems, the focus of this work lies on recently developed methods.
For this purpose the already mentioned Krylov-based PORK and SPARK algorithms
together with the CURE-framework, introduced by Thomas Wolf, Heiko Panzer and
Boris Lohmann few years ago, are analyzed. The main goal of this thesis is to transfer
these methods to the DAE-world, thus extending the currently available toolset. The
investigations in this contribution are an extension of what can be found in [11] to the
general case of (improper) DAEs of arbitrary index and structure.
As the knowledge of the DAE-type significantly reduces the complexity of MOR, only
structured problems will be discussed. More precisely, it is assumed, that the spectral
projectors are known. Fortunately in technical applications the structure of the FOM
is determined by the modeling process (e. g. finite element analysis, modified nodal
analysis) and therefore often known in advance. Although the results of this thesis are
valid in theory for arbitrary linear DAEs, the efficient numerical implementation requires
a special structure.
Furthermore only linear time-invariant, first order DAE-systems are considered. Note
that every higher order DAE can be reformulated into a system of first order by intro-
ducing additional system states, even though this might not be the most efficient way of
reduction. Since the structure is considered through spectral projectors, no restrictions
regarding the index of the DAE are required. Also the index does not necessarily have
to be known in advance (although the modeling process usually admits corresponding

3The index of a DAE-system will be introduced in the following chapter. As a short anticipation, a
high structural complexity corresponds to a high index.
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conclusions). As the focus lies on technical applications, it is assumed that the FOM al-
lows realizations with real-valued system matrices. Moreover only asymptotically stable
DAE-systems are considered.

1.4 Outline

In the following chapter necessary fundamentals of DAE-systems are presented. First
important concepts like the index, spectral projectors and the Drazin inverse are in-
troduced. Then DAEs are analyzed in the context of control theory, whereby the
Weierstraß-canonical form plays an important role. Furthermore the properties proper-
ness, controllability and observability are explained.
In Chapter 3 the overall procedure used for reduction is presented. The concept of
tangential interpolation is explained, after which rational Krylov subspaces are defined.
Then generalized Sylvester equations (especially their solvability and equivalence to ra-
tional Krylov subspaces) are discussed, since they play an important role later on. Finally
the general framework, which bases on a partitioning into two subsystems, is unveiled.
The main part of this thesis, the reduction of the strictly proper subsystem, is discussed
in Chapter 4. The first section deals with the H2 inner-product of DAEs and presents
results, which can be used independently of the rest of this thesis (and even MOR).
Then the validity of the PORK and SPARK algorithms (and their integration into the
CURE-framework) in the DAE-case is analyzed and proved.
Chapter 5 shows how the improper subsystem can be reformulated to find a minimal
realization. For this purpose a short introduction into Lyapunov BT for DAEs according
to [9, p. 10] is given. After that the work of Tatjana Stykel in [9] and [39] is used to find
a minimal realization of the improper subsystem in an efficient way, i. e. without solving
large-scale Lyapunov equations.
In Chapter 6 the complete algorithm proposed in this work is presented, together with
all underlying assumptions, such that this chapter can be used as quick reference for the
impatient reader. Chapter 7 shows several numerical results, after what final remarks
and ideas for future investigations are collected in Chapter 8.
Important note: As this thesis handles proofs in a very general way, an extensive use
of indices is inevitable. In order to maintain a precise formulation, special effort has
been made to define a proper notation. A comprehensive list can be found right at the
beginning of this document.
Due to the subject of this thesis, most results directly apply to DAE-systems. Anyway
there are passages, which concern only the special case of ODEs. Note that those parts
are used either for clarifications or proofs and do not restrain the results of this work.
For better visibility, all theorems and definitions belonging to the ODE-only case are
tagged with ODE .



Chapter 2

Linear Differential Algebraic
Equations

In order to properly reduce DAE-systems, one has to understand their characteristics
first. For this purpose, the following sections give a brief introduction into linear DAE-
theory. Since the field of DAE-related research is broad, the main focus lies on results
used in this thesis. This chapter represents a summary of the theory given in [23]
(especially chapter 1 and 2), [26] and [29]. For a more general view on DAE-systems in
technical applications, the collections [19], [20] and [21] are recommended.

2.1 Fundamentals

2.1.1 Matrix Pencils

Matrix pencils and pairs are a convenient way of notation while dealing with generalized
eigenvalues, Sylvester equations, and DAEs in common:

Definition 2.1. Let X, Y ∈ Cu×v. The polynomial matrix P(λ) = λX − Y with
arbitrary λ ∈ C is called (linear) matrix pencil. An alternative notation is (X, Y) which
is called matrix pair.

Within the scope of this thesis only quadratic matrix pencils, i. e. u = v, are considered.
Note that in the literature different definitions concerning the sign of Y (e. g. in [26]) or
the order of X and Y (e. g. in [22]) exist.
The probably most important property of a matrix pencil is regularity:

Definition 2.2 (adapted from [23, p. 16]). Let X, Y ∈ Cu×v. The matrix pencil λX−Y
is called regular, if u = v and ∃ λ ∈ C such that det(λX−Y) 6= 0. Otherwise it is called
singular.

If the identity matrix I is contained in the pair (X, Y), then an instant classification is
possible:

Lemma 2.3. Let X, Y ∈ Cu×u compose the matrix pencil λX − Y. If X = Iu or
Y = Iu, then the matrix pencil λX−Y is regular.

7
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Proof. Consider the first case X = Iu: every λ ∈ C which does not coincide with the
eigenvalues of Y fulfills det(λ Iu −Y) 6= 0. In the second case Y = Iu the choice λ = 0
guarantees, that det(λX− Iu) = det(−Iu) = ±1 6= 0. �

The eigenvalues and eigenvectors of a matrix represent its main characteristics. This
concept can be extended to the case of a matrix pair, which is known as the generalized
eigenvalue problem. In contrast to the standard case, a generalized eigenvalue consists
of two related scalars1:

Definition 2.4 (adapted from [22, p. 68]). Let X, Y ∈ Cu×u. The set of generalized
eigenvalues of the matrix pair (X, Y) is composed of the solutions (α, β) of

det(αX− βY) = 0 , α, β ∈ C (2.1)

and is denoted by λ(X, Y). With the equivalence λ , α
β , where λ is related to the stan-

dard eigenvalue problem, the case β 6= 0 corresponds to the finite eigenvalues λf (X, Y)
and the case β = 0 corresponds to the infinite eigenvalues λ∞(X, Y).
Furthermore every non-trivial vector zr ∈ Cu is called right generalized eigenvector of the
pair (X, Y), if it satisfies αX zr = βY zr. Accordingly every non-trivial vector zl ∈ Cu
is called left generalized eigenvector of the pair (X, Y), if it satisfies α z∗l X = β z∗l Y.

In the following the term generalized eigenvalue will be used for both, a description by
a scalar (λ = α

β ) and a pair of scalars (α, β), since both notations are equivalent.
According to Definition 2.4, there may be generalized eigenvalues at infinity (i. e. for
β = 0). In the context of DAEs, those correspond to the algebraic part, what can be
considered as an infinitely fast dynamical subsystem. Using the properties of equivalent
matrices, it is possible to find a partitioning corresponding to the finite and infinite
eigenvalues:2

Lemma 2.5 (adapted from [23, pp. 13,16]). Let E, A ∈ Cn×n. If the matrix pencil
λE −A is regular, then there exist regular transformation matrices P, Q ∈ Cn×n such
that

Ẽ = P E Q =
[
Inf 0
0 N

]
, Ã = PAQ =

[
J 0
0 In∞

]
(2.2)

where both J and N are in Jordan-canonical form. Furthermore N is nilpotent of index ν,
i. e. Nν = 0 and Nν−1 6= 0, and the diagonal elements of J coincide with λf (E, A) [29,
p. 409]. The identity matrices Inf and In∞ are of dimension nf and n∞ which denote the
count of finite and infinite generalized eigenvalues of the matrix pair (E, A) respectively.

Note that Lemma 2.5 does not provide any information about the calculation of P and
Q. Within the scope of this work, both transformation matrices are only of theoretical
interest because they are not needed in the implementation afterwards. Thus their
existence is sufficient.
Beside regularity the index of a matrix pencil is another important property, since it is
a measure for the structural complexity of the related DAE-system:

1Note that a slightly different notation is used in comparison with [22] as the scalars α and β are
interchanged.

2In the literature (e. g. [23]), the special form of (E, A) given in (2.2) is called Weierstraß canonical
form of the matrix pencil. Within the scope of this thesis, this term will instead be associated with the
corresponding LTI DAE-system introduced in Section 2.2.
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Definition 2.6 (adapted from [23, p. 18]). Let λE − A be a regular matrix pencil
and λ Ẽ − Ã denote its transformation according to Lemma 2.5. Then the index of
nilpotency ν of N in (2.2) is called the index of the matrix pencil λE−A and is denoted
by ν = ind(λE−A).

The index of a (single) matrix is defined as a special case of Definition 2.6:

Definition 2.7 (adapted from [23, p. 24]). Let X ∈ Cu×u. Then the index of the matrix
pencil λX− Iu is called index of X and is denoted3 by η = ind(X).

2.1.2 Spectral Projectors

In order to separate dynamic and algebraic contributions of a DAE-system, spectral
projectors can be used. They play a key role in this thesis, since structured problems
are considered, for which analytic expressions of the spectral projectors can be found in
several applications [9, p. 27].

Definition 2.8 ([29, p. 409]). Let P and Q denote the transformation matrices related
to λE−A according to Lemma 2.5. The matrices

Πf
l = P−1

[
Inf 0
0 0

]
P and Πf

r = Q
[
Inf 0
0 0

]
Q−1 (2.3)

are called spectral projectors onto the left and right deflating subspace of λE −A cor-
responding to the finite eigenvalues. The matrices

Π∞l = P−1
[
0 0
0 In∞

]
P and Π∞r = Q

[
0 0
0 In∞

]
Q−1 (2.4)

are called spectral projectors onto the left and right deflating subspace of λE −A cor-
responding to the infinite eigenvalues.

Again, the relations in (2.3) and (2.4) are only of theoretical interest, since P and
Q are unknown. Instead it is assumed, that explicit formulas for the computation of
the spectral projectors are available. Considering that, expressions for Πf

l and Πf
r are

sufficient, because the respective counterparts Π∞l and Π∞r are determined by a simple
relationship:

Lemma 2.9. Let Πf
l , Πf

r , Π∞l and Π∞r be spectral projectors according to Defini-
tion 2.8. Then the following relations hold:

Πf
l + Π∞l = In , Πf

r + Π∞r = In . (2.5)

Proof. The proof directly follows from inserting (2.3) and (2.4) into (2.5). �

3Note that a different symbol (η instead of ν) is used, in order to avoid ambivalence.
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2.1.3 The Drazin Inverse

The introductory example in Chapter 1 shows, that the algebraic equations of a DAE-
system cause singularity of a specific matrix (see (1.2)). Unfortunately several results
from basic linear system theory (e. g. explicit solution formulas) require regularity of this
matrix. In order to find similar relations for the DAE-case, the Drazin inverse, which is
a generalization of the matrix inverse, can be used:

Definition 2.10 ([23, p. 24]). Every X ∈ Cu×u has one and only one Drazin inverse
XD which is defined through

X XD = XD X ,

XD X XD = XD ,

XD Xη+1 = Xη , η = ind(X) .
(2.6)

Note that the index of the matrix X, denoted by η, is essential for the definition of XD.
As a true generalization, the Drazin inverse complies with the case of a regular matrix:

Lemma 2.11 ([23, p. 25]). The Drazin inverse of a regular matrix X ∈ Cu×u is equal
to its inverse X−1, i. e. XD = X−1 if det(X) 6= 0.

In the following, Lemma 2.12 and Lemma 2.13 present important properties concerning
nilpotent and blockdiagonal matrices, which will be exploited in the following section.

Lemma 2.12. The Drazin inverse of a nilpotent matrix X ∈ Cu×u with index of nilpo-
tency η, i. e. Xη = 0 and Xη−1 6= 0, is the zero-matrix.

Proof. To prove the statement, assume that XD = 0 holds. Inserting XD into (2.6)
shows, that all three conditions

X 0 = 0 X ,

0 X 0 = 0 ,
0 Xη+1 = Xη = 0

(2.7)

are satisfied, which leads to the conclusion, that 0 is indeed the Drazin inverse of X.
Note that the Drazin inverse is unique according to Definition 2.10. �

Lemma 2.13. Let Z ∈ Cw×w be blockdiagonal consisting of X ∈ Cu×u with ηx = ind(X)
and Y ∈ Cv×v with ηy = ind(Y), i. e. Z = diag(X, Y). Then

(i) the index of Z is given by ηz = ind(Z) = max(ηx, ηy) and

(ii) the Drazin inverse of Z is ZD = diag(XD, YD), where XD and YD denote the
Drazin inverses of X and Y respectively.

Proof. The proof is contained in Appendix A. �
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2.2 Descriptor Systems in Control Theory

Because linear control theory is well understood and (comparatively) pleasant to deal
with, most technical applications use linear models of the real system. Even if the
underlying physical relationships are nonlinear, it is often possible to approximate the
dynamical behavior by a linear model as long as the system state remains in a specified
operating range. For this reason, all following investigations are restricted to linear
time-invariant (LTI) DAE-systems alias descriptor systems:

Definition 2.14. The system

E ẋ(t) = A x(t) + B u(t) , y(t) = C x(t) , x(t = 0) = x0 (2.8)

with state x(t) ∈ Rn, input u(t) ∈ Rm, output y(t) ∈ Rp and constant system matrices
E ∈ Rn×n, det(E) = 0, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, is called LTI DAE-system or
descriptor system and is abbreviated by Σ = (E, A, B, C, x0).

Remember the introductory example given in Chapter 1, which has the same layout as
(2.8): because DAE-systems are considered, algebraic equations are involved, which re-
sult in a singular matrix E (thus det(E) = 0 in Definition 2.14). Therefore the singularity
of E is the main criterion for distinguishing DAEs from ODEs.
Note that adding a feedthrough by y(t) = C x(t)+D u(t) would result in a more general
form of (2.8). Since D affects the solution y(t) via a summation, it is always possible
to neglect the term D u(t) during MOR and append it to the ROM afterwards. In
order to keep things simple, it is supposed (without loss of generality) that D = 0
holds. Moreover the system states and matrices are assumed to be real-valued, since
most technical systems relate real-valued input- and output-variables.
As stated in the previous section, the most important property of the matrix pencil
λE−A is its regularity4. This is because it has direct influence on the solvability of the
related DAE-system:

Theorem 2.15 ([23, p. 16]). The DAE-system (E, A, B, C, x0) is solvable with unique
solution y(t), if and only if the matrix pencil λE−A is regular and the initial state x0
is consistent, i. e. it lies on the constraint manifold described by the algebraic part of the
DAE.

Since the goal of this thesis is to provide methods for MOR in usual technical applica-
tions, it is assumed, that λE −A is regular and the initial state x0 is consistent, i. e.
the DAE-systems has a unique solution.

2.2.1 The Weierstraß Canonical Form

The Weierstraß canonical form of a DAE-system is equivalent to the transformation of
an ODE-system into modal coordinates. Because it separates the dynamic and alge-
braic contributions of the input-output behavior, it is a perfectly suited tool for the
development of model reduction theory.

4Note that det(E) = 0 does not hold any information about the regularity of λE−A.
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Definition 2.16 ([23, p. 17]). Consider the DAE-system (E, A, B, C, x0) and the
transformation matrices P, Q according to Lemma 2.5. Multiplying (2.8) with P from
the left leads together with Q x̃(t) = x(t) to the notation[

Inf 0
0 N

]
︸ ︷︷ ︸

Ẽ

[ ˙̃xf (t)
˙̃x∞(t)

]
︸ ︷︷ ︸

˙̃x(t)

=
[
J 0
0 In∞

]
︸ ︷︷ ︸

Ã

[
x̃f (t)
x̃∞(t)

]
︸ ︷︷ ︸

x̃(t)

+
[

B̃f

B̃∞

]
︸ ︷︷ ︸

B̃

u(t) ,

y(t) =
[
C̃f C̃∞

]
︸ ︷︷ ︸

C̃

[
x̃f (t)
x̃∞(t)

]
︸ ︷︷ ︸

x̃(t)

,

(2.9)

which is called Weierstraß canonical form of the DAE-system.

The formulation (2.9) allows to split the DAE into a slow and a fast subsystem corre-
sponding to the finite and infinite eigenvalues respectively:

˙̃xf (t) = J x̃f (t) + B̃f u(t) , (slow subsystem)
N ˙̃x∞(t) = x̃∞(t) + B̃∞ u(t) , (fast subsystem)

(2.10)

where the output can be computed through superposition of both contributions:

y(t) = C̃f x̃f (t) + C̃∞ x̃∞(t) . (2.11)

Since the slow subsystem is of ODE-type (it contains only finite eigenvalues), one can
write its explicit solution [46, p. 468ff.]:

x̃f (t) = eJ(t−t0) x̃f0 +
∫ t

t0
eJ(t−τ) B̃f u(τ) dτ . (2.12)

The explicit solution of the fast subsystem can be obtained through several derivation
steps [26, p. 86]:

x̃∞(t) = N ˙̃x∞(t)− B̃∞ u(t)
∣∣∣∣ ddt ( ... )︷ ︸︸ ︷

˙̃x∞(t) = N ¨̃x∞(t)− B̃∞ u̇(t)
∣∣∣∣ ddt ( ... )︷ ︸︸ ︷

¨̃x∞(t) = N x̃(3)
∞ (t)− B̃∞ ü(t)

∣∣∣∣ ddt ( ... )

. . .

(2.13)

which leads after ν − 1 steps to

x̃∞(t) = Nν x̃(ν)
∞ (t)−

ν−1∑
w=0

Nw B̃∞ u(w)(t) . (2.14)

Exploiting the nilpotency of N, i. e. Nν = 0, results in

x̃∞(t) = −
ν−1∑
w=0

Nw B̃∞ u(w)(t) . (2.15)
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The explicit solution of the overall system can therefore be written as

y(t) = C̃f e
J(t−t0) x̃f0 + C̃f

∫ t

t0
eJ(t−τ) B̃f u(τ) dτ − C̃∞

ν−1∑
w=0

Nw B̃∞ u(w)(t) . (2.16)

Through (2.16) it is evident, that the parameter ν has great influence on the char-
acteristics of the solution and is therefore a major criterion for the classification of
DAE-systems:

Definition 2.17 ([26, p. 86]). The index ν of the matrix pencil λE − A is called
(differentiation) index5 of the DAE-system.

Regarding the modeling process, the differentiation index specifies the minimum count
of derivation steps needed, in order to reformulate a DAE- into an ODE-system [23,
p. 7]. Put simply, it describes how “far away” a DAE is from an ODE, thus measuring
the complexity of the problem.
Because algebraic constraints have to be fulfilled at any time, special care has to be
taken while defining the initial state x0, which decomposes into x̃f0 related to the slow
subsystem and x̃∞0 related to the fast subsystem:

x0 = Q
[

x̃f0

x̃∞0

]
. (2.17)

While x̃f0 is arbitrary, x̃∞0 has to fulfill

x̃∞0 = x̃∞(t0 = 0) = −
ν−1∑
w=0

Nw B̃∞ u(w)(0) (2.18)

in order to be consistent [26, p. 86]. As mentioned above, x0 and thus x̃∞0 are assumed
to be consistent.
Beside the separation of the slow and fast subsystem, the Weierstraß canonical form (or
more precisely the distinction between finite and infinite eigenvalues) allows to make a
statement about the stability of the system:

Definition 2.18 (adapted from [29, p. 409] and [40, p. 844]). The (autonomous) un-
perturbed6 DAE-system (E, A, B, C, x0) is called asymptotically stable, if and only if
the finite generalized eigenvalues of the matrix pair (E, A) lie in the open left half of
the complex plane, i. e. Re {λf (E, A)} < 0. Furthermore the matrix pencil λE −A is
called c-stable.

Note that although infinite eigenvalues introduce several obstacles into MOR, they at
least have no influence on the stability of the system. As the FOM is supposed to be
asymptotically stable, it is assumed, that all finite eigenvalues lie in the open left half of
the complex plane. This will be of major importance in the following chapters.

5Note that there exist several other index concepts like the perturbation and strangeness index [23,
p. 6f.], which will not be discussed.

6In the case of a perturbation of the matrices E and A one has to take special care during stability
analysis (see “Robust Stability of Differential-Algebraic Equations” in [19, p. 63ff.]). In the following
only the nominal (i. e. unperturbed) system is considered.
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2.2.2 Transfer Function and Properness

The transfer function of a DAE-system (E, A, B, C, x0) reads as

G(s) = C (sE−A)−1 B , (2.19)

which is exactly the same as in the ODE-case. Since a different combination of system
matrices may generate the same transfer function, the term “realization” is introduced:

Definition 2.19. A set of matrices E, A, B and C which lead to the transfer function
G(s) = C (sE−A)−1 B is called realization of G(s) and is denoted by [E, A, B, C].
Every transfer function has infinitely many realizations, which are called restricted sys-
tem equivalent [27, p. 637] (to each other).

Considering ODE-systems, y(t) does not explicitly depend on u(t) (assumed that D = 0
holds), but rather in an indirect way through integration. This may not be the case for
DAEs: as (2.16) shows, y(t) contains explicit expressions of u(t) and even its derivatives
depending on the interaction of C̃∞, N and B̃∞. The way how u(t) influences y(t) is
described by the property of properness:

Definition 2.20 ([26, p. 87]). A DAE-system (E, A, B, C, x0) is called

• proper, if its output vector y(t) does not explicitly depend on the derivatives of
the input vector (u̇(t), ü(t), ...), i. e.

y(t) 6= f
(
u(w)(t)

)
, ∀ w ∈ N>0 , (2.20)

• strictly proper, if its output vector y(t) does not explicitly depend on the input
vector u(t) or one of its derivatives (u̇(t), ü(t), ...), i. e.

y(t) 6= f
(
u(w)(t)

)
, ∀ w ∈ N≥0 , (2.21)

• improper, if it is neither strictly proper, nor proper.

Analyzing the product of C̃∞, N and B̃∞ one can formulate criteria for properness and
strictly properness:

Lemma 2.21. Let [Ẽ, Ã, B̃, C̃] be a realization of G(s) in Weierstraß canonical form.
Then the DAE-system is

• proper, if and only if

C̃∞Nw B̃∞ = 0 , ∀ w = 1, ... , ν − 1 . (2.22)

holds and

• strictly proper, if and only if

C̃∞Nw B̃∞ = 0 , ∀ w = 0, ... , ν − 1 . (2.23)

holds.
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Proof. Since (2.20) has to hold for any t and the derivatives of u(t) are arbitrary at a
specific t, (2.22) is a necessary and sufficient condition in order that all terms containing
u̇(t), ü(t), ... , u(ν−1)(t) in (2.16) vanish. The proof regarding the criterion for strictly
properness is analogous. �

Using this classification, the solution of a general DAE-system (2.16) can be split up
into a strictly proper part

ysp(t) = C̃f e
J(t−t0) x̃f0 + C̃f

∫ t

t0
eJ(t−τ) B̃f u(τ) dτ (2.24)

and an improper part

yim(t) = −C̃∞
ν−1∑
w=0

Nw B̃∞ u(w)(t) , (2.25)

which add up to the overall solution y(t) = ysp(t) + yim(t).
Since the transfer function is invariant under state space transformations, it can also be
written using the Weierstraß canonical form:

G(s) = C (sE−A)−1 B = C̃
(
s Ẽ− Ã

)−1
B̃

=
[
C̃f C̃∞

] [s Inf − J 0
0 sN− In∞

]−1 [
B̃f

B̃∞

]

=
[
C̃f C̃∞

] (s Inf − J
)−1

0
0 (sN− In∞)−1

[ B̃f

B̃∞

]

= C̃f

(
s Inf − J

)−1
B̃f + C̃∞ (sN− In∞)−1 B̃∞ .

(2.26)

This again allows the separation of the strictly proper part

Gsp(s) = C̃f

(
s Inf − J

)−1
B̃f (2.27)

corresponding to the strictly proper part of the solution ysp(t) and an improper part

P(s) = C̃∞ (sN− In∞)−1 B̃∞
(Neumann series)

= −C̃∞
ν−1∑
w=0

Nw B̃∞ sw (2.28)

corresponding to the improper part of the solution yim(t). While Gsp(s) is a ratio-
nal function with O(numerator) < O(denominator), P(s) is a polynomial of order
O(P(s)) ≤ ν − 1.
The different appearance of strictly proper, proper and improper DAE-systems in the
frequency response diagram is shown in Figure 2.1. For simplicity the transfer functions

G1(s) = 2
s+ 1 , ⇒ strictly proper

G2(s) = 1
s+ 1 + 1 , ⇒ proper

G3(s) = 1
s+ 1 + 1 + s , ⇒ improper

(2.29)
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Figure 2.1: Frequency response in dependency of properness: the amplitude of the
strictly proper transfer function drops for high frequencies, while it tends to a con-
stant value in the proper case. In contrast, the term s in the improper G3(s) leads to
unbounded amplification.

are used. As one can see, the graphs diverge with increasing excitation frequency. For
ω →∞ the improper frequency response tends to infinity, while it stays bounded in the
proper and strictly proper case.
Because the transformation matrices P and Q and thus the Weierstraß canonical form of
the DAE-system are usually unknown, the partitioning of the transfer function according
to (2.27) and (2.28) might not be helpful. Instead the spectral projectors can be used
to accomplish the same result:

Key Theorem 2.22 (adapted from [18, p. B1016]). Let G(s) be the transfer function of
a DAE-system with realization [E, A, B, C]. Let Gsp(s) denote the strictly proper part
and P(s) the improper part of G(s), i. e. G(s) = Gsp(s) + P(s). Then the equalities

Gsp(s) = C Πf
r (sE−A)−1 B = C (sE−A)−1 Πf

l B

= C Πf
r (sE−A)−1 Πf

l B ,
(2.30)

and

P(s) = C Π∞r (sE−A)−1 B = C (sE−A)−1 Π∞l B
= C Π∞r (sE−A)−1 Π∞l B

(2.31)

hold.

Proof. A reformulation of the first equality Gsp(s) = C Πf
r (sE−A)−1 B in Weierstraß

canonical form leads to the definition of the strictly proper part according to (2.27):

Gsp(s) = C Q
[
Inf 0
0 0

]
Q−1

(
sP−1 Ẽ Q−1 −P−1 Ã Q−1

)−1
P−1 B̃

= C̃
[
Inf 0
0 0

] (
s Ẽ− Ã

)−1
B̃ = C̃f

(
s Inf − J

)−1
B̃f .

(2.32)
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The remaining equalities can be verified in the same manner. �

The partitioning of G(s) described in Theorem 2.22 allows to find detached realizations
for the strictly proper and the improper subsystem:

Corollary 2.23. Let G(s) be the transfer function of a DAE-system. If [E, A, B, C]
is a realization of G(s), then

•
[
E, A, Πf

l B, C
]
,
[
E, A, B, C Πf

r

]
and

[
E, A, Πf

l B, C Πf
r

]
are realizations of

the strictly proper part Gsp(s) and

• [E, A, Π∞l B, C], [E, A, B, C Π∞r ] and [E, A, Π∞l B, C Π∞r ] are realizations of
the improper part P(s).

Proof. The result is a direct consequence of Theorem 2.22. �

The statements of Theorem 2.22 and Corollary 2.23 allow two important conclusions:
First, it does not matter if the left or right spectral projectors are used for partitioning.
Therefore one has the choice to compute either a projected input matrix B or a projected
output matrix C (or both). This circumstance will be exploited in Section 4.3 in order to
reduce the computational effort. Second, the calculation of strictly proper and improper
realizations keeps E and A unchanged. This is beneficial in a numerical point of view,
since the sparsity is preserved.

2.2.3 Moments of a Transfer Function

The method of MOR discussed in this thesis is based on the interpolation of the transfer
function in the frequency domain. For this purpose the moments of a transfer function
are introduced:

Lemma 2.24 (adapted from [42, p. 17]). Let G(s) be the transfer function of a DAE-
system (E, A, B, C, x0). Then G(s) is given through

G(s) = C (sE−A)−1 B = −
∞∑
µ=0

M(µ)(si) (s− si)µ (2.33)

where M(µ)(si) denotes the µ-th moment of G(s) around the point si and is defined as

M(µ)(si) = − 1
µ!

(dµG(s)
dsµ

)∣∣∣∣
s=si

= C
[
(A− si E)−1 E

]µ
(A− si E)−1 B , (2.34)

for all µ ∈ N≥0.

Proof. The result directly follows from the Taylor expansion of G(s) around the expan-
sion point si. �

Note that there are different conventions for the definition of the moments concerning
the sign and the factor 1

µ! (e. g. in comparison with [2, p. 345]). This way, no alternating
signs are involved.
For the purpose of provingH2 pseudo-optimality in Chapter 4, a variation of Lemma 2.24
is given in Corollary 2.25.
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Corollary 2.25. Let G(s) be the transfer function of a strictly proper DAE-system with
realization [E, A, B, C]. Then the µ-th moment of G(s) around the point si can be
written as

M(µ)(si) = C
[
(A− si E)−1 E

]µ
(A− si E)−1 Πf

l B ∀ µ ∈ N≥0 . (2.35)

Proof. According to Corollary 2.23 [E, A, Πf
l B, C] is a valid realization of G(s). There-

fore the modification of (2.34) with B→ Πf
l B does not change the transfer function or

its moments. �

2.2.4 Impulse Response of Strictly Proper DAEs

The impulse response g(t) ∈ R of a SISO system is defined as the output y(t) cor-
responding to x(0) = 0 and the special input u(t) = δ(t) ∈ R. In order to handle
multiple-input, multiple-output (MIMO) systems a slightly enhanced relation is used:
The impulse response G(t) ∈ Rp×m of a MIMO system is defined as the (combined)
output corresponding to x(0) = 0 and the special input U(t) = δ(t) Im ∈ Rm×m. Here
the system input is no longer a vector u(t) but rather a matrix U(t). This way the entry
in the v-th row and w-th column of G(t) describes the SISO impulse response between
uw(t) = δ(t) and yv(t).
Inserting x(0) = 0 (and therefore x̃f0 = 0) and U(t) = δ(t) Im into (2.24) delivers with
t0 = 0 the impulse response of a strictly proper DAE:

G(t) = C̃f

∫ t

0
eJ(t−τ) B̃f δ(τ) dτ . (2.36)

This leads to following theorem:

Theorem 2.26. Let [Ẽ, Ã, B̃, C̃] denote a realization of G(s) in Weierstraß canonical
form according to (2.9). If the system is strictly proper, then its impulse response is
given through

G(t) =
{

0 , t < 0
C̃f e

J t B̃f , t ≥ 0
, (2.37)

or equivalently

G(t) =

 0 , t < 0
C̃ eẼ

D Ã t ẼD B̃ , t ≥ 0
. (2.38)

Proof. The first equation is a direct consequence of (2.36) using the simplification∫ ∞
−∞

f(t) δ(t)dt = f(0) . (2.39)

In order to show (2.38), one has to compute the Drazin inverse of Ẽ:

ẼD =
[
Inf 0
0 N

]D
(Lemma 2.13)

=
[
ID
nf

0
0 ND

]
. (2.40)
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Using ID
nf

= Inf (Lemma 2.11) and ND = 0 (Lemma 2.12) leads to

ẼD =
[
Inf 0
0 0

]
. (2.41)

With the explicit knowledge of ẼD the equivalence of (2.37) and (2.38) can be shown:

C̃ eẼ
D Ã t ẼD B̃ = C̃

{ ∞∑
w=0

(
ẼD Ã

)w tw
w!

}
ẼD B̃

= C̃
{ ∞∑
w=0

[
Jw 0
0 0

]
tw

w!

}[
Inf 0
0 0

] [
B̃f

B̃∞

]

=
[
C̃f C̃∞

] [eJ t 0
0 0

] [
B̃f

0

]
= C̃f e

J t B̃f .

(2.42)

�

Remark 2.27. Since the impulse response G(t) is equivalent to the output y(t) ∈ Rp
related to a series of special inputs u(t) ∈ Rm and all system matrices are assumed to
be real-valued, G(t) is also real-valued: G(t) ∈ Rp×m.

2.2.5 Controllability and Observability

In contrast to ODE-systems, there exist several controllability and observability con-
cepts in the DAE-case [37, p. 35]. In the following only C- and R- controllability and
observability are considered:

Definition 2.28 ([37, pp. 35,38]). The DAE-system (E, A, B, C, x0) is called

• completely controllable (C-controllable), if

rank
[
ϕE− ψA B

]
= n ∀ (ϕ, ψ) ∈ C2 \ {(0, 0)} , (2.43)

• completely observable (C-observable), if

rank
[
ϕE− ψA

C

]
= n ∀ (ϕ, ψ) ∈ C2 \ {(0, 0)} , (2.44)

• controllable on a reachable set (R-controllable), if

rank
[
λE−A B

]
= n ∀ finite λ ∈ C , (2.45)

• observable on the reachable set (R-observable), if

rank
[
λE−A

C

]
= n ∀ finite λ ∈ C . (2.46)

Using the concept of controllability and observability, one can define the term “minimal
realization” in the context of DAEs:



20 Chapter 2. Linear Differential Algebraic Equations

Definition 2.29 ([37, p. 8] and [29, p. 411]). A realization [E, A, B, C] of G(s) is
called minimal, if the triplet (E, A, B) is C-controllable and the triplet (E, A, C) is
C-observable. In this case, the dimension n of the matrices E and A is as small as
possible.

This leads to following lemma:
Lemma 2.30. If [E, A, B, C] is a realization of G(s) with det(E) = 0 and the DAE-
system is strictly proper, then the realization is not minimal.

Proof. Due to singular E, there exists a fast subsystem x̃∞(t), i. e. n∞ > 0 with nf +
n∞ = n. Since the transfer function is strictly proper the fast subsystem does not
influence the output y(t). Therefore a smaller realization [Ê, Â, B̂, Ĉ] of G(s) with
det(Ê) 6= 0 and n̂ = nf < n (i. e. an ODE-system) exists. Hence the realization
[E, A, B, C] is not minimal according to Definition 2.29. �

Since properness is strongly related to the causality of a system, many technical applica-
tions deal with strictly proper DAEs. Therefore one must assume that a FOM provided
as a DAE-system might be not minimal. However, this can be considered as an ad-
vantage, since in this case it is possible to find a suitable ROM in ODE-form (which is
beneficial especially if the ROM is intended to be used for simulation):
Corollary 2.31. For every strictly proper DAE-system there exists a realization in ODE-
form, i. e. det(E) 6= 0.

Proof. The proof is contained in Lemma 2.30. �

Note that in technical applications improper DAEs occur as well: consider a single mass
excited by a predefined force (input). If the position of the mass is defined as output,
the transfer function is strictly proper. In contrast an improper system arises, if the jerk
(derivative of acceleration with respect to time) is chosen as output. To summarize, the
matrices E and A determine the index of a DAE-system, while the choice of inputs and
outputs (through B and C) additionally affects the properness.
Apart from spectral projectors, the controllability and observability Gramians are of
great importance. They play a key role in MOR by BT, but are also connected to Krylov-
based methods as Chapter 4 will show. In the DAE-case one distinguishes between
proper and improper Gramians as discussed in [37] in detail (originally defined in [8]):
Definition 2.32 (adapted from [29, p. 412]). Let [E, A, B, C] denote a realization of
an asymptotically stable DAE-system. Then the proper controllability and observabil-
ity Gramians Γpc and Γpo are defined as the unique Hermitian, positive semidefinite
solutions of the generalized projected continuous-time Lyapunov equations

A Γpc E∗ + E Γpc A∗ + Πf
l B B∗Πf∗

l = 0 , Γpc = Πf
r Γpc Πf∗

r , (2.47)

A∗ Γpo E + E∗ Γpo A + Πf∗
r C∗C Πf

r = 0 , Γpo = Πf∗
l Γpo Πf

l . (2.48)
Further the improper controllability and observability Gramians Γimc and Γimo are de-
fined as the unique Hermitian, positive semidefinite solutions of the generalized projected
discrete-time Lyapunov equations

A Γimc A∗ −E Γimc E∗ −Π∞l B B∗Π∞∗l = 0 , Γimc = Π∞r Γimc Π∞∗r , (2.49)
A∗ Γimo A−E∗ Γimo E−Π∞∗r C∗C Π∞r = 0 , Γimo = Π∞∗l Γimo Π∞l . (2.50)



Chapter 3

Model Order Reduction via
Tangential Interpolation

After the introduction into linear DAE-theory, the basic reduction scheme is explained
in the following sections. First the concept of tangential interpolation of MIMO systems
known from ODE-MOR (see [15]) is presented. Subsequently rational Krylov subspaces
and generalized Sylvester equations are introduced, which can be used to describe the
interpolation process and act as main tools in the following chapters. Finally the general
framework for reducing improper DAE-systems (which is based on a separate reduction
of the strictly proper and improper subsystem in Chapter 4 and Chapter 5) is explained.

3.1 Problem Statement

In this section the basic idea of moment matching for SISO-systems and especially the
extension to MIMO-systems alias MOR by tangential interpolation are presented. These
concepts can be considered as subgoals (beside H2 pseudo-optimality) of the MOR-
techniques discussed in this contribution. This section gives a brief overview, while the
actual algorithms which enforce moment matching/tangential interpolation are derived
in Chapter 4.
MOR by moment matching is based on the approximation of the transfer function in
the frequency domain. More precisely the transfer function is interpolated at specific
expansion points (known as shifts) using the coefficients (called moments) defined in
Lemma 2.24. Depending on the order of the moments, the transfer function and its
derivatives (with respect to s) are matched. A mathematical formulation of moment
matching in the SISO-case reads as follows:

Definition 3.1 (adapted from [2, p. 345f.]). Let G(s), Gr(s) ∈ C1×1 denote the transfer
functions of the SISO-type FOM and ROM respectively. Then the ROM matches the
first ρi ∈ N>0 moments of the FOM at the expansion point si, if(dµG(s)

dsµ
)∣∣∣∣
s=si

=
(dµGr(s)

dsµ
)∣∣∣∣
s=si

∀ µ = 0, ... , ρi − 1 (3.1)

holds.

21



22 Chapter 3. Model Order Reduction via Tangential Interpolation

Obviously a high number of matched moments ρi leads in general to a good approxima-
tion in the surrounding of si. Furthermore note that Definition 3.1 does not distinguish
between ODE- and DAE-systems at all.
As an example, Figure 3.1 illustrates the approximation of an improper index 2 SISO-
DAE. Therein a reduction by (ODE-) CUREd SPARK (see [30] and [42]) was used, i. e.
the special characteristics of DAEs have not been addressed. A rather low dimension
of the ROM (q = 2) was chosen in order to show small error in the surrounding of the
expansion points s1,2 = −1 ± 10ı (corresponds to the peak at ω = 10 rad/s), while the
remaining spectrum is poorly approximated.
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Figure 3.1: Moment matching of an improper index 2 SISO-DAE by (ODE-) CUREd
SPARK: the transfer function of the FOM is approximated by a ROM of dimension
q = 2 . The red circle indicates matching of the first moment (ρ1 = ρ2 = 1) at the
expansion points s1,2 = −1± 10ı.

Figure 3.1 demonstrates moment matching in the SISO-case. To reduce MIMO systems
one has to distinguish between different input-output combinations (called channels)
which correspond to the different matrix entries of G(s) ∈ Cp×m. In order to interpolate
channels (or combinations of them) at different expansion points, tangential interpolation
is used: as an extension to moment matching of SISO-systems (Definition 3.1), the
tangential directions rij (right) and lij (left) are introduced, which describe a weighted
approximation:

Definition 3.2 (adapted from [15, p. 329f.]). Let G(s), Gr(s) ∈ Cp×m denote the
transfer functions of the MIMO-type FOM and ROM respectively. Then

• right tangential interpolation at the expansion point si, in direction rij ∈ Cm×1\{0}
and of order ρij ∈ N>0 is defined as(dµG(s)

dsµ
)∣∣∣∣
s=si
· rij =

(dµGr(s)
dsµ

)∣∣∣∣
s=si
· rij ∀ µ = 0, ... , ρij − 1 , (3.2)

• left tangential interpolation at the expansion point si, in direction lij ∈ C1×p \ {0}
and of order ρij ∈ N>0 is defined as

lTij ·
(dµG(s)

dsµ
)∣∣∣∣
s=si

= lTij ·
(dµGr(s)

dsµ
)∣∣∣∣
s=si

∀ µ = 0, ... , ρij − 1 , (3.3)
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• two-sided tangential interpolation at the expansion point si, in the directions rij ∈
Cm×1 \ {0} and lij ∈ C1×p \ {0} and of order ρij ∈ N>0 is defined as

lTij ·
(dµG(s)

dsµ
)∣∣∣∣
s=si
· rij = lTij ·

(dµGr(s)
dsµ

)∣∣∣∣
s=si
· rij ∀ µ = 0, ... , ρij − 1 . (3.4)

Note that in contrast to SISO-moment matching, one has additionally to specify tangen-
tial directions, which on the one hand increases the degrees of freedom during reduction.
On the other hand the proper choice of rij and lij in order to obtain good approximation
results seems to be a difficult task. This is demonstrated in Figure 3.2, which compares
the original and reduced frequency responses in different channels of an (improper)
MIMO-DAE-system.

M
ag

ni
tu
de

Frequency

G11(s)
Gr,11(s)

(a) Channel G11 (u1 → y1)

M
ag

ni
tu
de

Frequency

G12(s)
Gr,12(s)

(b) Channel G12 (u2 → y1)

M
ag

ni
tu
de

Frequency

G21(s)
Gr,21(s)

(c) Channel G21 (u1 → y2)

M
ag

ni
tu
de

Frequency

G22(s)
Gr,22(s)

(d) Channel G22 (u2 → y2)

Figure 3.2: (Right) tangential interpolation of an improper MIMO DAE-system. The
ROM is obtained by (ODE-) input PORK (see [42]). While the transfer functions of the
FOM and the ROM are matched at a special point (red circle) in (a) and (c) (channel
G11 and G21), no moment matching is achieved in (b) and (d) (channel G12 and G22).

Since the dimension of the transfer function is chosen to 2 × 2, i. e. p = 2 outputs and
m = 2 inputs, four distinct channels exist:

G(s) =
[
G11(s) G12(s)
G21(s) G22(s)

]
∈ C2×2 and Gr(s) =

[
Gr,11(s) Gr,12(s)
Gr,21(s) Gr,22(s)

]
∈ C2×2 , (3.5)

where Gvw(s) and Gr,vw(s) denote the input-output behavior of the FOM and ROM
corresponding to the w-th input uw(t) and v-th output yv(t).
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As depicted in Figure 3.2, moment matching achieved in one channel does in general
not apply to the remaining ones. This way a selective (or weighted) approximation is
possible. If all channels are of interest, one may enforce matching at the peaks of the
frequency response for each channel separately to obtain a reasonable ROM.

Remark 3.3. Within the scope of this thesis it is assumed, that expansion points are
chosen in the open right half of the complex plane. This is essential for the proof of H2
pseudo-optimality in Chapter 4. As a consequence one has to pay special attention in
order to avoid stationary errors (i. e. deviations of the ROM from the FOM at s = 0).

Remark 3.4. During adaptation of MOR techniques to the DAE-case one may think of
using Markov parameters (additional to moments) for interpolation. Those are used to
match the transfer function at infinity, i. e.

lim
s→∞

(dµG(s)
dsµ

)
= lim

s→∞

(dµGr(s)
dsµ

)
. (3.6)

Keep in mind, that this originates from the ODE-case and is not equivalent to matching
the polynomial part P(s) of a DAE, which has to be handled separately. Because
the contribution of P(s) dominates at high frequencies (and thus at ω → ∞), Markov
parameters will not be considered.

3.2 Rational Krylov Subspaces

In the following rational Krylov subspaces are introduced, which will be used in Sec-
tion 3.5 to achieve tangential interpolation during projective MOR. Aside from that,
they are the basis of the investigated H2 pseudo-optimal reduction scheme.
In mathematics Krylov subspaces are spanned by a vector and its multiplication with a
predefined matrix:

Definition 3.5 ([2, p. 313]). Let X ∈ Cu×u, y ∈ Cu×1 and w ∈ N>0. Then the space

Kw(X, y) := span
{
y, X y, X2 y, ... , X(w−1) y

}
(3.7)

is called Krylov subspace of order w.

In linear system theory one often has to deal with the expression (sE −A)−1 since it
is part of rational transfer functions and their moments. In preparation for moment
matching rational Krylov subspaces are defined:

Definition 3.6. Let the FOM be described by the DAE-system (E, A, B, C, x0) with
E, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Then

• the space

Kibi (si, qi) := Kqi
(
(A− si E)−1 E, (A− si E)−1 B

)
, (3.8)

is called block-input rational Krylov subspace of the FOM at the expansion point
si ∈ C and of order qi ∈ N>0, and
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• the space

Kibo (si, qi) := Kqi
(
(A− si E)−T ET, (A− si E)−T CT

)
, (3.9)

is called block-output rational Krylov subspace of the FOM at the expansion point
si ∈ C and of order qi ∈ N>0, and

• the space

Kijti (si, rij , qij) := Kqij
(
(A− si E)−1 E, (A− si E)−1 B rij

)
, (3.10)

is called tangential-input rational Krylov subspace of the FOM at the expansion
point si ∈ C, in tangential direction rij ∈ Cm×1 and of order qij ∈ N>0, and

• the space

Kijto (si, lij , qij) := Kqij
(
(A− si E)−T ET, (A− si E)−T CT lij

)
, (3.11)

is called tangential-output rational Krylov subspace of the FOM at the expansion
point si ∈ C, in tangential direction lij ∈ Cp×1 and of order qij ∈ N>0.

While block Krylov subspaces treat all channels of the transfer function in the same way,
different interpolation data can be defined with tangential Krylov subspaces (tangential
interpolation). Therefore Kti and Kto can be considered as a generalization of Kbi and
Kbo. In fact, every block-input and block-output rational Krylov subspace can be written
as a tangential-input and tangential-output rational Krylov subspace respectively:

Corollary 3.7. Let all assumptions of Definition 3.6 hold and let ej denote the j-th
unit vector in Rm, i. e.

ej = [ej,1, ... , ej,u, ... , ej,m]T ∈ Rm×1 with ej,u =
{

1 for u = j

0 for u 6= j
. (3.12)

Then

Kibi (si, qi) =
m⋃
j=1
Kijti (si, ej , qi) and Kibo (si, qi) =

p⋃
j=1
Kijto (si, ej , qi) (3.13)

holds.

Proof. Note that the use of m unit vectors e1, ... , em as tangential directions rij is
equivalent to a multiplication of B with the identity Im from the right. The same holds
for block-output rational Krylov subspaces. �

To keep following proofs as general as possible, only tangential-input and tangential-
output rational Krylov subspaces will be discussed.
The construction of rational Krylov subspaces according to Definition 3.6 leads to se-
quences of vectors getting closer and closer to linear dependence with increasing w. This
causes great numerical error in the following reduction process. Therefore one tries to
find a different set of vectors which describe the same subspace:
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Definition 3.8. Let Z be a matrix of full column rank which fulfils

R(Z) = colspan(Z) = Kw(X, y) . (3.14)

Then Z is called basis of the Krylov subspace Kw(X, y).

Corollary 3.9. Let Z be a basis of Kw(X, y) as introduced in Definition 3.8. Then
Ẑ = Z T, whereat T is a quadratic and regular matrix of appropriate dimension, is also
a basis of Kw(X, y), i. e. R(Z) = R(Ẑ) = Kw(X, y).

Ideally the basis of a Krylov subspace is orthonormal, such that subsequent algorithms
do not suffer from bad numerical condition. To achieve that, several orthogonalization
techniques like the Gram-Schmidt process (as part of the rational Arnoldi algorithm [2,
p. 335f.]) are available. Nevertheless the result of the construction scheme described in
Definition 3.6 is used for proofs:

Definition 3.10. Let ZP be a matrix of full column rank which is constructed as

ZP =
[
y, X y, X2 y, ... , X(w−1) y

]
. (3.15)

Then ZP is called primitive basis of the Krylov subspace Kw(X, y). Note the superscript
P, which indicates, that the basis is primitive.

Remark 3.11. Although Krylov subspaces technically have a structure as defined in (3.7),
also unions K1∪ 2∪ 3∪ ... = Kw1(X1, y1) ∪ Kw2(X2, y2) ∪ Kw3(X3, y3) ∪ ... will be called
accumulated Krylov subspaces.
Remark 3.12. The vectors {y, X y, X2 y, ...} used in (3.7) to define the Krylov subspace
Kw(X, y) may not be linearly independent. This is obviously the case for w > u (with
X ∈ Cu×u) but may also apply for w < u. Furthermore the concatenation of the bases
of two Krylov subspaces may contain linearly dependent vectors.
In order to get a basis of the Krylov subspace, redundant directions have to be truncated,
which is not subject of this work. Therefore it is assumed in the following, that the
vectors {y, X y, X2 y, ...} used during the construction are linearly independent, i. e.
they describe the primitive base of the Krylov subspace.

Accumulation

This section is based on [42, p. 27ff.] and aims to reveal how the construction of accumu-
lated rational Krylov subspaces can be described by matrix equations. In the following,
a union of tangential-input rational Krylov subspaces according to Definition 3.6 is built
up, which is basically done by stacking their primitive bases. It is important to note
that Definition 3.6 differs from the notations in [42]. However both representations can
be used to describe the same Krylov subspace. Due to the duality principle in linear
systems (see [2, p. 76]), tangential-output rational Krylov subspaces are not treated,
since all proofs work in a dual way.
The accumulation scheme used in the following is illustrated in Figure 3.3. To interpolate
the FOM at different frequencies, s different expansion points {s1, ... , si, ... , ss} are
used. For each expansion point si, a set of ri tangential directions {ri1, ... , rij , ... , riri}
is defined, which encodes the weights of the channels of G(s) used for moment matching.
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s1 si ss

ri1

... ...

rij riri

accumulated rational Krylov subspace

expansion points

tangential directions

tangential-input rationalKijti (si, rij , qij) Krylov subspace

Kijti

Kiti

Kti

... ...

Figure 3.3: Accumulation scheme of rational Krylov subspaces. The tangential-input
rational Krylov subspaces Kijti related to the tangential directions rij of an expansion
point si are combined to Kiti. These in turn are concatenated to the accumulated rational
Krylov subspace Kti.

Moreover each tangential direction rij is associated with a rational Krylov subspace Kijti
of order qij , where qij determines the level of interpolation (highest derivatives).
According to Definition 3.6 the tangential-input rational Krylov subspace at expansion
point si ∈ C, in tangential direction rij ∈ Cm×1 and of order qij ∈ N>0 is given through

Kijti (si, rij , qij) := span
{

(A− si E)−1 B rij ,

(A− si E)−1 E (A− si E)−1 B rij ,
...[

(A− si E)−1 E
]qij−1

(A− si E)−1 B rij
}
.

(3.16)

Using the auxiliary vectors

vP
ij1 := (A− si E)−1 B rij ,

vP
ij2 := (A− si E)−1 E (A− si E)−1 B rij = (A− si E)−1 E vP

ij1 ,

...

vP
ijqij :=

[
(A− si E)−1 E

]qij−1
(A− si E)−1 B rij = (A− si E)−1 E vP

ij(qij−1)

(3.17)

leads to the shorter form

Kijti = span
{
vP
ij1, ... , vP

ijqij

}
. (3.18)

After introducing the matrix

VP
ij :=

[
vP
ij1, ... , vP

ijqij

]
∈ Cn×qij (3.19)
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as the primitive basis of Kijti one can describe Kijti as the image of VP
ij , i. e. K

ij
ti = R

{
VP
ij

}
.

Rearranging (3.17) to

(A− si E) vP
ij1 = B rij

(A− si E) vP
ij2 = E vP

ij1
...

(A− si E) vP
ijqij = E vP

ij(qij−1)

(3.20)

helps assembling the matrix equation

A
[
vP
ij1, ... , vP

ijqij

]
︸ ︷︷ ︸

VP
ij

−E
[
vP
ij1, ... , vP

ijqij

]
︸ ︷︷ ︸

VP
ij


si 1

. . . . . .
. . . 1

si


︸ ︷︷ ︸

SP
V,ij

= B [rij , 0, ... , 0]︸ ︷︷ ︸
RP
ij

(3.21)

or in the more compact form

A VP
ij −E VP

ij SP
V,ij = B RP

ij , (3.22)

whereat the Jordan-block SP
V,ij ∈ Cqij×qij contains the information about the expansion

points and the tangential direction is considered through RP
ij ∈ Cm×qij .

In order to handle ri tangential directions rij at the expansion point si, i. e. j ∈
{1, 2, ... , ri}, a new matrix equation is assembled (out of ri-equations (3.22) for each
tangential direction):

A VP
i −E VP

i SP
V,i = B RP

i (3.23)

with the new matrices

VP
i =

[
VP
i1, ... , VP

iri

]
∈ Cn×qi ,

SP
V,i = diag

(
SP
V,i1, ... , SP

V,iri

)
∈ Cqi×qi ,

RP
i =

[
RP
i1, ... , RP

iri

]
∈ Cm×qi

(3.24)

and qi =
∑ri
j=1 qij . This leads to the expanded Krylov subspace

Kiti =
ri⋃
j=1
Kijti = R

{
VP
i

}
. (3.25)

In the same way s different expansion points, i. e. i ∈ {1, 2, ... , s}, can be handled,
which results in

A VP −E VP SP
V = B RP , (3.26)

with

VP =
[
VP

1 , ... , VP
s

]
∈ Cn×q ,

SP
V = diag

(
SP
V,1, ... , SP

V,s

)
∈ Cq×q (in Jordan canonical form) ,

RP =
[
RP

1 , ... , RP
s

]
∈ Cm×q

(3.27)
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and q =
∑s
i=1 qi. Matrix equations with the shape of (3.26) are called generalized

Sylvester equations. The accumulated tangential-input rational Krylov subspace for
multiple expansion points (with each containing individual tangential directions) finally
reads as

Kti =
s⋃
i=1
Kiti =

s⋃
i=1

ri⋃
j=1
Kijti = R

{
VP
}
, (3.28)

whereat VP denotes the primitive basis of Kti.
An advantage of using the primitive basis VP is the special structure of the corresponding
interpolation matrices SP

V and RP, which will be exploited in several proofs later on:

SP
V =



SP
V,1

. . .
SP
V,i−1

SP
V,i1

. . .
SP
V,i(j−1) 

si 1
. . . . . .

. . . 1
si


SP
V,i(j+1)

. . .
SP
V,iri

SP
V,i+1

. . .
SP
V,s



,

RP =
[

RP
1 · · · RP

i−1 RP
i1 · · · RP

i(j−1) [rij 0 · · · 0] RP
i(j+1) · · · RP

iri RP
i+1 · · · RP

s

]
.

(3.29)

The green and blue highlighted areas in (3.29) are related to si (thus SP
V,i and RP

i ),
while the gray entries correspond to all remaining expansion points. The green colored
section especially belongs to the j-th tangential direction of si (thus SP

V,ij and RP
ij).

To summarize the results of this section, there are two ways to compute the primitive
basis VP of an accumulated tangential-input rational Krylov subspace: either by column-
wise construction according to Definition 3.6, or by solving the generalized Sylvester
equation (3.26). It is left to prove, that (3.26) is solvable with unique solution VP.
For this purpose the solvability of generalized Sylvester equations is discussed in the
following section.

3.3 Generalized Sylvester Equations

A Sylvester equation is a matrix equation of the type

A X + X B = C , (3.30)

where the matrices A ∈ Cu×u, B ∈ Cv×v and C ∈ Cu×v are assumed to be known and
X ∈ Cu×v denotes the (yet unknown) solution [2, p. 173].
Because (3.30) is a linear matrix equation, the solution X may be obtained by solving
a linear system of equations [24]. However, for the purposes of this thesis the numerical
solution of Sylvester equations is not needed and therefore not treated.
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If the structure of (3.30) is expanded by additional (known) matrices left and right of
X, as in

A X B + C X D = E , (3.31)

then the equation is called generalized Sylvester equation.
As in the case of a basic linear system of equations (A x = b), (3.31) may have one,
infinitely many or no solutions. In order to show, that a generalized Sylvester equation
has an unique solution, following theorem can be used:

Theorem 3.13 (adapted from [12, p. 96]). The matrix equation for X ∈ Fu×v (with F
as the field R or C)

A X B−C X D = E , (3.32)

where A, C ∈ Fu×u and B, D ∈ Fv×v, has a unique solution if and only if

(i) (λC−A) and (λB−D) are regular matrix pencils, and

(ii) none of the generalized eigenvalues of the matrix pair (C, A) coincides with the
generalized eigenvalues of the matrix pair (B, D), i. e. λ (C, A) ∩ λ (B, D) = ∅.

Moreover, if all known matrices are real-valued, i. e.

A, C ∈ Ru×u , B, D ∈ Rv×v , E ∈ Ru×v (3.33)

then also the solution X is real-valued.

Note that the existence of a unique solution does not depend on the right-hand-side E.
The original theorem in [12] addresses only the case of real-valued matrices. The proof
starts with a generalized Schur decomposition, which transforms the matrices left and
right of X to lower and upper triangular form. After that, the special structure of the
transformed Sylvester equation is exploited to find the solution of X and, as a by-product,
the conditions for the existence of a unique solution.
Since the generalized Schur decomposition also holds for complex-valued matrices (as
claimed in [36, p. 672]) and the rest of the proof gets along with simple matrix multi-
plications, the original theorem in [12] can be generalized to the complex-valued case in
Theorem 3.13.

Example

To illustrate the origin of condition (i) and (ii) of Theorem 3.13, a small example is
examined: consider the generalized Sylvester equation[

a1 0
0 a2

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

X

b︸︷︷︸
B
−
[
c 0
0 0

]
︸ ︷︷ ︸

C

[
x1

x2

]
︸ ︷︷ ︸

X

d︸︷︷︸
D

=
[
e1

e2

]
︸ ︷︷ ︸

E

, (3.34)

with the predefined scalars a1, a2, b, c, d, e1, e2 ∈ C and the unknown solution X ∈
C2×1. According to Definition 2.4 the generalized eigenvalues of the pairs (C, A) and
(B, D) compute to

λ(C, A) = {(C, 0), (a1, c)} , λ(B, D) = (d, b) . (3.35)
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Separating the rows of (3.34) leads to

(a1 b− c d)x1 = e1 and (a2 b)x2 = e2 . (3.36)

Obviously a unique solution X is only possible, if the condition

b 6= 0 ⇒ det(λB−D) = λ b− d 6= 0 ∀ λ 6= d

b
⇒ (λB−D) is regular

(3.37)

holds. Furthermore a1 b 6= c d is necessary (see (3.36)), which leads together with b 6= 0
to1

a1 b 6= c d and b 6= 0 ⇒ (d, b) 6= (a1, c) and (d, b) 6= (C, 0)
⇒ λ (C, A) ∩ λ (B, D) = ∅ .

(3.38)

Additionally the inequality a1 b 6= c d implies, that either a1 or c are non-zero. This and
the last condition a2 6= 0 from (3.36) finally show, that

a2 6= 0 and (a1 6= 0 ∨ c 6= 0) ⇒ ∃ λ ∈ C such that det(λC−A) = (λ c− a1) a2 6= 0
⇒ (λC−A) is regular

(3.39)

holds, thus the conditions of Theorem 3.13 are verified for the given example.

3.4 Equivalence of Rational Krylov Subspaces and
Generalized Sylvester Equations

Using the result of the last section one can finally show the equivalence of generating
accumulated tangential-input rational Krylov subspaces by construction according to
Definition 3.6 and solving the generalized Sylvester equation (3.26). For this purpose
Theorem 3.13 is applied to (3.26) using A→ A, B→ Iq, C→ E, D→ SP

V and X→ VP,
which shows, that in order to get a unique solution VP of (3.26), three requirements have
to be met:

(i) The matrix pencil λE − A is regular. (This is necessary for the solution of the
DAE-system to be unique (see Theorem 2.15), thus this condition is assumed to
be fulfilled.)

(ii) The matrix pencil λ Iq − SP
V is regular. (always fulfilled, see Lemma 2.3)

(iii) None of the generalized eigenvalues of the matrix pair (E, A) coincides with the
eigenvalues of SP

V .

To analyze condition (iii) one can make use of the special structure of SP
V : since SP

V

is in Jordan canonical form, the eigenvalues are simply the diagonal elements si with
i ∈ {1, 2, ... , s}. That is, condition (iii) demands, that the expansion points si differ

1Note that generalized eigenvalues are invariant to equal scaling of their descriptive scalars, i. e.
(α, β) = (xα, x β) for all x 6= 0. This directly follows from det(αX−βY) = 0⇔ det(xαX−xβY) = 0
with x 6= 0.
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from the generalized eigenvalues of (E, A), which is always assumed for Krylov-based
MOR methods. Since in the scope of this thesis expansion points are chosen in the open
right half of the complex plane, it is impossible that they coincide with the generalized
eigenvalues of an asymptotically stable FOM anyway.
The following theorem summarizes the results so far:

Theorem 3.14. Let

• the DAE-system (E, A, B, C, x0) describe the FOM where λE−A is regular,

• {si} ⊆ C be a set of expansion points differing from the generalized eigenvalues of
(E, A),

• {rij} ⊆ Cm×1 be a set of tangential directions assigned to a specific si,

• qij ∈ N>0 be the order of the rational Krylov-subspace related to si and rij,

• Kti be the union of all tangential-input rational Krylov subspaces constructed as
described in Definition 3.6 and (3.28),

• VP ∈ Cn×q, SP
V ∈ Cq×q and RP ∈ Cm×q be the matrices obtained during construc-

tion of Kti as in (3.27), such that the generalized Sylvester equation (3.26) holds
for the primitive base VP of Kti.

Then the solution VP of (3.26) exists and is unique.

To check, whether the equivalence also holds for a different base of Kti, the invertible
transformation

V = VP T , T ∈ Cq×q , det (T) 6= 0 , (3.40)

is introduced, with which one can generate any base V of Kti. Inserting (3.40) into
(3.26) and multiplying with T from the right leads to

A V−E V SV = B R , with SV = T−1 SP
V T and R = RP T . (3.41)

Since the matrices SP
V and SV are similar, they share the same set of eigenvalues and

thus the solution V remains unique. This leads to the following corollary:

Corollary 3.15. Let all conditions of Theorem 3.14 hold and let V = VP T with T ∈
Cq×q denote an arbitrary base of Kti. Then V is the unique solution of

A V−E V SV = B R , (3.42)

whereby

SV = T−1 SP
V T , R = RP T . (3.43)

Although the eigenvalues of SP
V → SV remain unchanged, it will in general not be in

Jordan canonical form anymore. Likewise RP → R looses its “beneficial” structure.
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Observability of SV and R

The assembly of rational Krylov subspaces according to the previous sections delivers a
generalized Sylvester equation of special structure: SP

V is in Jordan canonical form, while
the columns of RP are either tangential directions rij or zero-vectors. This structure
can be exploited to examine the observability of the pair (SV , R) which is essential for
several proofs in the following chapters. For this purpose the well-known criterion by
Hautus is used:

Definition 3.16 (adapted from [25, p. 100]). The pair (SP
V , RP) is called (completely)

observable, if

rank
[
si Iq − SP

V

RP

]
= q , ∀ si ∈ λ(SP

V ) (3.44)

holds.

Exploiting the structure of SP
V and RP leads to two simple conditions for observability:

Theorem 3.17. Let SP
V and RP be as in Theorem 3.14. Then the pair (SP

V , RP) is
observable, if and only if the following conditions hold:

(i) The tangential directions are non-zero vectors, i. e. rij 6= 0 ∀ i, j.

(ii) The tangential directions belonging to an expansion point si are linearly indepen-
dent.

Proof. Since SP
V is in Jordan canonical form, it is block-diagonal and the diagonal ele-

ments coincide with its eigenvalues. Consider the case of an expansion point si with two
tangential directions ri1, ri2 of order qi1 = 2 and qi2 = 1 respectively:

rank
[
si Iq − SP

V

RP

]
=

= rank



(
si Iq1 − SP

V,1
)
. . . (

si Iq(i−1) − SP
V,i−1

)
[
0 −1
0 0

]
0 (

si Iq(i+1) − SP
V,i+1

)
. . . (

si Iqs − SP
V,s

)
· · · · · · · · ·

[
ri1 0

]
ri2 · · · · · · · · ·

︸ ︷︷ ︸
(q+m)×

(
i−1∑
u=1

qu

) ︸ ︷︷ ︸
(q+m)×3

︸ ︷︷ ︸
(q+m)×

(
s∑

u=i+1
qu

)

(3.45)

White areas denote zero entries, while colored blocks may contain non-zero values. All
green highlighted matrices belong to the first tangential direction ri1 and occupy qi1 = 2
columns. The same holds for the blue colored blocks related to ri2.



34 Chapter 3. Model Order Reduction via Tangential Interpolation

Because si 6= sw ∀ i 6= w all eigenvalues of the Jordan-blocks SP
V,1 , ... , SP

V,i−1 and
SP
V,i+1 , ... , SP

V,s differ from si. Therefore the upper gray part of the overall matrix has
non-zero elements on its diagonal, thus all columns containing gray areas are linearly
independent (to the green/blue part and to each other).
It is left to show, that the columns containing green and blue areas are linearly indepen-
dent, which is obviously only the case, if condition (i) and (ii) are fulfilled. �

The connection of (SP
V , RP) and (SV , R) through the invertible matrix T finally allows

following statement:

Corollary 3.18. Let T ∈ Cq×q be a regular transformation matrix and let SV and R
be as defined in (3.43). Then the pair (SV , R) is observable, if and only if the pair
(SP

V , RP) is observable.

Proof. Consider the transformation matrices

Tl :=
[
T−1 0
0 Im

]
∈ C(q+m)×(q+m) and Tr := T ∈ Cq×q . (3.46)

Since both, Tl and Tr, are invertible, the equality

rank
[
si Iq − SP

V

RP

]
= rank

(
Tl

[
si Iq − SP

V

RP

]
Tr

)
= rank

[
si Iq − SV

R

]
(3.47)

holds (see [32, p. 9]). �

Note that both conditions of Theorem 3.17 are common design rules in MOR, since a
violation would result in a rank deficient V. Therefore it is assumed in the following,
that the conditions of Theorem 3.17 are fulfilled such that (SV , R) is observable.

3.5 Model Order Reduction of DAEs

In the following the concept of projective MOR is introduced and conditions for tan-
gential interpolation are presented. Although the H2 pseudo-optimal reduction scheme
discussed in Chapter 4 does not directly belong to projective MOR, there are strong
relations (and even equivalence, if certain conditions are met). The proof of tangential
interpolation in the case of PORK is postponed to Chapter 4.

3.5.1 Projective MOR and Tangential Interpolation with Rational
Krylov Subspace Methods

As mentioned in Chapter 1, the most popular methods for the reduction of LTI-systems
are BT and rational Krylov subspace methods. Both belong to the field of projective
MOR, as they project the FOM onto a defined subspace in order to obtain the ROM.
Depending on the applied technique, different projections are performed.
The main goal of MOR is to change the number of degrees of freedom from n (order of
the FOM) to q (order of the ROM) with q � n. For this purpose the system state of
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the FOM (E, A, B, C, x0) is approximated through x ≈ Vxr, where V ∈ Rn×q denotes
the “first” projection matrix:

E V ẋr = A V xr + B u + (A x−A V xr −E ẋ + E V ẋr)︸ ︷︷ ︸
ε

. (3.48)

Herein ε is a residuum which contains the error of the system dynamics caused by the
approximation. If a “second” projection matrix W ∈ Rn×q is multiplied from the left
and WT ε = 0 is enforced (Petrov-Galerkin-condition, [2, p. 279]) one obtains

WT E V ẋr = WT A V xr + WT B u . (3.49)

The reduced output finally reads as yr = C V xr such that a realization of the ROM is
given by [Er, Ar, Br, Cr] with

Er = WT E V , Ar = WT A V , Br = WT B , Cr = C V . (3.50)

A graphical interpretation of the projection is depicted in Figure 3.4. Therein n = 3
(thus x(t) ∈ R3) and q = 2 with V = [e1, e2] in combination with orthogonal projection
(i. e. W = V) is chosen for simplicity.

x(t0), xr(t0) x(t1)

xr(t1)R{V}

e2

e1

R3

x(t1)−V xr(t1)

e3

Figure 3.4: Illustration of projective MOR for the case of orthogonal projection with
n = 3, q = 2 and initialization at x(t0) = xr(t0) = 0. The trajectory of the FOM (blue)
is projected onto V (gray plane). The resulting approximation xr(t) is highlighted in
green, while the error x(t)−V xr(t) is colored red.

The main difficulty in projective MOR is to find appropriate choices for V and W in
order to obtain good approximation results. In the case of rational Krylov subspace
methods, one (one-sided reduction) or both (two-sided reduction) projection matrices
span accumulated rational Krylov subspaces. This is because the special choice Kti =
R{V} and/or Kto = R{W} leads to tangential interpolation:

Key Theorem 3.19 (adapted from [3, p. 10]). Let

• G(s) be the transfer function of the FOM which is described by the DAE-system
(E, A, B, C, x0) and

• Gr(s) be the transfer function of the ROM which is obtained by projection with V
and W according to (3.50).

(i) If [
(A− si E)−1 E

]µ
(A− si E)−1 B rij ∈ R(V) ∀ µ = 0, ... , qij − 1 , (3.51)
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or equivalently, if

Kijti (si, rij , qij) ⊆ R(V) , (3.52)

where si ∈ C such that (A − si E) and (Ar − si Er) are invertible, rij 6= 0 and
qij ∈ N>0, then(dµG(s)

dsµ
)∣∣∣∣
s=si
· rij =

(dµGr(s)
dsµ

)∣∣∣∣
s=si
· rij ∀ µ = 0, ... , qij − 1 . (3.53)

(ii) If [
(A− si E)−T ET

]µ
(A− si E)−T CT lij ∈ R(W) ∀ µ = 0, ... , qij−1 , (3.54)

or equivalently, if

Kijto (si, lij , qij) ⊆ R(W) , (3.55)

where si ∈ C such that (A − si E) and (Ar − si Er) are invertible, lij 6= 0 and
qij ∈ N>0, then

lTij ·
(dµG(s)

dsµ
)∣∣∣∣
s=si

= lTij ·
(dµGr(s)

dsµ
)∣∣∣∣
s=si

∀ µ = 0, ... , qij − 1 . (3.56)

(iii) If both of the previous statements hold for the same si, then

lTij ·
(dµG(s)

dsµ
)∣∣∣∣
s=si
· rij = lTij ·

(dµGr(s)
dsµ

)∣∣∣∣
s=si
· rij ∀ µ = 0, ... , 2 qij − 1 . (3.57)

Remark 3.20. Note that there are two small typos in (b) and (c) of [3, theorem 2]: first,
the vector b is misplaced in (b) and second, the range of l should be 0, ... , M +N − 1
in (c).

According to Definition 3.2 the relations (3.53) and (3.56) are descriptions of right and
left tangential interpolation respectively. Furthermore (3.57) corresponds to two-sided
reduction which causes twice as much moments to be matched.
According to Theorem 3.19 the results of Sections 3.2 and 3.4 can be used to describe
the process of tangential interpolation in the form of generalized Sylvester equations,
i. e. the interpolation data (expansion points si, tangential directions rij and order qij)
are encoded in the matrices SV and R of (3.42). Note that Theorem 3.19 makes use of
the images of V and W, thus the actual bases are irrelevant.
Remark 3.21. In the previous sections only tangential-input rational Krylov subspaces
are handled. Due to duality all results can be transferred to the case of tangential-output
rational Krylov subspaces. This leads to the generalized Sylvester equation

AT W−ET W SW = CT L , (3.58)

wherein L ∈ Cp×q contains the set of left tangential directions {lij} analogous to the
assembly of {rij} to R and SW serves the same purpose as SV .
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3.5.2 General Framework for the Reduction of Improper DAEs

As exemplified in [18, example 2.1], basic tangential interpolation is not sufficient during
the reduction of (improper) DAEs. This is because WT E V = Er will generically be
regular (⇒ ROM is of ODE-type), even if the FOM is an improper DAE [18, p. B1013].
Although moment matching at predefined expansion points is guaranteed, the frequency
responses diverge since the polynomial part of the FOM dominates at high frequencies
(see Figure 3.1). This causes the overall error to be unbounded, which is not tolerable
in most applications. Therefore it is important to keep the improper part of the transfer
function unchanged, i. e. the reduction process may only affect the slow subsystem.
One of the goals of this thesis is to port the PORK algorithm to the DAE-case. Since H2
pseudo-optimality as the result of PORK bases on the H2 inner-product, which is only
defined for strictly proper transfer functions (see Section 4.1), a partitioning of the FOM
is necessary. This is done by computing realizations of the strictly proper part Gsp(s)
and the improper part P(s) of the transfer function2. At this point the structure of the
DAE is exploited: since it is assumed that the spectral projectors are known in advance,
it is possible to calculate strictly proper and improper realizations in an inexpensive way
(see Corollary 2.23). The partitioning allows to process the strictly proper subsystem
separately which is presented in Chapter 4.
Although P(s) has to be fit exactly, some kind of “reduction” is necessary for the im-
proper subsystem too: computing a realization of P(s) according to Corollary 2.23
projects the matrix B and/or C. In contrast the full-dimensional matrices E and A stay
the same. Without any modification a concatenation with the reduced strictly proper
subsystem would result in dim(ROM) > dim(FOM), which is exactly the opposite of
what MOR is meant for. Thus the improper subsystem has to be reformulated, while
keeping its contribution to the transfer function exactly the same. This can be achieved
in an elegant way by exploiting the structure of the DAE again to find a minimal real-
ization of P(s), which is discussed in Chapter 5.
After all the reduced and reformulated subsystems are combined to the final ROM
(which is of DAE-type). This is done by simple addition of the transfer functions, i. e.
Gr(s) = Gsp

r (s) + Pr(s), which is equivalent to the assembly[
Esp

r 0
0 Eim

r

]
︸ ︷︷ ︸

Er

[
ẋsp

r
ẋim

r

]
︸ ︷︷ ︸

ẋr

=
[
Asp

r 0
0 Aim

r

]
︸ ︷︷ ︸

Ar

[
xsp

r
xim

r

]
︸ ︷︷ ︸

xr

+
[
Bsp

r
Bim

r

]
︸ ︷︷ ︸

Br

u , yr =
[
Csp

r Cim
r

]
︸ ︷︷ ︸

Cr

[
xsp

r
xim

r

]
︸ ︷︷ ︸

xr

. (3.59)

where [Esp
r , Asp

r , Bsp
r , Csp

r ] and [Eim
r , Aim

r , Bim
r , Cim

r ] denote realizations of the reduced
strictly proper and reformulated improper subsystems respectively.
An illustration of the proposed overall framework for the reduction of improper DAEs
is given in Figure 3.5. Note that in several technical applications the FOM is strictly
proper (even though formulated as a DAE). If this circumstance is known in advance,
no partitioning into subsystems is necessary. Instead it is sufficient to follow the left
path in Figure 3.5. Nevertheless a projection onto the deflating subspace corresponding
to the finite eigenvalues may still be necessary, in order to avoid numerical issues.

2Keep in mind that G(s) = Gsp(s) + P(s) holds.
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full order model
(improper DAE)

Π∞l , Π∞r

(full order model)
improper subsystem

Πf
l , Πf

r

(full order model)
strictly proper subsystem

reduced order model
(improper DAE)

minimal realization according to
Chapter 5

reduction according to
Chapter 4

(reduced order model)
improper subsystem

(reduced order model)
strictly proper subsystem

G(s)

Gsp(s)

P(s)

Gsp(s)
Gsp

r (s)

P(s)
Pr(s)

G(s)
Gr(s)

Figure 3.5: General framework for the reduction of improper DAEs: the left side
deals with the reduction of the strictly proper subsystem, while the right part depicts
the transformation of the improper subsystem into its minimal realization. A red circle
indicates moment matching. Note that since P(s) is fit exactly (i. e. P(s) = Pr(s)),
tangential interpolation of the strictly proper subsystem (Gsp(s)↔ Gsp

r (s)) also applies
to the overall ROM (G(s)↔ Gr(s)).



Chapter 4

Adaptive Reduction of the
Strictly Proper Subsystem

In the following the reduction process of the strictly proper subsystem is presented. For
this purpose it is assumed, that either the DAE describing the FOM is strictly proper
by itself, or a projection of B or C according to Corollary 2.23 has been performed as a
preprocessing step. For the ease of notation the superscript “sp” (indicating the relation
to the strictly proper subsystem) is omitted within this chapter.
First a formulation of the H2 inner-product of DAEs is derived, which is a general result
and independent of MOR. Within the scope of this thesis it serves as an important
tool to prove, that the PORK algorithm, originally introduced for the ODE-case, is
applicable without any modifications for strictly proper DAE-systems. Finally adaptive
MOR-techniques associated with PORK, namely the SPARK algorithm and the CURE
framework, are discussed in Section 4.3. The term “adaptive” refers therein to an auto-
matic selection of the interpolation data (with SPARK) and the order of the ROM (with
CURE).
As stated above, the actual reduction is done using the PORK algorithm, which leads
to an H2 pseudo-optimal ROM. However the concept of H2 pseudo-optimality has not
been explained so far. Since important fundamentals, which are necessary to understand
H2 pseudo-optimality, have not been presented yet, the precise definition is postponed
to Section 4.2. As a short anticipation, one might summarize H2 pseudo-optimality as
follows: instead of analyzing the set of all possible ROMs to find the optimum (with
respect to the H2 norm of the error system), one restricts the search to a predefined
subset. Since the obtained ROM is only optimal within this specific subspace, the term
“pseudo” is used. Note that the SPARK algorithm discussed in Section 4.3 automatically
selects an optimal subspace, such that (local) H2 optimal and H2 pseudo-optimal ROM
coincide.

4.1 H2 Inner-Product of Strictly Proper DAEs

This section presents a formulation of the H2 inner-product of two strictly proper DAE-
systems (or more precisely: of their transfer functions) using generalized Sylvester equa-
tions. Since the following results are not directly related to MOR, the terms FOM and
ROM will not be used. Instead two asymptotically stable and strictly proper DAE-

39
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systems with the transfer functions G(s) ∈ Cp×m and GH(s) ∈ Cp×m are consid-
ered. The corresponding realizations used for analysis are denoted by [E, A, B, C]
and [EH, AH, BH, CH] respectively.

4.1.1 Fundamentals

First of all the H2 space as a subspace of L2 is defined:

Definition 4.1 (adapted from [40, p. 845] and [7, p. 4953]). Let L(p,m)
2 be the Hilbert

space of matrix-valued functions F : ıR→ Cp×m that have bounded L(p,m)
2 -norm

‖F‖L(p,m)
2

:=
( 1

2π

∫ ∞
−∞
‖F(ı ω)‖2F dω

) 1
2
, (4.1)

wherein ‖·‖F denotes the Frobenius norm. Then H(p,m)
2 denotes the subspace of L(p,m)

2
containing all rational functions with O(numerator) < O(denominator) that are analytic
in the closed right half of the complex plane, i. e. they have only poles in the open left half
of the complex plane. A function which is contained in H(p,m)

2 is called H(p,m)
2 -function.

Note that m and p in the superscript “(p,m)” are related to the count of inputs and out-
puts of the system. The definition of the H2-function space directly allows to determine
the behavior at very high frequencies:

Corollary 4.2. Let F : ıR→ Cp×m be a H(p,m)
2 -function as specified in Definition 4.1.

Then lim
ω→∞

F(ı ω) = 0 holds.

Proof. According to Definition 4.1 F(ı ω) is a rational function with O(numerator) <
O(denominator). Therefore the denominator grows faster than the numerator for in-
creasing ω which proves the claim. �

As mentioned above, there are specific requirements on transfer functions in order to
comply with the H2 inner-product. This is justified in the following lemma:

Lemma 4.3 (adapted from [40, p. 845]). Let G(s) ∈ Cp×m be the transfer function of
a DAE-system. Then following statements hold:

(i) If the system is asymptotically stable and strictly proper, then G(s) is a H(p,m)
2 -

function, i. e. G(s) ∈ H(p,m)
2 .

(ii) If the system is improper (or proper), then G(s) is not a H(p,m)
2 -function, i. e.

G(s) 6∈ H(p,m)
2 .

Note that the statements of Lemma 4.3 are independent of each other, because asymp-
totic stability (in combination with strictly properness) is a sufficient but not necessary
condition, i. e. G(s) ∈ H(p,m)

2 does not imply Re{λf (E, A)} < 0 [40, p. 845]. This is
related to the difference between the (finite) eigenvalues of (E, A) and the poles of G(s).

Making use of Corollary 2.31, a statement about minimality of H(p,m)
2 -functions in the

context of DAEs is possible:
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Lemma 4.4. Let G(s) ∈ Cp×m be the transfer function of a DAE-system. If G(s)
is a H(p,m)

2 -function, then it is not minimal and admits a realization [Ê, Â, B̂, Ĉ] in
ODE-form, i. e. det(Ê) 6= 0.

Proof. Since G(s) ∈ H(p,m)
2 holds, it is strictly proper according to Lemma 4.3 and thus

Corollary 2.31 on the existence of such ODE-realization can be applied. �

Finally the H2 inner-product is formulated in its most general form:

Definition 4.5 ([7, p. 4953]). The H2 inner-product of two H(p,m)
2 -functions G(s) ∈

Cp×m and GH(s) ∈ Cp×m is defined as

〈G, GH〉H(p,m)
2

:= 1
2π

∫ ∞
−∞

tr {GH(ı ω) G∗(ı ω)} dω

= ... Parseval’s relation [45, p. 148] ... =
∫ ∞

0
tr {GH(t) G∗(t)}dt .

(4.2)

Note that G(s) and GH(s) must have the same dimensions p×m, i. e. the same count
of inputs and outputs, in order to be combined in 〈G, GH〉H(p,m)

2
. Furthermore (4.2)

shows, that the H2 inner-product may be formulated either in the frequency or time
domain. Therefore the parameters “(s)” and “(t)” are omitted in 〈G, GH〉H(p,m)

2
. Using

the definition of the inner-product, the H2 norm is derived:

Definition 4.6 ([7, p. 4953]). The H2 norm of a H(p,m)
2 -function G(s) ∈ Cp×m is defined

as

‖G‖2
H(p,m)

2
:= 1

2π

∫ ∞
−∞
‖G(ı ω)‖2Fdω = 〈G, G〉H(p,m)

2
. (4.3)

In its most general form, the H2 inner-product is not commutative, i. e. the order of
its members is important. Fortunately a restriction to technical applications (or more
precisely to real-valued systems) ensures commutativity of (4.2):

Lemma 4.7. Let G(s) and GH(s) be the transfer functions of two asymptotically sta-
ble and strictly proper DAE-systems which allow realizations with real-valued system
matrices. Then the equality

〈G, GH〉H(p,m)
2

= 〈GH, G〉H(p,m)
2

∈ R (4.4)

holds.

Proof. According to Remark 2.27 the impulse responses G(t) and GH(t) have to be
real-valued. This leads together with (4.2) to

〈G, GH〉H(p,m)
2

=
∫ ∞

0
tr
{
GH(t) GT(t)

}
dt =

∫ ∞
0

tr
{
G(t) GT

H(t)
}
dt

= 〈GH, G〉H(p,m)
2

.
(4.5)

�
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4.1.2 H2 Inner-Product as the Solution of a Generalized Sylvester
Equation

The following investigations are strongly related to [42] and [37]. On the one hand
[42, p. 63ff.] covers the H2 inner-product of transfer functions in the ODE-case which
is then used to prove H2 pseudo-optimality. On the other hand controllability and
observability Gramians for DAEs (presented in Definition 2.32) are analyzed in the
context of generalized Lyapunov equations in [37]. The main result of this section is in
some sense a generalization, connecting both areas.
In order to formulate the H2 inner-product of the DAE-systems (E, A, B, C, x0) and
(EH, AH, BH, CH, xH,0) of dimension n and nH, their transfer functions G(s) and GH(s)
must

• be asymptotically stable and strictly proper (i. e. G(s), GH(s) ∈ H(p,m)
2 ),

• have the same count of inputs and outputs (i. e. p = pH and m = mH) and

• allow realizations with real-valued system matrices.1

As it is assumed that G(s) and GH(s) have the same dimension, the superscript (p, m)
will be omitted in order to shorten the notation. Furthermore keep in mind, that the
realizations [E, A, B, C] and [EH, AH, BH, CH] do not have to be real-valued them-
selves.
From (4.2) it follows, that

〈G, GH〉H2 =
∫ ∞

0
tr {GH(t) G∗(t)}dt (4.4)=

∫ ∞
0

tr {G(t) G∗H(t)} dt

= tr
{∫ ∞

0
G(t) G∗H(t)dt

}
(2.38)= tr

{∫ ∞
0

(
C̃ eẼ

D Ã t ẼD B̃ B̃∗H ẼD∗
H eÃ

∗
H ẼD∗

H t C̃∗H
)
dt
}
,

(4.6)

where [Ẽ, Ã, B̃, C̃] and [ẼH, ÃH, B̃H, C̃H] are realizations of G(s) and GH(s) in Weier-
straß canonical form obtained through transformations with the regular matrices P, Q
and PH, QH according to Lemma 2.5.
Using (2.41) one can show, that the integral still converges if the terms C̃ and C̃∗H are
extracted to the left and right:

〈G, GH〉H2 = tr
{

C̃
∫ ∞

0

(
eẼ

D Ã t ẼD B̃ B̃∗H ẼD∗
H eÃ

∗
H ẼD∗

H t
)
dt C̃∗H

}
. (4.7)

A similar strategy as in the proof of Theorem 2.26 helps to simplify (4.7) to

〈G, GH〉H2 = tr

C̃

∫∞0 (
eJ t B̃f B̃∗Hf eJ

∗
H t
)
dt 0

0 0

 C̃∗H

 , (4.8)

or alternatively

〈G, GH〉H2 = tr
{
C̃ X̃ C̃∗H

}
, (4.9)

1This assumption is necessary for commutativity of the H2 inner-product according to Lemma 4.7.
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with the new unknown but constant matrix

X̃ :=
[

X̃ff X̃f∞

X̃∞f X̃∞∞

]
=

∫∞0 (
eJ t B̃f B̃∗Hf eJ

∗
H t
)
dt 0

0 0

 ∈ Cn×nH . (4.10)

The following result shows, that the computation of the integral expression in (4.10) can
be avoided by solving a generalized Sylvester equation (with additional constraint).

Lemma 4.8. Let [Ẽ, Ã, B̃, C̃] and [ẼH, ÃH, B̃H, C̃H] be realizations of two asymptot-
ically stable and strictly proper DAE-systems in Weierstraß canonical form, which have
the same count of input- and output-variables, i. e. p = pH and m = mH, and allow
realizations with real-valued system matrices.
Then the constant matrix X̃, as defined in (4.10), is the unique solution of the generalized
projected Sylvester equation

Ã X̃ Ẽ∗H + Ẽ X̃ Ã∗H +
[
Inf 0
0 0

]
B̃ B̃∗H

[
InHf 0

0 0

]
= 0 (4.11)

whilst taking into account one of the three constraints:

(i) X̃ =
[
Inf 0
0 0

]
X̃ ,

(ii) X̃ = X̃
[
InHf 0

0 0

]
,

(iii) X̃ =
[
Inf 0
0 0

]
X̃
[
InHf 0

0 0

]
.

(4.12)

Proof. Using the special structure of the system matrices in Weierstraß canonical form
allows to decompose (4.11) into four decoupled equations

J X̃ff + X̃ff J∗H + B̃f B̃∗Hf = 0 , (4.13)
X̃∞f + N X̃∞f J∗H = 0 , (4.14)
J X̃f∞N∗H + X̃f∞ = 0 , (4.15)

X̃∞∞N∗H + N X̃∞∞ = 0 . (4.16)

Inserting X̃ff =
∫∞

0

(
eJ t B̃f B̃∗Hf eJ

∗
H t
)
dt into (4.13) shows, that the X̃ff -part of (4.11)

matches the desired solution from (4.10):

J
∫ ∞

0

(
eJ t B̃f B̃∗Hf eJ

∗
H t
)
dt+

∫ ∞
0

(
eJ t B̃f B̃∗Hf eJ

∗
H t
)
dtJ∗H + B̃f B̃∗Hf =

=
∫ ∞

0

(
J eJ t B̃f B̃∗Hf eJ

∗
H t + eJ t B̃f B̃∗Hf eJ

∗
H t J∗H

)
dt+ B̃f B̃∗Hf

=
∫ ∞

0

( d
dt
[
eJ t B̃f B̃∗Hf eJ

∗
H t
])

dt+ B̃f B̃∗Hf

= eJ t B̃f B̃∗Hf eJ
∗
H t
∣∣∣∞
0

+ B̃f B̃∗Hf

= lim
t→∞

eJ t B̃f B̃∗Hf eJ
∗
H t︸ ︷︷ ︸

asymptotically stable ⇒0

−B̃f B̃∗Hf + B̃f B̃∗Hf = 0 .

(4.17)
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Applying Theorem 3.13 to (4.14) and (4.15) leads to the conclusion, that the solutions
X̃∞f and X̃f∞ are unique (see Table 4.1). Since X̃∞f = 0 and X̃f∞ = 0 are the trivial
solutions of (4.14) and (4.15), also the X̃∞f - and X̃f∞-parts of (4.11) are equivalent to
(4.10).

Table 4.1: Analysis of Equations (4.13) to (4.16) regarding existence and uniqueness
of the solutions according to Theorem 3.13.

Eq. , A , B , C , D (λC−A) (λB−D) λ(C, A) λ(B, D)
(4.13) J InHf −Inf J∗H regular regular Re > 0 Re < 0
(4.14) In∞ InHf −N J∗H regular regular ±∞ finite
(4.15) J N∗H −Inf InH∞ regular regular finite ±∞
(4.16) In∞ N∗H −N InH∞ regular regular ±∞ ±∞

It is left to prove, that X̃∞∞ = 0 is the unique solution of (4.16). According to The-
orem 3.13 there are infinitely many solutions of (4.16), X̃∞∞ = 0 is only one of them.
Through the demand, that X̃ fulfils one of the constraints in (4.12) it is guaranteed, that
X̃∞∞ = 0 is the only solution of (4.16) which completes the proof. �

Since the Weierstraß canonical form is not known in the general case, a more convenient
form of Lemma 4.8 is needed, which can be obtained by back transformation with

Ẽ = P E Q , Ã = P A Q , B̃ = P B , C̃ = C Q ,

Ẽ∗H = Q∗H E∗H P∗H , Ã∗H = Q∗H A∗H P∗H , B̃∗H = B∗H P∗H , C̃∗H = Q∗H C∗H
(4.18)

and

X := Q X̃ Q∗H . (4.19)

This is summarized in Theorem 4.9, which represents the main result of this section:

Key Theorem 4.9. Let

• G(s) and GH(s) be transfer functions of asymptotically stable and strictly proper
DAE-systems with the same count of input- and output variables, i. e. p = pH and
m = mH, and which allow realizations with real-valued system matrices,

• [E, A, B, C] and [EH, AH, BH, CH] be realizations of G(s) and GH(s),

• Πf
l , Πf

r and Πf
Hl, Πf

Hr be the spectral projectors related to λE−A and λEH−AH
respectively according to Definition 2.8,

Then the H2 inner-product is given by

〈G, GH〉H2 = tr (C X C∗H) = tr (B∗Y BH) (4.20)

with X and Y as the unique solutions of

A X E∗H + E X A∗H + Πf
l B B∗H Πf∗

Hl = 0
with X = Πf

r X or X = X Πf∗
Hr or X = Πf

r X Πf∗
Hr ,

(4.21)

A∗Y EH + E∗Y AH + Πf∗
r C∗CH Πf

Hr = 0
with Y = Πf∗

l Y or Y = Y Πf
Hl or Y = Πf∗

l Y Πf
Hl .

(4.22)
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Proof. The relation for X in (4.21) directly follows from a back transformation of
Lemma 4.8 and (4.9) according to (4.18). Due to the duality principle in linear sys-
tems, a similar relationship for Y (4.22) holds. �

Theorem 4.9 describes the general case of connecting two DAEs. For the purposes of H2
pseudo-optimal reduction described in the following section, the combination of a DAE
(G(s)) and an ODE (GH(s)) is considered, which helps to simplify the computation of
X and Y:

Corollary 4.10. Let all conditions of Theorem 4.9 hold. If additionally det(EH) 6= 0,
then X and Y are the unique solutions of

A X E∗H + E X A∗H + Πf
l B B∗H = 0 , (4.23)

A∗Y EH + E∗Y AH + Πf∗
r C∗CH = 0 . (4.24)

Proof. In order the verify (4.23) and (4.24) note that det(EH) 6= 0 implies Πf
Hl = Πf

Hr =
InH . Therefore the generalized projected Sylvester equations have unique solutions,
which is why the additional constraints are not needed anymore. �

It is worth noting, that Theorem 4.9 describes a generalization of the proper controlla-
bility and observability Gramians of DAE-systems (see Definition 2.32):

Corollary 4.11. Let all conditions of Theorem 4.9 hold and additionally EH = E, AH =
A, BH = B, CH = C i. e. GH(s) = G(s).
Then

(i) the matrices X and Y coincide with the proper controllability and observability
Gramians Γpc and Γpo respectively and

(ii) the H2 norm of G(s) reads as

‖G‖2H2 = tr(C Γpc C∗) = tr(B∗ Γpo B) . (4.25)

Proof. The first part follows from a comparison of (4.21) and (4.22) with (2.47) and
(2.48). The second part is a consequence of (4.20) and (4.3) and matches perfectly with
the results in [40, p. 845] (therein denoted by the strictly proper part ‖Gsp‖2H2

). �

4.2 H2 Pseudo-Optimal Reduction of DAEs

This section is strongly related to [42], which introduces the PORK algorithm as H2
pseudo-optimal reduction scheme for ODE-systems. In the following these results are
revised and extended to the DAE-case. Note that [42] uses a different notation of rational
Krylov subspaces. Furthermore the derivation is limited to special use cases (regarding
the interpolation data) in order to keep things simple. In contrast the following investi-
gations represent a complete proof of the most general case.
For this purpose three different realizations of the reduced transfer function Gr(s) are
considered (see Figure 4.1):

• [EM, AM, BM, CM] related to the system ΣM := (EM, AM, BM, CM, xM,0),
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• [EF, AF, BF, CF] related to the system ΣF := (EF, AF, BF, CF, xF,0) and

• [Er, Ar, Br, Cr] related to the system Σr := (Er, Ar, Br, Cr, xr,0).

[EM, AM, BM, CM]

Gr(s)

H2 pseudo-optimal reduction

[EF, AF, BF, CF]

[Er, Ar, Br, Cr]
FOM (DAE)

strictly proper

ROM (ODE)
[E, A, B, C] [Er, Ar, Br, Cr]

asympt. stable
asympt. stable

Figure 4.1: Realizations of the ROM during H2 pseudo-optimal reduction: while
[EM, AM, BM, CM] and [EF, AF, BF, CF] are necessary to derive the PORK algorithm,
[Er, Ar, Br, Cr] denotes the actual result of the reduction process.

Since they share the same transfer function, ΣM, ΣF and Σr are restricted system
equivalent (see Definition 2.19). In view of the proof of H2 pseudo-optimality they are
handled separately at first. Their connection (and especially the equality GM(s) =
GF(s) = Gr(s)) will be shown later on.
In contrast to Σr, which denotes the final result of the reduction process, ΣM and ΣF
are only of theoretical interest, i. e. they are not needed for implementation. Note that
although ΣM and ΣF are of special structure, there are no additional constraints on the
shape of the FOM (asymptotic stability and strictly properness are sufficient).
Because the DAE-system describing the FOM is assumed to be strictly proper, it is
demanded without loss of generality, that the ROM is of ODE-type, thus det(EM) 6= 0,
det(EF) 6= 0 and det(Er) 6= 0. This way additional (unnecessary) algebraic equations
are avoided.

4.2.1 The Mirrored Jordan Canonical Form

In order to shorten the following proofs, the naming of a special structure of a matrix is
introduced. For this purpose mirrored Jordan blocks are defined:

Definition 4.12. Let Z ∈ Cu×u be structured as

Z =


λ

−1 . . .
. . . . . .
−1 λ

 , (4.26)

with λ ∈ C. Then Z is called to be a mirrored Jordan block.

In contrast to “regular” Jordan blocks, the structure is “mirrored” around the diagonal
while switching the sign of the minor diagonal. Similar to the assembly of Jordan block in
the Jordan canonical form, mirrored Jordan blocks can be concatenated to the mirrored
Jordan canonical form:
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Definition 4.13. Let X ∈ Cq×q be structured as

X = diag(X1, ... , Xi, ... , Xs) , (4.27a)
Xi = diag (Xi1, ... , Xij , ... , Xiri) ∀ i = 1, ... , s , (4.27b)

Xij =


λi

−1 . . .
. . . . . .
−1 λi

 ∈ Cqij×qij ∀ j = 1, ... , ri , (4.27c)

with pairwise different eigenvalues λi ∈ C, i. e. λi 6= λw for i 6= w, and the mirrored
Jordan blocks Xij . Then X is called to be in mirrored Jordan canonical form.

Note that the structures of X in Definition 4.13 and SP
V (which is in Jordan canonical

form, see (3.29)) are very similar. In the following both matrices will be connected
as part of the proof of H2 pseudo-optimality. Therefore the same dimension (q × q),
segmentation and indexing (e. g. i = 1, ... , s) is used.
Analogous to the Jordan canonical form, every (quadratic) matrix can be transformed
into mirrored Jordan canonical form:

Lemma 4.14. For every Y ∈ Cq×q there exists a regular transformation matrix T ∈
Cq×q, such that X = T−1 Y T is in mirrored Jordan canonical form.

Proof. Since Y is quadratic, there exists a regular transformation matrix TJ ∈ Cq×q
such that J = T−1

J Y TJ is in Jordan canonical form [46, p. 610]. Now consider one
Jordan block Jij ∈ Cqij×qij of J and its transformation with T↓ ∈ Cqij×qij (switching to
lower triangular form2) and TN ∈ Cqij×qij (negation of ones):

Xij =


−1

1
−1

. . .


︸ ︷︷ ︸

T−1
N


1
...

...
1


︸ ︷︷ ︸

T−1
↓


λi 1

. . . . . .
. . . 1

λi


︸ ︷︷ ︸

Jij


1
...

...
1


︸ ︷︷ ︸

T↓


−1

1
−1

. . .


︸ ︷︷ ︸

TN

(4.28)

The matrix Xij is one of the desired mirrored Jordan blocks of X, T↓ is anti-diagonal
and TN is diagonal with alternating signs, i. e. TN,ww = (−1)w. Finally the overall
transformation matrix T can be assembled through

T = TJ diag(T↓, ... , T↓) diag(TN , ... , TN ) , (4.29)

where T↓ and TN adapt their dimensions according to Jij . �

Using Definition 4.13, correspondingly structured realizations of ODE-systems are in-
troduced:

Definition 4.15. A realization [E J, A J, B J, C J] of an ODE-system is called to be in ODE
mirrored Jordan canonical form, if E J= Iq and A Jis in mirrored Jordan canonical form
as described in Definition 4.13. Note the superscript Jwhich is an indicator for the
mirrored Jordan canonical form.

2Since all diagonal elements of Jij are equal, the transformation with T↓ and T−1
↓ corresponds to a

true flipping over the diagonal.
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An adaption of Definition 4.15 to the more general case of DAE-systems using a modified
Weierstraß canonical form is possible. Since the following proofs would not benefit from
such a notation, it will not be defined. Instead a restriction to strictly proper DAEs is
made, which allows to use results of ODE-theory as an intermediate step:

Lemma 4.16. For every strictly proper DAE-system, there exists a realization of the
transfer function G(s) in mirrored Jordan canonical form.

Proof. Since the system is strictly proper, there exists a realization [E, A, B, C] of G(s)
in ODE-form (see Corollary 2.31), i. e. det(E) 6= 0, such that

G(s) = C (sE−A)−1 B = C
(
s Iq −E−1 A

)−1
E−1 B , (4.30)

or rather G(s) = C (s Iq −Y)−1 E−1 B with Y = E−1 A. According to Lemma 4.14
there exists a regular transformation matrix T ∈ Cq×q such that X = T−1 Y T is in
mirrored Jordan canonical form. Therefore one can find

G(s) = C
(
s Iq −T X T−1

)−1
E−1 B = C T (s Iq −X)−1 T−1 E−1 B , (4.31)

and finally the realization [E J, A J, B J, C J] with

E J= Iq , A J= T−1 E−1 A T , B J= T−1 E−1 B , C J= C T , (4.32)

which is in mirrored Jordan canonical form. �

The following theorem is an extension of two special cases discussed in [42, p. 66ff.] to
the most general form. It presents a convenient formulation of the H2 inner-product of
G(s) (FOM) and GM(s) (ROM, corresponds to ΣM) via the moments of G(s). For this
purpose a realization of GM(s) in mirrored Jordan canonical form is used, whose struc-
ture is exploited. Although not immediatly obvious, Theorem 4.17 can be considered as
the key to the proof of the PORK algorithm for DAEs, since it makes use of the main
result of the last section (i. e. Corollary 4.10 as a special case of Theorem 4.9).

Key Theorem 4.17. Let G(s) be the transfer function of an asymptotically stable and
strictly proper DAE-system and let GM(s) be the transfer function of an asymptotically
stable ODE-system. Let G(s) and GM(s) have the same count of input- and output-
variables, i. e. p = pM and m = mM, and allow realizations with real-valued system
matrices. Let [E, A, B, C] and [E J

M, A J
M, B J

M, C J
M] be realizations of G(s) and GM(s)

respectively where [E J
M, A J

M, B J
M, C J

M] is in mirrored Jordan canonical form according
to Definition 4.15.
Consider the decomposition

A J
M = diag(A J

M1, ... , A J
Mi, ... , A J

Ms) ,
B J∗

H =
[
B J∗

M1, ... , B J∗
Mi, ... , B J∗

Ms

]
,

C J
H =

[
C J

M1, ... , C J
Mi, ... , C J

Ms

]
,

(4.33a)

A J
Mi = diag(A J

Mi1, ... , A J
Mij , ... , A J

Miri) ,
B J∗

Mi =
[
B J∗

Mi1, ... , B J∗
Mij , ... , B J∗

Miri

]
,

C J
Mi =

[
C J

Mi1, ... , C J
Mij , ... , C J

Miri

]
 ∀ i = 1, ... , s , (4.33b)
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B J∗
Mij =

[
b J∗

Mij1, ... , b J∗
Mijk, ... , b J∗

Mijqij

]
,

C J
Mij =

[
c J

Mij1, ... , c J
Mijk, ... , c J

Mijqij

]
 ∀ j = 1, ... , ri , (4.33c)

A J
Mij =


λMi

−1 . . .
. . . . . .
−1 λMi

 ∈ Cqij×qij ∀ j = 1, ... , ri , (4.33d)

with b J
Mijk ∈ C1×m and c J

Mijk ∈ Cp×1 corresponding to the mirrored Jordan canonical
form of A J

M.
Then the H2 inner-product of G(s) and GM(s) is given by

〈G, GM〉H2 = −
s∑
i=1

ri∑
j=1

qij∑
k=1

k∑
ξ=1

c J∗
Mijk M(k−ξ)(−λMi) b J∗

Mijξ , (4.34)

with the moments M(µ)(−λMi) of G(s) according to Lemma 2.24.

Proof. The proof is contained in Appendix A. �

Note the similar structure of (4.34) in comparison with the notation via poles and
residues in [6, p. 5371]. Since [6] deals with a reduced system having simple eigenvalues,
(4.34) represents a generalization for an arbitrary set of eigenvalues.

4.2.2 Parametrized Family of Reduced Transfer Functions

The following is slightly adapted from [42, p. 43ff.] (which is itself based on [5]) to better
fit the purposes of this work. It represents an alternative to projective MOR: instead of
projecting the FOM with V and W, one can choose directly a realization of the ROM
as [Iq, SV + F R, F, C V], wherein F ∈ Cq×m is used as design parameter. In order to
become aware of the connection between those methods, consider the ROMs obtained
by each method as a family of reduced transfer functions, parametrized in W or F:

Definition 4.18 (adapted from [42, p. 43]). Let (E, A, B, C, x0) be the strictly proper
DAE-system related to the FOM and let V ∈ Cn×q, SV ∈ Cq×q and R ∈ Cm×q denote
the interpolation matrices according to Chapter 3, such that the generalized Sylvester
equation

A V−E V SV = B R (4.35)

is fulfilled.
Then

(i) the family of reduced transfer functions GF(s), parametrized in F ∈ Cq×m, is
defined as the set GF(s) = CF (sEF −AF)−1 BF, with

EF = Iq , AF = SV + F R , BF = F , CF = C V , (4.36)

and



50 Chapter 4. Adaptive Reduction of the Strictly Proper Subsystem

(ii) the family of reduced transfer functions GH(s), parametrized in W ∈ Cn×q, is
defined as the set GH(s) = CH (sEH −AH)−1 BH, with

EH = W∗E V , AH = W∗A V , BH = W∗B , CH = C V . (4.37)

To analyze the relation of the two MOR methods, the generalized Sylvester equation for
the interpolation data (4.35) is reformulated in Lemma 4.19.

Lemma 4.19 (adapted from [42, p. 43]). Let all conditions of Definition 4.18 hold. If
[EH, AH, BH, CH] is a realization of the reduced transfer function GH(s) obtained by
projective MOR (case (ii) in Definition 4.18), then AH satisfies

AH = EH SV + BH R . (4.38)

Note that Lemma 4.19 is only valid in combination with projective MOR according to
Section 3.5. Using this result, a connection between the two parametrization techniques
can be drawn:

Theorem 4.20 (adapted from [42, p. 45]). Let GF(s) and GH(s) be families of reduced
transfer functions parametrized in F and W according to Definition 4.18. Then following
two statements hold:

(i) For any W such that EH is regular, there exists a unique F such that GH(s) =
GF(s).

(ii) If [E V, B] has full column rank, then for any F there exists a W such that GF(s) =
GH(s).

Proof. Although the proof is contained in [42], it will be repeated in order to explain
the dependency on [E V, B]: to show part (i), the choice F = E−1

H BH together with
AH = EH SV + BH R from (4.38) is sufficient. For part (ii), one has additionally to
show, that there exists a W such that

EH = W∗E V != Iq = EF and BH = W∗B != F = BF , (4.39)

or equivalently

W∗
[
E V B

]
=
[
Iq F

]
⇔

[
E V B

]∗
W =

[
Iq F

]∗
(4.40)

holds, which is the case, if [E V, B]∗ has full row rank, i. e. [E V, B] has full column
rank. �

In Theorem 4.20 it is shown, that a parametrization of the ROM through F is a general-
ization of (one-sided) projective MOR. In the special case that [E V, B] has full column
rank, both methods are equivalent and can be reformulated into each other.
In order to prove H2 pseudo-optimality, the existence of a projection matrix W and
thus the direct mapping GF(s) ↔ GH(s) is not needed, therefore [E V, B] may have
a column rank lower than q + m. Nevertheless the rank of [E V, B] will be important
for the integration into the CURE-framework in Section 4.3 such that it can not be
completely ignored. In the following it is assumed that [E V, B] has full rank, while a
further discussion of this issue is shifted to Appendix C.
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Remark 4.21. Using V = VP T and F = T−1 FP together with SV = T−1 SP
V T and

R = RP T shows, that one can use the primitive form of the interpolation matrices to
describe GF(s):

GF(s) = C V (s Iq − SV − F R)−1 F = C VP
(
s Iq − SP

V − FP RP
)−1

FP . (4.41)

Note that (in the general case) different parameter matrices, either F or FP, have to be
used.

For the case of projective MOR conditions for tangential interpolation have been pre-
sented in Section 3.5. Since a parametrization through F does not belong to this class
of MOR techniques, the statements from Theorem 3.19 are not applicable. Instead it
can be shown, that tangential interpolation is achieved by construction, i. e. through the
special choice of [EF, AF, BF, CF], which is stated in the following theorem (based on
[42, p. 43]). Note that several modifications and generalizations have been made to the
proof in order to match the notation of tangential-input rational Krylov subspaces used
in this thesis.

Theorem 4.22 (based on [42, p. 43]). Let (E, A, B, C, x0) be the DAE-system de-
scribing the FOM and let G(s) denote its transfer function. Let GF(s) be the family
of reduced transfer functions parametrized in F according to Definition 4.18 with SV
such that λ(SV ) ∩ λ(E, A) = ∅ and λ(SV ) ∩ λ(EF, AF) = ∅. Then GF(s) tangentially
interpolates G(s) as encoded in SV and R, i. e.

(dµG(s)
dsµ

)∣∣∣∣
s=si
· rij =

(dµGF(s)
dsµ

)∣∣∣∣
s=si
· rij


∀ i = 1, ... , s ,
∀ j = 1, ... , ri ,
∀ µ = 0, ... , qij − 1 .

(4.42)

Proof. The proof is contained in Appendix A. �

4.2.3 H2 Sets, Subspaces of Transfer Functions and the Hilbert Pro-
jection Theorem

In the following essential fundamentals of H2 sets and subspaces are introduced, which
are necessary to define H2 pseudo-optimality. The definitions and results stated below
are adapted from [34, p. 78ff.] to match the special case of the H2 function space3. At
first the term subspace is defined:

Definition 4.23 (adapted from [34, p. 78ff.]). A subsetM of H2 is called subspace of
H2, if X + Y ∈M and αX ∈M for all X, Y ∈M and α ∈ C.

Note that the terms subset and subspace describe different entities. Furthermore, or-
thogonality in the context of the H2 function space is introduced:

Definition 4.24 (adapted from [34, p. 78ff.]). Two elements X and Y of H2 are called
orthogonal, if 〈X, Y〉H2 = 0 holds.

Using this, the orthogonal complement of a subspace can be defined:
3In [34] the more general case of Hilbert spaces is handled.
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Lemma 4.25 (adapted from [34, p. 78ff.]). Let M be a closed subspace of H2. Then
the orthogonal complement ofM, defined by

M⊥ := {Y ∈ H2 | ∀ X ∈M : 〈X, Y〉H2 = 0} , (4.43)

is also a closed subspace of H2.

As all necessary fundamentals have been presented, subspaces of transfer functions are
defined. These are essential for the concept of H2 pseudo-optimality since they describe
the context in which the ROM will be H2 optimal. For this purpose a realization of
the transfer function in mirrored Jordan canonical form is used, whose structure will be
exploited later on:

Definition 4.26. Let GM(s) ∈ H2 be the transfer function of an asymptotically stableODE
ODE-system with m inputs and p outputs and let [E J

M, A J
M, B J

M, C J
M] be a realization

of GM(s) in mirrored Jordan canonical form. Then G
(
A J

M, B J
M
)
denotes the subset of

H2 with fixed E J
M = Iq, A J

M, B J
M and arbitrary ĈM, i. e.

G
(
A J

M, B J
M
)

:=
{
ĜM(s)

∣∣∣ ∃ ĈM ∈ Cp×1 : ĜM(s) = ĈM (s Iq −A J
M)−1 B J

M
}
⊂ H2 ,

(4.44)

with

A J
M = diag(A J

M1, ... , A J
Mi, ... , A J

Ms) , (4.45a)
A J

Mi = diag(A J
Mi1, ... , A J

Mij , ... , A J
Miri) ∀ i = 1, ... , s , (4.45b)

A J
Mij =


λMi

−1 . . .
. . . . . .
−1 λMi

 ∈ Cqij×qij ∀ j = 1, ... , ri , (4.45c)

and Re {λMi} < 0 ∀ i = 1, ... , s.

As Definition 4.26 narrows the H2 function space down to a small subset (ĈM is the only
parameter of ĜM(s), all other matrices are fixed), several important properties arise:

Corollary 4.27. All transfer functions ĜM(s) contained in G
(
A J

M, B J
M
)
share the sameODE

set of eigenvalues {λMi}.

Proof. The statement directly follows from the fact, that all elements of G
(
A J

M, B J
M
)

share the same pair (E J
M = Iq, A J

M). �

Lemma 4.28. The set G
(
A J

M, B J
M
)
⊂ H2 is a closed subspace of H2.ODE

Proof. Consider ĜM1(s), ĜM2(s) ∈ G
(
A J

M, B J
M
)
and α ∈ C. Since

ĜM1(s) + ĜM2(s) = ĈM1(s Iq −A J
M)−1B J

M + ĈM2(s Iq −A J
M)−1B J

M

=
(
ĈM1 + ĈM2

)
(s Iq −A J

M)−1B J
M

⇒ ĜM1(s) + ĜM2(s) ∈ G
(
A J

M, B J
M
)
,

(4.46)
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and

α ĜM1(s) =
(
α ĈM1

)
(s Iq −A J

M)−1B J
M ⇒ α ĜM1(s) ∈ G

(
A J

M, B J
M
)
, (4.47)

the conditions of Definition 4.23 are fulfilled. Therefore G
(
A J

M, B J
M
)
is a subspace of

H2. Because E J
M, A J

M, B J
M and ĈM are either fixed or arbitrary (unbounded), the set

G
(
A J

M, B J
M
)
⊂ H2 is closed [34, p. 79]. �

The property of G
(
A J

M, B J
M
)
described in Lemma 4.28 is required in order to apply

the Hilbert projection theorem, which is stated in Theorem 4.29. For the purpose of a
shorter notation, the subspace G

(
A J

M, B J
M
)
will be abbreviated through G within the

following. Accordingly its orthogonal complement will be denoted by G⊥.

Theorem 4.29 (adapted from [34, p. 80]). Let G⊥ denote the orthogonal complement ODE
of G according to Lemma 4.25. Then every G(s) ∈ H2 has a unique decomposition

G(s) = Hopt(s) + H⊥opt(s) (4.48)

where Hopt(s) and H⊥opt(s) are the nearest (regarding the H2 norm) elements to G(s) in
G and G⊥ respectively, i. e.

Hopt(s) = arg min
H∈G
‖G−H‖H2 , (4.49a)

H⊥opt(s) = arg min
H⊥ ∈G⊥

‖G−H⊥‖H2 . (4.49b)

Proof. Since G is a closed subspace of H2 (Lemma 4.28), one can use the proof given in
[34, p. 81]. �

A visualization of Theorem 4.29 is given in Figure 4.2. Keep in mind, that Figure 4.2 has
to be interpreted as a simplifying illustration, since the H2 norm of a transfer function
is in no way related to the Euclidean norm in Cartesian space.

H2
H2G

G−Hopt

G⊥

GHopt
H⊥optH⊥optHopt

G

G⊥G

Figure 4.2: Illustration of the Hilbert projection theorem: the left side represents the
optimization problems given in (4.49a) and (4.49b). An analogy for H2 , R3, G , R2

and G⊥ , R is depicted on the right side.

The statements of Theorem 4.29 allow to formulate an optimality condition using the
H2 inner-product:

Corollary 4.30. Consider the notation of Theorem 4.29. Then ODE

〈G−Hopt, H〉H2 = 0 ∀ H(s) ∈ G . (4.50)
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Proof. Since H⊥opt(s) is contained in G⊥, it has to be orthogonal to every H(s) ∈ G, i. e.
〈H⊥opt, H〉H2 = 0 ∀ H(s) ∈ G. This leads together with H⊥opt(s) = G(s) −Hopt(s) to
(4.50). �

Note that even though Theorem 4.29 and Corollary 4.30 have been presented in the con-
text of ODEs, only transfer functions are considered. Therefore the results are applicable
to the case of strictly proper DAEs4 too.

4.2.4 H2 Pseudo-Optimality

The basic idea of H2 pseudo-optimal reduction is as follows: instead of searching for
the (H2-) optimal ROM in the set of all possible approximations (corresponding to a
predefined reduced order q), one restricts oneself to a specific subset of reduced transfer
functions (which was introduced as G):

Definition 4.31 ([42, p. 80]). Let G(s) be the transfer function of the FOM and let
G ⊂ H2 denote a selected subset of all possible reduced transfer functions. Then the
specific reduced transfer function Gr(s) ∈ G is called H2 pseudo-optimal with respect to
G, if it satisfies

Gr(s) = arg min
ĜM ∈G

‖G− ĜM‖H2 . (4.51)

Note that there are infinitely many realizations, but only one unique transfer function
Gr(s) of the H2 pseudo-optimal ROM.
Because of Definition 4.31 the reduced transfer function Gr(s) has to be an element
of G

(
A J

M, B J
M
)

during H2 pseudo-optimal reduction. Therefore [E J
M, A J

M, B J
M, C J

M]

(which was used to define G
(
A J

M, B J
M
)
in Definition 4.26) is a valid realization of Gr(s)

whose structure can be exploited to find a new formulation of Corollary 4.30:

Theorem 4.32 (extension of [42, p. 83f.]). Let

• G(s) be the transfer function of an asymptotically stable and strictly proper FOM,

• G
(
A J

M, B J
M
)
be a subspace of H2 as described in Definition 4.26,

• Gr(s) be a specific reduced transfer function contained in G
(
A J

M, B J
M
)
and

• M(µ)(−λMi) and M(µ)
r (−λMi) denote the µ-th moments of G(s) and Gr(s) around

−λMi respectively.

Then Gr(s) is the unique H2 pseudo-optimal reduced transfer function according to Def-
inition 4.31, if and only if

〈G−Gr, ĜM〉H2 = 0 ∀ ĜM(s) ∈ G
(
A J

M, B J
M
)

(4.52)

4As H(s) and H⊥(s) are elements of G and G⊥ (thus related to ODEs), the integration of strictly
proper DAEs is limited to realizations of G(s).
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or equivalently

k∑
ξ=1

(
M(k−ξ)(−λMi)−M(k−ξ)

r (−λMi)
)

b J∗
Mijξ = 0 for all


i = 1, ... , s
j = 1, ... , ri
k = 1, ... , qij

(4.53)

holds.

Proof. Using Definition 4.31 together with (4.49a) and Corollary 4.30 shows, that Gr(s)
has to fulfill (4.52). Note that according to Theorem 4.29 theH2 pseudo-optimal reduced
transfer function is unique.
To show the equivalence of (4.53), recall the result from Theorem 4.17:

〈Ge, ĜM〉H2 = −
s∑
i=1

ri∑
j=1

qij∑
k=1

k∑
ξ=1

ĉ∗Mijk M(k−ξ)
e (−λMi) b J∗

Mijξ , (4.54)

where Ge(s) = G(s) −Gr(s) denotes the error of the reduced transfer function caused
by the reduction. Since

Ge(s)
(Lemma 2.24)

= −
∞∑
ξ=0

M(ξ)(si) (s− si)ξ +
∞∑
ξ=0

M(ξ)
r (si) (s− si)ξ

= −
∞∑
ξ=0

(
M(ξ)(si)−M(ξ)

r (si)
)

(s− si)ξ = −
∞∑
ξ=0

M(ξ)
e (si) (s− si)ξ ,

(4.55)

one can find

M(ξ)
e (si) = M(ξ)(si)−M(ξ)

r (si) , (4.56)

which leads to:

〈G−Gr, ĜM〉H2 = −
s∑
i=1

ri∑
j=1

qij∑
k=1

k∑
ξ=1

ĉ∗Mijk

(
M(k−ξ)(−λMi)−M(k−ξ)

r (−λMi)
)

b J∗
Mijξ .

(4.57)

Because (4.52) holds for all ĜM(s) ∈ G
(
A J

M, B J
M
)
and the elements of G

(
A J

M, B J
M
)

vary in ĈM, (4.57) has to be zero for arbitrary ĉMijk. This leads to (4.53) and finally
completes the proof5. �

Through (4.53) in Theorem 4.32 a condition for H2 pseudo-optimality is formulated,
which makes use of the moments of the involved transfer functions (FOM and ROM).
Note that the moments are evaluated at the specific points −λMi which represent the
eigenvalues of ΣM mirrored about the imaginary axis. This will be beneficial for drawing
a connection to expansion points si (which are chosen in the open right half of the
complex plane) in the following.
As the shape of (4.53) hints, a relation to tangential interpolation is possible. For this
purpose, the specific choice [EM, AM, BM, CM] = [Iq, −S∗V , R∗, CM] is necessary (CM
is still arbitrary). This leads (in addition to several beneficial properties of the ROM)
to a modified condition for H2 pseudo-optimality, which is summarized in the following
theorem:

5Note that the sum over ξ does not vanish, since ξ is not an index of ĉMijk.
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Key Theorem 4.33. Let

• G(s) be the transfer function of an asymptotically stable and strictly proper FOM,

• SP
V , RP and SV , R be the interpolation matrices related to the bases VP (primitive)

and V (arbitrary) of Kti respectively, where all expansion points si are chosen in
the open right half of the complex plane,

• [EM, AM, BM, CM] be a realization of the reduced transfer function Gr(s), with
the special choice

EM = Iq , AM = −S∗V and BM = R∗ . (4.58)

Then

(i) the ROM is asymptotically stable,

(ii) Gr(s) is contained in the subspace G(−SP∗
V , RP∗),

(iii) the pair (AM, BM) is controllable and

(iv) Gr(s) is the unique H2 pseudo-optimal reduced transfer function, if and only if it
tangentially interpolates G(s) as encoded in SV and R.

Proof. Since the expansion points lie in the open right half of the complex plane and
AM is chosen such that AM = −S∗V with {si} = λ(SP

V ) = λ(SV ), all eigenvalues of the
pair (EM, AM) have negative real part, which proves part (i).
Part (ii) can be shown by inserting the transformation S∗V = T∗ SP∗

V T−∗ and R∗ =
T∗RP∗ from Corollary 3.15 into

Gr(s) = CM (sEM −AM)−1 BM = CM (s Iq + S∗V )−1 R∗ , (4.59)

which leads to

Gr(s) = CM T∗
(
s Iq + SP∗

V

)−1
RP∗ . (4.60)

Since SP
V is in Jordan canonical form, −SP∗

V is in mirrored Jordan canonical form, thus
one can find the realization [E J

M, A J
M, B J

M, C J
M] of Gr(s) with

E J
M = Iq , A J

M = −SP∗
V , B J

M = RP∗ , C J
M = CM T∗ , (4.61)

which is in mirrored Jordan canonical form and defines the subspace G(−SP∗
V , RP∗)

according to Definition 4.26.
The observability property of the pair (SV ,R) (see Section 3.4) proves part (iii):

(SV ,R) is observable ⇒ rank
[
si Iq − SV

R

]
= q , ∀ si ∈ λ(SV )

⇒ rank


[
−Iq 0
0 Im

]
︸ ︷︷ ︸

regular

[
si Iq − SV

R

] = rank
[
SV − si Iq

R

]
= q , ∀ si ∈ λ(SV )
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⇒ rank
[
SV − si Iq

R

]∗
= rank [S∗V − si Iq , R∗] = q , ∀ si ∈ λ(SV ) ,

⇒ rank [−si Iq −AM , BM] = rank [λMi Iq −AM , BM] = q , ∀ λMi ∈ λ(AM) ,
⇒ (AM,BM) is controllable .

Herein the controllability and observability criterions of Hautus [25, pp. 81,100] together
with the independence of the rank regarding regular transformations (see [32, p. 9]) are
used.
In order to show part (iv), the result of Theorem 4.32 is used: Gr(s) is the unique H2
pseudo-optimal reduced transfer function, if and only if

k∑
ξ=1

(
M(k−ξ)(−λMi)−M(k−ξ)

r (−λMi)
)

b J∗
Mijξ = 0 for all


i = 1, ... , s
j = 1, ... , ri
k = 1, ... , qij

(4.62)

holds. The special choice of the subspace G(−SP∗
V , RP∗) leads to −λMi = si and

b J∗
Mijξ =

{
rij , for ξ = 1
0 , for ξ > 1

. (4.63)

Thus Gr(s) has to fulfill

M(k−1)(si) rij = M(k−1)
r (si) rij (4.64)

or equivalently

(dµG(s)
dsµ

)∣∣∣∣
s=si
· rij =

(dµGr(s)
dsµ

)∣∣∣∣
s=si
· rij for all


i = 1, ... , s ,
j = 1, ... , ri ,
µ = 0, ... , qij − 1

(4.65)

which exactly describes tangential interpolation regarding SV and R. �

4.2.5 Connection of ΣM, ΣF and Σr to the H2 Pseudo-Optimal ROM

As shown in Theorem 4.33, the special choice (4.58) guarantees asymptotic stability of
the ROM. Furthermore a relationship between tangential interpolation and H2 pseudo-
optimality is formulated in part (iv) of Theorem 4.33. It is left to find the actual H2
pseudo-optimal ROM. For this purpose, the previous results concerning the systems
ΣM, ΣF and Σr (which were analyzed independently) are connected in the following.
First, the controllability and observability Gramians of the ROM related to the realiza-
tion [Er, Ar, Br, Cr] are defined. Since Σr is assumed to be in ODE-form, the Gramians
are a special case of Definition 2.32:

Definition 4.34 (derived from Definition 2.32). Let Gr(s) be the transfer function ODE
of an asymptotically stable ROM and let [Er, Ar, Br, Cr] denote a realization of Gr(s)
with det(Er) 6= 0. Then the controllability and observability Gramians Γc

r and Γo
r related

to this realization are defined as the unique Hermitian, positive semidefinite solutions of
the generalized continuous-time Lyapunov equations

Ar Γc
r E∗r + Er Γc

r A∗r + Br B∗r = 0 , (4.66)
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and

A∗r Γo
r Er + E∗r Γo

r Ar + C∗r Cr = 0 . (4.67)

According to Definition 4.34 the Gramians are positive semidefinite, i. e. they may be
singular. Since the following proofs require Γc

r and Γo
r to be invertible, a condition for

regularity is necessary:

Lemma 4.35 (adapted from [2, pp. 72,78]). Let [Er, Ar, Br, Cr], Γc
r and Γo

r be as inODE
Definition 4.34. Then following statements hold:

• If (Ar, Br) is controllable, then Γc
r is positive definite, thus det(Γc

r) > 0.

• If (Ar, Cr) is observable, then Γo
r is positive definite, thus det(Γo

r ) > 0.

Using the Gramians it can be shown, that there exists a transformation such that
[EM, AM, BM, CM] and [Er, Ar, Br, Cr] are indeed realizations of the same reduced
transfer function Gr(s) :

Lemma 4.36. Let [EM, AM, BM, CM] with EM = Iq and controllable (AM, BM) beODE
a realization of the reduced transfer function Gr(s). Then [Er, Ar, Br, Cr] is also a
realization of Gr(s), if

Ar = Er Γc
r AM (Γc

r)−1 , Br = −Er Γc
r BM , Cr = −CM (Γc

r)−1 , (4.68)

whereby Er ∈ Rq×q is arbitrary, such that det(Er) 6= 0, and Γc
r is the positive definite

controllability Gramian according to Definition 4.34.

Proof. Since (AM, BM) is controllable, the controllability Gramian Γc
M of the realization

[EM, AM, BM, CM], given through

AM Γc
M E∗M + EM Γc

M A∗M + BM B∗M = 0 , (4.69)

is positive definite (Lemma 4.35). Now assume, that Γc
r is regular, such that one can

use (4.68) to write

Ar Γc
r E∗r + Er Γc

r A∗r + Br B∗r = 0 ,
Ar Γc

r︷ ︸︸ ︷
Er Γc

r AM E∗r + Er

Γc
r A∗r︷ ︸︸ ︷

A∗M Γc
r E∗r +

−Br︷ ︸︸ ︷
Er Γc

r BM

−B∗r︷ ︸︸ ︷
B∗M Γc

r E∗r = 0 ,
(4.70)

which leads because of det(Er) 6= 0 and EM = Iq to

AM (Γc
r)−1 E∗M + EM (Γc

r)−1 A∗M + BM B∗M = 0 . (4.71)

A comparison of (4.69) with (4.71) delivers the relation Γc
r = (Γc

M)−1 which verifies, that
Γc

r is positive definite (and thus regular) too.
Finally one can easily show, that

Gr(s) = CM (s Iq −AM)−1 BM = Cr (sEr −Ar)−1 Br (4.72)

holds for the special choice (4.68). �
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In Lemma 4.36 the transformation between the systems ΣM and Σr was presented. If
for ΣM the special choice given in Theorem 4.33 is made, a direct relation between Er,
Ar, Br and the interpolation matrices (SV and R) exists:

Corollary 4.37. Let [EM, AM, BM, CM] and [Er, Ar, Br, Cr] be realizations of the ODE
reduced transfer function Gr(s) as defined in Theorem 4.33 and Lemma 4.36. Then the
equality

Ar = Er SV + Br R (4.73)

holds.

Proof. Using AM = −S∗V and BM = R∗ from Theorem 4.33 together with Ar =
Er Γc

r AM (Γc
r)−1 and Br = −Er Γc

r BM from Lemma 4.36 shows, that

Ar = −Er Γc
r S∗V (Γc

r)−1 , Br = −Er Γc
r R∗ . (4.74)

holds. Inserting (4.74) into the generalized continuous-time Lyapunov equation of the
controllability Gramian Γc

r (4.66) leads together with Γc∗
r = Γc

r (Hermitian) to

Ar Γc
r E∗r + Er Γc

r

A∗r︷ ︸︸ ︷(
−(Γc

r)−1 SV Γc
r E∗r

)
+Br

B∗r︷ ︸︸ ︷
(−R Γc

r E∗r ) = 0

(Ar −Er SV −Br R) Γc
r E∗r = 0

(4.75)

which is equivalent to (4.73) because Γc
r and Er are invertible. �

Remark 4.38. Note that Corollary 4.37 is independent from the result of Lemma 4.19
since it is not restricted to projective MOR. Instead the special choice of Ar and Br
together with AM and BM yields the result.

Due to Theorem 4.33 the matrices EM, AM and BM are fixed. Since CM has not been
specified, it can be chosen such that Gr(s) is H2 pseudo-optimal. The correct choice of
Cr (and thus CM) is presented in the following theorem:

Key Theorem 4.39. Let [EM, AM, BM, CM] and [Er, Ar, Br, Cr] be realizations of
the reduced transfer function Gr(s) as defined in Theorem 4.33 and Lemma 4.36. If Cr
is chosen such that

Cr := C V , (4.76)

then

(i) the realization [EF, AF, BF, CF] with

EF = Iq , AF = SV + F R , BF = F , CF = C V , (4.77)

contained in the family of reduced transfer functions GF(s) parametrized in F with
the special choice

F := E−1
r Br , (4.78)

is a realization of Gr(s) too,
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(ii) Gr(s) tangentially interpolates G(s) as encoded in SV and R and

(iii) Gr(s) is H2 pseudo-optimal with respect to G(−SP∗
V , RP∗).

Proof. In order to show part (i), (4.78) is used:

GF(s) = CF (sEF −AF)−1 BF = C V
(
s Iq − SV −E−1

r Br R
)−1

E−1
r Br

= C V (sEr −Er SV −Br R)−1 Br .
(4.79)

Because C V = Cr and Ar = Er SV + Br R (Corollary 4.37) holds, it follows

GF(s) = Cr (sEr −Ar)−1 Br = Gr(s) . (4.80)

Since Gr(s) and GF(s) are equal, Theorem 4.22 can be used to prove part (ii).
The last part is a consequence of part (ii) and Theorem 4.33. �

Theorem 4.39 represents the main result during the derivation of the H2 pseudo-optimal
reduction scheme. It makes use of the three different realizations of the reduced transfer
function in order to prove H2 pseudo-optimality, asymptotic stability and tangential
interpolation of the ROM. A schematic of the relations between ΣM, ΣF and Σr is
illustrated in Figure 4.3.

Remark 4.40. According to the results above, the choice of Er is arbitrary6 (as long as
det(Er 6= 0) holds). This degree of freedom in design complies with the fact, that every
transfer function has an infinite number of corresponding realizations.

4.2.6 The H2 Pseudo-Optimal Rational Krylov Algorithm

In the following the previous results are combined to the H2 pseudo-optimal rational
Krylov (PORK) algorithm, which represents an efficient way to compute the H2 pseudo-
optimal ROM corresponding to a given set of interpolation data (V, SV , R). Previously
additional considerations regarding the controllability Gramian Γc

r have to be made.
Since Er, Ar and Br are not known a priori, one can not use (4.66) to compute Γc

r
directly. Fortunately it is possible to describe Γc

r by the interpolation matrices SV and
R:

Theorem 4.41. Let [EM, AM, BM, CM] and [Er, Ar, Br, Cr] be realizations of theODE
reduced transfer function Gr(s) as defined in Theorem 4.33 and Lemma 4.36 and let
Γc

r denote the controllability Gramian related to the realization [Er, Ar, Br, Cr]. Fur-
thermore let all expansion points si be contained in the open right half of the complex
plane.
Then (Γc

r)−1 is the unique solution of the Lyapunov equation

S∗V (Γc
r)−1 + (Γc

r)−1 SV −R∗R = 0 . (4.81)

6Keep in mind, that Ar and Br depend on the choice of Er.
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Figure 4.3: (To be read from top to bottom in landscape format.) Dependencies
between the realizations of the reduced transfer function Gr(s) during the derivation of
H2 pseudo-optimal reduction. A bold line indicates, that the corresponding matrix has
been set or the corresponding property has been achieved.
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Proof. First of all, the relations Ar = −Er Γc
r S∗V (Γc

r)−1 and Br = −Er Γc
r R∗ from

Theorem 4.33 and Lemma 4.36 are inserted into (4.66) which leads to

Ar︷ ︸︸ ︷(
−Er Γc

r S∗V (Γc
r)−1

)
Γc

r E∗r + Er Γc
r

A∗r︷ ︸︸ ︷(
−(Γc

r)−1 SV Γc
r E∗r

)
+

Br︷ ︸︸ ︷
(−Er Γc

r R∗)
B∗r︷ ︸︸ ︷

(−R Γc
r E∗r ) = 0 ,

(4.82)

whereby Γc
r = Γc∗

r (Hermitian) was used. Multiplying (4.82) with (Γc
r)−1 E−1

r from the
left and E−∗r (Γc

r)−1 from the right shows that (4.81) holds. Since Re{si} > 0 for all
i ∈ {1, ... , s}, it follows that λ(SV ) ∩ λ(−S∗V ) = ∅ and thus (Γc

r)−1 is unique according
to Theorem 3.13. �

Since all necessary tools are available, the previous results can be connected to formulate
the PORK algorithm (adapted from [42, p. 91]):

Algorithm 4.1 : (input) PORK algorithm for strictly proper DAEs
Input : FOM: [E, A, B, C] and interpolation matrices: V, SV and R
Output : ROM: [Er, Ar, Br, Cr]
compute (Γc

r)−1 as the solution of S∗V (Γc
r)−1 + (Γc

r)−1 SV −R∗R = 0
choose Er such that det(Er) 6= 0 (e. g. Er = Iq)
Br = −Er Γc

r R∗ // see Theorem 4.33 and Lemma 4.36

Ar = Er SV + Br R // see Corollary 4.37

Cr = C V // see Theorem 4.39

As Algorithm 4.1 coincides with the formulation in the ODE context given in [42, p. 91],
PORK is applicable to the case of (strictly proper) DAEs without any modifications.
The requirements of PORK and the properties of the resulting ROM can be summarized
as follows:

Key Theorem 4.42. Let

• (E, A, B, C, x0) be an asymptotically stable and strictly proper DAE-system of
order n with transfer function G(s) ∈ Rp×m describing the FOM,

• G(s) allow realizations with real-valued system matrices,

• {si} be a set of pairwise different expansion points contained in the open right half
of the complex plane,

• {rij} be a set of tangential directions related to the expansion points,

• SP
V ∈ Cq×q and RP ∈ Cm×q be the (primitive) interpolation matrices containing
{si} and {rij} according to Section 3.2,

• Kti be the tangential-input rational Krylov subspace constructed with {si} and {rij}
according to Section 3.2,

• V ∈ Cn×q be an arbitrary base of Kti with corresponding interpolation matrices
SV ∈ Cq×q and R ∈ Cm×q according to Section 3.4.
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Then Algorithm 4.1 computes a realization [Er, Ar, Br, Cr] of the ROM of order q in
ODE-form with reduced transfer function Gr(s) ∈ Rp×m, such that

(i) the system (Er, Ar, Br, Cr, xr,0) is asymptotically stable,

(ii) the eigenvalues of the ROM are the mirrored images of the expansion points, i. e.
λ(Er, Ar) = {−si},

(iii) Gr(s) tangentially interpolates G(s) as encoded in {si} and {rij} and

(iv) Gr(s) is H2 pseudo-optimal with respect to G
(
−SP∗

V , RP∗
)
.

Proof. The proofs of part (i), (iii) and (iv) are contained in Theorem 4.33 and Theo-
rem 4.39.
In order to show part (ii) consider the computation of the eigenvalues of (Er, Ar):

0 != det(λEr −Ar) = det(λEr + Er Γc
r S∗V (Γc

r)−1)
= det(Er)︸ ︷︷ ︸

6=0

det(Γc
r)︸ ︷︷ ︸

6=0

det(λ Iq + S∗V ) det((Γc
r)−1)︸ ︷︷ ︸

6=0

(4.83)

and thus

det(λEr −Ar) = 0 ⇔ det(λ Iq − (−S∗V )) = 0 . (4.84)

Since λ(−SP∗
V ) = λ(−S∗V ) = {−si} holds, the proof is complete. �

Note that according to Theorem 4.42, λ(Er, Ar) = {−si} holds. This relation originates
from the connection of SP

V , which is in Jordan canonical form, and A J
M of the (theoretical)

realization [E J
M, A J

M, B J
M, C J

M] of Gr, which is in mirrored Jordan canonical form. Part
(ii) of Theorem 4.42 allows following conclusion: during H2 pseudo-optimal reduction
with the PORK algorithm, a good choice of expansion points {si} is twice as important7,
since they determine both tangential interpolation and the eigenvalues of the ROM [42,
p. 103].
Although the PORK algorithm allows to directly (i. e. without iteration) compute a
ROM, which is optimal in some sense, the problem of finding appropriate expansion
points (and tangential directions) remains. This issue will be addressed in Section 4.3
through the SPARK algorithm.
Again, due to the duality in linear systems, all results concerning H2 pseudo-optimal
reduction also apply to the case of tangential-output rational Krylov subspaces. For
the sake of completeness the dual version of Algorithm 4.1 is stated in Algorithm 4.2
(adapted from [42, p. 92]).

Remark 4.43. Note that the matrices SW and L differ from the notation in [42] (SW →
S∗W and L→ L∗).

7in comparison with “usual” tangential interpolation by projective MOR



64 Chapter 4. Adaptive Reduction of the Strictly Proper Subsystem

Algorithm 4.2 : (output) PORK algorithm for strictly proper DAEs
Input : FOM: [E, A, B, C] and interpolation matrices: W, SW and L
Output : ROM: [Er, Ar, Br, Cr]
compute (Γo

r )−1 as the solution of S∗W (Γo
r )−1 + (Γo

r )−1 SW − L∗ L = 0
choose Er such that det(Er) 6= 0 (e. g. Er = Iq)
Cr = −L Γo

r Er

Ar = S∗W Er + L∗Cr

Br = W∗B

4.2.7 Equivalent Conditions for H2 Pseudo-Optimality

In [42, p. 87ff.] seven (sufficient) conditions for H2 pseudo-optimality are presented.
Since they are equivalent to each other, it is sufficient to enforce one of them in order to
formulate a H2 pseudo-optimal reduction scheme (like the PORK algorithm). Keep in
mind that the investigations in [42] are restricted to ODE-systems. Anyway it seems that
except for one all conditions can be directly applied to the DAE-case. The presentation
of all seven conditions would require the introduction of several additional results from
[42], which is omitted for reasons of clarity and comprehensibility. Instead only the
“problematic part” is discussed in the following.
According to [42, theorem 4.26 and 4.27] the equality

X = V Γc
r , (4.85)

with X as the solution of

A X E∗r + E X A∗r + Πf
l B B∗r = 0 , (4.86)

is equivalent to

SV = −Γc
r A∗r E−∗r (Γc

r)−1 ⇒ A∗r = −(Γc
r)−1 SV Γc

r E∗r ,
(part i) in [42, theorem 4.26]) ,

(4.87)

and

E−1
r Br + Γc

r R∗ = 0 ⇒ B∗r = −R Γc
r E∗r ,

(part ii) in [42, theorem 4.26]) ,
(4.88)

which are sufficient for H2 pseudo-optimality of Gr(s) with respect to G
(
−SP∗

V , RP∗
)
.

Herein the matrices Γc
r and V denote the controllability Gramian corresponding to the

realization [Er, Ar, Br, Cr] of Gr(s) and an arbitrary base of Kti (related to SV and
R) respectively. Furthermore it is assumed, that Gr(s) is obtained by projective MOR,
i. e. W exists (thus [E V, B] has full column rank). Note that in contrast to [42], the
spectral projector Πf

l of the matrix pencil λE−A is involved. This is because the H2
inner-product 〈G, Gr〉H2 changes in the DAE-case (see Corollary 4.10).
Inserting (4.85) into (4.86) leads together with (4.87) and (4.88) to

A V Γc
r E∗r −E V Γc

r (Γc
r)−1 SV Γc

r E∗r −Πf
l B R Γc

r E∗r = 0 . (4.89)
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A multiplication with E−∗r (Γc
r)−1 from the left finally results in

A V−E V SV = Πf
l B R . (4.90)

Since V is defined as the unique solution of (3.42), the equality Πf
l B R = B R must

hold8. Obviously this is fulfilled, if during the preprocessing of the improper FOM
the matrix B is projected with Πf

l in order to get a realization of the strictly proper
subsystem, since then Πf

l B
sp = Bsp holds. Note that this is not guaranteed in general,

since the separation of the strictly proper and improper subsystems may be done by
projection of C (or even skipped, if the FOM is strictly proper itself). This considerations
are summarized in Lemma 4.44.

Lemma 4.44. Let all conditions of Theorem 4.42 hold and [Er, Ar, Br, Cr] be a real-
ization of the reduced transfer function Gr(s) obtained through Algorithm 4.1. Then X
as the solution of (4.86) fulfills

X = V Γc
r , (4.91)

where Γc
r denotes the controllability Gramian related to [Er, Ar, Br, Cr], if and only if

the equality

Πf
l B R = B R (4.92)

holds.

Remark 4.45. Note that the statement of Lemma 4.44 has direct influence on part ii)
in [42, theorem 4.27]: if X and V Γc

r are not equal, the gradient of ‖G −Gr‖2H2
with

respect to Cr may not vanish (see [42, p. 148]). Nevertheless the (in)equality of X and
V Γc

r does not affect the PORK algorithm or the properties of the resulting ROM.

4.3 Adaptive Model Order Reduction of SISO Systems

In the preceding section the application of the PORK algorithm in the context of (strictly
proper) DAEs was shown. Although the ROM obtained by H2 pseudo-optimal reduction
is optimal regarding a predefined subspace of reduced transfer functions, it is in general
not H2 optimal. Even worse, an inappropriate choice of the interpolation data (through
SV and R) may lead to a very poor approximation (despite H2 pseudo-optimality)
[42, p. 22]. Therefore the iterative reduction scheme SPARK, which adaptively chooses
suitable interpolation data for SISO-systems in combination with PORK, has been in-
vestigated in [30].
Since SPARK generates a ROM of low order, it is particularly suitable for integration
into the CURE framework, which on the other hand adaptively increases the reduced
order q until some kind of error tolerance is met. The reduction of (strictly proper)
DAE-systems with CURE, SPARK and their combination CUREd SPARK is presented
below.
Remark 4.46. Within this section SPARK and CURE are investigated for the purpose
of a combination with input PORK (see Algorithm 4.1). Note that for all techniques
dual versions for the application with output PORK (see Algorithm 4.2) exist. The main
difference is to use (3.58) instead of (3.42).

8Note that although the right hand side of a generalized Sylvester equation does not influence the
solvability, it contributes to the value of V.
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4.3.1 The Stability-Preserving, Adaptive Rational Krylov Algorithm

The following overview of the SPARK algorithm is summarized from [30, p. 75ff.] which
is itself dedicated to the reduction of ODE-systems. Since the main algorithm remains
unchanged for the case of strictly proper DAEs, detailed derivations of the results are
omitted. Nevertheless several proofs (concerning the gradient and Hessian of the cost
function) have to be modified in order to comply with det(E) = 0.
Since computing an optimal set of interpolation data is a difficult task, only SISO-
systems, i. e. m = p = 1, are considered. As a result, the problem of finding appropriate
tangential directions is avoided, thus the focus lies on the expansion points {si}. Fur-
thermore the reduced order q is fixed to 2 in order to allow an efficient and robust
numerical optimization (with analytical gradient and Hessian).
The main goal of SPARK is to find an optimal set {si} which minimizes the error
‖G−Gr‖2H2

while preserving stability. This is done by setting the expansion points to

s1 = a+
√
a2 − b and s2 = a−

√
a2 − b , (4.93)

where the parameters a, b ∈ R>0 are adaptively chosen during optimization. Note that
since a > 0 holds, both expansion points lie in the open right half of the complex plane
resulting in an asymptotically stable ROM according to Theorem 4.42. Moreover the
parametrization via a and b allows an arbitrary choice of {si} in the open right half of
the complex plane:

if a2 = b then s1 = s2 ∈ R>0 ,

if a2 > b then s1 6= s2 with s1, s2 ∈ R>0 ,

if a2 < b then s1 = s2 ∈ C with Re{s1} = Re{s2} > 0 .
(4.94)

The interpolation data necessary in order to apply (input) PORK reads as

V =
[1

2
(
A−1
s1 + A−1

s2

)
B, A−1

s2 E A−1
s1 B

]
∈ Rn×2 ,

SV =
[

s1+s2
2 1( s1−s2

2
)2 s1+s2

2

]
=
[

a 1
a2 − b a

]
, R =

[
1 0

] (4.95)

with the abbreviations As1 = (A − s1 E) and As2 = (A − s2 E). Note that in order to
obtain a real basis V, the transformation

T =


Iq , if a2 = b , 1

2
1

2
√
a2−b

−1
2

1
2
√
a2−b

 , if a2 6= b
(4.96)

of the primitive basis VP is used (see Corollary 3.15). According to Algorithm 4.1, the
realization [Er, Ar, Br, Cr] of the H2 pseudo-optimal reduced transfer function can be
computed as

Er = I2 (chosen) , Ar =
[
−3 a 1

−3 a2 − b a

]
, Br =

[
−4 a
−4 a2

]
, Cr = C V . (4.97)
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Moreover the controllability Gramian related to [Er, Ar, Br, Cr] is given by

Γc
r =

[
4 a 4 a2

4 a2 4 a (a2 + b)

]
. (4.98)

Note that the problem of minimizing the error ‖G −Gr‖2H2
can be formulated in sole

dependency of Gr(s):

Lemma 4.47. Let

• the FOM be described by an asymptotically stable and strictly proper DAE-system
with transfer function G(s),

• the ROM be described by an asymptotically stable ODE-system,

• the reduced transfer function Gr(s) be H2 pseudo-optimal with respect to a chosen
subspace G and

• G(s) and Gr(s) allow realizations with real-valued system matrices.

Then minimizing the error ‖G−Gr‖2H2
is equivalent to maximizing ‖Gr‖2H2

.

Proof. Since both transfer functions, G(s) and Gr(s), allow realizations with real-valued
system matrices, the equality

‖G−Gr‖2H2

(4.4)= ‖G‖2H2 − 2 〈G, Gr〉H2 + ‖Gr‖2H2 (4.99)

holds. Furthermore Gr(s) is assumed to be H2 pseudo-optimal, such that the inner
product 〈G−Gr, Gr〉H2 vanishes (see Theorem 4.32 with Gr ∈ G). This leads to

0 = 〈G−Gr, Gr〉H2 = 〈G, Gr〉H2 − ‖Gr‖2H2 ⇒ 〈G, Gr〉H2 = ‖Gr‖2H2 (4.100)

which is inserted into (4.99) to obtain

0 < ‖G−Gr‖2H2 = ‖G‖2H2 − ‖Gr‖2H2 . (4.101)

As ‖G‖2H2
is constant (FOM), an increase of ‖Gr‖2H2

implies a decrease of ‖G−Gr‖2H2
which completes the proof. �

With Lemma 4.47 and Corollary 4.11 the cost function

J := −‖Gr‖2H2 = − tr(Cr Γc
r C∗r ) (4.102)

can be defined and minimized by a trust-region method as proposed in [30, p. 82]. For
this purpose analytic expressions of the gradient and the Hessian of J with respect to
the parameters a and b have been derived in [30]. Note that there are few typos in [30,
appendix A.1], such that the code snippet given in [30, p. 80] should be used instead.
Unfortunately the derivations of the gradient and the Hessian in [30] require the matrix
E to be regular. Anyway all relations can be verified also for the DAE-case due to the
generalized resolvent equation [37, p. 18]. Since the proof is rather lengthy (and requires
way more effort in comparison to the ODE-case) only the most important relations are
listed in Appendix D.
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In Figure 4.4 the shape of the cost function for a strictly proper index 2 DAE is plotted.
For demonstration, the FOM has been constructed, such that it contains (among others)
a pair of complex conjugate eigenvalues at {λ1, λ2} = {−1+10 ı, −1−10 ı} ∈ λf (E, A).
This complies with the local minimum of J illustrated in Figure 4.4, which suggests ex-
pansion points at {s1, s2} = {1 + 10 ı, 1− 10 ı}, i. e. at the mirrored images of {λ1, λ2}.
Using this choice, the eigenvalues of the ROM {λr,1, λr,2} coincide with {λ1, λ2} (since
{λr,1, λr,2} are in turn the mirrored images of {s1, s2} according to the PORK algo-
rithm). Note that the local optima of J do not have to coincide with the mirrored
images of λf (E, A) in general.
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J / 104

Figure 4.4: Cost function J in dependency of the parameters a and b for a strictly
proper index 2 DAE. The (local) minimum at a ≈ 1 and b ≈ 100 leads to the result
s1,opt = 1 + 10 ı and s2,opt = 1 − 10 ı. Note that there may exist multiple local minima
(not depicted), since the optimization problem in non-convex.

Finally Algorithm 4.3 describes SPARK as pseudo code. Note that an efficient imple-
mentation for the use with MATLAB has been presented in [30, p. 82] (therein called
ESPARK).

Algorithm 4.3 : (input) SPARK algorithm for strictly proper SISO-DAEs
Input : FOM: [E, A, B, C]
Output : optimal interpolation matrices: V, SV and R
choose initial values for a, b ∈ R>0

while not converged do // optimization loop

compute V, SV and R according to (4.95)
compute Cr = C V and Γc

r according to (4.98)
evaluate the cost function J according to (4.102)
compute the gradient and Hessian of J with respect to (a, b) according to [30, p. 80]
find new parameters a, b ∈ R>0, such that J decreases

return last choice of V, SV and R
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Remark 4.48. In order to reduce to computational effort of the optimization process, an
advanced version of SPARK, calledModel function based Extended SPARK (MESPARK)
has been presented in [30, p. 83ff.]. The basic idea is to make use of an “intermediate”
model, whose dimension is slightly greater than the one of the ROM. The model function
is cyclically updated and replaces the FOM during the evaluation of J (and its gradient
and Hessian) which leads to a great speed-up of the optimization process. It is worth
noting that MESPARK is applicable to the case of (strictly proper) DAE-systems, if the
model function is obtained through a DAE-MOR-technique. However MESPARK is not
in the focus of this thesis, thus it will not be discussed further.

Note that a H2 pseudo-optimal ROM obtained by the PORK algorithm is in general not
locallyH2 optimal. In contrast every locallyH2 optimal ROM isH2 pseudo-optimal with
respect to the corresponding subspace [42, p. 96]. Using SPARK allows to circumvent
the dilemma ofH2 pseudo-optimality, i. e. the restriction to a special subspace of transfer
functions. More precisely it helps to achieve (local) H2 optimality:

Theorem 4.49. Let the FOM be described by an asymptotically stable and strictly proper
SISO-DAE-system. Furthermore let the ROM be obtained by Algorithm 4.3 (SPARK for
V, SV R) and Algorithm 4.1 (PORK for [Er, Ar, Br, Cr]). Then the ROM is locally
H2 optimal.

Proof. Because the ROM has to be strictly proper (as the FOM is), it can be described
by a realization in mirrored Jordan canonical form (see Lemma 4.16). Thus for every
imaginable Gr(s) there exists a subspace G (as introduced in Definition 4.26) in which
it is contained. On the one hand PORK guarantees, that the ROM is (globally) H2
optimal within its corresponding subspace. On the other hand SPARK selects an locally
optimal subspace, i. e. among all H2 pseudo-optimal ROMs a local minimizer of the H2
error is selected. �

4.3.2 The Cumulative Reduction Framework

The following represents a brief introduction to the CURE framework and is extracted
from [30, p. 57ff.] and [42, p. 49ff.]. Since all results are valid without any modifications
for the case of strictly proper DAEs, only a short overview is given. For further details
the interested reader is referred to [30] and [42].
The CURE framework is a technique for MOR, which assembles the ROM stepwise in a
cumulative way. The main goal is to obtain a better approximation with each iteration,
i. e. with increasing reduced order q. As the actual reduction process is not specified, it
is designed to be a surrounding framework. Within the scope of this thesis CURE will
be combined with SPARK (thus PORK), which is presented in the following section.
The main idea of CURE is to factorize the error system Ge(s) = G(s)−Gr(s). For this
purpose a generalized Sylvester equation similar to (3.42) is derived:

Lemma 4.50 (adapted from [42, p. 41]). Let

• the FOM be described by the DAE-system (E, A, B, C, x0),

• the realization [Er, Ar, Br, Cr] of the reduced transfer function be obtained by pro-
jective MOR according to Section 3.5 such that Er = WT E V is regular and
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• the interpolation matrices V, SV and R solve the generalized Sylvester equation
(3.42).

Then V additionally solves the generalized Sylvester equation

A V−E V E−1
r Ar = B⊥R with B⊥ := B−E V E−1

r Br , (4.103)

which is called B⊥-Sylvester equation.

Considering Lemma 4.50 two requirements of CURE arise. On the one hand Er has
to be regular. This does not affect a combination with PORK, because det(Er) 6= 0
has to be fulfilled therein anyway (see Algorithm 4.1). On the other hand the ROM
has to be obtained by projection with V and W. According to Theorem 4.20 this is
only equivalent to a reduction with PORK, if [E V, B] has full column rank, which may
not be the case in general. Note that this limitation affects both, the ODE- and DAE-
case. Unfortunately it seems to be quite difficult to find universally valid conditions for
[E V, B] to have full column rank, such that an useful criterion has not been found yet.
Nevertheless several thoughts concerning this issue (especially in the context of DAEs)
are collected in Appendix C.
Using Lemma 4.50 a factorization of the error system Ge(s) = G(s)−Gr(s) is possible:

Theorem 4.51 ([42, p. 50]). Let all conditions of Lemma 4.50 hold. Then the error
model can be factorized by

Ge(s) = G(s)−Gr(s) = G⊥(s) GF (s) (4.104)

where G⊥(s) of order n and the feed-through model GF (s) of order q are defined as

G⊥(s) := C (sE−A)−1 B⊥ , (4.105)
GF (s) := R (sEr −Ar)−1 Br + Im . (4.106)

According to (4.104) the error Ge(s) is equal to the product of G⊥(s) and GF (s). Since
GF (s) is all-pass during H2 pseudo-optimal reduction (see [42, p. 87]), the main dynam-
ics of the error system is contained in G⊥(s) (which is of full order n). This motivates the
reduction of this factor in an additional step. After that, the approximation of G⊥(s) is
added (together with GF (s)) to Gr(s) resulting in an resized (and hopefully improved)
ROM. Obviously the reduction of G⊥(s) involves an error itself, which can be factorized
in the same way as Ge(s). Thus the procedure can be repeated until a desired tolerance
is reached or the reduced order q hits a user-defined maximum. An illustration of the
described recursion is given in Figure 4.5.
Note that the realizations of G(s) and G⊥(s) only differ in the input matrix (B↔ B⊥),
while E, A and C remain unchanged. This is especially beneficial in the context of DAE-
MOR, because a projection of C in order to separate the strictly proper and improper
subsystem (see Corollary 2.23) has to be done only once. Note that a partitioning
through modification of B seems also to be possible, since a recurring projection of B⊥
is (theoretically) not necessary:

Lemma 4.52. Let all conditions of Lemma 4.50 hold. If B lives in the deflating subspace
of λE − A corresponding to the finite eigenvalues, i. e. B = Πf

l B, so does B⊥, i. e.
B⊥ = Πf

l B⊥.
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Reduction

2

ROM ErrorStep
1

3

G = Gr,1 + G⊥,1 GF ,1 Ge = G⊥,1 GF ,1

G⊥,1 = Gr,2 + G⊥,2 GF ,2 Ge = G⊥,2 GF ,2 GF ,1

G⊥,2 = Gr,3 + G⊥,3 GF ,3

Gr = Gr,1

Gr = Gr,1 + Gr,2 GF ,1

Gr = ... Ge = ...

Figure 4.5: Schematic of the CURE framework (inspired from [42, p. 58]). The factor-
ization of the error is used to formulate a cumulative reduction process, such that the
dimension of the reduced transfer function Gr(s) grows in each iteration.

Proof. Since B = Πf
l B holds, one can write

Πf
l B⊥ = Πf

l

(
B−E V E−1

r Br
)

= Πf
l B︸ ︷︷ ︸
B

−Πf
l E V E−1

r Br . (4.107)

This leads together with Πf
l E V = E Πf

r V = E V (see Lemma B.2 and Corollary B.3)
to

Πf
l B⊥ = B−E V E−1

r Br = B⊥ . (4.108)

which completes the proof. �

Anyway a cyclically projection of B⊥ might be necessary from a numerical point of view
regardless of Lemma 4.52. Therefore it is assumed in the following, that the separation
of the strictly proper and improper subsystems is done by modification of C. Note that
in the dual case, i. e. for interpolation with tangential-output rational Krylov subspaces,
a dual version of (4.103) (involving C⊥) is used, such that instead a projection of B
should be preferred.
Finally the update procedure (derived in [42, p. 54ff.]), which is executed in each iteration
step of CURE, is given by:

1.) SV ←
[
SV −(Er)−1 Br R̂
0 ŜV

]
,

2.) Er ←
[
Er 0
0 Êr

]
, Ar ←

[
Ar 0

B̂r R Âr

]
, Br ←

[
Br

B̂r

]
, Cr ←

[
Cr Ĉr

]
,

3.) V←
[
V V̂

]
, R ←

[
R R̂

]
,

4.) B⊥ ← B⊥ −E V̂ (Êr)−1 B̂r .

(4.109)

Herein (V̂, ŜV , R̂) denote the interpolation matrices used in the current reduction step,
and [Êr, Âr, B̂r, Ĉr] its result which is added to the ROM of the previous steps. Note
that the order of the update steps in (4.109) is important (since SV = f(Er, Br) and
Ar = f(R)). Furthermore the computation of V and SV is not necessary (since they
are not used anyway), thus may be skipped. An algorithm which clarifies the overall
procedure for the application with SPARK is given in the following.
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4.3.3 The CUREd SPARK Algorithm

In the preceding sections SPARK and CURE have been investigated independently of
each other. In Algorithm 4.4 both techniques are combined to the CUREd SPARK
algorithm:

Algorithm 4.4 : (input) CUREd SPARK algorithm for strictly proper SISO-DAEs
Input : FOM: [E, A, B, C]
Output : ROM: [Er, Ar, Br, Cr]
set B⊥ = B and Er, Ar, Br, Cr, V, SV , R ∈ R0×0 // initialization of CURE

while not converged do // iteration loop of CURE

// find optimal interpolation matrices with SPARK

(V̂, ŜV , R̂) = SPARK(E, A, B⊥, C) // see Algorithm 4.3

// use optimal interpolation matrices in PORK

(Êr, Âr, B̂r, Ĉr) = PORK(E, A, B⊥, C, V̂, ŜV , R̂) // see Algorithm 4.1

// check requirements of CURE

if rank[E V̂, B⊥] < 2 +m then
inform user
exit while-loop

// assemble ROM (update of SV and V for analysis is optional)

update (SV ), Er, Ar, Br, Cr, (V), R and B⊥ according to (4.109)

Note that Er, Ar, Br, Cr, V, SV and R are initialized as empty matrices which then
resize in each iteration. Furthermore B⊥ is set to B in order to force a reduction of
G(s) in the first step. Afterwards B⊥ is updated cyclically such that the corresponding
transfer functions G⊥(s) are reduced.
Remark 4.53. In Algorithm 4.4 the column rank of [E V̂, B⊥] is checked. This is because
in every iteration step of CURE, the reduction with PORK has to be equivalent to
projective MOR with W and V (see Lemma 4.50). A corresponding W in turn only
exists, if [E V̂, B⊥] has full column rank (see Theorem 4.20).

Its important to note that the ROM obtained by the CUREd SPARK algorithm is in
general not locally H2 optimal. Although in each CURE iteration a locally H2 optimal
reduced subsystem is obtained by SPARK and PORK (see Theorem 4.49), the over-
all ROM as concatenation of the subsystems does not have this property in general.
Fortunately at least H2 pseudo-optimality is preserved as it is shown in Theorem 4.54:

Theorem 4.54 (adapted from [42, p. 101]). Let the FOM be described by an asymptoti-
cally stable and strictly proper SISO-DAE-system. Furthermore let the ROM be obtained
by Algorithm 4.4. Then the (overall) reduced transfer function is H2 pseudo-optimal and
the error ‖G−Gr‖H2 decreases monotonically with each iteration of CURE. Moreover,
if ‖Ĝr‖H2 6= 0 (related to [Êr, Âr, B̂r, Ĉr]) holds for all iteration steps, then the H2
norm of the error decreases strictly monotonically.



Chapter 5

Minimal Realization of the
Improper Subsystem

So far methods for adaptive reduction of the strictly proper subsystem have been pre-
sented. For many technical applications in which the FOM is strictly proper by itself,
this may be entirely sufficient. However, if the transfer function of the FOM involves
a polynomial part P(s), i. e. if it is improper (or at least proper), additional effort is
necessary in order to obtain good approximation results. As explained in Section 3.5 it
is essential to perfectly match P(s), ideally by a minimal realization.
In contrast to the previous chapter, wherein reduction is done by rational Krylov sub-
space methods, a SVD-based approach (in particular Lyapunov BT) is used for the
fast subsystem. This is because the polynomial part of the transfer function has to
be matched exactly, which actually does not comply with to idea of reduction. In-
stead a minimal realization of P(s) is desired, which can be obtained by truncating
non-controllable and non-observable balanced states.
First, in Section 5.1 important fundamentals are presented. After that Lyapunov BT for
descriptor systems as summarized in [9] is introduced in Section 5.2. Herein an algorithm
for DAE-systems (including both the strictly proper and improper subsystem) is stated.
Finally the knowledge of the spectral projectors is exploited in Section 5.3 to efficiently
obtain a minimal realization of the polynomial contribution P(s).

5.1 Fundamentals

This section represents a summary of [38] and gives a brief introduction to the funda-
mentals of DAE-MOR by BT. Since a detailed derivation of the following results is given
in [38], only the most important relations are presented.
First of all the role of Gramians during MOR by BT is investigated. As they determine
the energy behavior of the system, the Gramians are essential to obtain a balanced
realization:

Lemma 5.1 (summarized from [38]). Let (E, A, B, C, x0) be an asymptotically stable
DAE-system describing the FOM whose input satisfies u(t) = 0 ∀ t ≥ 0. Let Γpc and
Γpo denote the proper controllability and observability Gramians corresponding to the
realization [E, A, B, C] as introduced in Definition 2.32 respectively. Moreover let the

73
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triple (E, A, B) be R-controllable (see Definition 2.28) and the initial value fulfill x0 ∈
R
(
Πf
r

)
, with Πf

r from Definition 2.8.

Then the future output energy can be expressed by the proper observability Gramian:
∞∫

0

yT(t) y(t) dt = xT
0 ET Γpo E x0 . (5.1)

Furthermore the minimal past input energy that is needed to reach from x(−∞) = 0 the
state x(0) = x0 is determined by the proper controllability Gramian:

min
u

0∫
−∞

uT(t) u(t) dt = xT
0 Γpc− x0 , (5.2)

wherein the matrix Γpc− satisfies

Γpc Γpc− Γpc = Γpc , Γpc− Γpc Γpc− = Γpc− ,
(
Γpc−)∗ = Γpc− . (5.3)

Note that according to Lemma 5.1 the FOM has to be asymptotically stable. This is
necessary for the Gramians to exist and assumed anyway within the scope of this thesis.
Furthermore (5.2) uses a pseudo-inverse of Γpc, since the actual Gramian is singular in
the case of n∞ > 0. This can be verified using the Weierstraß canonical form:

Lemma 5.2 (adapted from [38]). Let (E, A, B, C, x0) be an asymptotically stable
DAE-system describing the FOM and let P and Q denote regular transformation matri-
ces into Weierstraß canonical form according to Lemma 2.5. Furthermore let J, N, B̃f ,
B̃∞, C̃f and C̃∞ be as stated in Definition 2.16.
Then the proper/improper controllability/observability Gramians are partitioned as

Γpc = Q
[
Γpc
ff 0
0 0

]
Q∗ , Γpo = P∗

[
Γpo
ff 0
0 0

]
P ,

Γimc = Q
[
0 0
0 Γimc

∞∞

]
Q∗ , Γimo = P∗

[
0 0
0 Γimo

∞∞

]
P ,

(5.4)

where Γpc
ff , Γpo

ff ∈ Cnf×nf and Γimc
∞∞, Γimo

∞∞ ∈ Cn∞×n∞ satisfy the Lyapunov equations

J Γpc
ff + Γpc

ff J∗ = −B̃f B̃∗f , (5.5)

J∗ Γpo
ff + Γpo

ff J = −C̃∗f C̃f , (5.6)

Γimc
∞∞ −N Γimc

∞∞N∗ = B̃∞ B̃∗∞ , (5.7)
Γimo
∞∞ −N∗ Γimo

∞∞N = C̃∗∞ C̃∞ . (5.8)

As (5.4) shows, the Gramians are guaranteed singular1 in the DAE-case, i. e. for nf > 0
and n∞ > 0. Furthermore the similarity of (5.5) and (4.13) underlines the connection
of X and Y from Lemma 4.8 with Γpc and Γpo.
Despite singularity, a “Cholesky-like” factorization is introduced:

1Note that this does not imply that the given realization of the FOM is not minimal.
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Definition 5.3. [9, p. 9] Let Γpc, Γpo, Γimc and Γimo denote the proper/improper
controllability/observability Gramians. Then Ωpc, Ωpo, Ωimc and Ωimo obtained by the
factorizations

Γpc = Ωpc Ωpc∗ , Γpo = Ωpo Ωpo∗ , Γimc = Ωimc Ωimc∗ , Γimo = Ωimo Ωimo∗ (5.9)

are called Cholesky factors of the corresponding Gramians.

Note that the factors in (5.9) do not represent “usual” Cholesky factors, since the re-
quirements (in particular positive definiteness of the Gramians, see [16, p. 143]) are not
satisfied. Nevertheless this naming will be used in the following.
As in the ODE-case, proper and improper Gramians are not system invariant, i. e. they
are related to a corresponding realization. Because transfer functions (which repre-
sent the most important characteristic of a system during MOR) do not depend on
system equivalence transformations, a direct use of the Gramians seems to be inade-
quate concerning the approximation of G(s). Instead the compounds Γpc ET Γpo E and
Γimc AT Γimo A are considered, which introduce in some sense a system invariance that
can be used:

Lemma 5.4 ([38, theorem 2.6]). Let the FOM be described by the asymptotically stable
DAE-system (E, A, B, C, x0) and let Γpc, Γpo, Γimc and Γimo denote the proper/im-
proper controllability/observability Gramians related to [E, A, B, C]. Then the matrices
Γpc ET Γpo E and Γimc AT Γimo A are diagonalizable and have real, non-negative eigen-
values which are invariant with respect to system equivalence transformations.

As the spectra of Γpc ET Γpo E and Γimc AT Γimo A are system invariant, they can be
used to identify dominant contributions to the transfer function. In the context of control
theory the term Hankel singular values (HSVs) is used:

Definition 5.5 (adapted from [38, definition 2.7]). Let all variables be as in Lemma 5.4.
Further let nf and n∞ denote the dimensions of the slow and fast subsystems according
to Lemma 2.5 respectively. Then

• the square roots of the largest nf eigenvalues of the matrix Γpc ET Γpo E denoted
by θp

w, i. e.

{θp
w} =

{
θ̂1, ... , θ̂nf

∣∣∣∣ θ̂w =
√
λw(Γpc ET Γpo E) ∧ θ̂1 ≥ θ̂2 ≥ ... ≥ 0

}
, (5.10)

are called proper Hankel singular values and

• the square roots of the largest n∞ eigenvalues of the matrix Γimc AT Γimo A de-
noted by θim

w , i. e.

{θim
w } =

{
θ̂1, ... , θ̂n∞

∣∣∣∣ θ̂w =
√
λw(Γimc AT Γimo A) ∧ θ̂1 ≥ θ̂2 ≥ ... ≥ 0

}
, (5.11)

are called improper Hankel singular values.

Note that the proper HSVs represent a true generalization since they comply with the
formulation of HSVs in the ODE-case (in particular for E = In).
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The HSVs are an important measure for the contribution of the corresponding state2

to the transfer function. Accordingly the dynamics corresponding to the comparatively
small proper HSVs θp

w may be neglected without causing great error. Special care has to
be taken about the improper HSVs θim

w , as they are related to the algebraic constraints
of the DAE-system (which have to remain unchanged). Therefore one should truncate
zero improper HSVs only, since it is guaranteed, that they do not have any influence on
G(s).
In view of Section 5.3 an estimation for the count of non-zero improper HSVs is formu-
lated:

Lemma 5.6 ([38]). Let (E, A, B, C, x0) be an asymptotically stable DAE-system of
index ν describing the FOM and let Γimc and Γimo denote the improper controllability
and observability Gramians related to the realization [E, A, B, C]. Moreover let m and
p denote the count of inputs and outputs of the system respectively, while n∞ represents
the dimension of the fast subsystem according to Lemma 2.5.
Then the number of non-zero improper HSVs is equal to rank(Γimc AT Γimo A), which
can be estimated through

rank(Γimc AT Γimo A) ≤ min{ν m, ν p, n∞} . (5.12)

Since in most cases ν m and ν p are small in comparison to n∞, the order of the improper
subsystem usually can be reduced significantly (without changing its contribution to the
transfer function) [38].
Finally the singular value decomposition (SVD) of a matrix, which is probably the most
important tool during MOR by BT, is introduced:

Lemma 5.7 (adapted from [16, pp. 70-73]). Let X ∈ Cu×v. Then there exist unitary
matrices

Zl = [zl,1, ... , zl,u] ∈ Cu×u and Zr = [zr,1, ... , zr,v] ∈ Cv×v (5.13)

such that

X = Zl Λ Z∗r , with Λ = diag(λ1, ... , λw) ∈ Ru×v , w = min{u, v} , (5.14)

where λ1 ≥ λ2 ≥ ... ≥ λw ≥ 0. The factorization X = Zl Λ Z∗r is called singular value
decomposition.

Note that in general Λ is of rectangular shape. Since it has non-zero entries solely on
its diagonal, a “trimmed” version leads to the same result:

Lemma 5.8 (adapted from [16, pp. 72]). Let X = Zl Λ Z∗r ∈ Cu×v with

Zl = [zl,1, ... , zl,u] ∈ Cu×u ,
Zr = [zr,1, ... , zr,v] ∈ Cv×v ,
Λ = diag(λ1, ... , λw) ∈ Ru×v , w = min{u, v}

(5.15)

be the SVD of X according to Lemma 5.7.
2Herein the term “state” is related to the balanced realization of the FOM.
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If u > v, then X = Ẑl Λ̂ Z∗r with

Ẑl = [zl,1, ... , zl,v] ∈ Cu×v ,

Λ̂ = diag(λ1, ... , λv) ∈ Rv×v
(5.16)

holds. Moreover if instead v > u is fulfilled, then X = Zl Λ̂ Ẑ∗r with

Ẑr = [zr,1, ... , zr,u] ∈ Cv×u ,

Λ̂ = diag(λ1, ... , λu) ∈ Ru×u
(5.17)

is satisfied. The factorizations X = Ẑl Λ̂ Z∗r and X = Zl Λ̂ Ẑ∗r are called thin singular
value decompositions.
Remark 5.9. The numerical computation of Cholesky factors as well as the SVD are
general mathematical problems, which will not be discussed here. In addition, the MOR-
technique presented in this thesis uses analytic expressions of the Cholesky factors Ωimc

and Ωimo (see Section 5.3) such that dedicated algorithms are not needed.

5.2 Balanced Truncation

Since all necessary fundamentals have been presented, MOR of DAE-systems by BT is
introduced in the following. This section is based on [38] and the summary given in [9,
p. 8ff.] and especially treats Lyapunov BT3 for descriptor systems.
As stated in the previous section, the (proper) Gramians describe on the one hand
the output energy of the autonomous system (u(t) = 0 ∀ t ≥ 0) for a given initial
value and on the other hand the minimal input energy needed to reach a specific state
(see Lemma 5.1). Thus they are suited to measure the degree of controllability and
observability of a specific direction in state space.
The starting point of BT is to find a balanced realization of G(s) (FOM), such that all
directions in state space are as “good” controllable as observable. This is equivalent to
the case, that controllability and observability Gramians are diagonal and coincide:

Definition 5.10 ([9, p. 9]). Let (E, A, B, C, x0) be an asymptotically stable DAE-
system with transfer function G(s) describing the FOM. Moreover let Γpc, Γpo, Γimc

and Γimo denote the proper/improper controllability/observability Gramians related to
the realization [E, A, B, C] and {θp

i }, {θim
i } be the corresponding sets of proper and

improper HSVs according to Definition 5.5.
A realization [E[, A[, B[, C[] of G(s) is called balanced, if the equality

Γpc
[ + Γimc

[ = Γpo
[ + Γimo

[ = diag
(
θp

1 , ... , θ
p
nf
, θim

1 , ... , θim
n∞

)
, (5.18)

with Γpc
[ , Γpo

[ , Γimc
[ and Γimo

[ as the Gramians related to [E[, A[, B[, C[], holds.

As derived in [38] the matrices E[ and A[ of a balanced realization are block diagonal:

E[ =
[
Inf 0
0 E[,∞∞

]
, A[ =

[
A[,ff 0

0 In∞

]
. (5.19)

3Aside from Lyapunov BT, several variations like positive real BT (preserving stability), bounded real
BT (preserving contractivity), stochastic BT and linear-quadratic Gaussian BT (for unstable systems)
have been collected in [9, p. 8ff.]
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Since directions, which are “poorly” controllable and observable, i. e. whose correspond-
ing proper HSVs are comparatively small, do not have significant influence on the trans-
fer function, they can be truncated. Concerning a balanced realization of G(s), this is
equivalent to simply removing the corresponding state variables. In order to avoid the
explicit computation of the balanced realization, one can make use of the SVD in order
to obtain a compact implementation as given in Algorithm 5.1.

Algorithm 5.1 : Lyapunov BT for DAEs (adapted from [9, p. 10])
Input : FOM: [E, A, B, C], spectral projectors: Πf

l , Πf
r , Π∞l , Π∞r and desired reduced

order of the slow subsystem: qf

Output : ROM: [Er, Ar, Br, Cr]

// balanced truncation of the slow subsystem

compute the Gramians Γpc and Γpo satisfying (2.47) and (2.48)
compute the Cholesky factors Ωpc and Ωpo of Γpc and Γpo satisfying (5.9)
compute (Zp

l , Λp, Zp
r ) = (thin) SVD(Ωpo∗E Ωpc) // see Lemma 5.8

truncate: Ẑ
p
l = [zp

l,1, ... , zp
l,qf

], Ẑ
p
r = [zp

r,1, ... , zp
r,qf

], Λ̂
p

= diag(θp
1 , ... , θ

p
qf

)

// balanced truncation of the fast subsystem

compute the Gramians Γimc and Γimo satisfying (2.49) and (2.50)
compute the Cholesky factors Ωimc and Ωimo of Γimc and Γimo satisfying (5.9)
compute (Zim

l , Λim, Zim
r ) = (thin) SVD

(
Ωimo∗A Ωimc) // see Lemma 5.8

set q∞ as the count of non-zero improper HSVs (obtained from Λim)
truncate: Ẑ

im
l = [zim

l,1, ... , zim
l,q∞

], Ẑ
im
r = [zim

r,1, ... , zim
r,q∞

], Λ̂
im

= diag(θim
1 , ... , θim

q∞
)

// assembly of the ROM by projective MOR

compute W = [Wf , W∞] with Wf = Ωpo Ẑ
p
l (Λ̂

p
)−1/2 and W∞ = Ωimo Ẑ

im
l (Λ̂

im
)−1/2

compute V = [Vf , V∞] with Vf = Ωpc Ẑ
p
r (Λ̂

p
)−1/2 and V∞ = Ωimc Ẑ

im
r (Λ̂

im
)−1/2

project FOM: Er = WT E V, Ar = WT A V, Br = WT B and Cr = C V

Note that the direct computation of the Cholesky factors as presented in [9, p. 22] allows
to skip the formulation of the Gramians in Algorithm 5.1. For Ωimc and Ωimo this is
done by an explicit solution formula (which will be used in Section 5.3), while Ωpc and
Ωpo have to be computed by the generalized Schur-Hammarling method, the matrix sign
function method or a low rank approximation [9, p. 22f.].
Finally Theorem 5.11 summarizes the requirements of the presented method and the
properties of the obtained ROM:

Key Theorem 5.11 (summarized from [9, p. 8ff.] and [38]). Let

• the FOM be described by the asymptotically stable DAE-system (E, A, B, C, x0)
with transfer function G(s),

• Πf
l , Πf

r , Π∞l and Π∞r denote the spectral projectors according to Definition 2.8
which are known in advance,

• G(s) be composed of Gsp(s) and P(s) corresponding to the strictly proper (slow)
and improper (fast) subsystem respectively, i. e. G(s) = Gsp(s) + P(s) and
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• qf be the reduced order of the strictly proper subsystem which has to be chosen less
than or equal to the count of non-zero proper HSVs.

If the realization [Er, Ar, Br, Cr] of the ROM is obtained through Algorithm 5.1, then

• [Er, Ar, Br, Cr] is balanced,

• the ROM is asymptotically stable,

• the polynomial part of the transfer function is perfectly matched, i. e. Pr(s) = P(s),

• the index of the ROM νr = ind(λEr −Ar) is equal to O(P(s)) + 1 and does not
exceed the index of the FOM ν = ind(λE−A),

• [Er, Ar, Br, Cr] is a minimal realization of Gr(s) = Gsp
r (s) + Pr(s) and

• the error measured in the H∞ norm satisfies

‖G−Gr‖H∞ = ‖Gsp −Gsp
r ‖H∞ ≤ 2

(
θp
qf+1, ... , θ

p
nf

)
. (5.20)

Note that because only zero improper HSVs are truncated in Algorithm 5.1, they do not
contribute to the error ‖G−Gr‖H∞ , which leads to the essential equality Pr(s) = P(s).
Moreover the realization [Er, Ar, Br, Cr] is balanced, such that Er and Ar are block-
diagonal (see (5.19)). This complies with the idea of splitting the FOM into its slow and
fast subsystems.

5.3 Application to the Improper Subsystem of Structured
DAEs

In the previous section Lyapunov BT for DAEs has been treated. Although this tech-
nique is designed for the reduction of the entire FOM, only the manipulation of the
fast subsystem will be used within the scope of this thesis. This way one can exploit
the structure of the DAE, to efficiently obtain a minimal realization of the improper
subsystem. Furthermore the strictly proper subsystem is adaptively reduced by CUREd
SPARK according to Chapter 4, such that BT of the slow subsystem (which requires the
solution of large-scale Lyapunov equations) is avoided. This in turn allows the reduction
of true large-scale models.
A study of Algorithm 5.1 allows to identify the computation of the Gramians and their
Cholesky factors as the bottleneck considering numerical efforts. Even techniques, which
directly compute the Cholesky factors of the proper Gramians (instead of the Gramians
themselves), are either restricted to small and medium sized problems, or make use
of low-rank approximations (such that Γpc ≈ Ωpc Ωpc∗) [9, p. 22f.]. Fortunately in
the case of the improper Gramians, an explicit analytic formulation for the Cholesky
factors is possible avoiding the computation of the generalized projected discrete-time
Lyapunov equations. Using this, the problem of solving large-scale Lyapunov equations
is exchanged by solving few sparse linear systems of equations (LSEs), such that the
numerical effort is reduced significantly. Furthermore the solution obtained through this
method is exact in contrast to using approximate solvers.
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Important note: The following results are extracted from [9, p. 22f.] and [39, p. 196f.].
Since a detailed proof is missing in the sources, an explicit derivation is presented below.
Note that the derivation steps originate from a discussion with the author of [39] during
a workshop on MOR held in late June at the Chair of Automatic Control (TUM).
Therefore all credits go to Tatjana Stykel from the university of Augsburg.

Key Theorem 5.12 (adapted from [9, p. 22f.] and [39, p. 196f.]). Let (E, A, B, C, x0)
be an asymptotically stable DAE-system of index ν and Π∞l and Π∞r denote the spectral
projectors onto the left and right deflating subspace of λE − A corresponding to the
infinite eigenvalues according to Definition 2.8.
Then the improper controllability and observability Gramians Γimc and Γimo related to
the realization [E, A, B, C] defined in (2.49) and (2.50) satisfy

Γimc =
ν−1∑
w=0

(
A−1 E

)w
B̂ B̂∗

(
E∗A−∗

)w
, with B̂ := Π∞r A−1 B , (5.21)

Γimo =
ν−1∑
w=0

(
A−∗E∗

)w Ĉ∗ Ĉ
(
E A−1

)w
, with Ĉ := C A−1 Π∞l , (5.22)

while their Cholesky factors Ωimc ∈ Cn×ν m and Ωimo ∈ Cn×ν p defined in (5.9) read as

Ωimc =
[
A−1 Π∞l B,

(
A−1 E

)
A−1 Π∞l B, ... ,

(
A−1 E

)ν−1
A−1 Π∞l B

]
, (5.23)

Ωimo =
[
A−∗Π∞∗r C∗,

(
A−∗E∗

)
A−∗Π∞∗r C∗, ... ,

(
A−∗E∗

)ν−1 A−∗Π∞∗r C∗
]
.

(5.24)

Proof. At first the regularity of A, thus the existence of A−1, follows from Lemma B.4.
Next consider Γimc as the unique solution of the generalized projected discrete-time
Lyapunov equation (2.49):

A Γimc A∗−E Γimc E∗−Π∞l B B∗Π∞∗l = 0 , with Γimc = Π∞r Γimc Π∞∗r . (5.25)

Since A is regular, this is equivalent to

Γimc −A−1 E Γimc E∗A−∗ = A−1 Π∞l B B∗Π∞∗l A−∗ , (5.26)

which can be reformulated with the help of Corollary B.5 to

Γimc −A−1 E Γimc E∗A−∗ = Π∞r A−1 B︸ ︷︷ ︸
B̂

B∗A−∗Π∞∗r︸ ︷︷ ︸
B̂∗

= B̂ B̂∗ . (5.27)

Inserting (5.21) into (5.27) leads to

ν−1∑
w=0

(
A−1 E

)w
B̂ B̂∗

(
E∗A−∗

)w − ν∑
w=1

(
A−1 E

)w
B̂ B̂∗

(
E∗A−∗

)w =

= B̂ B̂∗ −
(
A−1 E

)ν
Π∞r A−1 B B∗A−∗Π∞∗r

(
E∗A−∗

)ν =

(B.16)
= B̂ B̂∗

(5.28)

which proves, that (5.21) is indeed a solution of (5.27). Since the condition Γimc =
Π∞r Γimc Π∞∗r can be easily verified for (5.21) with (B.15) and Π∞r B̂ = B̂, it is shown,
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that (5.21) is the unique solution of (2.49). The proof for (5.22) as the unique solution
of (2.50) is obtained in an analogous way.
Finally an explicit computation of the products Ωimc Ωimc∗ and Ωimo Ωimo∗ with (5.23)
and (5.24) shows, that Ωimc and Ωimo are the Cholesky factors of Γimc and Γimo, such
that Γimc = Ωimc Ωimc∗ and Γimo = Ωimo Ωimo∗ holds. �

Note that the special structures of (5.23) and (5.24) allow a description as (projected)
block input/output rational Krylov subspaces:

Corollary 5.13. Let all conditions of Theorem 5.12 hold. Then Ωimc and Ωimo from
(5.23) and (5.24) are the primitive bases of the projected block input/output rational
Krylov subspaces

K∞bi (ν) = Kν
(
A−1 E, A−1 Π∞l B

)
,

K∞bo (ν) = Kν
(
A−∗E∗, A−∗Π∞∗r C∗

)
.

(5.29)

This allows an efficient implementation similar to the generation of VP in Section 3.2,
where instead of B and C their projections Π∞l B and C Π∞r and the special expansion
point s = 0 are used. Note that in contrast to MOR by rational Krylov subspace
methods, where an arbitrary base of Kti or Kto can be used, the factors Ωimc and
Ωimo coincide only with the primitive base. Therefore an orthogonalization technique as
suggested in Section 3.2 may not be applicable in this case.4

Apart from that, an additional projection by

Ωimc ← Π∞r Ωimc and Ωimo ← Π∞∗l Ωimo (5.30)

does not change the result from an analytic point of view, but may help to avoid numer-
ical issues [39, p. 197].
Finally a simplified version of Algorithm 5.1, which uses the analytic expressions for
Ωimc and Ωimo from Theorem 5.12 to process the improper subsystem, is formulated:

Algorithm 5.2 : Computation of a minimal realization of the improper subsystem
Input : FOM: [E, A, B, C], spectral projectors: Π∞l , Π∞r and index ν
Output : minimal realization of improper subsystem: [Eim

r , Aim
r , Bim

r , Cim
r ]

compute the Cholesky factors Ωimc and Ωimo according to (5.23) and (5.24)
optional: additional projection of Ωimc and Ωimo according to (5.30)
compute (Zl, Λ, Zr) = (thin) SVD

(
Ωimo∗A Ωimc) // see Lemma 5.8

set q∞ as the count of non-zero improper HSVs (obtained from Λ)
truncate: Ẑl = [zl,1, ... , zl,q∞ ], Ẑr = [zr,1, ... , zr,q∞ ], Λ̂ = diag(θim

1 , ... , θim
q∞

)
compute W∞ = Ωimo Ẑl (Λ̂)−1/2 and V∞ = Ωimc Ẑr (Λ̂)−1/2

project FOM: Eim
r = WT

∞E V∞, Aim
r = WT

∞A V∞, Bim
r = WT

∞B and Cim
r = C V∞

4A definite statement concerning this issue requires further investigations. Note that the order of the
rational Krylov subspaces K∞bi and K∞bo is determined by the index of the DAE-system ν. Therefore the
column count of Ωimc and Ωimo is rather low in most technical applications (i. e. for index 1 to 3). Thus
orthogonalization may not be necessary anyway.
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Note that the SVD involved in Algorithm 5.2 is computationally cheap, since the matrix
Ωimo∗A Ωimc ∈ Cν p×ν m is of low dimension. Moreover the computation of Aim

r is
unnecessary, since

Aim
r = W∗

∞A V∞ = (Λ̂)−1/2 Ẑ∗l Ωimo∗A Ωimc︸ ︷︷ ︸
=Ẑl Λ̂ Ẑ∗r (SVD)

Ẑr (Λ̂)−1/2

= (Λ̂)−1/2 Ẑ∗l Ẑl Λ̂ Ẑ∗r Ẑr (Λ̂)−1/2

= ...unitarity of Ẑl and Ẑr ... = (Λ̂)−1/2 Λ̂ (Λ̂)−1/2 = Iq∞

(5.31)

holds. Herein Zl Λ Z∗r = Ẑl Λ̂ Ẑ∗r has been used.
Similar to Theorem 5.11, the preconditions and properties of Algorithm 5.2 are summa-
rized in Corollary 5.14:

Corollary 5.14 (derived from Theorem 5.11). Let

• the FOM be described by the asymptotically stable DAE-system (E, A, B, C, x0)
of index ν with transfer function G(s),

• Π∞l and Π∞r denote spectral projectors according to Definition 2.8 which are known
in advance and

• G(s) be composed of Gsp(s) and P(s) corresponding to the strictly proper and
improper subsystem respectively, i. e. G(s) = Gsp(s) + P(s).

Then [Eim
r , Aim

r , Bim
r , Cim

r ] obtained by Algorithm 5.2 is a minimal realization of P(s).

Remark 5.15. As shown in Theorem 5.12, the analytic expressions for the Cholesky
factors involve the DAE-index ν. Note that although this information may be available
in most applications (since structured problems are considered), the index of the FOM
has not to be known in advance. This is because of Corollary B.5 which states(

A−1 E
)ν

Π∞r = 0 and
(
A−∗E∗

)ν Π∞∗l = 0 (5.32)

or equivalently(
A−1 E

)ν
A−1Π∞l︸ ︷︷ ︸
Π∞r A−1

B = 0 and
(
A−∗E∗

)ν A−∗Π∞∗r︸ ︷︷ ︸
Π∞∗l A−∗

C∗ = 0 . (5.33)

Thus the blocks of Ωimc and Ωimo can be computed recursively according to (5.23) and
(5.24), until a zero block occurs which finishes the recursion. A possible implementation
is given in [39, p. 197] (therein denoted as “The generalized Smith method for the
projected GDALE”). Be aware that this strategy does not allow to determine the index
numerically, since the blocks of Ωimc and Ωimo may become zero independently of the
index (imagine the case Π∞l B = 0 or C Π∞r = 0).



Chapter 6

Summary of the Main Results

In the previous chapters an adaptive scheme for the reduction of structured, improper
DAE-systems has been presented. Since the derivation is rather lengthy, one may lose
track of the core statements. To avoid this, a compact summary of the main results of
this thesis is given in the following.
First an overview of the investigated algorithms is given in Section 6.1. Furthermore the
overall procedure connecting the results from Chapter 4 and Chapter 5 is formulated as
pseudo-code. The main focus is set on the presentation of the requirements regarding
the FOM and the properties of the resulting ROM. Thus this section is suitable as a
quick reference (e. g. during implementation).
Finally Section 6.2 contains a recapitulation of the H2 inner-product of two strictly
proper DAEs (or more precisely: of their transfer functions) as derived in Section 4.1.
Although this result has been used to adapt the PORK algorithm to the DAE-case and
thus is part of the derivation, it is treated separately in the following. This is because it
describes a very general relationship which can be used for independent investigations
which may be not related to MOR at all.

6.1 Adaptive H2 Pseudo-Optimal Reduction of Improper
DAEs

This section contains an overview of the presented algorithms of Chapter 4 and Chap-
ter 5. As tangential-input rational Krylov subspaces have been in the focus during
derivation, only the corresponding “V-based” versions are considered in the following,
while the “W-based” algorithms can be obtained using the duality principle in linear
systems. Certainly analogous requirements and properties hold in the dual case.
First of all it has been shown in Section 4.2 that the H2 pseudo-optimal rational Krylov
(PORK) algorithm as formulated in [42, p. 91] is directly (i. e. without any modifications)
applicable to the case of asymptotically stable and strictly proper DAEs. Note that the
restriction to strictly proper systems is essential, since theH2 inner-product and thus the
concept of H2 pseudo-optimality is not defined for proper or improper transfer functions.
As in the ODE-case additional assumptions (e. g. the existence of a realization with real-
valued system matrices) have to be made, which are easily satisfied in most technical
applications.
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Beside the rather specific PORK algorithm, the general conditions for H2 pseudo-
optimality given in [42, p. 87] have been investigated in the context of DAEs during
the work on this thesis. Almost all conditions can be transferred to the DAE-case, the
sole exception has been discussed at the end of Section 4.2.
Furthermore the stability-preserving, adaptive rational Krylov (SPARK) algorithm and
the cumulative reduction (CURE) framework as presented in [30, p. 75ff.] and [42,
p. 49ff.] have been verified for the DAE-case in Section 4.3. Since these techniques are
related to the PORK algorithm (at least within this work), they inherit its requirements.
It is worth noting, that neither SPARK nor CURE introduce additional DAE-related re-
quirements, thus they can be applied “out of the box”. Like in the ODE-case SPARK
(currently) only works with SISO-systems, while CURE requires the matrix [E V, B]
(and further [E V̂, B⊥] in each iteration) to be of full rank.
Finally a minimal realization of the improper subsystem has been derived in Chapter 5.
This is done by BT as summarized in [9] whose main requirement is asymptotic stability
of the FOM. As this property is necessary for the PORK algorithm as well, no additional
conditions are introduced.
The general framework for the reduction of improper DAEs has been presented in Sec-
tion 3.5 and is based on the partitioning of the FOM into a strictly proper (slow) and
improper (fast) subsystem using the spectral projectors. The strictly proper subsys-
tem is reduced with CUREd SPARK which guarantees stability as well as H2 pseudo-
optimality and allows to specify the order of the ROM (or more precisely: of its strictly
proper contribution). After that the polynomial part of the original transfer function is
incorporated by the minimal realization derived in Chapter 5. The overall procedure is
described in Algorithm 6.1:

Algorithm 6.1 : Adaptive MOR of structured, improper SISO-DAEs
Input : FOM: [E, A, B, C], spectral projectors Πf

l , Πf
r and index ν

Output : ROM: [Er, Ar, Br, Cr]

// separation of the strictly proper and improper subsystem

Csp = C Πf
r // strictly proper subsystem: [E, A, B, Csp]

Bim = Π∞l B = B−Πf
l B

Cim = C Π∞r = C−Csp // improper subsystem: [E, A, Bim, Cim]

// reduction of the strictly proper subsystem with CUREd SPARK

(Esp
r , Asp

r , Bsp
r , Csp

r ) = CUREd SPARK(E, A, B, Csp) // see Algorithm 4.4

// compute minimal realization of the improper subsystem with BT for DAEs

(Eim
r , Aim

r , Bim
r , Cim

r ) = DAE-BT(E, A, B, C, Bim, Cim, ν)1 // see Algorithm 5.2

// (re)connection of the subsystems to the final ROM

Er =
[
Esp

r 0
0 Eim

r

]
, Ar =

[
Asp

r 0
0 Aim

r

]
, Br =

[
Bsp

r
Bim

r

]
and Cr =

[
Csp

r Cim
r
]

1Instead of the spectral projectors Π∞l and Π∞r (which are dense, large-scale matrices), the projected
input and output matrices Bim and Cim are passed to Algorithm 5.2. This is an implementation detail
to reduce computation time and memory consumption. Note that the computation of Ωimc and Ωimo in
Algorithm 5.2 does not require the explicit knowledge of the spectral projectors, instead the products
Π∞l B = Bim and C Π∞r = Cim are sufficient.
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As stated in Section 5.3, the index ν of the DAE does not have to be known in advance.
Furthermore all theoretical results apply to general (linear) DAEs of arbitrary structure,
index and properness. However, analytic expressions of the spectral projectors (Πf

l , Πf
r

or Π∞l , Π∞r ) are necessary in order to allow an efficient implementation.
Finally Figure 6.1 gives a complete view on all requirements and properties of the pre-
sented algorithms.
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Figure 6.1: Requirements of the presented algorithms and properties of the resulting
ROM. The symbol • indicates, that either a requirement has to be met or a property
of the ROM is guaranteed.

Note the symbol ◦ in Figure 6.1 which indicates, that tangential interpolation is achieved
“halfway” during the CURE-framework. In particular the expansion points chosen in
each iteration are preserved, while the tangential directions are transformed during the
assembly to the overall ROM [42, p. 60f.]. As the combination with SPARK is restricted
to SISO-systems, the issue of tangential directions is irrelevant. Thus a big advantage
of CUREd SPARK is, that new expansion points are added during the CURE-iteration
without destroying previously incorporated interpolation data [42, p. 61].
Furthermore note that the overall ROM Gr(s) = Gsp

r (s) + Pr(s) as well as its strictly
proper part Gsp

r (s) are H2 pseudo-optimal (with respect to the subspace of transfer
functions G defined by the set of expansion points). This is because Gsp

r (s) is obtained
through applying CUREd SPARK onto Gsp which leads to

Gsp
r (s) = arg min

Ĝsp ∈G
‖Gsp − Ĝsp‖H2 . (6.1)

Furthermore Algorithm 5.2 guarantees Pr(s) = P(s), such that

‖G− Ĝ‖H2 = ‖Gsp + P− Ĝsp −P‖H2 = ‖Gsp − Ĝsp‖H2 (6.2)

with Ĝ(s) := Ĝsp(s) + P(s) and Ĝsp ∈ G holds. This finally proves

arg min
Ĝ
‖G−Ĝ‖H2 = arg min

Ĝsp ∈G
‖Gsp−Ĝsp‖H2 +P(s) = Gsp

r (s)+P(s) = Gr(s) . (6.3)



86 Chapter 6. Summary of the Main Results

6.2 H2 Inner-Product of Strictly Proper DAEs

In Section 4.1 the H2 inner-product of the transfer functions of two DAE-systems has
been derived. Although the inner-product of H2 functions is a basic result of functional
analysis, the formulation in the DAE-context via (projected) generalized Sylvester equa-
tion as in Theorem 4.9 seems to be new.
It is important to note that the presented result is restricted to a special type of DAEs.
In particular both (LTI-) DAE-systems have to

• be described by a regular matrix pencil λE−A and a consistent initial value,

• be asymptotically stable and strictly proper,

• be of the same dimension, i. e. share the same count of inputs and outputs (m = mH
and p = pH, but not necessarily m = p or mH = pH), and

• allow realizations with real-valued system matrices.

The first three requirements are necessary to formulate a H2 inner-product at all, while
the last one takes care of commutativity (which is exploited during the derivation of
Theorem 4.9).
Since Theorem 4.9 describes the most general relation, one can derive several special
cases depending on the type of the involved systems (see Table 6.1).

Table 6.1: Cases of Theorem 4.9 depending on the type of the considered systems.
Note that the term “equal” is related to the corresponding realizations of the systems.

Case Meaning/Usage
two (different) DAEs most general case

two equal DAEs X and Y coincide with the proper controllability and
observability Gramians

one ODE, one DAE used in Section 4.2 to prove H2 pseudo-optimality

two (different) ODEs corresponds to the result in [42, p. 65]

two equal ODEs X and Y coincide with the “usual” controllability and
observability Gramians

Although the case of one ODE and one DAE has been in the focus of this thesis, the
general result involving two (different) DAEs may be useful in a different context.



Chapter 7

Numerical Examples

While the previous chapters presented a detailed mathematical discussion on adaptive
MOR of structured DAE-systems, the actual application of the proposed method (i. e.
Algorithm 6.1) is examined by means of several numerical examples in the following.
For this purpose the sparse state-space and model order reduction (sssMOR) toolbox
([10], version 1.05 - May 9 2016) developed at the Chair of Automatic Control (TUM) is
used. The toolbox runs in MATLAB (The MathWorks, Inc., www.mathworks.com) and
extends its functionality by common and state of the art MOR-algorithms for small-,
medium- and large-scale systems. All numerical results presented in this thesis (including
plots contained in the previous chapters) have been generated with MATLAB R2016a
64bit on Ubuntu 16.04 LTS 64bit. The used hardware involves an AMD Phenom™ II X4
940 CPU together with 8 GB DDR2 system memory. The machine precision is limited
to ε = 2.22 · 10−16 (double precision).
Since PORK, SPARK as well as CUREd SPARK are provided by the sssMOR toolbox,
only Algorithm 5.2 (for processing the improper subsystem with Lyapunov BT) and
Algorithm 6.1 (overall procedure) have been implemented. Furthermore a check of the
column rank of [E V,B] has been added to the CUREd SPARK algorithm (according
to Algorithm 4.4). Note that within all performed benchmarks, this condition has been
fulfilled at all times. Thus the considerations concerning [E V,B] in Appendix C seem
to be mainly of theoretical importance.
In the following sections several numerical examples demonstrating the reduction of
structured DAEs are presented. Since the focus is set on adaptive MOR with CUREd
SPARK, only SISO-systems are considered. While Sections 7.1 to 7.3 treat physically
based systems selected from the survey given in [9], an entirely “artificial” system demon-
strating the validity even for high-index DAEs is discussed in Section 7.4. Table 7.1 gives
an overview of the considered benchmark systems and their characteristics.

Table 7.1: Properties of the investigated benchmark systems.

Structure Section Index ν Dimension n O(P(s)) Properness
semi-explicit 7.1 1 13250 0 proper
Stokes-like 7.2 2 19039 − strictly proper
mechanical 7.3 3 2001 1 improper
artificial 7.4 10 5000 5 improper
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7.1 Semi-Explicit Index 1 System

First of all a semi-explicit index 1 DAE-system is considered. This type of systems
typically arises in computational fluid dynamics and power systems modeling and is
structured as follows [9, p. 28]:[

E11 E12

0 0

] [
ẋ1(t)
ẋ2(t)

]
=
[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+
[
B1

B2

]
u(t) ,

y(t) =
[
C1 C2

] [x1(t)
x2(t)

]
.

(7.1)

Herein the matrices E11 and A22 −A21 E−1
11 E12 are assumed to be regular, such that

ν = 1 holds and analytic expressions for the spectral projectors can be formulated (see
[9, p. 28]).
In the following the particular model “BIPS/97” (MIMO46) created by the Brazilian
Electrical Energy Research Center (CEPEL) which is available online from the MOR
Wiki [33] is investigated. The model describes a power system and is intended for
small-signal studies (especially stability analysis and controller design) [33]. It connects
n = 13250 state variables, where 1664 belong to the so called dynamical subsystem (i. e.
ndyn = dim(E11) = 1664). In contrast to most other benchmark models from [33], this
system is improper (or more precisely: proper since P(s) = P = const.).
As the original system available from [33] is of MIMO-type (m = 46, p = 46) only the
channel G42,42(s), i. e. u42 → y42 is considered. Furthermore several row- and column-
swapping transformations have been applied in order to obtain a structure as in (7.1).
Note that the selected model represents a simplification of the general case of semi-
explicit index 1 DAE-systems, since E11 = Indyn and E12 = 0 holds. This allows to
simplify the expressions for the spectral projectors from [9, p. 28] to

Πf
l =

[
Indyn −A12 A−1

22
0 0

]
, Πf

r =
[

Indyn 0
−A−1

22 A21 0

]
. (7.2)

Although the dimension of the FOM is quite large, the matrices E and A are sparse (see
Figure 7.1) such that the memory limits of the available hardware are respected.

(a) Sparsity pattern of E (b) Sparsity pattern of A

Figure 7.1: Sparsity pattern of the matrices E and A of the BIPS/97 (MIMO46)
power-system model after reordering1. Non-zero entries are indicated by red points.

1It is worth noting that modeling techniques like modified nodal analysis often do not provide the
FOM in the form of (7.1) directly. Instead row- and column-swapping transformations have to be applied.
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In Figure 7.2 several ROMs of different size obtained through the application of Algo-
rithm 6.1 onto the BIPS/97 (MIMO46) benchmark model are presented. Because in
each CURE iteration the count of reduced state variables grows by 2 (see Section 4.3),
the final dimension of the ROM is given by

nr = dim(Ar) = 2 · (count of CURE iterations) + dim(Aim
r ) , (7.3)

where dim(Aim
r ) = 1 (proper, index 1, SISO-DAE). Since each frequency response

plot corresponds to a different count of CURE iterations, Figure 7.2 demonstrates the
cumulative reduction scheme. Note that the first visible approximation of the dynamical
subsystem appears after 6 CURE iterations (see Figure 7.2b). This is due to the primitive
initialization of the SPARK algorithm with a = b = 10−4. Finding appropriate initial
values for a and b is a field of research on its own and is not treated within this work.

G(s)
Gr(s)

(a) Result after 5 CURE iterations (nr = 11)

G(s)
Gr(s)

(b) Result after 6 CURE iterations (nr = 13)

G(s)
Gr(s)

(c) Result after 7 CURE iterations (nr = 15)

G(s)
Gr(s)

(d) Result after 8 CURE iterations (nr = 17)

G(s)
Gr(s)

(e) Result after 9 CURE iterations (nr = 19)

G(s)
Gr(s)

(f) Result after 10 CURE iterations (nr = 21)

Figure 7.2: Stepwise reduction of the BIPS/97 (MIMO46) benchmark model with
CUREd SPARK (strictly proper subsystem) and Lyapunov BT (improper subsystem).
In (a) to (f) the frequency responses (magnitude over frequency) for different target
dimensions nr are depicted.
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Keep in mind that the processing of the improper subsystem is decoupled from the
actual reduction procedure, thus P(s) (visible as constant feedthrough in Figure 7.2) is
matched perfectly at any time. The frequency responses of the resulting error systems
Ge(s) = G(s) −Gr(s) is depicted in Figure 7.3 which shows the decrease of the error
within each iteration.
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Figure 7.3: Frequency response of the error systems Ge(s) = G(s)−Gr(s) correspond-
ing to the results shown in Figures 7.2 and 7.4. With each CURE iteration the (overall)
error measured in the H2 norm decreases (see Theorem 4.54)2.

Figure 7.4 finally shows the frequency response of the ROM after 25 CURE iterations.
Within this example the FOM consists mainly of algebraic equations (n−ndyn

n ≈ 87%).
Because those are simplified to a single constraint in the ROM, an approximation with
nr = 51 as shown in Figure 7.4 appears to be sufficient.
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Figure 7.4: Approximation of the FOM of dimension n = 13250 with a ROM of
dimension nr = 51 (in 25 CURE iterations). Due to Algorithm 5.2 the 11586 algebraic
equations of the FOM are simplified to a single constraint in the ROM.

Note that the same class of DAEs (and even the same benchmark model) has been
analyzed in [11]. A comparison of the MOR-techniques shows that there are strong

2Note that due to hardware limits, the actual H2 norm of the error system could not be evaluated.
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relations: while the results in [11] are obtained by exploiting the special structure of
(7.1) (with E12 = 0), the investigations of this thesis are based on a general formulation
using the spectral projectors. As a direct comparison of the partitioning by Bsp = Πf

l B
and Csp = C Πf

r with [11, proposition 2] shows, both methods are equivalent. Anyway
the formulation by spectral projectors is not restricted to structures as in (7.1), such
that the presented framework represents a more general approach.
Furthermore note that the MOR-technique proposed in [11] is based on the (analytic)
identification of the improper part P(s) (therein called implicit feed-through Dimp).
Since the ROM in [11] incorporates the improper subsystem by appending Dimp to
the “original” feedthrough D, a slightly smaller dimension of the ROM (in fact by 1) is
obtained in comparison to a concatenation of the subsystems according (3.59). Note that
since ν = 1 and thus Nν = N = 0⇒ Eim

r = 0 holds, the same result can be achieved with
the strategy presented in Section 3.5. This is done by removing the (reduced) improper
subsystem from (3.59). Instead the “implicit” feedthrough Dr = Cim

r (Aim
r )−1Bim

r has
to be added to the reduced transfer function Gr(s).

7.2 Stokes-Like Index 2 System

Within this section the reduction of a Stokes-like DAE-system of index 2 is analyzed.
Such systems arise in computational fluid dynamics where the flow of an incompressible
fluid is modeled by the Navier-Stokes equation [9, p. 32]. Linearization and discretization
in space by the finite element method leads to a system of the structure [9, p. 32]:[

E11 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=
[
A11 A12

A21 0

] [
x1(t)
x2(t)

]
+
[
B1

B2

]
u(t) ,

y(t) =
[
C1 C2

] [x1(t)
x2(t)

]
.

(7.4)

Herein x1(t) and x2(t) typically denote velocity and pressure vectors respectively. If the
matrices E11 and A21 E−1

11 A12 are both nonsingular, then the DAE is of index 2 and
again analytic expressions for the spectral projectors can be found (see [9, p. 32]).
The actual model used for reduction is generated through a MATLAB script created by
Michael Schmidt (at the Technische Universität Berlin in May 2007) and modified by
Tatjana Stykel (in November 2007). This script produces a semidiscretized (2D-) Stokes-
like system according to [35, p. 34ff.], which has the structure of (7.4) with additionally
E11 = Indyn . Thus the spectral projectors given in [9, p. 32] simplify to

Πf
l =

[
K −K A11 A12 (A21 A12)−1

0 0

]
, Πf

r =
[

K 0
− (A21 A12)−1 A21 A11 K 0

]
, (7.5)

with K := Indyn−A12 (A21 A12)−1 A21. Note that the MATLAB script provides explicit
(dense) matrices for Πf

l and Πf
r which are not used in the following. Instead sparse

matrix-vector operations using (7.5) are performed, which significantly reduces memory
consumption.
Choosing m = p = 1 (SISO) and a 80 × 80 square grid for spacial discretization leads
to a FOM of dimension n = 19039 and dynamical order ndyn = dim(E11) = 12640. The
structure of the resulting system matrices E and A is depicted in Figure 7.5.
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(a) Sparsity pattern of E (b) Sparsity pattern of A

Figure 7.5: Sparsity pattern of the matrices E and A of the semidiscretized 2D Stokes-
like system according to [35, p. 34ff.].

Figure 7.6 shows the reduction result after applying Algorithm 6.1 with one CURE
iteration (corresponds to “pure” PORK + SPARK). As the FOM is strictly proper,
there is no reduced improper subsystem, i. e. the resulting ROM is of ODE-type. Since
P(s) = Pr(s) = 0 holds, the transfer function may not be matched exactly at s→∞.
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Figure 7.6: Approximation of the FOM G(s) (Stokes-like index 2 DAE, n = 19039)
with a ROM Gr(s) of order nr = 2. Since the FOM involves “simple” dynamics, a
low-dimensional ROM is sufficient for small error (Ge(s) = G(s)−Gr(s)).

Note that within this example the reduction with Algorithm 6.1 is mathematically equiv-
alent to “usual” ODE-CUREd SPARK as presented in [42] and [30]. This is because
strictly properness of the FOM is sufficient for the application of CUREd SPARK (see
Figure 6.1). Anyway the projection of C with Πf

r in Algorithm 6.1 might be beneficial
from a numerical point of view.

7.3 Mechanical Index 3 System

As third physically based example, a mechanical (multibody) system of index 3 is con-
sidered. In particular a constrained damped mass-spring system similar to [28, p. 106]
is analyzed (see Figure 7.7). In contrast to [28] the holonomic constraint connecting the
first and last mass is removed. Moreover the input u(t) now directly controls the posi-



7.3. Mechanical Index 3 System 93

tion of the first mass (instead of applying a force to it), which represents an additional
constraint. Note that this modification does not affect the index or the basic structure
of the system.

... ...m m m
u(t)

Figure 7.7: Constrained damped mass-spring system (adapted from [28, p. 106]).
Each mass m is coupled with its neighbors and the environment by (linear) springs
and dampers. The input u(t) (blue) directly controls the position of the first (counted
from the left) mass. In contrast to [28], the holonomic constraint (red) between the first
and last mass is removed.

The typical structure of holonomic3 constrained linear multibody systems (as in Fig-
ure 7.7) looks like

I 0 0
0 E22 0
0 0 0



ẋ1(t)
ẋ2(t)
ẋ3(t)

 =


0 I 0

A21 A22 −AT
31

A31 0 0



x1(t)
x2(t)
x3(t)

+


0

B2

B3

u(t) ,

y(t) =
[
C1 C2 0

] 
x1(t)
x2(t)
x3(t)

 ,

(7.6)

with E22 as the positive definite mass matrix, A21 and A22 as the stiffness and damping
matrices respectively and A31 as the matrix encoding the algebraic constraints [9, p. 34].
The system state x(t) is composed of the displacement vector x1(t), the velocity vector
x2(t) and the Lagrange multiplier x3(t).
Note that in contrast to [9] the system stated in (7.6) is formulated with B3 6= 0. In
fact the special choice B2 = 0, B3 = [0, ... , 0, 1]T and A31 = [1, 0, ... , 0] removes the
constraint between the first and last mass. Simultaneously a direct coupling of u(t) and
the position of the first mass is achieved. Keep in mind that the spectral projectors do
not depend on the choice of B or C such that the analytic expressions from [9, p. 34]
for Πf

l and Πf
r can be used without any modifications.

As in the previous section the actual benchmark model is generated by a MATLAB
script created by Tatjana Stykel (at the Technische Universität Berlin in June 2006)
which has been modified in order to incorporate the mentioned modifications of B2, B3
and A31. Note that models created according to [28] lead to a strictly proper transfer
function. In order to obtain an improper benchmark model, the system output y(t) is
chosen to be a combination of

3Usually the term “holonomic” is used to describe constraints between the system coordinates (i. e.
the position of the masses). In the following this characterization is extended such that also constraints
between system coordinates and the system input can be classified.
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• the position of the third mass (counted from the left) causing a strictly proper
contribution,

• the position of the first mass causing a proper contribution (O(P(s))→ 0) and

• the velocity of the first mass causing an improper contribution (O(P(s))→ 1).

Finally Figure 7.8 presents the frequency response of an accordingly generated FOM and
its approximation obtained through Algorithm 6.1 (CURE aborted after two iterations).
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Figure 7.8: Frequency response of a mechanical index 3 DAE (illustrated in Figure 7.7)
of dimension n = 2001 (corresponds to 1000 masses) and its approximation through a
ROM of dimension nr = 6. Note that a rather low count of CURE iterations has been
chosen in order to highlight the perfect matching of the improper subsystem.

As Figure 7.8 shows, the polynomial part P(s) is again matched exactly. This confirms
that the proposed MOR-technique is suited for higher index and improper problems
too.

7.4 Artificial High-Index System

In the previous sections physically based systems of different structure, index and proper-
ness have been investigated. Since in most technical applications the index of a DAE
is limited to 3, an “artificial” benchmark model (i. e. without explicit physical interpre-
tation) of high index is created and used to test the proposed reduction scheme in the
following.
For this purpose a system with structure similar4 to the Weierstraß canonical form is
considered:[

Ef 0
0 E∞

] [
ẋf (t)
ẋ∞(t)

]
=
[
Af 0
0 A∞

] [
xf (t)
x∞(t)

]
+
[

Bf

B∞

]
u(t) ,

y(t) =
[
Cf C∞

] [xf (t)
x∞(t)

]
.

(7.7)

4In order to obtain a real-valued realization of the FOM, the matrix Af is not in Jordan canonical
form. Instead it is composed of an array of real-valued 2×2 blocks, each of them incorporating a complex
conjugate eigenvalue pair.
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Therein [Ef , Af , Bf , Cf ] and [E∞, A∞, B∞, C∞] denote realizations of the slow and
fast subsystem of dimension nf and n∞ respectively. The spectral projectors are given
through

Πf
l = Πf

r =
[
Inf 0
0 0

]
, Π∞l = Π∞r =

[
0 0
0 In∞

]
. (7.8)

In order to obtain a DAE-system of index ν (with ν ≤ n∞), one can use

E∞,xy =
{

1 for (y = x+ 1) ∧ (x < ν)
0 otherwise

, A∞,xy =
{

1 for x = y

0 otherwise
,

B∞,x =
{
−1 for x = ν

0 otherwise
, C∞,y =

{
πν−y for y ≤ ν
0 otherwise

.

(7.9)

to specify the entries of E∞, A∞, B∞ and C∞ in the x-th row and/or y-th column (with
x, y ∈ {1, ... , n∞}). Herein π0, ... , πν−1 ∈ R represent the coefficients of the resulting
polynomial contribution P(s), i. e. P(s) = π0 + π1 s+ π2 s2 + ...+ πν−1 sν−1.
In order to specify the slow subsystem, several complex conjugate eigenvalue pairs
λw,1/2 = aw ± ı bw with w ∈ N>0 are considered, such that a corresponding 2 × 2
subsystem Σw = (Êf,w, Âf,w, B̂f,w, Ĉf,w, 0) can be formulated with

Êf,w = I2 , Âf,w =
[
aw bw

−bw aw

]
, B̂f,w =

[
1
1

]
, Ĉf,w =

[
cw
2
cw
2

]
. (7.10)

and aw, bw, cw ∈ R. Finally Ef , Af , Bf and Cf have the block structure

Ef = diag( ... , Êf,w, ... ) , Af = diag( ... , Âf,w, ... ) ,

Bf = [ ... , B̂T
f,w, ... ]T , Cf = [ ... , Ĉf,w, ... ] .

(7.11)

where each subsystem Σw is contained dw times.
In the following the dimension and index of the investigated model are set to nf = 4000,
n∞ = 1000 (thus n = 5000) and ν = 10. Furthermore four different complex conjugate
eigenvalue pairs (of multiplicity dw) are considered. The actual choice of the parameters
aw, bw, cw, dw and πw is listed in Table 7.2.

Table 7.2: Parametrization of the transfer function G(s).

w aw bw cw dw πw

0 100

1 −10−3 10−2 8 · 10−2 5 · 102 10−2

2 −10−2 10−1 1 · 101 5 · 102 10−4

3 −10−1 100 5 · 101 5 · 102 10−5

4 −100 101 1 · 103 5 · 102 10−5

5 10−6

6, 7, 8, 9 0



96 Chapter 7. Numerical Examples

Note that the choice π5 6= 0 and π6 = π7 = π8 = π9 = 0 leads to O(P(s)) = 5. The
transfer function of the FOM finally reads as

G(s) =
4∑

w=1
dw

cw (s− aw)
(s− aw)2 + b2

w

+
5∑

w=0
πw s

w . (7.12)

Figure 7.9 shows the result of a reduction which has been aborted after 4 CURE it-
erations. Since O(P(s)) = 5 holds, the ROM is a DAE of index νr = 65 and order
nr = 146.
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Figure 7.9: Frequency response of an index 10 DAE-system (O(P(s)) = 5) of dimension
n = 5000 (nf = 4000 and n∞ = 1000) and its approximation through a ROM of order
nr = 14 (4 CURE iterations).

As Figure 7.9 shows, the improper subsystem is matched even in the high index case.
Since the proposed algorithm is not limited by the index of the FOM (at least in theory),
one could have easily predicted this result. Anyway this example shows, that this basi-
cally holds in the numerical case too. Note that (as always in numerical mathematics)
there are limits which originate form the calculation with finite machine precision. Thus
there may be an upper limit for the index in practical applications.

5Keep in mind that [Eim
r , Aim

r , Bim
r , Cim

r ] obtained by Algorithm 5.2 is a minimal realization of P(s)
(see Corollary 5.14). Thus νr has to be 6 in order to allow a polynomial contribution Pr(s) of degree 5
(see (2.28)).

6nr = 2 · (count of CURE iterations) + νr.



Chapter 8

Conclusions

The presented algorithm for the reduction of structured DAE-systems seems to be an
elegant combination of Krylov subspace methods and SVD-based MOR. On the one
hand BT is used to find a minimal realization of the polynomial part P(s), while on
the other hand the strictly proper contributor Gsp(s) is approximated by Krylov-based
adaptive MOR through CUREd SPARK. Since the former affects the improper sub-
system only, an efficient implementation is possible (i. e. without solving large-scale
Lyapunov equations). As P(s) is matched exactly, the original problem of reducing an
(improper) DAE-system changes to well-known ODE-MOR (i. e. to the approximation
of a rational transfer function Gsp(s)).
Nevertheless even in the case of a strictly proper DAE-(sub)system, the descriptor matrix
E is singular. Because of this one has to take special care during adaption of ODE-MOR-
techniques to the DAE-case: although G(s) is represented by a rational function as in
the ODE-case, the investigated MOR method might require regularity of E. This is the
case for the original derivation of the PORK algorithm given in [42], which makes use of
E−1. Fortunately a modified proof has been found during this work, which is valid for
singular E as well. Note that the restriction to strictly proper DAE-systems remains,
since the H2 norm (and thus the concept of H2 pseudo-optimality) are only defined for
this case. Thus the proposed partitioning into a slow and fast subsystem is inevitable
for the reduction with PORK.
During the verification of the PORK algorithm for the DAE-case two necessary results
of major importance have been derived. First, it has been shown, that the generalized
Sylvester equation for the interpolation data

A V−E V SV = B R (8.1)

has a unique solution V, even in the case of singular E. In fact the main condition for
uniqueness of V is that the expansion points (encoded in SV ) do not coincide with the
generalized eigenvalues of the pair (E, A). This allows the conclusion, that the represen-
tation of a tangential-input rational Krylov subspace in its original form is equivalent to
the formulation as generalized Sylvester equation. Certainly the same holds for the dual
case. Second, the H2 inner-product of the transfer functions of two asymptotically sta-
ble and strictly proper DAEs has been formulated by (projected) generalized Sylvester
equations. This formulation plays an essential role in the proof of H2 pseudo-optimality
in the PORK algorithm. As this is a very general result, it might be helpful in other
contexts as well.
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Beside the PORK algorithm also SPARK and its integration into the CURE-framework
are applicable to the DAE-case. It is remarkable, that all three algorithms do not have
to be modified and thus work “out of the box” with strictly proper DAEs. However the
original derivation1 of the SPARK algorithm from [30] has to be reformulated in order
to comply with det(E) = 0.
As exemplified at the end of Section 7.1, the projection of B and C with the spectral
projectors corresponding to the finite eigenvalues of λE − A is equivalent to finding
the “underlying” ODE (as done in [11]). Both approaches represent an integration
of the knowledge about the system structure into the MOR-technique. Although the
formulation with spectral projectors used in this work seems to be more general, it
might not be the most efficient way of reduction: even if analytic expressions for Πf

l and
Πf
r are available, it might be possible to write down the contribution of the improper

subsystem directly, at least in the case of semi-explicit index 1 DAEs (as shown in [18,
p. B1021]). This way the SVD and subsequent truncation of zero improper HSVs can
be avoided entirely.
Although the formulation with spectral projectors seems to be advantageous in many
senses, it is essential that analytic expressions are available. Fortunately dedicated in-
vestigations have been made in the past for common system structures (several technical
applications are collected in [9]). However if the spectral projectors are not known in
advance a numerical expensive (and ill-conditioned) computation is required. This may
destroy the benefits of the proposed algorithm in comparison to other MOR-techniques.
Furthermore the matrices Πf

l and Πf
r are dense (in general), such that the reduction

would be limited to small- or medium-sized problems.
With CUREd SPARK a powerful tool for adaptive, H2 pseudo-optimal reduction of SISO
systems has been transferred to the DAE-world. In order to evaluate its performance,
one has to compare the proposed algorithm to other MOR-techniques for DAEs such as
IRKA (see [18]) or (entirely) SVD-based methods (see [9])). Unfortunately a comparison
by means of numerical examples was not possible due to lack of time (although contained
in the task-list of this thesis). At least a basic implementation of the proposed algorithm
has been integrated into the sssMOR toolbox2. This issue should be tackled in future
investigations.
Furthermore a detailed view on the matrix [E V, B] and its column rank may be worth-
while, as it is a major requirement for the CURE framework (in the DAE-case as well
as in the ODE-case). Especially universally valid statements could help to derive a
MOR-scheme which satisfies this condition per construction.

1In fact solely the derivation of the analytic expressions for the gradient and Hessian (or more pre-
cisely: their abbreviated formulation) of the cost function has been revisited. The basic concept of
SPARK, i. e. the maximization of ‖Gr‖H2 , does not depend on E or its regularity at all.

2This feature of the toolbox has not been released for public use at the time of writing.



Appendix A

Proofs

Proof of Lemma 2.13

To prove part (i) the pencils (λX − Iu), (λY − Iv) and (λZ − Iw) are transformed
according to Lemma 2.5:

Px X Qx = X̃ , Py Y Qy = Ỹ , Pz Z Qz = Z̃ . (A.1)

Stacking the transformation of λX− Iu and λY− Iv into one equation leads to

[
Px 0
0 Py

]
︸ ︷︷ ︸

=:Pxy

[
X 0
0 Y

]
︸ ︷︷ ︸

Z

[
Qx 0
0 Qy

]
︸ ︷︷ ︸

=:Qxy

=


Iuf 0 0 0
0 Nx 0 0
0 0 Ivf 0
0 0 0 Ny

 . (A.2)

Applying a (multiple) row-/column-swapping transformation with

T :=


Iuf 0 0 0
0 0 Ivf 0
0 Iu∞ 0 0
0 0 0 Iv∞

 ∈ Rw×w , det(T) = ±1 (A.3)

delivers

(T Pxy)︸ ︷︷ ︸
Pz

Z
(
Qxy TT

)
︸ ︷︷ ︸

Qz

=


Iuf 0 0 0
0 Ivf 0 0
0 0 Nx 0
0 0 0 Ny

 =
[
Iwf 0
0 Nz

]
= Z̃ (A.4)

which is equivalent to the transformation of the matrix pencil (λZ − Iw) according to
Lemma 2.5 with the transformation matrices Pz = T Pxy and Qz = Qxy TT. Since Nηz

z

is blockdiagonal containing Nηz
x and Nηz

y , it is zero, if both blocks are zero. Using this
relation shows that ηz = max(ηx, ηy) which completes the proof of part (i).
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In order to show part (ii) consider the three conditions in (2.6):

Z ZD = diag(X, Y) diag(XD, YD) = diag(X XD, Y YD)
= diag(XD X, YD Y) = diag(XD, YD) diag(X, Y) = ZD Z ,

ZD Z ZD = diag(XD, YD) diag(X, Y) diag(XD, YD)
= diag(XD X XD, YD Y YD) = diag(XD, YD) = ZD ,

ZD Zηz+1 = diag(XD, YD) diag(Xηz+1, Yηz+1) = diag(XD Xηz+1, YD Yηz+1)
(i)
= diag(Xηx Xηz−ηx , Yηy Yηz−ηy) = diag(Xηz , Yηz) = Zηz .

(A.5)

In the third equation result (i) was used, to ensure, that ηz ≥ ηx and ηz ≥ ηy.
An alternative proof of part (ii) as well as a relation similar to part (i) is included in [13,
p. 2772] which uses results from [14, p. 632]. �

Proof of Key Theorem 4.17

As shown in Corollary 4.101 there exists a unique X as the solution of

A X E J∗
M + E X A J∗

M + Πf
l B B J∗

M = 0 , (A.6)

such that 〈G, GM〉H2 = tr(C X C J∗
M ) holds. An appropriate partitioning of X

X = [X1, ... , Xi, ... , Xs] , (A.7a)
Xi = [Xi1, ... , Xij , ... , Xiri ] , ∀ i = 1, ... , s (A.7b)

Xij =
[
xij1, ... , xijk, ... , xijqij

]
, ∀ j = 1, ... , ri (A.7c)

with xijk ∈ Cn×1 leads together with E J
M = Iq to

A Xij + E XijA J∗
Mij + Πf

l B B J∗
Mij = 0 . (A.8)

A further decomposition delivers

A
[
xij1, ... , xijk, ... , xijqij

]
+ E

[
xij1, ... , xijk, ... , xijqij

]

λMi −1

. . . . . .
. . . −1

λMi

+

+ Πf
l B

[
b J∗

Mij1, ... , b J∗
Mijk, ... , b J∗

Mijqij

]
= 0 ,

(A.9)

and therefore

xijk =

−
(
A + λMi E

)−1
Πf
l B b J∗

Mijk , for k = 1 ,(
A + λMi E

)−1
E xij(k−1) −

(
A + λMi E

)−1
Πf
l B b J∗

Mijk , for 1 < k ≤ qij .

1Note that GM(s) is of ODE-type since det(E J
M) = det(Iq) 6= 0.
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(A.10)

Note that since both transfer functions, G(s) and GM(s), belong to asymptotically stable
systems, the matrix

(
A + λMi E

)
is guaranteed to be invertible.

The recursion can be reformulated as

xijk = −
k∑
ξ=1

[(
A + λMi E

)−1
E
]k−ξ (

A + λMi E
)−1

Πf
l B b J∗

Mijξ . (A.11)

The H2 inner-product finally reads as

〈G, GM〉H2 = tr
(
C X C J∗

M
)

= tr

C
s∑
i=1

ri∑
j=1

qij∑
k=1

xijk c J∗
Mijk


= − tr

 s∑
i=1

ri∑
j=1

qij∑
k=1

k∑
ξ=1

C
[
(A + λMi E)−1 E

]k−ξ
(A + λMi E)−1Πf

l B b J∗
Mijξ c J∗

Mijk


(2.35)

= − tr

 s∑
i=1

ri∑
j=1

qij∑
k=1

k∑
ξ=1

M(k−ξ)(−λMi) b J∗
Mijξ c J∗

Mijk


(Lemma B.1)

= − tr

 s∑
i=1

ri∑
j=1

qij∑
k=1

k∑
ξ=1

c J∗
Mijk M(k−ξ)(−λMi) b J∗

Mijξ


= −

s∑
i=1

ri∑
j=1

qij∑
k=1

k∑
ξ=1

c J∗
Mijk M(k−ξ)(−λMi) b J∗

Mijξ

(A.12)

which completes the proof. �

Proof of Theorem 4.22

Since GF(s) can be described by the interpolation matrices of the primitive basis VP

(see Remark 4.21), one can make use of the special structure of SP
V and RP:

SP
V = diag

(
SP
V,1, ... , SP

V,i, ... , SP
V,s

)
, RP =

[
RP

1 , ... , RP
i , ... , RP

s

]
,

SP
V,i = diag

(
SP
V,i1, ... , SP

V,ij , ... , SP
V,iri

)
, RP

i =
[
RP
i1, ... , RP

ij , ... , RP
iri

]
,

SP
V,ij =


si 1

. . . . . .
. . . 1

si

 ∈ Cqij×qij , RP
ij = [rij , 0, ... , 0] ∈ Cm×qij .

(A.13)

In order to prove tangential interpolation at the particular expansion point si, the struc-
ture of the matrix

K := SP
V + FP RP − si Iq (A.14)
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is analyzed. For this purpose one can find, that the product FP RP has for any FP ∈
Cq×m the form

FP RP =

∗ 0 · · · 0...
...

...
∗ 0 · · · 0

 · · ·
∗ 0 · · · 0...

...
...

∗ 0 · · · 0

 ∈ Cq×q ,

↑
FP r11

↑
FP rsrs

(A.15)

wherein ∗ represents an arbitrary scalar value. Similarly, the structure of SP
V − si Iq can

be visualized:

SP
V − si Iq =




∗ 1

. . . . . .
. . . 1
∗


. . . 

∗ 1
. . . . . .

. . . 1
∗




∈ Cq×q .

↑
SP
V,11 − si Iq11

↑
SP
V,srs − si Iqsrs

(A.16)

Finally the overall structure of K reads as

K =




∗ 1
∗ ∗ . . .
... . . . 1
∗ ∗



∗ 0 · · · 0...

...
......

...
...

∗ 0 · · · 0

 · · ·


∗ 0 · · · 0...

...
......

...
...

∗ 0 · · · 0



∗ 0 · · · 0...

...
......

...
...

∗ 0 · · · 0

 . . . . . . ...

... . . . . . .


∗ 0 · · · 0...

...
......

...
...

∗ 0 · · · 0



∗ 0 · · · 0...

...
......

...
...

∗ 0 · · · 0

 · · ·


∗ 0 · · · 0...

...
......

...
...

∗ 0 · · · 0



∗ 1
∗ ∗ . . .
... . . . 1
∗ ∗





∈ Cq×q , (A.17)

where each column of blocks corresponds to a special choice of expansion point and
tangential direction.
Let eγ denote the γ-th unit vector in Rq, i. e.

eγ = [eγ,1, ... , eγ,u, ... , eγ,q]T ∈ Rq×1 with eγ,u =
{

1 for u = γ

0 for u 6= γ
. (A.18)
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Multiplying K from the right with eγ allows to extract the γ-th column kγ ∈ Cq×1. In
order to get the k-th column of the blocks related to the j-th tangential direction of the
i-th expansion point, one can use the mapping

γ(i, j, k) =
i−1∑
u=1

ru∑
v=1

quv +
j−1∑
w=1

qiw + k . (A.19)

Now put the focus on the columns of K corresponding to the i-th expansion point (si)
and the j-th tangential direction (rij). Since SP

V is in Jordan canonical form, the diagonal
elements of SP

V − si Iq related to the i-th expansion point vanish and it follows that

kγ := K eγ =
{

FP rij , for γ = γ(i, j, k = 1)
eγ−1 , for γ = γ(i, j, k > 1)

. (A.20)

Inserting (A.14) back into (A.20) leads to a series of LSEs(
SP
V + FP RP − si Iq

)
eγ(i, j, 1) = FP rij ,(

SP
V + FP RP − si Iq

)
eγ(i, j, w) = eγ(i, j, w−1) , ∀ w = 2, ... , qij

(A.21)

which have unique solutions eγ , since λ(SV )∩λ(EF = Iq, AF) = ∅ and therefore λ(SP
V )∩

λ(EP
F = Iq, AP

F) = ∅2 holds.
Recursively solving (A.21) leads to

eγ(i, j, k) =
(
SP
V + FP RP − si Iq

)−k
FP rij , ∀ k = 1, ... , qij . (A.22)

Using the definition of the moments of a transfer function in (2.34) together with (4.41)
delivers(dµGF(s)

dsµ
)∣∣∣∣
s=si
· rij = −(µ!) CF

[
(AF − si EF)−1 EF

]µ
(AF − si EF)−1 BF rij

= −(µ!) CP
F
(
AP

F − si Iq
)−(µ+1)

BP
F rij

= −(µ!) C VP
(
SP
V + FP RP − si Iq

)−(µ+1)
FP rij .

(A.23)

Inserting (A.22) leads to(dµGF(s)
dsµ

)∣∣∣∣
s=si
· rij = −(µ!) C VP eγ(i, j, µ+1) , ∀ µ = 0, ... , qij − 1 . (A.24)

Note that VP eγ(i, j, µ+1) denotes the γ(i, j, µ + 1)-th column of the primitive base VP

of Kti. Therefore(dµGF(s)
dsµ

)∣∣∣∣
s=si
· rij = −(µ!) C

[
(A− si E)−1E

]µ
(A− si E)−1B rij

=
(dµG(s)

dsµ
)∣∣∣∣
s=si
· rij

(A.25)

is fulfilled for all µ = 0, ... , qij . Since the above considerations hold for all expansion
points si (with i = 1, ... , s) and all tangential directions rij (with j = 1, ... , ri), the
proof is complete. �

2Because SV and SP
V are similar, they share the same set of eigenvalues. The same holds for AF =

SV + F R and AP
F = SP

V + FP RP with AF = T−1 AP
F T.
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Appendix B

Secondary Results

Lemma B.1. Let X ∈ Cv×u and Y ∈ Cu×v. Then tr(X Y) = tr(Y X) holds.

Proof. The explicit computation of the trace

tr(X Y) =
v∑

x=1
(X Y)xx =

v∑
x=1

u∑
y=1

Xxy Yyx =
u∑
y=1

v∑
x=1

YyxXxy

=
u∑
y=1

(Y X)yy = tr(Y X)
(B.1)

verifies the claim. �

Lemma B.2. Let

• (E, A, B, C, x0) be a DAE-system according to Definition 2.14 with regular matrix
pencil λE−A and transfer function G(s),

• [Ẽ, Ã, B̃, C̃] be a realization of G(s) in Weierstraß canonical form where P and
Q are the transformation matrices as given in Lemma 2.5,

• Πf
l , Π∞l , Πf

r , Π∞r be the spectral projectors according to Definition 2.8 and

• s be an arbitrary complex-valued scalar with s 6∈ λ(E, A).

Then the equalities

Πf
l A = A Πf

r , Π∞l A = A Π∞r , Πf
l E = E Πf

r , Π∞l E = E Π∞r , (B.2)

Πf
r (sE−A)−1 = (sE−A)−1 Πf

l and (B.3)
Π∞r (sE−A)−1 = (sE−A)−1 Π∞l (B.4)

hold.

Proof. To prove the relations in (B.2) consider

Πf
l A = P−1

[
Inf 0
0 0

]
P A Q︸ ︷︷ ︸

Ã

Q−1 = P−1
[
Inf 0
0 0

] [
J 0
0 In∞

]
Q−1

= P−1
[
J 0
0 0

]
Q−1

(B.5)
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and

A Πf
r = P−1 P A Q︸ ︷︷ ︸

Ã

[
Inf 0
0 0

]
Q−1 = P−1

[
J 0
0 In∞

] [
Inf 0
0 0

]
Q−1

= P−1
[
J 0
0 0

]
Q−1

(B.6)

which shows, that Πf
l A = A Πf

r holds. The remaining equalities of (B.2) can be shown
in the same manner.
In order to verify (B.3) a similar method is used:

Πf
r (sE−A)−1 = Πf

r Q (sP E Q−P A Q)−1 P

= Q
[
Inf 0
0 0

](s Inf − J
)−1

0
0 (sN− In∞)−1

P = Q

(s Inf − J
)−1

0
0 0

P
(B.7)

with

(sE−A)−1 Πf
l = Q (sP E Q−P A Q)−1 P Πf

l

= Q

(s Inf − J
)−1

0
0 (sN− In∞)−1

[Inf 0
0 0

]
P = Q

(s Inf − J
)−1

0
0 0

P
(B.8)

such, that Πf
r (sE−A)−1 = (sE−A)−1 Πf

l is shown. The proof of (B.4) is analogous.
�

Corollary B.3. Let all conditions of Lemma B.2, Theorem 3.14 and Corollary 3.15
hold. If additionally B = Πf

l B is fulfilled, then the equalities

Πf
r VP = VP and Πf

r V = V (B.9)

hold.

Proof. Consider the definition of the primitive basis VP from Section 3.2:

VP = [ ... , vP
ijk, ... ] , with vP

ijk =
[
(A− si E)−1 E

]k−1
(A− si E)−1 B rij . (B.10)

Using the results from Lemma B.2 allows to “pass” the spectral projector through until
it hits B:

Πf
r VP = [ ... , Πf

r vP
ijk, ... ] ,

Πf
r vP

ijk =
[
(A− si E)−1 E

]k−1
(A− si E)−1 Πf

l B︸ ︷︷ ︸
B

rij = vP
ijk .

(B.11)

Since B = Πf
l B holds, the equality Πf

r VP = VP is shown. Furthermore, the transfor-
mation V = VP T from Corollary 3.15 allows to verify

Πf
r V = Πf

r VP T = VP T = V , (B.12)

which completes the proof. �
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Lemma B.4. Let (E, A, B, C, x0) be an asymptotically stable DAE-system with regular
matrix pencil λE−A. Then the matrix A is regular, i. e. det(A) 6= 0.

Proof. Consider the transformation of A into Weierstraß canonical form with the regular
matrices P and Q according to Lemma 2.5:

Ã = P A Q =
[
J 0
0 In∞

]
, with det(P), det Q 6= 0 . (B.13)

Since J is in Jordan canonical form and λ(J) = λf (E, A) (see Lemma 2.5) and 0 6∈
λf (E, A) (asymptotically stable), all diagonal elements of the upper triangular matrix
Ã are nonzero. Thus det(A) = det(P−1 Ã Q−1) = det(P−1) det(Ã) det(Q−1) 6= 0
holds. �

Corollary B.5. Let all conditions of Lemma B.2 and Lemma B.4 hold. Moreover let
ν denote the index of the matrix pencil λE −A according to Definition 2.6. Then the
equalities

Π∞r A−1 = A−1 Π∞l , (B.14)
Π∞r A−1 E = A−1 E Π∞r , (B.15)(

A−1 E
)ν

Π∞r = 0 and Π∞l
(
E A−1

)ν
= 0 (B.16)

are satisfied.

Proof. In order to show (B.14), the transformation

Ã = P A Q ⇔ Ã−1 = Q−1 A−1 P−1 ⇒ A−1 P−1 = Q Ã−1

⇒ Q−1A−1 = Ã−1 P
(B.17)

is considered. This allows to write

Π∞r A−1 = Q
[
0 0
0 In∞

]
Q−1 A−1︸ ︷︷ ︸

Ã−1 P

= Q
[
0 0
0 In∞

] [
J−1 0
0 In∞

]
︸ ︷︷ ︸

Ã−1

P = Q
[
0 0
0 In∞

]
P ,

A−1 Π∞l = A−1 P−1︸ ︷︷ ︸
Q Ã−1

[
0 0
0 In∞

]
P = Q

[
J−1 0
0 In∞

]
︸ ︷︷ ︸

Ã−1

[
0 0
0 In∞

]
P = Q

[
0 0
0 In∞

]
P ,

(B.18)

which proves Π∞r A−1 = A−1 Π∞l .
To show (B.15) the relations from (B.14) and (B.2) can be used:

Π∞r A−1 E
(B.14)

= A−1 Π∞l E
(B.2)

= A−1 E Π∞r . (B.19)
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Finally (B.16) is proved through(
A−1 E

)ν
Π∞r =

(
Q Ã−1 P E Q Q−1

)ν
Π∞r = Q

(
Ã−1 Ẽ

)ν
Q−1Π∞r

= Q
([

J−1 0
0 In∞

] [
Inf 0
0 N

])ν
Q−1 Q

[
0 0
0 In∞

]
Q−1

= Q
[
0 0
0 Nν

]
Q−1 (Nν=0)= 0 .

(B.20)

The equality Π∞l
(
E A−1

)ν
can be shown accordingly. �



Appendix C

Discussion of the Column Rank of
[E V, B]

In the following the matrix [E V, B], abbreviated with K := [E V, B] ∈ Cn×(q+m), is
analyzed in the context of DAEs (i. e. for det(E) = 0). Since full column rank of K is
a requirement for the CURE-framework1, it is important to check this property during
reduction (as done in Algorithm 4.4).
Aside from a numerical verification, general (analytical) conditions would help to get a
better understanding of this issue and perhaps lead to a reduction scheme which guar-
antees this property. Unfortunately it seems to be difficult to find universally valid
relations. One reason for this is that V represents the basis of an accumulated rational
Krylov subspace, i. e. the column vectors belong to several independently specified ra-
tional Krylov subspaces. Up to the author’s knowledge, there are no general statements
about the column rank of K which would help to enforce this property during reduction
so far. For this reason several thoughts related to this topic which arose during the work
on this thesis are collected in the following.
First of all it is obvious, that E V ∈ Cn×q and B ∈ Rn×m must have full column rank
themselves. Considering that, the columns of V have to be linearly independent, which
is assumed anyway (see Section 3.2). Note that a singular matrix E in the DAE-case
does not imply rank deficiency of K. This can be easily shown by the example([

1 0
0 0

]
︸ ︷︷ ︸

E

[
1
0

]
︸︷︷︸
V

,

[
0
1

]
︸︷︷︸

B

)
=
[
1 0
0 1

]
︸ ︷︷ ︸

K

⇒ rank(K) = 2 = q +m . (C.1)

To obtain further relations, the special structures of the Weierstraß canonical form and
the primitive basis VP are exploited. For this purpose let P and Q denote the trans-
formation matrices as defined in Lemma 2.5 and T be as in Corollary 3.15 such that
V = VP T holds. Moreover note that a multiplication of

A V−E V SV = B R (C.2)

from the left with P leads to Ṽ = Q−1 V which is the unique solution of

Ã Ṽ− Ẽ Ṽ SV = B̃ R . (C.3)
1In particular full column rank of K is necessary for the equivalence of a parametrization of the

reduced transfer function with F and W (see Theorem 4.20).

109



110 Appendix C. Discussion of the Column Rank of [E V, B]

Using the definition of the primitive basis VP

VP =
[
... , vP

ijk, ...
]
, with vP

ijk =
[
(A− si E)−1 E

]k−1
(A− si E)−1 B rij (C.4)

leads with Ṽ = Q−1VP T to

Ṽ = Q−1
[
... , vP

ijk, ...
]

︸ ︷︷ ︸
VP

T =
[
... , ṽP

ijk, ...
]

︸ ︷︷ ︸
ṼP

T , (C.5)

with ṼP = Q−1VP and

ṽP
ijk = Q−1

[
(A− si E)−1 E

]k−1
(A− si E)−1 B rij

=
[(

Ã− si Ẽ
)−1

Ẽ
]k−1 (

Ã− si Ẽ
)−1

B̃ rij

=


(
J− si Inf

)−k
B̃f[

(In∞ − si N)−1 N
]k−1

(In∞ − si N)−1 B̃∞

 rij .

(C.6)

According to [32, p. 9] the rank of a matrix is invariant concerning regular transforma-
tions (matrix equivalence) such that

rank(K) = rank
(

P K
[
T−1 0
0 Im

])
= rank(K̂) . (C.7)

holds. Thus instead of K one can analyze K̂:

K̂ = P K
[
T−1 0
0 Im

]
=
[
P E Q Q−1 V T−1, P B

]
=
[
Ẽ ṼP

, B̃
]

=
[
k̂111, ... , k̂ijk, ... , k̂srsqsrs , b̃1, ... , b̃m

] (C.8)

with B̃ = [b̃1, ... , b̃m] and

k̂ijk = Ẽ ṽP
ijk =


(
J− si Inf

)−k
B̃f[

N (In∞ − si N)−1
]k

B̃∞

 rij . (C.9)

Making use of K̂ the problem changes to: the matrix [E V, B] has full column rank, if
and only if all columns of K̂, i. e. k̂ijk and b̃w for all i, j, k and w ∈ {1, ... , m}, are
linearly independent.
From (C.9) one can see, that it is sufficient, if the upper parts are linearly independent
(since the column rank is considered). This is essential especially if the partitioning of
the FOM into a strictly proper and improper subsystem is done by projection of B, such
that B̃sp

∞ = 0. In this case the whole lower part of K̂ becomes zero.
Another interpretation is, that if an ODE is extended by a system of algebraic constraints
(this corresponds to the lower part of K̂) to obtain a DAE, then the column rank of
[E V, B] does not decrease. Instead it might even rise if B̃∞ 6= 0.



Appendix D

The Generalized Resolvent
Equation

The following relations were used to verify the analytic expressions of the gradient and
Hessian of J during SPARK given in [30, p. 80] for the DAE-case (i. e. det(E) = 0). In
order to shorten the notation, the abbreviations

As1 := (A− s1 E) ,
As2 := (A− s2 E)

(D.1)

are used.
At first the generalized resolvent is defined:

Definition D.1 ([37, p. 18]). Let λE−A be a regular matrix pencil. Then the gener-
alized resolvent is defined as

(λE−A)−1 , with λ ∈ C \ λ(E, A) . (D.2)

Using this, the generalized resolvent equation is formulated:

Lemma D.2 (adapted from [37, p. 18]). Let λE−A be a regular matrix pencil. Then
for all s1, s2 6∈ λ(E, A) the generalized resolvent equation

A−1
s1 −A−1

s2 = (s1 − s2) A−1
s2 E A−1

s1 (D.3)

holds.

In the following corollary additional relations are presented, which may be useful in
similar investigations:

Corollary D.3. Let λE−A be a regular matrix pencil. Then for all s1, s2 6∈ λ(E, A)
the relations

s1 A−1
s1 − s2 A−1

s2 = (s1 − s2) A−1
s2 A A−1

s1 , (D.4)

(s1 − s2) A−1
s2 E

(
A−1
s1 + A−1

s2

)
E A−1

s1 = A−1
s1 E A−1

s1 −A−1
s2 E A−1

s2 , (D.5)

A A−1
s1 E−E A−1

s2 A = (s1 − s2) E A−1
s2 A A−1

s1 E (D.6)

hold.
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Proof. The first equation can be proved by multiplication with As2 from the left and
As1 from the right:

s1 A−1
s1 − s2 A−1

s2 = (s1 − s2) A−1
s2 A A−1

s1

∣∣∣ As2 · ... ·As1

s1 (A− s2 E)︸ ︷︷ ︸
As2

−s2 (A− s1 E)︸ ︷︷ ︸
As1

= (s1 − s2) A

(s1 − s2)A− s1 s2 E + s2 s1 E = (s1 − s2) A .

(D.7)

In order to show (D.5), (D.3) is inserted into the left hand side:

(s1 − s2) A−1
s2 E

(
A−1
s1 + A−1

s2

)
E A−1

s1 =
(
A−1
s1 −A−1

s2

)
E A−1

s1 + A−1
s2 E

(
A−1
s1 −A−1

s2

)
= A−1

s1 E A−1
s1 −������A−1

s2 E A−1
s1 +������A−1

s2 E A−1
s1 −A−1

s2 E A−1
s2

= A−1
s1 E A−1

s1 −A−1
s2 E A−1

s2 .

(D.8)

Finally (D.6) is proved by inserting (D.4) into the right hand side:

(s1 − s2) E A−1
s2 A A−1

s1 E = E
(
s1 A−1

s1 − s2 A−1
s2

)
E

= s1 E A−1
s1 E− s2 E A−1

s2 E + A A−1
s1 E−A A−1

s1 E︸ ︷︷ ︸
=0

+ E A−1
s2 A−E A−1

s2 A︸ ︷︷ ︸
=0

= − (A− s1 E)︸ ︷︷ ︸
As1

A−1
s1 E + A A−1

s1 E + E A−1
s2 (A− s2 E)︸ ︷︷ ︸

As2

−E A−1
s2 A

= −E + A A−1
s1 E + E−E A−1

s2 A = A A−1
s1 E−E A−1

s2 A .

(D.9)
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