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Abstract

This thesis focuses on the development of numerical models for predicting the vibro-acoustic
behavior of timber floor constructions. It is a part of the recently finished research project,
"VibWood", which aims at the development of design guidelines, that describe the acoustical
and dynamic behavior of timber floors below 125 Hz, and for designing adaptive protection
systems against vibrations.

Parametric Finite-Element (FE) models are developed for representative timber floor con-
structions including a floating floor and a suspended ceiling. The FE models are validated
by accompanying measurements in a floor testing facility. The material parameters are cali-
brated by Model Updating, according to the measured and simulated eigenfrequencies. For
the evaluation of the simulated floors with regard to their vibro-acoustic characteristics, an
Integral Transform Method (ITM)-based acoustical evaluation model is developed to predict
the floor’s radiated sound power from measured or simulated structure-borne sound veloci-
ties. The data can be derived from either an Experimental Modal Analysis (EMA) or from
a Harmonic Frequency Analysis. The advantages and disadvantages of the model, as com-
pared with existing models, as well as the limitations of the model, due to its discrete nature
are pronounced. For the evaluation of pedestrian-induced vibrations, a transient evaluation
model is applied.

Focus lies on the investigation of the influence of the air inside the cavity - between the main
load-bearing structure and suspended ceiling - on the sound transmission across the floor.
The results of different numerical modeling approaches are compared with the measured
data. A deeper insight into the physical phenomena is provided by a representation of the
vibration pattern in the wavenumber domain.

Parametric studies are performed within an automated process for a large number of geomet-
rical parameter combinations. A dimensional analysis concerning the first eigenfrequencies
of the floors is performed. Further, the influence of individual parameters on the resulting
radiated sound power is pointed out. A special focus lies on the geometrical parameters of
the suspended ceiling. The effectiveness of Tuned-Mass-Dampers (TMDs) on the attenuation
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of the radiated sound power is investigated. Coefficients are derived to enable a comparison
of the simulated data to standardized single values for the evaluation of the impact sound
insulation. The derived database is intended to be implemented into a Graphical User Inter-
face (GUI) to support the practical engineer in the planning phase prior to construction.
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1 Introduction

1.1 Motivation

The market share of timber construction for multi-storied buildings for industrial as well
as for residential use has been rapidly growing in recent years [Weimar and Jochem 2013].
This can, in part, be explained with regard to profitability. Wood is light in weight, reduces
static requirements and enables a high degree of prefabrication, which, in turn, leads to
less transportation and storage costs. Moreover, adding another floor to an already existing
building is often only possible with timber construction. On the other hand, with regard to
the necessity of developing sustainability in construction concepts, timber construction has
its advantages, as wood is a renewable raw material.

Serviceability linked with vibrations is a key issue for light-weight structures, especially for
timber floors. In particular, in the frequency range below 125 Hz, timber structures are
prone to pedestrian-induced vibrations, impact sound, as well as re-radiated sound caused
by induced vibrations. This leads to comfort problems that arise even when the vibrational
and acoustical requirements of current standardizations are met.

During the last few decades, much research has been done on the human perception of floor
vibrations. Several design guidelines have been proposed, starting from the limitation of
deflections over subjective assessment-based methods, to dynamic response-based methods,
as in the current European standardizations [Weckendorf et al 2015]. Most of these guidelines
primarily focus on the limitation of the fundamental natural frequency achieved by simplified
calculation models, which often lead to rather conservative predictions.

With regard to acoustical requirements, until now, there exists no practical applicable design
model for the prediction of the vibro-acoustical behavior of timber floor constructions. The
effect of system components, such as suspended ceilings, floating floors, and other noise
and vibration abatement, is currently described by simplified design guidelines, that were
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essentially developed for traditional heavy-weight constructions. This might be misleading
due to differences in the mechanical impedances of the system’s components.

The radiated sound power is often predicted by measuring vibration patterns and radiation
efficiencies. This concept has been applied successfully to heavy construction; however, its
precision is questionable for light-weight timber construction with more complex vibration
fields and higher modal density.

Models that can predict vibro-acoustical behavior in a highly realistic way need to be de-
veloped prior to the construction [Negeira 2013]. As experimental testing is time-consuming
and expensive, a promising approach applies numerical methods [Floden 2014]. Once pre-
cise parametric models, calibrated by representative measurements, are developed, extensive
parametric studies can be extrapolated. Vibratory and acoustic performance, such as the
fundamental natural frequency and the radiated sound power, can be predicted by validated
numerical models and are used in existing, or for the development of new design guidelines.

1.2 State of the Art

The application of numerical models for the prediction of the vibro-acoustical behavior has
become the subject of various research studies. The recently finished research project, "Silent
Spaces" at the Lund University, Sweden, and the Aalborg University, Denmark, has focused
partly on the development of FE models of timber volume element buildings for the use
in the low frequency range of 20 − 200 Hz. In this specific design, a full building level is
prefabricated, including timber joist floors and self-supported ceilings. The modeling of the
air inside the cavity between each building level is investigated for various configurations,
including porous material. The effect of the transmission of structural vibration is examined
[Floden 2014]. A multi-storied building with repeating geometry was investigated by An-
dersen et al [2012], where the influence of the air modeled inside each room was considered.
Another contribution within the same project investigates the elastomer material, that is
implemented between each of the levels [Negeira 2013].

The current research project, "Vibroakustik im Planungsprozess für Holzbauten" at the Tech-
nical University Munich (TUM), in cooperation with the University for Applied Science
Rosenheim, follows a hybrid Finite-Element-Method (FEM)/Statistical Energy Analysis
(SEA) approach, predicting the sound transmission across junctions of building components
[Winter et al 2014] in an effort to close the so-called mid-frequency gap. A numerical model
is developed of a T-junction, formed by a floor and a wall, both made of CLT. The dynamic
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properties of the model are based mainly on the results from the "Vibwood" research project
[Kohrmann et al 2014].

Current research at Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) in
Switzerland uses SEA approaches to model the airborne sound transmission across composite
heavyweight-lightweight floors [Churchill et al 2011]. The floor is a hybrid construction,
with slabs made of timber joists and a concrete topping. Further investigation focuses on
a resilient suspended ceiling [Churchill and Hopkins 2013a]. Especially, the stiffness of the
ceiling hangers is assessed, based on the measurement setup proposed by Brunskog and
Hammer [2002]. Within the scope of this research, the material properties of CLT are
determined by ultrasonic and laser scanning measurement techniques, and are compared to
a Modal Analysis of a corresponding FE model [Churchill and Hopkins 2013b].

In 2009, the research project, "Schwingungstechnische Optimierung von Holz und Holz-Beton-
Verbunddecken", was completed at TUM. Parallel measurements and numerical simulations
with updated FE models were performed for LJ, Nail-Laminated Timber (NLT), CLT, and
composite concrete/timber floors. The serviceability, linked to the structural vibrations and
its perception by humans inside buildings, was investigated. An alternative design method
to the dynamic response-based method in DIN EN 1995-1-1:2010-12 is proposed [Winter
et al 2010][Hamm et al 2010].

A simplified FE model of a CLT floor with floating floor was developed at the Technical
University Graz. Models using 2D-shell elements with idealized material properties as well
as 3D-volume elements were examined. Dry and liquid screed were modeled for light and
heavy weight construction, with additional fillings. Experimental as well as numerical Modal
Analyses were performed, and the resulting eigenfrequencies were compared. Time courses
of vibrations caused by heel-drop excitation were examined [Bogensperger et al 2010].

Ljunggren [2006] investigated the dynamic properties of lightweight steel-framed construc-
tions, including suspended ceilings. He performed modal testing to derive the modal pa-
rameters of the floor and developed a TMD made of visco-elastic material to control the
resonant vibrations. Further, the human vibration perception was investigated for single
and multi-frequency vibrations.

The material properties of CLT slabs were determined by a detailed measurement-based
investigation by Gülzow [2008]. He updated the material properties of analytical models by
means of modal parameters determined by EMAs. A non-destructive testing procedure was
introduced. The fundamental mechanics of wood was summarized by Grimsel [1999]. Aicher
and Dill-Langer [2000] described the rolling shear modulus of a board inside a CLT slab as
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a smeared shear stiffness of the structural element, which depends on the cutting pattern
rather than an intrinsic material parameter. A numerical study on the rolling shear modulus
performed by Feichter [2013] showed the influence of the directions of the annular rings and
the size of the board.

The optimal design parameters for TMD have been subject to research for decades. Den Har-
tog [1952] initially formulated equations for undamped Single-Degree-of-Freedom (SDOF)
systems. Optimized parameters for Multiple-Degrees-of-Freedom (MDOF) systems and the
use of multiple TMDs to attenuate the dynamic response of structures have appeared ever
since Warburton and Ayorinde [1980], Sadek et al [1997], Rana [1996]. A more recent ap-
proach to optimize TMDs for damped systems was introduced by Bakre and Jangid [2007].

The determination of radiation efficiencies from sound intensity measurements is a stan-
dardized procedure [DIN EN ISO 9614-1:2009-11]. A method to derive radiation efficiency
from structure-borne sound velocities in spatial domain was introduced by Hashimoto [2001],
wherein he points out the advantage of possible measurements in a noisy environment. In an
older, alternate approach, the velocity data are processed in the wave number domain and
radiation efficiencies are calculated semi-analytically by means of averaged Greens functions
[Williams and Maynard 1982].

1.3 Research Project "VibWood"

1.3.1 Goal of the research

This dissertation is part of the recently completed research project, "VibWood", which aims
for the development of design guidelines, that describe the acoustical and dynamic behavior
of timber floors and for designing adaptive protection systems against vibrations [Kohrmann
et al 2014].

Within this project, comprehensive measurements are performed on characteristic timber
floor systems. Parallel to that, corresponding hybrid FE and radiation models are developed,
which are calibrated according to results measured. Based on those models, the physical
experiments are supplemented with subsequent parametric simulations as regards the vibro-
acoustical behavior of timber floor systems in the frequency range below 125 Hz. While the
parameter combinations of the physical experiments are limited, the numerical simulations
can cover a wide, practically relevant parameter space. In this section, the part of the
research project, which is not covered by this dissertation, will be briefly described, since
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it is mandatory for the understanding of input data of the numerical models. For a more
detailed description, see [Kohrmann et al 2014].

For developing accurate FE models, it is inevitable to evaluate the material and dynamic
properties of the modeled structures. Three different types of wooden floor constructions
are tested in the floor testing facility at the University of Applied Science in Rosenheim. In
addition, measures to improve the vibrational behavior with respect to vibrations and sound
radiation are investigated, such as floating floors, suspended ceilings, and the application of
TMDs [Hanke 2012]. Operational and Experimental Modal Analyses (OMAs and EMAs)
are performed using shaker and modal hammer excitations. The radiated sound power is
measured by an intensity probe, using discrete intensity measurement method. Simultane-
ously, the structure-borne velocity is measured by a grid of accelerometers, and the radiation
efficiency is derived from both results.

1.3.2 Floor testing facility

The floor testing facility in Rosenheim stretches over two levels, with a source room in the
upper level and a receiving room underneath. The floor separating both rooms consists
of reinforced concrete with a floating floor. It has an aperture for test objects, measuring
5.52 m × 5.52 m. For the bearing of the test objects, L-shaped steel profiles are attached
to the reinforced concrete. The receiving room has a volume of V ≈ 115.5 m3. For intensity
measurements, it is equipped with sound absorbing polyester fiber blocks, CARUSO-ISO-
BOND R©, to reduce errors caused by reflexions. Data is acquired by a Müller-BBM PAK
MKII multi-channel measurement device.

1.3.3 Tested floor configurations

One of the main goals of the research project is to cover the main timber floor construction
styles. Weckendorf et al [2015] give a classification of timber floor systems and identify
essentially two main classes. One class combines composed parallel joist members with a
semi-rigidly attached sub-floor. Subsystems can be identified by the chosen type of joists
(e.g., sawn lumber, Engineering Wood Products (EWP), wooden I-Joists (IJs)). The second
class covers massive timber constructions (e.g., NLT, Laminated Veneer Lumber (LVL),
CLT). Not considered by this classification are floors that can be described as hollow box
constructions. Within these floors, horizontal and vertical elements are rigidly attached and
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(a) LJ floor

(b) CLT floor

(c) HBG floor
Figure 1.1: Schematic representation of cross-sections of tested floor styles normal to the main load-

bearing direction

form a cavity inside the floor, which can be filled with functional material (e.g., additional
loading, insulation, TMDs).

A schematic representation of floor styles, tested in this project, is given in Figure 1.1. An
LJ floor using sawn lumber beams with screw-connected Oriented Strand Boards (OSBs)
as sub-floor will represent the first class (see Fig. 1.1a.) For the second class, a CLT floor
is chosen (see Fig. 1.1b). Finally, an Hollow Box Girder (HBG) floor completes the three
considered floor systems (see Fig. 1.1c). The floors are tested in different states of con-
struction. Besides the raw state, floating floors with cement and dry screeds, a suspended
ceiling, or a combination of both is applied. To form reproducible support conditions in
every configuration, stripes of elastomer material are arranged between the bearings and the
main structural elements of each floor. Additionally, the main structural element’s vertical
displacement is restricted at the bearings to prevent lifting [Kohrmann et al 2014].
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1.3.4 Measurements

1.3.4.1 Modal testing

The dynamic behavior of the test objects is derived from either an Operational Modal Anal-
ysis (OMA) or an EMA. Therefore, frequency response functions of all considered floor
types and construction states are measured by shaker and modal hammer testing. The dy-
namic response of each layer of the construction is measured using a measurement grid of
12 × 12 accelerometers. This allows a comparison of the modal behavior of the main floor,
the screed and the paneling of the suspended ceiling individually, as well as a change of their
characteristics, when additional structures were applied.
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Figure 1.2: Example for measured frequency response functions and eigenmodes (The excitation signal is
a logarithmic sine sweep with a duration of 256 s and a starting frequency of 3 Hz)

As an example, a driving point accelerance of a raw five-layered CLT floor measuring
5.50 m× 5.50 m composed of four coupled CLT slabs in the frequency range 0 − 100 Hz
is shown in Figure 1.2. Since the resonance peaks are clearly separated in this frequency
range, the modal shapes can be approximated out of an OMA at the peaks. The damping
ratios are derived using the Full Width at Half Maximum (FWHM) criterion. The corre-
sponding modal shapes are included into the figure for better visualization. The derived
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modal parameters are compared to the results of an EMAs using the commercial software
ME’scopeVES R© from Vibrant Technology Inc. [Borch 2013]. Based on those modal
parameters, the material properties of the developed FE models (see Section 3.2) are cal-
ibrated using Model Updating [Mottershead and Friswell 1993] [Friswell and Mottershead
1995].

1.3.4.2 Sound intensity testing

The sound radiation behavior of different floor constructions considered is determined by
intensity measurements. Therefore, the test objects are excited by an electro-dynamic shaker,
equivalent to the modal testing mentioned above. The location of the shaker is generally on
top of the floor constructions, and measurements with direct excitations of the paneling of
the suspended ceiling are also carried out [Winter 2012].

Figure 1.3: Simultaneous intensity and vibration measurement

The receiving room below the test objects, including the measurement set up, is shown in
Figure 1.3. Discrete measurements using a pp-intensity probe are performed with variable
measurement grid sizes from 0.5 m down to 0.125 m. To handle the large amount of mea-
surement locations, the intensity probe is mounted to a manually moveable measurement
apparatus. Parallel measurements of the dynamic response of the bottom structure of the
floors are carried out. Therefore, an accelerometer is mounted to the ceiling or the main
floor at the intersection of the intensity probe’s axis with the surface of the test object.
Figure 1.3 further shows the absorbing polyester fiber blocks at the walls to reduce lateral
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reflections. The absorbers for the attenuation of vertical reflections are implemented into
the shown boxes on the floor, with a depth of 0.80 m. The boxes are covered with steel grat-
ing to maintain accessibility. From the measured sound intensity, in combination with the
structure-borne sound velocity derived from the measured acceleration, the radiated sound
power as well as the radiation efficiency are determined. The results are used to calibrate
the developed numerical models.

1.4 Outline

The goal of this thesis is to perform numerical studies complementing the measurement-
based investigations of the research project "Vibwood". Parametric numerical models of the
floor constructions considered are developed and optimized for use within parametric stud-
ies. Different excitation techniques are implemented for Harmonic Frequency and Transient
Analyses. For the evaluation of the results, acoustical tools predicting the radiated sound
power are designed based on ITMs. The models are calibrated by measured data with re-
spect to modal parameters. A validation of the evaluation models is performed by laboratory
testing. The results of parametric studies are evaluated with regard to the specific influence
of each parameter of the system. A GUI is developed to support the engineer in the planing
process.

Chapter Two presents the fundamental theory of selected topics that are focused on in this
thesis. The knowledge of the orthotropic material behavior of wood is essential for the devel-
opment of FE models. Special focus is given to coordinate transformation, since especially
for CLT constructions, the orientation of the cutting pattern of the implemented boards
influences the overall stiffness of the CLT slabs. In this context, the rolling shear modulus
of wood is discussed. The procedure of a Dimensional Analysis is explained. The complex
database achieved from a parametric study can be condensed to a number of nomograms
using dimensionless parameters derived by the Dimensional Analysis.

A brief introduction into the Fourier Transform is given. The impact of the aliasing effect
on finite sinusoidal signals is investigated. The theoretical basics of sound radiation of plates
is examined. Near- and far-field conditions and the effect of finite plates in the wave number
domain are derived. Modal parameters are essential for the calibration of numerical models
with measurement data. The Modal Analysis to be performed, is described for undamped
systems.
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Chapter Three gives a detailed overview of the numerical models developed. The design
of the entirely parametric FE-models is explained, covering the idealizations, that have
been made, and the discretization process. The modular structure of the FE-models is
described, which is necessary for a fully automated procedure during the intended parametric
studies. In this context, the programmed interfaces between the individual used commercial
software are introduced. Various excitation techniques covering single and Rain-on-the-Roof
(ROTR) excitation are implemented for the use within Harmonic Frequency Analyses, as
well as numerical step-by-step pedestrian loading for transient investigations. An acoustical
evaluation model is developed for the prediction of the radiated sound power out of structure-
borne sound velocities. This is necessary since the adjacent room below the floors is neglected
in the numerical simulations, thus no sound pressure data is available.

The numerical models are respectively calibrated and validated in Chapter Four. A Model-
Updating procedure is performed for the calibration of the material parameters of the numer-
ical CLT models, based on a comparison of the modal parameters derived from OMAs and
EMAs. For less complex structures, the stiffness parameters are achieved from measured first
eigenfrequencies. A method is introduced to determine the idealized material parameters
of complex composite plate structures by matching the curves of measured and simulated
bending wave numbers over frequency. The developed acoustical prediction tool for plate-
like structures is validated by laboratory measurements on an aluminum plate mounted into
the aperture of a window-testing facility. Different approaches for the modeling of the air
inside the cavity between floor and the suspended ceiling are investigated. A detailed inves-
tigation on the frequency range, to which the evaluation model can be applied is presented.
A criterion is derived for the calculation of the maximal possible frequency range based on
the bending stiffness of the plate and the sample interval.

In Chapter Five, the performed parametric studies are introduced, and the results are
evaluated. Various parametric studies are carried out. A study investigates the influence of
geometrical parameters on the resulting eigenfrequencies and the radiated sound power of
CLT floors is evaluated with nomograms based on dimensionless parameters. An approach,
that applies TMDs to only attenuate the amplification linked with those eigenmodes of a
floor construction, that have a major impact on the sound radiation, is presented. Other
parametric studies are performed, either giving an insight into the influence of specific pa-
rameters of suspended ceilings on the radiation behavior of the floor constructions or for
establishing a database, that can be accessed by a graphical user interface. Coefficients are
derived to evaluate the data regarding the expected impact sound insulation.
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2 Fundamental Theory

2.1 Elastic Properties of Wood

The elastic properties of wood strongly depend on its anatomy which is governed by the direc-
tion of fibers and its annular rings. Three principal directions (L=longitudinal, T=tangential
and R=radial) can be identified as sketched in Figure 2.1. For a detailed description of its
macro and micro structure, see e.g. Grimsel [1999]. He also gives an explanation how the
elastic properties can be identified by testing.

R
T

L

Figure 2.1: Anatomy of wood and coordinate system

On the macro level, the material’s properties can be considered as smeared over the volume
by assuming, that the impact of the inhomogeneous cellular structure is restricted to the
micro level. In this case, wood can be described as an linear elastic, directional homogeneous
and anisotropic solid with orthogonal isotropic (=orthotropic) properties [Ranz 2007]. It
has symmetrical properties regarding the three principal directions (L,T,R) Lieblang [2000].
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The following sections will give a short excursion on orthotropic material law and coordinate
transformation. The influence of different sawing patterns will be discussed with a special
focus on the rolling shear modulus.

2.1.1 Linear elastic anisotropic media

The deformation behavior of linear elastic anisotropic media due to applied loads can be
expressed by Hooke’s law which, in general, is represented by the constitutive equation:

Σ = C E resp. E = S Σ (2.1)

with

Σ ∈ R3,3 : 2nd order Cauchy stress tensor
E ∈ R3,3 : 2nd order Green-Lagrangian strain tensor
C ∈ R3,3,3,3 : 4th order Stiffness tensor
S ∈ R3,3,3,3 : 4th order Compliance tensor,

which can also be written as

σij = Ckl
ij εkl resp. εkl = Sijkl σij (2.2)

using Einstein notation with indexes i,j,k,l = 1, 2, 3 representing any Cartesian coordinates.
Depending on the input and output variables, stiffness or compliance tensor has to be taken
into account. The following section will focus on the stiffness tensor.

According to the principle of conservation of momentum, shear stress components σij and
σji must be equal, which leads to a symmetric stress tensor. The strain tensors is symmetric
due to the symmetry of the metric tensor. Thus, both are specified by six components and
can be simplified to 1st order tensors Σ̃, Ẽ ∈ R6 using Voigt notation [Lieblang 2000].
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Σ =


σ11 σ12 σ13

σ22 σ23

sym σ33

 −→ Σ̃ =



σ1

σ2

σ3

σ4

σ5

σ6


=



σ11

σ22

σ33

σ23

σ13

σ12


(2.3)

The strain tensor in Equation (2.5) is chosen to represent the engineering shear strain which
is twice the tensorial shear strain (e.g., γ23 = 2ε23). Compared to the stress tensor, this
factor 2 for engineering shear strain can be interpreted as a product of tensorial shear strain
with the Reuter matrix [Reuter 1971]

R =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


(2.4)

E =


ε11 ε12 ε13

ε22 ε23

sym ε33

 −→ Ẽ =



ε1

ε2

ε3

ε4

ε5

ε6


= R



ε11

ε22

ε33

ε23

ε13

ε12


=



ε11

ε22

ε33

2ε23

2ε13

2ε12


. (2.5)

In this way, the stored energy stays the same for both tensorical and Voigt notation [Chaves
2013]

1
2σijεji = 1

2Σ̃TẼ. (2.6)

Symmetric stress and strain tensors have an influence on the stiffness tensor’s components
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as well, leading to minor symmetry [Chaves 2013]:

Ckl
ij = Ckl

ji = C lk
ij = C lk

ji , (2.7)

reducing the components of the stiffness tensor from 81 to 36 allowing the constitutive
Equation (2.2) to be expressed in Voigt notation as follows:



σ11

σ22

σ33

σ23

σ13

σ12


=



C11
11 C22

11 C33
11 C23

11 C13
11 C12

11

C11
22 C22

22 C33
22 C23

22 C13
22 C12

22

C11
33 C22

33 C33
33 C23

33 C13
33 C12

33

C11
23 C22

23 C33
23 C23

23 C13
23 C12

23

C11
13 C22

13 C33
13 C23

13 C13
13 C12

13

C11
12 C22

12 C33
12 C23

12 C13
12 C12

12





ε11

ε22

ε33

2ε23

2ε13

2ε12


(2.8)

In case of existence of a two-fold derivable elastic potential for each volume element ΠiV

(which can be assumed for wood in general Lieblang [2000], especially for acoustical problems,
in which small deformations occur) stresses σij can be derived as follows:

σij = ∂ΠiV

∂εij
(2.9)

[Müller 2010a]. Applying Schwarz ’ theorem for the symmetry of second derivatives

∂2ΠiV

∂εij∂εkl
= ∂2ΠiV

∂εkl∂εij
, (2.10)

leads to:

∂σij
∂εkl

= Ckl
ij = ∂σkl

∂εij
= Cij

kl. (2.11)

This results in major symmetry [Chaves 2013], and thus the independent components of the
linear elasticity tensor for anisotropic materials are further reduced from 36 to 21. Again
using Voigt notation the 4th order tensor, C ∈ R3,3,3,3 can be reduced to a 2nd order tensor
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C̃ ∈ R6,6 also called the stiffness matrix [Grimsel 1999].

C̃ =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66


(2.12)

2.1.2 Property transformation

Anisotropic material properties change when the principal coordinate system is changed.
After an arbitrary rotational transformation of principal axes i′,j′,k′,l′ = x,y,z from the
reference axes i,j,k,l = 1,2,3 the resulting stress and strain tensors can be expressed in
Einstein notation as follows:

σi′j′ = gii′g
j
j′σij (2.13)

εk′l′ = gkk′g
l
l′εkl. (2.14)

Herein the stress and strain tensors are multiplied by metric tensors gi′i′ , g
j
j′ , gkk′and gll′ ∈ R3,3.

Using (2.13) and (2.14), Equation (2.2) can be written in terms of the stress and strain tensor
referred to the reference axes as

σij = gi
′

i g
j′

j g
k
k′g

l
l′C

kl
ij εkl (2.15)

leading to a new set of components of the stiffness tensor

Ck′l′

i′j′ = gi
′

i g
j′

j g
k
k′g

l
l′C

kl
ij . (2.16)

The metric tensors for a rotational transformation along the reference axes are [Allert 2014]:

g1 =


1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 g2 =


cos(β) 0 sin(β)

0 1 0
− sin(β) cos(β)

 g3 =


cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1


(2.17)
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The angles of rotation are α, β and γ. As an example, a rotation along the first reference axis
will be shown in matrix notation. Starting with the transformation of the stress tensor,

Σ̃′ = g1 Σ̃ gT
1 , (2.18)

the transformed stress tensor must hold

Σ̃′ = T1Σ̃. (2.19)

Here, T1 ∈ R6,6 represents the coordinate transformation matrix in Voigt notation. For
a rotation along the first reference axis using the abbreviations c = cosα and s = sinα,
Equation (2.18) yields:


σ′11 σ′12 σ′13

σ′22 σ′23

sym σ′33

 =


1 0 0
0 c s

0 −s c



σ11 σ12 σ13

σ22 σ23

sym σ33




1 0 0
0 c −s
0 s c

 (2.20)

which solved in vector form


σ′11

σ′22

σ′33

σ′23

σ′13

σ′12


=



σ11

c2 σ22 + s2 σ33 + 2cs σ23

s2 σ22 + c2 σ33 − 2cs σ23

−cs σ22 + cs σ33 + (c2 − s2) σ23

c σ12 − s σ13

s σ12 + c σ13


(2.21)

leads to the coordinate transformation matrix [Mascia and Lahr 2006]

T1 =



1 0 0 0 0 0
0 c2 s2 2cs 0 0
0 s2 c2 −2cs 0 0
0 −cs cs c2 − s2 0 0
0 0 0 0 c −s
0 0 0 0 s c


. (2.22)
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For a general transformation,

Σ̃′ = g Σ̃ gT (2.23)

the transformation matrix yields the following:

T =



g2
11 g2

12 g2
13 2g21g31 2g11g31 2g11g21

g2
21 g2

22 g2
23 2g22g32 2g12g32 2g12g22

g2
31 g2

32 g2
33 2g23g33 2g13g33 2g13g23

g13g12 g23g22 g33g32 g33g22 + g32g23 g33g12 + g13g32 g33g32 + g33g32

g11g13 g21g23 g31g33 g33g21 + g31g23 g11g33 + g13g31 g33g31 + g33g31

g12g11 g22g21 g32g31 g31g22 + g32g23 g31g12 + g11g32 g11g22 + g21g12


. (2.24)

The transformation of the engineering shear strain tensor (2.5) is performed in a slightly
different manner:

Ẽ′ = RTR−1Ẽ = T−TẼ (2.25)

with

RTR−1 = T−T. (2.26)

The property transformation can be derived in matrix notation from (2.1), (2.19) and (2.25)

Σ̃ = T−1 Σ̃′ = T−1 C̃ Ẽ′ = T−1 C̃ T−T Ẽ = C̃′ Ẽ (2.27)

where the transformed stiffness matrix is defined as

C̃′ = T−1 C̃ T−T. (2.28)

The transformation of the compliance matrix can be derived analogously, leading to

S̃′ = TT S̃ T. (2.29)
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2.1.3 Orthotropy

In case of existence of three orthogonal planes along which the stiffness tensor has invariant
components, the material is considered orthogonal isotropic or orthotropic. Thus, a mirror
transformation along the normal axis to these planes must not change the tensor components.
Rotating the first reference axis using g1 out of (2.17) by α = 180◦, the transformation
matrix (2.24) becomes:

T1,180 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


(2.30)

leading to a transformed stiffness matrix,

C̃′ = T−1
1,180 C̃ T−T

1,180 =



C11 C12 C13 C14 −C15 −C16

C22 C23 C24 −C25 −C26

C33 C34 −C35 −C36

C44 −C45 −C46

sym C55 C56

C66


. (2.31)

To fulfill the prerequisite that the components of the stiffness matrix must not change,
it becomes clear by comparing Equation (2.31) with Equation (2.12), that the following
components must be equal to zero:

C15 = C16 = C25 = C26 = C35 = C36 = C45 = C46 = 0. (2.32)
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This means that for materials with one symmetry plane, the independent non-zero compo-
nents of the stiffness matrix are reduced to 13 (monoclinic symmetry) [Chaves 2013]

C̃monoclinic =



C11 C12 C13 C14 0 0
C22 C23 C24 0 0

C33 C34 0 0
C44 0 0

sym C55 C56

C66


. (2.33)

Starting from monoclinic symmetry and assuming a second plane of symmetry (which implies
there must also be a third one) and deriving in an analog way leads to the general form
of Hooke’s law for orthotropic material with six independent non-zero components of the
stiffness matrix as follows:

C̃orthotropic =



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym C55 0
C66


. (2.34)

It can be interpreted as a condition in which shear and normal strains do not interact.
Further, shear strains are not coupled while normal strains are.

In order to express the constitutive Equation (2.2) with the engineering constants Young’s
modulus E, Poisson ratio ν and shear modulus G, it is advantageous to use the compliance
tensor which can be achieved by inverting the stiffness tensor.



εx

εy

εz

γyz

γxz

γxy


=



S11 S12 S13 0 0 0
S22 S23 0 0 0

S33 0 0 0
S44 0 0

sym S55 0
S66





σx

σy

σz

τyz

τxz

τxy


(2.35)

The relation between shear stresses τij and shear strains γij is given by the shear moduli
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Gij, leading to trivial terms for the components S44 - S66. Since normal stresses and normal
strains are coupled, the derivation of the components describing this relation is slightly more
complicated. The components of the first row are as follows:

S11 = 1
Ex
, S21 = −νxy

Ex
, S31 = −νxz

Ex
. (2.36)

The Poisson ratios are νij = − εj
εi
.

Replacing the remaining components analogously, Equation (2.35) yields:



εx

εy

εz

γyz

γxz

γxy


=



1
Ex

−νyx
Ey
−νzx

Ez
0 0 0

−νxy
Ex

1
Ey

−νzy
Ez

0 0 0
−νxz

Ex
−νyz

Ey
1
Ez

0 0 0
0 0 0 1

Gyz
0 0

0 0 0 0 1
Gxz

0
0 0 0 0 0 1

Gxy





σx

σy

σz

τyz

τxz

τxy


(2.37)

The stiffness tensor C can be derived by inverting S.

From the symmetry of the compliance tensor the following relations can be derived:

νxy
Ex

= νyx
Ey

,
νxz
Ex

= νzx
Ez

,
νyz
Ey

= νzy
Ez

. (2.38)

This shows that the Poisson ratios νij and νji are coupled by Ei and Ej, which leads to a
minor and a major set of Poisson’s ratios. To prevent errors during numerical simulations,
attention has to be paid to the set of Poisson ratios that is in use. Thus, nine independent
engineering material constants are necessary to describe an orthotropic material.

2.1.4 Sawing patterns

A major problem linked to numerical modeling of wood is caused by its anatomy. For wooden
engineering products like CLT, the modeling of each component (individual boards) is not
practical, since in most cases, the exact configuration is unknown. Simplified approaches
are necessary. One possibility is to idealize the wooden components as plane material using
Cartesian coordinates. This does not take into account, the circular characteristics of a log
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and the dependency of the components material properties on the sawing patterns, used
within a real construction.

For wooden engineering construction, logs are converted into timber by different types of
sawing. Depending on its position inside the log, the pattern of annular rings changes. While
timber joists are usually sawn from the higher quality log’s center, the properties of timber
boards, as used for CLT, depend mainly on the applied sawing pattern. Two examples for
common sawing patterns are shown in Figure 2.2. Plain sawn boards have annular rings
almost parallel to the face of the board, whereas rift sawn boards have almost perpendicular
annular rings [Aicher and Dill-Langer 2000]. Also, patterns with different directionality or
where the pith remains inside the piece are possible.

z
y

x

R
TL

R
T

L

plain sawn board

rift sawn board

Figure 2.2: Sawing patterns

For the shown types of timber, the principal directions (L,T,R) of the material can be
assigned to the principal directions of the structural element (x,y,z) [Gülzow 2008].

In timber engineering, different sawing patterns are used within a construction. Since it is
usually not possible to predict the sawing pattern of every single board, a differentiation
between anatomical tangential and radial direction is not practical. Therefore, it is common
to combine both directions under the term ’perpendicular’ to the fiber direction (⊥). The
anatomical, longitudinal direction is described as ’parallel’ to the fiber direction (‖) [Gülzow
2008]. Thus, the necessary independent material parameters of wood reduce from nine to
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six. The error induced by this simplification is discussed in Section 2.1.5.

Ex = E‖, Ey = Ez = E⊥, νxy = νxz = ν‖⊥, νyz = ν⊥⊥

Gxy = Gxz = G‖⊥, Gyz = G⊥⊥
(2.39)

G⊥⊥ represents the rolling shear modulus. It is necessary to mention that even if it seems
obvious from these assumptions, timber has no transverse isotropic behavior, since

G⊥⊥ 6=
E⊥⊥

2(1− ν⊥⊥) . (2.40)

2.1.5 Rolling shear and perpendicular Young ’s modulus

Rolling shear plays a minor role in timber joist constructions; its contribution to the effective
stiffness of the construction can be neglected in general [Aicher and Dill-Langer 2000]. As
against this, in case of CLT constructions, especially, layers perpendicular to the main span
direction of the floor are subjected to rolling shear. Consequently, the magnitude of the
rolling shear modulus has an impact on the effective bending stiffness of the floor [Aicher
and Dill-Langer 2000].

According to Aicher and Dill-Langer [2000], rolling shear modulus is not an intrinsic material
parameter. They describe the same on a macro scale, as dependent on meso-scale on-axis
properties and on geometry and size of the timber. For different sawing patterns with
varying locations of the pith leading to different curvatures of annular rings, FE simulations
are performed to calculate the apparent rolling shear modulus. It is shown that for an
angle of 45◦, the apparent rolling shear modulus is up to four times higher compared to its
nominal value. Blaß and Flaig [2012] test the rolling shear modulus of a large number of
timber boards of varying cutting patterns. They formulate regression equations, showing a
dependency on the width of the boards, the width of the annular rings, and the density. A
dependency on the curvature of the annular rings, as proposed by Aicher and Dill-Langer
[2000], is not verified by this study. This statement is questionable, since no proof is given
in the research report.

FE simulations on a large scale are performed by Feichter [2013]. He compares the calculated
effective rolling shear modulus to the nominal shear modulus given by a CLT fabricator. Two
configurations with alternating board sizes are investigated. One, where the annual rings are
assumed parallel with angles for 0◦ − 90◦ to the face of boards, as shown in Figure 2.3 and
the other configuration is simulated, including the curvature of the annular rings, by using
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material properties in cylindrical coordinates, where the distance of the origin (pith) to the
middle of the board is varied. The study confirms the results from Aicher and Dill-Langer
[2000]. The calculated effective rolling shear modulus shows a maximum at an angle of 45◦,
which is significantly higher than the nominal value. As another result, the bigger the aspect
ratio of the board’s dimensions, the higher the magnitude of the rolling shear modulus gets.
The distance of the origin, obviously also, has an impact, since it changes the curvature of
the annular rings. Feichter [2013] also shows, that relief grooves (see Fig. 2.5), which are
common for boards used for CLT, are reducing the effective rolling shear modulus.

R
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L
R

T

L

R T

L

z
y

x

α = 0◦ α = 45◦ α = 90◦

Figure 2.3: Idealized annular rings directions

Mascia and Lahr [2006] derive theoretical Young’s and shear moduli for a hard- and softwood
Ipê and Pinus for an arbitrary oriented structural element, starting from initially determined
parameters. Euler ’s angles are used for the transformation. Three-dimensional diagrams
show the transformation behavior of Young’s and shear elastic moduli. Perpendicular and
rolling shear moduli’s behavior can also be seen here for transformation of 90◦ along an axis
perpendicular to the fiber direction. The following example will deal with this behavior in
detail.

Figure 2.4: Cross-section of a five-layered CLT
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A five-layered CLT construction is shown in Figure 2.4. A cross section with two perpendic-
ular layers is depicted. Inside each layer plain sawn boards are arranged with relief grooves
and small gapes in between.

For the development of a numerical model of a CLT floor, a full set of material parameters
is needed. Since the rolling shear modulus is not an intrinsic material parameter [Aicher
and Dill-Langer 2000], it has to be defined for each board individually, depending on its
dimensions and sawing patterns.

board with relief grooves

idealized board

standard board

Figure 2.5: Idealization of plain boards with relief grooves

To cope with this, some simplifications will be introduced. In Figure 2.5, plain sawn boards
are shown, with and without relief grooves. Since the grooves almost cut through the thick-
ness of the board, and the remaining part usually ruptures at first loading, three separate
boards can be assumed. These resulting smaller boards, on the one hand, have smaller as-
pect ratios, and on the other hand, the annular rings can be idealized, in most cases, to a
good approximation, as parallel. The latter leading to one board with an angle of 0◦ and
two boards with angles 30◦ − 45◦ to the face of the boards.

Neglecting the influence of the dimensions of the idealized boards, the apparent shear mod-
ulus can be calculated for each angle, using the coordinate transformation for lamina (2.29)
along the longitudinal x-axis. A complete compliance matrix of spruce (see Eq. (2.41)) is
presented by Grimsel [1999]. It is given for the principal directions of the material (L,T,R).
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S̃spruce =



61.6 −33 −27 0 0 0
2500 −600 0 0 0

1430 0 0 0
27000 0 0

sym 1590 0
1290


10−12 m2

N (2.41)

The corresponding engineering material properties are summarized in Table 2.1.

Table 2.1: Material properties of spruce according to Grimsel [1999]

EL ET ER GTR GLR GLT

16200 400 699 37 628 775 106 N
m2

νTR νLR νTL νRT νRL νLT
0.419 0.0188 0.535 0.24 0.438 0.0132 −

They must be transformed into the principal directions of a structural element (e.g., board).
The material property transformation for the compliance matrix is derived in Section 2.1.2
Equation (2.29). The transformation matrix given in Equation (2.22), is deployed for a
rotational coordinate transformation along the fiber direction.

Solving the transformation for the resulting rolling shear modulus Gyz and applying the
relations from Equation (2.37) yields the following:

1
Gyz

= S ′44 = (4 S22 + 4 S33 − 8 S23 − 4 S44) s2c2 + S44 (s4 + c4) (2.42)

It becomes clear, that the rolling shear modulus is strongly connected to Young’s moduli in
perpendicular direction. Obviously, a rotational transformation must have an effect on these
parameters as well (and on the related Poisson ratios).

1
Ey

= S ′22 = S22 c
4 + (2 S23 + S44) s2c2 + S33 s

4 (2.43)

1
Ez

= S ′33 = S22 s
4 + (2 S23 + S44) s2c2 + S33 c

4 (2.44)

The graphs of the resulting rolling shear and the perpendicular Young’s moduli, calculated
for a angle of rotation along the fiber axis from 0◦ − 90◦, are depicted in Figure 2.6.
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Figure 2.6: Coordinate transformation of material properties; y,z see Fig. 2.3

In this simplified example, as described by Aicher and Dill-Langer [2000] and Feichter [2013],
it can be observed that the rolling shear modulus has a maximum at 45◦, which is more than
five times the nominal value. Furthermore, at this angle of rotation, both the perpendicular
Young’s moduli become minimal and equal. The values are interchanged at 90◦. This
leads to the assumption that the rolling shear modulus is generally underestimated, when
using the nominal value for CLT constructions, while the perpendicular Young’s moduli are
overestimated. The assumption of a combined perpendicular modulus (see [Gülzow 2008])
is feasible for every angle.

When parametric studies of a large number of CLT floors are intended to be performed, it is
clear, that a FE-model cannot be as detailed as to model each board individually regarding
its local coordinate systems. Real structures, the necessary information can be taken from,
are usually only available in case of few reference floors. Thus, the location of the gaps
between the boards and the grooves inside the board cannot be accounted for as well. In
Chapter 4, the global material properties for CLT floors, with smeared layers, are derived
from an EMA on reference floors using a model-updating algorithm. The above described
example is used to explain the results of the model-updating regarding their plausibility.
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2.2 Dimensional Analysis

With the help of a dimensional analysis, complex physical problems can be reduced to their
core context based on the concept of similarities. The method states that every physical
quantity can be expressed as a product of basic physical dimensions, according to physical
laws. Thus, for example, the physical quantity "force" can be derived form Newton’s second
law of motion as a product of the dimensions mass and acceleration. It can also be expressed
in scale units as [F] = kg·m

s2 . When physical phenomenons are described in practice,
usually, dimensionless parameters are considered. Some examples are Reynold’s number,
Froud number, Mach number and so on.

Different methods have been published for the derivation of the similitude. For mechani-
cal problems, usually, Buckingham’s π-theorem is applied, which will be explained in the
following. Introductions to other methods are given, for example, in Zierep [1982].

2.2.1 Buckingham π Theorem

The theorem states that if a system with n variables Q1, . . . , Qn is considered, in which r

fundamental dimensions A1, . . . ,Ar are involved, n − r dimensionless quantities πi can be
defined, which are products and quotients of the original variables and parameters [Buck-
ingham 1914]. Each (scalar) model equation

f(Q1, . . . , Qn) = 0, (2.45)

between the physical quantities Q1, . . . , Qn of a mathematical model, can be replaced with
a corresponding relation between the πi:

f(π1, . . . , πn−r) = 0. (2.46)

This is especially useful for complex systems, that have not been researched so far, and thus
no algebraic or differential equations are available. The derivation of this theorem is shown
in the following.

The relevant physical quantities Q1, . . . , Qn, that are involved in the problem have to be
identified. The dimension of each of these quantities, indicated by [ ], can be expressed by a
power product of the fundamental dimensions A1, . . . ,Ar, according to Bridgman’s principle
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of absolute significance of relative magnitude [Bridgman 1922]. For mechanical problems
those are the triple: mass, length, and time.

[Q1] = Aa11
1 · Aa21

2 · . . . · Aar1
r

...

[Qn] = Aa1n
1 · Aa2n

2 · . . . · Aarnr

(2.47)

Herein the exponents of the fundamental dimensions are aαβ with α = 1,2,...,r and β =
1,2,...,n. The objective is to find independent power products of the derived physical quan-
tities that form dimensionless parameters

π = Qk1
1 ·Qk2

2 · . . . ·Qkn
n (2.48)

with unknown parameters for the exponents k1, k2, . . . , kn. Rewriting Equation (2.48) with
Equation (2.47), and expressing the same in dimensions, yields the following:

[π] = A0
1 · . . . · A0

2 = {Aa11
1 · . . . · Aar1

r }
k1 · . . . · {Aa1n

1 · . . . · Aarnr }
kn (2.49)

The exponents in Equation (2.49) can be written as a homogeneous linear system of equa-
tions, with r equations for the unknown parameters k1, k2, . . . , kn.

a11k1 + . . . + a1βkβ + . . . + a1nkn = 0
aα1k1 + . . . + aαβkβ + . . . + aαnkn = 0
ar1k1 + . . . + arβkβ + . . . + arnkn = 0

(2.50)

This system of equations transformed into matrix representation yields:

Q1 Qβ Qn

A1 a11 a1β a1n

Aα aα1 aαβ aαn

Ar ar1 arβ arn

(2.51)

Within this r × n dimensional matrix, the components in column β are related to the unit
of the derived quantity Qβ. Thus, the problem of finding independent power products for
a number of dimensionless parameters is substituted by a solution of a homogeneous linear
system of equations with r equations and n unknown parameters. The constructed coefficient
matrix is of rank r which leads to n− r linearly independent solutions.



Fourier Transform of Time or Spatial Limited Signals 29

To solve this system of equations, the Gaussian elimination algorithm is applied. This
algorithm is repeated, until the matrix has a canonical form consisting of a r × r identity
matrix to the left, and a remaining (n− r)× r matrix to the right:

Q1 Qβ Qr Q(r+1) Qβ Qn−r

A1 1 0 0 a1(r+1) a1β a1(n−r)

Aα 0 1 0 ai(r+1) aαβ aα(n−r)

Ar 0 0 1 ar(r+1) arβ ar(n−r)

(2.52)

Thus, the quantities Qβ are linearly independent for β ≤ r. For β > r, the dimension of Qβ

can be expressed as a power product of the dimensions of Q1, . . . ,Qr, with the corresponding
exponents in column β.

[Qβ] = [Q1]a1β · [Qβ]aiβ · . . . · [Qr]arβ (2.53)

Finally, the systems dimensionless parameters π1, . . . , πi, . . . , πn−r yield the following [Sonon
2001]:

πi = Qβ

Qa1i
1 ·Qaαi

β · . . . ·Qari
r

with [πi] = 1. (2.54)

In an experiment, the independent quantities can be varied freely, while the remaining
quantities are dependent on the former. This leads to some restrictions. The free quantities
have to be chosen to be linear independent, and a matrix composed of them only must be
of rank r itself. The dependent quantities contribute, each, only to a single dimensionless
parameter, while the free quantities, in general, can effect all of them [Runtemund 2006].
Especially, when nomograms are intended to be created, an appropriate choice of the free
quantities is necessary.

A dimensional analysis will be used to describe the aliasing effect of finite sinusoidal signals
in Section 2.3.2.3 and the results of a parametric study in Chapter 5.

2.3 Fourier Transform of Time or Spatial Limited Signals

The Fourier Transform is a mathematical process that serves as a principal analysis tool
for many scientific challenges [Brigham 1974]. It originally describes periodic but can also
be applied to non-periodic phenomena. Thus, arbitrary functions can be represented as a
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superposition of sine and cosine functions. Besides continuous problems in modern theory
signal processing, a discrete version of the Fourier transform is used to analyze and process
a sequence of measurements or data [Beerends et al 2003]. As a typical application, it relates
the measured time signals to its frequency content. Therefore, a common notation is to
distinguish between Continuous Time Fourier Transform (CTFT), Discrete Time Fourier
Transform (DTFT) and Discrete Fourier Transform (DFT) [Mandal and Asif 2007]. In
this chapter, the relationship between the three transform types is described for a time
limited signal. The theory is analogously applicable to the two-dimensional spatial problem
described in Section 2.4.

2.3.1 Continuous Time Fourier Transform (CTFT)

For time signals, the Fourier Transform relates a function f(t) with variable time t to a
function F (ω) with variable circular frequency ω. The Fourier integral and its inversion
formula are defined as follows:

F (ω) = 1
2π

∞∫
−∞

f(t)e−iωtdω Fourier integral (2.55)

f(t) =
∞∫
−∞

F (ω)eiωtdt Inversion formula. (2.56)

This holds true if the integral (2.55) exists for every value of ω. If f(t) and F (ω) are
related by Equations (2.55) and (2.56), the two functions are termed Fourier Transform Pair
[Brigham 1974]. The relationship is indicted by the notation as follows:

f(t) F (ω) = F [f(t)] (2.57)

with the operator of the Fourier transform F . For more detailed descriptions and examples
of Fourier Transform Pairs refer to Brigham [1974]. A different definition used in signal
processing is based on the frequency f . Thus, the circular frequency ω is substituted by
f = ω

2π and Equations (2.55) and (2.56) can be rewritten as follows:

X(f) =
∞∫
−∞

x(t)e−i2πftdf (2.58)

x(t) =
∞∫
−∞

X(f)ei2πftdt. (2.59)
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2.3.1.1 Properties of the CTFT

The properties of a CTFT can be found in literature (e.g. Brigham [1974]). However,
two fundamental theorems are given for the multiplication of functions f(t) and g(t) (resp.
x(t) and y(t)) and their transformed, which are of particular importance for the following
sections:

Convolution theorem

F [f(t) · g(t)] = 1
2π (F (ω) ∗G(ω)) (2.60)

F [f(t) ∗ g(t)] = F (ω) ·G(ω) (2.61)

F [x(t) · y(t)] = X(f) ∗ Y (f) (2.62)

F [x(t) ∗ y(t)] = X(f) · Y (f) (2.63)

Herein the convolution of two continuous functions (e.g., f(t) and g(t)) is defined as

f(t) ∗ g(t) =
∞∫
−∞

f(τ)g(t− τ)dτ (2.64)

=
∞∫
−∞

f(t− τ)g(τ)dτ commutativity. (2.65)

An asterisk is used as convolution operator.

Generalized Rayleigh-Parseval theorem

∞∫
−∞

f(t) · g∗(t)e−iωtdω = 1
2π

∞∫
−∞

F (ω) ·G∗(ω)eiωtdt (2.66)

∞∫
−∞

x(t) · y∗(t)e−i2πftdf =
∞∫
−∞

X(f) · Y ∗(f)ei2πftdt (2.67)

2.3.1.2 Time-limited signals

The CTFT of a finite signal can be interpreted as an infinite signal x0(t) multiplied by a
rectangular window function h(t). This is illustrated in Figure 2.7 for a cosine function
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with amplitude A and fundamental frequency f0. The corresponding functions are listed in
Table 2.2. The window function h(t) has a duration of T centered at the origin with T ·2πf0 =
5π. Thus, a multiplication x0(t) ·h(t) leads to a finite signal of 2.5 periods. The CTFT of the
continuous periodic function x0(t) leads to a non-periodic pair of Dirac delta functions X0(t)
of length A

2 . Since the cosine function is real and symmetric, the corresponding transformed
X0(f) is also real and symmetric. The same holds for the non-periodic rectangular window,
that transforms into a continuous cardinal sine function H(t) with peak value T . The
distance between the zero-crossings, separating the characteristic so-called side-lobes, is 1

T
.

According to Section 2.3.1.1, a multiplication in the original domain leads to a convolution
in the transformed domain. Thus, the truncated signal x1(t) = x0(t) · h(t) is transformed
into a pair of overlapping cardinal sines with individual peak values TA

2 (the superposed
course has a slightly different peak value [Brigham 1974]). Superimposed in gray is the
magnitude |X1(f)|. It has to be mentioned, that when the infinite signal x0(t) is intended
to be approximated by the finite signal x1(t), which is a common task in signal processing of
discrete data, since the computation capacity is limited, an error is induced by the truncation
that is referred to as leakage effect [Brigham 1974]. For investigations in the spatial domain,
usually finite data are processed, due to the finite dimensions of the test object.

x0(t)

f0−f0 f

X0(f)A

h(t)

f

H(f)

x0(t) · h(t) X0(f) ∗H(f)

1
T

−T
2

T
2

t

t

t f

A
2

A

TA
2

f0−f0

−T
2

T
2

1
T

Figure 2.7: Continuous Time Fourier Transform of a finite sinusoidal signal
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Table 2.2: Fourier transform pairs related to the time limitation of a cosine signal

Original domain Transformed domain

x0(t) = A cos(2πf0t) X0(f) = A

2 [δ(f − f0) + δ(f + f0)]

h(t) =


1 |t| < T

2
1
2 |t| =

T
2

0 |t| > T
2

H(f) = T
sin (πfT )
πfT

x1(t) = x0(t) · h(t) =
{
A cos(2πf0t) |t| < T

2
0 |t| > T

2

X1(f) = X0(f) ∗H(f)

= A

2 [H(f − f0) +H(f + f0)]

2.3.2 Discrete Fourier Transform (DFT)

Due to its continuous nature, the CTFT, briefly discussed above, is not suitable for digital
computing. Thus, the DFT is introduced in this section, which can be computed on digital
computers [Mandal and Asif 2007]. It should be mentioned, that the DFT in its original
form is usually not applied due to the inefficient computation of large data, but replaced by
the more efficient Fast Fourier Transform (FFT), which gives identical results and thus will
not be discussed here. A DFT comprises three process steps as follows:

• Analog-to-digital conversion (time sampling)

• Time limiting

• Frequency sampling

The process is visualized in Figures 2.8 and 2.9 for a signal similar to the example in Sec-
tion 2.3.1.2. The second process step is therefore negligible, since the signal is already time
limited. The signal x1(t) is time-shifted by +T

2 to avoid notation problems, which leads to a
complex X1(f) due to the odd sinusoidal function. The magnitude |X1(f)| stays identical.

2.3.2.1 Analog-to-digital conversion

A continuous time signal must be digitized to be stored into a digital computer. This so-
called sampling is performed by multiplying the continuous signal x1(t) by an impulse train:
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Figure 2.8: Analog-to-digital-conversion

s1(t) =
∞∑

m=−∞
δ(t−mT1), (2.68)

with the sampling interval T1. Thus, a CTFT of the resulting sampled function

x1(t) = x(t) · s1(t) =
∞∑

m=−∞
x(mT1)δ(t−mT1) (2.69)

is performed by a convolution of X1(f) with the transformed

S1(f) = 1
T1

∞∑
m=−∞

δ
(
ω − m

T1

)
, (2.70)

which yields:

X1(f) = X(f) ∗ S1(f) = 1
T1

∞∑
m=−∞

X
(
f − m

T1

)
. (2.71)
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The discretized representation of the product of continuous signal and impulse train x2(t) =
x1(t)s2(t) is achieved by converting the continuous impulses into discrete impulses:

x2[k] =
∞∑

m=−∞
x1(mT1)δ(t−mT1). (2.72)

When substituting x2[m] = x1(mT1) and introducing the normalized frequency fn = fT1, a
DTFT of both sides leads to

X2(fn) = X2(f)|f=fn/T1
=

∞∑
m=−∞

x2[m]e−i2πmfn . (2.73)

Since the signal is time-limited, the discretized signal consists of a finite number of samples
N = T

T1
. Thus the discrete time signal can be rewritten as

x2[k] =
N−1∑
k=0

x1(kT1)δ(t− kT1). (2.74)

As shown in Figure 2.8, the sampling in the time domain causes periodic repetition of the
original frequency spectrum with repetition interval 1

T1
. Since x1(t) is time-limited X1(f)

cannot be band-limited [Brigham 1974] and thus the repeating spectra wrap around at the
Nyquist frequency fNq = 1

2T1
and overlap. For better visualization, the resulting DTFT

spectrum |X2(fn)| is superimposed by the CTFT spectrum |X1(fn)|. This so-called aliasing
effect cannot be avoided for signals of finite length, but can be reduced by decreasing the
sampling interval T1 [Brigham 1974]. Thus, the CTFT can only be approximated by a DTFT
or a DFT. A more detailed investigation is presented in Section 2.3.2.3.

2.3.2.2 Frequency sampling

The derived relations in Section 2.3.2.1 are insufficient for digital computing, since the DTFT
of a digital signal is still a continuous function. In a further step, another sampling must be
performed in the frequency domain to obtain the DFT. Therefore, X(fn) is multiplied by
the impulse train

S2(fn) = 1
M

∞∑
m=−∞

δ
(
fn −

m

M

)
(2.75)
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which is the DTFT of

s2[k] =
∞∑

m=−∞
δ (k −mM) (2.76)

with the number of frequency samples within one periodM and the sampling interval 1
M
. The

number of frequency samples is typically set to be greater or equal to N . Figure 2.9 shows
an example for M = N . Similar to Section 2.3.2.1 the sampling in the frequency domain
X2(fn)·S2(fn) causes a repetition of the discrete signal in the time domain x3[k] = x2[k]∗s2[k].
A digitized version of the DTFTX3(fn) = X2(fn)·S2(fn) with r = fn

M
yields the DFT analysis

equation

X3[r] =
N−1∑
k=0

x3[k]e−i2πm r
M for 0 ≤ r ≤ (M − 1) (2.77)

and the DFT synthesis equation becomes

x3[k] = 1
M

M−1∑
r=0

X3[r]ei2πm r
M for 0 ≤ k ≤ (N − 1). (2.78)

Different to the above definition, for computer platforms with matrix-based programming
languages (e.g., Matlab R© ) the index starts at 1 instead of 0. By comparing the CTFT
spectrum in Figure 2.7 to the DFT spectrum in Figure 2.9, the following approximation can
be extracted,

X1(f) ≈ MT1

N
X3[r] (2.79)
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keeping in mind errors induced by the aliasing and leakage effect. Further, when imple-
menting this equation into a software, special attention has to be payed for the algorithm
programmed by the author. In case of the FFT command, implemented in Matlab R©, the
term M

N
in Equation 2.79 must be omitted, when approximating the CTFT.

The dotted line superimposed to x3[k] does not reassemble the continuous function x0(t +
T/2), since T was not chosen to be a multiple of its period 1

f0
. Thus, the frequency spectrum

results in a poor approximation of the CTFT of x0(t+T/2) caused by the leakage effect. The
discretized spectrum X3[r] with r = fnM shows multiple peaks instead of only repeating
pairs at the fundamental frequency ±f0, which is also referred to as the picket fence effect
[Mandal and Asif 2007]. When the actual time-limited signal should be approximated,
leakage does not cause any error as mentioned above. Nevertheless, the spectrum X3[r] is
still a poor approximation of the CTFT caused by the insufficient duration T which leads
to large frequency sample intervals. To improve the resolution of the frequency axis in the
DFT domain, an approach for aperiodic sequences is to append the discrete time signal of
length N with additional zero-valued samples.

xzp[k] =

 x[k] 0 ≤ k ≤ (N − 1)
0 N ≤ k ≤ (M − 1)

(2.80)

This process is called zero-padding [Mandal and Asif 2007]. The resulting sequence has
a length of M and the frequency resolution is improved by a factor of zp = MN . The
improvement is illustrated for a zero-padding factor of zp = 2 in Figure 2.10.
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NA
2MT1

0 1 2 · · · N-1 M-M

Figure 2.10: Zero Padding
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2.3.2.3 On the aliasing effect of time/spatial limited sinusoidal functions

As described above, truncated signals are linked to the aliasing effect. It can be reduced but
not totally avoided by increasing the sampling rate fs = 1

T1
. Since an arbitrary signal can

be represented by a sum of sine and cosine functions, the impact of the aliasing effect on a
sinusoidal function will be investigated in detail in the following.

For the investigation, a Dimensional Analysis (see Section 2.2) is performed for sinusoidal
functions

y(t) = A sin(2πf0t) (2.81)

with t = k · T1, 0 ≤ k ≤ (N − 1) and N = T
T1
, that oscillate with a frequency f0.
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Figure 2.11: Dimensional Analysis of the impact of the aliasing effect on finite sinusoidal signals below
the fundamental frequency

Within a parametric study, the duration of the signal was varied in steps of half a period
T = nT0

2 with n = 1,2,... to ensure zero values at k = 0 and k = N . The range of interest of
the sampling interval is 0 < T1 <

T0
2 , which results in sampling rates smaller than the Nyquist

frequency fNq = 2f0. The resulting erroneous DTFT YD(fn) scaled by T1 is subsequently
compared to the correct CTFT YC(f). The frequency range of interest is below the frequency
of oscillation 0 ≤ f ≤ f0. For a Dimensional Analysis, three dimensionless parameters can
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be derived:

Normalized sampling interval: πT = T1

T0
0.05 ≤ πT ≤ 0.45 (2.82)

Normalized frequency: πf = f

f0
= fn
T1f0

0 ≤ πf ≤ 1.0 (2.83)

Aliasing factor: πY = T1 · YD(πf )
YC(πf )

. (2.84)

with sampling interval T1 and normalized frequency fn = fT1. The resulting three-dimensional
course is shown in Figure 2.11. For better visualization, the surface is complemented by con-
tour lines. The course is perfectly continuous, which was not obvious due to the singularities
at the zero-crossings of the appearing side lobes. As expected, the aliasing diminishes for
πT = 0 (T1 −→ 0). For πT = 0.5 the Nyquist criterion is breached, resulting in an aliasing
factor πY = 0 (y[k] = 0). At πf = 1 the aliasing factor is unity for all sampling intervals.
The aliasing effect has an exponential increasing impact towards πf = 0 with a steeper de-
cline for higher values of πT . For example, at πT = 0.25 the aliasing effect decreases the
resulting spectrum at πT = 0 by ≈ 20% and at πT = 0.75 by ≈ 10%. As mentioned be-
fore, a similar investigation can be done for cosine-shaped signals, where the aliasing effect
results in DTFT spectra above the correct CTFT result. The derived relations have to be
considered, when processing finite data as in the numerical, acoustical evaluation model for
the prediction of the radiated sound power of plate-like structures presented in Section 3.7.1
based on theoretical aspects in Section 2.4. Detailed investigations of the limitations of the
developed model, that are related to the aliasing effect, are discussed in Section 4.6.

2.4 Sound Radiation of Finite Plates

The standardized characterization of the vibro-acoustical behavior of floor constructions is
performed by measurement of the sound pressure level in the receiving room caused by a
standardized excitation [DIN EN ISO 717-2:2013-06]. Since the focus of this contribution lies
only on the numerical modeling of floor constructions and neglects the adjacent receiving
room, an alternative examination process is mandatory. A more specific quantity is the
radiated sound power. Since a floor construction usually has a plane radiating surface, it
can be approximated as a finite plane radiator inside an infinite rigid baffle. The following
sections will give an introduction of the theoretical aspects of the radiation of finite plates,
based on the work of Pierce [2007], Lerch et al [2009] and Cremer et al [2005].
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2.4.1 Sound waves in fluids

2.4.1.1 Wave equation for linear acoustics

Hydrodynamic problems can be described in general by non-linear Euler ’s equations for
ideal compressible fluids. Here, the dissipation process linked to thermal conductivity and
viscosity is neglected [Pierce 2007]. Thus, Newton’s second law reduces to the first Euler
equation

ρ̃
Dṽ
Dt +∇p̃− gρ̃ = 0, (2.85)

with the medium’s position- and time-dependent dynamic variables mass density ρ̃, particle
velocity ṽ and absolute pressure p̃ (arguments (x,y,z,t) are neglected). The Further, g rep-
resents the vector acceleration due to gravity. ∇ =

(
∂
∂x
, ∂
∂y
, ∂
∂z

)
marks the three-dimensional

Nabla operator for Cartesian coordinates x, y and z. The material derivative is indicated by
D. The second Euler equation describes the conservation of mass

Dρ̃
Dt +∇ · (ρ̃ṽ) = 0. (2.86)

The relation between pressure p̃ and density ρ̃ can be described by an adiabatic process

Dp̃
Dt = c2 Dρ̃

Dt , (2.87)

with thermodynamic coefficient c representing the sound speed Pierce [2007].

The dynamic variables for sound in fluids can be separated into quantities describing the
ambient state (p0, ρ0 and v0) and acoustically induced perturbations (sound pressure p, sound
density ρ and airborne sound velocity v) [Lerch et al 2009].

p̃ = p0 + p

ρ̃ = ρ0 + ρ

ṽ = v0 + v

For linear acoustical problems, the perturbations are considered to be small. The gravity
is neglected and the ambient velocity is assumed to be zero, leading to a constant ambient



Sound Radiation of Finite Plates 41

pressure. Thus, the convective accelerations can be neglected

Dṽ
Dt →

∂v
∂t

(2.88)

and the non-linear Equations (2.85) and (2.86) combined with (2.87) can be linearized [Pierce
2007]:

ρ0
∂v
∂t

+∇p = 0 (2.89)
1
c2
∂p

∂t
+ ρ0∇ · v = 0 (2.90)

These two partial differential equations can be combined by taking the time derivative of
(2.90) and re-express the time derivative of the fluid velocity in terms of pressure by using
(2.89). Assuming the ambient density is independent of position leads to the wave equation
for linear acoustics (here: for sound pressure)

∇2p− 1
c2
∂2p

∂t2
= 0, (2.91)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 marks the three-dimensional Laplace operator for Cartesian
coordinates x, y and z [Lerch et al 2009].

2.4.1.2 Plane waves in fluids

For the one-dimensional case, the wave Equation (2.91) can be solved by the D’Alembert
solution

p(x,t) = f(x− ct) + g(x+ ct), (2.92)

with arbitrary two fold derivable position- and time-dependent functions f and g describing
traveling waves in positive and negative x-directions at a velocity c [Lerch et al 2009]. Acous-
tic disturbances can, in general, be described by purely sinusoidal oscillations with constant
frequency about a mean value [Pierce 2007]. E.g., the acoustic pressure of an harmonic plane
wave traveling in a positive x-direction can be expressed equivalently by one of the following
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equations (subscripts A indicate the medium air):

p(x,t) =
∣∣∣p̂0

∣∣∣ cos [kA (−x+ ct) + φ0] =
∣∣∣p̂0

∣∣∣ cos [−kxx+ ωt+ φ0] (2.93)

= 1
2
∣∣∣p̂0

∣∣∣ [ei(−kxx+ωt+φ0) + e−i(−kxx+ωt+φ0)
]

(2.94)

= <
{
p̂0 e

−ikxxeiωt
}
. (2.95)

The circular wavenumber of air is

kA = 2π
λA
, (2.96)

with the wavelength λA, which in the one-dimensional case is equal to the wavenumber
component in x-direction kx. The circular frequency ω is identified as follows:

ω = kAcA. (2.97)

The phase constant φ0 describes the wave at x = 0 and t = 0. Equation (2.94) is the complex
representation of (2.93). Hence, the argument combination x− ct is exchanged by −x + ct

to achieve the eiωt time dependance, which is common in vibrations literature [Pierce 2007].
In Equation (2.95) the phase constant φ0 is included into the complex number

p̂0 =
∣∣∣p̂0

∣∣∣ eiφ0 . (2.98)

The subscript 0 indicates the invariant character in case of a plane wave, underlining indicates
complex quantities. This solution can be extended for the three-dimensional case

p(x,y,z,t) = <
{
p̂0 e

−ikxxe−ikyye−ikzzeiωt
}

= <
{
p(x,y,z) eiωt

}
, (2.99)

with wavenumber components kx, ky and kz into the spatial directions x,y and z and the
complex amplitude of acoustic pressure

p(x,y,z) = p̂0 e
−ikxxe−ikyye−ikzz, (2.100)

that in general varies with position. For the wave equation (2.91) is a homogeneous, linear,
partial differential equation with time-independent coefficients, a separation of the variables
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for space and time is performed, and the field variable p(x,y,z,t) can be replaced by the com-
plex amplitude p(x,y,z) [Pierce 2007]. Subsequently, all time derivatives can be substituted
by

∂

∂t
→ iω. (2.101)

Thus, the wave equation (2.91) reduces with (2.97) to the Helmholtz equation for the complex
pressure amplitude

(
∇2 + k2

)
p(x,y,z) = 0. (2.102)

For a single set of wavenumber components at a fixed circular frequency ω, inserting Equation
(2.100) into (2.102) yields:

(
(−ikx)2 + (−iky)2 + (−ikz)2 + k2

A

)
p(x,y,z) = 0 (2.103)

This is fulfilled for any harmonic plane when

k2
x + k2

y + k2
z = k2

A. (2.104)

Equation (2.100) does not represent a full solution of the wave equation for harmonic prob-
lems, but can serve as a fundamental solution. General acoustic problems can therefore be
solved as a superposition of plane waves or by integration using the Fourier integral for a
fixed frequency ω Pierce [2007]:

p(x,y,z) = 1
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

p̂(kx,ky,kz) e−ikxxe−ikyye−ikzzdkxdkydkz. (2.105)

This solution represents one frequency component of a multi-frequency disturbance. An
inverse Fourier transformation yields the sound pressure amplitudes in the wave number
domain

p̂(kx,ky,kz) =
∞∫
−∞

∞∫
−∞

∞∫
−∞

p(x,y,z) eikxxeikyyeikzzdxdydz. (2.106)
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2.4.2 Bending waves in plates

2.4.2.1 Bending wave equation

Similar to acoustic waves, again, considering purely sinusoidal oscillations with constant
frequency, the bending waves in plates in the x−y-plane can be described for the complex out
of plane structure-borne sound velocity vs (subscript s indicates structure-borne quantities)
by the two-dimensional bending wave equation [Cremer et al 2005]:

(
∇4 + k4

B

)
vs(x,y) = 0, (2.107)

with the two-dimensional bending wave number kB. It is defined for isotropic plates as

k4
B = ω2m

′′

B′
=
( 2π
λB

)4
, (2.108)

with mass per unit area m′′, bending stiffness per unit length B′ and bending wavelength
λB. Different to Equation (2.85) ∇4 =

(
∂2

∂x2 + ∂2

∂y2

)2
marks the square of the two-dimensional

Laplace operator for Cartesian coordinates x, y.

2.4.2.2 Plane bending waves

Analogous to section 2.4.1.2, the simplest solution for Equation (2.107) is a plane bending
wave, represented by its complex velocity amplitude

vs(x,y) = v̂s0 e
−ikxxe−ikyy, (2.109)

with complex number v̂s0 [Cremer et al 2005]. Any harmonic plane bending wave solves the
bending wave equation for

(k2
x + k2

y)2 = k4
B. (2.110)

A full solution for one frequency component is given by the Fourier integral in spatial

vs(x,y) = 1
(2π)2

∞∫
−∞

∞∫
−∞

v̂s(kx,ky) e−ikxxe−ikyydkxdky (2.111)
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and wave number domain

v̂s(kx,ky) =
∞∫
−∞

∞∫
−∞

vs(x,y) eikxxeikyydxdy. (2.112)

2.4.3 Sound radiation of infinite plates

The derivation of the radiation of infinite plates will be shown for a one-dimensional plane
wave traveling in positive x−direction (ky = 0, kx = kB). Thus, the out-of-plane velocity
vs(x) is given by

vs(x) = v̂s0 e
−ikBx. (2.113)

As a boundary condition, the component of the airborne sound velocity at z = 0 perpendic-
ular to the plate must equal the structure-borne sound velocity on the plate

vz(x,z = 0) = vs(x). (2.114)

Using Equation (2.90), the airborne sound velocity at the surface of the plate vz(x,z = 0)
can be expressed in terms of the sound pressure

vz(x,z = 0) = − 1
iωρA

∂p(x,z)
∂z

∣∣∣∣∣
z=0

= kz p̂0

ωρA
e−ikBx. (2.115)

Inserted into Equation (2.114) yields

p̂0 = ρAcA
kA
kz
v̂s0. (2.116)

For the sound pressure in front of the plate, the following approach is made [Cremer et al
2005]:

p(x,z) = p̂0 e
−ikBxe−ikzz. (2.117)

This approach must solve the Helmholtz equation (2.102), which is fulfilled according to
Equation (2.104) for

k2
z = k2

A − k2
B. (2.118)
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Thus, the sound pressure in the half space in front of the plate can be derived by inserting
Equations (2.118) and (2.116) into (2.117)

p(x,z) = ρAcA
kA√

k2
A − k2

B

v̂s0 e
−ikBxe−i

√
k2
A−k

2
Bz. (2.119)

The radiation characteristics depend on the wavenumber of air kA and the bending wavenum-
ber of the plate. For infinite systems three cases can be distinguished:

• For kB < kA the exponent of e−ikzz in Equation (2.119) is real, which means that
pressure and velocity are in phase. A far field is generated, i.e. an obliquely propagating
plane wave is radiated (see Fig. 2.12). The angle of radiation into direction x̄ is caused
by the coupling of the wavelengths of plate vibration and airborne sound. The smaller
the bending wavelength, the closer it gets to the wavelength of the air and the amount
of radiation increases. At the same time the angle of radiation ϑ is tending to 90◦. It
is defined as: sinϑ = λA

λB
.

ϑ

λA

λB

x

z

x̄

Figure 2.12: Far field (similar to Cremer et al [2005])

• For the singular case kB = kA, the wavenumbers and wavelengths of plate and air are
the same for every specific frequency. The angle of radiation ϑ is 90◦. kz is tending to
zero, which leads according to Equation (2.119) to a theoretically infinite amount of
sound radiation. In practice, damping effects lead to a finite value. This is also called
a grazing radiation.

• For kB > kA the sound pressure to sound velocity relation (see Eq. (2.119)) is imag-
inary. This means that there is no time averaged radiated sound power. The sound
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field fades exponentially with the distance to the plate (near field). In this region the
in-plane components of the sound velocity are 90◦ out of phase to the components in
z-direction. The air particles move along elliptic paths (see Fig. 2.13). Air particles in
front of a vibrating radiator evade from a wave peak to a nearby trough and thus the
air is not compressed. This effect is also called acoustical short circuit [Cremer et al
2005].

Figure 2.13: Near field [Cremer et al 2005]

The bending wavenumber kB is often characterized by the bending wave speed cB = ω
kB

.
For a free propagation on a plate, it depends on the frequency. The coincidence or critical
frequency fc describes the specific frequency, where the propagation speed on the plate equals
the speed of sound in the air, respectively when kA = kB. It describes the transition from
far to near field.

The radiation of a plate with arbitrary structure-borne velocity pattern vs(x,y) can be de-
scribed by expanding Equation (2.119) for a two-dimensional case as a superposition of plane
wave solutions for every value of kx and ky. For one frequency component, the sound pressure
can be derived by the Fourier integral

p(x,y,z) = ρAcA
(2π)2

∞∫
−∞

∞∫
−∞

kA√
k2
A − k2

x − k2
y

v̂s(kx,ky) e−ikxxe−ikyye−i
√
k2
A−k2

x−k2
yzdkxdky. (2.120)

2.4.4 Finite plates

Expressions (2.112) and (2.120) can also be used to describe arbitrary plane radiators inside
a rigid baffle, for which the structure-borne velocity outside the radiating finite surface is
set to vs(x,y,t) = 0 [Cremer et al 2005].
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The effect of time limitation of harmonic signals on the frequency spectrum in the Fourier
transformed domain has already been derived in Section 2.3.1.2. The observations can equiv-
alently be applied to problems in the spatial domain. Caused by the limited dimensions,
side lobes appear due to a convolution with a cardinal sine function. A one-dimensional
example of an finite plate vibrating below the coincidence frequency is shown in Figure 2.14
for the wavenumber domain (compare Figure 2.7). The side lobes affect the radiation char-
acteristics. They lead to a far field radiation (kB < kA) even in case of vibration below the
coincidence frequency.

2π/kB

2π/kA

2π/kB2π/kB

kA kA

kkBkB

|v̂s(k)|

Figure 2.14: Radiation conditions in spatial and wave number domain

Equivalent observations can be made for the two-dimensional case. A numerical example of
an isotropic square plate vibrating in its (5,5) eigenmode is depicted in Figure 2.15 for spatial
and wavenumber domain. In this case, the distance of the peaks represents the bending wave
number kB. It can be shown, that the peaks of every vibration pattern of the plate lie on
a ideal circle with center at the origin and a radius kB (white empty circle). The radiation
conditions (kB < kA) are marked with an solid white circle of radius kA. This behavior is
described by means of a measurement example in Section 4.1.
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spatial domain

wave number domain

y

x

ky

kx

kB

kA

Figure 2.15: Example illustrating the radiation conditions below the coincidence frequency

2.4.5 Sound power, sound intensity and radiation efficiency

The product of the sound velocity vector and the sound pressure scalar results in the sound
intensity vector I = p v. It represents the sound power per unit area, and thus the sound
energy flow within a volume. It is also called acoustic intensity. and can be used to indicate
the energy flow’s direction and to locate the sound source [Brüel & Kjaer 1993] [Müller
2010b]. The sound power emitted from a source can be derived via an integration over the
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sound intensity of an enveloping surface.

P =
∫

(S)

p v dS =
∫

(S)

I dS (2.121)

The length of the surface vector S corresponds to the total area and is directing perpendicular
to the surface. In case of a sound velocity parallel to the surface according to the scalar
product v · dS = |v| · |dS| · cosα no sound power is transmitted (α: angle between sound
velocity vector v and surface vector S). Neglecting damping effects in the propagation the
resulting sound power is independent from the form of the enveloping surface and its distance
from the source.

2.4.5.1 Sound intensity of plates for purely harmonic oscillations

When steady sound fields are considered, the sound intensity perpendicular to a vibrating
plate can be averaged over a time T . The time averaged characteristics are indicated by a
bar. In case of purely harmonic oscillations, it can be derived for one frequency component
by substituting the field variables for the sound pressure at the surface p = p(x,y,z = 0,t) =
ps(x,y,t) and the structure-borne sound velocity vs = vs(x,y,t) by their complex amplitudes
p = p(x,y,z = 0) = ps(x,y) and vs = vs(x,y) and corresponding phase information φp and
φv according to Equation (2.95). This substitution yields (arguments are neglected in the
following equations):

Ī = 1
T

T∫
0

ps vs dt

= 1
T

T∫
0

<
{
ps e

iωt
}
<
{
vs e

iωt
}
dt

= 1
T

T∫
0

<
{∣∣∣ps∣∣∣ eiωteiφp}< {∣∣∣vs∣∣∣ eiωteiφv} dt

= 1
T

T∫
0

∣∣∣ps∣∣∣ ∣∣∣vs∣∣∣ cos (ωt+ φp) cos (ωt+ φv) dt

= 1
T

T∫
0

∣∣∣ps∣∣∣ ∣∣∣vs∣∣∣ 1
2 [cos (2ωt+ φp + φv) + cos (φp − φv)] dt.

(2.122)
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This equation consists of a term multiplied by cos (2ωt+ φp + φv), that averages out to zero,
and a time-independent term. Thus, Equation (2.122) can be further simplified, leading to

Ī = 1
2
∣∣∣ps∣∣∣ ∣∣∣vs∣∣∣ cos (φp − φs)

= 1
2<

{∣∣∣ps∣∣∣ eiφp}< {∣∣∣vs∣∣∣ e−iφs}
= 1

2<
{
ps vs

∗
}
.

(2.123)

2.4.5.2 Radiated sound power of finite plates

For a finite plate inside an infinite rigid baffle, the sound power can be calculated by an
integration of Equation (2.123) over the infinite x−y plane. Thus, the sound power radiated
by a plate for one frequency component in case of purely harmonic oscillations yields:

P̄ = 1
2<


+∞∫
−∞

+∞∫
−∞

ps(x,y) vs(x,y)∗ dxdy

 . (2.124)

Applying the generalized Rayleigh-Parseval theorem for Harmonic Analysis (see Eq. (2.3.1.1))

+∞∫
−∞

+∞∫
−∞

ps(x,y) vs(x,y)∗ dxdy = 1
(2π)2

+∞∫
−∞

+∞∫
−∞

p̂s(kx,ky) v̂s(kx,ky)∗ dkxdky, (2.125)

Equation (2.124) can be rewritten in terms of the wavenumber spectra

P̄ = 1
8π2<


+∞∫
−∞

+∞∫
−∞

p̂s(kx,ky) v̂s(kx,ky)∗ dkxdky

 . (2.126)

The spectral components of the sound pressure at the plate’s surface p̂s(kx,ky) can be ex-
tracted from Equation (2.120) for z = 0:

p̂s(kx,ky) = ρAcA
kA√

k2
A − k2

x − k2
y

v̂s(kx,ky) (2.127)

Inserting Equation (2.127) into Equation (2.126) yields:

P̄ = ρAcA
8π2 <


+∞∫
−∞

+∞∫
−∞

kA√
k2
A − k2

x − k2
y

∣∣∣v̂s(kx,ky)∣∣∣2 dkxdky

 . (2.128)
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Thus, the radiated sound power can be described by the spectral components of the structure-
borne sound velocity and a wave number dependent kernel K = kA√

k2
A−k2

x−k2
y

. The underline
indicator for complex quantities, the bar for time averaged quantities and the subscript s for
structure-borne will be omitted in the following, when misunderstanding can be excluded.

2.4.5.3 Radiation efficiency

According to Cremer et al [2005] the radiation efficiency σ describes the radiated sound power
of a given structure in relation to the sound power of a large in phase vibrating plane surface
(piston) of the same size and mean vibrational velocity.

σ = P

ρAcAS|v̄2|
(2.129)

P denotes the radiated sound power of a structure with a surface area S, which is described
in Section 2.4.5. ρA · cA equals the air’s impedance and |v2| represents the spatial averaged
effective square velocity of the radiating surface. The denominator

Peff = ρAcAS|v̄2| (2.130)

is also referred to as Effective Radiated Power (ERP).

Applying the Rayleigh-Parseval theorem (see Eq. (2.66)) for the two-dimensional case

Peff = 1
2ρAcA

+∞∫
−∞

+∞∫
−∞

|v(x,y)|2dxdy = 1
2
ρAcA
4π2

+∞∫
−∞

+∞∫
−∞

|v̂(kx,ky)|2dkxdky (2.131)

the radiation efficiency can be computed via integration in the wave number domain

σ =
<
{

+∞∫
−∞

+∞∫
−∞

kA√
k2
A−k2

x−k2
x

|v̂(kx, ky)|2dkxdky
}

+∞∫
−∞

+∞∫
−∞
|v̂(kx, ky)|2dkxdky

. (2.132)

2.5 Modal Analysis

For the calibration of the numerical models in Section 4.2, eigenmodes of the testing struc-
ture as well as the numerical model shall be compared. Eigenmodes of an FE-model can
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be computed using modal analysis. This section deals with the theoretical basics of an
undamped Modal Analysis [Stelzmann et al 2008] [Müller 2011].

The FE method reduces a continuous system’s infinite number of Degrees-of-Freedom
(DOFs) to a finite number of DOFs of the element nodes of the FE model. This will
be explained in detail for an 8-node 3D volume element in the following. For this kind of
element, every node has three translational DOFs, i.e., 3 · 8 = 24 DOFs in total, that can
be combined in a vector ue(t). The displacements of the node’s DOFs are linked to the
displacement field of the element via form functions. Those form functions describe the
deformation of the element for occurring nodal displacements. They have to be chosen in
order to approximate the continuous system as good as possible (indicated by a bar). The
matrix N(x,y,z) contains all form functions. Thus, the displacement field of the element can
be expressed as [Stelzmann et al 2008]:

u(x,y,z,t) = N(x,y,z)ue(t) (2.133)

Derivations along the local coordinates of the displacement field lead to the strain field of
the element. Derivations of the form functions N are indicated by matrix B. Thus, the
strains can be obtained by:

ε = B · ue (2.134)

Generally, the same form functions are used for displacements and accelerations. Thus, the
D’Alembert force results in [Müller 2011]:

pi(x,y,z,t) = −ρN(x,y,z)ue
••(t) (2.135)

with density ρ. The finite element’s equation of motion will be derived using the virtual
work principal [Müller 2011]. The internal virtual work is:

δWi = −
∫
Ve

δε · σ dv = −
∫
Ve

δue
TBT DBue︸ ︷︷ ︸

σ

dv (2.136)

where D is the material matrix and Ve is the volume of the element.

For the external virtual work, the D’Alembert force is taken into account. Due to the goal
to find the eigenfrequencies and mode shapes of the system, no other external forces are



54 Fundamental Theory

applied.

δWe =
∫
Ve

δu︸︷︷︸
δueTNT

pi dv (2.137)

The total work results in:

δW = δWi + δWe = δue
T

{
−
∫
Ve

BTDB dv

︸ ︷︷ ︸
Ke

ue −
∫
Ve

%NTN dv

︸ ︷︷ ︸
Me

ue
••
}

= 0 (2.138)

Equation (2.138) can only be equal to zero, when the expression in curly brackets is equal
to zero. This leads to the homogeneous differential equation of motion:

Me ue
•• + Ke ue = 0. (2.139)

where Ke is the stiffness matrix and Me is the mass matrix of the element.

To obtain the equations of motion for the total system, all DOFs of the system are combined
in the displacement vector u. The stiffness and mass matrices of the element are assembled
into the corresponding matrices of the total system according to the DOFs in the vector u.

M u•• + K u = 0 (2.140)

The product approach

u = Φ · eiωt (2.141)

for an unknown displacement vector separates the spatial and the time domain. After
inserting Equation (2.141) into the differential equation of motion leads to the following
homogeneous system of equations. It describes a matrix eigenvalue problem.

(
K− ω2M

)
Φ = 0 (2.142)

A non-trivial solution exists only if

det
(
K− ω2M

)
= 0. (2.143)
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Equation (2.143) shows a characteristic polynomial of nth order for ω2 (n = number of DOFs).
The zeros of this polynomial (eigenvalues) represent the squared circular eigenfrequencies ωi.
Thus, the eigenfrequencies fi are

fi = 1
Ti

= ωi
2π (2.144)

The eigenvectors Φi can be obtained by insertion of the corresponding eigenvalues ω2
i into

Equation (2.142). They represent the systems eigenmodes or eigenforms. Equation (2.142)
describes a set of linear dependent equations, i.e. to obtain the eigenvectors Φi a value for
one coordinate must be predefined. Thus, every scaled vector α ·Φi is an eigenvector of the
differential equation of motion of the system (2.140) [Müller 2011]. It is common to scale
the eigenvectors normalized to the mass matrix [Stelzmann et al 2008]:

ΦT
i MΦi = 1 and ΦT

i KΦi = ω2
i (2.145)
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3 Numerical Model Development

The measurement-based investigations of floor constructions performed within the research
project "VibWood" are complemented by numerical simulations. Therefore, FE-models are
created and calibrated according to the experimental results. Furthermore, adapted numer-
ical evaluation models to describe the vibro-acoustical characteristics are developed. The
numerical modeling aims on the performing of parametric studies, which implies the neces-
sity of an intractability between the different models, as well as a completely parametric
representation of the models. For the FE simulations, CADFEM’s commercial FE software
Ansys R© Classic is used. It holds the requirements concerning parametrization and automa-
tion due to its program intern design language (Ansys Parametric Design Language (APDL)).
For the implementation of the evaluation models, The MathWorks’s computer algebra
software Matlab R© is used.

3.1 Description of the FE-Analyses

For numerical simulations, the FEM is used. An example of a full FE model is shown in
Figure 3.1. A detailed description of the method can be found in the literature for example

floating floor

cross-laminated-
timber floor

suspended
ceiling

impact sound
insulation

elastomer
support

air inside 
the cavity

suspension
hangers

Figure 3.1: Detail of a developed FE model
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in Bathe [2002], Müller and Groth [2007] and Stelzmann et al [2008]. In general, such a
simulation is performed in three process steps: pre-processing, solution and post-processing.
Each of them consists of several sub-steps. Due to the fact that the structural models have
to be simulated in a number of construction states, loaded with different kinds of load and
evaluated with several analysis types, a modular approach for the programming is pursued,
that at the same time allows parametrization and automation.

3.1.1 Simulation process

Figure 3.2 gives a sketch of the Input-Process-Output (IPO) structure of the dynamic anal-
yses. The individual process steps are described as follows:

pre-processor solution processor

Ansys Matlab

postprocessor

Figure 3.2: IPO model for FE-simulations

3.1.1.1 Pre-processor

In the first step, the following sub-steps are performed:

• System geometry development

• Element type and material property application

• FE-mesh generation

• Boundary conditions application

To achieve full parametrization, an import of the system geometry from an external
Computer-Aided Design (CAD) software is not feasible. The system geometries are modeled
in APDL as well. A brief description of the applied element types is given in Appendix A.
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3.1.1.2 Solution processor

This process step contains the following:

• Load application

• Choice of analysis type and analysis options

◦ Modal Analysis

◦ Harmonic Frequency Analysis

◦ Transient Analysis

• Definition of the parameters of the analysis (depending on the analysis type)

• Solution of the systems of equation

In this thesis, different types of dynamic analyses will be performed. Eigenfrequencies and
eigenmodes, that are used for the characterization of the models, are obtained by Modal
Analyses. For the description of the vibrational behavior of the numerical models, Har-
monic Frequency Analyses are performed. By means of those analyses, frequency response
functions at all relevant position, in a predefined frequency range, for a specific loading are
obtained. To reduce the computational effort for this type of analysis, a modal superposition
is carried out. In case this is not possible, e.g. if elements with unsymmetrical matrices are
used (Section 3.2.6), a full solution of the system’s matrices has to be performed. For the
simulation of a walking pedestrian, transient loading is applied to the structural model. Its
time dependent load function is adapted to measured data (Section 3.4.3). For this, transient
analyses are carried out, based on Newmark-Beta time step integration.

3.1.1.3 Post-processor

In the last process step, the results of the calculations are evaluated. With Ansys R© Clas-
sic’s implemented tools, it is possible to evaluate single analyses graphically, to print results
into tables or to export data for further investigations (Section 3.6). A calculation of the
radiated sound power is not implemented. To cope with that issue, a semi-analytical eval-
uation model is implemented in Matlab R©, based on the frequency response functions of
the velocities of the structural models (Section 3.7.1). For automation, a Fortran-based
interface is implemented into the APDL-code of the simulation, that exports the velocity
data to Matlab R©.



Description of the FE-Analyses 59

cross-
laminated-
timber floor

lumber joist
floor

hollow-box- 
girder floor

simple 
support

partially
clamped
support

elastomer
support

modal
analysis

harmonic
frequency
analysis

transient
analysis

single
load

rain-on-the-
roof load

pedestrian
load

floating
floor

suspended
ceiling

air inside
the cavity

main
structure

sub-
structure

boundary
conditions

analysis
type

load
type

Figure 3.3: Modular concept

3.1.2 Modular design

A classical approach, when developing an FE simulation using APDL would be, to program a
single input file, containing all relevant process steps. Since an automated parametric study
of varying structures, with different load configurations is intended, a modular approach is
established. The structural model is divided into modules for main structure, substructures
and boundary conditions. Further modules for the dynamic analyses and applied loadings
are developed. The modular concept is depicted in Figure 3.3.

Thus, the different construction states and the intended analyses can be realized by combin-
ing the appropriate modules. The simulation process is sketched in Figure 3.4. It is controlled
by a main input file. The modules for the structural model contain every process step for
the pre-processor. Analysis modules are more complex. For example, a Harmonic Frequency
Analysis, using modal superposition, needs a preliminary Modal Analysis. Depending on
the analysis type, varying load configurations are applied, controlled by the analysis module
(no load needs to be applied in case of a Modal Analysis). When averaging of different
loads is intended (e.g. for ROTR excitation), a loop inside the module is needed containing
load application, solution process and post-processing of the results (via an implemented
interface).

The intended parametric survey is controlled by a Matlab R© code. The interactivity be-
tween the two softwares is established by sub-modules, that contain the parameters of each
appropriate main module and their specific values. These sub-modules are accessible by the
Matlab R© code.
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Figure 3.4: Modular simulation process

As an advantage of this modular approach, a change of the code of one module affects
all simulations, which increases the robustness, especially in the development phase. Also,
the comparability of different simulated construction states is enhanced. An extension of
the considered structural elements for further research is easily possible by implementing
additional modules. These advantages come with increased requirements concerning the
compatibility of the different modules. The separated parameter definition in sub-modules
increases the robustness of the parametric studies.

3.1.3 Parametric representation

To ensure the highest possible flexibility of FE-models, a full parametric representation has
been applied. Special subscripts are used in the following sections to describe the parameters
(e.g. (spr) indicates a parameter for the material spruce) and whether the values of the
parameters are measured (m), resulting from a model-updating (mu) or have been taken
from literature (l). The number of significant digits of each parameter is varying, depending
on the source. Measured and model-updated parameters are given in a more detailed manner.
Three types of parameters can be identified as follows.

3.1.3.1 Geometric parameters

These parameters refer to the testing structure, as the data gained experimentally is supposed
to be compared to the results of the simulation. They can be subdivided into modular
parameters (e.g. joist width) that only have an impact on the specific module geometry and
inter-modular parameters (e.g. length), which control the geometry of the total FE-model.
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3.1.3.2 Material parameters

The number of material parameters depends on the individual material model and FE-type.
For homogeneous components, the parameter values for the used material can be found in
standards or in case of a substitute model can be derived from them. Another possibility is,
to use values determined by preliminary experiments (Section 4.2).

3.1.3.3 Analysis parameters

These parameters define the discretization of the model. They have an influence on the
accuracy and the computational effort of the simulation. In general, the more detailed the
analysis parameters, the more accurate the models will be. At the same time the computa-
tional effort increases. They are as follows:

• Element size

• Number of modes to be calculated within a Modal Analysis

• Frequency range and frequency step size within an Harmonic Frequency Analysis

• Duration and time step size within a Transient Analysis

3.2 Structural Models

The FE-models of the structure are generated in the pre-processor. They consist of combined
modules of the three investigated ceiling constructions as follows:

• Cross-Laminated Timber (CLT)

• Lumber Joist (LJ)

• Hollow Box Girder (HBG)

Additional components include the following:

• Floating Floor (FLF)

• Suspended Ceiling (SC)
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and the modules for the boundary conditions. Figure 3.5 shows a sketch of the pre-
processor.
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Figure 3.5: Modular structure of the pre-processor

The following section gives a description of the individual modules.

3.2.1 General predefinitions

In this section parameters and assumptions, that have an impact on all structural models
will be introduced.

3.2.1.1 Idealization

The static system of the floor constructions considered can be idealized by line-supported
plane plates of a rectangular geometry. Depending on the support conditions, the plates are
modeled as one-way slabs with two-sided bearing or as two-way slabs with all-sides bearing.
Every ceiling construction has a main load-bearing direction, characterized by a homogeneous
longitudinal stiffness contribution. Perpendicular to the load-bearing direction, the stiffness
is much lower and distributed inhomogeneous (e.g. caused by the joists of an LJ floor). The
global coordinate system is chosen, so that the global x-axis points into main load-bearing
direction and the global y-axis points into perpendicular load-bearing direction.
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3.2.1.2 Discretization

The in-plane element size is, according to the convergence study in Section 4.2.1, set to
esize = 0.1 m. A good accuracy of the results is shown for this element size. In none of the
models, the lower limit of the aspect ratio 1 : 10 recommended in Müller and Groth [2007]
is exceeded.

3.2.1.3 Parameters

In addition to the element size esize the inter-modular parameters consist of the dimensions
length l and width w . They are defined in the input file. For the modeling of the testing
structures, the dimensions of the floors are predefined by the size of the testing lab in
Rosenheim (see Tab. 3.1).

Table 3.1: Inter-modular parameter

Parameter Variables Amount Unit
Length l 5.50 m
Total width w 5.50 m
Element size esize 0.10 m

3.2.2 Cross-laminated timber CLT floor

The CLT floors are formed by a number of slabs that are line-coupled longitudinally. The
individual slabs have an multi-layer design consisting of cross laminated end-joint spruce
boards. Only in vertical direction these boards are laminated, whereas they are but-joined
in horizontal direction (see Fig. 3.6). The investigated CLT floors are fabricated by Züblin
Merk. Their portfolio comprises different types of CLT of varying thickness. Their number
of layers vary from three to nine. Spruce boards with thicknesses of 0.017 m, 0.027 m and
0.033 m are used. The individual slabs are coupled by embedded and LVL boards (see
Fig. 3.7).
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Figure 3.6: CLT cross-section Figure 3.7: LVL board

3.2.2.1 Idealization

For the modeling of this structure, each layer of boards is modeled individually. The gaps
and relief grooves in between and inside the broads are neglected as well as the individual
annular rings (according to Section 2.1.5). All boards of the same layer will be smeared
into a single volume, which introduces some major uncertainties. Between the layers, a
rigid coupling is applied, the flexibility of the glue is neglected as well. For the coupling of
the individual slabs, the laminated veneer lumber boards are substituted by elastic springs
(see Figs. 3.9 and 3.10). Uncertainties due to the idealization will be compensated by an
adaptation of the material parameters.

3.2.2.2 Discretization

The volumes are modeled by 3D-volume elements. The cubic form of the volumes allows it
to generate a structured mesh with hexagonal elements [Müller and Groth 2007]. A number
of different 3D volume elements are implemented in Ansys R©. They can be distinguished by
the number of nodes per element and by the polynomial degree of the used form functions.
An evaluation showed that the 8-node SOLID185-element produces adequate results. Fur-
thermore, a convergence study is performed, as shown in Section 4.2.1, which approves, that
a single element per layer in vertical direction gives results of sufficient accuracy. Because of
the varying width of the individual slabs, the element size in horizontal direction is modified
in order to obtain a homogeneous distribution. The value predefined in Section 3.2.1 is taken
as an upper limit. To ensure a later combination, the mesh geometry of substructure (e.g.,
FLF) has to be adapted in the same way. Because the volumes of the layers share the same
boundary area rigid coupling of the layers is automatically generated by coincident nodes at
the interface. A detail of the FE-Model is depicted in Figure 3.8.
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1

Figure 3.8: Detail of the CLT floor; FE-model

Laminated Veneer Lumber (LVL)

Figure 3.9: Sketch of the LVL board coupling Figure 3.10: Detail of the coupling; FE-model

For the modeling of the connection between two neighboring slabs, the top layer of each slab
is coupled. The volume elements lack rotational DOFs. Hence, a simple solution by using
one-dimensional torsional spring elements is not possible. Only the translational DOFs can
be coupled. Thus, the nodes at the interface are coupled in two ways. For the top nodes
per slab all DOFs are coupled whereas for the coupling of the lower nodes of the top layer
1D-spring elements in global y-direction are applied. Thus, a connection is established with
an rotational stiffness depending on the stiffness of the spring element. The COMBIN14-
element in Ansys R© matches these requirements.

3.2.2.3 Parameters

The layer design can be defined by the parameter CLT-type tCLT. It represents the total
thickness of a specific slab which is in case of the fabricator Züblin Merk unique for every
CLT-type. The number of layers and their individual thicknesses can be taken from the
fabricator’s data sheet [Metsä Wood Merk GmbH 2012]. In a first step, based on this
data, a single slab is generated. Its width corresponds to the total width of the floor w
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divided by the number of slabs that are used n. Later, this slab is copied n-times in y-
direction to generate the whole floor. For the five- and six-layered CLT-types Leno105
and Leno162 experimental measurements have been carried out [Kohrmann et al 2014]. To
compare measured with simulated data, FE-models of both types are created. The cross-
sectional dimensions are listed in Table 3.2.

Table 3.2: Cross-sectional dimensions of CLT-types 105 and 162

CLT-type
105 162

layer thickness in m orientation thickness in m orientation
1 2.70 · 10−2 ‖ 2.70 · 10−2 ‖
2 1.70 · 10−2 ⊥ 2.70 · 10−2 ⊥
3 2.70 · 10−2 ‖ 2.70 · 10−2 ‖
4 1.70 · 10−2 ⊥ 2.70 · 10−2 ‖
5 2.70 · 10−2 ‖ 2.70 · 10−2 ⊥
6 − − 2.70 · 10−2 ‖

Table 3.3: Parameters of the CLT-Modul

Parameter Variable Value Unit
Number of slabs n 4 −
CLT-type tCLT 105 / 162 −
Density ρspr,m 0.47 · 102 kg

m3

Elasticity modulus in x-direction E‖,spr,mu 1.01 · 1010 N
m2

Elasticity modulus in y-direction E⊥,spr,mu 1.37 · 108 N
m2

Elasticity modulus in z-direction E⊥,spr,mu 1.37 · 108 N
m2

Shear modulus in xy-direction G‖⊥,spr,mu 4.59 · 108 N
m2

Shear modulus in yz-direction G⊥⊥,spr,mu 7.40 · 107 N
m2

Shear modulus in xz-direction G‖⊥,spr,mu 4.59 · 108 N
m2

Poisson ratio in xy-direction ν‖⊥,spr,mu 5.00 · 10−2 −
Poisson ratio in yz-direction ν⊥⊥,spr,l 3.00 · 10−1 −
Poisson ratio in xz-direction ν‖⊥,spr,mu 5.00 · 10−2 −
Spring stiffness of the linear coupling ky,lin 1.00 · 101 N

m

The CLT floors are made of spruce. As presented in Section 2.1, wood can be described
by an orthotropic material model. Due to idealization, the material parameters cannot be
taken from the literature, but are derived from experimental data by model-updating, which
is described in Section 4.2.2. The density of the used spruce for the CLT floor is obtained
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by weighing the individual slabs and averaging the results. Table 3.3 lists the parameters of
the CLT-module and their values used for the modeling.

3.2.3 Lumber joist LJ floor

The LJ floor consists of parallel arranged spruce joists designed either as single or double
joists (see Fig. 3.11 left). The cross-sectional area of a single joist is given as 0.06 m×0.24 m.
Crossbars are installed at the bearings between the ends of the joists to secure their position.
The paneling is made of OSBs with a thickness of 19 mm. The individual OSBs measure
2.5 m x 1.25 m. A staggered arrangement is applied with main load bearing direction
perpendicular to the direction of the joists (see Fig. 3.11 right). Paneling and joists are
connected by screws.

Figure 3.11: Real structure LJ floor

3.2.3.1 Idealization

Single as well as double joists are modeled as a single orthotropic volume with smeared
material properties (according to Section 2.1.4). The ends of the joists are fixed in y-
direction to secure their position as in the real construction. For the paneling the OSBs are
modeled as a single orthotropic plate without gaps. This plate is connected to the volumes
of the joists with a rigid contact at the interfaces.

3.2.3.2 Discretization

The joists are modeled with 3D-volume elements and a hexagonal mesh. The 20-node
SOLID186-element was chosen. Compared to other types of elements, the SOLID186-
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1

Figure 3.12: FE model of the LJ floor

element showed the best representation of the reality, due to its higher order form functions.
An additional advantage is the enhanced connect-ability, due to the additional middle nodes
(the hangers’ 1D COMBIN14-elements can only be defined between two nodes).

For modeling of the OSBs, four-node SHELL181-elements are used. A grid of evenly
distributed rectangular elements is created which is a requirement for the acoustic evaluation
model described in Section 3.7.1. However, the positions of the joists don’t match this
grid and the element of the joists have a higher order. Thus, the connection between the
volume elements of joists and the shell elements of the OSB is established by a surface-
surface-contact. Therefore, contact pairs are modeled at the interface consisting of eight-
node CONTA174-elements for the face of the volume elements and four-node TARGE170-
elements for the face of shell elements. A rigid contact is chosen without the possibility of
separation. Figure 3.12 shows a detail of the FE model of an LJ floor.

3.2.3.3 Parameters

Geometrical and material parameters of this model are listed in Tables 3.4, 3.5 and 3.6.
Two types of LJ floor can be modeled depending on whether they are made of single or
double joists. Parameter tTBC defines which type is used, i.e., it determines the width of
the joist volume. The testing structure is of type tLJ = 2. It was found that the number
of joists in a model, although it is an integer value, is less relevant for a parametric study
than the distance between the individual joists djoist. However, the latter is not well suited
for parametric studies, because, in most cases, no common values for different total widths

Table 3.4: Geometrical parameters of the LJ floor

Parameter Variable Value Unit
LJ-type tLJ 2 −
Distance between joists djoist 5.00 · 10−1 m
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of the floors w can be found. To solve this problem the number of joists is determined
indirectly by djoist. Therefore, wtot, subtracted by the width of one joist’s volume, is divided
by djoist rounded up and increased by 1. That means that djoist is only an approximation for
the resulting distance.

Table 3.5: Material parameters of spruce (LJ floor)

Parameter Variable Value Unit
Density of the joists ρspr,l 5.00 · 102 kg

m3

Elasticity modulus in x-direction E‖,spr,l 1.00 · 1010 N
m2

Elasticity modulus in y-direction E⊥,spr,l 4.50 · 108 N
m2

Elasticity modulus in z-direction E⊥,spr,l 4.50 · 108 N
m2

Shear modulus in xy-direction G‖⊥,spr,l 6.50 · 108 N
m2

Shear modulus in xz-direction G⊥⊥,spr,l 4.00 · 107 N
m2

Shear modulus in yz-direction G‖⊥,spr,l 6.50 · 108 N
m2

Poisson ratio in xy-direction ν‖⊥,spr,l 1.40 · 10−2 −
Poisson ratio in yz-direction ν⊥⊥,spr,l 2.70 · 10−1 −
Poisson ratio in xz-direction ν‖⊥,spr,l 1.40 · 10−2 −

The LJs are made of spruce, the same wood as used for the boards of the CLT floor. The
material parameters for the spruce joists have been taken from the literature [Neuhaus 2009].
As shown in Section 4.2.3.1, they have been validated by measurements. The density was
slightly increased. The average values of the measured eigenfrequencies of every used joist
have a good correlation to the simulation results of a single joist.

Table 3.6: Material parameters of the OSBs

Parameter Variable Value Unit
Density of the boards ρOSB,m 6.23 · 102 kg

m3

Elasticity modulus in x-direction Ex,OSB,m 6.10 · 109 N
m2

Elasticity modulus in y-direction Ey,OSB,m 2.06 · 109 N
m2

Elasticity modulus in z-direction Ez,OSB,l 2.50 · 108 N
m2

Shear modulus in xy-direction Gxy,OSB,l 1.09 · 109 N
m2

Shear modulus in xz-direction Gyz,OSB,l 6.00 · 107 N
m2

Shear modulus in yz-direction Gxz,OSB,l 1.09 · 109 N
m2

Poisson ratio in xy-direction νxy,OSB,l 2.70 · 10−1 −
Poisson ratio in yz-direction νyz,OSB,l 2.50 · 10−1 −
Poisson ratio in xz-direction νxz,OSB,l 2.50 · 10−1 −

The parameter values for OSBs are determined in various ways. Density is obtained by
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weighing, and the elasticity moduli in main and perpendicular load-bearing directions have
been derived from EMA. Final results have been obtained by averaging over the results of
the individual boards. The remaining parameter values that couldn’t be measured are taken
from the literature [Meistring 2005].

3.2.4 Hollow box girder HBG floor

The investigated HBG floor is - as the CLT floor - designed by single slabs made of spruce
that are connected longitudinally. The slabs for different types of HBG floors have a varying
cross-sectional design, whereas its width of 0.625 m stays the same for all designs. Every slab
is made of several glued laminated timber joists, that are glued on-top of a two layered cross
laminated timber plate. The number of layers of the joists vary depending on the chosen
HBG-type. For the coupling of neighboring slabs, spruce boards are installed on top of the
butt joint between two slabs and fixated with screws on both sides.

3.2.4.1 Idealization

Idealized, the HBG floor can be seen as a combination of CLT floor for the bottom plate
with ribs similar to an LJ floor glued on top of it. The cross-section of the ribs is idealized
rectangular neglecting the varying widths of the board layers. They are modeled in the same
way as the lumber joists in Section 3.2.3 as an homogeneous volume neglecting the different
layers and glue joints. The connection between ribs and bottom plate is modeled as an rigid
contact at the interface. Coupling between the individual slabs is done in the same way as
for the CLT floor in Section 3.2.2. The spruce boards are substituted by elastic springs.

1

Figure 3.13: FE model of the HBG floor
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3.2.4.2 Discretization

The volumes of the ribs and both CLT layers are modeled with 3D volume elements
SOLID185 (see Fig. 3.13). The connection between the two structural elements is done
by a surface to surface contact, in the same way, as the connection between LJ and OSB in
Section 3.2.3. Coupling of two neighboring slabs is performed analogously to the coupling
of the CLT floor slabs in Section 3.2.2.

3.2.4.3 Parameters

The different designs of HBG floor can be set by the parameter tHBG with ns for the number
of slabs. The material parameters of spruce are chosen to be the same as in Table 3.5. For
the stiffness of the coupling spring, the value of ky,lin out of Table 3.3 is taken, assuming
similar behavior as for CLT floor coupling.

3.2.5 Floating floor FLF

For some of the construction states, an FLF module is added to the main floors. Cement-
based Liquid Screed (LS) and Dry Screed (DS) are tested each on top of a layer of impact
sound insulation (see Fig. 3.14).

Figure 3.14: FLF (DS) in the testing lab



72 Numerical Model Development

3.2.5.1 Idealization

The screed layer is modeled as an isotropic plate with different material parameters for each
type of screed. The footfall noise insulation layer is simplified by longitudinal spring in out
of plan direction coupling the plate of the screed with the main floor.

3.2.5.2 Discretization

The screed plate is discretized by shell elements (SHELL181). The element grid is adapted
for every construction to exactly fit the element grid of the main floor beneath. Thus, the
impact sound insulation can be modeled by COMBIN14 spring elements that are installed
respectively between nodes from the main floor and the screed plate that lie vertically on
top of each other. Figure 3.15 shows an example of an FE model with FLF.

1

Figure 3.15: FE model of the FLF

3.2.5.3 Parameters

In this section, only the cement-based screed is described. The material parameters are given
by the product information sheets of the fabricator Knauf [Knauf 2014]. For the impact
sound insulation, the dynamic stiffness is given in [sins] = N

m3 and have to be transformed
into the spring stiffness [kins] = N

m . Therefore, it has to be divided by the spring’s fictional
reference area which corresponds to the size of a single shell element esize × esize.

Tables 3.7 and 3.8 list the geometric parameters of the FLF-module and the values used for
the material parameters of the model.
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Table 3.7: Geometrical parameters of the FLF

Parameter Variable Value Unit
Thickness of the screed dscr 0.05 m
Thickness of the impact sound insulation dins 0.02 m

Table 3.8: Material parameters of screed and impact sound insulation

Parameter Variable Value Unit
Density of the screed ρscr,l 2.00 · 103 kg

m3

Elasticity modulus of the screed Ex,scr,l 2.50 · 1010 N
m2

Poisson of the screed νscr,l 2.00 · 10−1 −
Dynamic stiffness of impact sound insulation sins,l 2.00 · 107 N

m3

3.2.6 Suspended ceiling

A second module to add is the SC. It is designed by two layers of gypsum fiber boards
consisting of individual rectangular boards each with a size of 2.50 m x 1.25 m x 0.0125 m.
Theses are screwed together crosswise and mounted on a grid of steel U-channels 60/27/06
(see Figure 3.16). This grid-work itself is suspended from the main floor by uni-body molded
rubber and steel resilient hangers.

Figure 3.16: Parts of the grid-work of the SC in the testing lab

3.2.6.1 Idealization

The resilient hangers are simplified as single spring-damper-elements that are arranged be-
tween main floor and suspension grid. As a side effect compared to a more detailed model in
this case different types of suspension systems can be modeled by simply changing the ele-
ment parameters. The U-channels are idealized as a grid of 1D beams in x- and y-direction.
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The two layers of gypsum fiber boards are designed as a single isotropic plate neglecting
the individual boards and layers. The resulting overestimation of the bending stiffness is
compensated by adapted material parameters (see Section 4.4.1). The individual beams of
the suspension grid are connected by direct coupling of the translations at the intersections
and allow free rotation. The air cushion between the structures is treated as a cubic volume
with interfaces to the upper surface of the plate of gypsum plaster boards and the lowest full
scale surface of the main floor. This means that in case of the LJ floor, the volumes of the
lumber joists pierce the air volume and overlaying it. Section 4.5 shows that the influence
of this simplification on the accuracy of the simulation can be neglected.

1

Figure 3.17: FE model of the SC underneath an LJ floor

3.2.6.2 Discretization

Figure 3.17 shows an example of an FE model with SC. The spring-damper-elements of the
sound isolation hangers are modeled with COMBIN14-elements and the U-channels with 1D
BEAM188-elements. The cross-section of the U-channels is considered as additional param-
eters for the element. The plates are modeled as shell elements of type SHELL181and the
volume of the air cushion is discretized by hexahedral acoustical fluid elements FLUID30.
The connection between the fluid and structural elements is established by coupling the
translational DOFs. This is possible because of the coincident nodes caused by the same
grid as the neighboring structures. Additionally, the sound pressure DOF of the fluid ele-
ments is coupled by a Fluid-Structure-Interaction (FSI) boundary condition applied at the
surfaces on the interface. In a horizontal direction at the surfaces of the fluid volume, an
impedance boundary condition is applied to consider absorbing effects. The cell size of the
suspension grid and its nodal discretization must be chosen to match the nodes of the grid
of the gypsum plaster boards as well as the nodal grid of the main floor. Thus, the beams
of the grid-work and the COMBIN14-elements of resilient hangers have node pairs for the
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coupling that lie on top of each other in vertical direction. In the special case of the LJ floor,
the distance between the joists doesn’t match the grid. Here, the beams of the suspension
grid in x-direction are modeled matching the lumber joists, because the nodes are no longer
coincident for the interconnection of the sub-structural beams in x- and y-direction, and the
coupled translation needs to be interpolated between the two closest nodes.

For testing purposes, the SC can be simulated with or without the air cushion, because
implementation of FLUID30-elements leads to a major increase in computational effort,
which is discussed in detail in Section 3.5.1).

3.2.6.3 Parameters

The cross-sectional dimensions of the U-channels and the total thickness of the gypsum
plaster boards are given in Table 3.9. These are fix dimensions and they are not subject to
the later parametric studies.

Table 3.9: Dimensions of the SC components

Parameter Variable Value Unit
Thickness of the gypsum plaster boards tgpb 2.50 · 10−2 m
Wall thickness of the U-channels tuc 6.00 · 10−3 m
Leg width of the U-channels w1,uc 2.70 · 10−3 m
Web depth of the U-channels w2,uc 6.00 · 10−3 m

The suspension grid is defined by the geometrical parameters in Table 3.10. As an example,
the values of the dimensions are listed for the tested SC combined with a CLT floor.

Table 3.10: Geometrical parameters of the SC

Parameter Variable Value Unit
Longitudinal edge distance of the U-channels ay,edge 2.35 · 10−1 m
Longitudinal distance between U-channels ay 1.00 · 100 m
Perpendicular edge distance of the U-channels ax,edge 1.00 · 10−1 m
Perpendicular distance between U-channels ax 5.00 · 10−1 m
Edge distance of the hangers ax,hang,edge 3.35 · 10−1 m
Distance between hangers ax,hang 9.50 · 10−1 m
Length of the hangers lhang 1.35 · 10−1 m
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The density of the gypsum plaster boards is derived from the total weight of the construction
that has been measured in Tröbs [2013]. The idealized elasticity modulus of the boards is
approximated in Section 4.4.1 by comparing the frequency depended, measured and sim-
ulated bending wavelengths [Winter 2012]. The stiffness and damping parameters of the
resilient hangers, simplified as spring-damper elements, are derived from EMAs, as shown
in Section 4.4.2. The level of absorption of the structure that surrounds the air cushion is
defined by the parameter µwall,i. It can range from 0.0 to 1.0 which represents either full
reflexion or full absorption. For the testing lab in Rosenheim, µwall,i = 0.03 is evaluated
iteratively as shown in Section 3.7.1. The rest of the parameters are chosen according to the
literature.

The material parameters for the SC-module are listed in Table 3.11.

Table 3.11: Material parameters of the SC

Parameter Variable Value Unit
Density of gypsum plaster boards ρgpb,m 8.56 · 102 kg

m3

Elasticity modulus of gypsum plaster boards Ex,gpb,m 1.02 · 109 N
m2

Poisson ratio of gypsum plaster boards νgpb,l 2.00 · 10−1 −
Density of steel ρst,l 7.85 · 103 kg

m3

Elasticity modulus of steel Ex,st,l 2.10 · 1011 N
m2

Poisson ratio of steel νst,l 3.00 · 10−1 −
Spring stiffness of the suspension ksus,m 1.65 · 105 N

m
Damping constant of the suspension csus,m 7.80 · 101 Ns

m
Density of air ρair,l 1.20 · 100 kg

m3

Speed of sound in air cair,l 3.44 · 102 m
s

Absorption coefficient µwall,i 3.00 · 10−2 −

3.2.7 Support conditions

One of the following support modules is added for any considered floor system and construc-
tion state that have been modeled by a combination of the modules described before. The
support modules can display different static situations of varying complexity. One model
displays a simple line support another one includes clamping effects. In the third and the
most detailed model, an additional layer of elastomer material is added to the structure.
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3.2.7.1 Simple line support

For this support condition, the translational DOFs of the nodes at the lower edge of the
main floor construction are fixed. Depending on the static system, either two or all sides of
the floor can be Navier-supported. To prevent compulsion in case of two-sided support, the
DOFs in the x-direction stays free on one side (see Fig. 3.18).

Figure 3.18: FE model of a simple support

3.2.7.2 Partially clamped support

Partial clamping is modeled with additional torsional spring elements (see Fig. 3.19). The
nodes or the volume elements used for the modeling of the floors lack rotational Degree-
of-Freedoms (DOFs) as a counterpart for the spring elements. Therefore, a numerical
workaround has to be found. Starting from the module for a simple support described
above additional nodes are created overlaying the existing nodes at the support (only cyan
arrows). These nodes are discretized as mass elements (MASS21) of zero mass, that include
torsional DOFs. Later, the translations of every node on a line, vertically above the sup-
port, are coupled to the mass element’s rotations by constrained equations (magenta arrows
and lines). As a result, all these nodes have the same rotation, which leads to a restrained
warping of the, now plane, cross-sectional area in z-direction. In a further step, a second
row of mass element nodes with fixed DOFs is created, slightly shifted in x-direction, out-
side the structure (orange and cyan arrows). Finally, torsional spring elements are modeled
between the two rows of mass element nodes. With a change of the torsional stiffness of the
spring elements kφ,support the degree of clamping can be adapted. However, the restrained
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warping of the cross-sectional areas is a disadvantage of this model. With decreasing degree
of clamping the induced numerical error increases. The same holds in case of short char-
acteristic wavelength of the system. Moreover, in case of the CLT floor, the advantage of
a modeling of uneven cross-sectional areas over the thickness of the slab, related to a shell
model, gets lost at the edges. Instead of using this module with kφ,support = 0, the module
for a simple support should be preferred.

Figure 3.19: FE model of a partially clamped support

3.2.7.3 Elastomer support

For the experimental investigation, a more complex construction for the bearing of the
test objects was chosen (see Figs. 3.20 and 3.21). Its design is aimed on the development
of defined, reproducible and equal support conditions for every tested floor configuration.
Therefore, the main load-bearing structural elements are applied upon stripes of elastomer
material. To prevent a lifting of the test object, steel U-profiles are attached on top. They
are fixed to the test stand via threaded rods and pre-stressed screws. Between the steel
profiles and the wooden structure, the same elastomer stripes are arranged.
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reinforced concrete floor

steel U-channel
elastomer

elastomer support
steel L-profile support

CLT floor
of the testing facility

Figure 3.20: Sketch of the elastomer support

The lower elastomer stripes are idealized as a single volume and discretized by SOLID185-
elements. Due to the small cross section, a resolution of 3×3 elements is chosen, which leads
to edge lengths in x-direction much smaller than those of the modeled floor constructions. For
the attachment of the elastomer elements to the main floor, constrained equations between
the nodes at the interface are implemented, to form a rigid contact by interpolating the nodal
displacement. A modeling of the steel profiles is neglected, since a lifting of the structure is
already excluded.

Figure 3.21: FE model of an elastomer support

The elastomer material Sylomer manufactured by Getzner Werkstoffe GmbH is used
here. The dimensions of the applied cross sections measured 0.0125 m × 0.04 m. Negeira
[2013] investigated its material properties, and described it as a highly non-linear material.
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If the exact dimensions and load situation are known, the material properties can be ap-
proximated by the data sheets, as well as a calculation tool distributed by the manufacturer.
Negeira [2013] and Müller and Buchschmid [2011] derived the material properties by testing.
As described in Section 4.2.2, a model-updating algorithm is used to calibrate the material
properties of the CLT model and the elastomer support. Young’s modulus of the elastomer
is first approximated by the data sheet and the result is used as initial values for the model-
updating. As a simplification, isotropic material law is applied. The resulting elasticity
modulus is listed in Table 3.12.

Table 3.12: Parameters of the elastomer support

Parameter Variable Wert Einheit
Height helasto 1.25 · 10−2 m
Width welasto 4.00 · 10−2 m
Density ρelasto,l 2.00 · 102 kg

m3

Young’s modulus Ex,elasto,m 1.13 · 107 N
m2

Poisson ratio νelasto,l 1.00 · 10−1 −

3.3 Damping Model

Damping, proportional to the mass and stiffness contribution inside the model, is assumed.
Hence, Rayleigh damping is considered for the Harmonic Frequency Analyses. Thus, the
damping matrix C can be calculated from mass and stiffness matrix M and K using the
proportionality factors α and β.

C = α M + β K (3.1)

The derivation of these values from damping coefficients out of EMA measurements is shown
in Section 4.3. αR and βR for CLT and LJ floors are listed in Table 3.13. For HBG and CLT
floors, the same damping coefficients are considered.

Table 3.13: Damping parameters

Parameter Variable Value Unit
Mass proportionality factor αCLT 1.21 · 100 −
Stiffness proportionality factor βCLT 4.71 · 10−5 −
Mass proportionality factor αLJ 1.69 · 100 −
Stiffness proportionality factor βLJ 8.00 · 10−5 −
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3.4 Load Models

3.4.1 Single load

The test objects for experimental evaluations are excited by an electrodynamic shaker in a
discrete point on top of the structure. To match the results of the measurements, a single
load is applied to the FE models. The driving point, in case of the numerical simulations,
has to coincide with a node at the upper surface of the model. Thus, a slightly different
configuration is chosen, since the element grid does not match the experimental location in
every simulation. The error induced is assumed to be negligible for the considered frequency
range and the occurring wavelengths. For the comparison of measured and simulated results,
this type of loading is well suited. A force with a value of 1.0 N is applied. Thus, the
resulting response spectra can be compared directly to the measured transfer functions (see
Section5.3). Some restrictions have to be introduced. Since the model has several eigenmodes
in the investigated frequency range, the system’s response varies depending on the chosen
location of the applied load. Thus, some modes are excited over-proportionately, while others
may be not excited at all. The vibro-acoustical behavior of the floor systems can therefore
not be described for the general case using this type of loading.

3.4.2 Rain-on-the-roof load

To solve the problem described above, a stochastic approach is investigated. To obtain a
evenly excitation over the whole floor surface, a stochastic area load, uncorrelated in space
and time, is applied [Nilsson and Liu 2013]. Single loads with varying phases are applied
to every node of the upper floor surface. The individual phase shifts are evenly distributed,
while the absolute value stays equal. Real and imaginary parts of the individual load vectors
are generated by random numbers using a uniform distribution. The absolute values are
chosen to give an equal total area load for every simulation. An FE model with applied
stochastic loading is shown in Figure 3.22. The individual arrows describe the real part of
the single loads.

This type of excitation is commonly referred to as Rain-on-the-Roof (ROTR) excitation
[Lafont et al 2013]. It follows the modal approach of the SEA, where the external force
distribution is assumed to be statistically independent [Lyon and DeJong 1995]. Thus, all
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1

Figure 3.22: Stochastic area load (ROTR excitation)

modes of a structure are excited with the same level [Lafont et al 2013]. The auto-correlation
function of the force field f(x,t) of a ROTR excitation with a constant amplitude S0 is

Rff (χ,τ) = 〈f(χ,t)f(x+ χ,t+ τ)〉 = δ(χ)δ(τ)S0. (3.2)

The modal force of mode i with the corresponding eigenvector Φi is

Li =
∫
f(x,t)Φidx. (3.3)

Since the eigenmodes are orthonormal, the cross-correlation with the modal force of mode j
yields the following:

RLiLj(τ) = 〈Li(t)Lj(t+ τ)〉 = S0δ(τ)δij. (3.4)

Thus, the modal forces are uncorrelated white noises with the same power spectral density S0

[Lafont et al 2013]. An infinite number of uncorrelated excitation points would be necessary
for a strict ROTR field. As explained above, in case of numerical investigations a large
number of excitation points is usually placed randomly on the structure.

The random character of this type of excitation requires an iteration process for the simu-
lations using varying random load conditions. Averaging over multiple simulations increases
the accuracy of the results. This type of loading avoids uneven excitation of modes, and thus
increases the significance of the results. The computational effort is multiple times higher,
than when a single load is applied.

3.4.3 Pedestrian load

A parametric description of the loading by a simulated pedestrian requires a time domain
analysis approach. For each footfall a load/time function is applied to the model (compare
Fig. 3.23). Those functions are derived parametrically according to Butz [2006] and Müller
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and Buchschmid [2011] and are adapted to the considered FE model. Therefore, several
person specific parameters (mass, distance between the footfalls, etc.) as well as the walking
path of the pedestrian have to be accounted for.

xstep

1
fstep

Distance in m

Time in s

Figure 3.23: Sketch of the step-by-step-load approach [Reuter 2011]

Initially, the load/time function of a single footfall has to be determined. According to Butz
[2006] both its shape and duration depends on the footfall frequency fstep. The discretization
of the load function has to be according to the chosen time step size of the analysis ∆t. Its
amplitude is governed by the weight of the simulated pedestrian mped ·9.81 m

s2 . Subsequently
the walking path has to be chosen. A reasonable choice is a path along the main span
of the floor with a distance to the edge of yfoot,edge. With the length of the floor and the
distance between each footfall xfoot as well as the initial distance xfoot,start the total number
of footfalls and their location on the floor can be determined. As a simplification the load
of each footfall is concentrated in a single point and all footfalls are located along a straight
line. With a temporal offset defined by the reciprocal value of the footfall frequency the
load/time function is applied to the previously defined locations as a load vector.

3.5 Dynamic Analyses

The following dynamic analyses are performed for the structural models depending on the
objective:

• Modal Analysis

• Harmonic Frequency Analysis
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• Transient Analysis

Individual modules for each analysis type are developed, that partly build on one another.
In Figure 3.24, a scheme of the modules in the solution processor is depicted. Depending
on the analysis type, the structural models are applied by different types of loads. The
individual analyses will be described as follows.

solution processor

Ansys Matlab

prep

post-processor

modal analysis

MSUP
FULL

MSUP
FULL

pedestrian load

harmonic analysis

transient analysis

single load
ROTR

Figure 3.24: Modular design of solution and post-processor (Ansys R©)

3.5.1 Modal Analysis

In Section 2.5, the fundamental theory of a undamped Modal Analysis for FE models is
described. Due to the small damping of the investigated wooden structures (see Section 4.3),
damped Modal Analyses are not considered. The variation between damped and undamped
eigenfrequencies is assumed to be negligible.

3.5.1.1 Applied Modal Analysis methods

Two Modal Analysis methods implemented in Ansys R© are considered. In general the
Block-Lanzcos method is applied. For models including acoustical fluid elements, a different
method, capable of the solving unsymmetrical matrices, must be referred to.
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The Block-Lanzcos method is a common procedure to derive eigenvalues especially ca-
pable of large matrix problems. For most numerical models, it is an efficient method for
the extraction of a large number of eigenmodes. Typically, it is applied for complex models,
composed of a mixture of different element types. On top of that, rigid body modes can be
processed [Stelzmann et al 2008].

The unsymmetrical method is used in general for acoustical problems including FSI,
but also for other applications with unsymmetrical mass and stiffness matrices. Complex
eigenvalues are derived. The real part represents the eigenfrequency, whereas the imaginary
part gives information about the stability [Stelzmann et al 2008].

3.5.2 Harmonic Frequency Analysis

The Harmonic Frequency Analysis represents the numerical equivalent to the experimental
OMA. In a predefined frequency range, the dynamic response of the FE models, caused
by a specific load situation, is derived. The overall goal is to evaluate the radiated sound
power of the simulated models, caused by an excitation from above and radiated into the
space below the structure. Thus, the top structure (e.g screed) must be excited and the
bottom structure (e.g. paneling of the ceiling) gives the systems response. Therefore, the
location of the load as well as the nodes for the evaluation are adapted to the considered
state of construction. For the prediction model of the effective and the radiated sound power
described in Section 3.7.1, the mean square structure-borne sound velocity for all nodes of
the radiating surface is calculated in the wave number domain in every simulated frequency
step. The frequency range and discretization for all models is set by the parameters fmin,
fmax, and ∆f . In Table 3.14 those values are given, chosen to match the experimental data.

Table 3.14: Parameters for the Harmonic Frequency Analysis

Parameter Variable Value Unit
Minimum frequency fmin 0 Hz
Maximum frequency fmax 130/200 Hz
Frequency step size ∆f 1.0 Hz
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3.5.2.1 Analysis methods

For the Harmonic Frequency Analysis, several methods with varying computational effort
are implemented in Ansys R©. Two possible solution methods will be presented which can be
adapted depending on the simulated model’s complexity.

Modal superposition When modal superposition is chosen, a preliminary Modal Analysis
has to be performed. For the derivation of the dynamic response, the results for the in-
dividual modes are superposed. The number of considered eigenmodes is recommended to
be chosen to cover a minimum of 1.5 times the considered frequency range [Stelzmann et al
2008]. However, it has to be checked, whether stiffness controlled modes are irrelevant for
the radiation [Müller 2002]. This method provides an enhanced speed of computation but
cannot be applied to every simulation configuration. Among other restrictions symmetrical
matrices of the system must be present. Construction states with suspended ceiling and im-
plemented acoustical fluid elements cannot be solved using this method due to the resulting
unsymmetrical matrices.

Full solution In case, modal superposition cannot be applied, the standard method of
Ansys R© for the solution of a Harmonic Frequency Analysis is considered. Here, the complete
matrices must be solved which, compared to a solution using modal superposition, leads,
especially for large models, to a significant increase of the computational effort.

3.5.3 Transient Dynamic Analysis

For the evaluation of the numerical models regarding pedestrian-induced vibrations, an exci-
tation by a simulated walking person described in Section 3.4.3 is applied. Such a transient
load requires an analysis in the time domain, a transient dynamic analysis. For the time-step-
iteration, the Newmark-Beta method is considered using a constant acceleration approach
[Stelzmann et al 2008]. Analysis method and damping is specified according to the harmonic
analysis (see Section 3.5.2).

3.5.3.1 Discretization in the time domain

The time domain is defined by the time step size ∆t and the overall number of time steps
nsubstep resulting in a total duration of the analysis of Ttot = ∆t · nsubstep. The time step size
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has to be chosen sufficiently small to prevent numerical errors. The number of time steps
is defined by the duration the pedestrian load needs to pass the floor including the time
until the floor’s forced oscillation attenuates. Both values have an impact on an eventual
evaluation in the frequency domain as well.

3.5.3.2 Evaluation of an example

Figure 3.25 shows an example of the displacement/time curve of the floor caused by a
pedestrian load. The load propagates along the main span with a footfall frequency of
2.0 Hz. The displacement of a node in the center of the floor is considered. A model of a
CLT floor without additional constructions was simulated. Table 3.15 lists the parameters
applied for the analysis. Clearly, the seven footfalls are recognizable from the shape of the
curve, as well as the forced oscillation of the floor. The total duration was 10.0 s.
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Figure 3.25: Example of the vibrations caused by a pedestrian walking with 2.0 Hz footfall frequency
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Table 3.15: Parameters for a Transient Analysis with a pedestrian load

Parameter Variable Value Unit
Step distance xfoot 7.50 · 10−1 m
Starting distance of the first footfall xfoot,start 3.75 · 10−1 m
Edge distance of the load path yfoot,edge 6.88 · 10−1 m
Footfall frequency ffoot 2.00 · 100 Hz
Mass of the pedestrian mped 7.5 · 101 kg
Time step size ∆t 1.00 · 10−2 s
Number of time steps nsubstep 1.00 · 103 −

3.6 Post-Processing of the Simulated Data

Simulation results can be evaluated in Ansys R© using the graphical user interface. For the
acoustical prediction model, described in Section 3.7.1, an interface between Ansys R© and
Matlab R© is needed.

3.6.1 Ansys R©-post-processor

The frequency response functions of individual nodes of the model can be displayed within
the Ansys R©-post-processor. An example of such a frequency response function due to a
single load at the driving point is shown in Figure 3.26. Since the force value of the single
load for every frequency step was F̂ (f) = 1.0 N the shown spectrum represents the receptance
R(f) = ŵ(f)

F̂ (f) .

The graphical user interface is used for preliminary examinations only. Further investigations
are performed using the computer algebra software Matlab R©.

3.6.2 Ansys R©-to-Matlab R©-interface

To ensure an automatic procedure for the acoustical evaluation within a parametric study, as
well as for the iteration of the stochastic simulations mentioned in Section 3.4.2, an interface
between Ansys R© and Matlab R© is implemented. For every frequency step, the dynamic
response of the models is exported. Therefore, the real and imaginary part of the structure
borne sound velocity, for every node of the radiating surface, is extracted. The dynamic data,
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Figure 3.26: Driving point receptance

as well as the specific coordinates of every node, is subsequently transferred to Matlab R© in
vector form. These vectors are transformed into three-dimensional matrices according to the
specific coordinates that describe the velocity pattern per frequency step.

3.7 Evaluation Models

For the acoustical evaluation of the simulated data, a numerical model for the prediction
of the radiated sound power of the modeled structures is developed, based on the semi-
analytical procedure, derived in Section 2.4. Pedestrian induced vibrations can be evaluated
according to VDI 2038 Blatt 2: 2013-01. Figure 3.27 shows the complete flow chart of the
numerical investigations including the evaluation models.



90 Numerical Model Development

solution processor

modal analysis

MSUP
FULL

MSUP
FULL

pedestrian load

harmonic analysis

transient analysis

single load
ROTR

Ansys Matlab

Postprocessor

KBF (t)

P (f)

preprocessor

CLT
LJ
HBG

FLF

SC
air inside the cavity

supports

floor type

simple
part. clamped
elastomer

input file

Figure 3.27: Flow chart of the numerical investigations

3.7.1 Numerical model for the prediction of the radiated sound power

The radiated sound power can be calculated semi-analytically using ITM as described in
Section 2.4. Equation (2.128) was derived for one frequency component assuming pure
harmonic oscillations. It can be extended to the calculation of the frequency depended
radiated sound power P (f) from the velocity pattern of a plane radiator in the wave number
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domain.

P (f) = 1
2
ρAcA
4π2 <

 ∞∫
−∞

∞∫
−∞

kA(f)√
kA(f)2 − kx2 − ky2

|v̂(kx, ky,f)|2dkxdky

 (3.5)

v̂(kx, ky,f) : Velocity pattern in the wave number domain
ρA : Density of air
cA : Speed of sound
kA(f) = 2πf

cA
: Wave number of air

kx, ky : Wave number domain coordinates

Compared to the ERP of a piston (Eq. (2.131))

Peff(f) = 1
2
ρAcA
4π2

∞∫
−∞

∞∫
−∞

|v̂(kx, ky,f)|2dkxdky (3.6)

the two Equations (3.5) and (3.6) differ by a kernel named K in the following

K(kx, ky,f) = <
 kA(f)√

[kA(f)]2 − kx2 − ky2

 . (3.7)

since only the real part contributes to the radiated sound power and the values of the
remaining terms of Equation 3.5 are real, it is obvious, that this term is of special impor-
tance for the radiation. The term K can be transformed into cylindrical coordinates using
kx

kA(f) = r · cos(φ) and ky
kA(f) = r · sin(φ).

K(r, φ,f) = [kA(f)]2<
[

1√
1− r2

]
(3.8)

which implies:
K(r, φ,f)→∞ for r → 1
K(r, φ,f) = 0 for r > 1 .

The integral of this function over the total

wave number domain converges and yields:

∞∫
−∞

∞∫
−∞

<

 kA(f)√
[kA(f)]2 − k2

x − k2
y

 dkxdky = [kA(f)]2 ·
∞∫
0

2π∫
0

<
[

r√
1− r2

]
dφdr (3.9)

= 2π[kA(f)]2 (3.10)

K can be described figuratively as a circle shaped bowl with a value of unity in the origin
and asymptotic top edges tending to infinity (a numerical representation is depicted in
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Figure 3.29). Beyond this circle with a radius corresponding to the wave number of air
the integrand has imaginary value and is therefore set to zero. Thus, an integration of
Equation 3.7 accordingly 3.5 yields finite values despite of the singularity at r = 1. While
an analytical solution can be achieved easily a numerical solution is prone to errors that will
be discussed in the following.

For numerical evaluation, the frequency dependent analytical equation for the radiated sound
power must be transformed in to a numerical expression. Thus, evaluating Equation (3.5)
for every considered discrete frequency step f [γ] = γ∆f with γ ∈ 1,2, . . . Nγ and

Nγ = fmax − fmin

∆f . (3.11)

P (f) transforms into a vector p, while K(kx, ky,f) and v̂(kx, ky,f) become three-dimensional
Mα ×Mβ × nf -matrices K and V̂.

p =



P [1]
...

P [γ]
...

P [Nγ]


, Kγ =



K[1,1,γ] . . . K[1,β,γ] . . . K[1,Mβ,γ]
... . . . ... . . . ...

K[α, 1,γ] . . . K[α,β,γ] . . . K[α,Mβ,γ]
... . . . ... . . . ...

K[Mα, 1,γ] . . . K[Mα,β,γ] . . . K[Mα,Mβ,γ]


,

V̂γ =



v̂[1,1,γ] . . . v̂[1,β,γ] . . . v̂[1,Mβ,γ]
... . . . ... . . . ...

v̂[α, 1,γ] . . . v̂[α,β,γ] . . . v̂[α,Mβ,γ]
... . . . ... . . . ...

v̂[Mα, 1,γ] . . . v̂[Mα,β,γ] . . . v̂[Mα,Mβ,γ]



(3.12)

The dimensions correspond to the discretization in the wave number domain kx[α] = α∆kx
and ky[β] = β∆ky with α ∈ 1,2, . . .Mα and β ∈ 1,2, . . .Mβ. Kγ and V̂γ are the two-
dimensional matrices for one frequency step γ. According to Section 2.3, the individual
spectral amplitudes v̂[α,β,γ], can be derived out of the structure-borne sound velocity pattern
in the spatial domain v[r,s,γ] for a discrete frequency step γ. It can be provided either by an
EMA or by a Harmonic Frequency Analysis, in case of a numerical investigation. Applying
the DFT or FFT analysis equation (2.77) for two-dimensional problems with indexes starting
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at unity yields

v̂[α,β,γ] =
Nr∑
r=1

Ns∑
s=1

v[r,s,γ]e−i2π
(

(α−1) (r−1)
Mα

+(β−1) (s−1)
Mβ

)
for

 1 ≤ α ≤Mα

1 ≤ β ≤Mβ

(3.13)

Square brackets indicate the discrete nature of this equation. The number of samples in
the spatial domain (Nr,Ns) depend on the measurement set-up or on the discretization of
the FE model (see Section 3.2.1). For a rectangular plate (l × w) with a regular sampling
interval (∆x,∆y) they yield:

Nr = l

∆x , Ns = w

∆y . (3.14)

The number of samples (Mα,Mβ) and the sampling interval (∆kx,∆ky) in the wavenumber
domain depend on the considered amount of zero-padding. When an FFT is applied, it is
often mandatory. With the zero padding factor zp, introduced in Section 2.3.2.2, they can
be expressed depending on the dimensions of the plate as follows:

Mα = zp
l

∆x , Mβ = zp
w

∆y (3.15)

∆kx = 2π
zpl

, ∆ky = 2π
zpw

(3.16)

In case of an implementation into Matlab R©, the CTFT can be approximated out of Equa-
tion (3.13) by applying Equation (2.79) for the two-dimensional case

v̂(kx,ky,γ) ≈ ∆x∆y · v̂[α,β,γ]. (3.17)

Thus, the individual terms in p can be expressed numerically as follows:

P [γ] = 1
2
ρAcA

4π2 <

Mα∑
α=1

Mβ∑
β=1

K[αβγ] · |v̂[αβγ]|2 ∆x2∆y2

∆kx∆ky (3.18)

The corresponding components of the matrix K are:

K[αβγ] = kA[γ]2√
kA[γ]2 − kx[α]2 − ky[β]2

(3.19)

with the wave number of air

kA[γ] = 2πf [γ]
cA

. (3.20)
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An example of the velocity pattern in spatial and wave number domain is given in Figure 3.28.
It shows simulated results for a simply supported steel plate (l = 1.0 m, w = 1.0 m,
t = 0.001 m ∆x = 0.05 m, ∆y = 0.05 m) excited by a single load in the quarter point.
The structure-borne sound velocity pattern (imaginary part) is depicted for a frequency step
close to its third eigenfrequency (γ = 100, ∆f = 1 Hz). The zero-wave number components
are shifted to the center of the spectrum. This representation will be used for all subsequent
wave number spectra. Clearly, the side lobes, caused by the physical leakage effect, are
observable (see Section 2.3.1.2). Only minor aliasing is expected (see Fig. 2.11), since the
normalized sampling interval for this eigenmode is πT = T1

T0
= ∆x

l
= 0.05. The resolution of

the wave number spectrum is increased by a zero-padding factor of zp = 50.
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Figure 3.28: Velocity pattern in the spatial and the wave number domain

Figures 3.29 and 3.30 show three- and two-dimensional details of K100 (at 100 Hz) for a
zero-padding factor of zp = 40.

Discontinuities appear at a circle with a radius of the wave number of air kA. Outside this
circle, where

kx[α]2 + ky[β]2 > kA[γ]2, (3.21)

the components of K are zero. Since the wave number of air increases with increasing
frequency, the total number of non-zero components increases, when a new set of wave
number combinations meet the upper requirement. Caused by the shape of the term K
these additional values are very large compared to the components already present in the
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Figure 3.29: K100 in 3D for zp = 40 at 100 Hz
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Figure 3.30: K100 in 2D for zp = 40 at 100 Hz

previous frequency step. The same behavior appears analogously for the product of the
matrices K · V̂ · V̂∗ for the calculation of the radiated sound power expressed by vector p
(see Eq. (3.12)). The corresponding components in the velocity spectrum

∣∣∣V̂100

∣∣∣ are given
in Figure 3.31. It shows a detail of the spectrum, where components not contributing to the
radiated sound power are set to zero.
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Figure 3.31: Detail of the wave number spectrum contributing to the radiated sound power

The discontinuities in K also lead to discontinuities in the graph of the radiated sound
power P [γ]. The radiated sound power level of the plate in the example mentioned before,
with a zero-padding factor of zp = 10, is shown in Figure 3.32 in the frequency range
0 − 120 Hz. The discontinuities are marked by vertical dashed lines. Between each line
the number of non-zero components of K stays equal, resulting in a continuous curve. The
corresponding details of the matrices are depicted underneath the curve with a superimposed
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white circle representing the wave number of air at the frequency step after the discontinuity.
Another problematic fact is, that the eigenfrequencies of the plate at approximately 25 Hz,
63 Hz and 100 Hz can hardly be distinguished from the discontinuities. As described before,
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Figure 3.32: Discontinuities in the curve of the sound power level caused by biased data

this problem arises because of the discretization of the analytical but discontinuous term
K(kx, ky, f) (see Eq. (3.8)). Measures to tackle this problem are discussed in the following
section.

3.7.2 Further considerations on the prediction model

3.7.2.1 Influence of the zero-padding factor

A simple approach to cope with the discontinuities, that appeared in Section 3.7.1, is to
increase the zero-padding factor zp. This results in a significant increase in computational
costs. Figure 3.33 shows an increase of the number of artifacts for a zero-padding factor of
zp = 40 while at the same time, the values of the individual discontinuities are decreased. To
gain an approximately continuous curve an even higher zero-padding factor is needed. For
reasons of comparison, the result of the same data, processed without zero-padding, is shown
in Figure 3.34. It becomes clear, that a minimum zero-padding is necessary. In this case of a
simple supported plate, the original domain corresponds for the third eigenmode at ≈ 100 Hz
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exactly to a multiple of the period (wavelength) in both directions. Thus, the special case of
the DFT, where the limited signal gives the exact results of an infinite signal, occurs [Brigham
1974]. This leads to only discrete impulses in the transformed domain corresponding to the
bending wavenumber of the plate at this frequency. Since the wavenumber of the air is
still below the wave number of the bending wave at this frequency, Equation (3.18) yields
a radiated sound power of zero. The same holds for one spatial direction in case of the
second eigenfrequency at ≈ 63 Hz, leading to a continuous curve, since the remaining spatial
direction of this mode is, as the first eigenmode, shaped like a half-sine. In both figures
the curves for the ERP calculated according to Equation (3.6) is superimposed as a visual
reference.
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Figure 3.33: Zero-padding factor zp = 40
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Figure 3.34: Zero-padding factor zp = 1

3.7.2.2 Reducing discontinuities by discrete integration of the term K

By adapting the zero-padding factor, numerical problems, resulting from the poor resolution
of the spectrum of the velocity pattern V̂, can be handled. However, the number of compo-
nents depends on the discretization of the measured or simulated results. As described in
Section 3.7.1, the term K(kx, ky, f) can be integrated analytically. A consecutive approach
can take advantage of that. Therefore, the individual components of the spectra V̂ can
be multiplied by the integral of K(kx, ky, f) over the sample spacing of every component
measuring ∆kx ·∆ky. This can be done either analytically or by numerical averaging.

Analytical approach

Williams and Maynard [1982] introduced a method to prevent the bias error described above.
Their approach for the prediction of the radiated sound power and radiation efficiency fo-
cuses on the numerical evaluation of the Rayleigh integral interpreting sound pressure as a
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convolution of the structure-borne sound velocity pattern by the Green function. This very
similar approach also deals with bias errors due to the numerical discretization of the Green
function in the wave number domain, which reassembles the described kernel K(kx, ky, f).
The problem is solved by replacing of the discrete Fourier transformed Green function by an
averaged Green function in the wave number domain, integrated over a square box defined
by the sampling space centered on a lattice point.

The presented approach follows closely the method described above. The lattice point of
every spectral component in the wave number domain is defined by kx[α] and ky[β]. Keeping
this location as the center, analytical double integrating over the rectangular area ∆kx ·∆ky
yields the integrated matrix components:

Kint[α,β,γ] =
∆kx(α+ 1

2)∫
∆kx(α− 1

2)

∆ky(β+ 1
2)∫

∆ky(β− 1
2)
K(kx,ky,γ)dkxdky (3.22)

This integral has to be calculated for every lattice point (α,β) in every frequency step γ.
Thus, the numerical Equation (3.18) can be rewritten semi-analytically as:

P [γ] = 1
2
ρAcA

4π2

Mα∑
α=1

Mβ∑
β=1

Kint[αβγ] ·
∣∣∣v̂[α,β,γ]2

∣∣∣ ·∆x2∆y2

 . (3.23)

The spectral velocity pattern is assumed to be slowly varying and can be taken outside the
integrals without any large errors [Williams and Maynard 1982]. This approach completely
resolves the problem of discontinuities, but comes with a significant increase in computa-
tional effort, caused by the multiple use of the analytical integration. The main advantage
compared to the method described by Williams and Maynard [1982] is its applicability com-
bined with the zero-padding mentioned above. It is also not prone to aliasing caused by
repeating sources described by Williams and Maynard [1982] limiting their method to large
structures in case of low frequencies.

Numerical approach

To enhance the results and at the same time to limit the computational effort a numerical
approach is suggested. Therefore, a numerical integration is performed over the rectangular
area ∆kx ·∆ky replacing every k[α,β,γ] by spatial averaged

k̄[α,β,γ] = 1
n2
r

nr∑
αr=1

nr∑
βr=1

kA[γ]2√
kA[γ]2 − (∆kxᾱ)2 −

(
∆kyβ̄

)2
(3.24)
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with

ᾱ =
(
α− 1

2 + 1
nr

(
αr −

1
2

))
, β̄ =

(
β − 1

2 + 1
nr

(
βr −

1
2

))
(3.25)

Thus, the resolution in the wave number domain before the averaging is refined within the
rectangular area ∆x ·∆y by a factor nr.

Different to the analytical integration, this procedure is again prone to numerical errors,
since k̄[α,β,γ] reaches very high to infinite values in case

(∆kxᾱ)2 −
(
∆kyβ̄

)2 ∼= kA[γ]2.

This becomes more likely the higher the refinement factor is chosen. such results must be
excluded from averaging.
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Figure 3.35: Matrix K100 with zp = 40 and
nr = 15
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Figure 3.36: Matrix K̄100 after averaging

Figuratively, the Mα ×Mβ-matrix Kγ is replaced by an (nr ·Mα) × (nr ·Mβ)-matrix. Fig-
ure 3.35 shows this matrix for zp = 40 and nr = 15. For a multiplication with V̂, its
dimensions is decreased again. Compared to K (see Fig. 3.30), the spatial averaged matrix
K̄ (see Fig. 3.36) has a much smoother shape both in the individual spectrum and by com-
paring the spectra of neighboring frequency steps. The latter is caused by a slow increase
of the averaged value of additional non-zero components with increasing wave number of air
kA.



100 Numerical Model Development

3.7.2.3 Computational effort and resulting radiated sound power level

A comparison of the computational effort resulting from an increased zero-padding factor
compared to a numerical integration of K(kx,ky,f) with different refinement factors nr is
shown in Figure 3.37. The calculations of the radiated sound power are performed on the
same machine based on the same data with varying values for zp and nr. A quadratic increase
is observable for both variables, while the amount is significantly bigger with increasing zp.
This diagram, however, lacks the information about the quality of the results.
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Figure 3.37: Computational effort comparing varying zp and nr

A good quality with a reasonable computational effort is found for values zp = 20 and
nr = 30. The computation time for this example is 2.8 s, whereas, when analytical integration
is considered (Section 3.7.2.2), the duration is 28.8 s. The resulting sound power levels, with
the ERP as a reference, are given in Figure 3.38. Thus, the analytical integrals cause a 10
times higher computational effort while the results are of comparable quality. The adaptation
of the described procedure for measured data is validated in Section 4.1.

3.7.2.4 Radiation efficiency compared to the Discrete Calculation Method

The method will finally be compared to the Discrete Calculation Method (DCM) proposed
by Hashimoto [2001]. It is developed for a similar objective, to calculate the sound radiation
efficiency in the low frequency range from vibrational data, without the requirement of
measurements of the sound field. According to the number of measurement points, plane
vibrators of arbitrary shape are divided virtually into small elements, that are treated as
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Figure 3.38: Sound power level example for zp = 20 with nr = 30 and analytical approach

circular pistons. It is a hybrid method that processes measurements of vibrations in the
spatial domain v with self radiation impedance zii of each element vi and mutual radiation
impedance zij between every single element vi and vj. Thus, the sound power of each
measured point is described by

Wi = <(zii)|vi|2 +
∑
j

<(zijviv∗j ) (3.26)

with the self radiation impedance

zii = ρAcAsi

[
1− J1(2kai)

kAai
+ i

S1(2kAai)
kAai

]
(3.27)

and the mutual radiation impedance

zij = ρAcAk
2
Asisj

2π

[
2J1(kAai)

kAai

] [
2J1(kAaj)

kAaj

](
sin(kAdij)
kAdij

+ i
cos(kAdij)
kAdij

)
, (3.28)

with
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J1 First-order Bessel function
S1 Struve function
si,sj Element area
ai =

√
si
π
,a=

√
sj
π

Approximated circle area of the piston
kA Wave number of air
ρA Density of air
cA Speed of sound
dij Distance between two measurement points

The radiation efficiency can then be calculated by dividing the sum of all sound power
components by the ERP

σ =
∑
i

Wi

ρAcAS|v2|
. (3.29)

For a comparison, the sound radiation efficiency of the example plate, presented above, is
calculated analogously by the DCM, using spatial data, and by the presented ITM-based
method with analytically integrated term K. The resulting radiation efficiencies in the
frequency range 0− 120 Hz are shown in Figure 3.39.
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Figure 3.39: Radiation efficiency, calculated by the DCM compared to the ITM-based method

Both methods produce equivalent results. It can be seen that both curves almost perfectly
match. The maximum deviation in this case is 0.13 dB at 60 Hz. The computational effort
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for the DCM is equal to the ITM-based method using numerical averaging. A disadvantage
of the DCM is its difficult adaptation to problems with a large number of measurement
points. Especially, when it is supposed to be implemented into an automated process, the
distance and relation between each virtual element has to be calculated anew every time the
data grid is changed. Therefore, the ITM-based method is preferred for parametric studies
described in Chapter 5. Further, the representation in the wave number domain has proven
to give a deeper insight into appearing physical effects, as will be shown in Chapter 4.

3.7.3 Evaluation of pedestrian induced vibrations

In Section 3.5.3, a transient numerical model for the simulation of pedestrian-induced vi-
brations is introduced. The German standard DIN 4150-2:1999-06 describes a procedure to
evaluate vibrations, that effect on humans in buildings based on measurements. A numerical
model is developed to adapt this procedure to process the results of numerical simulations.

For the evaluation, the measured raw velocity data in the time domain v(t) are band limited
according to DIN 45669-1:2010-09 and a weighting filter is impinged. The resulting weighted
velocity vB(t) is subsequently normalized to 1.0 mm

s . Thus, the dimensionless so called KB-
signal KB(t) is obtained. The weighting function of the KB-signal consists of a frequency
band limitation and a weighting filter independently applied to the raw signal. For the
frequency band limitation the raw signal is multiplied by the complex transfer function

Hu(f) = 1[
1− i

√
2 0.8fu

f
−
(

0.8fu
f

)2
]
·
[
1 + i

√
2 0.8f

fo
−
(

0.8f
fo

)2
] . (3.30)

This function is composed of a bipolar high-pass and a bipolar low-pass filter, where a
frequency range from fu = 1.0 Hz to fo = 80 Hz is considered in general.

The frequency weighting is carried out according to DIN 4150-2:1999-06 by a high-pass filter
with f0 = 5.6 Hz. The appropriate transfer function yields:

|HKB(f)| = 1√
1 +

(
f0
f

)2
(3.31)

HKB(f) = 1
1− if0

f

(3.32)
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A combination of band limiting and weighting functions results in the complex transfer
function

HB(f) = HKB(f) ·Hu(f). (3.33)

Figure 3.40 shows the individual transfer functions of the filters in logarithmic scale. The
combined filter HB(f) is applied to the simulated velocity signals.

The weighted vibration severity KBF (t) is derived by calculating the moving average of
resulting KB-signals expressed in general by the following equation

KBτ (t) =

√√√√√√1
τ

t∫
ξ

e−
1−τ
τ KB2(ξ)dξ (3.34)

In this case, the time constant τ is chosen to be 0.125 s which is indicated by the index F for
fast. Taking the maximum value of the resulting curve KBFmax the signal can be evaluated
according to VDI 2038 Blatt 2: 2013-01.
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Figure 3.40: Transfer functions of the band limitation and the weighting filters

The final example in Figure 3.41 shows theKB-signal with its appropriate weighted vibration
severity KBF (t) for a simulated pedestrian load. The FE-model, the load is applied to, is a
CLT floor of type Leno 105 (5.5 m× 5.5 m) composed of four coupled slabs and supported
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Figure 3.41: KB- and KBF -signal of a pedestrian with a footfall frequency of 2 Hz

on two sides. The mass of the pedestrian load is 75 kg. It propagates along the main load
bearing direction on a straight line in the middle of the first slab. Seven footfalls are needed.
For this configuration the limit values proposed by VDI 2038 Blatt 2: 2013-01 are not met
(see Tab. 3.16). Thus the investigated floor does not meet the requirements concerning
pedestrian-induced vibrations. The bending stiffness of the floor is insufficient and has to be
increased by choosing a CLT type with a bigger thickness. Additional measures, like adding
TMDs, have to be considered.

Table 3.16: Comfort levels for floors in residential and industrial buildings [VDI 2038 Blatt 2: 2013-01]

Level of comfort KBFmax-value
High comfort KBFmax < 0.2

Medium comfort 0.2 ≤ KBFmax ≤ 1.0
Low comfort/discomfort 1.0 ≤ KBFmax ≤ 2.5
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4 Validation and Calibration of the
Numerical Models

The developed numerical models are presented in Chapter 3. Before starting parametric
studies, extensive investigations of the individual components are performed, to prevent er-
rors and to achieve the best possible accuracy of the models, compared to the real structures.
The FE models are examined by convergence and case studies. Unknown material properties
are derived from experimental measured data. The developed acoustical model to predict
the radiated sound power is validated by measured data from tests in the laboratory.

4.1 Validation of the Prediction Model for Sound Radiation

A numerical procedure to predict the radiated sound power of plate shaped structures from
structure-borne sound velocities is presented in Section 3.7.1. It is shown that this model
is applicable to simulated data and gives accurate results when the presented settings to
prevent numerical errors are considered. This section shows, that the procedure is likewise
applicable to measured data. Concurrently, this will prove the validation of the procedure.

4.1.1 Measurement set up

The data used in this section are taken from measurements, that are carried out at Müller-
BBM’s window testing facility [Sremcevic Witzig 2012][Angerer 2011]. The measurement set
up provides perfect conditions for a validation. For the testing, a aluminum plate of thickness
2 mm is arranged airtight inside a reverberant wall. The aperture measures 1.50 m×1.30 m.
The wall divides the laboratory into one source and one receiving room. In both source and
receiving room, the walls opposite to the aluminum plate are covered with sound absorbing
material (see Fig. 4.1), so that almost free field conditions are achieved. The plate is exited
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Figure 4.1: Dodecahedra loudspeaker [Angerer
2011]

Figure 4.2: Measurement robot [Angerer 2011]
[Sremcevic Witzig 2012]

by a dodecahedra loudspeaker in the source room (see Fig. 4.1). Pink noise is used for the
excitation to produce a signal of equal subjective loudness over frequency range.

The vibrational response of the plate, from which the radiated sound power is derived, is
measured via a measurement robot (see Fig. 4.2). A grid of nx× ny = 25× 21 measurement
points, evenly distributed with a distance of ∆x = ∆y = 0.059 m, is scanned one by one.
In every point, simultaneous measurements of the sound velocity of the plate as well as the
sound intensity in a distance of 0.1 m orthogonal to the plate are carried out. Here, a pp-
intensity probe with a coaxial arranged laser Doppler vibrometer is used. The arrangement
of the measurement devices, attached to the robot’s arm, is shown in Figure 4.3 and is
sketched in Figure 4.4.
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Figure 4.3: Aluminum plate with the intensity probe and the vibrometer [Angerer 2011] [Sremcevic Witzig
2012]

channel 2channel 1 d

sound propagation
velocitysound pressure

laser Doppler vibrometer

p-p intensity probe

Figure 4.4: Sketch of the measurement set up [Angerer 2011] [Sremcevic Witzig 2012]
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4.1.2 Comparison of measurement results

The radiated sound power of the aluminum plate is evaluated in two different ways. On
the one hand, it is achieved from the structure-borne sound velocity on the plate’s surface,
that is measured by the laser Doppler vibrometer, using the prediction model, presented in
Section 3.7.1. On the other hand the radiated sound power is calculated by Equation (4.1)
for the discrete measurement technique [Jacobsen et al 1998]. Thus, the sound pressures
measured by the intensity probe’s two microphones p1(f) and p2(f) are taken into account
.

p[γ] = − ∆x∆y
4πfγρAd

· =

 Nx∑
α=1

Ny∑
β=1

p1[α,β,γ] · p∗2[α,β,γ]
 (4.1)

with

d = 0.05 m Length of the spacer/ Distance between the microphones
ρA = 1.21 kg

m3 Air density
Nx = 25, Ny = 21 Number of measurement points (samples)
f [γ] Discrete frequency
p1[α,β,γ], p2[α,β,γ] Discrete sound pressure
α,β, γ Spatial and frequency steps

The sample rate is 24600 Hz with a frequency step-width of ∆f = 2.0 Hz.

The diagram in Figure 4.5 shows a comparison of both methods in the frequency range
0 − 400 Hz. In addition to the radiated sound power levels out of the structure-borne
velocity (vibrometer) and the sound intensity (pp-probe) a third graph is depicted, showing
the ERP of a plane radiator (see Eq. (3.6)). The distance in between can be interpreted
by the radiation efficiency level. The graphs match well above a frequency of ≈ 65 Hz. No
reliable measurement results could be achieved in the frequency range below (highlighted
in gray). This is caused by the measurement set-up. In that frequency range, the power
level of the excitation signal is very low, free field conditions are questionable, since the
absorption coefficient of the absorbing material at the receiving room, as well as its depth
are insufficient. On top of that, the accuracy of the intensity probe decreases dramatically
in this frequency range [Bangert 2000]. Contrary to that, the velocity measurements deliver
results of even accuracy over the whole observed frequency range. As a result, the prediction
model based on structure-borne velocity has proven to be equivalent to the common sound
intensity based procedure for plate shaped structures. Only for very low frequencies the two
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methods aren’t comparable, while the surface velocity based method, here, is expected to
deliver more accurate results.

0 50 100 150 200 250 300 350 4000

10

20

30

40

50

60

70

80
pp-probe

ERP
Vibrometer

Frequency in Hz

So
un

d
po

we
r
le
ve
li
n

dB
re

10
−

12
W

Figure 4.5: Comparison of sound power from intensity and velocity measurements. Additionally the (ERP)
is depicted.

4.1.3 Evaluation in the wavenumber domain

A further possibility to evaluate the measured data is an investigation of the structure-borne
sound velocity pattern of the surface of the plate in the wavenumber domain. Figure 4.6
shows an image plot of the spectral components for a single frequency step γ = 267 at
534 Hz. Clearly, two regions of high amplitudes are recognizable. Resonant vibrations
appear at wavenumber combinations yielding for the bending wavenumber of the isotropic
aluminum plate at this frequency

kB =
√
k2
x + k2

y.

Their main peaks lie on an ideal empty circle with the center at the origin and a radius
kB. The bending wavenumber can be calculated according to Equation (2.108) for every
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Figure 4.6: Example of an auto-power spectrum of the plate’s velocity pattern in the wave number domain
at 534 Hz

frequency step γ:

kB[γ] =

√√√√√
√√√√ ρalu · d
Ealu · d

3

12
·
√

2π ·∆f · γ (4.2)

kB[267] = 33.8 rad
m (4.3)

with the dimensions and material properties of the plate

d = 0.002 m thickness

Ealu = 70000 · 106 N
m2 Young’s modulus

ρalu = 2700 kg
m3 density

∆f = 2.0 Hz frequency step width.

The second (inner) region corresponds to the forced vibrations, leading to a solid circle
with high amplitudes. The spectral components (wave numbers) inside this circle are those,
excited by the airborne sound, caused by the loudspeaker. The wave number of air at this
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frequency step yields

kA[γ] = 2π ·∆f · γ
cA

(4.4)

kA[267] = 9.8 rad
m . (4.5)

The sound field is considered to be diffuse due to the high modal density. Thus, the angle
of the incident sound is arbitrarily oriented. This causes the excitation of vibration patterns
with wavelengths λ2

x + λ2
y ≥ λ2

A. In the wave number spectrum, this is recognizable as well,
since not only the wave number combinations on the circle with radius kA, but all the region
inside the circle (k2

x + k2
y ≤ k2

A) is filled with high amplitudes .

The phenomenon of coincidence frequency can be explained quite descriptively using this
representation. While the bending wave numbers of a plate kB increase according to Equa-
tion (4.3) with the square root of the frequency, the wave number of air kA grows linearly
(see Eq. (4.5)). Subsequently, beyond the coincidence frequency, the spectral components
on the radius kB lie inside the circle with radius kA, where all wave numbers are excited by
the incident airborne sound.

4.2 Calibration of the Models of the Main Load-bearing
Structures

The underlying structural models are introduced in Section 3.2. For the modeling of model
components, a number of assumptions are made, that will be focus on in this section.

4.2.1 Convergence study on discretization

An important parameter during the developing process of a numerical model is the level
of discretization respectively e.g. the edge length of volume or shell elements esize. This
parameter has a crucial impact on the models accuracy. With a higher level of discretization,
the accuracy is increased, but the computational effort increases simultaneously. Since the
developed structural models are linked parametrically, the edge length of each element was
implemented as a global parameter. A convergence study is performed to find a value for esize

leading to best possible accuracy-to-effort relation. Therefore, the most complex structural
model, the CLT floor, was tested [Greim 2012]. In this model, besides the edge length,
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the number of elements per layer is of interest. The models eigenvalues serve as objective
function.

Figure 4.7 shows the results of the convergence study of a five-layered CLT floor in the
frequency range up to 125 Hz. The dimensions of the floor were 5.50 m × 5.50 m. On
the right side of the diagram the individual level of discretization is depicted. The following
configurations were investigated while paying attention to a maximum length ratio (> 1 : 10)
with thinnest possible layer of 17.0 mm.

• Edge length: 0.1 m, Elements per layer:1

• Edge length: 0.05 m, Elements per layer:1

• Edge length: 0.05 m, Elements per layer:2

• Edge length: 0.05 m, Elements per layer:3

• Edge length: 0.25 m, Elements per layer:3

It becomes clear, that, although the number of DOF is increasing, the values of the monitored
eigenfrequencies show no significant change. Hence the model’s accuracy is sufficient for the
initial level of discretization for most eigenfrequencies. A minor deviation is observable with
increasing frequency. The mean deviation of the eigenvalues comparing the minimal and
maximal configuration yields 1.2 %. Therefore, to minimize the computational effort, a
global edge length of esize = 0.1 m is chosen for all models. In case of CLT floors the study
additionally proved that one element per layer is acceptable.
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Figure 4.7: Convergence study on the element’s edge length [Greim 2012]
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4.2.2 Calibration of CLT’s material parameters using Model-Updating

The prediction of the material properties of CLT has been subject to numerous studies
in recent years. In most cases, large scale static laboratory testing to achieve the overall
bending stiffness is performed and compared to the numerical model’s result (e.g. [Blaß
and Flaig 2012], [Feichter 2013]). The needed material properties are taken from literature
or are derived from EMAs. Another approach is the calculation of the effective modulus
of elasticity from measured quasi-longitudinal wavespeeds Churchill and Hopkins [2013b]
Mahn and Hopkins [2013]. With the resulting parameters, the structure’s eigenfrequencies
are calculated and compared to frequencies from EMA results. [Churchill and Hopkins 2013b]
compared measured to simulated eigenfrequencies using FE-software ABAQUS R©. Also, an
optimization algorithm of the elasticity parameters to match the measured eigenfrequencies
was applied. However, the CLT was modeled by one layer of shell elements so the procedure
aimed at the identification of optimized global elasticity parameters for the structural element
rather than in material properties. A similar approach is shown in this section for the
identification of idealized material properties for each layer.

In Section 3.2.2, several idealizations for the CLT model are introduced. The individual
boards of one layer are modeled as a single volume neglecting the annular rings, the gapes
between the boards and the relief groves. The connection between the layers is assumed to
be rigid. Additionally, as derived in Section 2.1, the rolling shear, perpendicular Young’s
modulus and consecutively the Poisson ratios cannot be predicted since the orientation of
the annular rings of the individual boards is arbitrary. To deal with that issue, idealized
material properties are used that are optimized compared to measured data [Greim 2012]. As
an objective function f(x) the Root Mean Square (RMS) value of the deviation of simulated
and measured eigenfrequencies in the observed frequency range 0− 150 Hz is used.

f(x) =

√√√√1
k

k∑
i=1

(
fs,i(x)− fm,i

fm,i

)2

, k = number of considered eigenfrequencies (4.6)

Opposite to the measured eigenfrequencies fm,i the simulated eigenfrequencies fs,i depend
on the vector of optimization variables x. The optimization consists in two steps. First
a grid search (zero order method) is performed to find a global minimum of the objective
function. The achieved results serve as initial parameters for the second step, an optimization
algorithm using the steepest decent method (first order).
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4.2.2.1 Grid search - zero order optimization

In this step, a single CLT element on elastomer supports was tested. The initial parameter
grid given in Table 4.1 is chosen. Those initial parameters representing the material prop-
erties of spruce are taken from [Gülzow 2008] and [Lieblang 2000]. A change of parameter
ν⊥⊥,spr has negligible influence on the result and is therefore set fix to 0.3 [Hopkins 2007].

An accurate analytical determination of Young’s modulus of the elastomer supports is dif-
ficult. As described by Negeira [2013] the applied material Sylomer manufactured by
Getzner Werkstoffe GmbH has material properties that behave non-linearly with fre-
quency, shape factor and boundary conditions. To deal with that issue its Young’s modulus
is introduced as an additional optimization parameter. As initial value the manufacturer’s
data is considered [Getzner 2016].

Table 4.1: Parameter grid for a single CLT element

Min. value Increment Max. value Unit
E‖,spr = Ex,spr 9700 · 106 300 · 106 11200 · 106 N

m2

E⊥,spr = Ey,spr = Ez,spr 400 · 106 100 · 106 800 · 106 N
m2

G‖⊥,spr = Gxy,spr = Gxz,spr 400 · 106 50 · 106 600 · 106 N
m2

G⊥⊥,spr = Gyz,spr 40 · 106 10 · 106 80 · 106 N
m2

ν‖⊥,spr = νxy,spr = νxz,spr 0.02 0.01 0.07 −
Eelasto 7 · 106 1.5 · 106 13 · 106 N

m2

A minimum and maximum value as well as increment is chosen for each parameter defining
the range of the grid search. The chosen grid results in approximately 15000 tested parameter
combinations with the corresponding objective function depicted in Figure 4.8. Clearly
regions of constant parameters are observable. For a better visualization, the corresponding
parameters are depicted in Figure 4.8 along with a gray window marking the constant region.
One can see that for parameter combination 14475 a minimum of 2.01 % is reached.

The corresponding parameter combination is shown in Table 4.2. It has to be noticed that in
most cases the chosen extrema were found and the trend of the graph in Figure 4.8 doesn’t
ultimately prove a global minimum. Hence, it is clear that the found results can only serve
as initial values for a more detailed optimization.

Table 4.2: Grid search results for a single CLT element

E‖,spr
N

m2 E⊥,spr
N

m2 G‖⊥,spr
N

m2 G⊥⊥,spr
N

m2 ν‖⊥,spr − Ex,elasto
N

m2

11200 400 550 80 0.07 13
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Figure 4.8: Results of the grid search [Greim 2012]

4.2.2.2 Steepest descent - first order optimization

Starting from the material parameters achieved in the last section by a grid search, a second
optimization phase is performed using the gradient based steepest descent method. Different
to the grid search which only based on a single CLT element in this step different models
of floors consisting of 1 − 4 interconnected elements are simulated and updated parallel.
Therefore, the coupling between the individual elements has to be taken into account. Thus,
the spring stiffness of the coupling ky,lin is introduced as an additional optimization parame-
ter. Its initial value of 10.0 N

m is approximated by preliminary calculations from the stiffness
properties of the connecting Kerto LVL boards [Greim 2012].

A scheme of the optimization process is sketched in Figure 4.9. The entire process is started
and controlled in Matlab R©. First, the initial values for the material properties are imple-
mented into the sub modules of the structural models. Next, the simulation in Ansys R© is
started in batch mode reading from the input file that includes modules of CLT floor, elas-
tomer support and Modal Analysis. The resulting eigenvalues and eigenvectors are read out
of the output file. Before introducing the eigenvalues into the objective function, care has
to be taken for a matching of simulated and measured eigenmodes. Depending on the cho-
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Figure 4.9: Optimization process

sen parameter, the order of eigenmodes can change. Therefore, the individual eigenvectors
(m: measured, s: simulated, j,k: ascending number of the eigenmode) are compared by the
Modal Assurance Criterion (MAC) which is defined as [Friswell and Mottershead 1995]:

MACjk =

∣∣∣ΦT
mjΦsk

∣∣∣2
(ΦT

skΦsk)(ΦT
mjΦmj)

(4.7)

Results from the MAC function range from 0 − 1, where a value near unity indicates, that
two observed eigenmodes can be assumed to coincide [Allemang 2003]. Only those are
considered for the objective function, which can also include a preliminary reordering. After
that, the value of the objective function is calculated and the optimization parameters are
recalculated using a steepest descent algorithm, described by Greim [2012]. Finally a new
simulation based on these parameters is started and the procedure is repeated, until an
interruption criterion is achieved.

The results of the model-updating and the initial values are listed in Table 4.3. The objective
function’s RMS value was improved from the initial value of 7.32 % to 5.01 %. Multiple floor
models are optimized in parallel, which leads to a difference between the initial value and the
result of the grid search in Section 4.2.2.1. The newly found idealized material parameters
lie within expected range. The idealization of the individual boards neglecting the gaps in
between and relief grooves inside the boards lead to a low value of E⊥. As described in



118 Validation and Calibration of the Numerical Models

Table 4.3: Final parameters of optimization

Parameter Initial value Result
E‖

MN
m2 11200 10981

E⊥
MN
m2 400 137

G‖⊥
MN
m2 550 459

G⊥⊥
MN
m2 80 74.2

Ex,Syl
MN
m2 13 11.3

ky,lin
MN
m 10 10.1

ν‖⊥ − 0.07 0.052
RMS value for initial values 7.32 %
RMS value after Model-Updating 5.01 %

Section 2.1.5, the angle of annular rings suggests a reduction of E⊥. The higher value of
G⊥⊥ compared to the nominal value can be explained analogously. Thus, a complete set of
validated material properties is achieved for the considered CLT floors.

4.2.3 Investigations on material properties of LJ floors

In Section 3.2.3, LJs as well as OSBs are modeled as orthotropic materials. Even if in
both cases theoretical material properties can be found in manufacturer’s data sheets and
standards a scatter is assumed within the assembled components. Therefore, in this section,
the material properties are subject to investigations. Eigenfrequency measurements carried
out for each of the individual components and compared to numerical or analytical estimated
eigenfrequencies. In case of greater deviations the material parameters will be adapted.

4.2.3.1 Lumber joists

As discussed in Chapter 2.1, besides its density, nine independent elasticity constants are
needed to completely describe orthotropic material. These constants can be derived from
laboratory testing. Caused by the anatomy of wood, this results in a cylindrical coordinates
representation that is longitudinal, tangential and radial to the fibers and annular rings
(L,R,T). The elasticity constants for spruce have been derived by numerous distributions (e.g.
[Lieblang 2000], [Kretschmann 2010], [Neuhaus 2009], [Grimsel 1999] etc.). For numerical
simulations, the material properties have to be converted into component properties using
Cartesian coordinates. Since the sawing pattern is arbitrary, elasticity constants can be
summarized into parallel and perpendicular to the fibers E‖, E⊥, G‖⊥, G⊥⊥ , ν‖⊥ and ν⊥⊥
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Figure 4.10: First two eigenfrequencies of joists - measurement and numerical results

reducing them to six independent components. Different from CLT, in LJs, E⊥ andG⊥⊥ have
negligible impact on the simulation results, since only torsional and bending deformations
along the fiber direction appear. Consequently, the material properties of wooden joists can
be approximated according to Neuhaus [2009] and Gülzow [2008] as follows:

Ex = E‖ = EL

Ey = Ez = E⊥ = ET

Gxy = Gxz = G‖⊥ = GLT

Gyz = G⊥⊥ = GRT

νxy

Ex
= νxz

Ex
= νyx

Ey
= νzx

Ez
= ν‖⊥

E‖
= ν⊥‖
E⊥

= νLR + νLT

2EL

=⇒ νxy = νxz = νLR + νLT

2
νyz

Ey
= νzy

Ez
= ν⊥⊥

E⊥
= νTR

ET

=⇒ νyz = νTR
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To verify the material parameters, eigenfrequency measurements for the eleven individual
lumber joists are carried out. Models with material properties from literature result in
higher eigenfrequencies compared to the measured data. This is solved by an increase of
the density. Iteratively, the parameters listed in Table 3.5 are found. The altered results for
the first two eigenfrequencies are subsequently compared to corresponding eigenvalues from
an FE simulation. Figure 4.10 shows both results, measured eigenfrequencies are indicated
by black diamonds, the simulated results by red horizontal lines. The diagram shows the
scatter of the measured results. The first eigenfrequency varies from 18− 20 Hz the second
from 60 − 65 Hz. The simulated data correlate with the mean values of the measurements
when the density is increased by ≈ 10%.

4.2.3.2 OSB material properties

In case of the applied OSBs, the manufacturer gives only an incomplete set of material
properties. The data sheet for the product called AGEPAN OSB/4 PUR fabricated by
Glunz lists the values summarized in Table 4.4 [Glunz 2016]:

Table 4.4: Material parameters for AGEPAN OSB/4 PUR from data sheet

Parameter Value Unit
ρ > 600 kg

m3

E0 6780 · 106 N
m2

E90 2680 · 106 N
m2

Gv 1090 · 106 N
m2

Gr 60 · 106 N
m2

These are the values required by standard the DIN 12369-1:2001-04, which implies, that no
testing was done by Glunz to achieve accurate data. Therefore, the applied eight OSBs,
each with dimensions of 1.25 m × 2.50 m × 0.018 m, will be investigated to achieve the
most important parameters ρOSB, Ex,OSB and Ey,OSB. In a first step, the individual board’s
density is figured out by weighting and a mean density is derived from all samples. Bending
stiffnesses in x− and y−direction are deduced from EMA measurements. Each board is
uni-axial simple line supported in the main (x) and secondary (y) load bearing direction
and excited in the center of the board by a modal hammer. An accelerometer gives the
systems response. Out of the resulting frequency response function, the first natural eigen-
frequencies are extracted. The corresponding Young’s moduli can in turn be approximated
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by rearranging of the equation for eigenfrequencies of beams in bending [Müller 2011]:

fn = π · n2

2 · l2 ·
√
E · Iz

µ
(4.8)

Figure 4.11 shows a diagram of the resulting density and Young’s moduli in the main load
bearing direction for the individual boards. All achieved results are summarized in Table 4.5
including the measured eigenfrequencies. Clearly a major scatter between the values of the
individual boards is visible in Figure 4.11.
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Table 4.5: Measurement results for implemented OSBs

Sample m kg ρ kg
m3 f1x Hz Ex

N
m2 f1y Hz Ey

N
m2

1 35.4 629.3 3.9 5728 · 106 9.6 2108 · 106

2 35.9 638.2 4.0 5988 · 106 9.4 2058 · 106

3 35.1 624.0 4.1 6031 · 106 9.1 1877 · 106

4 34.9 620.4 3.9 5647 · 106 9.4 2026 · 106

5 34.2 608.0 4.1 6051 · 106 9.7 2092 · 106

6 35.1 624.0 4.3 6797 · 106 9.6 2116 · 106

7 35.2 625.8 4.2 6442 · 106 9.7 2153 · 106

8 34.6 615.1 4.1 6122 · 106 9.4 2009 · 106

mean value 35.1 623.1 4.1 6097 · 106 9.5 2055 · 106

However, the density and the stiffness seem to be correlated. This results in a much smaller
scatter of the measured eigenfrequencies, which, in turn, indicates that the modeling of each
board individually is not necessary. The calculated mean values are therefore considered for
the simulations. While the density matches the manufacturer’s data, the elasticity moduli
are much lower than given in Table 4.4. The missing parameter for an orthotropic model
are set according to Meistring [2005].

4.3 Damping Coefficients derived from Measurements

Damping effects are included into the FE models by proportional damping, by introducing
the Rayleigh damping factors α and β. Thus, the problem can be diagonalized by splitting
the damping matrix C into one part proportional to the mass matrix M and a second part
proportional to the stiffness matrix K [Petersen 1996].

C = α M + β K. (4.9)

The damping factors for CLT and LJ floors are derived from EMA measurements using the
commercial software ME’scopeVES R© from Vibrant Technology Inc. [Borch 2013].

The resulting modal damping coefficients ζi per measured eigenfrequency fi = ωi
2π for both

floor constructions are depicted in Figure 4.12. They are related to the Rayleigh damping
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factors by the following equation:

α + βω2
i = 2ζiωi (4.10)

When the modal damping for two eigenfrequencies (e.g. for i = 1 and i = 2) is known,
Equation (4.10) can be solved, using the substitutions

ω2 = aω1 (a > 1) ζ2 = bζ1 (4.11)

to derive the Rayleigh damping factors

α = a− b
a2 − 1a · 2ω1ζ1 β = ab− 1

a2 − 1a · 2
ω1

ζ1
. (4.12)

The modal damping coefficients for the LJ floor are scattered, while for the CLT floor, almost
a linear behavior is observable. Additionally, in case of the LJ floor, only eigenfrequencies
up to ≈ 50 Hz are identified. Thus, the resulting values for α and β depend on the choice
of the two specific reference eigenfrequencies and the assigned modal damping coefficient
(black markers). In case of the CLT floor, a good correlation is achieved, while for the LJ
floor, a less accurate but still feasible approximation is found. The resulting values of α and
β for both floor constructions are listed in Table 3.13 in Section 3.3.
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4.4 Calibration of the Suspended Ceiling Model

Similar to the main structures, simplified assumptions have been met for the model of the
SC. The real model of the paneling consists of two layers of individual plaster boards that
are arranged crosswise and screwed together, whereas the numerical model is simplified as
a single homogeneous plate. The hangers are modeled as simple one-dimensional linear
spring-damper elements. Idealized material parameters have to be achieved to compensate
the introduced uncertainties.

The applied gypsum plaster boards of type GKB A are manufactured by Knauf. The
individual boards measure 1.25 m×2.50 m×0.0125 m. Density and Young’s moduli according
to the manufacturer’s data sheet [Knauf 2013] are listed in Table 4.6 with Poisson ratio set
to νgypsum = 0.2 [Wiechert 2005].

Table 4.6: Material parameters according to the manufacturer (data sheet GKB A)

Parameter Value Unit
ρ ≥ 680 kg

m3

E0 ≥ 2800 · 106 N
m2

E90 ≥ 2200 · 106 N
m2

Those values lack the accuracy for a detailed FE model, and thus are be calibrated by
measurements. The density can be achieved by weighing of the individual plates. Tröbs
[2013] measures a density of ρgypsum = 856 kg

m3 . The paneling’s elasticity modulus is derived
from investigations in the wave number domain.

4.4.1 Elasticity properties of the paneling derived in the wave number
domain

Here, it is assumed that the cross-wise arrangement of the two layers of the paneling leads
to an equal bending stiffness in both directions. The idealized plate is therefore assumed to
have isotropic properties with a equal mean Young’s modulus in both load bearing directions.
The numerical model simplifies the paneling into a single plate, which can be interpreted,
as a rigid shear contact between the two board layers. This leads to overestimation of the
bending stiffness, when the manufacturers elasticity data are considered. Thus, the bending
stiffness has to be idealized to match the real construction. Its value can range from an
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upper limit, representing a solid plaster board of twice the thickness (2 ·d), to its lower limit,
when two parallel boards without shear contact are assumed.

EImax = E · (2 · d)3

12 · (1− ν2)

EImin = 2 · E · d3

12 · (1− ν2)
EImax

EImin
= 4

Within the numerical model, the thickness of the plate is set to 2 · d. Thus, idealizing the
bending stiffness is performed by an adaptation on the elasticity modulus. Analogously to
the bending stiffness the following range must be considered:

E90

4 ≤ Ex,gpb ≤ E0 (4.13)

As shown in Section 4.1.3, the bending wave number of a plate at a specific frequency can
be figured out by investigating the location of the peaks in the wave number domain. For
higher frequencies the bending wave numbers reassemble those of an infinite plate as in
Equation (4.3). Thus, the idealized elasticity modulus of the paneling can be approximated
by fitting the curve described by Equation (4.3) to the measured bending wave number over
frequency.
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The graph of the measured bending wave numbers in the frequency range from 0− 800 Hz
for a paneling suspended from a CLT floor is shown in Figure 4.13 (blue). The function of
the bending wave number of an infinite plate with an iteratively adapted Young’s modulus of
Ex,gpb = 1020 · 106 N

m2 is superimposed in red. The curves show a very good match. Young’s
modulus lies within the estimated range (see Eq. (4.13)). Figure 4.14 shows the velocity
pattern in the wave number domain at 170 Hz. The results are derived form the same SC
applied to a different main floor (LJ floor). Direct shaker excitation was performed. The
bending wave number of the paneling at this frequency calculated with Equation (4.3) for
the elasticity modulus derived above yields kB = 11.5 rad

m . To compare the bending wave
numbers the calculated result is inserted into the measured spectrum by an superimposed
circle with radius kB. The peaks of the shown spectrum perfectly match the circle, which
verifies the resulting material properties are independent of the main floor the ceiling is
suspended from.

4.4.2 Determination of stiffness data for suspended ceiling hangers

The resilient hangers are idealized as linear spring-damper-elements in Section 3.2.6. A
possible determination of the stiffness data is presented in Brunskog and Hammer [2002].
An apparatus for the measurements is described, where the resilient hangers are mounted
in between a two-fold rigid body setup exited by a shaker. Churchill and Hopkins [2013a]
investigate a rubber isolator type of resilient hanger using the apparatus described by Brun-
skog and Hammer [2002] and compare it to results from a SEA model. The application of a
one-dimensional wave continuum for this hanger type is not verified.

Since the numerical investigations in this thesis focus on a frequency range up to 150 Hz,
the stiffness and damping properties of the hangers can be assumed to be constant in the
considered frequency range. Maznikova [2012] derives the stiffness data for several resilient
hanger systems using EMA. A measurement setup is chosen where the hangers are mounted
to a concrete floor of very high bending stiffness that can be assumed as rigid in the evaluated
frequency range. One of the load configurations is equal to the in-situ situation. From the
measured first natural frequency the stiffness and damping data are derived. For the applied
sound isolation hangers, shown in Figure 4.15, the data given in Table 4.7 are taken from
Maznikova [2012].
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Table 4.7: Spring stiffness and damping constant of the simulated sound insulation hanger

Parameters Value EUnit
khang,m 0.165 · 106 N

m
chang,m 0.78 · 102 Ns

m

Figure 4.15: Sound insulation hanger

4.5 Aspects Regarding the Modeling of Air Inside a Cavity

The air cushion between main floor and the suspended ceiling paneling can be modeled
using different approaches that vary as regards the level of idealization and consequently,
the computational effort is affected. Two approaches are investigated in this section. In
the first approach, the cushion is assumed as individual columns of air, without interaction
in horizontal direction, idealized as one-dimensional vertical springs (COMBIN14) or rods
(BEAM181) (see Fig. 4.16). Alternatively, the air inside the cavity is modeled as a volume
using acoustical fluid elements (FLUID30) (see Fig. 4.17). The latter approach is associated
with a significant increase in computational effort. The interaction between fluid and struc-
ture causes unsymmetrical matrices. Therefore, higher order solution methods are necessary,
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as described in Section 3.5. Additionally, the number of DOFs is significantly higher than
in the first approach.

Figure 4.16: Air, modeled as spring elements

1

Figure 4.17: Air, modeled as fluid elements

4.5.1 Validation of reference data

The different approaches will be evaluated by comparing to reference data from measure-
ments. Therefore, a set of measurement results must be first validated. As described in
Section 4.1, the radiated sound power from intensity measurements is compared to the re-
sults derived from structure-borne sound velocities on the surface of the suspended ceiling,
using the prediction model, which was presented in Section 3.7.1. Different to the validation
in Section 4.1, in this case acceleration data from transducers are used and converted into
velocity data. The excitation is done by a electrodynamic shaker unit. Figure 4.18 shows
a comparison of the resulting graphs of the sound power level. For comparable results to
the simulated data, the force spectrum induced by the shaker is normalized to 1.0 N. The
graphs match very good from ≈ 30 Hz on. The deviations below this frequency (marked in
gray) is caused by the excitation signal. A logarithmic sinus sweep was used that induced
very little energy within this range.

However, since the spatial resolution of the measurement positions (∆x = 0.25 m) is chosen
very coarse, the good match, at first glance, comes unexpected. Taking the bending stiffness
of the paneling into account, which is derived in Section 4.4.1, the Shannon-Criterion is
fulfilled up to 198 Hz (see Section 4.6). Thus, severe aliasing effects are expected starting well
below 200 Hz, because of the finite nature of the signal (see Section 2.3.2.3). This behavior
is investigated in detail in Section 4.6. Nevertheless, for the following investigations, the
results from the acceleration data is used as reference result.



Aspects Regarding the Modeling of Air Inside a Cavity 129

0 50 100 150 200 250 300
20

30

40

50

60

70

80

pp-probe

Frequency in Hz

So
un

d
po

we
r
le
ve
li
n

dB
re

10
−

12
W accelerometer

CLT floor with SC

Figure 4.18: Comparing sound power levels derived from intensity and acceleration data

4.5.2 Case study on modeling

In the first approach, air is substituted by spring elements. Since those elements neglect the
air’s mass, a slightly adapted model, that discretizes the assumed air columns as unidirec-
tional mass-loaded beam elements is considered parallel. Two-node spring or beam elements
are applied in between all vertically opposite nodes of the upper and lower bordering struc-
ture’s elements. Its lengths comply with the distance hair = lhang +w1,profil. The cross section
of a single considered air column corresponds to the area of a single shell element of the
paneling Acol,air = esize,x · esize,y. Thus, equivalent stiffness parameters for spring and beam
elements can be derived from the characteristic values of air. They yield the following:

EAsubst,A = ρA · c2
A · Acol,A

ksubst,A = EAsubst,A

hA

For the model, using acoustical fluid elements initially, only FSI between air and modeled
structure is included. The remaining boundaries (concrete walls in case of the testing facility)
are considered reverberant. Thus, potential damping of air moving horizontally is neglected.
The resulting radiated sound power from the simulation of different models is shown in
Figure 4.19. The ceiling was suspended from a CLT floor as in the reference measurements
and excited from above in the same place. Both models substituting the air by spring or
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Figure 4.19: Comparing result of different modeling approaches

beam elements show a poor match compared to the reference. In the frequency range up
to 80 Hz, the graphs follow the reference and overestimate it in some peaks, but in higher
frequencies, the curves level is up to 20 dB below. Opposite to that, the data simulated
with acoustical fluid elements predominately match the reference curve while sharp resonant
peaks are observable. The other models lack those peaks, leading to the assumption that
those resonances are of special importance for the accurate prediction of the radiated sound
power. Therefore, in the following section, the vibration pattern at one of the resonance
peaks at 135 Hz is investigated.

4.5.3 Investigation in the wave number domain

Modeling the air inside the cavity using fluid elements showed results that agreed well with
the measured reference data. This approach is therefore investigated in more detail in
the wave number domain. In the previous section, an examination in the wave number
domain already proved to deliver convincing results and a deeper insight into physical effects.
Figure 4.20 shows the velocity pattern of the ceiling’s lower surface at a frequency of 135 Hz
in the wave number domain. The pattern can be compared to the measurement data with
direct excitation of the paneling shown in Figure 4.14. Again, a circle of peaks indicating the
plates bending wave number is visible (outer circle). Different from the former investigation,
additionally high amplitudes appear in Figure 4.20. These peaks also lie on a circle with



Aspects Regarding the Modeling of Air Inside a Cavity 131

radius corresponding to the wavenumber of air at this frequency.

kA(135 Hz) = 2π · 135 Hz
340 m

s
= 2.49 rad
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Figure 4.20: Wave number spectrum at the resonance peak at 135 Hz with superimposed kB and kA-
circles

Those vibrational components with longer wavelengths cannot be observed in the spatial
domain of the velocity pattern at the surface of the ceiling in Figure 4.21 (left). They
are masked by the plate’s resonant vibrations with shorter wavelengths. A horizontal cross
section of the pressure distribution inside the cavity (see Fig. 4.21 right) indicates the nature
of the resonance peak at 135 Hz in the sound power spectrum. At this frequency, a cavity
mode is excited.

Thus, the mechanism of sound transmission through the suspended ceiling construction
can be explained as follows: The vibrating main floor - in this case, a CLT floor - causes
vibrations of the air cushion. According to Equation (3.5), sound power is transmitted for
each frequency step mainly within the range of the wave number of the air. Thus, cavity
modes are excited in particular. They can be approximated for a rectangular cavity by the
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following equation described by Lord Rayleigh

fnx,ny ,nz = cA
2

√√√√(nx
lx

)2
+
(
ny
ly

)2

+
(
nz
lz

)2
(4.14)

where lx, ly and lz represent the dimensions of the cavity. The mode depicted in Figure 4.21
(right) has indexes nx = 1, ny = 4 and nz = 0. The corresponding eigenfrequency according
to Equation (4.14) yields f1,4,0 = 127.4 Hz.
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Figure 4.21: Spatial domain at the resonance peak at 135 Hz

The air inside the cavity vibrates in many modes. Thus, the models with substituted air
columns are not capable of describing the reality. Even when mass loaded beam elements are
considered only the pure vertical modes are included whereas the lateral modes are neglected.
As shown in Figure 4.19 many of those modes are present in the observed frequency range
up to 300 Hz, which can be approximated by Equation (4.14). The dimensions of the
construction have an important influence.

The system consisting of air cavity and hangers excite the paneling of the suspended ceiling,
causing forced and resonant vibrations. Resonant vibrations occur according to the bending
wavenumber at this frequency. Superimposed but masked at the surface, the paneling is also
forced to vibrate with the vibrational components, produced by the cavity modes. Although
masked in the spatial domain (see Fig. 4.21 left), those components contribute to a large
extend to the radiated sound power. The corresponding wave numbers lie exactly on a



Aspects Regarding the Modeling of Air Inside a Cavity 133

circle with radius kA where, as described in Section 3.7.1, the wave-number dependent term
K(kx, ky, f) in Equation 3.7 tends to infinity. Thus, those wave number components have a
large impact on the resulting radiated sound power.

Consequently, in a frequency range with a high density of cavity modes, the sound power
radiated from the SC is decisively dependent on the air inside the cavity. In the presented
example, this is the case in a frequency range higher than ≈ 100 Hz. As a further considera-
tion the impact of a change of the stiffness parameters of the hangers as well as their length
or contribution on the improvement of the vibro-acoustical behavior of the suspended ceiling
is questionable. Further research is recommended, especially since no additional absorbing
material was applied into the cavity in this example [Floden 2014]. The absorbing material
is expected to weaken the effect of the cavity modes.
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Figure 4.22: Comparing measurement and simulation results for a CLT floor with SC

4.5.4 Calibrating the boundary impedance and comparing the results

In Section 4.5.2, the boundaries of acoustical fluid elements that are not bordering structural
elements are modeled reverberant. The used simulation software Ansys R© features absorp-
tion at those boundaries via impedance boundary conditions. A coefficient µwall, describing
the absorption of the walls of the testing facility, can range from zero to unity indicating
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Figure 4.23: Comparing measurement and simulation results for a lumber joist floor with SC

reverberant to fully absorbing boundaries. As already mentioned in Section 3.2.6, this factor
was iteratively determined to µwall = 0.03.

Figure 4.22 shows the simulated and measured radiated sound power level for a CLT floor
with suspended ceiling. The latter is normalized to an excitation of 1.0 N to match the
simulated data. It can be observed that the inclusion of absorption via impedance boundary
conditions significantly reduces the resonance peaks of the cavity modes. This results in
a very good correlation of simulated and measured data, with deviations ≤ 5 dB in the
narrow-band spectrum. The model can be considered verified for this example. To verify its
modular applicability to varying floor systems, the same model is applied to a lumber joist
floor without changing the configuration. The result shown in Figure 4.23 correlates less,
but still good, with the measured data. Especially around 120 Hz deviations up to 10 dB
are observable.

4.6 Limitations for the Prediction of Sound Power in the
Wave Number Domain

A model for the prediction of the radiated sound power out of the structure-borne sound
velocity in the wave number domain was presented in Section 3.7. The data, that can be
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processed by this model are restricted to some limitations. One of them is obviously, that
the sound power can only be predicted within the frequency ranges, where vibrational energy
was induced into the test object by e.g. a shaker or loud speaker. As another restriction,
minimum distances between the measurement points have to be maintained. This is due
to the discrete nature of the model. Analogously to measurements in the time domain, in
this case, spatial aliasing must be minimized. A common measure to overcome this problem
is to chose a sampling interval well below the Nyquist frequency [Brigham 1974]. However,
as shown in Section 4.5.1, for the calculation of the radiated sound power out of structure-
borne sound velocity measurements, adequate results are achieved even above the critical
frequency in case of a floor with an SC.
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Figure 4.24: Comparison of the influence of different measurement grids

To explain this behavior, two measurements on the same test object with different measure-
ment grids and excitation signals are compared. Figure 4.24 shows the radiated sound power
of a ceiling paneling, suspended from a lumber joist floor. The construction is excited by a
shaker with a logarithmic sine sweep. The blue curve describes measurements with a grid
of ∆x = 0.5 m (12× 12 Accelerometers) and an excitation range 4− 200 Hz, the red one a
measurement with a grid of ∆x = 0.25 m (23× 23 Accelerometers) and an excitation range
16 − 200 Hz. When the Shannon-Criterion is applied, the resolutions lead to measurable
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wave number ranges up to 6.28 rad
m resp. 12.57 rad

m .

kx,max,0.5 = ky,max,0.5 = 2π
2 · 0.5 m = 6.28 rad

m

kx,max,0.25 = ky,max,0.25 = 2π
2 · 0.25 m = 12.57 rad

m

Those limits are marked in Figure 4.25. The diagram represents a detail of the data already
introduced in Section 4.4, that had been measured with a higher resolution of ∆x = 0.125 m.
By raising the perpendicular from the intersection between the limit lines for the wave
number and the curves in the diagram, the maximum valid frequency can be read out. For
a grid of 0.25 m a frequency range up to ≈ 200 Hz, for a grid of 0.25 m a frequency range up
to ≈ 60 Hz is valid when the Shannon-Criterion is applied. According to the investigations
in Section 2.3.2.3, in case of finite signals, aliasing effects must be considered. However, the
resulting sound power of the measurements using a ∆x = 0.5 m measurement grid matched
very good to data from an intensity measurement (see Section 4.5.1).

Analytically, these limits can be derived from the Criterion

kx,max ≥ kB, (4.15)
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which can be solved for the Nyquist frequency

2π · fNq =
k2

x,max

a
(4.16)

with the substitution

a = k2
B

2πf =
√

12ρ
E · d2 . (4.17)

Applying the matching parameters of the example (see Section 4.4) yields:

fNq,0.5 = 49.5 Hz and fNq,0.25 = 198.0 Hz.

In case of a grid of ∆x = 0.5 m, the assumption of an infinite isotropic plate does not hold
properly in the observed frequency range. This leads to deviations of the curves, and thus
the frequency limits vary (marked in gray).

Four frequency sectors can be identified by an investigation of the structure-borne sound
velocity spectra in the wave number domain. They are indicated in Figure 4.24 by different
shades of gray. The specific characteristics of each sector are listed in Table 4.8. It shows the
approximated frequency range and whether it was excited during the specific measurement.
Also, it indicates when the Shannon-Criterion is met and if the measurements give equivalent
results (within a considerable limit of deviation).

Table 4.8: Characteristics of the sectors in Figure 4.24

Sector Frequency range Excitation Criterion met Curves match
1 4− 16 Hz only ∆x = 0.5 m both yes
2 16− 60 Hz both both yes
3 60− 130 Hz both only ∆x = 0.25 m yes
4 130− 200 Hz both only ∆x = 0.25 m no

Examples of a specific frequency step for each sector are given from Figures 4.26 to 4.29.
Below 4 Hz no energy is induced for both measurements.

Sector 1: (4 Hz− 16 Hz)
In this sector, only in case of the measurement with ∆x = 0.5 m the test object was excited
by the shaker. Figure 4.26 depicts the wave number spectra of both measurements close to
an eigenfrequency of the panelings at 10 Hz. In the spectrum of ∆x = 0.5 m (right) the
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two characteristic peaks of the eigenmode are clearly visible. For ∆x = 0.25 m those peaks
can also be identified, but the vibration pattern is superimposed by artifacts caused by the
phase error due to the missing force signal.
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Figure 4.26: Sector 1: Wave number spectra at 10 Hz for a sampling interval of ∆x = 0.25 m (left) and
∆x = 0.5 m (right)

Sector 2: (16 Hz− ≈ 60 Hz)
In this sector, for both ∆x = 0.5 m and ∆x = 0.25 m the Shannon-Criterion is met.
Figure 4.27 shows the wave number spectra at 20 Hz. Clearly, the typical circle shaped
arrangement of the peaks lies within the limits of the spectra for both cases. Aliasing effects
appear, but are considered small in case of ∆x = 0.25 m and within an acceptable range for
∆x = 0.25 m. thus, the resulting patterns match very well. This also leads to a good match
for the calculated sound power level in this sector.

Sector 3: (≈ 60 Hz− ≈ 130 Hz)
Although the Shannon-criterion is violated in this sector, in case of ∆x = 0.5 m, the curves
of the sound power still match quite good. A comparison of the wave number spectra in
Figure 4.28 at the lower limit of the frequency band at 59 Hz shows, that the bending wave
number of the paneling for a ∆x = 0.5 m grid (right) opposite to the ∆x = 0.25 m grid (left)
has already reached the limits of the wave number spectrum. Thus, in case of ∆x = 0.5 m,
a major error, caused by aliasing is induced, while for ∆x = 0.25 m aliasing is considered
within an acceptable range. However, the sound power level show a good accordance.
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Figure 4.27: Sector 2: Wave number spectra at 20 Hz for a sampling interval of ∆x = 0.25 m (left) and
∆x = 0.5 m (right)

This can be explained by the fact that only those wave number components contribute to the
radiated sound power that lie within a circle with radius corresponding to the wave number of
air (see Eq. (3.5)). Since the transmission in case of a suspended ceiling is governed by the air
inside the cavity (see Section 4.5.3), additional peaks, representing forced vibrations appear
on a circle according to the wave number of air. They are less affected by the aliasing effect
due to the longer wavelengths. The sound power is mainly emitted by the forced vibrations.
Thus, the resonant vibrations, that are heavily distorted by aliasing in case of ∆x = 0.5 m
only lead to small differences between the two measurements.

Different appearance of both spectra are due to the different scaling factor of the coloring.
The peaks, in this case, form an ellipse. This indicates a slightly different bending stiffness
of the paneling for each spatial direction at this frequency. This is caused by the different
number of steel U-channels attached for each spatial direction. For higher frequencies, this
effect is negligible.

Sector 4 (from ≈ 130 Hz)
In this sector, the curves drift clearly apart. As an example, in Figure 4.29, the wave number
spectra of the structure-borne sound velocity at 141 Hz are depicted. In case of ∆x = 0.25 m
the circle imposed by its bending wave number does not reach the limits of the spectrum.
However, major aliasing of the resonant vibrations is assumed. If the limits of ∆x = 0.5 m are
superimposed (white square), it becomes clear that in the latter case, the limits are exceeded
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Figure 4.28: Sector 3: Wave number spectra at 59 Hz for a sampling interval of ∆x = 0.25 m (left) and
∆x = 0.5 m (right)

by far. The wave number of air yields 2.5 rad
m at this frequency, indicated by the peaks inside

the square. Caused by the aliasing-effect not only the side lobes, as in the former figures, but
also the main peaks of the spectral amplitudes outside the square wrap around [Maynard
et al 1985] (more precisely: are repeated) into the range of the spectrum to the right and
superimpose a wide section of the wave number spectrum. In particular, at this frequency,
the wrapped around bending wave number components of the paneling, superimpose wave
number components inside a circle with a radius corresponding to the wave number of air.
As explained before, this region contributes to the radiated sound power into the far-field.
By overlapping with the originally near-field components the results are heavily distorted.
Therefore, the measurements with a grid of 0.5 m are not valid in sector 4.

For the extended frequency band beyond the limits, according to the Shannon-Criterion, the
following additional criterion is suggested for plate-shaped structures, where a cavity is a
part of the sound transmission or in cases where the plate is excited by a airborne sound as
follows:

2 · kmax ≥ kB + kA (4.18)

Inserting Equations (4.3), (4.5) and (4.17) and solving for the critical frequency, Equa-
tion (4.18) yields:

2π · fmax = cA

2

(
a · cA −

√
(a · cA)2 + 8(a · cA)kmax + 4kmax

)
. (4.19)
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Figure 4.29: Sector 4: Wave number spectra at 141 Hz for a sampling interval of ∆x = 0.25 m (left)
and ∆x = 0.5 m (right)

For orthotropic plates with anisotropic stiffness properties, the weaker direction is decisive.
For a measurement grid of 0.5 m resp. 0.25 m the maximum valid frequency range yields:

fmax,0.5 = 130.2 Hz

fmax,0.25 = 399.1 Hz.

Obviously, the limit is, other than the Shannon-Criterion for plates, not increasing parabolic
with a decrease of the sampling interval. It has to be added that when this criterion is applied,
a limited amount of aliasing is introduced. Nevertheless, the results from the reference
measurement in Section 4.5.1 can be explained, and thus be considered validated.
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5 Numerical Simulations and Evaluation
of the Results

In this chapter, the performed parametric studies are described. Thus, the general approach
for the implementation of the study, as well as the chosen variable parameters and their
parameter range are discussed. Two kinds of parametric studies are implemented directing
on different aspects. First, the influence of individual parameters on the radiated sound
power of the structures considered is investigated. Thus, preliminary information about
the predicted vibro-acoustical behavior of the floors is obtained. Based on the results of a
second study, a catalog for relevant parameter combinations is created. The results of the
simulation, in the form of transfer functions, are further implemented as a database into a
graphical user interface, that enables the user to predict and compare the vibro-acoustical
behavior of different floor configurations for varying excitation sources.

5.1 Parametric Studies

The developed numerical models used for the parametric studies are described in Chapter 3.
As already mentioned in the chapter, the models are fully parametrized and optimized
for an automated simulation process. For the implementation of the parametric study, an
interface between the used commercial FE simulation software Ansys R© and commercial
numerical computing software Matlab R© is programmed. The individual simulations and
their configurations as well as the evaluation of the results are controlled by Matlab R©.

5.1.1 Programming in Matlab R©

The process of the parametric studies can be divided into three steps.
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5.1.1.1 Process step 1

Before the start of each simulation run, the relevant parameters are identified and their
specific parameter range is set. Depending on the scope of the study, some parameters are
varied, while others stay constant. The parameter range is determined based on its practical
relevance, as well as the computational effort. Particularly, for models with construction
states requiring a full solution for the Harmonic Frequency Analysis, the computational
effort is significantly higher. The range of parameters for those models must therefore be
reduced.

The computational effort strongly depends on the size of the models, and thus on the applied
number of DOFs. The following durations per simulation were measured depending on the
method for the analysis:

• Modal superposition: ≈ 1− 10 minutes

• Full solution: ca. ≈ 1− 6 hours

5.1.1.2 Process step 2

Section 3.1.2 describes the modular structure of the FE models, where each main module
has an associated sub-module containing the parameter information. Such a structure is ad-
vantageous for the parametric study, since for every simulation run, only those sub-modules
have to be adapted, controlled by the interface inside Matlab R©. This results in a robust
process. After the transfer of the set of parameters, the simulations in Ansys R© are started
inside Matlab R©. With the help of the output data interface described in Section 3.6, the
simulation results are stored to be transferred back into Matlab R©. After each simulation
run, the structure-borne sound velocity data as well as the associated geometry data are
stored to an output data file containing the specific parameter configuration information.

5.1.1.3 Process step 3

Subsequent to the simulations in Ansys R©, the output data files are read into Matlab R©,
where they are evaluated using the ITM base model for the prediction of the radiated sound
power (see Section 3.7.1). The results of this evaluation are then archived for each floor type
and construction state for further investigations.
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P3

Figure 5.1: Locations of single load excitation

5.1.2 Choice of parameters

As described in Section 3.1.3, the parameters are organized into three groups. For the
parametric studies, predominately geometry and model parameters are varied, since material
parameters are already calibrated by measurements or chosen according to literature. The
only exception is the boundary impedance inside the air cavity of the suspended ceiling. This
parameter is adapted iteratively, and will therefore, be further investigated concerning its
influence on the results of the simulations. The vibro-acoustical behavior of the investigated
floor constructions can be predicted most reliable by an application of a stochastic rain-
on-the-roof loading, as described in Section 3.4.2. Since this procedure would cause an out
of question amount of computational effort for the parametric studies a different approach
applying single loads is chosen. For each parameter combination, three simulation runs with
different locations for the point excitation are performed. Those locations are chosen to avoid
zero-crossings of eigenmodes of the structures. Figure 5.1 shows these locations (P1, P2 and
P3) on a fictional area superimposed by lines where zero-crossings are assumed. They have
to be adapted depending on the dimensions of the simulated structures. Thus, by comparing
the results of the individual load locations and averaging, a similar accuracy is assumed. An
additional advantage of this approach is the possibility to derive transfer function for each
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load locations which can be multiplied by the excitation signal of e.g. a standard tapping
machine, and thus compared to measurement results (see Sections 5.3 and 5.4).

The relevant parameters are listed in the following. Depending on the individual main floor
construction, different specific parameters must be evaluated. For performed parametric
studies, only the CLT and lumber joist floors are concerned. A single type of floating floor
is applied (see Section 3.2.5), causing it to be not well adjusted for some floor dimensions.

• Specific parameters of the CLT floor:

◦ Floor type: 28 different types can be modeled

◦ Number of slabs

• Specific parameters of the lumber joist floor:

◦ Floor type: single or double joists

◦ Distance between the joists

• General parameters:

◦ Construction state

◦ Load position

◦ Length

◦ Total width: controlled by the aspect ratio α = l
wtot

◦ Length of the hangers

◦ Suspension grid

◦ Distance between main floor and paneling

◦ Boundary impedance inside the air cavity
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5.1.3 Performed studies

The number of parameter combinations increases exponentially with every additional vary-
ing parameter. Since the computational capacity is limited, a preliminary selection has to
be done. To cover a wider range of evaluated parameters, three different parameter studies
are performed. One, simulating parameter combinations for a later use as database for the
graphical user interface (PS-GUI) the others dealing with the influence of specific parame-
ters, not concerned with the former study, on the radiated sound power (PS-SP). Especially
a variation of the parameters related to the suspended ceiling are only investigated within
the latter surveys. The different construction states are abbreviated by R (raw main floor
construction), R/FLF (including floating floor), R/SC (including suspended ceiling) and
R/FLF/SC (a combination of both).

5.1.3.1 Parametric studies for CLT floor models

The following practical restrictions are implemented for parametric studies for CLT floor
models:

• The width of the individual slabs is limited to a range of:
1.0 m ≤ bslab ≤ 2.5 m

• The analytical first eigenfrequency of the slabs idealized as a beam fbeam = πn2

2l2x

√
EIy
µ

must lie within the boundaries of the following:
6.0 Hz ≤ fbeam ≤ 15.0 Hz

As a result, a good approximation for practically relevant parameter combinations is simu-
lated. Thus, no data is simulated for large floors with small cross sectional areas and vice
versa.

PS-SP (CLT R all types) At the time of the study, the manufacturer of the regarded
CLT floors had 28 different types of cross sections in its portfolio [Metsä Wood Merk GmbH
2012], resulting in the same amount of possible modeling options. They differ in number of
board layers and its individual orientation parallel or perpendicular to the main load bearing
direction of the slabs. Those determine the stiffness ratio of the slab EIx

EIy
. The influence of

this parameter on the eigenfrequencies of the whole floor and its sound radiation behavior
is investigated by a parametric study on the raw main floor (R). Therefore, the models are
excited in location P1. The range of the individually varied parameters is given in Table 5.1.
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The restrictions introduced above limited the total number of parameter combinations from
15444 to 4853. Modal superposition can be used as analysis method resulting in a total
computational effort of ≈ 10 days.

Table 5.1: Varied parameters for PS-SP (CLT R all types)

Parameter Value Amount = factor
Length in m [4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0; 7.5; 8.0] ×9

Floor type
[51; 61; 71; 81; 93; 99; 85; 95; 105; 115;

125; 135; 147; 153; 165; 174; 186; 189; 201;
207; 219; 231; 240; 252; 264; 273; 285; 297]

×28

Number of slabs [2; 3; 4; 5; 6; 7] ×6
Aspect ratio [1.0; 1.1; 1.2; 1.3; 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; 2.0] ×11

Total number of simulations (before restrictions): 15444
Total number of simulations (final): 4853

PS-SP (CLT R/SC + R/FLF/SC Type 165) A separate parametric study is performed
for the investigation of the influence of the parameters related to the suspended ceiling,
since those are not considered varying for the database of the graphical user interface. In
this study, eight parameters are varied, that are listed in Table 5.2. The modeling of the
suspended ceiling includes acoustical fluid elements, which is why the analysis method modal
superposition cannot be applied. Therefore, the parameter range has to be reduced signifi-
cantly, to limit the computational effort. The simulations are based on a single CLT type,
modeled as a single slab. Configurations with and without floating floor are considered.
Additionally, the effect of a self-supporting ceiling, neglecting the hangers, is investigated for
only one suspension grid (this parameter influences the dimensions of the grid work). The
excitation was applied at location P1. Thus, 216 simulations are performed resulting in an
computational effort of ≈ 24 days.
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Table 5.2: Varied parameters for PS-SP (CLT R/SC + R/FLF/SC Type 165)

Parameter Values Amount = factor
Length in m [4.0; 5.0] ×2

Aspect ratio in − [1.0; 1.5] ×2
Floating floor [yes; no] ×2

Distance floor/paneling in m [0.12; 0.2] ×2
Suspension grid in m [0.5× 0.5; 1.0× 1.0] ×2

Hangers [yes; no] ×1.5 (only 1.0× 1.0)
Boundary impedance in − [0; 0.03; 0.1] ×3

Total number of simulations: 216

PS-GUI (CLT) The varying parameters and their ranges for the graphical user interface-
related parametric study PS-GUI are listed in Tables 5.3 to 5.5. Compared to the survey
in Section 5.1.3.1, only six representative floor types are implemented. Simulations for all
three locations of excitation are performed leading to a similar amount of computational
effort for models with raw main floors (R). for the remaining construction states the number
of parameter combinations is decreased depending on the additional effort. Thus, in case of
an additional floating floor ( R/FLF), the number of considered aspect ratios is decreased
to two. For construction states that include a suspended ceiling, the number of simulated
lengths is reduced and the whole floor is modeled as a single slab. The boundary impedance
of the air cavity is set to 0.03 as described in Section 3.2.6. Applying the aforementioned
restriction for the first eigenfrequencies, the total number of parameter combinations per
location of excitation yields 1133 (R), 226 ( R/FLF) and 32 ( R/SC + R/FLF/SC).

Table 5.3: Varied parameters for the CLT floors R

Parameter Value Amount = factor
Length in m [4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0; 7.5; 8.0] ×9
Floor type [71; 105; 147; 186; 219; 264] ×6

Number of slabs [2; 3; 4; 5; 6; 7] ×6
Aspect ratio [1.0; 1.1; 1.2; 1.3; 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; 2.0] ×11

Total number of simulations (before restrictions): 3580
Total number of simulations (final): 1133
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Table 5.4: Varied parameter for (CLT R/FLF)

Parameter Value Amount = factor
Length m [4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0; 7.5; 8.0] ×9
Floor type [71; 105; 147; 186; 219; 264] ×6

Number of slabs [2; 3; 4; 5; 6; 7] ×6
Aspect ratio [1.0; 1.5] ×2

Total number of simulations (before restrictions): 648
Total number of simulations (final): 226

Table 5.5: Varied parameters for the CLT floors R/FLF + R/FLF/SC

Parameter Value Amount = factor
Length m [4.0; 5.0; 6.0; 7.0; 8.0] ×5
Floor type [71; 105; 147; 186; 219; 264] ×6

Number of slabs 1 ×1
Aspect ratio [1.0; 1.5] ×2

Total number of simulations (before restrictions): 60
Total number of simulations (final): 32

5.1.3.2 Parametric studies for lumber joist floors

In addition to the parameter’s length and aspect ratio, for this survey, the specific parameters
of a lumber joist ceiling manufactured by Regnauer are considered. One of them is the
distance between the individual joists. It is preferred to the number of joists since the
latter would require a much larger parameter range. Since the width is controlled by the
aspect ratio in most cases no integral multiple can be achieved when the distance between
joists is set to a fixed value. To cope with that, the parameter’s value serves only as an
approximation. The real distance is adapted to be the closest possible value for an integral
divisor of the total width of the floor. Instead of a specific floor type the lumber joist floors
are typecast by the total width of the individual joists. It is defined by the manufacturer
to be either a single joist or an integer multiple of it, to fulfill statical requirements. Thus,
for small spans, a single joist configuration for wider spans a double joist configuration is
considered.

PS-GUI lumber joist floor Analogous to the CLT floor, the parameter ranges must be
adapted to the estimated computational effort. As listed in Tables 5.6 to 5.8, for more
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complex models, the lengths and aspect ratios of the constructions are decreased. In this
case, this results in a total amount of parameter combinations per location of excitation of
440 (R), 132 (R/FLF) and 44 (R/SC + R/FLF/SC). The total number of simulated raw
main floors and models with additional floating floor compared to the CLT simulations is
decreased as well, since for LJ floor models contact elements were applied, and thus full
solution analysis method required.

Table 5.6: Varied parameters for the LJ floors R

Length m Dist. btwn joists m width of joists in m Amount/factor
3 [0.3; 0.4; 0.5; 0.6] 0.06 4

3.5 [0.3; 0.4; 0.5; 0.6] 0.06 4
4 [0.3; 0.4; 0.5; 0.6] [0.06; 0.12] 8

4.5 [0.3; 0.4; 0.5; 0.6] [0.06; 0.12] 8
5 [0.3; 0.4; 0.5; 0.6] [0.06; 0.12] 8

5.5 [0.3; 0.4; 0.5; 0.6] 0.12 4
6 [0.3; 0.4; 0.5; 0.6] 0.12 4

Aspect ratio [1.0; 1.1; 1.2; 1.3; 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; 2.0] ×11
Total number of simulations: 440

Table 5.7: Varied parameters for the LJ floors R/FLF

Length m Dist. btwn joists m width of joists in m Amount/factor
3 [0.5; 0.6] 0.06 2

3.5 [0.4; 0.5; 0.6] 0.06 3

4 [0.3; 0.4; 0.5] 0.06 4
0.6 0.12

4.5 [0.3; 0.4] 0.06 4
[0.5; 0.6] 0.12

5 0.3 0.06 4
[0.4; 0.5; 0.6] 0.12

5.5 [0.3; 0.4; 0.5] 0.12 3
6 [0.3; 0.4] 0.12 2

Aspect ratio [1.0; 1.1; 1.2; 1.3; 1.4; 1.5] ×6
Total number of simulations: 132
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Table 5.8: Varied parameters for the LJ floors R/SC + R/FLF/SC

Length m Dist. btwn joists m width of joists in m Amount/factor
3 [0.5; 0.6] 0.06 2

3.5 [0.4; 0.5; 0.6] 0.06 3

4 [0.3; 0.4; 0.5] 0.06 4
0.6 0.12

4.5 [0.3; 0.4] 0.06 4
[0.5; 0.6] 0.12

5 0.3 0.06 4
[0.4; 0.5; 0.6] 0.12

5.5 [0.3; 0.4; 0.5] 0.12 3
6 [0.3; 0.4] 0.12 2

Aspect ratio [1.0; 1.5] ×2
Total number of simulations: 44

5.2 Evaluation of the Results

In this section, the results of the parametric studies are evaluated. The individual varying
parameters are investigated with regard to their influence on the vibro-acoustical behavior of
the investigated floor systems. Dimensional analyses are performed to develop nomograms
with dimensionless parameters according to the method described in Section 2.2. The appli-
cation of TMD will be discussed to reduce radiated sound power. A further evaluation aims
at the tabular listing of positive and negative effects of a variation of certain parameters to
serve as planning aids for preliminary design of floor constructions.

5.2.1 Dimensional analysis on raw CLT floors

First, the parameters of a raw CLT floor without vibration reduction measures is evalu-
ated. Therefore, nomograms based on dimensionless parameters are developed for the floors
eigenfrequencies and the transfer function of the radiated sound power (see Section 5.3).
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5.2.1.1 Eigenfrequency nomograms

The eigenfrequencies of the floor are governed by the following seven physical quantities as
follows:

Length : l in m
Mass per area : µ in kg

m2

Bending stiffness in x-direction : EIx in kg m2

s2

Bending stiffness in y-direction : EIy in kg m2

s2

Width : w in m
Number of slabs : ns
Eigenfrequencies : fi in 1

s

As described in Section 2.2, 7−3 = 4 dimensionless parameters can be identified to describe
the system’s behavior. With np being already dimensionless, these are:

Number of slabs : ns
Aspect ratio : α = l

w

Stiffness ratio : β = EIy
EIx

Frequency ratio : γi = fi
fbeam

with fbeam being the first eigenfrequency of a Euler Bernoulli beam

fbeam = π

2l2

√
EIx
µ
.

Figure 5.2 shows an example of such a nomogram for parameters ns = 5 and α = 1.2. The
remaining nomograms are listed in Appendix B.1. In each nomogram, the frequency ratio
γi is plotted as a function of the stiffness ratio β. Eigenfrequencies with the corresponding
index are marked in equal colors. Additionally elliptic trend lines are superimposed. Every
nomogram in the appendix summarizes the results for a specific aspect ratio α, a double
page of nomograms depicts all nomograms for the same number of slabs.

A detailed examination of the eigenfrequency nomograms shows the following:

• The first eigenfrequency can be approximated independent from the parameter com-
bination by the eigenfrequency of a Euler Bernoulli beam.
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Figure 5.2: Example of an eigenfrequency nomogram

• With increasing number of coupled slabs the number of eigenfrequencies in the prox-
imity of the first bending eigenfrequency increases.

• Depending on the stiffness ratio, eigenfrequencies with the same index show an arc-
shaped behavior with higher density at the boundaries of the spectrum. The curve has
a maximum at β ≈ 22.

• The higher the aspect ratio of the floor, the lower is the overall scatter of the eigenfre-
quencies of the system. At the same time, the curve of the eigenfrequencies with same
index is flattening.

5.2.1.2 Sound power nomograms

For the dimensionless representation of the sound power level the dimensionless parameters
have to be complemented by a dimensionless representation of the frequency axis. It is
advantageous to normalize it to the first eigenfrequency of an Euler Bernoulli beam since
the aforementioned examination showed a good correlation to the first eigenfrequency of
numerical models for each parameter combination. The sound power is represented by the
transfer function with respect to the force amplitude of the excitation (see Section 5.3).
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Figure 5.3: CLT R sound power nomogram: α = 1.4; β = 26.4 (CLT type 186); Variation of ns

In Figure 5.3, an example for a sound power nomogram is depicted. It shows the transfer
function of the radiated sound power, resulting from a harmonic excitation by a single load
of 1.0 N for all simulated parameter combinations with CLT type 186 and an aspect ratio
of α = 1.4. Further, nomograms with varying selected parameter configurations as well as a
summary of all simulation results are shown in Appendix B.2.1.

A detailed examination of the sound power nomograms shows the following:

• The number of coupled slabs as well as the aspect ratio have low influence on the
radiated sound power. The number of eigenfrequencies in the investigated frequency
range increases, but the additional eigenfrequencies are not recognizable in the sound
power spectrum.

• Comparing the same floor type, an increase of the length leads to a small deviation of
the third bending eigenfrequency in the nomograms. The amplitude of the peaks stay
the same, but the value of the normalized frequency decreases.

• A change of the floor type has a larger influence than a change of the remaining
parameters. Deviations of the normalized frequencies as well as the amplitude of the
peaks are recognizable already at the second bending eigenfrequency. Both values are
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deceasing with increasing thickness of the floor. However, the deviations stay relatively
small.

5.2.2 Application of TMDs to reduce radiated sound power

In the aforementioned evaluation of raw CLT, floors it appeared that some eigenmodes con-
tribute mainly to the radiated sound power. This can be explained by the fact that those
eigenmodes show only negligible bending perpendicular to the main load bearing direction.
The corresponding wave number in y-direction is therefore equal to zero. Figure 5.4 shows
one of these modes. It is the first eigenmode of a CLT model composed of four coupled slabs
at ≈ 9 Hz. Caused by the weak coupling between the different slabs, groups of eigenmodes
appear with only slightly different eigenfrequencies (compare Fig. 5.5). Those have a com-
mon wavelength in main load-bearing direction, but differ by wavelengths in perpendicular
direction. While, in case of the first eigenmode of a group, the cross-section in perpendicular
direction stays almost even, higher eigenmode’s wavelengths decrease with increasing eigen-
frequency. The modal shapes of the latter can be interpreted as a composition of torsional
eigenmodes of the individual slabs. When a cross-section along the central perpendicular
axis of the floor is examined, it resembles a rigid body motion rather than a bending wave.
To differentiate between the two types of modes they will be referred to as "bending" and
"torsional" modes in the following. As a result, if the radiated sound power is to be reduced,
special attention to the bending modes has to be given. An approach to tackle this problem
is the application of TMDs to minimize the amplitudes of the relevant bending modes.

Figure 5.4: Eigenmode of a CLT floor at ≈ 9 Hz Figure 5.5: Eigenmode of a CLT floor at ≈
18 Hz
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5.2.2.1 Description of TMDs

A TMD consists of a mass, a spring and a dashpot. It is attached to a structure to attenuate
its dynamic response. The frequency of the damper is tuned to a specific frequency. When
that frequency is excited, the damper will resonate out of phase with the motion of the
structure. The input energy is dissipated by the damper inertia force acting on the structure.
The theory of optimizing TMDs has been widely discussed. Optimized parameters for TMDs
applied to undamped SDOF systems have been derived by Den Hartog [1952] for an harmonic
excitation and by Warburton and Ayorinde [1980] for white noise excitation. Optimization
of MDOF systems have been investigated by Sadek et al [1997] and Warburton [1982]. They
found different formulas for the optimum tuning frequencies of the damper ωd =

√
kd
md

related
to the eigenfrequency of the SDOF ω∞ =

√
k

m+md
system with rigidly attached damper mass

md. This corresponds to a TMD with infinite damping ratio ζd =∞.

αopt = ωd
ω∞

(5.1)

A second optimization parameter is the optimum damping ratio ζd,opt. The objective of the
aforementioned studies was the reduction of the main structures displacements. Since the
radiated sound power is related to the structure-borne sound velocity, different optimization
parameters must be regarded. Bakre and Jangid [2007] gives formulas for parameters to
optimize the velocity of undamped and damped SDOF systems. The different approaches
for undamped systems are summarized in Table 5.9. Input variable is the mass ratio between
the structure and the damper µ = md

m
.

Table 5.9: Optimum parameters of TMD for undamped SDOF systems

Optimized with respect to αopt ζd,opt Source

Displacement 1
1+µ

√
3µ

8(1+µ) Den Hartog [1952]

Displacement
√

1+µ
2

1+µ

√
µ(1+ 3

4µ)
4(1+µ)(1+µ

2 ) Warburton and Ayorinde [1980]

Velocity 1√
1+µ

√
µ
4 Bakre and Jangid [2007]

For damped SDOF systems Bakre and Jangid [2007] derived rather complicated explicit
formulas, related to the structure’s damping ratio ζs. An optimization with respect to
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velocity yields the following:

αd,opt = 1√
1 + µ

+ (a1 + a2 +√µ+ a3µ)√µζs + (a4 + a5
√
µ+ a6µ)√µζ2

s (5.2)

ζd,opt =
√
µ

4 + (a1 + a2 +√µ+ a3)√µζs + (a4 + a5
√
µ+ a6)√µζ2

s (5.3)

The coefficients ai were obtained by minimizing the error of numerical simulations com-
pared to the given equations. For a detailed derivation and Tables containing the optimized
parameters for selected combinations refer to Bakre and Jangid [2007].

MDOF systems can be idealized as SDOF systems as long as the specific eigenfrequencies
are well separated [Warburton 1982]. Rana [1996] showed that when several eigenmodes are
controlled by multiple TMDs the amplitude of the oscillation at the lowest eigenfrequency
is marginally increased. This effect must be considered in case of a combined sound power
and vibration reduction. A method for optimizing multiple TMDs with varying parameters
was derived by Joshi and Jangid [1997] showing more effectiveness than an optimized single
TMD of equivalent mass. However, multiple TMD with identical dynamic characteristics
are equivalent to a single TMD.

For the idealization of continuous systems such as beams or plates (with well separated eigen-
frequencies) as an MDOF system, the modal mass for each eigenmode has to be calculated.

M∗
i = ΦT

i M Φi (5.4)

with

M∗
i : Modal mass of eigenmode i

Φi : Eigenvector i
M : Mass vector

It can be derived from a Modal Analysis, in case a numerical FE model exists (see Sec-
tion 2.5). In case of the FE software Ansys R©, it is performed by normalizing the mode
shapes to unity and calculating each modes total kinetic energy Ekin,tot,i. With the corre-
sponding eigenfrequency ωi the modal mass can be derived:

M∗
i = 2Ekin,tot,i

ω2
i

(5.5)
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5.2.2.2 Equipping a single CLT slab with TMDs

The FE models of CLT floors consist of coupled slabs of identical dimensions. Therefore, a
practical approach is to find TMD configurations to attenuate the velocity amplitudes of the
bending waves for the individual slabs. The torsional modes of the individual slab as well
as the resulting additional torsional modes of the coupled system showed low impact on the
radiated sound power of the system.

A numerical model of a single slab measuring 5.5 m× 1.375 m of the five-layered CLT type
Leno 105 is investigated. Material parameters and support conditions correspond to the
models described in Chapter 3. The damping ratio is set to ζs = 0.03 in this example. From
a Modal Analysis, the modal parameters listed in Table 5.10 can be derived for the first
three bending modes. The specific eigenfrequencies are well apart, and can, therefore, be
idealized as individual SDOF systems [Warburton 1982].

Table 5.10: Modal parameters for a single CLT slab

Mode i Eigenfrequency fi in Hz Modal mass M∗
i in kg Modal shape

1 8.71 181.57 1/2 sine
2 32.71 157.07 sine
3 71.43 130.93 3/2 sine

The optimal parameters of TMDs for the attenuation of each mode individually can be
derived from Bakre and Jangid [2007] for damped systems. Table 5.11 lists the resulting
parameters. The mass ratios µi are chosen to decrease with increasing frequency to min-
imize the modal contamination of the eigenmodes with lower frequency [Rana 1996]. The
coefficients αopt and ζd,opt are taken from tables in Bakre and Jangid [2007].

Table 5.11: Optimal TMD parameters for a system with 3% damping ratio; according to Bakre and Jangid
[2007]

Parameters Mode 1 Mode 2 Mode 3
Mass ratio µi 0.10 0.08 0.05
Damper mass md,i in kg 18.16 2× 6.29 3× 2.18
Frequency ratio αopt 0.95865 0.96705 0.97999
Damper frequency fd,i in Hz 8.35 31.64 70.00
Damper stiffness kd,i in N

m 50.0 · 103 2× 254.8 · 103 3× 418.6 · 103

Damping ratio ζd,opt 0.1605 0.1434 0.1131
Damping constant cd,i in Ns

m 305.8 2× 358.2 3× 217.1
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Figure 5.6: Sketch of the TMD arrangement

The TMDs are arranged for each mode in the locations of the maximum deformation de-
pending on its modal shape. The first mode is controlled by a single TMD in the center
of the slab. For the second and third modes two respectively three identical TMDs with
equivalent parameters to a single one are arranged at each peak of the mode shape [Joshi
and Jangid 1997]. All TMDs are mounted along the longitudinal symmetry axis of the slab,
since torsional modes are not controlled. A sketch of the setup is depicted in Figure 5.6.
Vertical dotted lines indicate peaks of the individual considered mode shapes.
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Figure 5.7: Velocity spectra at the considered eigenfrequencies with applied TMDs

The effectiveness of the TMDs is examined by a Harmonic Frequency Analysis. Therefore,
the described FE model with mounted TMDs is excited by a single load of 1 N. The load is
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applied at location x = 1
6 l and y = 1

2w. Here, every bending mode considered is excited while
an excitation of torsional modes is excluded. Figure 5.7 shows details of the velocity spectra
in the frequency range of the considered eigenmodes. For reasons of comparison, several
configurations are investigated. In each diagram, configurations with only the TMDs for the
corresponding mode are simulated and compared to the spectrum with all TMD applied.
Additionally the spectra of rigidly attached tuning mass ζd,i = ∞ and without a dashpot
ζd,i = 0 are shown. It can be observed that TMDs designed by the optimized parameters
according to Bakre and Jangid [2007] result in a significant attenuation of the velocity of
the main system. The two resulting peaks have nearly the same amplitudes and are located
close to the intersection of the curves for ζd,i = 0 and ζd,i =∞ in every case. The damping
constant of the TMDs for mode 3 seems to be marginally too high, but still good results
are achieved. When all TMDs are mounted the amplitudes are slightly shifted resulting in
marginally higher peaks for the first mode almost equal peaks for the second and slightly
lower peaks for the third. The overall performance of the slab with applied TMD is greatly
improved.
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Figure 5.8: Radiated sound power of a CLT floor attenuated by TMDs
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5.2.2.3 Attenuation of the sound power of a CLT floor by application of TMD

To examine the impact of the applied TMDs on the radiated sound power, an FE model of a
floor consisting of four coupled CLT slabs is investigated. Every individual slab is equipped
with the optimized TMDs from the previous example. A Harmonic Frequency Analysis is
performed using the stochastic excitation model described in Section 3.4.2. In this way, every
eigenmode of the system is excited equally and a more general view on the vibro-acoustical
behavior can be achieved.

Figure 5.8 shows a comparison of spectra of the resulting radiated sound power level (P ).
Curves for models with and without applied TMDs are depicted. Superimposed are the cor-
responding spectra of the ERP when piston like vibrations are assumed. It can be observed
that the sound power level can be significantly decreased in the range of the bending modes.
Again, a comparison to the ERP shows that the torsional modes only marginally contribute
to the radiated sound power. The applied TMDs only act on the bending modes while the
torsional modes attenuation is negligible. However, those modes have larger wave numbers
that lie beyond the relevant wave number range for the radiated sound power. Of course, an
attenuation of the first eigenfrequency for this scientific example has low practical relevance
with regard to acoustical considerations.

5.2.3 Examination of the parameters of the suspended ceiling PS-SP
(CLT R/SC + R/FLF/SC, Type 165)

Caused by the large number of varying parameters in this study, only a limited parame-
ter range is evaluated. Thus, the resulting database is too small to allow a dimensional
analysis. The simulation results are therefore examined by comparing selected parameter
combinations. A CLT floor model was used as main system with a floor type 165. The
simulations were performed with and without additional floating floor. The parameters of
the floating floor were not varied. It was chosen to be tuned to a very high resonance fre-
quency to examine the effect on the resulting radiated sound power. As an approximation,
the resonance frequency can be calculated according to DIN 4109-34:2016-07 by assuming a
simplified mass-spring-mass system:

fflf = 1
2π

√√√√sins ·
(

1
ρscr · dscr

+ 1
ρspr · dCLT

)
= 107.7 Hz (5.6)
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with

fflf : Resonance frequency
sins,l = 20 · 106 N

m3 : Dynamic stiffness of the insulation
ρscr,l = 2000 kg

m3 : Density of the screed
dscr = 0.05 m : Thickness of the screed
ρspr,m = 470 kg

m3 : Density of spruce
dCLT = 0.165 m : Thickness of the CLT floor

(5.7)

5.2.3.1 Suspension height

The influence of different distances between the main floor and the paneling of the suspended
ceiling is shown in the diagrams in Appendix B.2.2. Diagrams of radiated sound power level
for floor with and without floating floor are depicted with varying length and aspect ratios
for a suspension grid of ax = 0.1 m. Additionally, the influence of the impedance at the
boundaries of the air cavity is shown. An example of such a diagram is given in Figure 5.9. It
shows the resulting sound power levels for a CLT floor without floating floor with dimensions
5.0× 5.0 m.
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Figure 5.9: Radiated sound power for varying
suspension heights with regards to
the length of the hanger lhang
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Figure 5.10: Radiated sound power for varying
suspension grids ax, with and with-
out hangers

It can be observed that in the investigated frequency range 0 − 200 Hz the sound power
level is generally decreasing with increasing suspension height h. In the shown example,
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the difference between the two curves for h = 0.20 m and h = 0.12 m is about 3 dB. The
curves differ above a frequency of ≈ 50 Hz while below this frequency no major deviation is
observable.

5.2.3.2 Suspension grid work with and without hangers

An evaluation of the variation of the suspension grid can be performed by comparing the
diagrams in Appendix B.2.3. Analogue to the aforementioned evaluation of the suspension
heights diagrams with different lengths and aspect ratios as well as impedance values are
shown with and without floating floor. Additionally, the varying suspension heights are
considered. An example is shown in Figure 5.10. Again, the radiated sound power is depicted,
this time for a CLT floor with dimensions 4.0 m× 2.0 m without floating floor.

In contrast to the aforementioned evaluation, the size of the suspension grid has only a minor
influence on the radiated sound power. Most parameter combinations show a slightly higher
sound power level for smaller grid sizes between 50 and 100 Hz, with increasing frequency the
curves converge. It is remarkable that configurations with a self-supported ceiling (without
hangers) show no major deviation from a suspended ceiling.
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Figure 5.11: Radiated sound power level for varying absorption coefficients µwall, with and without hangers
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5.2.3.3 Boundary impedance of the air cavity

The upper and lower boundary of the air inside the cavity is defined by the main floor and
the paneling of the suspended ceiling. The remaining boundaries are practically formed by
the walls of the room underneath the floor. In case of the floor testing facility in Rosenheim,
those walls are made of reinforced concrete. Since the walls are not modeled in the FE
model, the reverberant behavior of the walls is substituted by a boundary impedance. It
is normalized to a absorption factor µwall which ranges from zero to unity representing
reverberant and fully absorbing boundaries. The diagrams in Appendix B.2.4 show the
radiated sound power level of different parameter combination for absorption factors 0.03,
0.10 compared to reverberant conditions. An example is given in Figure 5.11. A CLT floor
with floating floor measuring 5.0 m × 2.5 m with a suspension grid of ax = 1.0 m and a
suspension height of h = 0.12 m is shown. Additionally, the resulting sound power level for
a self supported ceiling is superimposed.

In the reverberant configuration µwall = 0 clearly the resonances of the air volume are visible
above the frequency of ≈ 50 Hz. It can be observed that the resonance peaks flatten out with
increasing absorption at the boundaries. An increase of the absorption from 3% to 10% only
marginally deviates the curve of the radiated sound power. The reverberant configuration
shows a curve with prominent peaks. As mentioned in Section 5.2.3.2, the difference between
suspended and self-supported ceiling are negligible above a frequency of 50 Hz. This can
be explained by the governing influence of the resonances inside the air cavity. This result
has to be handled with care, since no absorbing material was implemented into the cavity
neither in the simulations nor during the measurements, while this is usually the case in
practice.

5.2.3.4 Dimensions and aspect ratio

The influence of a variation of the length and aspect ratio of different floors are shown in
diagrams in Appendix B.2.5. The results are summarized for varying absorption factors
and subdivided into the different simulated lengths and construction states. The resulting
sound power level curves are plotted in two ways. In one diagram, a representation of
each individual curve is given and for a better visualization, the mean sound power level
of simulations with the same aspect ratio as well as the corresponding envelope range is
depicted in a second diagram. An example of the mean sound power level representation is
given in Figure 5.12. It shows the results for a CLT floor with floating floor with a length
of 4.0 m and an absorption factor of µwall = 0.10 for different aspect ratios.
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Up to a frequency of ≈ 50 Hz the three curves show little deviation. Beyond this frequency,
the sound power level of an aspect ratio of α = 1.0 is up to 10 dB higher than for an aspect
ratio of α = 0.5. The curves for α = 0.5 and α = 1.5 converge between 100 Hz and 150 Hz.
For some parameter configurations the sound power levels of α = 1.0 and α = 1.5 converge
above 150 Hz. Avoiding quadratic dimensions of a floor seems advantageous.
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Figure 5.12: Mean value of the radiated sound power for simulations with varying aspect ratios α

A comparison of the mean radiated sound power levels for CLT floor models with length of
4.0 m and 5.0 m is shown for various parameter combinations in diagrams in Appendix B.2.6.
It can be observed that when a suspended ceiling or a floating floor is applied the sound
power levels show little deviation even if the first eigenfrequencies differ. This indicates that
in those construction states the vibro-acoustic behavior above a frequency of ≈ 30 Hz is
governed by the influence of the floating floor and the suspended ceiling rather than the
main floors characteristics.

5.2.4 Evaluation of the LJ floor and its construction states (PS-GUI
LJ floor)

For the examination of the influence of the parameters of the lumber joist floors no specific
parametric study is performed. Those parameters are evaluated by an investigation of the
data base collected for the graphical user interface (PS-GUI LJ). This parametric study
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is performed with different levels of discretization, depending on the construction state.
The radiated sound power levels for parameter configurations that were simulated for all
construction states are compared in Appendix B.2.7. For a better visualization the results
are given preliminary for each construction state separately and in subsequent diagrams
summarized for all construction states. Different construction states are visualized by colors,
beam widths by varying line thicknesses and distances between the beams by different line
styles. For each simulated length and aspect ratio individual diagrams are drawn. An
example of such a diagram is given in Figure 5.13. It shows a summary of the resulting
radiated sound power levels for simulations with length l = 450 cm and an aspect ratio of
α = 1.0.
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Figure 5.13: Comparison of different construction states (R=blue; R/FLF=red; R/SC=green,
R/FLFS=black), distance between beams ay in cm and beam width bb in cm

5.2.4.1 Distance between the beams

From a comparison of the results, it can be stated, that the distance between the beams
in general has a minor influence on the radiated sound power. For some parameter com-
binations, including a suspended ceiling deviations in the frequency range below 100 Hz
are observable. Thus, smaller distances tend to lead to higher radiated sound power level.
This can be explained by the fact that the suspension grid is linked to the distance between
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the beams, and therefore a smaller distance lead to smaller grid sizes and more radiation
analogue to Section 5.2.3.2.

5.2.4.2 Joist width

A variation of the joist width showed little influence on the resulting sound power level. An
increase of the width tend to result in marginally lower sound power levels above a frequency
of 50 Hz.

5.2.4.3 Construction states

A comparison of the different construction states shows several major differences in the
curves of the sound power level. Within the results of the raw floors pronounced peaks at the
eigenfrequencies for longitudinal bending modes are observable. The curves of the remaining
construction states show a more diffuse behavior. The amplitudes in the range of the first
eigenfrequencies are decreased significantly compared to the raw floor. The three curves
show little deviation up to a frequency of ≈ 50 Hz, construction states with floating floor
keep a slightly lower level. Above this frequency the curves separate. Construction states
with suspended ceiling result in lower sound power than the raw ceiling, whereas when also a
floating floor is added the curves are decreased even more. At 100 Hz the construction state
with only floating floor gives sound power levels partly larger than the raw ceiling. This
is caused by the resonance of the floating floor. It turns out the implementation of only a
single static type of floating floor leads to poor results for some parameter configurations as
far as practical applications are concerned. This effect is weakened by the complementary
implementation of a suspended ceiling. A reduction of ≈ 20 dB is observable.

5.2.5 Summary of the influences of the different parameters

In conclusion, the results of the examination from Section 5.2 are summarized in Table 5.12.
The degree of influence of the individual parameters on the resulting radiated sound power
is indicated by the following symbols: small increase ”−”; no effect "o"; small and significant
decrease ” + ” and ” + +”; only with applied suspended ceiling (SC). For construction states
including a floating floor the result depends on whether its resonance frequency lies within
”− ” or outside ” + +” the specified frequency range.



168 Numerical Simulations and Evaluation of the Results

Table 5.12: Influence of the change of the parameter on the resulting radiated sound power

Parameter Statement Frequency range in Hz
0− 50 50− 100 100− 200

CLT floor: type the bigger the profile o + +
CLT floor: number of
slabs

the more o o o

LJ floor: beam width the wider o + +
LJ floor: beam dis-
tance

the greater +(SC) +(SC) o

Suspension height the greater o + +
Suspension grid size the greater + + o
Ceiling suspended compared to

self supported
o o o

Absorption coefficient
of the cavity’s walls

the greater o + +

Aspect ratio if quadratic o − −
Floating floor with compared to without + + + /− + + /−
Suspended ceiling with compared to without + + ++

5.3 Transfer Functions and Force Spectra

The numerical simulations concerning the radiated sound power of the floor constructions
are carried out by Harmonic Frequency Analyses (see Section 3.5.2). As described in Sec-
tions 3.4.1, the amplitude of the harmonic excitation for every evaluated frequency step is
F (f) = 1.0 N. Thus, the structure-borne sound velocity, the evaluation model for the sound
power spectrum in Section 3.7.1 is based on, can be replaced by the mobility

V (f) = v(f)
F (f) (5.8)

with respect to the force spectrum F (f). Since the radiated sound power (2.128) is dependent
on the term |v|2 and the equation is linear, a transfer function can be derived by separating
the force spectrum

H(f) = P (f)
F 2(f) . (5.9)
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The radiated sound power due to a random excitation can thus be approximated by multi-
plying the transfer function H(f) by the specific force spectra of the excitation.

P̃ (f) = H(f) · |F {F (t)}|2 (5.10)

The results, however, are limited to the locations of the single loads that are applied to the
numerical model. A common application in building acoustics is the excitation by a standard
tapping machine or by a walking pedestrian.

5.3.1 Standard tapping machine

A detailed load model for an excitation by a standard tapping machine within an FE analysis
is derived by Rabold [2010]. He compares state of the art load models of varying precision
and develops highly precise models for time and frequency domain investigations. It is
shown that the excitation mechanism depends on the momentum of the hammers I, but is
also affected by the contact stiffness of the target surface Kc, which effects the contact time
Tc, and on the admittance and the global movement of the floor. However, a force spectrum,
which holds for every transfer function it has to be multiplied with, cannot be derived from
such a detailed model. A simplified approximation has to be chosen, which is introduced by
Cremer et al [2005] and will be presented in the following.

0 20 40 60 80 100 f in Hz

|F [F (t)]| in N
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Figure 5.14: Time and frequency domain of a taping machine load function [Cremer et al 2005]
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The excitation mechanism of a tapping machine is a standardized procedure. The device
consists of five steel cylinders each with a mass of M0 = 0.5 kg and a radius of the tip of
r = 0.015 m. They are arranged on a straight line with an even distribution of d = 0.10 m.
Each cylinder hits the floor with a frequency of f1 = 2.0 Hz falling down from a height
of h = 0.04 m. As an idealization the location of the contact can be assumed coincidental,
which leads to a combined excitation frequency of fs = 10.0 Hz. In each period, the cylinders
perform a free fall, leading to an impact speed of

v0 =
√

2gh = 0.886 m
s . (5.11)

with the gravity g = 9.81 m
s2 . The time history of the excitation force thus consists of a

number of peaks that are T = 1
fs

= 0.1 s apart. The time history can be expressed by the
Fourier series

F (t) = <
{ ∞∑
−∞

Fne
inωst

}
=
∞∑
−∞

Fn cos(nωst) = 2
∞∑
n=0

Fn cos(nωst) + F0 (5.12)

with Fourier coefficients Fn and circular frequency ωs = 2πfs. When moving the origin t = 0
precisely to the maximum of one peak and assuming a symmetric time history, it can be
reduced to its cosine components. The Fourier coefficients Fn are determined as follows:

Fn = 1
T

∞∫
−∞

F (t) cosnωstdt (5.13)

It can be assumed, that cos(nωst) ≈ 1, when the contact period of the hammer with the
floor is very short compared to the time period between two impacts. Thus the Fourier
coefficients yield

Fn ≈
1
T

T∫
0

F (t)dt = I

T
(5.14)

with the momentum of the steel cylinder I. Thus, the amplitude of the excitation force Fn is
constant over the frequency. This approximation is valid up to a frequency of f ≈ 1

Tc
, with

the contact time Tc [Cremer et al 2005]. The impulse of the steel cylinder ranges depends on
the kind of the contact

M0v0 ≤ I ≤ 2M0v0 (5.15)

with the ideal plastic contact as the lower and the ideal elastic contact as the upper limit.
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According to Cremer et al [2005] it can be approximated by

I ≈
√

2M0v0 = 0.626 kgm
s . (5.16)

When applying this approximation to lightweight wooden floor constructions, some errors are
induced, since this model is well suited only for floors with low admittances and hard surfaces.
Since the frequency range of the transfer functions within the following examinations is
limited to the 100 Hz third octave band, the restriction to hard surfaces can be excluded.
Figure 5.14 shows the time history F (t) and the approximated frequency spectrum |F [F (t)]|
in N according to the assumptions made above. To give an impression on the error induced
by this approximation the frequency spectrum of a single impulse causing a half-sine shaped
contact force with a contact time of Tc = 0.001 s, scaled by 10, is superimposed (dotted
line). For the observed frequency range it is very small and can be neglected.

5.3.2 Walking pedestrian

Different to the tapping machine, the time history of a pedestrian load is obviously not
standardized. Several approaches for a parametric description were presented in recent
time. Most of them focus on the description of induced vibrations, which usually range up
to the third harmonic of the footfall frequency (e.g. Butz [2006]). A different approach for
the use within acoustical examinations was given by Schanda et al [2013], which included
the hit of the heel. This impulse-like excitation was found to play a major role for acoustical
considerations [Schanda et al 2013].

In the scope of this thesis, the latter approach is applied. As mentioned before, the transfer
functions were simulated only for limited driving point locations. Thus an actual walking of
the pedestrian cannot be considered. The time history of the induced force is developed by
a superposition of single footsteps with a repetition period of 1

fstep
. In Figure 5.15 the super-

posed signal is shown (continuous line) superimposed by the time history of an individual
footstep (dashed lines and gray). The hit of the heel can be identified as the sharp peak
at the start of the signal. For the following examinations a signal F (t) of a representative
pedestrian of mass 75.0 kg with a footfall frequency of fstep = 1.6 s is chosen. As shown in
Figure 5.15 the Fourier transformed |F [F (t)]| consists of discrete impulses with a repetition
interval of fstep. The abscissa is in logarithmic scale. As expected, the spectrum is slowly
decaying with significant amplitudes in the considered frequency range, caused by the hit of
the heel.



172 Numerical Simulations and Evaluation of the Results

0 20 40 60 80 100 f in Hz

|F [F (t)]| in N
103

10−2

0 1
1.6

1
1.6 t in s

F (t) in N

900

Figure 5.15: Time and frequency domain of a pedestrian load function [Schanda et al 2013]

5.4 Coefficients for the Evaluation at Low Frequencies

Floor constructions in residential buildings have to meet sound insulation requirements. Con-
cerning the impact sound insulation, the requirements for the German market are formulated
in DIN 4109-1:2016-07. In practice, floor constructions are rated concerning the weighted
normalized impact sound pressure level Ln,w (laboratory measurements) according to DIN
EN ISO 717-2:2013-06. This single value is derived from octave or third-octave impact sound
pressure levels Li, that are measured with an excitation by a standard tapping machine [DIN
EN ISO 10140-3:2015-11]. In case of third octave measurements, the frequency bands from
100 to 3150 Hz must be taken into account. The impact sound pressure levels are further
processed, concerning the measured reverberation time, and thus yielding for the normalized
impact sound pressure levels

Ln = Li + 10 log A

A0
. (5.17)

The equivalent sound absorption area A is derived from the reverberation time T = 0.16V
A

with the volume of the receiving room V . The equivalent sound absorption area is A0 =
10 m2. Hence, variations for different room situations will not influence the results. By
shifting a standard reference curve, according to DIN EN ISO 717-2:2013-06, towards the
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measured curve of Ln, the single value Ln,w can be determined as the value of the reference
curve at 500 Hz. A spectrum adaption term CI may be used to take into account the different
source spectra of a tapping machine and a pedestrian. Its frequency range can optionally be
adapted to an increased frequency range from 50 to 2500 Hz, and thus is assigned CI,502500.
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Figure 5.16: Example of a simulated sound pressure level of a LJ floor with FLF and SC (blue); superim-
posed: the perception threshold (orange) and the values above the threshold (red)

A direct calculation of the impact sound level Ln,w from the simulated data is not possible,
due to the insufficient simulated frequency range defined for the parameter studies, which
leads to an upper limit octave band of 100 Hz resp. 125 Hz. Thus, a coefficient must
be developed, derived from the simulated data, that correlates with the single value Ln,w.
Therefore, in a first step, the radiated sound power is evaluated for an excitation with
a standard tapping machine by multiplying the transfer functions of the simulated sound
power spectra by the force spectrum of the tapping machine (see Section 5.3.1) according to
Equation 5.10. The resulting narrow-band spectra are subsequently transformed into third
octave bands. The sound power level can then be transferred into a sound pressure level
under simplified assumption of a diffuse sound field by

Lp,diff,i = LW,i − 10 log10

(
Aref
Aeq

)
(5.18)

with Aref = 4.0 m2 and the equivalent sound absorption area Aeq = 10 m2. The latter is
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chosen in accordance to DIN EN ISO 717-2:2013-06 (A0 = 10 m2) to enhance a comparability
of the results. Of course, this does not hold properly for small rooms. The results are further
processed by applying the perception threshold according to DIN 45680:2013-09 Entwurf to
consider the psycho-acoustical perception. Figure 5.16 shows an example of a third octave
sound pressure level with superimposed perceptual threshold (orange).

The sum level of the values above this threshold serves as the desired coefficient. An inves-
tigation of the simulated results [Fünfer 2016] showed, that the sum level from 50 to 100 Hz
(Lsum,50−100) gives a sufficient approximation of the total frequency range, since the third
octave bands below 50 Hz have only a minor impact on the result. In addition, this frequency
range is covered by the usual measurement frequency range of impact sound insulation.
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Figure 5.17: Correlation of the coefficients compared to the loudness by E. Zwicker for LJ (X) and CLT (�)

floors with construction states: R (blue), R/FLF (red), R/SC (yellow), and R/FLF/SC (pur-
ple)

As a validation, the developed coefficient is compared to the loudness, computed out of the
same set of data, according to the method proposed by E. Zwicker [DIN 45631:1991-03].
A good correlation can be achieved, as shown in Figure 5.17a.

A similar evaluation can be performed for an excitation by a force spectrum of a walking
pedestrian. In this case, the lower frequency bands do have a major impact. Thus, the
coefficient for a pedestrian excitation is formed by the sum level of the third octave bands
from 25 to 100 Hz. Figure 5.17b shows again the correlation to the loudness. The force
spectrum, described in Section 5.3.2, of a pedestrian of 75 kg with a footstep frequency of
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1.6 Hz is applied. Again, a good correlation can be observed. Especially the floors with
an additional screed show lower amplitudes. The diagrams in Figure 5.17, for a better
visualization, cover different parameter ranges. To avoid a miss-interpretation, overlapping
parameter ranges are marked in gray.
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Figure 5.18: Correlation between the coefficient Lsum,50−100 and the impact sound level with spectrum
adaption term Ln,w + CI,50−2500 for measurement data of different wooden floor construc-
tions (IJ: I-joist floor); superimposed: a linear trend line with 95% confidence bounds

The coefficients derived from the simulated data cannot directly be compared to the impact
sound level, as mentioned before. Instead a comparison based on measurement data is
performed as shown in Figure 5.18. It shows the database for a variety of wooden floor
constructions, archived by the IFT Rosenheim, out of which the construction catalog for DIN
4109-33:2016-07 was derived. Here, the coefficient Lsum,50−100 is compared to the standard
footfall noise level Ln,w, complemented by the spectrum adaption term CI,50−2500. A good
linear correlation is observable, the coefficient of determination is R2 = 0.94. The values
differ only by a fixed value of 12.5 dB with a standard deviation of ±1.8 dB. Thus, the
estimated Ln,w +CI,50−2500 can easily be extrapolated from the coefficient Lsum,50−100. For a
maximum footfall noise level of 53 dB, as proposed by Rabold [2011] for a sufficient comfort
level, a floor construction meets the requirements for Lsum,50−100 ≤ 43 dB. The derived
coefficients are implemented into the graphical user interface described in Section 5.5.
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5.5 Graphical User Interface (GUI)

A pursuing research at the University for Applied Science Rosenheim scopes on the en-
hancing of the GUI already developed within the research project "Vibood" [Kohrmann et al
2014]. It processes the data from the parametric survey presented in Section 5.1.3.1, that
are implemented as transfer functions according to Section 5.3. Its development status is
pending, hence, the actual development state will be presented [Kohrmann et al 2016]. Since
the program is designed in German language, the following description will provide hints on
the translation.

Figure 5.19: Screen-shot of the Graphical User Interface

The GUI combines multiple evaluation possibilities. An example is shown in Figure5.19.
The floor constructions of interest (Deckensystem) as well as its dimensions (Länge, Breite,
etc.) can be chosen in the input section (Eingangsdaten). Further, an excitation type
(Lastspektren) can be chosen for an acoustical evaluation as well as a specific weighting
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function (Bewertungsfilter). Thus, the stored transfer functions are multiplied by the load
spectra of a walking pedestrian or a standard tapping machine to derive the resulting radiated
sound power. Up to three different floor constructions can be displayed (different color) and
compared for both types of excitation. The acoustical evaluation can be done in three
different ways with varying degree of detail. The standard configuration shows the third
octave spectra of the sound power level from 31.5 to 100 Hz. For more detailed considerations
the small band results accompanied by the individual radiation efficiency (Abstrahlgrad) can
be opened in a Pop-Up window. A fast comparison of different constructions can be done
by the implemented coefficients derived in Section 5.4. As mentioned before, a classification
according to the predicted weighted normalized impact sound pressure level can be done.

As an additional functionality, the statutory proof of the serviceability linked to vibrations
(Gebrauchstauglichkeitsnachweis) can be provided for the chosen floor. This can be done
according to DIN EN 1995-1-1:2010-12 or optional by the modified method developed by
P. Hamm and A. Richter [Winter et al 2010][Hamm et al 2010]. An advantage compared
to already existing tools consists of the possibility to compare the calculated to the simu-
lated results. Thus possible oversizing caused by the simplified calculation approach can be
identified and avoided.

The GUI will be available online at http://www.fh-rosenheim.de/lasm.html.

http://www.fh-rosenheim.de/lasm.html
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6 Conclusion

6.1 Summary

In the present thesis, a numerical approach on the prediction of the vibro-acoustic charac-
teristics of timber floor constructions in the frequency range below 125 Hz is proposed. The
research aims on the necessity to develop design tools to support the practical engineer prior
to construction. Up to now, there exist only simplified design models for the prediction
of the vibro-acoustical behavior of floor constructions including noise and vibration abate-
ment. They were essentially developed for traditional heavy weight constructions, which
might be misleading in case of timber floors due to the differences in the impedances of the
system’s components. Thus, numerical models are developed to predict the vibro-acoustic
characteristics in a highly realistic way.

It is shown, that an application of the FEM to develop numerical models of floor constructions
is a suitable approach. Structural models for three representative floor constructions (CLT
floor, LJ floor, and HBG floor) are developed, including FLF and SC. The models are
designed entirely parametric to enable parametric studies. Further, they are optimized for an
automated process, which also includes idealizations to limit the computational effort. Those
idealizations comprise the support conditions and the coupling between individual main floor
components. It is shown, that the damping coefficients, as well as the material properties,
whether idealized or not, can be calibrated with regard to measured modal parameters.

In case of CLT, the idealizations imply, that the material parameters cannot be taken from
literature. It is shown, that in this case, a Model Updating procedure with respect to match-
ing eigenmodes can provide idealized material properties. Another idealization models the
originally two-layered, multi-bodied paneling of the SC as a single homogeneous plate. It is
shown, that idealized stiffness properties can be achieved by an investigation in the wavenum-
ber domain, comparing the resulting wave number spectra of measured and simulated results.
Other constructions, as wooden joists, OSBs, and resilient hangers can be calibrated straight
forward with regard to the fundamental eigenfrequency derived by EMAs.
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Different load models are applied to the structural models and the dynamic responses are
simulated within Harmonic Frequency and Transient Analyses. It is shown, that a walking
pedestrian can be simulated by a simplified load model. The dynamic response can further
be evaluated to characterize the achievable comfort levels of floor constructions with regards
to current standardizations. The frequency spectra of the stucture-borne sound velocities
of the floors caused by single and ROTR excitation is derived in the spatial domain. It is
shown, that the resulting radiated sound power levels can be predicted using ITMs out of the
structure-borne sound velocity pattern in the wavenumber domain. An acoustical evaluation
model is presented using zero-padding in the spatial domain in combination with an averaged
wavenumber depended kernel function. The procedure proved equivalent effectiveness and
accuracy in the prediction of the radiation efficiency compared to spatial domain methods.
It is validated by intensity measurements. The valid frequency range for this method, in
case of airborne excitation or transmission paths including an air-filled cavity, is evaluated by
measurements with varying sampling intervals. It is shown, that in this case the radiation is
mainly caused by forced vibrations, thus aliasing effects with respect to resonant vibrations
can be neglected up to a specific frequency described by a proposed criterion.

Within a case study, different approaches for the modeling of the air inside the cavity are
compared. It is shown, that the sound transmission through a floor construction including
suspended ceiling is to a large extend carried by the cavity modes. In particular, every axial,
tangential and oblique mode has to be modeled. Models, which only include axial modes in
vertical direction lead to erroneous results.

Parametric studies are performed to investigate the floor’s vibro-acoustic characteristics
with regard to a change of the geometrical parameters. It is shown, that a Dimensional
Analyses can describe the fundamental frequencies of CLT floor constructions, as well as the
radiated sound power. Further, eigenmodes are identified, which have a major contribution
to the resulting sound radiation, while the influence of others is negligible. A consequent
approach is the attenuation of these modal vibrations. It is shown, that an application
of optimized TMDs can significantly reduce the radiated sound power of raw CLT floors.
Further parametric studies investigate the parameters related to the suspended ceiling and
varying construction states. The influence of the alternating parameters are analyses and
compared within a table.

The results of the parametric studies are processed in the form of transfer functions and
stored into a database. This database is accessible by a GUI. The data can be evaluated
for a pedestrian load and a tapping machine load by multiplying the specific spectra to the
transfer functions of the sound power level. A coefficient is derived to predict the weighted
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normalized impact sound pressure level out of the simulated results. By establishing a
database of pre-simulated data, the advantages of highly realistic models are provided to the
practical engineer without the disadvantages related to the computation costs, both, with
respect to computation time, as well as the cost for the required FE software licenses.

6.2 Outlook

The developed models only cover a small sample of timber floor constructions provided by
selected manufacturers. Even though the models are designed entirely parametric, only a few
parameters are investigated in detail. Another limitation is induced by various idealizations,
which are made to reduce the overall computational effort. Thus, the presented findings
can only be considered as a pilot study. Further work is recommended, that can in parts
built-up on the models developed, by complementing them, or developing additional models
for alternate floor constructions.

In particular, the floating floor model is not varied within the presented studies. The same
holds for the resilient suspension hangers considered. The model’s material parameters are
calibrated, but remained fixed. No statistical considerations are applied. Thus, succeeding
studies on the existing models can comply:

• A variation of the floating floor model’s parameters

• Implementation of alternate spring and damping coefficients for resilient hangers

• A probabilistic study on the statistical scatter of the material properties

The structural models presented are developed for one-way, single-span configurations only.
Two idealization are considered to have a major impact. The receiving room is not part
of the model and the cavity between main floor and suspended ceiling is modeled without
sound absorbing fillings. Also, the floating floor model only consists of a screed on top of an
impact sound insulation layer. For future investigation, the models need to be supplemented
by the following:

• Alternate support conditions, including two-way and multi-span configurations

• Implementation of sound absorbing fillings for the suspended ceiling model

• Adding a model for the receiving room

• Supplementation of the floating floor model by a filling finish
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Up to now, the database for the intended GUI consists only of a few floor constructions.
However, further research can develop additional structural model, that can easily be imple-
mented into the described automated process of the parametric studies. Thus, the database
can be complement to increase the benefit for the practical engineer, when designing acous-
tically optimized timber floor constructions.
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A Description of the Implemented Finite
Elements

A.1 COMBIN14

This element is depicted in Figure A.1 and described as follows:
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Figure A.1: COMBIN14-element [ANSYS, Inc. 2013]

COMBIN14 has longitudinal or torsional capability in 1-D, 2-D, or 3-D applications. The
longitudinal spring-damper option is a uniaxial tension-compression element with up to three
degrees of freedom at each node: translations in the nodal x, y, and z directions. No bending
or torsion is considered. The torsional spring-damper option is a purely rotational element
with three degrees of freedom at each node: rotations about the nodal x, y, and z axes. No
bending or axial loads are considered.

The spring-damper element has no mass. Masses can be added by using the appropriate
mass element (see MASS21). The spring or the damping capability may be removed from
the element.[...]



MASS21 187

The element is defined by two nodes, a spring constant (k) and damping coefficients (cv)1

and (cv)2. The damping capability is not used for static or undamped modal analyses. The
longitudinal spring constant should have units of Force / Length, the damping coefficient
units are Force * Time / Length. The torsional spring constant and damping coefficient
have units of Force * Length / Radian and Force * Length * Time / Radian, respectively.
For a 2-D axisymmetric analysis, these values should be on a full 360◦ basis. [ANSYS, Inc.
2013]

A.2 MASS21

This element is depicted in Figure A.2 and described as follows:
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Figure A.2: MASS21-Element [ANSYS, Inc. 2013]

MASS21 is a point element having up to six degrees of freedom: translations in the nodal
x, y, and z directions and rotations about the nodal x, y, and z axes. A different mass and
rotary inertia may be assigned to each coordinate direction. [...]

The mass element is defined by a single node, concentrated mass components
(Force*Time2/Length) in the element coordinate directions, and rotary inertias
(Force*Length*Time2) about the element coordinate axes. The element coordinate system
may be initially parallel to the global Cartesian coordinate system or to the nodal coordinate
system [...]. The element coordinate system rotates with the nodal coordinate rotations dur-
ing a large deflection analysis. Options are available to exclude the rotary inertia effects and
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to reduce the element to a 2-D capability [...]. If the element requires only one mass input,
it is assumed to act in all appropriate coordinate directions [ANSYS, Inc. 2013]

A.3 FLUID30

This element is depicted in Figure A.3 and described as follows:
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Figure A.3: FLUID30-element [ANSYS, Inc. 2013]

Use FLUID30 [...] to model the fluid medium and the interface in fluid/structure interaction
problems. Typical applications include sound wave propagation and submerged structure
dynamics. The governing equation for acoustics, namely the 3-D wave equation, has been
discretized taking into account the coupling of acoustic pressure and structural motion at the
interface. The element node has four degrees of freedom per node: translations in the nodal
x, y and z directions, and pressure. The translations are applicable only at nodes on the
interface. Acceleration effects like those in sloshing problems may be included.

The elements have the capability to include damping of sound-absorbing material at the
interface as well as damping within the fluid. The elements can be used with or without
other 3-D structural elements to perform symmetric, unsymmetric or damped modal [...],
full harmonic [...], and full transient method analyses [...]

The elements are defined by eight nodes [...], a reference pressure, and the isotropic material
properties. The reference pressure [...] is used to calculate the element sound pressure level
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(defaults to 20x10-6 N/m2). [...] The dissipative effect due to fluid viscosity can be included
[...]. [ANSYS, Inc. 2013]

A.4 TARGE170

This element is depicted in Figure A.4 and described as follows:
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Figure A.4: TARGE170-element [ANSYS, Inc. 2013]

TARGE170 is used to represent various 3-D ’target’ surfaces for the associated contact ele-
ments ([...] CONTA174 [...]). The contact elements themselves overlay the solid, shell, or
line elements describing the boundary of a deformable body and are potentially in contact
with the target surface, defined by TARGE170. This target surface is discretized by a set
of target segment elements (TARGE170) and is paired with its associated contact surface
[...]. You can impose any translational or rotational displacement, temperature, voltage, and
magnetic potential on the target segment element. You can also impose forces and moments
on target elements. [ANSYS, Inc. 2013]

A.5 CONTA174

This element is depicted in Figure A.5 and described as follows:



190 Description of the Implemented Finite Elements

P

L

I
M

J
N

K

O

Z

X

Y

R

S

Associated Target Surface

Contact Element

Surface of Solid/Shell Element

Figure A.5: CONTA174-element [ANSYS, Inc. 2013]

CONTA174 is used to represent contact and sliding between 3-D ’target’ surfaces
(TARGE170) and a deformable surface, defined by this element. The element is applica-
ble to 3-D structural and coupled field contact analyses.

The element is located on the surfaces of 3-D solid or shell elements with midside nodes ([...]
SOLID186 [...]).

The element has the same geometric characteristics as the solid or shell element face with
which it is connected [...]. Contact occurs when the element surface penetrates one of the
target segment elements (TARGE170) on a specified target surface. [ANSYS, Inc. 2013]

A.6 SHELL181

This element is depicted in Figure A.6 and described as follows:

SHELL181 is suitable for analyzing thin to moderately-thick shell structures. It is a four-node
element with six degrees of freedom at each node: translations in the x, y, and z directions,
and rotations about the x, y, and z-axes. [...]

SHELL181 is well-suited for linear, large rotation, and/or large strain nonlinear applications.
[...] In the element domain, both full and reduced integration schemes are supported. [...]
[ANSYS, Inc. 2013]
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Figure A.6: SHELL181-element [ANSYS, Inc. 2013]

A.7 SOLID185

This element is depicted in Figure A.7 and described as follows:
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Figure A.7: SOLID185-element [ANSYS, Inc. 2013]

SOLID185 is used for 3-D modeling of solid structures. It is defined by eight nodes having
three degrees of freedom at each node: translations in the nodal x, y, and z directions. The
element has plasticity, hyperelasticity, stress stiffening, creep, large deflection, and large
strain capabilities. It also has mixed formulation capability for simulating deformations of
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nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials.
[ANSYS, Inc. 2013]

Trilinear form functions are used for the displacements [Müller and Groth 2007]. Such
elements are without countermeasures prone to a variety of stiffening effects (e.g. locking
effects). To minimize these effects several options are available in Ansys R© for the SOLID185-
element. Shear locking is prevented by using the "Simplified Enhanced Strain Formulation".
Other than the "Enhanced Strain Formulation" for this method only the internal DOFs are
implemented [ANSYS, Inc. 2013].

A.8 SOLID186

This element is a higher-order version of SOLID185. It is depicted in Figure A.7 and de-
scribed as follows:

SOLID186 is a higher order 3-D 20-node solid element that exhibits quadratic displacement
behavior. The element is defined by 20 nodes having three degrees of freedom per node:
translations in the nodal x, y, and z directions. [ANSYS, Inc. 2013]
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Figure A.8: SOLID186-element [ANSYS, Inc. 2013]

A.9 BEAM188

This element is depicted in Figure A.8 and described as follows:
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BEAM188 is suitable for analyzing slender to moderately stubby/thick beam structures. The
element is based on Timoshenko beam theory which includes shear-deformation effects. [...]

The element is a linear, quadratic, or cubic two-node beam element in 3-D. BEAM188 has six
[...] degrees of freedom at each node. These include translations in the x, y, and z directions
and rotations about the x, y, and z directions. [...] This element is well-suited for linear,
large rotation, and/or large strain nonlinear applications.[ANSYS, Inc. 2013]
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Figure A.9: BEAM188-element [ANSYS, Inc. 2013]
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B Simulation Results

B.1 Eigenfrequency Nomograms
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Figure B.1: CLT-R Eigenfrequency nomograms: ns = 2, 1.0 ≤ α ≤ 1.6
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Figure B.2: CLT-R Eigenfrequency nomograms: ns = 3, 1.0 ≤ α ≤ 1.6
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Figure B.3: CLT-R Eigenfrequency nomograms: ns = 3, 1.7 ≤ α ≤ 2.0
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Figure B.4: CLT-R Eigenfrequency nomograms: ns = 4, 1.0 ≤ α ≤ 1.6
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Figure B.5: CLT-R Eigenfrequency nomograms: ns = 4, 1.7 ≤ α ≤ 2.0
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Figure B.6: CLT-R Eigenfrequency nomograms: ns = 5, 1.0 ≤ α ≤ 1.6
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Figure B.7: CLT-R Eigenfrequency nomograms: ns = 5, 1.7 ≤ α ≤ 2.0
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Figure B.8: CLT-R Eigenfrequency nomograms: ns = 6, 1.0 ≤ α ≤ 1.6



Eigenfrequency Nomograms 203

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40

0 10 20 30 400 10 20 30 40

0 10 20 30 40

0 10 20 30 40

α = 1.6 α = 1.7

α = 1.8 α = 1.9

α = 2.0

β β

β β

β

γ γ

γ γ

γ

Figure B.9: CLT-R Eigenfrequency nomograms: ns = 6, 1.7 ≤ α ≤ 2.0
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Figure B.10: CLT-R Eigenfrequency nomograms: ns = 7, 1.0 ≤ α ≤ 1.6
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Figure B.11: CLT-R Eigenfrequency nomograms: ns = 7, 1.7 ≤ α ≤ 2.0
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B.2 Radiated Sound Power

B.2.1 Nomograms
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Figure B.12: CLT-R Sound power nomogram: all simulations
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Figure B.13: CLT-R Sound power nomogram: α = 1.4
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Figure B.14: CLT-R Sound power nomogram: l = 5.0 m
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Figure B.15: CLT-R Sound power nomogram: β = 26.4 (Floor type 186)
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Figure B.16: CLT-R Sound power nomogram: l = 5.0 m; α = 1.4
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Figure B.17: CLT-R Sound power nomogram: l = 5.0 m; β = 26.4 (Floor type 186)
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Figure B.18: CLT-R Sound power nomogram: α = 1.4; β = 26.4 (Floor type 186)
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Figure B.19: CLT-R Sound power nomogram:: l = 5.0 m; α = 1.4; β = 26.4 (Floor type 186)
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B.2.2 Effect of different lengths of the suspension hangers
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Figure B.20: Sound power level, CLT, Effect of different lengths of the suspension hangers: l = 4.0 m,
ax = 1.0 m , µwall = 3%
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Figure B.21: Sound power level, CLT, Effect of different lengths of the suspension hangers: l = 4.0 m,
ax = 1.0 m , µwall = 10%
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Figure B.22: Sound power level, CLT, Effect of different lengths of the suspension hangers: l = 5.0 m,
ax = 1.0 m , µwall = 3%
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Figure B.23: Sound power level, CLT, Effect of different lengths of the suspension hangers: l = 5.0 m,
ax = 1.0 m , µwall = 10%
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B.2.3 Variation of the suspension grid (with and without suspension
hangers)
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Figure B.24: Sound power level, CLT, Variation of the suspension grid: l = 4.0 m, lhang = 0.12 m ,
µwall = 3%
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Figure B.25: Sound power level, CLT, Variation of the suspension grid: l = 4.0 m, lhang = 0.12 m ,
µwall = 10%
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Figure B.26: Sound power level, CLT, Variation of the suspension grid: l = 4.0 m, lhang = 0.20 m ,
µwall = 3%
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Figure B.27: Sound power level, CLT, Variation of the suspension grid: l = 4.0 m, lhang = 0.20 m ,
µwall = 10%
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Figure B.28: Sound power level, CLT, Variation of the suspension grid: l = 5.0 m, lhang = 0.12 m ,
µwall = 3%
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Figure B.29: Sound power level, CLT, Variation of the suspension grid: l = 5.0 m, lhang = 0.12 m ,
µwall = 10%
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Figure B.30: Sound power level, CLT, Variation of the suspension grid: l = 5.0 m, lhang = 0.20 m ,
µwall = 3%
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Figure B.31: Sound power level, CLT, Variation of the suspension grid: l = 5.0 m, lhang = 0.20 m,
µwall = 10%
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B.2.4 Investigation of the absorption factor at the boundaries
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Figure B.32: Sound power level, CLT-R/SC, Comparison of different absorption factors, length l = 4.0 m,
ax = 0.1 m, lhang = 12 cm
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Figure B.33: Sound power level, CLT-R/SC, Comparison of different absorption factors: l = 4.0 m,
ax = 1.0 m, lhang = 0.20 m
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Figure B.34: Sound power level, CLT-R/SC, Comparison of different absorption factors: l = 5.0 m,
ax = 1.0 m, lhang = 0.12 m
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Figure B.35: Sound power level, CLT-R/SC, Comparison of different absorption factors:l = 5.0 m, ax =
1.0 m,lhang = 0.20 m
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Figure B.36: Sound power level, CLT-R/FLF/SC, Comparison of different absorption factors: l = 4.0 m,
ay = 1.0 m, lhang = 0.12 m
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Figure B.37: Sound power level, CLT-R/FLF/SC, Comparison of different absorption factors:l = 4.0 m,
ax = 1.0 m,lhang = 0.20 m
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Figure B.38: Sound power level, CLT-R/FLF/SC, Comparison of different absorption factors: l = 5.0 m,
ax = 1.0 m,lhang = 0.12 m
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Figure B.39: Sound power level, CLT-R/FLF/SC, Comparison of different absorption factors:l = 5.0 m,
ax = 1.0 m,lhang = 0.20 m
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B.2.5 Comparison of the aspect ratios of the floors (single
measurements and mean values)
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Figure B.40: CLT-R/SC, Comparison of the aspect ratios of the floors: l = 4.0 m, µ : wall = 3%; lhang
and ax in m
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Figure B.41: CLT-R/SC, Comparison of the aspect ratios of the floors: l = 4.0 m, µwall = 3%; mean
value and envelope
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Figure B.42: CLT-R/SC, Comparison of the aspect ratios of the floors: l = 4.0 m, µwall = 10%; lhang
and ax in m
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Figure B.43: CLT-R/SC, Comparison of the aspect ratios of the floors: l = 4.0 m, µwall = 10%; mean
value and envelope
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Figure B.44: CLT-R/SC, Comparison of the aspect ratios of the floors: l = 5.0 m, µwall = 3%; lhang and
ax in m
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Figure B.45: CLT-R/SC, Comparison of the aspect ratios of the floors: l = 5.0 m, µwall = 3%; mean
value and envelope
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Figure B.46: CLT-R/SC, Comparison of the aspect ratios of the floors: l = 5.0 m, µwall = 10%; lhang
and ax in m
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Figure B.47: CLT-R/SC, Comparison of the aspect ratios of the floors: l = 5.0 m, µwall = 10%; mean
value and envelope
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Figure B.48: CLT-R/FLF/SC, Comparison of the aspect ratios of the floors: l = 4.0 m, µwall = 3%;
lhang and ax in m
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Figure B.49: CLT-R/FF/SC, Comparison of the aspect ratios of the floors: l = 4.0 m, µwall = 3%; mean
value and envelope
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Figure B.50: CLT-R/FLF/SC, Comparison of the aspect ratios of the floors: l = 4.0 m, µwall = 10%;
lhang and ax in m
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Figure B.51: CLT-R/FLF/SC, Comparison of the aspect ratios of the floors: l = 4.0 m, µwall = 10%;
mean value and envelope
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Figure B.52: CLT-R/FLF/SC, Comparison of the aspect ratios of the floors: l = 5.0 m, µwall = 3%;
lhang and ax in m
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Figure B.53: CLT-R/FLF/SC, Comparison of the aspect ratios of the floors: l = 5.0 m, µwall = 3%;
mean value and envelope
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Figure B.54: CLT-R/FLF/SC, Comparison of the aspect ratios of the floors: l = 5.0 m, µwall = 10%;
lhang and ax in m
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Figure B.55: CLT-R/FLF/SC, Comparison of the aspect ratios of the floors: l = 5.0 m, µwall = 10%;
mean value and envelope
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B.2.6 Comparing different floor lengths (mean values)
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Figure B.56: Sound power level, CLT-R/SC, Comparing different lengths: µwall = 3%, mean values
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Figure B.57: Sound power level, CLT-R/SC, Comparing different lengths: µwall = 10%, mean values
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Figure B.58: Sound power level, CLT-R/FLF/SC, Comparing different lengths: µwall = 3%, mean values
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Figure B.59: Sound power level, CLT-R/FLF/SC, Comparing different lengths: µwall = 10%, mean values
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B.2.7 Effects of a variation of the distance between the joists and the
width of the joists of an LJ floor for varying construction states
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Figure B.60: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 3.0 m, α = 1.0
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Figure B.61: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 3.0 m, α = 1.5
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Figure B.62: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 3.0 m, α = 1.0; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)
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Figure B.63: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 3.0 m, α = 1.5 ; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)
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Figure B.64: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 3.5 m , α = 1.0
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Figure B.65: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 3.5 m , α = 1.5
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Figure B.66: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 3.5 m , α = 1.0; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)
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Figure B.67: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 3.5 m , α = 1.5; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)
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Figure B.68: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 4.0 m, α = 1.0
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Figure B.69: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 4.0 m, α = 1.5
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Figure B.70: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 4.0 m, α = 1.0; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)

0 50 100 150 200

0

20

40

60

80

-20

So
un

d
po

we
r
le
ve
li
n

dB
re

10
−

12
W

Frequency in Hz

l = 4.0 m, α = 1.5

djoist ≈ 0.3, wjoist = 0.06
djoist ≈ 0.6, wjoist = 0.12

djoist ≈ 0.4, wjoist = 0.06
djoist ≈ 0.5, wjoist = 0.06

djoist ≈ 0.3, wjoist = 0.06
djoist ≈ 0.6, wjoist = 0.12

djoist ≈ 0.4, wjoist = 0.06
djoist ≈ 0.5, wjoist = 0.06

djoist ≈ 0.3, wjoist = 0.06
djoist ≈ 0.6, wjoist = 0.12

djoist ≈ 0.4, wjoist = 0.06
djoist ≈ 0.5, wjoist = 0.06

djoist ≈ 0.3, wjoist = 0.06
djoist ≈ 0.6, wjoist = 0.12

djoist ≈ 0.4, wjoist = 0.06
djoist ≈ 0.5, wjoist = 0.06

Figure B.71: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 4.0 m, α = 1.5; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)
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Figure B.83: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 5.5 m, α = 1.5; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)
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m: l = 6.0 m, α = 1.0
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Figure B.85: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 6.0 m, α = 1.5
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Figure B.86: LJ, Variation of the distance between the joists djoist and the width of the joists wjoist in
m: l = 6.0 m, α = 1.0; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)
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m: l = 6.0 m, α = 1.5; R(blue), R/FLF(red), R/SC(green), R/FLF/SC(black)



270

Bibliography

[Aicher and Dill-Langer 2000] Aicher, S. ; Dill-Langer, G.: Basic consideration to
rolling shear madulus in wooden boards. In: Otto-Graf-Journal 11 (2000), p. 157–166

[Allemang 2003] Allemang, R. J.: The Modal Assurance Criterion - Twenty Years of
Use and Abuse. In: Sound and Vibration (2003), August, p. 14 – 21

[Allert 2014] Allert, B.: Simulation von Bremsenquietschen: Ein Beitrag zur Prog-
nosegüte, Technische Universität München, Ph.D. thesis, 2014

[Andersen et al 2012] Andersen, L. V. ; Kirgkegaard, P. H. ; Dickow, N. ; Pers-
son, K.: Influence of wall surface and air modelling in finite-element analysis of sound
transmission between rooms in lightweight buildings. In: Internoise, 2012

[Angerer 2011] Angerer, Ludwig: Berechnung des akustischen Abstrahlverhaltens von
Verbunddeckensystemen mit abgehängter Decke, Technische Universität München, Mas-
ter’s thesis, 2011

[ANSYS, Inc. 2013] ANSYS, Inc.: ANSYS Mechanical APDL Element Reference. 2013.
– Documentation

[Bakre and Jangid 2007] Bakre, S. V. ; Jangid, R. S.: Optimum parameters of tuned
mass damper for damped main system. In: Structural control and health monitoring 14
(2007), p. 448–470

[Bangert 2000] Bangert, F.: Schallleistungsberechnung und Schallquellenlokalisierung
anhand von Schallintensitätsmessungen, Fachhochschule Düsseldorf, Diplomarbeit, 2000

[Bathe 2002] Bathe, K. J.: Finite-Elemente-Methoden. Springer Verlag, 2002

[Beerends et al 2003] Beerends, R. J. ; Ter Morsche, H. G. ; Gerg, J. C. Van der ;
Vrie, E. M. Van der: Fourier and Laplace Transforms. Cambridge University Press, 2003

[Blaß and Flaig 2012] Blaß, H. J. ; Flaig, M.: Karlsruher Berichte zum Inge-
nieurholzbau. Volume 24: Stabförmige Bauteile aus Brettsperrholz. Karsruhe : KIT Scien-
tific Publishing, 2012

[Bogensperger et al 2010] Bogensperger, T. ; Fitz, M. ; Hamm, P. ; Schickhofer, G.:
Untersuchung des Schwingungsverhaltens von Deckensystemen aus Brettsperrholz (BSP).
In: Bauingenieur 85 (2010), Nr. 1, p. 45–52



Bibliography 271

[Borch 2013] Borch, F.: Analysis of Eigen Frequencies and Mode Shapes for Wooden
Structured Floors - Vibration technical investigation / Technische Universität München.
2013. – Research report

[Brüel & Kjaer 1993] Brüel & Kjaer: Schallintensität. Brüel & Kjaer, 1993

[Bridgman 1922] Bridgman, P. W.: Dimensional Analysis. Yale University Press, 1922

[Brigham 1974] Brigham, E. O.: The fast fourier Transform. Springer-Hall, Inc., 1974

[Brunskog and Hammer 2002] Brunskog, J. ; Hammer, P.: Measurement of the acous-
tic properties of resilient, statically tensile loaded devices in lightweight structures. In:
Building Acoustics 9 (2002), Nr. 2, p. 99–137

[Buckingham 1914] Buckingham, E.: On physically similar systems; illustrations of the
use of dimensional equation. In: Physical Review 4 (1914), Nr. 4, p. 345–376

[Butz 2006] Butz, E.C.: Beitrag zur Berechnung fußgängerinduzierter Brückenschwingun-
gen, Rheinisch-Westfählische Technische Hochschule Aachen, Ph.D. thesis, 2006

[Chaves 2013] Chaves, E. W. V.: Notes on Continuum Mechanics. Springer Verlag, 2013

[Churchill and Hopkins 2013a] Churchill, C. ; Hopkins, C.: Development of SEA
models of composite heavyweight-lightweight floors by incorporating measured stiffness
data for suspended ceiling hangers. In: Internoise, 2013

[Churchill and Hopkins 2013b] Churchill, C. ; Hopkins, C.: Prediction of dynamic
properties of a cross lamlamina timber plate from an investigation of the eigenmodes
using a scanning laser vibrometer. In: AIA-DAGA, 2013

[Churchill et al 2011] Churchill, C. ; Hopkins, C. ; Krajci, L.: Modelling airborne
sound transmission across a hybrid heavyweight-lightweight floor using Statistical Energy
Analysis. In: Forum Acusticum, 2011

[Cremer et al 2005] Cremer, L. ; Heckl, M. ; Petersson, B.A.T.: Structure Borne
Sound. 3. Springer Verlag, 2005

[Den Hartog 1952] Den Hartog, J.P.: Mechanische Schwingungen. Springer Verlag,
1952

[DIN 12369-1:2001-04 ] DIN 12369-1:2001-04: Holzwerkstoffe - Charakteristische Werte
für die Berechnung und Bemessung von Holzbauwerken - Teil 1: OSB, Spanplatten und
Faserplatten. Beuth Verlag GmbH

[DIN 4109-1:2016-07 ] DIN 4109-1:2016-07: Schallschutz im Hochbau - Teil 1: Min-
destanforderungen. Beuth Verlag GmbH

[DIN 4109-33:2016-07 ] DIN 4109-33:2016-07: Schallschutz im Hochbau - Teil 33: Daten
für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) - Holz-, Leicht- und
Trockenbau. Beuth Verlag GmbH



272 Bibliography

[DIN 4109-34:2016-07 ] DIN 4109-34:2016-07: Schallschutz im Hochbau - Teil 34: Daten
für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) - Vorsatzkonstruktio-
nen vor massiven Bauteilen. Beuth Verlag GmbH

[DIN 4150-2:1999-06 ] DIN 4150-2:1999-06: Erschütterungen im Bauwesen - Teil 2:
Einwirkung von Menschen in Gebäuden. Beuth Verlag GmbH

[DIN 45631:1991-03 ] DIN 45631:1991-03: Berechnung des Lautstärkepegels und der
Lautheit aus dem Geräuschspektrum - Verfahren nach E. Zwicker. Beuth Verlag GmbH

[DIN 45669-1:2010-09 ] DIN 45669-1:2010-09: Messsung von Schwingungsimmissionen
- Teil 1:Schwingungsmesser - Anforderungen und Prüfungen. Beuth Verlag GmbH

[DIN 45680:2013-09 Entwurf ] DIN 45680:2013-09 Entwurf: Messung und Beurteilung
tieffrequenter Geräuschimmissionen. Beuth Verlag GmbH

[DIN EN 1995-1-1:2010-12 ] DIN EN 1995-1-1:2010-12: Eurocode 5: Bemessung und
Konstruktion von Holzbauten; Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für
den Hochbau. Beuth Verlag GmbH

[DIN EN ISO 10140-3:2015-11 ] DIN EN ISO 10140-3:2015-11: Akustik - Messung der
Schalldämmung von Bauteilen im Prüfstand - Teil 3: Messung der Trittschalldämmung.
Beuth Verlag GmbH

[DIN EN ISO 717-2:2013-06 ] DIN EN ISO 717-2:2013-06: Akustik – Bewertung der
Schalldämmung in Gebäuden und von Bauteilen – Teil 2: Trittschalldämmung. Beuth
Verlag GmbH

[DIN EN ISO 9614-1:2009-11 ] DIN EN ISO 9614-1:2009-11: Bestimmung der
Schalleistungspegel von Geräuschquellen aus Schallintensitätsmessungen Teil 1: Messung
an diskreten Punkten. Beuth Verlag GmbH

[Feichter 2013] Feichter, I.: Spannungs- und Traglastberechnungen an ausgewählten
Problemen der Holz-Massivbauweise in Brettsperrholz, TU Graz, Master’s thesis, 2013

[Floden 2014] Floden, O.: Vibrations in lightweight structures - efficiency and reduction
of numerical models, Lund University, Sweden, Ph.D. thesis, 2014

[Fünfer 2016] Fünfer, C.: Bewertung der abgestrahlten Schallleistung im Frequenzbereich
unter 125 Hz von leichten Deckenonstruktionen bei Normhammerwerks- und Geheranre-
gung, Hochschule Rosenheim, Bachelor’s thesis, 2016

[Friswell and Mottershead 1995] Friswell, M. ; Mottershead, J.E.: Finite element
model updating in structural dynamics. Springer Verlag, 1995

[Getzner 2016] Getzner: Overview Sylomer. Internet. 2016. – URL https://www.
getzner.com/de/downloads

[Glunz 2016] Glunz: AGEPAN OSB 4 / PUR, Produktdatenblatt. Internet. 2016. – URL
http://www.glunz.de/produkt_konstruktiv/gruppe/276/daten

https://www.getzner.com/de/downloads
https://www.getzner.com/de/downloads
http://www.glunz.de/produkt_konstruktiv/gruppe/276/daten


Bibliography 273

[Gülzow 2008] Gülzow, A.: Zerstörungsfreie Bestimmung der Biegesteifigkeiten von
Brettsperrholzplatten, Eidgenössiche Technische Hochsule Zürich, Ph.D. thesis, 2008

[Greim 2012] Greim, A.: Identifikation der Materialparameter einer Brettsperrholzdecke
durch Kalibrierung eines numerischen Modells mit gemessenen Eigenfrequenzen, Technis-
che Universität München, Master’s thesis, 2012

[Grimsel 1999] Grimsel, M.: Mechanisches Verhalten von Holz, Technische Universität
Dresden, Ph.D. thesis, 1999

[Hamm et al 2010] Hamm, P. ; Richter, A. ; Winter, S.: Floor vibrations - new results.
In: WTCE 2010, 2010

[Hanke 2012] Hanke, T.: Auslegung und Konstruktion von Schwingungstilgern für
Holzdeckenkonstruktionen, Hochschule Rosenheim, Diplomarbeit, 2012

[Hashimoto 2001] Hashimoto, N.: Measurement of sound radiation efficiency by the
discrete calculation method. In: applied acoustics 62 (2001), p. 429–446

[Hopkins 2007] Hopkins, C.: Sound insulation. Elsevier Ltd., 2007

[Jacobsen et al 1998] Jacobsen, F. ; Cutanda, H. ; Juhl, P. M.: A numerical and ex-
perimental investigation of the performance of sound intensity probes at high frequencies.
In: J. Acoust. soc. Am. 103 (1998), February, Nr. 2, p. 953–961

[Joshi and Jangid 1997] Joshi, A. S. ; Jangid, R. S.: Optimum parameters of multiple
tuned mass dampers for base-excited damped systems. In: Journal of Sound and Vibration
202 (1997), Nr. 5, p. 657–667

[Knauf 2013] Knauf: Knauf Wallboard GKB. Internet. August 2013. – URL http:
//www.knauf.de/wmv/?id=3338

[Knauf 2014] Knauf: Knauf Fließestrich FE 50 Largo floor screed. Internet. May 2014.
– URL http://www.knauf.de/wmv/?id=1663

[Kohrmann et al 2016] Kohrmann, M. ; Eham, H. ; Fünfer, C. ; Völtl, R. ; Buch-
schmid, M. ; U., Schanda ; G., Müller: Planungshilfen zur schalltechnischen Bewertung
von Deckensystemen aus Holz bei tiefen Frequenzen. In: DAGA 2016, 2016

[Kohrmann et al 2014] Kohrmann, M. ; R., Völtl ; G., Müller ; U., Schanda ; M., Buch-
schmid: Abschlussbericht zum AiF Forschungsvorhaben „VibWood“; Planungshilfen zur
schall- und schwingungstechnischen Beschreibung von Holzdecken und zur Bewertung und
Dimensionierung von angepassten Schwingungsschutzsystemen / Technische Universität
München/ Hochschule Rosenheim. 2014. – Research report

[Kretschmann 2010] Kretschmann, D.: Mechanical properties of wood: Wood handbook:
wood as an engineering material: chapter 5. Centennial ed. Madison, WI : U.S. Dept. of
Agriculture, Forest Service, Forest Products Laboratory, 2010

http://www.knauf.de/wmv/?id=3338
http://www.knauf.de/wmv/?id=3338
http://www.knauf.de/wmv/?id=1663


274 Bibliography

[Lafont et al 2013] Lafont, T. ; Totaro, N. ; Le Bot, A.: Review of statistical energy
analysis hypotheses in vibroacoustics. In: Proc. R.Soc. A, 2013

[Lerch et al 2009] Lerch, R. ; Sessler, G. ; Wolf, D.: Tecakustik Akustik. Springer
Verlag, 2009

[Lieblang 2000] Lieblang, P.: Beitrag zur Beschreibung des elastischen Materialver-
haltens von Holz mit Methoden der Mikromechanik, Rheinisch-Westfählische Technische
Hochschule Aachen, Ph.D. thesis, 2000

[Ljunggren 2006] Ljunggren, F.: Floor Vibration - Dynamic Properties and Subjective
Perception, Luea University of Technology, Sweden, Ph.D. thesis, 2006

[Lyon and DeJong 1995] Lyon, R. H. ; DeJong, R. G.: Theory and Application of
Statistical Energy Analysis. Second Edition. Butterworth-Heinemann, 1995

[Mahn and Hopkins 2013] Mahn, J. ; Hopkins, C.: Competitive wooden floor systems -
multi-objective optimization based on acoustics improvement. In: AIA-DAGA, 2013

[Mandal and Asif 2007] Mandal, M. ; Asif, A.: Continuous and Discrete Time Signals
and Systems. Cambridge University Press, 2007

[Mascia and Lahr 2006] Mascia, N. T. ; Lahr, F. A. R.: Remarks on orthotropic elastic
models applied to wood. In: Materials Research 9 (2006), Nr. 3, p. 301–310

[Maynard et al 1985] Maynard, J. D. ; Williams, E. G. ; Lee, Y.: Nearfield acous-
tic holography: I. Theory of generalized holography and the development of NAH. In:
Acoustical Sciety of America 78 (1985), Nr. 4, p. 1395–1413

[Maznikova 2012] Maznikova, Gergana: Baupraktische Untersuchung der Tragkonstruk-
tion abgehängter Deckensysteme - Numerisches Modell und messtechnische Untersuchung,
Technische Universität München, Bachelor’s thesis, 2012

[Meistring 2005] Meistring, Philip: FEM-Simulation des Schwingungsverhaltens eines
Holzstegträgers zum Abgleich elastomechanischer Größen, Hochschule Rosenheim, Master’s
thesis, 2005

[Metsä Wood Merk GmbH 2012] Metsä Wood Merk GmbH: Leno R©Broschüre. August
2012. – URL http://www.metsawood.de/bauundkonstruktion/downloads/Documents/
Leno_Broschuere_DE_082012.pdf

[Müller 2002] Müller, G.: Structure-borne sound – phenomena and prediction. In: Fifth
European Conference on Structural Dynamics, 2002, p. 111–122

[Müller 2010a] Müller, G.: Continuum Mechanics and Tensor Analysis / Lehrstuhl für
Baumechanik - Technische Universität München. 2010. – Lecture notes

[Müller 2010b] Müller, G.: Selected Topics of Technical Acoustics / Lehrstuhl für
Baumechanik, Technische Universität München. 2010. – Lecture notes

http://www.metsawood.de/bauundkonstruktion/downloads/Documents/Leno_Broschuere_DE_082012.pdf
http://www.metsawood.de/bauundkonstruktion/downloads/Documents/Leno_Broschuere_DE_082012.pdf


Bibliography 275

[Müller 2011] Müller, G.: Baudynamik / Lehrstuhl für Baumechanik - Technische
Universität München. 2011. – Lecture notes

[Müller and Buchschmid 2011] Müller, G. ; Buchschmid, M.: Untersuchungen zum
Schwingungsverhalten leichter Verbunddeckensysteme. Aachen : Shaker Verlag, 2011

[Müller and Groth 2007] Müller, G. ; Groth, C.: FEM für Praktiker. Volume 1:
Grundlagen. 8., neu bearb. Aufl. Renningen : expert-Verl., 2007

[Mottershead and Friswell 1993] Mottershead, J. E. ; Friswell, M. I.: Model updating
in structural dynamics: a survey. In: Journal of Sound and Vibration 167 (1993), Nr. 2,
p. 347–375

[Negeira 2013] Negeira, J.: Vibration in lightweight buildings - Perception and prediction,
Lund University, Ph.D. thesis, 2013

[Neuhaus 2009] Neuhaus, H.: Ingenieurholzbau: Grundlagen - Bemessung - Nachweise -
Beispiele. Vieweg + Teubner Verlag, 2009

[Nilsson and Liu 2013] Nilsson, A. ; Liu, B. ; Press, Science (Editor.): Vibro-Acoustics.
Volume 2. Second. Berlin Heidelberg : Springer Verlag, 2013

[Petersen 1996] Petersen, C.: Dynamik der Baukonstruktionen. Vieweg Verlag, 1996

[Pierce 2007] Pierce, A. ; Rossing, T. D. (Editor.): Springer handbook of acoustics.
Springer Verlag, 2007

[Rabold 2010] Rabold, A.: Anwendung der Finite Element Methode auf die Trittschall-
berechnung, Technische Universität München, Ph.D. thesis, 2010

[Rabold 2011] Rabold, A.: Trittschalldämmung richtig bewerten. In: 1. Internationale
Schall- und Akustiktage, 2011

[Rana 1996] Rana, R.: Response control of structures by tuned mass dampers and their
generalizations. In: Eleventh world conference on eathquake engineering, 1996

[Ranz 2007] Ranz, T.: Ein feuchte- und temperaturabhängiger anisotroper Werkstoff:
Holz. In: Beiträge zur Materialtheorie 2 (2007)

[Reuter 2011] Reuter, Claus: Numerische Modellierung und messtechnische Verifka-
tion einer stochastischen Anregung durch Fußgänger, Technische Universität München,
Master’s thesis, 2011

[Reuter 1971] Reuter, R. C.: Concise Property Transformation Relations for an
Anisotropic Lamina. In: J. composite materials 5 (1971), p. 270–272. – April

[Runtemund 2006] Runtemund, K.: Beitrag zur Prognose der Erschütterungsausbre-
itung infolge bewegter Lasten in Tunnels unter Verwendung dimensionsloser Kennzahlen,
Technische Universität München, Diplomarbeit, 2006



276 Bibliography

[Sadek et al 1997] Sadek, F. ; Mohraz, B. ; Taylor, A. W. ; Chung, R. M.: A
method of estimating tehe parameters of tuned mass dampers for seismic applications. In:
Earthquake Engineering & Structural Dynamics 26 (1997), p. 617–635

[Schanda et al 2013] Schanda, U. ; Tröbs, H. ; Völtl, R. ; Becker, P.: Semi-empirical
model of the impact force of a walking person in the time domain and generated impact
sound spectra. In: Internoise, 2013

[Sonon 2001] Sonon, A. A.: The Physical Basics of Dimensional Analysis / Massachusetts
Institude of Technologie. 2001. – Research report

[Sremcevic Witzig 2012] Sremcevic Witzig, J.: Model reduction methodes in room
acoustical simulation at aow frequencies, Technische Universität München, Ph.D. thesis,
2012

[Stelzmann et al 2008] Stelzmann, U. ; Groth, C. ; Müller, G.: FEM für Praktiker.
Volume 2: Strukturdynamik. 5., neu bearb. Aufl. Renningen : expert-Verl., 2008

[Tröbs 2013] Tröbs, H.M.: Schallintensitätsmessung an einer abgehängten Unterdecke
und Reduzierung ihrer Schallabstrahlung, Hochschule Rosenheim, Bachelor’s thesis, 2013

[VDI 2038 Blatt 2: 2013-01 ] VDI 2038 Blatt 2: 2013-01: Gebrauchstauglichkeit von
Bauwerken bei dynamischenEinwirkungen. Untersuchungsmethoden und Beurteilungsver-
fahren der Baudynamik. Schwingungen und Erschütterungen - Prognose, Messung,
Beurteilung und Minderung. Verein Deutscher Ingenieure

[Warburton 1982] Warburton, G. B.: Optimum absorber parameters for various combi-
nations of response and excitation parameters. In: Earthquake Engineering & Structural
Dynamics 10 (1982), Nr. 3, p. 381–401

[Warburton and Ayorinde 1980] Warburton, G. B. ; Ayorinde, E. O.: Optimum ab-
sorber parameters for simple systems. In: Earthquake Engineering & Structural Dynamics
8 (1980), Nr. 3. – ISSN 1096-9845

[Weckendorf et al 2015] Weckendorf, J. ; Toratti, T. ; Smith, I. ; Tannert, T.:
Vibration serviceability performance of timber floors. In: Eur. J. Wood Prod. (2015)

[Weimar and Jochem 2013] Weimar, H. (Editor.) ; Jochem, D. (Editor.): Holzverwen-
dung im Bauwesen - Eine Marktstudie im Rahmen der „Charta für Holz“. Johann Heinrich
von Thünen-Institut, 2013 (Thünen Report 9)

[Wiechert 2005] Wiechert, L.: 1:1 Modell einer Verbunddeckenkonstruktion Erstel-
lung zweier Finite-Elemente-Modelle in APDL (ANSYS Parametric Design Language)
und Gegenüberstellung der Ergebnisse der Modalanalysen Grundlagen der Statistischen
Energieanalyse, Technische Universität München, Master’s thesis, 2005

[Williams and Maynard 1982] Williams, G. ; Maynard, D.: Numerical evaluation of
the Rayleigh Integral for planar radiators using FFT. In: J. Acoust. soc. Am. 72 (1982),
December, Nr. 6, p. 2020–2030



Bibliography 277

[Winter 2012] Winter, C.: Messtechnische Untersuchung leichter Deckentragwerke im
Wellenzahlbereich und Prognose der abgestrahlten Schallleistung, Technische Universität
München - Lehrstuhl für Baumechanik, Master’s thesis, 2012

[Winter et al 2014] Winter, C. ; M., Buchschmid ; Mecking, S. ; Weineisen, C. ;
G., Müller ; U., Schanda: Modelling the sound transmission across junctions of building
components by energy influence coefficients. In: Proceedings of the 9th International
Conference on Structural Dynamics, 2014, p. 3265–3271

[Winter et al 2010] Winter, S. ; Hamm, P. ; Richter, A.: Schwingungstechnische
Optimierung von Holz- und Holz-Beton-Verbunddecken: Entwicklung von Bemessungs-
und Konstruktionsregeln auf der Grundlage eines kalibrierten FEM-Modells und unter
Berücksichtigung des Dissipations-Potentials unterschiedlicher Deckenaufbauten / TU
München. 2010. – Research report

[Zierep 1982] Zierep, J.: Ähnlichkeitsgesetze und Modellregeln der Strömungslehre. Karl-
sruhe : Verlag G. Braun, 1982


	Abstract
	List of Figures
	List of Tables
	List of Symbols
	Acronyms
	Introduction
	Motivation
	State of the Art
	Research Project "VibWood"
	Goal of the research
	Floor testing facility
	Tested floor configurations
	Measurements

	Outline

	Fundamental Theory
	Elastic Properties of Wood
	Linear elastic anisotropic media
	Property transformation
	Orthotropy
	Sawing patterns
	Rolling shear and perpendicular Young’s modulus

	Dimensional Analysis
	Buckingham Lg Theorem

	Fourier Transform of Time or Spatial Limited Signals
	Continuous Time Fourier Transform (CTFT)
	Discrete Fourier Transform (DFT)

	Sound Radiation of Finite Plates
	Sound waves in fluids
	Bending waves in plates
	Sound radiation of infinite plates
	Finite plates
	Sound power, sound intensity and radiation efficiency

	Modal Analysis

	Numerical Model Development
	Description of the FE-Analyses
	Simulation process
	Modular design
	Parametric representation

	Structural Models
	General predefinitions
	Cross-laminated timber CLT floor
	Lumber joist LJ floor
	Hollow box girder HBG floor
	Floating floor FLF
	Suspended ceiling
	Support conditions

	Damping Model
	Load Models
	Single load
	Rain-on-the-roof load
	Pedestrian load

	Dynamic Analyses
	Modal Analysis
	Harmonic Frequency Analysis
	Transient Dynamic Analysis

	Post-Processing of the Simulated Data
	Lg-post-processor
	Lg-to-Lg-interface

	Evaluation Models
	Numerical model for the prediction of the radiated sound power
	Further considerations on the prediction model
	Evaluation of pedestrian induced vibrations


	Validation and Calibration of the Numerical Models
	Validation of the Prediction Model for Sound Radiation
	Measurement set up
	Comparison of measurement results
	Evaluation in the wavenumber domain

	Calibration of the Models of the Main Load-bearing Structures
	Convergence study on discretization
	Calibration of CLT's material parameters using Model-Updating
	Investigations on material properties of LJ floors

	Damping Coefficients derived from Measurements
	Calibration of the Suspended Ceiling Model
	Elasticity properties of the paneling derived in the wave number domain
	Determination of stiffness data for suspended ceiling hangers

	Aspects Regarding the Modeling of Air Inside a Cavity
	Validation of reference data
	Case study on modeling
	Investigation in the wave number domain
	Calibrating the boundary impedance and comparing the results

	Limitations for the Prediction of Sound Power in the Wave Number Domain

	Numerical Simulations and Evaluation of the Results
	Parametric Studies
	Programming in Lg
	Choice of parameters
	Performed studies

	Evaluation of the Results
	Dimensional analysis on raw CLT floors
	Application of TMDs to reduce radiated sound power
	Examination of the parameters of the suspended ceiling
	Evaluation of the LJ floor and its construction states
	Summary of the influences of the different parameters

	Transfer Functions and Force Spectra
	Standard tapping machine
	Walking pedestrian

	Coefficients for the Evaluation at Low Frequencies
	Graphical User Interface (GUI)

	Conclusion
	Summary
	Outlook

	List of Figures (Appendix)
	Description of the Implemented Finite Elements
	COMBIN14
	MASS21
	FLUID30
	TARGE170
	CONTA174
	SHELL181
	SOLID185
	SOLID186
	BEAM188

	Simulation Results
	Eigenfrequency Nomograms
	Radiated Sound Power
	Nomograms
	Effect of different lengths of the suspension hangers
	Variation of the suspension grid (with and without suspension hangers)
	Investigation of the absorption factor at the boundaries
	Comparison of the aspect ratios of the floors (single measurements and mean values)
	Comparing different floor lengths (mean values)
	Effects of a variation of the distance between the joists and the width of the joists of an LJ floor for varying construction states


	Bibliography

