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1. Introduction

The global chiral symmetry of the QCD Lagrangian for vanishing 
quark masses, and its spontaneous breaking to the diagonal group, 
characterizes the strong interactions among the lightest hadronic 
degrees of freedom – the pseudoscalar mesons – at low energies. 
The Nambu–Goldstone nature of these mesons and the mass gap 
that separates them from the rest of the hadronic spectrum allows 
one to build an effective field theory (EFT) containing only these 
modes, with a perturbative expansion in powers of momenta and 
masses. The framework, called Chiral Perturbation Theory (ChPT), 
was introduced in its modern form by Weinberg [1], and Gasser 
and Leutwyler [2,3].

At the lowest order, O(p2), the effective ChPT Lagrangian L2
depends only on two low-energy couplings. One-loop contributions 
built from the lowest-order vertices generate O(p4) divergences 
that are absorbed by the operators of the next-to-leading-order L4
Lagrangian [2], introducing seven (ten) additional coupling con-
stants for the two (three) quark flavors case. In the same way, 
taking the computations to the next-to-next-leading order requires 
the construction of the effective Lagrangian at O(p6). This task 
was first performed systematically in Ref. [4], and later revisited 
in [5]. Through the use of partial integration, the equations of mo-
tion, Bianchi identities and the Cayley–Hamilton relations for SU(n)

matrices, the authors of Ref. [5] managed to write down a basis 
of operators for L6 in the even-intrinsic-parity sector for n = 2
(n = 3) light flavors consisting of 53 (90) terms plus 4 (4) contact 
terms (i.e. terms not containing the pseudo-Goldstone fields, which 
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are only needed for renormalization). In recent years, an additional 
relation among the operators in the basis of [5] for the n = 2 case 
was proven [6], where no additional manipulations but those al-
ready used in [5] were required. This showed that the derivation 
of an algorithm to exhaust all possible algebraic conditions among 
the L6 operators imposed by partial integration, equations of mo-
tion, Bianchi identities and, particularly, Cayley–Hamilton relations, 
is a nontrivial task.

Therefore, the question about the minimality of the O(p6) chi-
ral Lagrangian is proper and, to the best of our knowledge, re-
mains unanswered. It is the aim of the present work to describe 
a method that provides necessary conditions for the existence of 
additional relations between the operators of the L6 Lagrangian, 
and to show its application to the two-flavor case when massless 
quarks are considered. Our approach does not try to exploit the al-
gebraic conditions mentioned above (and used in [5]), but is rather 
based on the analysis of Green functions built from arbitrary linear 
combinations of the operators in the basis. The requirement that 
the matrix elements built from the latter Green functions must 
vanish for an arbitrary kinematic configuration is a necessary con-
dition for the linear combination to be true at the operator level. 
From the method one can conclude that the basis is minimal when 
the necessary conditions provide no freedom for the existence of 
new relations. On the other hand, if the method allows for new 
relations, it cannot immediately answer the question about the 
minimality of the set, but it has the advantage that it gives the 
precise form that the (potential) new relations among the operator 
must have. With the latter information at hand, an algebraic proof 
of the relation at the operator level shall be greatly simplified.

The method involves the computation of tree-level matrix ele-
ments of order p6. Despite being tree-level, the large number of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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operators in L6 and their involved Lorentz structure, containing 
vertices with up to six derivatives, produce rather long expres-
sions. The latter can nevertheless be handled easily with the help 
of computer tools, and the method lends itself easily to automati-
zation.

The structure of the paper is the following. In Section 2 we 
provide the basic ingredients of ChPT needed for our analysis. The 
method that searches for further relations among the O(p6) oper-
ators is described in Section 3, where details about the calculation 
of the matrix elements which provide the necessary conditions are 
given through specific examples. Its application to the two-flavor
case in the chiral limit with scalar and pseudo-scalar sources set 
to zero is then presented in Section 4. Finally, we give our conclu-
sions in Section 5.

2. Chiral perturbation theory

The effective Lagrangian that implements the spontaneous 
breaking of the chiral symmetry SU(n)L × SU(n)R to SU(n)V in the 
meson sector is written as an expansion in powers of derivatives 
and masses of the pseudo-Goldstone fields [1–3],

L =
∑
n�1

L2n . (2.1)

The lowest order reads

L2 = F 2

4
〈uμuμ + χ+〉 , (2.2)

where F is the pion decay constant in the chiral limit and 〈. . . 〉
stands for the trace in flavor space. The chiral tensor uμ ,

uμ = i
[

u† (
∂μ − irμ

)
u − u

(
∂μ − i�μ

)
u†

]
, (2.3)

is built from the Goldstone matrix field

u = exp

(
i√
2F

φ

)
, (2.4)

and the left and right (n × n)-dimensional matrix fields in fla-
vor space, �μ = vμ − aμ , rμ = vμ + aμ , with vμ , aμ reproducing 
the couplings of the quarks to the external vector and axial-vector 
sources, respectively. On the other hand, the tensor χ+ in (2.2) is 
built from χ = 2B(s + ip), with s and p the scalar and pseudo-
scalar external matrix fields and B a low-energy parameter. Quark 
masses are introduced in the ChPT meson amplitudes through the 
scalar matrix s. Since we restrict ourselves in the specific examples 
given later to the chiral limit and in addition set p as well as other 
contributions to s to zero, we can drop all operators containing the 
χ tensor in what follows.

In the two-flavor case, which will be used for a specific appli-
cation of our method, the matrix φ collects the pion fields,

φ =
(

1√
2
π0 π+

π− − 1√
2
π0

)
. (2.5)

The vector and axial-vector external fields are general traceless 
2 × 2 matrices,

vμ =
(

v11 v12
v21 −v11

)
μ

and aμ =
(

a11 a12
a21 −a11

)
μ

,

(2.6)

since we do not confine ourselves to the Standard Model vec-
tor and axial-vector currents, but allow for the parametrization of 
other possible beyond-the-Standard-Model currents.
The general structure of the O(p6) ChPT Lagrangian was stud-
ied in [4,5]; adopting the notation of the latter reference, in the 
n = 2 case it reads

LSU(2)
6 =

53∑
i=1

ciPi + 4 contact terms , (2.7)

where Pi are the basis elements and ci are the corresponding low 
energy constants. In the massless limit with scalar and pseudo-
scalar sources set to zero, 27 +2 of the 53 +4 operators in (2.7) re-
main. For completeness, we give their explicit form in Appendix A.

3. Outline of the method

We describe next the method used to determine the minimal 
set of monomials of O(p6) in the ChPT Lagrangian. It is based on 
the trivial observation that if a set of operators Pi from L6 sat-
isfies a linear relation � ≡ ∑

i αi Pi = 0, with αi real or complex 
numbers, then the matrix elements of (on-shell) pions and cur-
rents obtained from the Green functions

〈0| T φ(x1) . . . φ(xn) . . . j f1(y1) . . . j fm (ym) |0〉�
≡ (−i)m

N
δ(m)

δ f1(y1) . . . δ fm(ym)

∫
[Dφ]φ(x1) . . . φ(xn)

×
(

i

∫
d4x�(x)

)
exp i SChPT[φ, f i]

∣∣∣∣∣
f i=0

, (3.8)

must also vanish. The Green functions (3.8) are built from n =
0, 1 . . . pion fields (φ) and m = 0, 1 . . . vector, axial-vector, scalar 
or pseudoscalar currents ( j f i ), which derive from the ChPT action 
by functional differentiation with respect the external field sources 
( f i = v, a, s, p respectively). The precise definition is given by the 
path-integral representation provided in the second line of (3.8): 
the action SChPT, built from the ChPT Lagrangian (2.1), is a func-
tional of the pion fields and the currents, and the term 

∫
d4x �(x)

in the integrand entails that the perturbative expansion of the 
Green function has � in one of the interaction vertices. The nor-
malization N is fixed such that the Green function with m = n = 0
equals one. The corresponding matrix elements involving m cur-
rents and n pions are obtained by Fourier transforming (3.8) into 
momentum space and then amputating the external pion lines and 
putting them on-shell. Let us note that the vanishing of the matrix 
elements from (3.8) when the relation � = 0 has been obtained 
using the pion-field equation of motion is only guaranteed if the 
momenta of the pions are taken on the mass shell. This is be-
cause the use of the equations of motion at the operator level can 
be shown to be equivalent to a redefinition of the pion field in 
the generating functional [4,5,7], which leaves on-shell S-matrix 
elements invariant. For off-shell matrix elements, operators that 
vanish upon use of the equations of motion can give however a 
non-zero contribution. For our purposes it is sufficient to consider 
the perturbative computation of the Green function at the leading 
order in the momentum expansion, which is O(p6) because the 
Pi operators in the linear combination � are already of that order.

The perturbative calculation consists of tree-level diagrams, of 
the form of a contact interaction, which we shall refer to as “lo-
cal” in what follows, as well as with intermediate pion exchange 
(“non-local”); see Fig. 1 for an example. Local contributions contain 
an Pi operator at the vertex, whereas non-local contributions have 
in addition any number of O(p2) vertices, which do not change 
the chiral order of the amplitude. The amplitudes for the ma-
trix elements are rational functions of the momenta, with a pole 
structure given by the propagators present in the diagrams and a 
numerator which is a polynomial in the kinematic invariants. If a 
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Fig. 1. a) Local and b) non-local contributions to the 〈v11a12π
−〉 matrix element.
relation between operators holds, the matrix element must vanish 
for any arbitrary momentum configuration of the fields. This re-
quires that all the coefficients of the terms in the polynomial built 
from the kinematic invariants are zero, and conditions for the αi

are thus obtained. By requiring that a sufficiently large number of 
matrix elements computed in this way with increasing number of 
fields vanish, we obtain a set of conditions for the numerical co-
efficients αi in �; when these conditions yield non-zero solutions, 
relations between the operators which are fulfilled for all the pro-
cesses computed are thus found. One may wish to prove that the 
relations found hold for matrix elements with an arbitrary num-
ber of pions and currents. In that case, the fact that we already 
know the precise numerical coefficients in the relation between 
the operators simplifies the task of proving it at the operator level 
using partial integration, equations of motion, and the Bianchi and 
Cayley–Hamilton identities. Note also that such a proof may be 
more a formal matter than one of practical relevance; processes 
with 6 mesons legs or involving more than two vector or axial-
vector currents are rather remote experimentally, so just knowing 
the relations satisfied among the operators for the phenomenolog-
ically relevant processes could be enough.

In order to illustrate how the method works let us consider the 
computation of the matrix element for two specific cases. The first 
one involves (3.8) with one external vector (v11), one external axial 
(a12) and one charged pion field (π−), which is simple enough 
to provide explicit formulas. We shall refer to the latter with the 
abridged notation 〈v11a12π

−〉.
The perturbative computation of this matrix element at O(p6)

is given by the diagrams in Fig. 1. The operators in � contribut-
ing to diagram 1a are P44, P50, P51, P52 and P53. For diagram 1b, 
operators P51, P52 contribute in one of the vertices, whereas the 
other vertex corresponds to an O(p2) interaction. To calculate the 
amplitude, we take the momenta of the fields incoming and use 
energy–momentum conservation. We thus have two independent 
momenta, which we take to be that of the pion, p1, and that of 
the axial current, q. In addition we have the “polarization” vec-
tors from the external fields v11 and a12, εv and εa respectively.1

Taking into account the on-shell condition for the (massless) pion, 
p2

1 = 0, the amplitude can then be written in terms of seven dif-
ferent kinematic invariants, p1 ·q, p1 · εv , p1 · εa , q · εv , q · εa , εv · εa

and q2. Adding the result from the diagrams with operators Pi
multiplied by corresponding coefficients αi , the perturbative am-
plitude reads

M = 1

q2

{
4 (α51 − α53)

[
εv · q εa · q (p1 · q)2

− εv · p1 εa · q (p1 · q)2 + q2 εv · p1 εa · p1 p1 · q
]

1 The introduction of polarization vectors for the external fields is not strictly 
necessary: we could work with the tensor amplitude with Lorentz indices of the 
external sources μ, ν left open and require that the coefficients of all tensor struc-
tures vanish. The contraction of the tensor amplitude with arbitrary vectors εv , εa

allows to work with a scalar function, which simplifies handling the long expres-
sions that are obtained for the amplitudes of Green functions with more fields.
+ (2α50 − α51 + α52 + α53)q4 εv · εa p1 · q

+ (α51 − α52 − α53)q2 εv · q εa · q p1 · q

+ (2α44 − 2α51 − α52 + 3α53)q2

× [
εv · p1 εa · q p1 · q − q2 εv · p1 εa · p1

]
− (2α44 + 3α51 − 2α52 − 2α53)q2 εv · εa (p1 · q)2

+ (2α44 − α51 − 2α52 + 2α53)q2 εv · q εa · p1 p1 · q

+ 2α50 q4 [
q2 εv · εa − εv · q εa · p1 − εv · q εa · q

]}
,

(3.9)

up to a global constant factor, and we have also dropped the Dirac 
delta function with the momentum conservation. The 1/q2 factor 
arises from the scalar propagator in diagram Fig. 1a; since we have 
factored out it globally, the resulting polynomial in the numerator 
is of order z4

i in the kinematic invariants zi ≡ p1 · q, p1 · εv , . . . , 
with the restriction that all monomials must contain both polar-
ization vectors εv and εa . The resulting amplitude is therefore of 
chiral order p6; recall that the polarization vectors count as O(p), 
just like the external fields vμ , aμ . The requirement that (3.9)
must vanish if a relation between the O(p6) operators holds forces 
the coefficients of all monomials in the numerator to vanish. This 
translates into the following set of conditions for the αi :

α50 = α52 = 0 , α51 = α53 = −2α44 . (3.10)

The first condition in (3.10) implies that no relation involving oper-
ators P50 and P52 can be satisfied by the matrix element chosen 
in this example. Since an operator relation must be true for any 
process we can already conclude that the operators 50 and 52 be-
long to the minimal basis of the Lagrangian. The second condition 
in (3.10) translates into the relation P44 − 2P51 − 2P53 = 0 be-
ing satisfied for this process. By analyzing other processes we shall 
conclude in Section 4 that the latter relation is actually part of a 
larger one involving more terms, that holds exactly for the opera-
tors in LSU(2)

6 .
Let us now choose a matrix element with one pion field more, 

for instance 〈a12a21π
0π0〉, which involves two axial-vector cur-

rents. This example shall give us an idea of the increasing com-
plexity brought by diagrams with more legs. Fig. 2 shows the 
diagrammatic contributions to the corresponding matrix element. 
The pure local term, Fig. 2a, stems from the operators 1–3, 36–44 
and 50–53. The non-local contributions include two different type 
of diagrams: in Figs. 2b, an axial-3π vertex from operators 1–3, 
36–38 and 51–53 of the O(p6) Lagrangian is combined with 
the axial-pion vertex from LSU(2)

2 ,2 whereas in Fig. 2c, we need 
the O(p6) 4π vertices from operators P1-3. The amplitudes for 
〈a12a21π

0π0〉 depend on 11 independent kinematic invariants, 
namely p1 · p2, q2, p1 · q, p2 · q, p1 · ε12, p2 · ε12, q · ε12, p1 · ε21, 
p2 · ε21, q · ε21 and ε12 · ε21, and we have again considered mass-
less pions. The number of monomials of order p6 which can be 

2 We note that there is no axial-π vertex in LSU(2)
6 with massless pions.
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Fig. 2. (a) Local and (b), (c) non-local contributions to the 〈a12a21π
0π0〉 matrix element.
built out of the kinematic invariants is therefore large, and han-
dling the amplitude in order to find out the conditions for the αi

requires automatization. For this task, we have implemented the 
computation of the tree-level matrix elements at O(p6) and the 
extraction of the relations for the αi in a Mathematica code. In 
the case at hand, 〈a12a21π

0π0〉, one obtains an amplitude with 
132 independent monomials in the numerator, whose coefficients 
yield the equations for αi : 50 of these equations are non-trivially 
identical, but only 10 turn out to be independent. The solution to 
this system then provides 10 relations among the coefficients αi of 
the 16 operators that contribute to 〈a12 a21π

0π0〉:

α38 = α50 = 0 , α1 = −4α2 = 4

3
α3 = α36 = −α37 ,

α51 = α53 ,

3α1 − 2α41 − 2α42 + 4α43 − 4α51 = 0 ,

α1 + 8α39 − 8α40 + 6α41 + 6α42 − 12α43 − 8α44 = 0 ,

α1 + 2α39 − 2α40 + α41 + α42 − 2α43 − α52 = 0 . (3.11)

Taking into account these conditions together, one thus finds that 
the linear combination

� = α1

(
P1 − 1

4
P2 + 3

4
P3 +P36 −P37 − 3

4
P40 −P41 −P42

+ 1

4
P43 −P44 + 2P51 + 2P53

)
+ α39

(
P39 −P40 − 2P41 +P43 − P44 + 2P51 + 2P53

)
(3.12)

makes the amplitude 〈a12a21π
0π0〉 vanish for arbitrary values of 

α1 and α39, implying that the two relations among the Pi op-
erators between parenthesis in (3.12) are equal to zero for this 
particular process. We can proceed in the same way for other ma-
trix elements and require a simultaneous vanishing of all of them 
by solving for the αi . The latter is a necessary condition for the 
existence of a relation between the O(p6) operators. In the next 
section we show that the procedure eventually allows for just two 
relations in the SU(2) case without scalar and pseudo-scalar exter-
nal fields.

4. SU(2) case with s = p = 0

As a proof of concept we show in this section how the method 
described above applies to the two-flavor ChPT Lagrangian in the 
chiral limit and without additional external scalar or pseudo-scalar 
sources (s = p = 0) but vμ, aμ �= 0. This simplified framework does 
not lack of phenomenological relevance: it provides a very good 
approximation to the low-energy interaction of the pions in the 
presence of electroweak currents, since mass corrections in the 
u, d quark sector are small and there are no other contributions 
to the external sources s and p in the Standard Model.3

Within this framework, we have computed the matrix elements 
from (3.8) with the generic field content as listed in the first col-
umn of Table 1. The notation 〈va 3π〉, for instance, stands for all 
processes involving three pion fields (charged or neutral) and one 
vector and one axial-vector field component, and similarly for the 
rest. The second column indicates which O(p6) operators con-
tribute to the Green functions. The relations among the operators 
satisfied for each process, obtained as in the examples of Section 3
by solving a system of equations for the coefficients αi , are then 
given in the third column. We have not written the equations for 
the αi for each process except for the cases where they require 
some of the αi to vanish; the condition αi = 0 obtained for a given 
matrix element already implies that the corresponding operator Pi
cannot be part of any relation, which is an important information. 
We note that the relations written in Table 1 guarantee that all 
matrix elements with arbitrary charge (or isospin) configuration of 
the pion and ChPT currents vanish. For a given charge (isospin) 
channel additional relations among the operators that contribute 
can exist, which we do not provide in Table 1.

The relations satisfied for a set of processes can be obtained 
by combining the equations for the coefficients αi from each pro-
cess and looking for a compatible solution. From the table one 
sees that the combination of matrix elements 〈v v〉, 〈vaa〉, 〈v v 2π〉, 
〈aa 2π〉, 〈v 4π〉 and 〈6π〉 already involve all the operators in the 
SU(2) ChPT Lagrangian with s = p = 0. The fact that operators P45
and P55 only appear in 〈vaa〉 requires a further matrix element 
depending on P45 in order to fix it completely. That is why the 
matrix element 〈v vaπ〉 is also computed. The results for the rest 
of processes in Table 1 is given for completeness; their compu-
tation also serves us as a check of the relations found with the 
minimal set of processes.

Combining the equations for αi found for the different matrix 
elements we get that all the latter vanish provided

α38 = α50 = α52 = α55 = α56 = 0 ,

α1

(
8P1 − 2P2 + 6P3 − 20P24 + 8P25 + 12P26 − 16P28

− 3P29 + 3P30 − 6P31 + 12P32 − 3P33 + 8P36 − 8P37

− 11P39 + 5P40 + 14P41 − 8P42 − 9P43

+ 3P44 − 3P45 − 6P51 − 6P53

)
+ α27

(
8P27 + 8P28 − 2P29 + 2P30 − 4P31 + 8P32

− 2P33 − 2P39 + 2P40 + 4P41 − 2P43 + 2P44

− 2P45 − 4P51 − 4P53

)
= 0 , (4.13)

3 Let us recall that at low energies the scalar qq̄ interaction with the Higgs pro-
duces terms in the amplitude suppressed by 1/m2

h .
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Table 1
Relations among O(p6) operators satisfied for each of the matrix elements computed. The second column lists the operators that contribute in each case.

Matrix element Pi Operator relations

〈v v〉 56 α56 = 0

〈v 2π 〉 51, 53 P51 +P53 = 0

〈vaπ 〉 44, 50–53 α50 = α52 = 0
P44 − 2P51 − 2P53 = 0

〈vaa〉 44, 45, 50–53, 55 α50 = α52 = 0
3P45 + 8P55 = 0
P44 −P45 − 2P51 − 2P53 = 0

〈4π 〉 1–3 4P1 −P2 + 3P3 = 0

〈v v 2π 〉 29–33, 44, 50–53 α50 = α52 = 0
P29 −P30 + 2P31 − 4P32 +P33 −P44 + 2P51 + 2P53 = 0

〈aa 2π 〉 1–3, 36–44, 50–53 α38 = α50 = α52 = 0
P39 −P40 − 2P41 +P43 −P44 + 2P51 + 2P53 = 0
4P1 −P2 + 3P3 + 4P36 − 4P37 − 4P39 +P40 + 4P41 − 4P42 − 3P43 = 0

〈a 3π 〉 1–3, 36–38, 51, 53 α38 = 0
4P1 −P2 + 3P3 + 4P36 − 4P37 = 0
P51 +P53 = 0

〈v va π 〉 29–33, 44, 45, 50-53 α50 = α52 = 0
4P29 −P30 + 2P31 − 4P32 +P33 −P44 +P45 + 2P51 + 2P53 = 0

〈v 4π 〉 1–3, 27–28, 36–38, 51–53 α38 = 0
4P1 −P2 + 3P3 − 6P27 − 14P28 + 4P36 − 4P37 = 0
2P27 + 2P28 −P51 −P53 = 0

〈va 3π 〉 1–3, 27–44, 50–53 α38 = α50 = α52 = 0
P29 +P39 = 0
P31 +P32 +P41 +P42 = 0
8P1 − 2P2 + 6P3 − 12P27 − 28P28 + 8P36 − 8P37 − 8P39 + 2P40 + 8P41 − 8P42 − 6P43 = 0
4P27 + 4P28 +P30 − 2P31 + 4P32 −P33 +P40 + 2P41 −P43 +P44 − 2P51 − 2P53 = 0

〈6π 〉 1–3, 24–26 4P1 −P2 + 3P3 − 10P24 + 4P25 + 6P26 = 0
which holds for whatever values of α1 and α27, meaning that the 
two linear combinations among the operators Pi between paren-
thesis must vanish independently. The relations obtained can be 
simplified if one uses the second linear combination into the first 
one. In this way we find:

4P27 + 4P28 −P29 +P30 − 2P31 + 4P32 −P33 −P39 +P40

+ 2P41 −P43 +P44 −P45 − 2P51 − 2P53 = 0 , (4.14)

8P1 − 2P2 + 6P3 − 20P24 + 8P25 + 12P26 − 12P27

− 28P28 + 8P36 − 8P37 − 8P39 + 2P40 + 8P41

− 8P42 − 6P43 = 0 . (4.15)

The result (4.14) agrees with a relation which is known to hold 
among the O(p6) operators when the scalar and pseudo-scalar 
sources are set to zero [8].4 Likewise, (4.15) matches the additional 
relation found for the SU(2) case in [6], once the operators depend-
ing on scalar and pseudo-scalar tensor source χ are neglected in 
the latter. Since relations (4.14), (4.15) were proven algebraically 
in these references, they are of course satisfied for all matrix ele-
ments with any number of pions and currents. We can moreover 
state that these are the only two relations between the SU(2) ChPT 
operators of O(p6) in the limit s = p = 0; otherwise any further 
relation of the form 

∑
α′

iPi = 0 would have been obtained from 
the analysis of the functions of Table 1 with our method (let us 
recall that the vanishing of any matrix element with an insertion 

4 Ref. [8] provided relation (4.14) for a number of flavors n = 3 using the SU(3) 
operator numbering introduced in [5]. The corresponding relation for SU(2) can be 
obtained by translating into the SU(2) numbering scheme for the operators, and 
further using that the operator P52 in the two-flavor case is equal to −P50 − P51

(i.e. to −P27 −P28 in the SU(2) numbering scheme).
of 
∑

α′
iPi is a necessary condition for the existence of the rela-

tion). We therefore conclude that the set of minimal operators of 
the SU(2) ChPT Lagrangian of O(p6) with scalar and pseudo-scalar 
sources set to zero reduces from the 27+2 operators initially writ-
ten down in [5] to 25+2 (note that the contact terms do not take 
part in any of the relations above). Eqs. (4.14), (4.15) can be used 
to drop two of the 27 basis elements of the set of [5].

The application of our method to the general two- and three-
flavor cases is straightforward. For SU(2) including scalar and 
pseudo-scalar sources, if a similar analysis does not yield addi-
tional relations to that of Ref. [6], it would ascertain that the basis 
of O(p6) operators from [5] is minimal up to one term. The case 
of SU(3) is more involved at the technical level, since we have to 
consider an octet of pseudo-Goldstone bosons and many more ma-
trix elements can be built. Starting the analysis of processes with 
less number of fields, one could expect that the space of solutions 
for the coefficients αi is either very much constrained, and eventu-
ally no solution is allowed after computing a few matrix elements, 
or that it actually allows for one (or more) relations among the 
operators. In the former case one could already conclude that the 
basis of LSU(3)

6 is minimal. In the latter, one may try to check if 
the relations found from the analysis of the simpler processes also 
hold at the level of the operators (i.e. for any matrix element with 
an arbitrary number of fields) by using the same algebraic manip-
ulations as in [5], with the great advantage that one would know 
beforehand the coefficients that the operators participating in the 
relation must have. The study of the general two- and three-flavor
cases with the automated tools developed in this work will be the 
subject of future investigation.

5. Summary

The large number of low-energy constants in the mesonic chiral 
Lagrangian of order p6 makes their determination by direct com-
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parison with the experiment rather difficult. To simplify this task, 
one would like to eliminate possible redundancies by establishing 
the minimal set of independent operators in L6, that parametrize 
the rational part of the O(p6) chiral amplitudes.

We have described in this paper a method to search for ad-
ditional relations among the basis operators that build the O(p6)

SU(n) chiral Lagrangian. It relies on the computation of tree-level 
amputated Green functions with insertions of the L6 operators, 
which are then required to vanish on-shell for an arbitrary kine-
matic configuration. The method can be used to establish the mini-
mal basis of operators in the Lagrangian. This has been done in the 
present work for the two-flavor O(p6) Lagrangian without scalar 
and pseudo-scalar external sources. For this case we have shown 
that the original basis of 27 measurable terms plus 2 contact terms 
written in [5] in the even-intrinsic-parity sector has 25+2 inde-
pendent terms, where the two additional relations between opera-
tors that emerge from our method had been already noticed in the 
literature [6,8].

As a next step, the method shall be applied to determine the 
minimal basis of operators in the SU(2) case with general scalar 
and pseudo-scalar sources, as well as in SU(3). Furthermore, one 
can expect that the method extends naturally to other relevant 
effective actions containing a large number of operators, and in 
particular to the linear and non-linear effective theories that de-
scribe the breaking of the electroweak symmetry.
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Appendix A

We provide in this appendix the explicit form of the opera-
tors in the O(p6) ChPT Lagrangian in the SU(2) case (2.7) without 
scalar and pseudo-scalar sources. The expressions are read off from 
the list given in the appendix C of Ref. [5] by discarding terms con-
taining the χ tensor.

Besides the chiral tensors already written in Section 2, the fol-
lowing building blocks are needed to construct the operators in 
Table 2:

hμν = ∇μuν + ∇νuμ ,

f μν
± = uF μν

L u† ± u† F μν
R u , ∇ρ f μν

± , (A.16)

with the non-abelian field strength tensor built from the right and 
left external fields,

F μν
L = ∂μ�ν − ∂ν�μ − i

[
�μ, �ν

]
,

F μν
R = ∂μrν − ∂νrμ − i

[
rμ, rν

]
(A.17)
Table 2
O(p6) operators for SU(2) with s = p = 0, in the basis of [5]. The label in the first 
column refers to the SU(2) numbering scheme used in the latter reference. The last 
column indicates the simplest process to which the operator contributes.

i Pi Matrix element

1 〈u ·uhμνhμν 〉 〈4π 〉
2 〈hμν uρhμν uρ 〉 〈4π 〉
3 〈hμν

(
uρhμρ uν + uνhμρ uρ

)〉 〈4π 〉
24 〈(u ·u)3〉 〈6π 〉
25 〈u ·uuμuν uμuν 〉 〈6π 〉
26 〈uμuν uρuμuνuρ 〉 〈6π 〉
27 i 〈 f+μν uρuμuν uρ 〉 〈v 4π 〉
28 i 〈 f+μν uμu ·uuν 〉 〈v 4π 〉
29 〈u ·u f+μν f μν

+ 〉 〈v v 2π 〉
30 〈 f+μν uρ f μν

+ uρ 〉 〈v v 2π 〉
31 〈 f+μν f μρ

+ uνuρ 〉 〈v v 2π 〉
32 〈 f+μν f μρ

+ uρuν 〉 〈v v 2π 〉
33 〈 f+μν

(
uρ f μρ

+ uν + uν f μρ
+ uρ

)〉 〈v v 2π 〉
36 〈 f−μν

(
hνρ uρuμ + uμuρhνρ

)〉 〈a 3π 〉
37 〈 f−μνhνρ 〉〈uμuρ 〉 〈a 3π 〉
38 〈 f−μν

(
uμhνρ uρ + uρhνρ uμ

)〉 〈a 3π 〉
39 〈u ·u f−μν f μν

− 〉 〈aa 2π 〉
40 〈 f−μν uρ f μν

− uρ 〉 〈aa 2π 〉
41 〈 f−μν f μρ

− uνuρ 〉 〈aa 2π 〉
42 〈 f−μν f μρ

− uρuν 〉 〈aa 2π 〉
43 〈 f−μν

(
uρ f μρ

− uν + uν f μρ
− uρ

)〉 〈aa 2π 〉
44 i 〈 f+μν [ f νρ

− ,hμ
ρ ]〉 〈va π 〉

45 i 〈 f+μν [ f νρ
− , f μ

−ρ ]〉 〈vaa〉
50 〈∇ρ f−μν∇ρ f μν

− 〉 〈aa〉
51 i 〈∇ρ f+μν [hμρ, uν ]〉 〈v 2π 〉
52 i 〈∇μ f+μν [ f νρ

− , uρ ]〉 〈va π 〉
53 i 〈∇μ f+μν [hνρ , uρ ]〉 〈v 2π 〉
Contact terms
55 i 〈F Lμν F μρ

L F ν
Lρ 〉 + L → R 〈vaa〉

56 〈Dρ F Lμν Dρ F μν
L 〉 + L → R 〈v v〉

and the covariant derivative defined as

∇μ X = ∂μ X + [μ, X] , (A.18)

where

μ = 1

2
{u†(∂μ − irμ)u + u(∂μ − i�μ)u†} . (A.19)
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