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Riesz-Fischer Sequences and Lower Frame Bounds

P. Casazza, O. Christensen, S. Li and A. Lindner

Abstract. We investigate the consequences of the lower frame condition and the
lower Riesz basis condition without assuming the existence of the corresponding
upper bounds. We prove that the lower frame bound is equivalent to an expansion
property on a subspace of the underlying Hilbert space H, and that the lower frame
condition alone is not enough to obtain series representations on all of H. We
prove that the lower Riesz basis condition for a complete sequence implies the lower
frame condition and ω-independence; under an extra condition the statements are
equivalent.
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1. Introduction

Let H be a separable Hilbert space. Recall that a sequence {fi}∞i=1 ⊆ H is a
frame if, for some constants A,B > 0,

A‖f‖2 ≤
∞∑

i=1

|〈f, fi〉|2 ≤ B‖f‖2, f ∈ H. (1.1)

The sequence {fi}∞i=1 is a Riesz basis if span {fi}i∈I = H and there exist
constants A,B > 0 such that, for all finite scalar sequences {ci},

A
∑

|ci|2 ≤
∥∥∥

∑
cifi

∥∥∥
2

≤ B
∑

|ci|2. (1.2)
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A Riesz basis is a frame; and if {fi}∞i=1 is a frame, there exists a dual frame
{gi}∞i=1 such that

f =
∞∑

i=1

〈f, gi〉fi =
∞∑

i=1

〈f, fi〉gi, f ∈ H. (1.3)

In this note we investigate the consequences of the lower bounds in (1.1)
and (1.2) without assuming the existence of the upper bounds. Note that the
lower condition in (1.1) implies that every f ∈ H is uniquely determined by
the inner products 〈f, fi〉 (i ∈ N): if 〈f, fi〉 = 〈g, fi〉 for all i ∈ N, then f = g.
That is, in principle we can recover every f ∈ H based on knowledge of the
sequence {〈f, fi〉}∞i=1. We prove that we actually obtain a representation of
type (1.3) for certain f ∈ H. The question whether the representation can be
extended to work for all f ∈ H has been open for some time. We present an
example where it can not be extended.

2. Some definitions and basic results

For convenience we will index all sequences by the set of natural numbers N.

Definition 2.1. Let {fi}∞i=1, {gi}∞i=1 ⊆ H. We say that {fi}∞i=1

(i) is a Riesz-Fischer sequence if there exists a constant A > 0 such that
A

∑ |ci|2 ≤ ‖∑
cifi‖2 for all finite scalar sequences {ci}

(ii) satisfies the lower frame condition if there exists a constant A > 0
such that A‖f‖2 ≤ ∑∞

i=1 |〈f, fi〉|2 for all f ∈ H
(iii) is a Bessel sequence if there exists a constant B > 0 such that

∑∞
i=1 |〈f, fi〉|2 ≤

B‖f‖2 for all f ∈ H
(iv) is minimal if fj /∈ span {fi}i 6=j for all j ∈ N
(v) is ω-independent if

∑∞
i=1 cifi = 0 implies ci = 0 for all i ∈ N

(vi) is complete if span {fi}∞i=1 = H
(vii) and {gi}∞i=1 are biorthogonal if 〈fi, gj〉 = δi,j (Kronecker’s δ symbol).

For a given family {fi}∞i=1 ⊆ H, our analysis is based on the synthesis
operator

T : D(T ) :=
{
{ci}∞i=1 ∈ `2

∣∣∣∣
∞∑

i=1

cifi converges
}
→ H, T{ci}∞i=1 =

∞∑

i=1

cifi

(2.1)
and on the analysis operator

U : D(U) :=
{

f ∈ H
∣∣∣∣
∞∑

i=1

|〈f, fi〉|2 < ∞
}
→ `2, Uf = {〈f, fi〉}∞i=1. (2.2)

The Lemma below is stated in [4: Sections 1.8 and 4.2].
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Lemma 2.2. Let {fi}∞i=1 ⊆ H. Then {fi}∞i=1

(i) has a biorthogonal sequence if and only if {fi}∞i=1 is minimal; if a
biorthogonal sequence exists, it is unique if and only if {fi}∞i=1 is complete.

(ii) is a Riesz-Fischer sequence if and only if the associated analysis op-
erator is surjective.

We collect two other characterizations of Riesz-Fischer sequences. Appar-
ently, they have not been stated explicitely before; they can be proved using
methods developed in [7].

Proposition 2.3.
(i) Let {ei}∞i=1 be an orthonormal basis for H. The Riesz-Fischer se-

quences in H are precisely the families {V ei}∞i=1, where V is an operator
on H (having {ei}∞i=1 in the domain), which has a bounded inverse V −1 :
R(V ) → H.

(ii) The Riesz-Fischer sequences in H are precisely the families for which
a biorthogonal Bessel sequence exists.

Example 2.4. Let {ei}∞i=1 be an orthonormal basis and consider {gi}∞i=1 =
{ei + ei+1}∞i=1. Then {gi}∞i=1 is complete and minimal; it is also a Bessel
sequence, but not a frame. A straightforward calculation shows that the
biorthogonal system is given by

fi =
{∑i

k=1(−1)kek if i is even∑i
k=1(−1)k+1ek if i is odd

and {fi}∞i=1 is a Riesz-Fischer sequence by Proposition 2.3.

3. The lower frame condition

In this section we analyze the relationship between the lower frame condition
and Riesz-Fischer sequences. Our results generalize the known results because
we do not assume that the sequence is a Bessel sequence.

Lemma 3.1. For an arbitrary sequence {fi}∞i=1 ⊆ H, the associated anal-
ysis operator U is closed. Furthermore, {fi}∞i=1 satisfies the lower frame con-
dition if and only if U has closed range and is injective.

Proof. That U is closed follows by a standard argument. To prove that
{fi}∞i=1 satisfies the lower frame condition if and only if U has closed range and
is injective, note that the existence of a lower frame bound implies injectivity
of U . Since U is closed, U−1 is closed. Thus, by the closed graph theorem, U
has closed range if and only if U−1 is continuous on R(U), which is obviously
equivalent to the existence of a lower frame bound
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Recall that a frame is a Riesz basis if and only if it is ω-independent. The
Theorem below generalizes this result to the case where {fi}∞i=1 satisfies only
the lower frame condition. It connects the concepts listed in Definition 2.1:

Theorem 3.2. Let {fi}∞i=1 ⊆ H with associated synthesis operator T .
Consider the following statements:

(i) {fi}∞i=1 is a complete Riesz-Fischer sequence.

(ii) {fi}∞i=1 is minimal and satisfies the lower frame condition.

(iii) {fi}∞i=1 is ω-independent and satisfies the lower frame condition.

Then the implications (i) ⇒ (ii) ⇒ (iii) hold. In general, statement (iii) does
not imply any of the other statements, but if T is closed and surjective, then
all statements are equivalent.

Proof. (i) ⇒ (ii): By Lemma 2.2/(ii), the analysis operator U is sur-
jective, and since {fi}∞i=1 is complete, it is also injective. From Lemma 3.1
it follows that {fi}∞i=1 satisfies the lower frame condition. That {fi}∞i=1 is
minimal follows easily from the definition of Riesz-Fischer sequences.

(ii)⇒ (iii): Suppose
∑∞

i=1 cifi = 0 with not all ci zero. Then there is some
j such that cj 6= 0 and hence fj = −∑

i 6=j
ci

cj
fi, implying fj ∈ span {fi}i 6=j ,

contradicting the minimality of {fi}∞i=1.

We now show that (iii) does not imply (ii). In Theorem 3.5 below we will
show that in an arbitrary Hilbert space there exists an ω-independent sequence
{fi}∞i=1 which satisfies the lower frame condition and for which there is an
f ∈ H such that no sequence of scalars {ai} satisfies f =

∑∞
i=1 aifi. Then

{fi}∞i=1∪{f} satisfies the lower frame condition and is ω-linearly independent,
but is not minimal, since {fi}∞i=1 is already complete. Clearly, this argument
also shows that statement (i) can not be satisfied. On the other hand, if T
is closed and surjective, it is proved in [1] that there exists a Bessel sequence
{gi}∞i=1 such that f =

∑∞
i=1〈f, gi〉fi for all f ∈ H. Assuming statement (iii), it

follows that 〈fi, gj〉 = δi,j , i.e. {gi}∞i=1 is a biorthogonal Bessel sequence; thus,
via Proposition 2.3, {fi}∞i=1 is a Riesz-Fischer sequence, and completeness of
it follows from the lower frame bound

Riesz-Fischer sequences can also be characterized by the following prop-
erty, involving lower frame bounds for the subspaces spanned by finite subsets.

Proposition 3.3. Let {fi}∞i=1 ⊆ H, and let {In}∞n=1 be a family of finite
subsets of N such that In ↑ N. Denote by Aopt

In
the optimal lower frame bound

for {fi}i∈In in span {fi}i∈In . Then {fi}∞i=1 is a Riesz-Fischer sequence if and
only if it is (finitely) linearly independent and infn∈NAopt

In
> 0.

The proof for this proposition follows the same lines as [3: Proposition 1.1]
where the statement was proved under the additional condition that {fi}∞i=1
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was a frame for H. Under this extra condition, the characterization was first
proved by Kim and Lim [4] as a consequence of a series of Theorems.

The proposition below characterizes sequences satisfying the lower frame
condition in terms of an expansion property.

Proposition 3.4. Let {fi}∞i=1 ⊆ H. Then {fi}∞i=1 satisfies the lower
frame condition if and only if there exists a Bessel sequence {gi}∞i=1 ⊆ H such
that

f =
∞∑

i=1

〈f, fi〉gi, f ∈ D(U). (3.1)

Proof. Assume that {fi}∞i=1 satisfies the lower frame condition. Then
U−1 : R(U) → H is bounded. Define a linear operator V : l2(N) → H by
V = U−1 on R(U) and V = 0 on R(U)⊥ and extending it linearly. Then V is
bounded. Let {ei}∞i=1 be the canonical basis for `2(N) and set gi = V ei. Then
{gi}∞i=1 is a Bessel sequence and, by construction, for all f ∈ D(U) we have

f = V Uf =
∞∑

i=1

〈f, fi〉gi.

On the other hand, if {gi}∞i=1 is a Bessel sequence with bound B and (3.1) is
satisfied, then for all f ∈ D(U)

‖f‖2 =
∥∥∥∥
∞∑

i=1

〈f, fi〉gi

∥∥∥∥
2

≤ B

∞∑

i=1

|〈f, fi〉|2

meaning that the lower frame condition is satisfied

Note that when {fi}∞i=1 satisfies the lower frame condition, the Bessel
sequence {gi}∞i=1 constructed in the proof of Proposition 3.4 belongs to D(U).
Observe that equality (3.1) might hold for all f ∈ H without D(U) being
equal to H. For instance, if {ei}∞i=1 is an orthonormal basis and we define
fi = iei (i ∈ N), then

D(U) =
{

f =
∞∑

i=1

ciei

∣∣∣∣
∞∑

i=1

|ici|2 < ∞
}

which is only a subspace of H. Nevertheless,

f =
∞∑

i=1

〈f, fi〉1
i

ei, f ∈ H. (3.2)

Note that {iei}∞i=1 is a Riesz-Fischer sequence, but not a Riesz basis.
For several families of elements having a special structure, the Riesz-Fischer
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property implies the upper Riesz basis condition; let us just mention families
of complex exponentials in L2(−π, π) (cf. [5, 7, 8]). As far as we know,
no example of a norm-bounded family in a general Hilbert space satisfying
the Riesz-Fischer property but not the upper Riesz basis condition has been
known. Theorem 3.5 will provide such an example.

As we have seen in Proposition 3.4, the lower frame condition on {fi}∞i=1

is enough to obtain a Bessel sequence {gi}∞i=1 such that (3.1) holds. In (3.2)
we have seen that representation (3.1) might hold for all f ∈ H, even if D(U)
is a proper subspace of H; one could hope that the representation always hold
on H. Our next purpose is to prove that this is not the case. We need to do
some preparation before the proof, but we state the result already now.

Theorem 3.5. In every separable, infinite dimensional Hilbert space H
there exists a norm-bounded Riesz-Fischer sequence {fi} for which the follow-
ing statements are true:

(1) {fi} has lower frame bound 1 and no finite upper frame bound.
(2) D(U) is dense in H, and {fi} ⊆ D(U).
(3) {fi} is ω-independent.
(4) {fi} is not a (Schauder) basis for H.
(5) There is an f ∈ H so that, for no sequence of scalars {ai}, f =∑

i aifi.
(6) There is no family of functions {gi} so that, for every f ∈ H, f =∑

i〈f, fi〉gi.
Moreover, statements (4) - (6) hold for all permutations of {fi}.

Our proof of Theorem 3.5 is constructive, and the result was used in the
proof of Theorem 3.2 to show that in general statement (iii) does not imply
statement (i).

The idea in the construction proving Theorem 3.5 is to consider a Hilbert
space H which is a direct sum of subspaces of increasing order. Before we go
into details with the construction, we need some preliminary results. Given
2 ≤ n ∈ N, let Hn be a Hilbert space of dimension n and let {ei}n

i=1 be an
orthonormal basis of Hn. Let Pn be the orthogonal projection onto the unit
vector 1√

n

∑n
i=1 ei, i.e.

Pn

( n∑

i=1

aiei

)
=

∑n
i=1 ai

n

n∑

i=1

ei.

Let H1
n = (I − Pn)Hn. For all 1 ≤ j ≤ n − 1 let fn

j = ej − en. Note that
{fn

j }n−1
j=1 is a linearly independent family which spans H1

n. Our first lemma
will identify the frame bounds and the dual frame for subfamilies of {fn

j }n−1
j=1 .
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Lemma 3.6. Given any 2 ≤ n ∈ N and any I ⊂ {1, . . . , n−1}, the family
{fn

j }j∈I is a linearly independent frame for its span with lower frame bound
1 (which is optimal for |I| > 1) and upper frame bound at least |I|+3

2 . The
dual frame for {fn

j }n−1
j=1 is given by

gj =
n− 1

n
ej − 1

n

∑

i 6=j

ei, j = 1, ..., n− 1.

Proof. Given f ∈ span {fn
j }j∈I , there are scalars aj so that

f =
∑

j∈I

ajf
n
j =

∑

j∈I

ajej −
( ∑

i∈I

ai

)
en. (3.3)

Note that

‖f‖2 =
∑

j∈I

|aj |2 +
∣∣∣∣
∑

i∈I

ai

∣∣∣∣
2

and 〈f, fn
j 〉 = aj +

∑

i∈I

ai.

Thus

∑

j∈I

|〈f, fn
j 〉|2 =

∑

j∈I

∣∣∣∣aj +
∑

i∈I

ai

∣∣∣∣
2

=
∑

j∈I

[
aj +

∑

i∈I

ai

][
aj +

∑

i∈I

ai

]

=
∑

j∈I

|aj |2 + 2
∑

j∈I

Re
(

aj

[ ∑

i∈I

ai

])
+ |I|

∣∣∣∣
∑

i∈I

ai

∣∣∣∣
2

.

Here we observe that

∑

j∈I

Re
(

aj

[∑

i∈I

ai

])
= Re

∑

j∈I

aj

[∑

i∈I

ai

]
= Re

[( ∑

j∈I

aj

)[ ∑

i∈I

ai

]]
=

∣∣∣∣
∑

i∈I

ai

∣∣∣∣
2

.

Thus

∑

j∈I

|〈f, fn
j 〉|2 =

∑

j∈I

|aj |2 + (|I|+ 2)
∣∣∣∣
∑

i∈I

ai

∣∣∣∣
2

= ‖f‖2 + (|I|+ 1)
∣∣∣∣
∑

i∈I

ai

∣∣∣∣
2

.

So the choice A = 1 is a lower frame bound. If |I| > 1, we can choose
{ai}i∈I such that

∑
i∈I ai = 0, so the choice f =

∑
i∈I aifi with exactly those
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coefficients shows that A = 1 is actually the optimal lower bound in this case.
If |I| = 1, say, I = {j}, then relation (3.3) between f and {ai}i∈I gives

(|I|+ 1)
∣∣∣∣
∑

i∈I

ai

∣∣∣∣
2

= 2|aj |2 = 2
‖f‖2
‖fn

j ‖2
= ‖f‖2

and so the optimal lower bound is A = 2 in this case.
Now we fix i ∈ I and compute

∑

j∈I

|〈ei − en, fn
j 〉|2 = 4 + |I| − 1 = |I|+ 3 =

|I|+ 3
2

‖ei − en‖2.

It follows that the optimal upper bound is at least |I|+3
2 .

Since our family {fn
j }n−1

j=1 is linearly independent, the dual frame {gj}n−1
j=1

is the family of dual functionals for the (Schauder) basis {fn
j }n−1

j=1 . We will
now compute this family explicitly. Because of symmetry, it suffices to find
gn
1 which we now do. Write gn

1 =
∑n

i=1 aiei and observe that gn
1 is uniquely

determined by the following 3 conditions:
(i) 1 = 〈gn

1 , e1 − en〉 = a1 − an.
(ii) For all 2 ≤ i ≤ n− 1, 0 = 〈gn

1 , fn
i 〉 = ai − an.

(iii) Since gn
1 is in the orthogonal complement of the vector

∑n
i=1 ei, the

coefficients satisfy
∑n

i=1 ai = 0.
Now, by conditions (i) and (ii) we have gn

1 = (1 + an)e1 + an

∑n
i=2 ei and

by condition (iii) 1 + an + (n− 1)an = 0. Hence, 1 = −nan, and so an = − 1
n .

Finally, a1 = 1 + an = n−1
n

Recall that the basis constant K for a sequence {fi}∞i=1 in H is defined as

K = sup

{
‖∑m

i=1 cifi‖
‖∑n

i=1 cifi‖ : 1 ≤ m ≤ n < ∞; c1, . . . , cn ∈ C,

n∑

i=1

cifi 6= 0

}

(for finite sequences {fi}N
i=1 we replace “n < ∞” by “n ≤ N”). To make the

calculations in the next lemma easier, we will work with H1
2n+1.

Lemma 3.7. Let 2 ≤ n ∈ N and σ be a permutation of {1, 2, . . . , 2n}.
Then there is a sequence of scalars {ai}2n

i=1 so that

∥∥∥∥
n∑

i=1

aif
2n+1
σ(i)

∥∥∥∥
2

= n + 1 while
∥∥∥∥

2n∑

i=1

aif
2n+1
σ(i)

∥∥∥∥
2

= 2.

In particular, the basis constant for {f2n+1
σ(i) }2n

i=1 is at least
√

n+1
2 .
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Proof. Let

ai =

{
1√
n

for 1 ≤ i ≤ n

− 1√
n

for n + 1 ≤ i ≤ 2n.

Then ∥∥∥∥
n∑

i=1

aif
2n+1
σ(i)

∥∥∥∥
2

=
n∑

i=1

|ai|2 +
∣∣∣∣

n∑

i=1

ai

∣∣∣∣
2

= 1 + n.

Also,
∑2n

i=1 ai = 0 implies

2n∑

i=1

aif
2n+1
σ(i) =

2n∑

i=1

aieσ(i).

Hence, ∥∥∥∥
2n∑

i=1

aif
2n+1
σ(i)

∥∥∥∥
2

=
2n∑

i=1

|ai|2 = 2

and the statement is proved

It is proved in [6] that {fi}∞i=1 can only be a basis if the basis constant is
finite. We are now ready for the proof of Theorem 3.5.

Proof of Theorem 3.5. Using the notation above we consider the Hilbert
space

H =
( ∞∑

n=2

⊕H1
n

)

`2

.

We refer to [6] for details about such constructions. Let the sequence {fi}∞i=1

be any enumeration of {fn
j }n−1,∞

j=1,n=2. Since {fn
j }n−1

j=1 spans H1
n and is linearly

independent for each n = 2, 3, . . ., statements (1) and (3) follow. Statement
(2) is clear.

We now prove that {fi}∞i=1 can not be a Schauder basis; since {fi}∞i=1 is
defined as an arbitrary enumeration of the elements in {fn

j }n−1,∞
j=1,n=2, this will

prove statement (4). The basis constant for {fi}∞i=1 is larger than or equal to
the basis constant for any subsequence. But for each n ∈ N, a permutation
of the family {f2n+1

j }2n
j=1 is a subsequence of {fi}∞i=1, and by Lemma 3.7 its

basis constant is at least
√

(n + 1)/2; thus the basis constant for {fi}∞i=1 is
infinite, and it can not be a basis. This proves statement (4).

We now prove statement (5). It clearly follows from statement (3) that
whenever f ∈ H, if there is a sequence of scalars {aj} so that f =

∑
j ajfj ,

then {aj} is unique. Since {fj} is not a Schauder basis, this gives statement
(5).
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For the proof of statement (6) we observe that corresponding to {fn
j }n−1,∞

j=1,n=2

the dual functionals {gn
j }n−1,∞

j=1,n=2 are by Lemma 3.6 given by

gn
j =

n− 1
n

ej − 1
n

∑

i6=j

ei for 1 ≤ j ≤ n− 1, n = 2, 3, ... .

This family is the only candidate to satisfy statement (6). In fact, suppose
that a sequence {hn

j }n−1,∞
j=1,n=1 satisfies f =

∑
j,n〈f, fn

j 〉hn
j for all f ∈ H. Now,

for all n 6= m and all 1 ≤ i ≤ n− 1, 〈gm
j , fn

i 〉 = 0. Also, 〈gm
j , fm

i 〉 = 0 for all
1 ≤ i 6= j ≤ m− 1 while 〈gm

j , fm
j 〉 = 1. Putting this altogether,

gm
j =

∑

i,n

〈gm
j , fn

i 〉hn
i = 〈gm

j , fm
j 〉hm

j = hm
j .

That is, hm
j = gm

j for all 2 ≤ m ∈ N and all 1 ≤ j ≤ m − 1. Now we
observe that this family does not work for reconstruction. For n ∈ N, {gn

j }n−1
j=1

are the dual functionals to {fn
j }n−1

j=1 . Since {fn
j }n−1,∞

j=1,n=1 is not a basis, we
conclude that {gn

j }n−1,∞
j=1,n=1 is not a basis. Since {gn

j }n−1,∞
j=1,n=1 is clearly an

ω-independent family, this means that there exists f ∈ H which can not
be written f =

∑
j,n cn

j gn
j for any choice of coefficients {cn

j }. This proves
statement (6)

To conclude the paper we observe that if every subfamily of {fi}i∈I sat-
isfies the lower frame condition with a common bound A, then there exists a
subfamily of {fi}i∈I which satisfies the lower Riesz basis condition. The proof
is similar to that of [2: Theorem 3.2].

Proposition 3.8. Suppose that {fi}i∈I satisfies (1.1) and that every sub-
family {fi}i∈I (J ⊆ I) satisfies

A‖f‖2 ≤
∑

i∈J

|〈f, fi〉|2 ∀ f ∈ span {fi}i∈I . (3.9)

Then {fi}i∈I contains a complete subfamily {fi}i∈I for which

A
∑

i∈J

|ci|2 ≤
∥∥∥∥

∑

i∈J

cifi

∥∥∥∥
2

(3.10)

for all finite sequences {ci}i∈J .

In Proposition 3.8 the conclusion A
∑

i∈J |ci|2 ≤ ‖∑
i∈J cifi‖2 actually

holds for all sequences {ci} ∈ `2 for which
∑

cifi is convergent.
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