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ABSTRACT

In this study, we present two methods to detect open wa-
ter areas in the Greenland Sea based on altimetry mea-
surements. For this purpose, high-frequency data from
ENVISAT (pulse-limited altimeter) and Delay-Doppler
data from CryoSat-2 are used. The radar echoes of both
missions contain information about the reflectance of the
overflown surface area. For ENVISAT, we use an unsu-
pervised classification approach to distinguish between
water and ice returns. The waveforms are the main input
for the classification process. Training data from known
surfaces are not necessary for our method. For CryoSat-
2 SAR mode, an advanced approach is used in order to
exploit the multi-look processing of the same resolution
cell from different look angles. We analyse the Range In-
tegrated Power, a side product providing additional infor-
mation about the backscatter properties. All classification
results are compared with pictures of imaging SAR satel-
lite missions (ALOS and Sentinel-1A). In order to take
the time lag between the two observation sets into ac-
count, a mean ice-motion is applied to the images. This
ensures realistic comparison results. The classification
approach allows for an identification of open water (leads
and polynyas) in sea-ice regions and will help to improve
sea level estimation in these regions.
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1. INTRODUCTION

In order to use satellite altimetry data to estimate sea
surface heights and ocean flows in the Greenland Sea it
is necessary to exclude unreliable observations contam-
inated by sea ice. For this purpose, open water regions
(i.e. leads and polynyas) have to be detected. Sea ice
leads are narrow and very straight-lined features up to
tens of kilometers long. In contrast, polynyas are non-
linear shaped regions enclosed by ice and appear often
close to the coast or ice shelves.

The shape of the returning altimeter echoes (so-called
waveforms) is strongly affected by the surface reflectance
and characteristics. Smooth surfaces and calm water ar-

eas produce specular and peaky waveforms. In contrary,
open ocean returns show wider waveforms and ice returns
contain more peaks and are usually very noisy. In addi-
tion, different mission characteristics, e.g. different types
of sensor and orbit, influence the size of the altimeter
footprint. Moreover, the repetition frequency of the mea-
surements as well as environmental circumstances e.g.
various sea ice types have to be considered.

For conventional altimetry missions such as ENVISAT,
an unsupervised classification without the use of any
training data is performed in order to separate open water
returns from sea ice returns. For Delay-Doppler altime-
try data of CryoSat-2, the surface sample stack is used to
detect open water. For this purpose, a threshold-based al-
gorithm is applied based on the Range Integrated Power,
i.e. the power contained in each look of a resolution cell.
To evaluate the quality of our lead and polynya detection
a comparison of the classification results with imaging
SAR is performed.

2. CLASSIFICATION OF MULTI-MISSION AL-
TIMETRY DATA

In this section the different methods for lead and polynya
detection are described. In the first part, the methodol-
ogy of the unsupervised classification using ENVISAT
waveforms are explained. The second part describes the
method we use for the classification of Delay-Doppler
data of CryoSat-2.

2.1. Unsupervised classification of conventional al-
timetry waveforms (ENVISAT)

The altimetry radar pulses show various shapes and char-
acteristics depending on the reflecting surface. To assign
each waveform to a specific surface class (classification),
a classification model has to be created in a first step. To
define the classes, we choose a set of different waveforms
from the investigation area (one ENVISAT cycle) and
group them automatically into different classes, a process
called clustering. For this task, a K-medoids cluster algo-
rithm [1] is implemented which categorizes the waveform
based on different waveform features into a pre-defined



number of classes. However, it is challenging to select
the optimal waveform features and to set an appropriate
number of classes. In this study, we use 6 features (such
as maximum power, peakiness, skewness etc.) and 20
classes. The created model is used to classify all remain-
ing waveforms of the entire mission. This is done by a
nearest-neighbor classification algorithm [2]. In Fig. 1
the flowchart of the unsupervised classification is shown.

Model building

Comparison with
imaging SAR

Figure 1. Flowchart of processing steps of the unsuper-
vised classification approach.

The clustering result of K-medoids is shown in Fig. 2.
The plot illustrates 20 classes of waveforms. For each
cluster, the class number and the number of assigned
waveforms is given. Class 5,8,9,15, and 20 represent
very peaky waveforms and refer to lead or polynya re-
turns. These classes are important for the following open
water detection by a nearest-neighbor classification. The
remaining classes typify ocean and radar pulses contami-
nated by sea ice.
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Figure 2. ENVISAT waveform classes after K-medoids clustering and number of test waveforms belonging to each class.

2.2. Threshold based classification of the Delay-
Doppler altimetry waveforms (CryoSat-2)

By exploiting the Doppler effect, Delay-Doppler altime-
ters are able to perform multi-looked acquisitions, i.e. to
associate to a resolution cell a certain number of looks
(variable depending on the processing settings) acquired
at different look angles as the satellite flies over the im-
aged area.

Using processing techniques inherited from the SAR pro-
cessing, such as range compression and range migration
correction, all the returns corresponding to the resolu-
tion cell are aligned in a stack diagram (Fig. 3A). The
CryoSat-2 multilooked radar waveforms, such as the one
in Fig. 3C, are obtained by summing in the along-track
dimension all the single echoes in the stack. By summing
up the returns in the cross-track dimension (Fig. 3B),
the so-called stack waveform, or Range Integrated Power
(RIP) waveform, can be generated. It contains informa-
tion concerning the backscattering properties of the illu-
minated surface, but it also reveals details of the distribu-
tion of the scatterers as the satellite spans different look
angles passing over the nadir position.

Generally speaking, when the satellite flies over a very
smooth surface, as in the case of leads, the signal will
be specularly reflected back and the stack waveform will
be peaky. In contrast, when flying over areas contain-
ing scatterers with different orientation (e.g., wavy seas
or ice) the backscattered power will rather be normally
distributed.

The Delay-Doppler altimeter onboard CryoSat-2 pro-
vides new capabilities for lead detection. In particu-
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Figure 3. Example of a stack diagram (A), a stack wave-
form (B) and a multilooked waveform (C) acquired by
CryoSat-2 over sea ice.

lar, the beam-limited along-track footprint size (roughly
300 m, [3]) should guarantee a more precise determina-
tion of the lead position. Nevertheless, due to the size
of the pulse-limited across-track footprint (1.65 km), the
distinction of a lead return at nadir from an off-nadir
reflection is still challenging and previous studies have
demonstrated how a lead-return can dominate the wave-
form despite being further away from the sub-satellite
point [4].

The information coming from the stack enables us to
compare the strength of the specular return registered by
the satellite at zero look angle angle with the returns from
the same beam seen from different angles. In order to ob-



serve the variation of the stack power along a track over-
flying the sea ice region, we define the Stack Peakiness
PPgiqck, computed on the RIP waveform normalised by
the maximum value:

1
PPstack = R (1)

)

where:
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P(i),, is the power from the look angle 7, excluding the
nadir look (i.e., at its right or left). In Fig. 4 the typical
behaviour of the P Pi;qcr is shown. The P Pgqc has an
almost constant value over ice, but peaks are clearly dis-
tinguishable. The peaks are not isolated, but they are pre-
ceded and followed by ascending and descending slopes
of PPg.c. Therefore, it is possible to determine the
position in which the return from the nadir look has the
highest power in comparison with the other look angles.
We argue that the local P Ps;q.r maximum corresponds
to the nadir location in which the lead crosses the altime-
try track.

It is of course possible that a lead runs parallel to the al-
timeter track and never crosses it. In this case, P Pgqck
will still reach a peak, but P Py, .x local maxima will be
relatively smaller, given that the farther away is the lead
from nadir the more power will be reflected away from
the sensor [5]. From empirical experiments, we have set
a minimum peak P P41 threshold of 100: if the local
maxima is below the threshold, the point will not be clas-
sified as lead.

The main novelties of our technique are the use of a new
stack statistic (partially inherited from the right and left
peakiness of the along-track waveform described in [6])
and the classification based on the evaluation of consecu-
tive stacks rather than on single values.

The P Pgiqck is needed because the parameters given in
the CryoSat-2 products and used up to now in previous
studies are not sufficient to clearly compare the zero look
angle view with the rest of the stack: The stack standard
deviation parameter is based on a Gaussian fitting of the
RIP, which is not efficient for peaky waveforms; The Kur-
tosis parameter is based on the mean over all the look an-
gles and can be inefficient in particular in case of residual
sidelobe effects that cause high power in the look angles
different from zero.

Our solution, aimed at reducing the identification of off-
nadir leads, is particularly suitable to identify the nadir
returns from narrow and elongated specular features. Fig-
ure 5 shows a modelled example. Previous studies have
shown how most of the leads are narrower than 1 km ([7],
[8]), while being several km long. Considering the di-
mensions of the along-track footprint, such narrow leads
cross the altimeter track in a single beam, which our
method identifies.
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Figure 4. The modelled problem. An elongated narrow
lead (in blue) crosses the satellite track and is seen at dif-
ferent cross-track locations from consecutive beams. This
corresponds to increasing and decreasing values of Stack
Peakiness (P Pstqcr ), with a maximum at the nadir cross-
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Figure 5. Stack Peakiness (P Psiqck) along a CryoSat-
2 track flying over a sea ice region. Points classified as
leads are highlighted by a red circle.

3. COMPARISON OF CLASSIFICATION RE-
SULTS

After the classification a comparison is done to evaluate
the quality of the open water detection for both altime-
try datasets. The classification results of ENVISAT are
compared with ALOS L-Band wide swath pictures with
a spatial resolution of about 100 meters (Fig. 6). Leads
and polynyas appear as dark areas due to the scattering
properties of calm open water [9]. The altimetry-detected
open-water returns are indicated by colored dots along
the ENVISAT track. Fig. 6a shows an acceptable agree-
ment between the altimetery-derived open water returns
(classes 9.15.20; Fig. 6¢) and the SAR image. Further-
more there is an identifiable transition from a wider to
a more narrow, specular waveform type, which corre-
lates with the increasing influence of sea ice to the mea-
surements. However, a shift between the image and the
overlaid altimetry track is detectable, which is related
to different acquisition dates of the SAR image and the
recorded radar pulses of ENVISAT. The area of investi-
gation is located near the North-East coast of Greenland
in the Fram Strait where fast ice-motion is frequent. For



a realistic comparison, the consideration of ice-motion
with respect to the time delay between the two dataset is
required. Fig. 6b, is shifted taking into account a mean ice
velocity and direction by using daily ice-motion vector
data of the National Snow and Ice Data Center (NSIDC).
This comparison shows improved accordance between
the classification results and the dark areas in the image.
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Figure 6. Comparison of ENVISAT classification re-
sult with ALOS L-Band image ©JAXA/METI 2008 (time
difference 2h50min). Colored dots represent the over-
lain altimetry track and correspond to specular waveform
classes showed in c. Waveform classes in c represent lead
and polynya classes defined by very peaky and narrow
waveform shapes.

Beside the comparison of the unsupervised classifica-
tion result with SAR images, the lead and polynya de-
tection results of the threshold-based classification using
the CryoSat-2 RIP are also evaluated with SAR images.
Therefore, Sentinel-1A images with a 40 meter spatial
resolution are utilized. Figure 7 shows a detection of a
small lead (cyan point). With our method, only the most
peaky return in nadir is identified as lead. A detection of
open water areas in off-nadir direction is avoided. The
lead on the right is not identified as open water. This
might be related to the fact that no measurements directly
above the lead is available (no nadir lead). However, also
a fine-tuning of the classification thresholds might be re-
quired. This is still under inverstigation.
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Figure 7. Comparison of CryoSat-2 classification result
with Sentinel-1A C-Band image. Colored dots represent
the overlain altimeter track by indicating open water re-
turns in cyan and ice retruns in in red.

4. SUMMARY

In this study, two different classification approaches, one
for conventional pulse-limited altimeter data (ENVISAT)
and one for Delay-Doppler data (CryoSat-2) are pre-
sented. For ENVISAT, we use an unsupervised classi-
fication of waveforms based on K-medoids and nearest-
neighbor algorithms. Moreover, a threshold-based classi-
fication of CryoSat-2 surface sample stack is performed
to detect open-water bodies in the arctic. The results
are compared with imaging SAR data. The ice-motion
within the time period between the acquisition of both
data sets is taken into account. Both waveform classifi-
cation approaches provide reliable results in oceanic re-
gions affected by rapid climate change. The unsupervised
classification allows a separation of different waveform
and surface types without the nead of training data or ar-
bitrary threshold definition. An analysis of consecutive
Delay-Doppler stacks allows for an identification of nar-
row leads and for an elimination of off-nadir lead returns.

5. OUTLOOK

In future, a quantitative validation of the classification
result is planned as well as applying the classification
method to all recent and future missions (e.g., ERS-1,
ERS-2 and Sentinel-3A) covering the arctic area. There-
fore, it is very important to get enhanced products (e.g.
instrument and stack parameters) of the present and past
altimetry missions in a user-friendly data format. Fur-
thermore, an improvement of the classification methods
regarding the detection problems due to off-nadir returns
is in development.
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