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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr.-Ing. Nils Thuerey
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Abstract

Mesh-based methods for the numerical solution of partial differential equations must tackle the hardware
trend towards many-core architectures with less memory per core and higher penalties from memory op-
erations. Dynamically adaptive mesh refinement efficiently invests memory, however generalization to
different discretizations and application to high-performance computing without sacrificing granularity
is difficult. Implementations must provide a flexible interface and fast, parallel mesh refinement on fully
adaptive grids. Currently existing approaches cover these requirements only partially.

This thesis investigates parallel, adaptive, structured triangular grids that are generated by newest
vertex bisection corresponding to the Sierpinski space-filling curve. Grid traversals are implemented
purely on stack- and stream-based data structures that grant inherent memory efficiency and, via the
space-filling curve, scalable heuristics for parallelization. Based on this idea, the software package
sam(oa)2 was developed. It enables finite-element-type as well as finite-volume-type applications with
matrix-free, element-oriented formulations to exploit adaptive meshes on clusters or supercomputers,
while hiding the complexity of adaptivity and parallelization.

The performance of the code affects low-order discretizations in particular. Therefore, it was tested
on a memory-bound two-phase porous media flow scenario with a semi-implicit mixed finite element
and finite volume discretization, as well as a weakly compute-bound tsunami wave propagation scenario
with explicit finite volume discretization. Good memory efficiency and excellent scalability of large
problems on up to 8,000 cores are achieved. Furthermore, extending the porous media flow scenario
towards a full reservoir model, the difficult SPE10 oil recovery benchmark was solved on 2.5D prism
grids with horizontal mesh refinement. Hence, complex scenarios with billions of elements are executed
efficiently on thousands of cores, using highly frequent, fully dynamically adaptive mesh refinement.
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Zusammenfassung

Gitterbasierte Methoden für die numerische Lösung partieller Differentialgleichungen müssen die Ten-
denz zu Mehrkernarchitekturen mit weniger Speicher pro Rechenkern und höheren Einbußen bei Spei-
cheroperationen bewältigen. Dynamisch adaptive Gitterverfeinerung setzt Speicher effizient ein, aller-
dings ist eine Verallgemeinerung für verschiedene Diskretisierungsverfahren und ein Einsatz im Hoch-
leistungsrechnen schwierig, ohne dabei Granularität aufzugeben. Eine Implementierung muss eine fle-
xible Schnittstelle und schnelle, parallele, adaptive Gitterverfeinerung bereitstellen. Zurzeit existierende
Lösungen erfüllen diese Anforderungen nur teilweise.

Die Arbeit untersucht parallele, adaptive, strukturierte Dreiecksgitter, die passend zur raumfüllenden
Sierpinskikurve über die Newest Vertex Bisection-Methode erstellt werden. Gittertraversierungen sind
rein über Keller- und Strom-basierte Datenstrukturen realisiert, die inhärent speichereffizient sind und
skalierbare Heuristiken für eine Parallelisierung gewähren. Basierend auf dieser Idee wurde das Soft-
warepaket sam(oa)2 entwickelt. Es erlaubt Anwendungen, die Finite-Elemente und Finite-Volumen-
Diskretisierungen mit elementweisen, matrixfreien Formulierungen verwenden, adaptive Gitter auf Rech-
nerverbünden oder Supercomputern auszunutzen, während der Anwendung die Komplexität von Adap-
tivität und Parallelisierung verborgen bleibt.

Diskretisierungen mit niedriger Ordnung sind besonders von der Geschwindigkeit der Software
abhängig. Daher wurde sam(oa)2 auf einem speicherbeschränkten Szenario für Mehrphasenströmungen
in porösen Medien mit einer kombinierten Finite-Elemente- und Finite-Volumen-Diskretisierung, sowie
einem schwach rechenbeschränkten Szenario für die Wellenausbreitung von Tsunamis mit einer expli-
ziten Finite-Volumen-Diskretisierung getestet.

Eine gute Speichereffizienz und eine hervorragende Skalierbarkeit von großen Problemen auf bis zu
8.000 Kernen wurden erreicht. Darüber hinaus wurde das schwierige SPE10-Benchmark für Ölgewinnung
auf 2.5D Prismengittern mit horizontaler adaptiver Gitterverfeinerung gelöst. Demnach kann sam(oa)2

komplexe Szenarien, die Milliarden von Gitterzellen enthalten, auf Tausenden von Rechenkernen mit
hochfrequenter, dynamisch voll-adaptiver Gitterverfeinerung simulieren.
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Notation

The following typographic conventions are used for mathematical formulas in this thesis.

Variables

δ, a Constant or scalar.
M = {a, b, c} Set, an unordered collection.
N = (a, b, c) Tuple, an ordered collection.
aT = (a1, a2, a3, . . .) Row vector, typically in Rn for n ∈ N.

b =

b1b2
...

 Column vector, typically in Rn for n ∈ N.

C =

c1,1 c1,2 . . .
c2,1 c2,2

...
. . .

 Matrix, typically in Rm×n for m,n ∈ N.

Sets

{a, . . . , b} Closed interval in N that includes both a and b for a, b ∈ N.
[a, b] Closed interval in R that includes both a and b for a, b ∈ R.
[a, b[ Half-open interval in R that includes a and excludes b.
]a, b] Half-open interval in R that excludes a and includes b.
]a, b[ Open interval in R that excludes both a and b.

Operators

AT , aT Transpose of a matrix A or a vector a.
AB, Ab Matrix product, where (AB)i,j =

∑
k Ai,kBk,j . Column vectors are treated as single-column

matrices.
a · b Dot product or inner product aTb of two vectors.
a2, Short form of aT a.
|a| Euclidean norm

√
aTa of a vector or a scalar.

f ′ Ordinary derivative of the function f : R→ R.
∂xf, fx Partial derivative of the function f : R× R× . . .× R→ R with respect to the variable x.
fxy Short form of the second-order derivative (fx)y.
∇ Spatial derivative vector, defined as∇ = (∂x, ∂y, ∂z)

T in 3D.
∇f Gradient of a scalar field f , in 3D equal to (fx, fy, fz)

T .
div(v) Divergence∇ · v = ux + vy + wz of a vector field v = (u, v, w)T in 3D.
∆x Difference of quantities. Another common meaning for this symbol is the

Laplace operator, which is not used in this thesis.∫
Ω

f dΩ Volume integral of the function f : Rn → R over the set Ω.∫
∂Ω

f · dn Surface integral of the function f : Rn → R over the boundary set ∂Ω with the normal n.
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1
Efficiency, Flexibility, and Scalability

As of June 2016, the world’s top ten supercomputers feature three heterogeneous systems with acceler-
ator cards (Tianhe-2, Titan, Piz Daint), four of them use reduced instruction set computing architectures
(TaihuLight, Sequoia, K Computer, Mira) and only three of them (Trinity, Hazel Hen, Shaheen II) could
be considered classical homogeneous, general purpose systems, although each of them contains more
than 150,000 compute cores [122]. While the bulk of the top 500 systems still falls into the latter cat-
egory, there is a trend towards massive use of cheaper cores with less general and more specialized
instructions, smaller clock rates, more arithmetics per data fetch, and less memory per core. Software in
high performance computing must adapt to decreasing resources per core while utilizing the increasing
degree of hardware parallelism [63, 96].

This thesis focuses on computational fluid dynamics in geosciences, where propagation of fluids
or waves in domains with complex geometric features is investigated. These problems are modeled by
partial differential equations that are discretized with finite element or finite volume methods. Time
complexity of these systems increases in the best case linearly with the size, which may easily surpass a
million unknowns for large scale problems. At this point the capabilities of a desktop machine are not
sufficient anymore and clusters or supercomputers must be employed in order to return a solution in a
feasible time.

1.1 Requirements

To tackle these challenges, three formal requirements for a software solution are extracted from the given
problem setting:

First, resources must be managed efficiently. Memory may be invested only if it is necessary or
beneficial to the solution. Fully adaptive mesh refinement should be used to create dynamically adaptive
meshes that are capable of locally resolving features. For example, wave fronts in tsunami simulations
are often of lower fractal dimension than the domain [93]. Inundation of coastal regions may reach only
tens to hundreds of meters whereas the domain is typically thousands of kilometers wide. When memory
is accessed, its access time should be minimized by applying cache-friendly algorithms. Computation
time for compute-bound codes must be optimized by exploiting hardware capabilities and reducing pro-
gram overhead. For parallel execution, this also implies minimizing synchronization time and limiting
communication volume to achieve good scalability. Good heuristics for domain decomposition are re-
quired, as well as fast, effective load balancing techniques.

The second requirement is flexibility for a range of applications. A generic interface must be pro-
vided that supports finite element, finite volume and discontinuous Galerkin discretization. It should
abstract from the underlying grid logic in order to enable the implementation of complex algorithms.
Flexibility may be reduced in favor of efficiency to provide the best performance for a restricted set of
problems.

The third requirement is scalability. Shared memory and distributed memory systems should be
supported by the software in order to exploit the benefits of hierarchical parallelization. Large scenarios

13



CHAPTER 1. EFFICIENCY, FLEXIBILITY, AND SCALABILITY

with billions of unknowns should scale well on clusters or supercomputers.

1.2 A Parallel Framework based on Space Filling Curve Traversal

In order to satisfy all three requirements in a single application, the framework sam(oa)2 (Space-filling
curves and Adaptive Meshes for Oceanic And Other Applications [103]) was developed based on a
Fortran 95 prototype by Vigh [125].

Adaptive mesh refinement and resource-efficient grid management are provided by a traversal scheme
based on the Sierpinski space-filling curve. This approach requires little structural overhead and man-
ages data in a cache-oblivious access scheme. Finite volume and finite element methods are supported
by a kernel-oriented software design, where scenarios are discretized in element-oriented formulations.
This is an intentional restriction that guarantees applications the benefits from the efficient traversal
scheme. Scalability on high-performance systems is given by a hybrid OpenMP+MPI parallelization,
which is based on using space-filling curves for the solution of the 2D partitioning problem. Further
techniques for management of communication data structures are also based on properties of the Sier-
pinski space-filling curve.

Combining all of the three requirements into a single software package is a complicated task due
to the complex interactions between the solution components. Among the corollary prerequisites are
interface support for adaptive mesh refinement and parallelization, load balancing techniques for dy-
namically adaptive grids and heterogeneous kernels, as well as scenario design for parallel execution on
dynamically adaptive grids.

To define a start point for the thesis, Chapter 2 discusses previous work on space-filling curve traver-
sals, including the methods and software developed so far. Afterwards, the scope of the thesis will be
defined more clearly and a road map for the remaining chapters will be presented.

14



2
Space Filling Curves for Grid Traversals

Space-filling curves were first mentioned in 1890, when Peano realized that it is possible to find a
continuous, surjective map from the unit interval [0, 1] in R to the square [0, 1]2 in R2 [90]. For the
purpose of this thesis, we define a curve as the image of a continuous map γ : [0, 1] → [0, 1]2. A curve
is called space-filling if the map γ is surjective. That is, for each point (x, y)T in the unit square there is
an index s ∈ [0, 1] with γ(s) = (x, y)T . If γ is surjective, but not necessarily continuous, the image of
γ is called a space-filling order.

One year after Peano defined space-filling curves in general and the Peano curve in particular, Hilbert
[55] defined a curve that was later referenced as the Hilbert curve, another example for a 2D space-filling
order. Others soon followed over the years. The Morton order – sometimes called Z-order or Z-curve
– is probably the most famous example of a space-filling order due to its simple bitwise mapping [83].
The declaration as a curve is not accurate however, as the corresponding map for the Morton order is not
continuous.

2.1 A History of Space Filling Curve Traversals

In 2006, the framework Peano [89] introduced the concept of cache-oblivious grid iterators based on
space-filling curve traversals [14, 126]. The spatial pattern of the Peano curve was used to generate
block-structured adaptive meshes with a 3d-subtree refinement scheme, where d denotes the dimension
of the domain. An automation for adaptive grid traversals was suggested, where all numerical data is
stored in vertices, which are purely accessed on stacks and streams in a recursive algorithm. Hence,
there is no random or strided memory access and the method is cache-oblivious by design.

As meshes created by the Peano curve have an inherent 3d block structure, they are non-conforming
and require numerical methods that support the treatment of hanging nodes. A solution to this problem
was known in 1991 already, when Mitchell proposed to apply newest vertex bisection to triangular
meshes for adaptive mesh refinement [81]. In contrast to Peano grids, the meshes created by this method
were always kept in a conforming state.

Bader et al. [13] suggested to combine space-filling curve traversals and newest vertex bisection
into a recursive traversal algorithm for triangular grids based on the Sierpinski curve – see Figure 2.1a.
Named after the Polish mathematician Wacław Sierpiński, the curve in its basic form is constructed by
recursive newest vertex bisection of an isosceles right triangle. A detailed description of the curve is
found in [131].

As a prototype, a geometric multigrid method was implemented to solve a Poisson equation. The
price of conforming grids was the loss of higher-dimensional grids, as there is no straightforward trans-
formation of the method to 3D space and beyond [8].

For adaptive grid traversals, a cache-oblivious scheme similar to Peano curve traversal was devel-
oped. As illustrated in Figure 2.1b, the refinement tree is a binary tree, that is encoded with a single bit
per tree node, which requires little memory overhead in a serialized data structure. In Figure 2.2a, a con-
forming Sierpinski grid is traversed along the Sierpinski curve. The corresponding traversal automation

15



CHAPTER 2. SPACE FILLING CURVES FOR GRID TRAVERSALS

(a) Adaptive triangular mesh (b) Refinement tree

Figure 2.1: An adaptive mesh created by newest vertex bisection and the corresponding refinement tree.
As each node of the binary tree must possess only the information whether it is a leaf or not, only a single
bit per node is required for storage. Tree serialization is therefore possible with a very small memory
footprint.

in Figure 2.2b purely uses stacks and streams for data storage. In contrast to Peano, cell and edge data
are stored in addition to vertex data.

A second application for Sierpinski traversals was presented in [9] where a finite volume solver for
the Shallow Water Equations was implemented in Fortran 95. Vigh extended the implementation by a
fast iterative traversal scheme and parallelized the code for distributed memory architectures [12, 125].
On top of this idea, Schreiber [110] developed a parallel framework [115] for hyperbolic equations
targeting many-core machines, which he applied to a first-order discretization of the Shallow Water
Equations.

2.2 Scope of the Thesis

The starting point of the implementation for this thesis is the work by Vigh [125]. In order to provide
support for larger scenarios, the parallelization was extended and improved to allow execution of the
code on clusters and supercomputers. A parallelization toolkit for shared and distributed memory sys-
tems was added. It includes a hybrid OpenMP+MPI parallelization and offers several load balancing
techniques for a range of test cases on high-performance systems. The corresponding additions are
discussed in Chapter 3.

Additionally, the approach in [125] was generalized from a solver for the Shallow Water Equations
to a framework for classes of Partial Differential Equations with a clear restriction to element-oriented
methods. Direct access to neighbor elements violates the stack-&-stream paradigms and is prohibited.
While this restriction excludes discretizations on large stencils, such as high order finite difference and fi-
nite volume methods, support for finite element and discontinuous galerkin methods is provided with the
strict limitation of allowing interaction only between local data. The application interface of sam(oa)2 is
presented in Chapter 4.

To demonstrate the capability of solving complicated problems with the mentioned restrictions in
place, two test cases will be discussed. The first test case in Chapter 5 is an oil recovery problem
that is simulated by a two-phase porous media flow solver for pressure and saturation unknowns. A
2D implementation and a 2.5D extension for the purpose of solving a 3D benchmark problem will
be presented. Following the theory, a numerical analysis in Chapter 6 investigates correctness and
accuracy of the solution for a set of benchmark problems. Afterwards, the performance of the scenario
is evaluated in Chapter 7, where metrics for sequential and parallel execution are defined and evaluated
using reference data and scalability tests. The focus of the analysis lies on the efficiency of grid traversals

16



2.2. SCOPE OF THE THESIS
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Figure 2.2: An adaptive mesh created via newest vertex bisection is traversed along the Sierpinski curve
(violet line). Vertices are colored red and green if they are on the left and right of the curve, respectively.
The red vertices A, B, C, and D are accessed in-order when the curve passes them for the first time
from adjacent elements. When they are passed for the last time, they are accessed in reverse order. An
automaton translates this access pattern to an algorithm that reads cell, edge, and vertex data from an
input stream, stores them on separate red and green stacks when they are visited for the first time, and
writes them to output streams when they are visited for the last time. In the next grid traversal, input and
output streams are switched.

and the influence of communication on scalability.
The second test case is a tsunami wave propagation problem, described in Chapter 8. In this ap-

plication, the 2D shallow water equations with bathymetry source terms are solved to simulate mass
and momentum of oceanic tsunami waves. A short numerical analysis will follow in Chapter 9 in order
to show correct solver behavior on some benchmark cases and on real tsunami data. The performance
evaluation in Chapter 10 focuses on adaptive mesh refinement and load balancing, as the scenario is in-
herently imbalanced due to heterogeneous kernel execution times. The time steps are comparably cheap
and affected much more by overhead from remeshing than the porous media flow test case.

Finally, the conclusion discusses how well the goals set by the thesis were achieved and gives an
outlook on possible future improvements.
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3
Parallelization on Sierpinski Sections

Parallelization of meshes always implies solving the particularly hard problems of multidimensional
domain decomposition and load balancing. Finding a uniform partitioning for a mesh that minimizes
communication corresponds to the minimum k-section problem in graph theory, where the set of vertices
of a graph is divided into k subsets of equal size, while minimizing the edge cut. This problem is known
to be NP-hard even for k = 2 [46].

METIS and ParMETIS [78] apply an edge matching on coarse graphs [62] to approximate the re-
stricted k-way partitioning problem and support diffusive schemes for adaptive mesh refinement [107,
108]. Zoltan [133] uses hypergraph partitioning [22] and achieved similar results to ParMETIS in a
comparative study in 2007 [31]. Both methods produce high quality partitions and are excellent for
solving static load balancing problems but can ultimately become very expensive in a highly dynamic
environment where frequent remeshing is necessary.

A less accurate, but simpler and faster approximation is partitioning based on quad-trees or octrees.
In p4est [29, 59, 60], the domain is decomposed by cutting the unit interval into segments of equal size
and transforming them into a 2D or 3D domain via Morton ordering. While the Morton order allows
a very fast evaluation, it creates fragmented partitions, as the underlying map from 1D intervals to the
domain is not continuous. Even though there are at most two such fragments per partition [27], increased
communication may result compared to using a true space-filling curve.

An improvement is suggested in [66, 118], where octree partitioning is used for a Fast Multipole
Method. Here, the strict condition of returning equally sized partitions is relaxed in favor of nicely
shaped boundaries. After first distributing load via Morton ordering, a second algorithmic step maps
partitions to full octants of a coarse octree in order to reduce the surface of each partition and the
corresponding communication volume.

3.1 Sierpinski Curves for Parallelization

Due to its support for explicit finite volume methods, sam(oa)2 targets frequently changing grids, where
dynamically adaptive refinement and load balancing may be necessary in each time step. We therefore
follow the quick, canonical approach of cutting the grid into parts of uniform load along the Sierpinski
curve. In contrast to Morton ordering, the Hölder-continuity of the Sierpinski curve [134] ensures well-
formed partitions, which are even edge-connected. Early experiments lead to good results [20, 135].
Coming from another direction, the REFTREE algorithm [82] searches for Hamilton paths in grids
to define connected partitions and returns the Sierpinski curve for 2D grids based on newest vertex
bisection.

Vigh [12,125] parallelized a solver for the shallow water equations based on the Sierpinski traversal
scheme explained in Chapter 2 by using Sierpinski cuts for partitioning. Here, sam(oa)2 follows the
approach by Vigh and applies a new load balancing algorithm, where load is modeled as an abstract cost
function. Load is either defined as a weighted sum of the number of grid cells and grid vertices, or as
an estimate for the true execution time based on high precision measurements. Coarse grid mapping of
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CHAPTER 3. PARALLELIZATION ON SIERPINSKI SECTIONS

load is not supported by sam(oa)2, but a related approach based on subtree partitioning was investigated
in [110, 112].

For hybrid parallelization we allow assignment of multiple parts of the grid to a single process. We
call these parts sections to indicate that they correspond to contiguous intervals of the Sierpinski curve.
A section is an independent computation unit in the grid, that consists of the elements given by mapping
a 1D interval to the Sierpinski curve, as well as the edges and vertices associated with the elements.
Together, the union of all sections forms the grid.

3.2 Hybrid OpenMP+MPI Load Balancing Schemes

As sam(oa)2 divides the grid into sections for parallelization, the load balancing mechanism must define
number and size of sections and how to distribute them to cores, while ideally maintaining a uniform
load. These two problems can be treated independently, where a node-local algorithm decides how
many sections are created and how large they are, and a distributed algorithm assigns sections to cores
as atomic units. Alternatively, a combined approach is possible where sections are split into sizes that
guarantee a good load balance after distribution. Both approaches have advantages and will be discussed
here.

3.2.1 Load Balancing of Atomic Sections

First, we consider the case of distributing atomic sections. The advantage of this approach is that it
is particularly suitable for hybrid OpenMP+MPI load balancing. Figure 3.1 illustrates the process. In
the first step, a computation phase is executed, where the cost of each section is determined and cells
are marked for refinement and coarsening. The details of evaluating section costs are discussed in
Section 3.2.3. Sections can now be distributed among MPI ranks before adaptive refinement by using
knowledge of future refinements and coarsening to determine a load approximation. Afterwards, local
repartitioning during grid refinement and coarsening restores sections of uniform costs that are easily
processed in parallel by OpenMP threads.

The disadvantage of this approach is that load is not balanced optimally due to the strongly con-
strained subproblem of balancing tasks with varying costs to processes, while preserving their order.
Section 3.3.1 discusses in detail how to solve this problem.

3.2.2 Load Balancing with Section Splitting

The alternative approach is to allow sections to be split for load balancing to ensure a uniform load
distribution over all cores. Local repartitioning of sections is possible only during adaptive refinement
and coarsening in sam(oa)2. Therefore, section splitting requires load to be balanced after adaptive
traversals as seen in Figure 3.2. Hence, sam(oa)2 switches the order of adaptive refinement and load
balancing for this approach. Hybrid OpenMP+MPI parallelization will be affected as the number of
sections per core is not homogeneous. This does not affect the load model, but will increase the size of
the boundary and therefore influence the real load of each section, i.e. execution and communication
time. The benefit of splitting will be small for hybrid parallelization anyway, as a higher number of
sections per process will be required per process for scheduling sections to OpenMP threads. A more
fine-grained distributed balancing of atomic sections will automatically result that weakens the effect of
splitting. Splitting is enabled in sam(oa)2 at runtime with the command line argument

samoa -lbsplit
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Adaptive traversal: Refine/coarsen cells

MPI load balancing: Distribute sections

Adaptive traversal: Locally repartition sections

Computation (mark cells for refinement/coarsening)

+1 -1 +2 +1 -2 -1 -2 -1 +1 +2

+1 -1 +2 +1 -2    -1 -2 -1 +1 +2   

Figure 3.1: Hybrid OpenMP+MPI load balancing of atomic sections. Directly after each computation
phase, load is balanced between MPI ranks. Afterwards, the mesh is adaptively refined and sections
with homogeneous costs are created locally on each process. This method is particularly suitable for
OpenMP parallelization. However, processes will usually be imbalanced after repartitioning due to the
coarse-grained MPI load balancing.
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Adaptive traversal: Refine/coarsen cells

MPI load balancing: Distribute sections

Adaptive traversal: Locally repartition sections

Computation (mark cells for refinement/coarsening)

  +1    +1     -3    -2   +2    +1 

Figure 3.2: Hybrid OpenMP+MPI load balancing with section splitting. After each computation phase,
an adaptive traversal that includes local repartitioning is executed to cut the grid into subsets of sections
with equal costs that are distributed uniformly among cores. Next, sections are migrated to their intended
cores during load balancing. While load is theoretically uniformly distributed over all cores, imbalances
can still occur in practice, as sections of varying number and size are harder to balance in shared memory.
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3.2.3 Evaluation of Section Costs

While the cost of a section is usually directly associated with cells or degrees of freedom in grid-based
applications, some scenarios require a more general approach to define costs.

Simple kernels that perform mainly linear algebra operations generate load that is distributed uni-
formly on cells, edges, vertices or combinations thereof. For these cases, the cell-based or degree-of-
freedom-based model mentioned above is perfectly suitable. However, complex, heterogeneous kernels
with branches or while-style loops are not captured. Also, dead cells, i.e. cells without computation, are
not modeled correctly.

To provide cost estimates for simple and more complex kernels, sam(oa)2 defines an abstract cost
value ci ≥ 0 for each section. Currently, two fundamentally different approaches are implemented,
where the load of a section is modeled as the weighted sum of the number of cells and the number of
vertices or measured by a high-precision timer that instruments all computation in a section and defines
the cost ci as the sum of the computation time.

Linear Cost Model

The linear model exploits that a 2D mesh is a planar, connected graph and therefore subject to Euler’s
formula, which implies that the number of edges e linearly depends on the number of cells f (minus the
exterior face) and the number of vertices v. That is,

e+ 1 = f + v. (3.1)

Therefore, a linear cost model that includes e is as powerful as a linear cost model that neglects it. v
could be replaced by the number of boundary edges eb in the mesh by using

v =
1

2
(f + eb) + 1. (3.2)

However, with f and eb, the number of degrees of freedom is still two. Hence sam(oa)2 bases its linear
cost model on cells and vertices instead, which usually correspond better to the degrees of freedom in a
mesh than cells and boundary edges. The linear model is the default implementation in sam(oa)2.

Time Based Cost Evaluation

In contrast, the time-based approach is implemented by adding high precision timer instructions before
and after each traversal to measure the actual execution time of a grid traversal on each section. The
resulting time difference ∆t is used to estimate the cost per cell ∆t

n , which is independent of adaptive
refinement and coarsening. Time-based evaluation is enabled with the command line argument

samoa -lbtime

Both implementations have advantages: the linear model returns consistent costs and is not affected by
measuring errors, whereas the time-based approach is able to handle a much broader class of applications
with a black-box view of the kernels. Applications for both approaches are presented in this thesis: The
linear cost model will be mainly used for the porous media flow scenario in Chapter 5 and the time-based
cost model is applied to the tsunami wave propagation scenario in Chapter 8.

3.2.4 Advanced Models for Cost Evaluation

Schaller [105] investigated a scenario on Cartesian grids, where a complex computation kernel performs
heterogeneously depending on time and position in the domain. He compared linear and time-based cost
evaluation with an advanced performance model of the kernel. He used a state-dependent approximation
of kernel performance by classification of input parameters. However, due to its implied overhead, the
method performed generally worse than the two standard methods and is not considered further.
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3.2.5 Shared Memory Load Balancing

Shared memory load balancing is quite straightforward, as parallel processing units for threads are cre-
ated easily by assignment of multiple sections to each process. For example, if a process has 4 physical
cores, then the number of section per core is a multiple of 4 in sam(oa)2 to allow for threaded traversal
of sections. By design, these are atomic, independent units. Hence, it is simple to assign them statically
to a set of concurrently running threads.

For load balancing on atomic sections in Section 3.2.1, load is not balanced uniformly and for
load balancing with section splitting in Section 3.2.2, the number of sections per core is not uniform,
which may also lead to load imbalance. Hence, a work-stealing mechanism will be useful to reduce
intra-process imbalance. Therefore, sam(oa)2 uses a manual, static assignment of sections to cores
and adds optional OpenMP task stealing to mitigate load imbalance within a shared memory domain.
Algorithm 3.1 shows how the NUMA (Non-Uniform Memory Architecture)-aware implementation of
sam(oa)2 creates a local task queue for each thread that may be accessed by other threads. With this
design, each thread will process its own sections before trying to steal work from other threads, limiting
migration of sections between NUMA domains.

Algorithm 3.1: A simplified shared memory version of parallel grid traversals in sam(oa)2, using
Fortran and OpenMP 3 syntax. Sections are manually assigned to cores and task stealing mecha-
nisms are added on top for NUMA-aware parallelization.

subroutine traverse_grid(grid, enable_tasks)
type(t_grid) :: grid
logical :: enable_tasks
integer :: i_thread, i_first_section, i_last_section

i_thread = omp_get_thread_num()
call grid%get_local_sections(i_thread, i_first_section, i_last_section)

if (enable_tasks)
do i = i_first_section, i_last_section

!$omp task private(i) default(shared)
traverse_section(grid%section(i))
!$omp end task

end do

!$omp taskwait
else

do i = i_first_section, i_last_section
traverse_section(grid%section(i))

end do
end if

end subroutine

3.2.6 Repartitioning in Shared Memory

As seen in Figure 3.1, sam(oa)2 relies on a mechanism to locally repartition sections for distribution of
load among threads and processes. To avoid an extra, inherently expensive grid traversal, repartitioning
is combined with adaptive refinement into a single step that requires only one grid traversal.

Thread-parallel execution of this adaptive traversal is challenging, as multiple destination sections
may require grid data from the same source sections. Threaded creation of destination sections conse-
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quently causes concurrent access to streams and stacks of the old grid. Concurrent access to stacks is
easily avoided by employing distinct stacks for each thread. Concurrent access to streams may happen,
but is restricted to concurrent read access and thus cannot cause race conditions. However, it may de-
grade performance, due to resource contention. If the number of sections per thread is set to at least two,
the probability of concurrent stream access is reduced strongly and most read accesses will be exclusive
again. In sam(oa)2 the number of sections per core n

p is set with the following command line argument:

samoa -sections <n/p>

The implementation of adaptive traversals will be discussed in detail in Chapter 4.5.

3.3 Distributed Load Balancing on Triangular Adaptive Meshes

Contrary to static grids, dynamic grids impose some restrictions on MPI load balancing, which are
caused by adaptive coarsening. Any pair of neighboring cells that is feasible for coarsening, should be
able to do so eventually. A policy or a control mechanism, i.e. defragmentation, must promote the case
where the cells end up on the same core eventually.

In sam(oa)2, hybrid load balancing additionally demands frequent merging of sections as displayed
in Figure 3.1 and Figure 3.2. This is only possible for sections that are located on the same core and
in consecutive Sierpinski order. Hence, in order to restrict data movement for coarsening and section
merging, a policy must be employed to ensure that sections will always be located on the same core
or on neighbor cores if they are in consecutive Sierpinski order. For an MPI load balancing algorithm,
this policy acts as a constraint that must be satisfied at any time. The straightforward solution is to sort
all the sections in Sierpinski order and to enumerate the cores by consecutive integers. Then sections
are assigned to cores with a non-decreasing mapping, resulting in a 1D load balancing scheme with all
sections sorted in Sierpinski order.

An additional complexity arises from the order of adaptive refinement and load balancing if sections
are considered atomic. To guarantee a uniform number of sections per core for hybrid parallelization,
load must be balanced before adaptive refinement. Hence, knowledge of future adaptive refinement and
coarsening must be used to determine an accurate load estimate of a section. In this case, sam(oa)2 uses
the following extrapolation to update the cost ci of a section

ci ← ci
n∗i
ni
, (3.3)

where ni denotes the current number of cells in section i and n∗i is the expected number of cells after
adaptive refinement and coarsening. If section splitting is active, load balancing will be called after
adaptive refinement where ni and n∗i will be equal. Hence, sam(oa)2 returns a consistent estimate at all
times.

3.3.1 Chains on Chains Partitioning

First, the constrained load balancing problem is formally defined. Assume there are n tasks and p cores,
which the tasks are supposed to be distributed to. Each task i ∈ {1, . . . , n} is characterized by its cost
ci > 0, which is measured in some unspecified cost unit. All cores are identical, so the same task has
the same execution time on each core.

We define the prefix sum, also known as discrete integral,

Ci :=

i∑
k=1

ck. (3.4)
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The goal is to find a monotonically increasing map s : {0, . . . , p} → {0, . . . , n} that assigns each core
j ∈ {1, . . . , p} to an interval of tasks {s(j − 1) + 1, . . . , s(j)}, while minimizing the maximum load
per core

ts := max
j∈{1,...,p}

s(j)∑
i=s(j−1)+1

ci = max
j∈{1,...,p}

(
Cs(j) − Cs(j−1)

)
. (3.5)

For convenience, let s(0) := 0 and s(p) := n. As implied by the definition of the chains-on-chains
problem, neither the order of tasks, nor the order of cores can be changed.

This restriction of the NP-complete multiprocessor scheduling problem [45] is known as chains-on-
chains partitioning and has been investigated in [91] for example, where several solution approaches
are suggested. Multiprocessor scheduling is the problem of assigning n independent tasks with varying
execution times c1, . . . , cn to p cores in such a way that the maximum execution time over all cores is
minimized.

Continuous Solution for Section Splitting

If we assume that tasks may be split to achieve a perfect load balance, meaning that s maps [0, n] to
{1, . . . , p}, the problem will be fairly easy to solve as we will achieve a perfect load balance then. To
find the corresponding map ŝ, we determine a lower bound for the maximum load ts. Fix an arbitrary
distribution function s and denote by ts the maximum load assigned to a core. Then we obtain for each
core j

ts ≥ Cs(j) − Cs(j−1). (3.6)

Adding up (3.6) over all p cores yields

pts =

p∑
j=1

ts ≥
p∑
j=1

(
Cs(j) − Cs(j−1)

)
= Cs(p) − Cs(0) = Cn, (3.7)

The value of ts is therefore estimated by

ts ≥
Cn
p

for any distribution function s. (3.8)

We now assume that there is a monotonically increasing map ŝ : {1, . . . , p} → {1, . . . , n} with

tŝ =
Cn
p
, (3.9)

then (3.8) and (3.9) imply that ŝ minimizes (3.5). In this case

tŝp− Cn =
∑

j∈{1,...,p}

(
tŝ − Cŝ(j) + Cŝ(j−1)

)︸ ︷︷ ︸
≥0

= 0, (3.10)

and in (3.6) equality holds for each core j

Cn
p

= tŝ = Cŝ(j) − Cŝ(j−1).

To eliminate the double evaluations of ŝ, we construct the prefix sum from k = 1 to j of left- and
right-hand side and obtain

j

p
Cn = Cŝ(j). (3.11)
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Hence, for each j ∈ {1, . . . , p}, ŝ is given implicitly by

ŝ(j) = i if
Ci
Cn

=
j

p
. (3.12)

Now, ŝ is well-defined only if the Ci are strictly increasing and ŝ(j) ∈ N for each core j. If the Ci are
strictly increasing, ŝ is also unique: Let s1 and s2 be any distributions that solve (3.12), then for each j

Cs1(j)

Cn
=
Cs2(j)

Cn
=
j

p
(3.13)

and therefore s1(j) = s2(j).
If the Ci are reinterpreted as a continuous piece-wise linear function, then ŝ always exists and ŝ is a

solution to splitting-based load balancing. In detail, if ŝ(j) /∈ N for some core j, meaning ŝ(j) = r+α,
where r ∈ N and α ∈ [0, 1[, then the fractional part α of ŝ(j) decides where to split the cost of the
corresponding task r + 1.

Midpoint Approximation for Atomic Sections

A perfect load balance on atomic sections requires a discrete solution for (3.12), which does not neces-
sarily exist. However, the existence of the continuous solution ŝ may be exploited to derive a discrete
approximation based on rounding the function f̂ , defined by

f̂(i) :=
Ci
Cn

p. (3.14)

Corresponding to the definition of ŝ, the function f̂ returns the core j for the task i if task i is the last
task of core j. For all other tasks assigned to core j, it returns a real number between j − 1 and j. To
obtain an integer-valued map we round the result by

fma(i) :=

⌊
Ci − 1

2ci

Cn
p

⌋
+ 1 for i = 1, . . . , n. (3.15)

The idea is to assign tasks to cores so that the ratio j
p in (3.12) is approximated as closely as possible.

This is achieved by using the midpoint of the cost range for task i:

1

2
(Ci−1 + Ci) = Ci −

1

2
ci (3.16)

to decide the destination core for task i. An example is illustrated in Figure 3.3. The method was first
suggested in [80]. We will refer to it henceforth as midpoint approximation. Algorithm 3.2 shows a part
of the implementation in sam(oa)2, which communicates on a distributed memory system via MPI.

Using this algorithm, each core eventually gains knowledge of the destination cores for each task it
sends, and the source cores for each new task it receives. Load could be propagated either directly to its
destination or iteratively, as originally suggested in [62, 109]. However, we found that in sam(oa)2, an
iterative strategy usually performs worse once a good distribution is determined [77], as the added com-
munication volume outweighs the latency issues. Hence, load is propagated directly and the algorithm
terminates.

29



CHAPTER 3. PARALLELIZATION ON SIERPINSKI SECTIONS

Algorithm 3.2: Distributed load balancing by approximate chains-on-chains partitioning. This
incomplete algorithm is executed on each core j ∈ {1, . . . , p} to find source and destination cores
for task exchange. MPI is used to communicate between cores.

Input: j ∈ {1, . . . , p}, sj−1, sj , (ci)i∈{sj−1+1,...,sj}, 0 < ε� 1
Output: kstart, kend, lstart, lend

lj ←
sj∑

i=sj−1+1
ci ;

Lj ← MPI_Scan(lj) ;
Cn ← MPI_AllReduce(lj) ;

for i ∈ {sj−1 + 1, . . . sj} do

Ci ← Lj − lj +
i∑

k=sj−1+1

ck ;

fi ←
⌊
Ci− 1

2
ci

Cn
p
⌋

+ 1 ;

end

MPI_IRecv(MPI_ANY_SOURCE , lstart, START_TAG) ;
MPI_IRecv(MPI_ANY_SOURCE , lend, END_TAG) ;

for k ∈
{⌈

Lj−lj
Cn

p
⌉

+ 1, . . . ,
⌈
Lj
Cn
p
⌉}

do
MPI_Send(k, j, START_TAG) ;

end
for k ∈

{⌊
Lj−lj
Cn

p
⌋

+ 1, . . . ,
⌊
Lj
Cn
p
⌋}

do
MPI_Send(k, j, END_TAG) ;

end

kstart ←
⌊
Lj−lj
Cn

p
⌋

+ 1 ;

kend ←
⌈
Lj
Cn
p
⌉

// Missing steps:
// * Listen for tasks from source cores lstart, . . . , lend.
// * Send tasks to destination cores
{fi}i∈{sj−1+1,...,sj} ⊆ {kstart, . . . , kend}.
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normalized distribution0 1

Figure 3.3: An illustration of distributed chains-on-chains partitioning by midpoint approximation on
four cores. Tasks are assigned atomically to destination cores with the map f (red arrows). The desti-
nation core Pj is then informed of the range of tasks assigned to it by receiving notification messages
(black arrows) from its first and last source core. Note that task 4 on core P2 causes some imbalance as
f returns only a partial fit to core P2.

Optimal Solution Approaches

As mentioned before, chains-on-chains partitioning is a restriction of the NP-complete multiprocessor
scheduling problem. It is therefore not immediately obvious whether the restricted problem remains NP-
hard. The EXACT-BISECT algorithm by Pınar et al. [91] uses a binary search to minimize the imbalance
and finds an optimal load distribution in time O (n+ p log(p) log(n)), assuming that the cost functions
are bounded by a constant. Unfortunately, the algorithm not only becomes more expensive with more
tasks but is also inherently serial. Implementation requires the expensive MPI operations MPI_Gather
for gathering load data in the root process and MPI_Scatter for scattering the new load distribution.
Performance is therefore acceptable only up to a few hundred cores as the analysis in Secs. 7.3 and 10.1.2
shows. High-quality approximations for large systems exist [69], but no scalable algorithms are known
to find an optimal solution. A variant of EXACT-BISECT is implemented in sam(oa)2 and enabled with
the command line argument:

samoa -lbserial

3.3.2 Approximation Quality

The maximum load given by midpoint approximation is

tma(p) := max
j∈{1,...,p}

Cŝ(j) − Cŝ(j−1). (3.17)

This value is bounded by the sum of the average load and the cost of the most expensive task

tma(p) ≤ Cn
p

+ max
i∈{1,...,n}

ci. (3.18)

A proof for a similar conjecture is presented in [80]. A lower bound for the optimal maximum load
topt(p) is given by

topt(p) ≥ max

(
Cn
p
, max
i∈{1,...,n}

ci

)
≥ 1

2

(
Cn
p

+ max
i∈{1,...,n}

(ci)

)
. (3.19)

Therefore,

tma(p) ≤ Cn
p

+ max
i∈{1,...,n}

(ci) ≤ 2topt(p). (3.20)
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Thus, midpoint approximation returns a maximum load that is at worst twice the optimal load. Naturally,
lower and upper bounds must hold for an optimal chains-on-chains solver, too.

Further analysis is possible if the maximum cost of a task is assumed to be bounded by an application-
dependent factor α ≥ 1 of the average cost of a task, i.e.

max
i∈{1,...,n}

(ci) ≤ α
Cn
n
. (3.21)

Ignoring other sources of serialization, we estimate the parallel efficiency in a strong scaling environment
by

tma(1)

p tma(p)
≥ Cn

p

(
Cn
p + max

i∈{1,...,n}
(ci)

) ≥ Cn

p
(
Cn
p + αCnn

) =
1

1 + α pn
. (3.22)

Hence, given the ratio α, we obtain a lower bound for the theoretical parallel efficiency, which ap-
proaches 1 as p

n goes to 0. In sam(oa)2, the number of tasks per core n
p is a command line argument:

samoa -sections <n/p>

Consider a scenario with α ≈ 1.4. To achieve a lower bound of 85% for the parallel efficiency, a ratio of
n
p ≥ 8 is therefore required. In practice, increasing n

p will cause overhead for section management and
will reduce the parallel efficiency. There is always a sweet spot, which is usually between 4 and 16.

3.3.3 Chains on Chains Solvers in Comparison

While there is an optimal chains-on-chains solver [91], it is hard to judge how well it balances load in
absolute numbers. To get an idea, we will take a look at load imbalances for some artificial cost func-
tions and compare results of an optimal chains-on-chains solver, midpoint approximation, and longest
processing time. Longest processing time is a 4

3 -approximation to the general multiprocessor scheduling
problem [51], meaning that the maximum load returned by longest processing time is at most 1

3 larger
than in an optimal solution. In comparison, midpoint approximation is a 2-approximation. Longest pro-
cessing time reorders tasks and is therefore not applicable to chains-on-chains partitioning, but it will
provide a reference solution that shows the impact of the chains-on-chains restriction.

Figure 3.4 illustrates statistical results for artificial tasks with randomly generated cost functions.
Midpoint approximation usually returns the worst approximation, especially for rough cost functions
with high frequency components. The optimal chains-on-chains solver performs well and returns dis-
tributions that are comparable to the results for longest processing time when the variance of the cost
function is low. If the variance is larger, the chains-on-chains solver performs worse, but will still return
small imbalances most of the time. Hybrid approaches were also tested, where midpoint approximation
is used as a fast estimator to distribute tasks onto groups of processes and a second, serial algorithm
distributes tasks within groups which are executed concurrently. These variants would allow to apply
longest processing time or an optimal chains-on-chains solver at the cost of some additional imbalance.
However, as scalability limits group sizes to small numbers, hybrid methods naturally converge towards
midpoint approximation on larger numbers of cores and the desired effect disappears. Hence, sam(oa)2

provides an optimal chains-on-chains solver up to moderate numbers or cores, as well as midpoint ap-
proximation for extreme scalability. Hybrid methods are not provided, as we showed that they lose their
advantage on high numbers of cores. A hierarchy of algorithms would be required to better cope with
this issue.
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Figure 3.4: Randomly generated tasks and their theoretical load imbalance. Four different combina-
tions of smoothness and variance parameters are chosen to generate 100 random cost functions for 300
tasks, which are distributed to 70 cores. The box-and-whisker diagrams show the predicted imbalance
distributions for longest processing time (LPT), optimal chains-on-chains partitioning (CCP), midpoint
approximation (MA), and hybrid methods that combine two algorithms hierarchically. Each median is
represented by vertical red lines and boxes display 25% to 75% quartiles. High confidence intervals
extend along dashed lines and outliers are plotted as crosses.
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3.3.4 Chains on Chains Partitioning with Intermediate Synchronization Points

So far, we assumed that the cost of a task is an atomic value that returns uniform workload when it is
distributed uniformly. However, this is a simplification, as a grid traversal contains multiple stages with
possible synchronization points in-between, see Section 4.3 for more details. Additionally, sam(oa)2

performs load balancing only when it is triggered by the application. Hence, multiple, possibly distinct
traversals may be executed between two load balancing calls.

We model the plurality of traversal stages and traversals by splitting computation between two load
balancing calls into m phases, where each task i ∈ {1, . . . , n} is divided into m subtasks with phase-
dependent cost ck,i > 0 for k ∈ {1, . . . ,m}. Each task, with all its subtasks, is still assigned to a single
core and may not be reassigned between two load balancing calls. An optimal, monotonically increasing
distribution function s : {0, . . . , p} → {0, . . . , n} therefore maps each core j ∈ {1, . . . , p} to an interval
of tasks {s(j − 1) + 1, . . . , s(j)} and minimizes the accumulated maximum load per core now; that is

ts :=

m∑
k=1

max
j∈{1,...,p}

 s(j)∑
i=s(j−1)+1

ck,i

 . (3.23)

Two issues emerge for this model. First, an evaluation of ts requires reduction of the global maximum
load per core over each phase. If there are many phases between two load balancing calls, this will
quickly become expensive as global communication increases with each phase. Second, even an optimal
solver for (3.23) will not always return a good load balance, as heavily heterogeneous phases are hard
to balance. Figure 3.5b displays an example.

Instead, we consider a simplified multi-phase load model that minimizes the maximum accumulated
load per core, which is defined as

max
j∈{1,...,p}

m∑
k=1

s(j)∑
i=s(j−1)+1

ck,i = max
j∈{1,...,p}

s(j)∑
i=s(j−1)+1

m∑
k=1

ck,i. (3.24)

This problem reduces to the synchronization-free problem (3.5) again when setting

ci :=

m∑
k=1

ck,i. (3.25)

Next, the relation between the problems (3.23) and (3.24) is briefly discussed. For each phase k ∈
{1, . . . ,m} and each core j̃ ∈ {1, . . . , p}

s(j̃)∑
i=s(j̃−1)+1

ck,i ≤ max
j∈{1,...,p}

s(j)∑
i=s(j−1)+1

ck,i. (3.26)

Summing up over the phases returns for each j̃ ∈ {1, . . . , p}

m∑
k=1

s(j̃)∑
i=s(j̃−1)+1

ck,i ≤
m∑
k=1

max
j∈{1,...,p}

s(j)∑
i=s(j−1)+1

ck,i, (3.27)

and therefore

max
j∈{1,...,p}

m∑
k=1

s(j)∑
i=s(j−1)+1

ck,i ≤
m∑
k=1

max
j∈{1,...,p}

s(j)∑
i=s(j−1)+1

ck,i. (3.28)
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(a) Simplified load balancing by sam(oa)2
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(b) Optimal load balancing

Figure 3.5: Load distribution of four sections to two processes with an intermediate synchronization
point. The solution of sam(oa)2 is compared to an optimal solution. The execution time of a sections
is represented by blocks of the same color, blank squares indicate waiting cycles at the corresponding
synchronization points. There are two computation phases, each of which is distributed to two cores.
(a) In sam(oa)2, the maximum load over the sum of all phases is minimized and a distribution with 12
waiting cycles is returned. (b) An optimal distribution correctly minimizes the sum over the maximum
load of each phase, where only 10 waiting cycles are needed. The computation takes 20 cycles total,
thus even the optimal distribution performs badly.

Thus, any function s that returns a bad distribution in the synchronization-free system (3.24) will return
a bad distribution in the synchronized system (3.23). This suggests that solving (3.24) is a suitable
heuristic for (3.23). Thus, sam(oa)2 implements this algorithm for the intermediate synchronization
problem.

Minimizing the synchronization-free system (3.24) will return a uniform workload over the sum
of all computation phases, which implies that only the average load of each core over all phases is
balanced. On the one hand, the global communication issue is solved, as only one reduction is required
per evaluation. On the other hand, load is balanced worse when approximating (3.23) with (3.24),
as shown in (3.28). An example is illustrated in Figure 3.5, where the load distribution obtained by
minimizing (3.24) is strongly imbalanced as it requires 12 waiting cycles, while the total computation
accumulates to 20 cycles. As mentioned before, the optimal distribution according to (3.23) is not
much better, as process P1 idles for 10 cycles. Hence, even in the optimal case parallel strong scaling
efficiency on two cores is limited to 67%. The example nicely illustrates that in general, there is no
scalable solution to load balancing with intermediate synchronization.

This result implies that there are only two options: Circumvent the problem or weaken its conditions.
Ideally, the problem is avoided completely by reducing and postponing synchronization points, e.g. with
a pipelined data model. One example for such a pipelined model is the fused Conjugate Gradients
solver that is discussed in Chapter 5.4.1. If intermediate synchronization cannot be omitted, intra-node
work stealing mechanisms as described in Section 3.2.5 lower the imbalance. One could also introduce
intermediate load balancing steps for time-based cost evaluation. However, they will improve the load
balance only if load does not change too frequently, as load prediction always depends on previous
measurements. propagated directly and the algorithm terminates.

3.4 Communication Structures for OpenMP and MPI

Communication in parallel frameworks is usually handled by exchanging a ghost boundary layer, which
is a single extra layer of elements that surrounds a partition in the simplest case, usually called a depth-1
ghost layer. By exchanging ghost elements, operators that access adjacent elements retain a black-box
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view on the grid and assume the existence of neighbor data. The adaptive mesh refinement library
p4est [28–30], which is used in the finite element library deal.ii [17] for example, employs a depth-1
ghost layer for communication on an octree-based grid. While the application of a kernel interface for
such an approach is simple, the disadvantage of this approach is that the structural overhead for transfer
of all edge and vertex data associated with an element may be large.

Thicker ghost layers are possible: firedrake [42] uses a depth-2 ghost layer in its PyOP2 backend
[95], which contains two element layers instead of one. The benefit is the possibility of overlapping
computation and communication; however, scalability may suffer for computationally cheap problems
due to the large memory overhead.

In contrast, Peano [89] uses a depth-0 ghost layer to reduce the memory overhead, especially on
higher dimensional grids [126]. In this variant, only the interface between elements is exchanged for
communication. Peano additionally bases its communication purely on vertex migration, as exchange
of any k-dimensional entities quickly becomes complex and expensive with growing k.

Due to the decision of prohibiting random access to vertex and edge data in sam(oa)2, communica-
tion of element data is complicated on a ghost layer with depth ≥ 1. Thus, with memory overhead in
mind, the canonical choice for sam(oa)2 is a depth-0 ghost layer. A purely vertex-based communication
as in Peano is not necessary though, as grids in sam(oa)2 are always two-dimensional. Furthermore,
edge data may be exchanged in addition to vertex data.

To be able to communicate boundary data, each boundary vertex/edge must know its respective
communication sections in sam(oa)2. Bounded by the vertex degree, up to 8 sections may share a single
vertex, hence direct storage of communication information with the vertex/edge data is not feasible. For
efficient access, communication information is compressed in a run-length encoded list, as suggested
in [111]. First, we discuss how communication lists are used to exchange boundary data. Afterwards,
the incremental generation of these lists is presented.

3.4.1 Mixed Peer to Peer and Master Slave Communication

Consider k > 1 sections that share one boundary vertex. Then, we assume that each copy owns partial
data, which must be merged into a complete state by some accumulative operator. For example, this data
could consist of partial residual updates, net updates from a flux solver, or boolean values that indicate
whether a vertex is in a fluid obstacle. Once the partial data is fully accumulated, the complete data
should be distributed to all copies of the vertex.

There are a couple of ways to exchange the data located on each copy of the vertex. In Figure 3.6a,
a peer-to-peer communication pattern is used that issues k2 messages and correspondingly requires k2

storage slots for ingoing messages. The advantage is that communication is finished within a single
iteration. Figure 3.6b and Figure 3.6c show a master-slave communication pattern where 2 (k − 1)
messages are sent in total. Collecting, merging and broadcasting messages in a master section requires
two communication iterations in total. Hence, the first option is better if communication is latency-
bound and the second option is better if communication is volume-bound. Therefore, sam(oa)2 applies
the peer-to-peer method for MPI communication, which typically involves large latencies. The master-
slave method is used for intra-process communication. OpenMP threads communicate implicitly via
shared memory, which is more suitable for the master-slave method as thread synchronization has very
little latency.

Together, a three-step communication scheme results. In the first step, the process boundary ver-
tices/edges are sent as soon as a section is processed in order to overlap some communication with
computation. We estimate the resulting execution time tn for n sections by defining ci and si as com-
putation time and asynchronous communication time of a section i ∈ {1, . . . , n}. Execution time is the
elapsed time until all computation is done and all communication data has arrived at neighbor sections.
The MPI communication latency is denoted by λ. With a proof by induction, one can show that in a
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(a) MPI peer-to-peer exchange (b) Intra-process accumulation (c) Intra-process broadcast

Figure 3.6: Three-step communication scheme in sam(oa)2. The first step is to exchange boundary
vertices and edges in MPI between distinctly colored sections. In the second step, a designated owner
vertex/edge collects updates from all its duplicates and the ghost vertices/edges. Finally, in the third
step, updates are broadcast to the copies again. Yellow colored vertices are communication sources and
white colored vertices are destinations.

peer-to-peer topology

tn = max
k∈{1,...,n}

(
k∑
i=1

ci +
n∑
i=k

si

)
+ λ (3.29)

As the boundary data of the last section cannot be sent as long as its computation phase is not finished,
latency cannot be hidden by the scheme. However, if n > 1 and ci+1 > si for each i < n, most of the
asynchronous communication will be hidden during computation. Then,

tn =

(
n∑
i=1

ci

)
+ sn + λ, if ci+1 > si for each i ∈ {1, . . . , n− 1}. (3.30)

Hence, there is some overlapping of communication and computation, but latency is still visible. The
amount of visible, asynchronous communication sn can be reduced by increasing the ratio of sections
per core, which we already introduced as a command line parameter in sam(oa)2.

After all sections are processed, the designated owner of each vertex merges the partial data from all
process neighbors and local section neighbors. Finally, the data is distributed again to the local neighbor
sections to establish a consistent data view again among sections.

The problem of finding an owner for each boundary entity is not trivial as each section should
be able to decide independently if it is the owner of an entity in order to avoid unnecessary logic and
communication. A simple, parallel scheme would decide ownership based on which participating section
has the lowest index. On the one hand, the section with the lowest index would end up with the most
work, as it would have to merge all its boundary data. On the other hand, the section with the highest
index has nothing to do. To achieve a better balance, sam(oa)2 assigns only the outer half of the entities
shared by two sections to the section with the lower index, the inner half is assigned to the section with
the higher index. Assume that a pair of sections shares four vertices, then the first and the last vertex are
owned by the section with the lower index. The second and third vertex are owned by the section with
the higher index. By assigning the first and the last vertex to the same section we avoid contradictions
and ensure that all sections assign identical entities to the same section.
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3.4.2 Incremental Generation of Sections and Communication Structures

Setup and initial distribution of the grid are handled in sam(oa)2 by its adaptive mesh refinement and
load balancing functionalities. The grid is incrementally refined and distributed, which eliminates the
need for a heavy-weight partitioning scheme. Hence, the execution of a scenario is divided into two
phases. An initialization phase sets up a grid with an initial condition for a system of partial differential
equations. Afterwards, a time step phase implements the time integration scheme.

At the beginning of the initialization phase, the grid is a square that consists of two triangles in
Sierpinski order. Step-by-step, the grid is successively refined and balanced, where more and more
sections are generated and distributed to MPI ranks and OpenMP threads until a scenario-dependent
local refinement criterion is met. If the requested degree of parallelism is not reached at this point,
the problem is considered too small and it will run on a lower number of cores. Afterwards, the time
integration phase follows, where the locally refined and partitioned grid is used for further computation.

This process is also suitable to build communication structures without the need of global commu-
nication. As stated before, run-length encoded lists are used for this purpose [111]. For the initial pair of
triangles, a single list with a single entry is created that marks all boundary entities as part of the domain
boundary. Consider a grid, for which valid communication lists exists. Then the only two components
of sam(oa)2, which can invalidate the lists, are MPI load balancing and remeshing. Hence, the lists must
be updated only in these two components.

Update of Communication Structures during MPI Load Balancing

Only small changes are necessary to the communication structures during MPI load balancing. Each
section uses the existing communication list to send its new location to all its local neighbor sections
and its process neighbor sections, whether it is migrated or not. When the neighbor sections receive the
information, both parties change their communication structures accordingly and the process is com-
plete.

Update of Communication Structures during Remeshing

When sections are locally repartitioned during adaptive mesh refinement, they are rebuilt from scratch.
Hence, the same action is necessary for the communication structures of each section. However, we
exploit the knowledge that MPI communication does not change topologically during local repartioning.
The algorithm additionally requires the existence of the distance of each boundary vertex to the root
of the communication tree. To understand the origin of this number, Figure 3.7 illustrates how the
Sierpinski curve splits the set of boundary vertices and edges into a red and a green tree. Each red/green
boundary vertex stores its vertex distance. Distance in this context denotes the length of the shortest
path to the red/green root vertex in the red/green communication tree. To allow integer computation,
edge lengths are defined in the Manhattan metric. For simplicity, the crossed edges are considered part
of the red communication tree in sam(oa)2.

In addition to vertex distances, we define separately for the red and green tree the red/green section
distance as the minimum over the distances of each red/green boundary vertex in the section. An algo-
rithm that finds all communicating section pairs based on this information is described in Algorithm 3.3.
It receives the list of section distances and the section distances of all process neighbors as input for a
single color. For each section, a search distance is defined, which is +∞ initially. Then, each section
distance in the list is compared to the search distance in a radial search pattern. When a section with a
distance less than or equal to the search distance is found, the matching section is added to the list of
neighbor sections and the search distance is decreased to the distance of the matching section. Once the
search distance is lower than the section distance, all neighbor sections have been found for the specific
section and the algorithm proceeds with the next section.
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Figure 3.7: Setup of red and green communication trees. Each boundary vertex in the communication
tree stores a distance value, which is defined as the Manhattan length of the path to the root node. For
each section, the red/green section distance is the minimum of the red/green vertex distances. Hence,
red/green section distances are (0, 0) for the teal section, (4, 4) for the yellow section, and (8, 0) for the
green section. Gray edges are crossed by the Sierpinski curve, which is represented by the black line.
Crossed edges can be treated independently, as they are always exchanged between consecutive sections
in Sierpinski order.
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The idea is that distances are equivalent to the stack index of a vertex in a sequential traversal. Hence,
if two sections have a boundary vertex with a given stack index and no other section in between has a
vertex with a lower stack index, then both vertices must be identical. Time complexity of the algorithm
depends on the average number of neighbor processes x for each process. We estimate the number
by modeling the communication topology as a planar, bounded-degree graph G = (V,E), where the
faces of the graph correspond to partitions in the grid. An edge corresponds to an interface between
exactly two partitions, and a vertex corresponds to interfaces between three or more partitions. There is
a communication interface for each pair of processes that shares an edge or a vertex j, hence there is 1
interface per edge and there are deg(j) choose 2 interfaces per vertex, where deg(j) denotes the degree
of the vertex i. Therefore, the total number of communication interfaces i is

i ≤ e+ deg(G)2v = e+ deg(G)2(e+ 1− f) ≤ (3
2f + 3

2) + deg(G)2(1
2f + 3

2 + 1) (3.31)

where e = |E|, v = |V | and deg(V ) is the maximum vertex degree in the graph. The average number
of neighbor processes per process is therefore

x =
i

f
= 3

2 + 1
2 deg(G)2 + o(1). (3.32)

Hence, if the algorithm is executed in parallel, the average time complexity is

O
(
n

p

(
n

p
+
n

p
x

))
= O

(
n2

p2

)
. (3.33)

As n
p is a constant, the algorithm runs in constant time on average. Note that the worst case complexity

is linear in n, as a section can theoretically degenerate to a state where it shares interfaces with all other
sections.

3.5 Conclusion: A Configurable Parallelization Toolkit

In this chapter, a configurable parallelization toolkit based on splitting a grid into Sierpinski sections was
presented. Corresponding extensions to the kernel interface that allow flexibility in the design of parallel
algorithms were added. A new load balancing approach was implemented, suitable for homogeneous
and heterogeneous kernels while assuming a strict black-box view of computation kernels. Communi-
cation is optimized for hybrid parallelization, which reduces redundant computation within a process
to the necessary minimum and allows some overlapping between computation and communication in
distributed memory.

While many use cases are covered by the methods presented here, there are some limitations: Load
balancing with intermediate synchronization points does not scale, which is problematic if a scenario
contains multiple phases with heterogeneous load. A hierarchy of increasingly powerful and expensive
load balancing algorithms that reflects the network topology could be built to mitigate the problem.
Depending on the imbalance, load would be propagated either within processes, nodes, islands or full
systems – as it is already done for shared and distributed memory. Still, the problem of accurately
predicting load of heterogeneous phases would have to be solved. Currently this is not possible, as
time-based cost evaluation can only extrapolate previous measurements.

Furthermore, sam(oa)2 has little influence on the size of the partition boundaries, which may become
arbitrarily large for any type of space-filling curve partitioning. There is no obvious solution, as even
coarse grain partitioning cannot prevent the problem. In practice however, the worst case is highly
unlikely as it is purely artificial.

Finally, the algorithms are mainly designed for homogeneous systems that consist of equivalent com-
putation nodes. As heterogeneous systems – e.g. the SuperMIC system [119], a mixed Intel Ivy Bridge
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Algorithm 3.3: Neighbor section search in sam(oa)2, that compares vertex distances to find all ad-
jacent sections. The algorithm is executed once for the red and once for the green communication
tree. It receives the number of sections per process n

p , the lowest possible neighbor section index
a, the highest possible neighbor section index b, and the neighbor section distances {da, . . . , db}
as input. The output is a list of adjacent sections Si for each local section i = 1, . . . np .

Input: n
p , a, b, {da, . . . , db}.

Output: (Si)i=1,...,n
p

.

// Define domain boundary distances
da ← −∞ ;
db ← −∞ ;

// Incrementally compare pairs of sections for distance overlaps
for i← 1 to n

p do
s← +∞ ;
for j ← i− 1 to a step −1 do

if dj ≤ s then
appendLeft (Si, j) ;
s← dj ;
if s < di then break ;

end
end

s← +∞ ;
for j ← i+ 1 to b do

if dj ≤ s then
appendRight (Si, j) ;
s← dj ;
if s < di then break ;

end
end

end
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and Intel Xeon Phi cluster – will become more and more prevalent in the future, high-performance soft-
ware take process-dependent hardware capabilities into account. Hence, a short outlook with focus on
load balancing of processes with heterogeneous execution rates is given in Appendix A. However, the
theory is not considered central to the thesis, as scalability tests will be conducted purely on homoge-
neous high-performance clusters.
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4
Generic Traversals for Adaptive Mesh Refinement

This chapter dicusses first, how to design an interface for finite element and finite volume methods that
supports adaptive mesh refinement and parallelization. Second, an implementation of an interface based
on Sierpinski curve traversals is presented.

For most interface components, well-established solutions already exist. Firedrake [42, 95] and
Dolfin [71] are compilers for the domain-specific language UFL (Unified Form Language [3]) and part of
the FENICs project [2,41,70]. Essentially, both projects are finite element frameworks for the solution of
partial differential equations. Based on a problem definition in weak formulations, they allow translation
of a high-level, mathematical description into a mesh discretization by automatic differentiation. In
Dolfin, adaptive mesh refinement is supported by an automated generation of refinement indicators
and interpolation/restriction methods [70]. However, the implementation is restricted to finite element
methods.

The PDELab [18, 19, 40] extension of DUNE (Distributed Unified Numerics Environment [39])
chooses a residual-based formulation that separates grid iterations into three logical stages. A volume
operator executes element-local computations, such as the evaluation of volume integrals. Afterwards,
a skeleton operator iterates over the interfaces between each adjacent element pair. The operator has
read and write access to both elements and is intended e.g. for flux computations in finite volume and
discontinuous Galerkin methods. Third, a post-skeleton volume operator is called. Its functionality is
identical to the volume operator. For example, it is used to apply element state updates after accumula-
tion of interface fluxes. With support for a large collection of local function spaces, the interface offers
great flexibility in design of finite element, finite volume and discontinuous Galerkin solvers. Adaptive
mesh refinement is currently not provided.

The interface of Peano [89, 126] complies strongly with an event-based view on grid traversals,
where iterators over vertices are realized by a first-touch and a last-touch policy in loops over elements.
We define that a vertex is touched if it is adjacent to an element that is iterated in the loop. Hence, the first
touch of a vertex is the first iteration, where a vertex is touched in the element loop, and analogously for
last touches. Whenever a first touch or a last touch occurs, a corresponding first-touch operator or last-
touch operator is invoked on the vertex. This design guarantees that operations on elements are always
called after the first-touch operators and before the last-touch operators. Thus, multi-stage algorithms
with data dependencies may be implemented in a single grid traversal.

Despite all its advantages, the UFL is not a suitable candidate for sam(oa)2, as the main motivation
for the interface should be flexibility. Support for adaptive mesh refinement is only provided for finite
element methods in the language, which does not suffice for our purpose. However, the support of
domain-specific languages is a possible future extension.

Due to their similar design principles, sam(oa)2 adopts the finite element interface of Peano, supply-
ing first-touch and last-touch operators for component-wise updates. Though, sam(oa)2 defines them on
all grid entities, which include cells, edges, and vertices. An element operator communicates between
cell-local grid entities during the grid traversal.

To support finite volume solvers, sam(oa)2 provides skeleton operators based on the design in DUNE
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PDELab, but with different access rules. While the skeleton operator in PDELab allows direct manipula-
tion of cell data, sam(oa)2 permits read and write access only to the interface in the operator. This means
that the input and output of the operator must be stored locally on each interface, which is necessary due
to the constraints imposed by the stack-&-stream approach.

Any grid data in sam(oa)2 may be accessed only via grid traversals, which are loops over all cells
in Sierpinski order. Edge and vertex data is accessible inside of a traversal. Furthermore, adaptive
mesh refinement is supported, but as topological changes to the grid cause instruction and memory over-
head, sam(oa)2 separates between implementations of static grid traversals and adaptive grid traversals.
Static traversals may touch and change any data located on the grid, but do not issue topological changes
during a traversal. Adaptive traversals explicitly offer an interface for refinement and coarsening of grid
data. For example, linear solver iterations or file output are realized by static traversals; interpolation
and restriction of unknowns by adaptive traversals. This classification into two traversal types allows
sam(oa)2 to reduce complexity and apply traversal-specific optimizations. This chapter focuses on the
interface design of both traversal types and the underlying implementations.

4.1 Kernel Concept for Static Grid Traversals

In order to provide flexibility for applications, sam(oa)2 offers finite element and finite volume interfaces
for static grid traversals [76]. Applications are not restricted to a single interface type, both may be used
during one program execution and even at the same time in a single grid traversal.

The design of the framework is event-based. Hence, the user implements kernels in callback func-
tions that are invoked by the program core for static grid traversals. An overview of the available set
of operators for static traversals is illustrated in Figure 4.1. Using a template implementation, realized
by preprocessor macros, the grid layer implements a grid iterator based on Sierpinski traversals. For
each element in the grid, the stack-&-stream automaton reads and writes cell, edge, and vertex data. In
sam(oa)2, an element is defined as the union of a cell, its three adjacent edges, and the corresponding
vertices. As stack and stream sizes do not change in static traversals, there is no need to separate be-
tween input and output streams. Thus, sam(oa)2 uses the same stream for data input and output, reducing
memory requirements and improving the access speed due to improved caching behavior.

Applications may access any data in the element, but stencils that reach further than a single element
are prohibited. The reason for this restriction is that these accesses would violates the rule of accessing
data consecutively in the stack-&-stream system. Hence, the interface defined in the hook layer enforces
these local data visibility rules. At the same time, the hook layer is designed to offer flexibility to
applications that implement algorithms based on grid traversals in sam(oa)2. Above the hook layer there
is a kernel layer that implements numerical operators and other application-specific functionality, which
is independent of the grid. Some examples for implementations of kernels in sam(oa)2 will be presented
in Chapter 5 and Chapter 8. Going into detail, the finite element interface is investigated first, and
afterwards the finite volume interface is discussed.

4.1.1 Finite Element Interface

As mentioned earlier, sam(oa)2 provides a finite element interface that is constructed similarly to the
one in Peano [89]. Algorithm 4.1 shows the logical execution order of finite element operators in a
single grid traversal. The first-touch and last-touch operators are called once for each entity in the
grid in the beginning and the end of the traversal, respectively. The operators perform component-wise
manipulations of vector data located on the entities, such as initialization of degrees of freedom in a first
DoF kernel or application of an update in a last DoF kernel. In Peano, entities correspond to vertices,
but sam(oa)2 extends the definition to any cell, edge, or vertex in the grid to allow more flexibility in the
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Figure 4.1: Overview of the kernel design for static grid traversals. In an event-based pattern, a fi-
nite element and finite volume interface provide sets of operators that are invoked from the grid layer.
Application-dependent kernels are implemented on top of the operators.

design of algorithms. Between the first-touch and the last-touch operators an element operator is called
that allows manipulation of element data. The operator is fairly powerful as it offers read and write
access to the full element. It may be used to implement a matrix-vector product in a volume kernel based
on element matrices for example. Pre-traversal and post-traversal operators are intended for scalar
operators on global variables such as the computation of a global time step or an update step for a linear
solver.

Algorithm 4.1: Finite element interface of sam(oa)2. The first-touch and last-touch operators iter-
ate over all entities (cells, edges, and vertices) in the grid, allowing execution of component-wise
operations on vectors. An element operator has read and write access each cell and its adajcent
edges and vertices. Pre- and post-traversal operators perform scalar updates on global variables.

Input: grid
Output: grid
call PreTraversalOp(grid);
foreach entity in grid do call FirstTouchOp(entity) ;
foreach element in grid do call ElementOp(element) ;
foreach entity in grid do call LastTouchOp(entity) ;
call PostTraversalOp(grid);

4.1.2 Finite Volume Interface

The finite volume interface of sam(oa)2 provides additional functionality to the finite element interface
by offering methods specifically intended for cell-centered finite volume methods and discontinuous
Galerkin schemes.

In the logical execution order of a traversal as described in Algorithm 4.2, a cell-to-edge operator is
called first on each combination of adjacent cells and edges. Inside the operator, a cell representation of
some kind is determined and stored on the edge. The skeleton operator then computes two cell updates
from the representations and stores them in the edge. Afterwards, the cell-update operator applies the
computed net updates to the cell. For classical finite volumes, the cell-to-edge operator would call
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a projection kernel that defines a cell representation simply as a copy of the cell state. The skeleton
operator invokes a flux solver kernel is called which computes net updates from the cell states. Finally,
the cell-update operator calls a net update kernel that accumulates the net updates in each cell to advance
the cell state in time.

Algorithm 4.2: Finite volume interface of sam(oa)2. The cell-to-edge operator is called first for
each cell and each edge that are adjacent to each other. A cell representation is created and stored
on the edge. The skeleton operator iterates over all edges and compute pairs of cell updates from
the representations of both neighbor cells. Finally, these updates are applied to each cell in the
cell-update operator.

Input: grid
Output: grid
foreach element in grid do

foreach edge in element do
call CellToEdgeOp(cell of element, edge);

end
end
foreach edge in grid do call SkeletonOp(edge) ;
foreach element in grid do

call CellUpdateOp(cell of element, edges of element);
end

4.2 Kernel Concept for Adaptive Mesh Refinement

Adaptive mesh refinement is supported by sam(oa)2 in a dedicated traversal type where the current grid
is discarded and replaced by a new grid with a different topology. An overview of the corresponding
interface is given in Figure 4.2. Requests for topology changes are issued in previous grid traversals by
setting a flag in each cell, signaling that it should be refined, coarsened, or passed unaltered to the new
grid.

When a new grid with the requested topology adjustments has been created, a traversal is started that
processes both old and new grid synchronously. Algorithm 4.3 shows the execution order of operations
for adaptive traversals. First-touch and last-touch operators are supported only on the destination grid,
as the source grid is discarded after traversal. The refinement, coarsening, and transfer operators provide
functionality for passing data from the source grid to the destination grid, while applying numerical
operators. Each operator receives a single element from the source grid, a single element from the
destination grid, and their correlation as input. The correlation is given by a refinement path, that is
encoded in a tuple of integers, which indicate whether an element is the first or the second child of
the previous element. Consider an element that is refined twice, where the destination element is the
second child of the first child of the source element. Then the path argument is the tuple (1, 2). With
this method, an expensive change of basis is avoided and simpler schemes that exploit the geometrical
structure of the grid may be used.

4.3 Extension of the Kernel Interface for Parallelization

Following the stack-and-stream approach, single sections are processed sequentially in Sierpinski order.
Multiple sections execute local operations in parallel, which are defined as operations without overlap-
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Figure 4.2: Overview of the kernel design for adaptive grid traversals. Similar to static traversals,
sam(oa)2 provides a set of operators for refinement, coarsening, and transfer, i.e. copying, of element
data from an old grid to a new grid.

Algorithm 4.3: Adaptive traversal interface of sam(oa)2. The first-touch and last-touch opera-
tors iterate over all entities in the grid, allowing execution of component-wise operations on vec-
tors. An element operator has read and write access to the full element. Pre- and post-traversal
operators perform scalar updates on global variables. The function evaluations isChildOf(a, b),
isParentOf(a, b), and isEqual(a, b) are true if and only if element b is a child of element a, b is the
parent of a, and b is equal to a, respectively.

Input: srcGrid
Output: destGrid
foreach entity in destGrid do call FirstTouchOp(entity) ;
foreach srcElement in srcGrid do

foreach destElement in destGrid do
if isChildOf(srcElement, destElement) then

call RefineOp(srcElement, destElement);
else if isParentOf(srcElement, destElement) then

call CoarsenOp(srcElement, destElement);
else if isEqual(srcElement, destElement) then

call TransferOp(srcElement, destElement);
end

end
end
foreach entity in destGrid do call LastTouchOp(entity) ;
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ping write access. For example, an operation that writes cell data by reading from adjacent operations is
local, but an operation that writes from cell data to boundary vertex data is not local.

The finite volume interface as explained in Section 4.1.2 does not need adjustment, as the cell-
to-edge, skeleton and cell-update operators follow the rules for local operations. In the finite element
interface, the element operator is not local, as it allows write access to adjacent edge and vertex data. To
handle this issue, sam(oa)2 classifies this type of data access as one-sided write access to local copies
of edges and vertices. Hence, element operators store incomplete information on boundary edges and
vertices, which may be merged with missing data later to form a full update.

To perform this operation, we introduce an additional merge operator to the interface that receives
any pair of boundary edges or vertices during a communication phase and merges their data. This
addition specifically targets residual-based formulations that require accumulation of partial residuals
on vertex or edge unknowns. The corresponding extensions to the kernel interface are displayed in
Algorithm 4.4.

After merging, the last-touch operator is called on each vertex and each edge. Note that since this
operator is executed after the communication phase during grid traversal, the last-touch operator must
be called locally on each entity of the grid – especially boundary edges and vertices – to guarantee
consistency of data across all sections. See Section 3.1 for the definition of sections.

Hence, in the logical execution order, the last-touch operator will be called multiple times on the
same boundary entity. This causes problems if a global accumulation such as the computation of a
vector norm is performed, which requires a unique invocation for each logical entity in the grid. For
this purpose, an additional reduce operator is introduced into the interface. The operator provides only
read access to each entity and is guaranteed to be called exactly once per logical entity. As the reduce
operator is not allowed to modify data, it cannot lead to inconsistent copies of boundary entities across
different sections.

Sections are processed in parallel, which means that access to global data must be restricted during
the traversal. Additional operators are included to handle global data. The pre- and post-traversal opera-
tor of the grid allow sending global and process-local data such as time step sizes or residual norms back
and forth between the grid and its sections. An additional pre- and post-traversal operator is executed
concurrently on each section, where section-local variables may be initialized or processed.

Lazy Broadcasts in Shared Memory

Algorithm 4.4 reveals a problem in the communication pattern presented in Section 3.4.1. Commu-
nication of boundary data must be finished before the last-touch operator is invoked, as the last-touch
operator expects fully accumulated updates in each boundary entity. Hence, first-touch and last-touch
operators must be called symmetrically on section boundaries by each section that owns a copy of an
entity. This is necessary to keep the grid in a consistent state among all sections. Executing the oper-
ators redundantly can cause scalability problems though if the operators happen to be very expensive.
Hence, sam(oa)2 postpones the broadcast phase of the communication in Figure 3.6c until the first-touch
operators in the next traversal have been called. The first-touch and last-touch operators are no longer
executed on each copy of a boundary entity, but only on sections that are local owners of the entity within
a process. On process interfaces, we still have to execute the operators redundantly as it is not possi-
ble to postpone broadcasting to other processes without adding a second MPI communication phase.
Hence, redundant calls to the operators are eliminated within processes, which is particularly beneficial
for hybrid OpenMP+MPI parallelization.
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Algorithm 4.4: Parallel extension of the finite element interface in Algorithm 4.1. The new opera-
tors are marked in red color. Pre- and post-traversal operators on the grid allow passing global and
process-local data between grid and sections, pre- and post traversal on the section allows concur-
rent initialization and processing of section-local data. The merge operator is a communication
operator for accumulating data on the interface between adjacent sections.

Input: grid
Output: grid
call PreTraversalOp(grid);
foreach section in grid do

call PreTraversalOp(section);
foreach entity in section do call FirstTouchOp(entity) ;
foreach element in section do call ElementOp(element) ;
// Exchange boundary data here
foreach locally owned boundary entity in section do

call MergeOp(locally owned boundary entity);
end
foreach entity in section do call LastTouchOp(entity) ;
call PostTraversalOp(section);

end
foreach globally owned entity in grid do

call ReduceOp(globally owned entity);
end
call PostTraversalOp(grid);

4.4 Implementation of Static Grid Traversals

While the original implementation of grid traversals was based on recursive traversal of a refinement tree
[9], it was soon discovered that significant speedup could be achieved by dropping the recursive traversal
of the tree. Instead, a loop-based algorithm was applied [125] that treats the grid similar to triangle strips
in computer graphics [87, 124] and iterates over a list of edge-connected elements. The function call
overhead is reduced and compiler optimizations for loops are made possible, which otherwise would be
prevented by the code structure. Furthermore crossed edges, i.e. edges that are crossed by the Sierpinski
curve, are stored in a dedicated stream without requiring stack access to reduce the amount of memory
operations. Eventually, the refinement tree is only required for adaptive refinement and coarsening. This
optimization causes a significant performance improvement for memory-bound problems [10].

4.4.1 Stack and Stream Access Pattern

In sam(oa)2, grid traversals are realized by the loop implementation presented in [125]. A disadvantage
of this method is that all structural information must be stored explicitly in the cell data. For each
element, the grid iterator must decide how much cell, edge, and vertex data is located on the streams and
the stacks, which data is assigned to which entity, and how the entities are oriented and positioned in the
grid. In contrast, a recursive traversal can pass this information through the refinement tree.

To solve the problems of data location and data assignment, sam(oa)2 uses a turtle grammar for
classification of elements as depicted in Figure 4.3 and described e.g. in [8]. Data on cells and the
crossed edges p and n are always accessed from streams, independent of the triangle type. Hence, cells
store structural information that contains the turtle grammar type of the cell. As described in [125], the
color of the color edge c must be known to determine if c and its adjacent color nodes cin and cout are
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Figure 4.3: Turtle grammar for the classification of elements in the grid. The triangle type defines
for each entity, whether it is accessed on a stream, on the red stack, or on the green stack. Both the
previous and the next crossed edge p and n are always accessed from a dedicated crossed edge stream.
Color edges and vertices are read from the input stream if they are marked in blue, and written to the
output stream if they are marked in black. In all other cases, they are accessed on the stack. Note that
the classification into the types K, V , and H is only relevant to the stack-&-stream system in order to
determine the color of the color edge. The actual purpose is to define the orientation of each element
relative to its predecessor in the Sierpinski order.

located on the red or green stack/stream. To decide whether a first touch or a last touch of an entity
occurs entity, an additional classification into old elements and new elements is necessary. On the first
touch, an entity is read from the stream and on the last touch it is written to the output stream. At any
other time, it is accessed on the stack.

Hence, for each new element, c and the input color node cin are touched for the first time and the
output color node cout is neither touched for the first nor last time. In old elements, cout and c are
touched for the last time, whereas cin is touched neither for the first nor last time. The transfer node t
is never touched for the first nor last time. To avoid branch evaluation during runtime for each case,
sam(oa)2 ensures that the most frequent triangle types are implemented in a template pattern. Hence, a
single switch-statement per element is necessary to define the stream and stack access patterns.

The geometric correlation between cin, cout, t, the two leg vertices and the hypotenuse vertex is
encoded in the turtle grammar in Figure 4.3. To determine the element orientation in space, an additional
integer between 1 and 8 is stored to mark the 8 different orientations in 2D space where each orientation
with consecutive numbers is obtained through a rotation by 45◦. We refer to this classification as plotter
grammar [8]. Additionally, sam(oa)2 distinguishes between forward and backward triangles, where
the reverse orientation is indicated by a negative index between −8 and −1. Positions are tracked by
incrementing the coordinates of the previous element in the traversal with the element orientation.
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4.4.2 Additions for Temporary Data and Boundary Treatment

For the purpose of communication and treatment of boundary conditions, boundary data is stored in its
own stream to provide a stride-free view that is used as a memory buffer for communication. Hence, the
traversal automaton stores another flag in each cell to mark boundary elements. In boundary elements,
the color edge and the two color vertices are classified as boundary entities that are read from or written
to boundary streams.

In addition to persistent data, sam(oa)2 also allows storage of light-weight temporary data for each
vertex that exists only for the duration of a single traversal. This is realized for color edge and color
vertices by simply adding the temporary data to the stack.

4.4.3 Data Access Optimizations

In our implementation described in [76], temporary cell, edge, and vertex data is stored in small ring
buffers, as illustrated in Figure 4.4, where temporary data is cached until it is discarded. The problem
of the ring buffer approach is the large amount of memory operations required to shift data back and
forth. Vertex data in particular must be copied at least twice for each element traversal, namely into
and out of the vertex buffer. To reduce the amount of memory traffic, sam(oa)2 discarded vertex buffers
and accesses vertex data directly on the stacks. Actual memory operations occur only when data is read
from input streams or written to output streams, while all access on the stacks is performed in-place.
Similarly, all color edge data is accessed directly on the stacks. Temporary cell and crossed edge data is
still stored in ring buffers though.

To improve the cache efficiency, input and output streams share the same memory location in static
grid traversals. This is a valid approach, as streams are implemented as arrays of fixed size in sam(oa)2,
due to their fast access compared to dynamic data structures. Any entity that is overwritten in the output
stream must have already been read from the input stream and is stored either in the stack or in another
location of the output stream. Hence, no true data dependencies occur.

4.4.4 Out of Order Execution of Interface Operators

During grid traversals, the actual order of operations in the finite element and finite volume interfaces
intermingles calls without following the specified logical order. The reason for this behavior is that the
exact location of an entity in memory is only determined during the traversal when cells are processed
in Sierpinski order. Whether a grid entity is accessed for the first time, the last time, or in-between
is defined by the turtle grammar. Then, the corresponding operators in the hook layer are invoked by
the same logic. However, it is ensured that the logical order of operations is only relaxed where data
dependencies are not violated by switching the order. Element operators are called as soon as all data
of an element has been read and before it will be written back to the stack-&-stream system. Another
reason for intermingling operator calls is to minimize the lifetime of temporary data during a traversal.
With the existing scheme, a temporary data structure is initialized on the first touch and discarded on the
last touch of each entity, requiring storage only on the stacks, which leave a smaller memory footprint
than the streams. This memory optimization reduces the storage requirements for many algorithms that
have to handle intermediate results. For example, a Jacobi solver for linear equation systems stores an
accumulated residual in a temporary variable that is created at the beginning of an iteration and discarded
at the end. This data is located purely on stacks during a grid traversal.

4.4.5 Pipelined Implementation of Finite Volume Operators

The reason for persistent storage of cell representations is that the finite volume algorithm as described
in Algorithm 4.2 cannot be executed in a single traversal. The problem is that a cell-to-edge operator
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Figure 4.4: Ring buffer storage of vertex data in a Sierpinski grid: The implementation in [76] uses
cell-associated vertex buffers, which are represented by white squares in each triangle center, to store
temporary vertex data that are initialized on the first touch of a vertex and held in a ring buffer until it
is discarded. The blue marked element along with its vertices and edges is currently processed in the
traversal, the yellow elements hold vertex data required for the processed element and the gray elements
are discarded. As a vertex is shared by up to eight elements, the ring buffer has to contain at least eight
entries to avoid data collisions. Vertex buffers are replaced by direct stack access in sam(oa)2.

can be called earliest when a cell is touched for the first time. Hence, whenever a skeleton operator
is called on an edge, both cells adjacent to the edge must have called the cell-to-edge operator for the
corresponding cell-edge pair. However, this implies that the iterator must have passed through one of the
cells and is located already in the second cell. Therefore, the cell-update operator can be only applied
to the second cell, as a return to the first cell is not possible in the same traversal. To solve this issue,
either the cell-update operator must be postponed to the next traversal, or the cell-to-edge operator must
be called in advance in the previous traversal.

The problem with late cell updates is that they violate data dependencies, as any access to cell data in
the post-traversal operator will occur before the cell update and therefore, potentially include incomplete
results. In contrast, early cell-to-edge calls only require an early creation of cell representations for
the skeleton operator. Hence, if invocation of the skeleton operator is scheduled carefully, no data
dependency problems occur.

For sam(oa)2, we chose early cell-to-edge calls over late cell updates in order to uphold data depen-
dencies. Applications are enforced to invoke the cell-to-edge operator in each traversal to ensure that
the cell representations are always available. In a finite volume scheme, redundant calls to the operator
are comparably cheap and therefore no major impact on the performance is expected. This implies that
adaptive traversals call the cell-to-edge operator, too, to ensure that cell representations are available to
the skeleton operator in the next traversal. In order to pass cell representations to the next traversal, a
single cell representation for color edges is stored in persistent memory. All other representations and all
updates are located in temporary storage. To sum up, by using a pipelining scheme for the cell-to-edge
operator, a finite volume time step is implemented in a single grid traversal.
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Figure 4.5: Flow chart for conformity traversals. First, each section, as defined in Section 3.1, initializes
edge refinement and coarsening flags from the cell flags. Logical operators are iteratively applied in
independent loops over each section until a consistent refinement state is achieved for all cells of a
section. Edges that are shared between sections are synchronized when all sections are conform. If
necessary, the process is repeated again.

4.5 Implementation of Adaptive Grid Traversals

Adaptive mesh refinement in sam(oa)2 consists of three major components: First, conformity traversals
adjust the refinement flags in each cell. Second, a new grid is allocated where stream and stack sizes are
computed from their corresponding versions in the old grid and the refinement flags. Third, an adaptive
grid traversal is invoked that transfers data between the current grid and the new grid. The three steps
will be shortly explained in the following.

4.5.1 Conformity Traversals

In order to avoid the creation of hanging nodes during remeshing, the refinement flags in the cell must
be adjusted for mesh conformity. Hanging nodes are vertices that split faces only on one side of an edge.
Internally, sam(oa)2 invokes its conformity traversals before each adaptive traversal to iterate over the
refinement and coarsening flags until a consistent state is achieved. Refinement is performed if some
cell requests it, coarsening is allowed if all involved cells permit it. Coarsening of two cells that do not
belong to the same section is always forbidden. The scheme is implemented according to [111,123] and
is displayed in Figure 4.5.

4.5.2 Grid Allocation

Once conformity has been established, a new grid is allocated. Memory is reserved for all streams and
stacks of each section, which will be filled with data during the adaptive traversal. As explained in
Section 3.2.3, sam(oa)2 balances sections based on a cost model. Hence, the number of elements in each
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Figure 4.6: Estimating the number of boundary edges by the stack size. The blue elements mark a
section, where the red and green edges are located on stacks. Arrows indicate in which direction the
stacks are growing. Hence, the green stack contains at most 2 edges and the red stack contains at most 6
entries. Now, (4.1) implies that there are at most 18 boundary edges in the section, compared to 10
actual boundary edges.

section after adaptive refinement and local repartitioning should be determined from its intended cost.
Algorithm 4.5 computes for each section the number of elements it receives after remeshing. If section
splitting is enabled, the entire grid is cut into parts of uniform cost. Otherwise, if atomic sections are
used, each partition is cut locally. To find the correct number of total elements in a section, the algorithm
receives the post-refinement number of cells for each section as argument. This value is computed by
updating the current number of cells with the refinement flags in each cell. The output of the algorithm
is a queue that contains the number of cells in each destination section after the refinement and local
repartitioning.

For a single destination section with f elements, estimating the size of the remaining data structure
is fairly simple. In sam(oa)2, the stack sizes sred and sgreen are tracked for both colors along with the
conformity corrections. Using this information, the number of section boundary edges eb is estimated
by

eb ≤ 2 (sred + sgreen) + 2. (4.1)

This approximation is based on the idea that except for the two crossed edges on the boundary, all
boundary edges correspond to color edges in the entire grid. An edge is a section boundary edge if and
only if it is touched by exactly one element of the section, see Figure 4.6 for an illustration. Hence, if
we traverse the full grid and look only at the stack-&-stream operations performed on the elements of
the section, then all red section boundary edges must be either located already on the red stack before
the traversal, or end up on the stack after traversal. Therefore, the size of the red boundary is at most
twice the size of the red stack, as the stack is at most full before and after traversal and at least empty
in-between. The same holds for the green boundary.

Every cell is adjacent to three edges and every edge is adjacent to two cells, except for the bound-
ary edges, which are only adjacent to a single cell. Hence, the total number of cell-edge pairs must
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Algorithm 4.5: Computing the number of cells that each section receives after local repartitioning.
The input parameters are the number of sections n in the source grid, the total number of cores p,
the number of sections per core α, the post-refinement element count of each source section fi and
the cost of each section ci. The output is a queue F̂ that contains the number of elements of each
destination section.

Input: n, p, α, (ci)i∈{1,...,n}, (fi)i∈{1,...,n}
Output: F̂
D ← queue();
for i ∈ {0, α} do

Ci ←
i∑

k=1

ck;

end
// Cut the total cost into partitions for destination sections.
if isSectionSplittingEnabled then

// Section splitting: cut global cost into uniform pieces.
Cprocess ← MPI_Scan(Cα);
Ctotal ← MPI_Allreduce(Cα);
for i = 1 to αp do

d← i
αpCtotal − Cprocess + Cα;

if d > 0 and d < Cα then
enqueue(D, d);

end
end
enqueue(D, Cα) ;

else
// Atomic sections: cut local cost into uniform pieces.
for i = 1 to α do

d← i
αCα;

enqueue(D, d);
end

end

// Translate the cost partitions into numbers of elements.
i← 1;
F̂ ← queue();
dprev ← 0;
while not isEmpty(D) do

d← dequeue(D);
f̂ ← 0;
// The number of elements in a destination
// section is obtained by counting the
// elements in the destination cost partition.
while d > Ci−1 do

f̂ ← f̂ + |[dprev, d] ∩ [Ci−1, Ci]| fici ;
i← i+ 1

end
enqueue(F̂ , f̂ );
dprev ← d;

end
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be 3f = 2e− eb, where e denotes the total number of edges in the section. Therefore, we obtain

e = 3
2f + 1

2eb, (4.2)

As the number of crossed edges equals f − 1, the number of color edges ec satisfies

ec = 1
2f −

1
2eb + 1 <

1

2
f. (4.3)

Thus, a color edge stream of size 1
2f is sufficient to store all the color edges. A similar formula holds

for the vertices.

4.5.3 Adaptive Grid Traversals

Most of the mechanisms for static grid traversals are also applicable to adaptive grid traversals. On
the one hand, the stack-&-stream access pattern is the same and boundary data and temporary data are
similarly supported during adaptive traversals. Input and output streams are not identical though, as the
input streams are part of the old grid, while the output streams belong to the new grid and have different
sizes. Hence, there is more memory traffic in adaptive traversals, as the data volume on the streams is
doubled.

Apart from the addition of the kernel interface, two major implementation aspects were adjusted
compared to [125]. First, the refinement tree is completely removed from sam(oa)2. Second, a local
m : n-repartitioning algorithm is provided, which transforms m input sections into n output sections in
parallel for any numbers m and n.

The refinement tree was removed from adaptive mesh refinement in sam(oa)2, as most of the infor-
mation, which is necessary for refinement and coarsening is already contained in the turtle grammar type
and the plotter grammar type of each cell. The corresponding grammar decides how turtle and plotter
types of parent elements or child elements are defined [8]. The only missing information is whether
an element of the source grid is the first or the second child during coarsening. However, this is eas-
ily tracked by a Boolean flag that is switched back and forth for each coarsened source element. As
coarsening of elements across section boundaries is not allowed in sam(oa)2, the pattern of coarsened
elements is always alternating and starts with a first child as the first coarsened cell.

The actual grid traversal is realized by synchronized traversals of the source and the destination grid,
where the destination sections are parallelized by OpenMP threads. The most challenging task is to
find the correct start point in the source grid, i.e. the first source element that overlaps the destination
element. In order to do so, the source section that contains the source element must be found first.
Next, all streams in the source section must be incremented to the start location of the source element.
Additionally, vertices and edges must be pushed to the stacks.

Here, a two-step scheme is used. First the destination cell index is searched within the source
sections. Each source section already tracks its number of post-refinement cells as explained in Sec-
tion 4.5.2. Hence, the prefix sum of the number of post-refinement cells is computed for all source and
destination sections to determine start indexes of the source and destination sections. Then, a simple
comparison-based search finds the desired section. The second step is to traverse the source section until
the matching destination cell index is found. To do so, sam(oa)2 executes empty traversals, which iterate
through the stack-&-stream system until the desired cell index is reached. Afterwards, the data transfer
starts and the operators defined in the adaptive traversal interface (see Section 4.2) are called on pairs
of source and destination elements until the destination section is fully processed. Note that multiple
threads may access the same source section concurrently. In order to avoid data races, access to the
source grid follows a strict read-only policy. Each thread uses its own stack and stream data structures
for traversal of the source grid. Once the destination section is finished, the next section is processed.
See Figure 4.7 for an illustration.
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Figure 4.7: Concurrent access pattern for an adaptive traversal that transfers data from a source grid
with 3 sections to a destination grid with 8 sections. 3 threads t1, t2 and t3 work in parallel, where
each is statically assigned to a set of sections in this example. The green, red, and blue frames mark
the time spans where the corresponding thread accesses data from a source section. Empty traversals
are executed in areas that do not contribute to the destination sections. Overlapping frames, marked by
yellow areas, illustrate potential concurrent accesses to source sections.

Usually, the next section is the successor in traversal order. Hence sam(oa)2 does not need to search
for the second start point in the source grid, as the source grid iterator should already be set up correctly.
If work stealing is enabled, it may happen though that a thread processes sections that are not consecutive
in traversal order. In that case, the two-step search algorithm is applied once more to find the start point
in the source grid.

4.6 Conclusion: A Fast and Flexible Framework

sam(oa)2 provides a flexible, generic interface that supports adaptive mesh refinement and parallelization
for finite element and finite volume methods. The finite element interface offers a set of operators for
element-oriented formulations, which is an intentional restriction that will allow an application to benefit
from the underlying efficient scheme.

The finite volume interface allows the implementation of explicit methods in a single grid traversal,
promising a fast execution of time steps with little traversal overhead. The memory footprint is kept very
low as most cell representations and all cell updates are stored in cheap temporary storage.

While the interface is powerful, it is kept at a low level and demands a big effort in order to im-
plement scenarios. Interfaces with a high-level description, e.g. UFL [3], are in clear advantage here.
A corresponding extension with a better usability and support for a more restricted class of problems
would be beneficial.

The traversal back-end of sam(oa)2 efficiently implements the stack-&-stream access system by
reducing memory operations to the necessary minimum. It manages to completely hide the memory
footprint of temporary data, allowing great flexibility for algorithm design.

One problem of the implementation is the redundant execution of the cell-to-edge operator for early
evaluation. In finite volume methods, the cost is low and easily mitigated. However, for discontinuous
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Galerkin methods, performance issues may arise, as the operator would have to execute numerical ker-
nels instead of just moving data in memory. A possible solution for this problem is a lazy evaluation
of traversals where traversal stages are connected on-the-fly. In this case, sam(oa)2 has the freedom
to decide when operators are executed and redundant calls are avoided. This idea could be developed
further to an automatic resolution of data dependencies for a more high-level kernel interface.

Another issue of the static traversals is the amount of data operations and limitations due to man-
agement of temporary data. Even though memory operations are reduced by eliminating vertex buffers,
temporary crossed edge and cell data must be managed in ring buffers, which cause instruction over-
head and increased memory traffic. Without temporary data, first-touch and last-touch operators could
be called in logical order instead of traversal order, which allows to discard the ring buffers in favor of
vectorization and further optimizations.

Adaptive traversals are affected more by memory overhead than static grid traversals, as input and
output streams cannot be merged to reduce memory traffic. Lists or vectors may tackle this problem,
replacing the fixed-size arrays would be a trade-off though. Dynamic structures are slower than static
data structures in general and will impair performance of static traversals. Concurrent read access and
empty traversal overhead could be reduced by a faster way of finding the start element in a source
section and setting the initial state of the traversal automaton. A unique assignment of source sections
to threads during adaptive traversals would help here. Threads would only be allowed read access to
their designated source and destination sections and no longer to other sections. Concurrent access is
completely eliminated. Consequently, fragmentation and intra-process load imbalance will increase, but
work stealing could mitigate the effect. The most radical optimization would be a clear separation of
adaptive mesh refinement and repartitioning. This change would allow sam(oa)2 to skip remeshing of
regions, where no adaptive mesh refinement is necessary, and to perform repartitioning of local sections
only where it is necessary.
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TWO PHASE POROUS MEDIA FLOW
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5
Two Phase Flow in Heterogeneous Porous Media

As our main test scenario, we implemented a porous media flow solver with a mixed, node-centered
finite volume and finite element discretization. This example is a suitable test case for three goals:

• Demonstrating a use case of the finite element interface of sam(oa)2 on a scenario that includes
complicated algorithms such as linear solvers and a non-trivial interpolation method for mesh
refinement and coarsening.

• Investigating the quality of adaptive mesh refinement and coarsening. The set of solvable Riemann
problems spans a large test space that is suitable for a detailed error analysis.

• Examining the parallel performance of static traversals on a low-order memory-bound problem.
This type of problem is computationally cheap and thus strongly affected by overhead from man-
agement of mesh structure and communication.

This problem is not suitable to examine performance of adaptive mesh refinement and load balancing as
most of the execution time will be spent in linear solvers. A better test case for these components will
be discussed in chapter 8.

5.1 Basic Concepts of Immiscible Porous Media Flow Physics

A good introduction to the topic of porous media flow simulations is given in [54], where the most
important variables and their physical correlations are introduced. A short recapitulation based on the
article will be given here.

We consider a domain filled with permeable material such as soil, sand or grain that permits flow of
liquids or gases and assume that is contains two fluid phases, for example mixtures of water and oil in
underground oil reservoirs or mixtures of water and gas in carbon reservoirs.

Phases, Saturation and Porosity

The fluid phases are distinguished into a wetting phase (in short: w) and a non-wetting phase (in short:
n). Without going into detail, we will just assume that the wetting phase is water and the non-wetting
phase is oil.

The domains that are considered are typically partial or whole reservoirs, whose lateral extent is in
the order of kilometers, corresponding to the meso scale and the field scale. Pores are considered too
small to be resolved and therefore fluid interfaces are not resolved either. Models that clearly separate
both phases are not applicable. Instead, the averaged quantity sα(x, y, z, t) is introduced that describes
the saturation, which is the fraction per unit volume, of a phase α ∈ {w, n} in the position (x, y, z) at
the time t. As saturation is a relative quantity,

sw + sn = 1. (5.1)
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Effective and Residual Saturation

In reality, the phases are never fully saturated nor fully desaturated; there is always some residual fluid
present. These are modeled by residual saturations swr and snr that are assumed to have no effect on
the flow.

Consequently, these residual terms have no impact on fluid flow and can be ignored in computa-
tions of mass transport. Only the effective saturations of wetting and non-wetting phase are considered
instead, which are

swe :=
sw − swr

1− swr − snr
,

sne :=
sn − snr

1− swr − snr
. (5.2)

Again,

swe + sne = 1. (5.3)

Darcy’s Law

As an approximation, porous media flow is typically assumed to be laminary [54]. The only force
considered here that acts on a phase, is caused by a pressure gradient. The resulting phase velocity can
be derived from the Navier-Stokes equations and is described by

uα = λα(sαe) K(−∇pα). (5.4)

This equation is called Darcy’s law. The formula computes the volume transport (or phase velocity) uα
of the phase α from a permeability tensor K, the phase pressure gradient ∇pα, and the phase mobility
λα(sαe), where the mobility is defined as

λα(sαe) :=
κα(sαe)

µα
, (5.5)

which is a function of the relative permeability κα and the phase viscosity µα. The permeability tensor
K(x, y, z) describes the amount and direction of a fluid passing through the medium when unit pressure
gradients are applied to it. It is usually assumed to be diagonal.

If gravity is considered, the gravity vector g and the phase density ρα are added to the equation,
resulting in the extended Darcy’s law

uα = λα(sαe) K(−∇pα + ραg). (5.6)

Capillary Pressure

Surface tension on phase interfaces cause a force that acts on both phases and is modeled by a pressure
discontinuity called capillary pressure. This effect is responsible for a multitude of physical phenomena
in porous media. Capillary pressure is usually modeled as a function of the saturation. In our model, we
consider only water and oil mixtures with a small capillary pressure, therefore we will neglect it here.

Relative Permeability

Many choices for the relative permeability term exist with increasing complexity and polynomial order.
A linear model is defined by

κw(swe) = swe,

κn(sne) = sne. (5.7)
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Unfortunately this model is not physical. In pressure-driven flow, both a shock wave and a rarefaction
wave typically form at phase transitions. The linear model can only generate one of them at the same
time however, as will be shown later in Section 6.1.1. To generate both wave types a non-convex flux
function is necessary, which is given by a quadratic model

κw(swe) = s2
we,

κn(sne) = s2
ne. (5.8)

While this term models the desired nonlinearity, it does not do so accurately. The Brooks-Corey model
[25, 34]

κw(swe) = s2
we · (swe)

2
λ

+1,

κn(sne) = s2
ne · (1− (1− sne)

2
λ

+1). (5.9)

extends the formula with the empirical pore-size distribution index λ ∈ [0.2, 5], which is adapted to real
world data and provides a much better approximation. As this model is quite complex, we will mostly
concentrate on the quadratic model (5.8). It is sufficient to generate the desired wave types and easier to
handle numerically due to its low polynomial order.

Transport equations

The mass of a phase per unit volume is given by ραΦsα, where Φ(x, y, z) is the porosity, i.e. the ratio of
pore volume per unit volume in the medium. In general, porosity will be time-dependent if the material
is compressible. For our scenarios the effect is negligible however. As the term ραΦsα determines the
phase mass, it is a conserved quantity in the system. This mass balance is expressed in the transport
equation for each phase, using the extended Darcy’s law (5.6)

(ραΦsα)t + div(ραuα) = ραqα. (5.10)

The equation states that a change of the phase mass is caused by transport of mass with the flux term
ραuα and by a source term ραqα, where qα is the incoming/outgoing phase volume over time at a
source/sink. We further assume incompressible flow, hence the density ρα is constant and the transport
equations simplify to the following expression

(Φsα)t + div(uα) = qα. (5.11)

Closed form for incompressible flow

For incompressible flow the equation system is closed at this point. With conservation of the total mass
(5.1) and (5.3)

sw = 1− sn,
s := swe = 1− sne.

Capillary pressure is neglected, hence

p := pw = pn.

Plugging this into the extended Darcy’s law (5.6) yields the phase velocities

uw = λw(s) K(−∇p+ ρwg),

un = λn(1− s) K(−∇p+ ρng). (5.12)
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Addition of the phase transport equations (5.11) returns the total volume balance

(Φsw)t + div (uw) = qw,

− (Φsw)t + div (un) = qn,

⇒ div (uw + un) = qw + qn. (5.13)

Effective and residual saturations are handled by substitution of the saturation in (5.13) with the effective
saturation (5.2)

(Φ(swe(1− swr − snr) + swr))t + div (uw) = qw,

− (Φ(swe(1− swr − snr) + swr))t + div (un) = qn.

Simplification yields

(Φ(1− swr − snr)s)t + div (uw) = qw,

− (Φ(1− swr − snr)s)t + div (un) = qn.

Note that the term (1 − swr − snr) is a constant ratio of the saturation that can also be interpreted as a
reduction of pore volume and applied to the porosity. Hence with a modified porosity term

Φ̃ := (1− swr − snr)Φ,

the resulting model does not need explicit tracking of residual saturations any longer. For simplicity, we
redefine the letter Φ to describe Φ̃ henceforth and simplify the closed form to

(Φs)t + div (uw) = qw,

− (Φs)t + div (un) = qn,

div(uw + un) = qw + qn. (5.14)

Quasilinear form

For numerical analysis, it is useful to transform (5.14) into a quasilinear form

αqt + f ′(q) · ∇q = Ψ(q),

which resembles an advection equation with a flux derivative f ′(q) and a source term Ψ(q). As it is
derived from the strong formulation of the partial differential equation system, this form is valid only
where the solution q is continuous. The matrix f ′(q) contains the signal speeds of the system [67],
which can be used to derive a time step condition for discretizations. To obtain the quasilinear form, the
pressure gradient in the extended Darcy’s law (5.6) is replaced by the total velocity uT := uw +un, and
therefore

uT = (λw(s) + λn(1− s)) K(−∇p) + (λw(s)ρw + λn(1− s)ρn) Kg,

uw =
λw(s)

λw(s) + λn(1− s)
(λw(s) + λn(1− s)) K(−∇p) + λw(s)ρwKg,

⇒ uw =
λw(s)

λw(s) + λn(1− s)
(uT − (λw(s)ρw + λn(1− s)ρn) Kg) + λw(s)ρwKg.

With some simplification one obtains the phase velocities

uw =
λw(s)

λw(s) + λn(1− s)
(uT + λn(1− s)(ρw − ρn)Kg) ,

un =
λn(1− s)

λw(s) + λn(1− s)
(uT + λw(s)(ρn − ρw)Kg) . (5.15)
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from the total velocity uT . We insert (5.15) into the closed form (5.14) and receive the fractional flow
formulation of the partial differential equation, which is

(Φs)t + div

(
λw(s)

λw(s) + λn(1− s)
(uT + λn(1− s)(ρw − ρn)Kg)

)
= qw,

−(Φs)t + div

(
λn(1− s)

λw(s) + λn(1− s)
(uT + λw(s)(ρn − ρw)Kg)

)
= qn,

div(uT ) = qw + qn. (5.16)

Application of the chain rule to the first equation of (5.16) results in the system

Φst +
λ′w(s)λn(1− s)− λw(s)λ′n(s)

(λw(s) + λn(1− s))2 (uT · ∇s) +
λw(s)

λw(s) + λn(1− s)
(qw + qn),

+
λ′w(s)λ2

n(s) + λ2
w(s)λ′n(s)

(λw(s) + λn(1− s))2 (ρw − ρn)(Kg) · ∇s+
λw(s)λn(1− s)
λw(s) + λn(1− s)

(ρw − ρn) div(Kg) = qw.

After restructuring, the quasilinear form is obtained, which is given by

Φst +

(
λ′w(s)λn(1− s)− λw(s)λ′n(s)

(λw(s) + λn(1− s))2 uT +
λ′w(s)λ2

n(s) + λ2
w(s)λ′n(s)

(λw(s) + λn(1− s))2 (ρw − ρn)Kg

)
· ∇s,

=

(
qw −

λw(s)

λw(s) + λn(1− s)
(qw + qn)− λw(s)λn(1− s)

λw(s) + λn(1− s)
(ρw − ρn) div(Kg)

)
. (5.17)

From this formulation, the characteristic velocity ξw and the source term Ψ(s) for the wetting phase can
be extracted. Then,

ξw :=
λ′w(s)λn(1− s)− λw(s)λ′n(s)

(λw(s) + λn(1− s))2 uT +
λ′w(s)λ2

n(s) + λ2
w(s)λ′n(s)

(λw(s) + λn(1− s))2 (ρw − ρn)Kg, (5.18)

Ψ(s) := qw −
λw(s)

λw(s) + λn(1− s)
(qw + qn)− λw(s)λn(1− s)

λw(s) + λn(1− s)
(ρw − ρn) div(Kg). (5.19)

In short notation, we get

Φst + ξw · ∇s = Ψ(s).

The same equation is obtained for the non-wetting phase where the characteristic velocity is ξn = ξw.
Hence, for every signal of the wetting phase there is a second signal of the non-wetting phase with the
same velocity, which is a direct consequence of the total volume balance (5.13).

5.2 Three Models with Increasing Complexity

We will setup three models with increasing complexity based on the general problem formulation now,
which will serve different purposes: A 1D model will be used for numerical analysis, a 2D channel flow
model for performance analysis and the 3D model for comparison with benchmark data.

5.2.1 The Generalized Buckley Leverett Equations

First, we will consider a 1D scenario that offers many simplifications compared to the full model. For
the relative permeability we allow any of the terms in (5.7), (5.8) and (5.9). Source terms are ignored,
resulting in 1D conservative transport equations with the extended Darcy’s law. That is,

(Φsα)t + (uα)x = 0,

uα = λα(sα) k(−px + ρwg).

65



CHAPTER 5. TWO PHASE FLOW IN HETEROGENEOUS POROUS MEDIA

In 1D all vectors uw,un,uT and the permeability tensor K become scalars uw, un, uT and k. Pressure
gradient ∇p and flux divergence div(uw) are reduced to spatial derivatives px and (uw)x. The closed
form of (5.14) therefore satisfies

(Φs)t + (uw)x = 0,

− (Φs)t + (un)x = 0,

(uT )x = 0. (5.20)

The actual Buckley-Leverett Equations are a special case of (5.20) that considers only the quadratic
relative peremability model (5.8) and Darcy’s law without gravity (5.4). They have been extensively
researched in [26, 74, 130]. Instead, we will henceforth refer to (5.20) as Buckley-Leverett Equations,
including gravity and general relative permeability models.

The 1D equations can be solved analytically and are therefore most suitable for error analysis. We
will use them later to evaluate numerical solutions and to test the refinement and coarsening criteria.

5.2.2 2D Channel Flow with Heterogeneities

As a start point for a 2D scenario we choose the two-phase flow model in 2D, as described in [33]. It
couples flow of two fluid phases, such as water and oil, in a heterogeneous porous medium, using the
transport equations for incompressible flow (5.11) without source terms and Darcy’s law (5.4) for the
phase velocities. Thus,

(Φsα)t + div(uα) = 0,

uα = λα(sα) K(−∇p).

Porosity is constant at

Φ := 0.2.

The permeability tensor is assumed to be isotropic in this model and thus K is defined by

K := kI,

where k is a a scalar field and I is the identity matrix. For the relative permeability the quadratic term in
(5.8) is chosen:

κw(s) := s2,

κn(1− s) := (1− s)2.

With insertion into the closed form of (5.14), the system

(Φs)t + div

(
s2

µw
k(−∇p)

)
= 0,

div

((
s2

µw
+

(1− s)2

µn

)
k(−∇p)

)
= 0. (5.21)

is returned, where the non-wetting phase transport equation was omitted due to redundancy. Perme-
ability is generated randomly from 1

fα noise with negative offsets at the top and bottom border. The
smoothness parameter is chosen as α = 5. Values are cut off at 0 ≤ k ≤ 10−8, thus the resulting field is
a horizontal channel with smooth permeability transitions and large free flow areas. See Figure 5.1 for
an example.

This scenario will be mainly used for performance analysis, as it is complicated enough to justify
the usage of a pressure solver but has computationally cheap solver steps, suitable to measure traversal
overhead.
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Figure 5.1: Randomly generated permeability for the 2D channel flow scenario. Black areas are imper-
meable, green areas have a permeability of 10−8. In-between smooth transitions occur. Pressure-driven
horizontal flow to the right causes displacement of a non-wetting phase by a wetting phase.

5.2.3 A 3D Model with Anisotropy and Gravity for the SPE10 Benchmark

First published in 2000, the second dataset of the Society of Petroleum Engineers’ tenth benchmark
problem (SPE10) [116] describes oil production by water injection in a cuboid domain. The 3D model
for the SPE10 benchmark is based on the closed form for incompressible flow (5.14) using extended
Darcy’s law (5.6) with a diagonal, anisotropic permeability tensor and a variable porosity. The relative
permeability is given by the quadratic term in (5.8). Here,

κw(s) = s2,

κn(1− s) = (1− s)2.

The resulting closed form is given by

(Φs)t + div (uw) = qw,

− (Φs)t + div (un) = qn,

div(uw + un) = qw + qn. (5.22)

Permeability (Figure 5.2) is highly heterogeneous throughout the domain and spans eight orders of
magnitude. The tensors have the form

K =

kh 0 0
0 kh 0
0 0 kv

 . (5.23)

where kh is the horizontal permeability and kv is the vertical permeability. Hence, the permeability
tensors are diagonal and horizontally isotropic. Porosity covers four orders of magnitude and reaches
zero. The problem is ill-conditioned and actually harder to solve than scenarios obtained from realistic
reservoir data. Choosing a homogeneous initial condition with an effective saturation of 0, the domain
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Figure 5.2: SPE 10 horizontal permeability field with a resolution of 60 × 220 × 85 grid cells: The
domain of the benchmark is divided into two horizontal layers, a channel-dominated Tarbert formation
(left) and a fluvial Upper Ness formation (right, top 35 layers). Image source: [116].

is initially fully saturated with oil and residual water. Neumann boundary conditions with uT = 0 apply
to all six walls. The source terms are wells, where a central, vertical well injects water at a constant
rate and four vertical production wells P1, P2, P3 and P4 at the corners extract oil by pressure-induced
flow. In time, the reservoir therefore fills with water that spreads out from the center and displaces the
oil towards the production wells. We will take a closer look at the source terms in Section 5.5.2.

The goal of this scenario is to provide a test case with a hard-to solve problem in a production-
ready environment that includes an advanced model and external data. We will evaluate the solution and
analyze scalability to obtain an impression of performance under production conditions.

5.3 Mixed Discretization on Dual Grids

In this section, we will formulate a general solver for the coupled system described in (5.14) that can
be applied to all three models defined in Section 5.2. The system can be solved semi-implicitly or
fully implicitly with mixed discretization schemes [1, 32, 129]. We use an IMPES (IMplicit Pressure,
Explicit Saturation) scheme, described in e.g. [7], that alternates between the implicit solution of a
balance equation for the pressure p and the explicit solution of a transport equation for the saturation
s. These equations correspond to the total volume balance and the phase transport equations in (5.14).
The IMPES scheme is the canonical choice for the SPE10 benchmark [32] and easier to solve than an
implicit formulation.

5.3.1 The Simulation Loop

We discretized the transport equation on the dual grid with node-centered finite volumes, obtaining the
net update rule

s
(t+∆t)
j = s

(t)
j +

∆t

ΦjVj

(Qw)j −
∑

i∈N (j)

Aj,i Fw
(
s

(t)
j , s

(t)
i

) . (5.24)

for each dual cell. The saturation update s(t+∆t)
j − s(t)

j for each dual cell j is composed of the time step
∆t, the effective cell volume ΦjVj , the discrete source term (Qw)j (nonzero only near wells) and net
updates F(...) of each cell pair j, i, weighted by the surface area Aj,i. In sam(oa)2 the dual grid is never
assembled explicitly, instead each dual cell is composed of primary cell patches, causing little memory
overhead. As numerical flux solversFw(sl, sr) andFn(sl, sr), an upstream differencing scheme is used,
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described in detail in Section 5.3.2. The solution of the conservation equation in the closed form (5.14)
is derived from the discrete transport equation (5.24) for both phases, hence∑

i∈N (j)

Aj,i

(
Fw
(
s

(t)
j , s

(t)
i

)
+ Fn

(
s

(t)
j , s

(t)
i

))
= (Qw)j + (Qn)j . (5.25)

We use linear finite elements to discretize p and obtain a non-linear equation system for (5.25). This
system must be solved in each IMPES time step, as its setup depends on the saturation s. An overview of
the full simulation loop is given in Algorithm 5.1. Except for the initialization, all steps will be explained
in detail in the following paragraphs:

• Section 5.3.2 explains the theory of upstream fluxes and the origin of the pressure system.

• In Section 5.3.3 setup of the non-linear system and its linearization are discussed.

• Section 5.3.2 implements the transport step.

• Section 5.3.5 covers the computation of the time step size ∆t.

• In Section 5.3.6 an error indicator is defined for adaptive mesh refinement. Additionally, refine-
ment and coarsening of pressure, saturation and further scenario data are explained.

5.3.2 Upstream Differencing for Two Phase Flow

Upstream differencing is an approximation of the Riemann solution on each interface of two cells j and
i. We will apply the method only to Buckley-Leverett flow (5.20) here as this is sufficient to convey the
general idea. Numerical fluxes Fw(sl, sr) and Fn(sl, sr) are computed on an interface between a left
cell l and a right cell r by

Fw(sl, sr) := λ∗w(sl, sr)k(−px + ρwg),

Fn(sl, sr) := λ∗n(sl, sr)k(−px + ρng),

λ∗w(sl, sr) :=

{
λw(sl) if Fw(sl, sr) > 0
λw(sr) else

and λ∗n(sl, sr) :=

{
λn(1− sl) if Fn(sl, sr) > 0
λn(1− sr) else

,

(5.26)

where sl and sr are saturations of the left and right cell states at the interface, respectively. The system
is implicit because the upstream mobilities λ∗w and λ∗n depend on the upstream directions, which are
defined by the numerical fluxes. Additionally, the pressure derivative px is unknown, but can be solved
for by expanding the total velocity

uT = Fw(sl, sr) + Fn(sl, sr) = λ∗w(sl, sr)k(−px + ρwg) + λ∗n(sl, sr)k(−px + ρng)

= (λ∗w(sl, sr) + λ∗n(sl, sr))k(−px) + (λ∗w(sl, sr)ρw + λ∗n(sl, sr)ρn)kg, (5.27)

which is constant in 1D. Insertion into (5.26) returns

Fw(sl, sr) =
λ∗w(sl, sr)

λ∗w(sl, sr) + λ∗n(sl, sr)
(uT + λ∗n(sl, sr)(ρw − ρn)kg),

Fn(sl, sr) =
λ∗n(sl, sr)

λ∗w(sl, sr) + λ∗n(sl, sr)
(uT + λ∗w(sl, sr)(ρn − ρw)kg),

λ∗w(sl, sr) :=

{
λw(sl) if Fw(sl, sr) > 0
λw(sr) else

and λ∗n(sl, sr) :=

{
λn(1− sl) if Fn(sl, sr) > 0
λn(1− sr) else

.

(5.28)

69



CHAPTER 5. TWO PHASE FLOW IN HETEROGENEOUS POROUS MEDIA

Algorithm 5.1: Pseudocode algorithm for the parallel simulation of two-phase porous media flow
with adaptive refinement and coarsening. A single grid traversals is marked by a keyword. The
linear solver possibly executes multiple traversals per call.

Input: tmax
Output: Saturation s, pressure p at time tmax

traversal: Initialize p, K and Φ;
traversal: Initialize s, set refinement flags, set up linear system matrix and right-hand side ;
traversals: Solve linear system for p;
// Grid setup with Poor Man’s Multigrid
while refinement flags are set do

traversal: Adapt grid (interpolate p, s,K,Φ) and balance load, ;
while nonlinear pressure equation is not solved do

traversal: Initialize s, set refinement flags, set up linear system matrix and right-hand
side ;
traversals: Solve linear system for p;

end
end
// IMPES Time loop
t← 0;
while t < tmax do

traversal: Set refinement and coarsening flags ;
traversal: Adapt grid (interpolate/restrict p, s,K,Φ) and balance load ;
while pressure equation is not solved do

traversal: Set up linear system matrix and right-hand side ;
traversals: Solve linear system for p;

end
traversal: Compute time step ∆t;
traversal: Update s with an explicit transport step ;
t← t+ ∆t;

end
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Figure 5.3: Upstream fluxes for density-driven flow: The images show solutions for uT = 0, sl < sr
and the two cases (ρw − ρn)kg > 0 and (ρw − ρn)kg < 0. The phase velocities (5.15) define the
algebraic flux uw(s) (blue line). allowing construction of a convex hull (green line). Then, the Godunov
flux uw(s∗) (green dot) is the minimum of the convex hull in the domain [sl, sr] [67]. The upstream flux
(red line) is not greater than the Godunov flux if sl < sr – a necessary condition for stability [24]. In
(b), s∗ and sl coincide and uw(sl) = uw(s∗).

Note that the method will return the phase velocities (5.15) if both fluxes have the same sign. Hence, in
this case, the scheme will compute standard upwind fluxes for edge-centered velocities, as described in
e.g. [67]. If the fluxes have different signs, then the result does not correspond to a physical flux.

Entropy requires that the upstream flux is bounded by the Godunov flux uw(s∗) [24, 102], therefore

0 ≤ uw(s∗)−Fw(sl, sr)

sr − sl
≤ uw(s)−Fw(sl, sr)

sr − sl
for any s ∈ [sl, sr] (5.29)

Figure 5.3 illustrates a comparison of Godunov and upstream fluxes for the cases uT = 0 and (ρw − ρn)kg > 0
(left image), uT = 0 and (ρw − ρn)kg < 0 (right image). [102] additionally provides a stability condi-
tion

∆t ≤ Φj∆xj
∂Fw
∂sl

(sj−1, sj)− ∂Fw
∂sr

(sj , sj+1)
, (5.30)

for upstream differencing using the partial derivatives ∂Fw
∂sl

(sl, sr) and ∂Fw
∂sr

(sl, sr). Here, ∆t is the
global time step size and ∆xj is the width of the cell j. We will discuss in Section 5.3.5 how the time
step criterion is implemented in sam(oa)2.

Simplification and Extension to Higher Dimensions

While the method in (5.28) is suitable for 1D Buckley-Leverett flow, it is not directly applicable to 2D
and 3D models, as uT is assumed to be a known constant in 1D. In higher dimensions however, uT is
not constant and must be determined locally. With

uT := Fw(sl, sr) + Fn(sl, sr), (5.31)
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we solve (5.25) for uT . In order to close the system, we substitute the upstream fluxes with the multidi-
mensional upstream formula given by

Fw(sl, sr) := λ∗wnTj,i K (−∇p+ ρwg)

Fn(sl, sr) := λ∗nn
T
j,i K (−∇p+ ρng) ,

λ∗w :=

{
λw(sl) if nTj,i K(−∇p+ ρwg) > 0

λw(sr) else
,

λ∗n :=

{
λn(1− sl) if nTj,i K(−∇p+ ρng) > 0

λn(1− sr) else
, (5.32)

Insertion into (5.25) returns the implicit system∑
i∈N (j)

Aj,i

(
(λ∗w)j,i + (λ∗n)j,i

)
nTj,iKj,i (−∇pj,i) =

(Qw)j + (Qn)j −
∑

i∈N (j)

Aj,i

(
(λ∗w)j,i ρw + (λ∗n)j,i ρn

)
nTj,iKj,ig, (5.33)

that must be solved for the pressure p and the upstream mobilities λ∗w and λ∗n. Section 5.3.3 will explain
in detail how to achieve this.

Upstream transport

We assume now that the pressure system is solved and a time step is determined. To execute the upstream
transport step we implement the net update rule (5.24) using the finite element interface. A straightfor-
ward implementation is shown in Algorithm 5.2. The volume kernel computes the fluxes on all dual cell
interfaces and accumulates the results in the net updates (Fw)j for each dual cell. Once the net updates
are computed, they are applied to the saturation in the last DoF kernel with an explicit Euler time step.

Algorithm 5.2: Upstream transport using the finite element interface of sam(oa)2.
Input: p, λ∗w, s, ∆t > 0
Output: s
traversal

first DoF kernel: (Fw)j ← 0;
volume kernel: (Fw)j ← (Fw)j +

∑
i∈N (j)

(λ∗w)j,in
T
j,i Kj,i(−∇pj,i + ρwg);

last DoF kernel: sj ← sj − ∆t
Vj

(Fw)j ;

end

5.3.3 Solving the Nonlinear System for Pressure and Upstream Mobilities

To solve the system defined by (5.32) and (5.33), we employ a staggered scheme for coupled systems
which alternates computing upstream mobilities and solving the pressure equation until convergence is
reached. At first, (5.32) is solved for the upstream mobilities using the initial pressure guess p. Next,
(5.33) is solved implicitly for the pressure. Then, the solution is tested by computing the upstream
mobilities a second time to check if their solutions changed. Afterwards, (5.33) is solved once more
and if the mobilities have not changed, the linear solver returns immediately and the solution is already
found. If the mobilities have changed, the linear solver performs further iterations and the solution must
be tested once again. Due to the piecewise constant nature of the upstream mobilities, convergence of
the coupled scheme is usually reached after the first iteration already.
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Figure 5.4: Dual grid discretization for prism elements. The interfaces between the dual cells are
represented by red areas. The normals are marked by blue arrows. Marked in green, the eigenvectors of
the permeability tensor K are aligned with the normals and the grid is K-orthogonal by design.

Setup of the Linear System

In order to solve the linear system, we claim that on all interfaces between dual cells j and i, the normal
nj,i is an eigenvector of the transposed permeability tensor KT

j,i with the eigenvalue kj,i. Hence,

KT
j,inj,i = kj,inj,i. (5.34)

The value of kj,i is

kj,i = nTj,iKj,inj,i. (5.35)

Grids with this property are called K-orthogonal. For Buckley-Leverett flow and 2D channel flow
described in Section 5.2.1 and Section 5.2.2, condition (5.34) is trivially fulfilled, as the permeabil-
ity tensors are isotropic in both cases. For the SPE10 benchmark in Section 5.2.3, K-orthogonality is
not obvious, as the permeability tensor is only horizontally isotropic and element transformations on un-
structured grids can return full local tensors that may also be asymmetric. However, as seen in Figure 5.4,
the dual grid discretization is always K-orthogonal if K is diagonal and horizontally isotropic. Inserting
(5.34) into (5.33) and discretizing the pressure with linear finite elements, we obtain a two-point flux
approximation now, as explained in [129] for example. The resulting equations are

∑
i∈N (j)

Aj,i
∆xj,i

((λ∗w)j,i + (λ∗n)j,i) kj,i(−pj + pi)

=(Qw)j + (Qn)j −
∑

i∈N (j)

Aj,i((λ
∗
w)j,iρw + (λ∗n)j,iρn)kj,in

T
j,ig. (5.36)

In matrix-vector notation this linear system is written as

Ap = b, (5.37)
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where the matrix coefficients are given by

Aj,j = −
∑

i∈N (j)

Aj,i
∆xj,i

((λ∗w)j,i + λ∗n)j,i)kj,i,

Aj,i =
Aj,i

∆xj,i
((λ∗w)j,i + (λ∗n)j,i) kj,i for j 6= i,

bj = (Qw)j + (Qn)j −
∑

i∈N (j)

Aj,i ((λ∗w)j,iρw + (λ∗n)j,iρn) kj,in
T
j,ig. (5.38)

As the system matrix is symmetric and positive definite [129], a Jacobi-preconditioned Conjugate Gra-
dients solver is applied for the solution.

5.3.4 A Diagonally Preconditioned Conjugate Gradients Solver for the Pressure System

Implementation of a Conjugate Gradients solver with diagonal preconditioning is fairly straightforward
in sam(oa)2. We follow the method described in [114] and implement all steps by respective kernels in
Algorithm 5.3 using the finite element interface presented in Section 4.1.1. Data dependency enforces
that an iteration is split into two traversals: As we need a full grid traversal to compute a dot product on
a global vector, we can use the result only in the next grid traversal. The dot products dTu and rTDr
are needed to compute α and β respectively, resulting in the cyclic dependency

β → d→ α→ r→ β. (5.39)

Thus it is necessary to split computation into two traversals and 2n+ 1 grid traversals are required for n
solver iterations. The solver is enabled in sam(oa)2 with the runtime flag

samoa -lsolver 1

As exit criteria, sam(oa)2 uses the pressure difference of the domain

rT r < ε2(max(p)−min(p))2,

and the relative error norm
rT r < ε2rT0 r0,

where r0 = D−1(b − Ax0) is the initial preconditioned residual vector. The value of ε is controlled
with the argument

samoa -epsilon <value>

5.3.5 A Flux Based CFL Condition on Unstructured Grids

The goal of this section is to find a cheap stability condition for the time step size ∆t. The CFL condition,
named after F. Courant, K. O. Friedrich and H. Lewy [35, 36], states that for each cell j ∈ {1, . . . , n}∣∣∣∣∣∣∆t

∑
i∈N (j)

vj,i
∆xj,i

∣∣∣∣∣∣ ≤ 1. (5.40)

where ∆t is the global time step size, vj,i is the signal velocity at the interface between cells j and i and
∆xj,i is the characteristic length of the interface j, i, defined by

∆xj,i =
V̂j
Aj,i

, (5.41)
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Algorithm 5.3: Diagonal-preconditioned CG solver implemented in the finite element interface of
sam(oa)2.

Input: A positive definite, symmetric, D diagonal, x,b, ε > 0
Output: x
α← 0;β ← 0; d← 0;
traversal

volume kernel: r ← D−1(b−Ax);
last DoF kernel: ω ← rT r; γ ← rTDr;

end
while ω > ε do

traversal
first DoF kernel: d← r + β d;
volume kernel: u← Ad;
last DoF kernel: δ ← dTu;

end
α← γ

δ ; γold ← γ;
traversal

first DoF kernel: v ← D−1u; x← x + αd; r← r− αv;
last DoF kernel: ω ← rT r; γ ← rTDr;

end
β ← γ

γold
;

end

which is the ratio of effective cell volume V̂j to cell interface area Aj,i. Solving for ∆t, we get

∆t ≤ V̂j∣∣∣∣∣ ∑i∈N (j)

Aj,ivj,i

∣∣∣∣∣
. (5.42)

Applied to porous media flow, the effective volume translates to the pore volume V̂j = ΦjVj and the sig-
nal velocity vj,i to the maximum speed ξ−j,i of all ingoing waves at the interface j, i, according to (5.18).
Then,

∆t ≤ ΦjVj∑
i∈N (j)

Aj,iξ
−
j,i

. (5.43)

ξ−j,i is typically hard to evaluate and must be approximated carefully. Usually, a simpler method is
therefore chosen. In literature, a related formula is found that computes the time step size

∆t ≤ αmin

 ΦjVj∑
i∈N (j)

Aj,iF−(sj , si)
,

ΦjVj∑
i∈N (j)

Aj,iF+(sj , si)

 , (5.44)

from ingoing and outgoing net fluxes F−w (sj , si) and F+
w (sj , si) [54] for some α < 1. This method is

quick and easy to evaluate and provides better results than the upstream condition (5.30) in our tests but
requires empirical evaluation of the parameter α which is strongly problem-dependent. Another simple
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choice is to directly enforce that the saturation sj in (5.24) remains in the physical range [0, 1], hence

sj +
∆t

ΦjVj

(Qw)j −
∑

i∈N (j)

Aj,i Fw (sj , si)

 ≥ 0,

sj +
∆t

ΦjVj

(Qw)j −
∑

i∈N (j)

Aj,i Fw (sj , si) .

 ≤ 1. (5.45)

resulting in the condition

∆t ≤ max

− ΦjVjSj
(Qw)j −

∑
i∈N (j)

Aj,iFw(sj , si)
,

ΦjVj(1− Sj)
(Qw)j −

∑
i∈N (j)

Aj,iFw(sj , si)

 . (5.46)

sam(oa)2 implements this stability condition using its finite element interface, see Section 4.1.1. Except
for the global reduction of the time step size, the implementation evaluates and accumulates the wetting
phase velocities similar to the transport step in Section 5.3.2. We will skip the details here.

5.3.6 Mass Conservative Refinement

The only missing step for the scenario is adaptive refinement and coarsening. This requires an error
indicator that is able to decide for each element if it should be refined or not. Additionally, interpolation
and restriction operators have to be defined for each variable of interest.

A Posteriori Error Indicators

In order to define an error indicator for the saturation, we have to consider that the analytic solution
sexact is discontinuous. Hence, a norm that mitigate peaks at discontinuities should be chosen for error
analysis of a discretization s. A suitable candidate is the L1 norm, as it measures the integral over the
absolute error, given by

L1(s) =

∫
Ω

|sexact − s|dΩ.

In [65] an L1-error estimator was developed for upwind methods on finite volume discretizations. Ap-
plied to the full N -dimensional model (5.14) it is defined by∫

Ωj

|s0
exact − s0|dΩ < C0Tol,

max
i∈N (j)

(
(∆t+ ∆xji)∆x

N−1
ji |s

t
i − stj |

)
< CxTol,

∆xNj |st+∆t
j − stj | < CtTol. (5.47)

for each dual cell j, some constants C0, Cx, Ct and a tolerance Tol > 0. ∆xj is the cell diameter and
∆xji are distances between cell centers. As the constants are problem-specific and hard to evaluate, we
will not apply the estimator here, but use some of its ideas to define an error indicator.

We assume that s is an L1-optimal piecewise constant discretization of sexact. The error in the L1

norm can be estimated by the sum over all primary cells j; that is,

L1(s) =

∫
Ω

|sexact − s|dΩ ≤ 1

2

n∑
j=1

|max
x∈Ωj

(sexact)− min
x∈Ωj

(sexact)|V (Ωj). (5.48)
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(5.48) suggests that additional degrees of freedom are invested well in cells Ωj where

|max
x∈Ωj

(sexact)− min
x∈Ωj

(sexact)|V (Ωj).

is large. The term is estimated in sam(oa)2 with

∆sjV (Ωj) := |max
x∈Ωj

(s)− min
x∈Ωj

(s)|V (Ωj).

This is a useful approximation only if s is not constant in Ωj , hence the choice of primary cells as control
volumes. Note that a similar criterion is obtained with the error estimator (5.47) if initial error and time
discretization error are ignored. The full indicator is therefore given by

∆sjV (Ωj) > Tols(smax − smin)V (Ωmin),

where the right-hand side is a product of the maximum saturation difference smax − smin = 1 and the
minimum cell volume V (Ωmin), causing a stricter criterion with increased maximum refinement depth.
Tols > 0 is a dimensionless parameter that is chosen at runtime.

Pressure is approximated with piecewise linear functions, allowing strict analysis with the maximum
norm. The indicator

∆pj > Tolp(pmax − pmin)
∆xmin

xmax − xmin
,

is used for pressure refinement in sam(oa)2. The criterion is easy to evaluate and will refine regions with
high pressure gradients in order to resolve sources and sinks, but it is not mathematically meaningful.

Interpolation and Restriction of Saturation

As we are aiming to simulate the SPE10 benchmark [116], we will require correct global quantities such
as accumulated oil production for analysis. Hence, if mass is not conserved during adaptive refinement
and coarsening, these quantities will be erroneous. Pointwise conservation of mass mα = ραΦsα of
a phase α cannot be achieved, because coarsening and refinement modifies the shape of dual cells and
will inevitably change the saturation in some regions. Instead, element-wise conservation of mass can
be achieved by using finite element theory. We define a set of variables that lives on the old grid: shape
functions φ̂, porosity Φ̂, phase saturation ŝα. Similarly we define a set of variables that lives on the new
grid: shape function φ, porosity Φ, phase saturation sα and a test basis ψ. Element-wise conservation of
mass yields ∫

Ω

ραΦj(
∑
i

(sα)iφi)ψjdΩ =

∫
Ω

ραΦ̂j(
∑
i

(ŝα)iφ̂i)ψjdΩ.

In matrix-vector notation, two linear systems of equations

ρwMφ,ψΦφsφ = ρwMφ̂,ψΦ̂φ̂ŝφ̂,

ρnMφ,ψΦφ(1− sφ) = ρnMφ̂,ψΦ̂φ̂(1− ŝφ̂),

for both phases are obtained, where Mφ,ψ is the mass matrix of the new grid and Mφ̂,ψ is a non-square
mass matrix built from the shape functions of the old grid and the test functions of the new grid. The
conditions simplify to

Mφ,ψΦφsφ = Mφ̂,ψΦ̂φ̂ŝφ̂,

Mφ,ψΦφ = Mφ̂,ψΦ̂φ̂. (5.49)
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Hence, a well-defined solution exists only if the additional refinement condition for the porosity is
fulfilled, too. As we choose piecewise constant bases for φ and ψ, the mass matrix Mφ,ψ is diagonal.
Effectively, we therefore need to compute the saturation of each dual cell on the new grid by averaging
all saturations of dual cells on the old grid, weighted by the intersecting volumes of water in old and new
cell. Algorithm 5.4 shows how this is implemented via the specific sam(oa)2 kernels. All kernels perform
essentially the same operation, except that source and destination element coincide in the transfer kernel.
In refinement and coarsening kernels, intersection volumes must be determined.

Algorithm 5.4: Mass conservative saturation transfer from old grid (marked by cell volume V̂j ,
porosity Φ̂j and saturation ŝj) to new grid (Vi, Φi, si). Saturation sj in cell j is the average over
the saturations ŝj of all old cells i which intersect with the new cell, weighted by the intersecting
volumes of water.

Input: ŝ, Ω̂,Ω
Output: s
traversal

refine kernel/transfer kernel/coarsen kernel:
V w
j ←

∑
i
V (Ωj ∩ Ω̂i)Φ̂iŝi; Vj ←

∑
i
V (Ωi ∩ Ω̂j)Φ̂i;

last DoF kernel: sj ←
V wj
Vj

;

end

Interpolation and Restriction of Pressure

For the pressure p, refinement and coarsening would optimally keep the linear system in a solved state,
conserving the total velocity (5.25). Figure 5.5 shows that there is no local flux-conservative solution for
subgrid refinement in general, as the resulting system would be over-determined. Hence, after adaptive
refinement and coarsening, the pressure equation must be solved globally. Still, in order to find a good
start value for the pressure solver, a heuristics for pressure refinement and coarsening must be defined.
For simplicity, the arithmetic average

p5 =
p1 + p2 + p3 + p4

4
(5.50)

is chosen in the middle cell. An element-wise algorithm is obtained by weighting the old pressure p̂ with
intersection volumes of old and new cells V (Ω̂i ∩ Ωj) to define the new pressure p, defined by

pj :=

n̂∑
i=1

V (Ω̂i ∩ Ωj)p̂i

V (Ωj)
. (5.51)

The pressure is averaged over the new cell area, which is a generalization of (5.50) for refinement
and coarsening. Better local methods are possible by including mobility and permeability into (5.51);
however, sam(oa)2 uses the simple method, as time stepping typically changes the linear system by a
larger amount than adaptive mesh refinement.

The resulting algorithm is essentially the same as Algorithm 5.4 for the saturation refinement, except
that the pressure is weighted by the total volume instead of the effective volume. We will therefore skip
the implementation details.
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Figure 5.5: Example for refinement on a subgrid of a primary grid (black) and dual grid (red) discretiza-
tion with constant saturation and permeability. The total velocities uT are marked by blue arrows. After
refinement, a new cell is generated with an additional pressure unknown p5, which must be chosen to
fulfill (5.36) in each of the 5 cells. To keep the method local, the boundary pressures p1 to p4 and the
boundary fluxes would have to remain invariant, which is impossible as the resulting system would be
over-determined. The solution of the SPE10 scenario is mostly affected by a Neumann condition, that
determines inflow and outflow of the system. Hence, sam(oa)2 attempts to preserve local fluxes instead
of the local pressure. This requires a global pressure solution however.

Interpolation and Restriction of Porosity and Permeability

According to (5.49), strict mass conservation requires porosity refinement by volume-weighted averag-
ing. Hence, after refinement of a primary cell into two cells and after coarsening of two primary cells
into one cell, the porosity of the coarse cell should be equal to the average porosity of both fine cells.

For coarsening this is straightforward by simple averaging. For refinement, the condition can be
fulfilled by on-the-fly integration of porosity data. sam(oa)2 supports this approach, using an integration
kernel shown in Algorithm 5.5. By using recursive bisection to integrate over the porosity in each
element, the porosity integral is evaluated always on the same quadrature points, independent of adaptive
refinement. This ensures that the integral is consistent and the porosity condition for mass conservation
(5.49) is fulfilled. Furthermore, for numerical stability we want to avoid porosity evaluations on data
discontinuities, e.g. on the domain boundary. Therefore, quadrature points are laid on the center of mass
of each element. Internally, data management and retrieval is executed by the library ASAGI (A parallel
server for adaptive geoinformation) [5], a student project developed by Sebastian Rettenberger.

Refinement of permeability is performed in the same manner as for porosity, using numerical in-
tegration of the permeability source. However, integration by arithmetic averaging of the input data
usually does not return good results. Christie et al. [32] show that influence of the upscaling method
for permeability is quite high in the SPE10 benchmark, see Fig. 5.6. sam(oa)2 therefore supports dif-
ferent averaging methods for arithmetic and geometric averaging. The resulting permeability tensor
always remains diagonal and horizontally isotropic, but is not fully isotropic in 3D due to the vertical
component.
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Algorithm 5.5: Pseudocode for 2D porosity and permeability adaption. Coarsening is done by
averaging, transfer by copying and refinement by numerical integration over the destination el-
ement via recursive newest vertex bisection. Φ̂ is the porosity vector of the old grid, Φ is the
porosity vector of the new grid, dj is the refinement depth of cell j, dsrc is the refinement depth
of the source data and Φ(x) and K(x) are the porosity and permeability sources, defined in lo-
cal coordinates for convenience. The function t parameterizes averaging by choosing appropriate
component-wise transformations tari := identity (arithmetic mean) and tgeo := log (geometric
mean).

Input: Φ̂, K̂
Output: Φ, K

Function integrate internal(f , x1, x2, x3, d)
if d > 0 then

return 1
2integrate internal(x1, 1

2(x1 + x3), x2, d− 1)
+1

2integrate internal(x2, 1
2(x1 + x3), x3, d− 1);

else
return f(1

3(x1 + x2 + x3));
end

end

Function integrate(f , x1, x2, x3, d, t)
return t−1(integrate internal(t(f), x1, x2, x3, d));

end

traversal
transfer kernel: Φj ← Φ̂j ; Kj ← K̂j ;

coarsen kernel: Φj ← t−1
ari

(∑
i

V (Ωj∩Ω̂i)
V (Ωj)

tari(Φ̂i)

)
; Kj ← t−1

geo

(∑
i

V (Ωj∩Ω̂i)
V (Ωj)

tgeo(K̂i)

)
;

refine kernel:
Φj ←integrate(Φ, (1, 0)T , (0, 0)T , (0, 1)T , dsrc − dj , tari) ;
Kj ←integrate(K, (1, 0)T , (0, 0)T , (0, 1)T , dsrc − dj , tgeo);

end
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Figure 5.6: A comparison of different upscaling methods tested for the water cut over time of producer
P1 in the SPE10 benchmark. Variance is high, which suggests that the choice of the method has a large
impact on the outcome. Data source: [32]

5.4 Optimizing the Linear Solver

We will take a short detour in this section to investigate performance of the Conjugate Gradients solver
as implemented in Section 5.3.4. An optimization for memory-bound performance will be presented
here and different preconditioners will be examined for efficiency.

5.4.1 Increasing the Computational Intensity of the Linear Solver

Looking back at Algorithm 5.3 we see that two grid traversals are required for each iteration due to
data dependency between the dot products and vector updates. For a memory-bound solver, this is un-
satisfactory as in both traversals all data is touched, but only half of the unknowns are updated. Better
performance could be achieved if all operations were performed in a single traversal. Indeed, analy-
sis with the roofline model [128] in Section 7.2.1 will confirm that memory throughput is satisfying,
however floating point performance appears to be far below the peak. The key issue here is that compu-
tational intensity of the Conjugate Gradients solver is extremely low, returning a performance limit that
is far below the actual capabilities of the system.

Already in 1985 a solution was known to this problem, suggested first by Saad [100]. The idea is to
precompute β = γ

γold
before evaluation of the new residual r − αv by replacing the computation of γ

with

γ ← (r− α v)TD (r− α v) = rTD r− 2 α vTD r + α2 vTD v. (5.52)

and evaluating β as before. A naive implementation of (5.52) would require two extra dot products
vTD r and vTD v per solver iteration in addition to rTD r. However, we can exploit that the precon-
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Algorithm 5.6: Fused Conjugate Gradients solver with diagonal preconditioning: Compared to
classical CG (see Algorithm 5.3) this version executes only one grid traversal per iteration, but
computes an extra dot product.

Input: A positive definite, symmetric, D diagonal, x,b, ε > 0
Output: x
α← 0 ; β ← 0 ; d← 0 ; v← 0 ;
traversal

volume kernel: r ← D−1(b−A x) ;
last DoF kernel: ω ← rT r ; γ ← rTD r ;

end
while ω > ε do

traversal
first DoF kernel: x← x + αd ; r← r− αv ; d← r + β d ;
volume kernel: u← A d ; v← D−1u ;
last DoF kernel: δ ← dTu ; ν ← vTu ; ω ← rT r ; γ ← rTD r ;

end
α← γ

δ ; γold ← γ ; γ ← α2 ν − γold ; β ← γ
γold

;
end

ditioned residuals are D-orthogonal, hence

(r− α v)TD r = 0

⇒ α vTD r = rTD r, (5.53)

to eliminate the term −2 α vTD r in (5.52). Saad originally proposed to remove a second dot prod-
uct by determining γ incrementally instead of evaluating rTD r in each iteration. Meurant [79] later
claimed that this might lead to numerical instability and suggested to keep the dot product and use it as
a correction term. Hence, (5.52) assumes the final form

γ ← α2 vTD v − rTD r. (5.54)

Applying (5.54), we switch the order of operations in Algorithm 5.3 and compute β along with α before
the solution update. Most importantly, we may join search vector and solution update into a single
traversal now, overlapping the matrix-vector product u ← A d and the application of the diagonal
preconditioner v ← D−1u. No extra helper vectors are needed and therefore, the memory footprint is
not increased by this fused version of the Conjugate Gradients solver. An implementation in sam(oa)2

is given in Algorithm 5.6.
Note that there is still one extra dot product needed per iteration which affects scalability on large

numbers of cores. However, the effect is not worse than in classical Conjugate Gradients if communi-
cation is latency-bound. Additionally, an extra iteration is necessary due to executing an empty solution
update in the first iteration (as the new α is not known at this point yet) and successively postponing
the solution update to the next iteration. Hence, the fused Conjugate Gradients solver executes n + 2
traversals for n solver iterations, a significant improvement over the 2 n + 1 traversals of the classical
method in Algorithm 5.3 and an increase of the computational intensity and subsequent speedup of a
factor 2.

The fused Conjugate Gradients solver is the default linear solver in sam(oa)2 and is explicitly acti-
vated with the runtime option

samoa -lsolver 2

82



5.5. TOWARDS PRODUCTION READY CODE: THE SPE10 BENCHMARK

Figure 5.7: A prism grid with four layers in sam(oa)2: The left image shows how in each 2D vertex,
five pressure and saturation unknowns must be stored, corresponding to five 3D points (blue squares).
In each triangle cell, four permeability, porosity and velocity values are stored, corresponding to the
four prism cell centers (red spheres). Z-major order assures compact storage and unit-stride access
for a column-wise processing. The full grid (right image) may be adaptively refined and coarsened in
horizontal direction, but not in vertical direction.

5.4.2 Preconditioners for the Conjugate Gradients Solver

In his student project, Klimenko [64] investigated which preconditioners for the Conjugate Gradients
solver return the best result for the linear systems defined in (5.38). He found that in general, a diagonal
preconditioner provides good performance and improves the solution time drastically. An even better
choice would be a Cholesky factorization, however Klimenko determined that the overhead required for
this preconditioner would at least triple the amount of grid traversals while it would reduce the number
of iterations only by half on average. Hence, the method would be too costly. Apart from Multigrid
methods no local methods were found to improve the runtime. More details on the subject are available
in Klimenko’s thesis.

5.5 Towards Production Ready Code: The SPE10 Benchmark

We will now take a look at the requirements for simulation of the SPE10 scenario, which was mentioned
in Section 5.2.3. At this point, most building blocks for parallel, adaptive simulation of a complete
reservoir model are already present. In this chapter, we will discuss the last missing pieces: Integration
of 2.5D elements into sam(oa)2 and addition of source terms into the model.

5.5.1 From Triangular Grids to 2.5D Prism Grids

The extension to 2.5D grids has been explained in [75] already and will be shortly recapitulated here.
sam(oa)2 does not impose any restrictions on the amount of data stored in each entity (element, edge or
vertex), a straightforward extension to 2.5D is therefore realized by storage of degree-of-freedom arrays
of fixed size instead of single degree of freedom in each vertex. While each vertex has two-dimensional
coordinates x and y already, the third dimension is added by associating each array entry in the vertex
with a z-coordinate. For cell data, the same procedure is possible by transforming triangle cells to prism
cells. The prism arrays must have one entry less than the vertex arrays, since cell data is associated with
the cell centers, which lie between vertices on the vertical axis. Figure 5.7 shows a prism grid with four
layers that stores five 3D points in each vertex and four prism cells in each triangle. The grid may be
dynamically refined and coarsened in horizontal direction, but the number of vertical layers is constant.

As data is stored and processed in z-major order, a kernel implementation is easily vectorized over
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X2[i]

X3[i]
X1[i]

X1[i+1]

X2[i+1]

X3[i+1]

A[i, 1] A[i, 2]

A[i, 6] A[i, 7]

A[i, 3] A[i, 4] A[i, 5]

Figure 5.8: Storage scheme of the unknowns and the matrix for element-wise computation of the matrix
vector product Ax in 2.5D porous media flow. Memory layout of the vector x is z-column-wise in the
triangle vertices 1 to 3. Similarly, the matrix entries A (marked in blue) are stored z-column-wise in
the triangle elements. A sparse pattern is used to store only one matrix entry for each of the 7 dual cell
interfaces (red surfaces) in each prism element, exploiting sparsity and symmetry of the Two-Point Flux
Approximation. Storage space for the element matrix is reduced from 62 = 36 to 7 doubles per prism
element.

the z-direction when the number of layers is large enough, due to independent access to unit-stride, fixed-
size arrays. This has been exploited in the linear solver. For memory efficiency the element matrices are
not stored as dense blocks, but in a sparse format that is generated during the setup phase for the linear
system, exploiting symmetry and zero entries. Figure 5.8 shows the concept for a single prism element.
Fluxes are defined on the dual cell interfaces (red) and depend only on two pressure unknowns due to
the diagonal permeability tensor. Hence, one matrix entry (blue) per dual cell interface is sufficient.
This reduces storage space for the element matrix from 36 to only 7 doubles per prism element. Note
that in theory, no storage space would be required for the matrix if the fluxes were evaluated on-the-
fly. However, due to the involved nonlinear operations, flux evaluations are expensive and slow down
execution compared to loading the matrix in each linear solver iteration. Chapter 7 confirms this, when
CPU times of all simulation components are compared on recent hardware.

The matrix-vector product is implemented in sam(oa)2 by a volume kernel using Fortran array no-
tation, shown in Algorithm 5.7. The advantage of the array notation in the kernel is auto-vectorization
by the compiler. Some issues remain though, such as misaligned vector access. Further information on
vectorization performance is found in the Master’s thesis by Pachalieva [86].

5.5.2 Well Models for Reservoirs

Sources and sinks in reservoir simulation are modeled by wells that are typically cylindrical, vertical
holes that either inject fluid into the ground (injection wells) to generate a pressure-induced flow or
extract it (production wells) for production. The SPE10 scenario contains one injection well in the
center and four production wells at the four corners, all are vertically complete through the domain.

Typically, well diameters are much smaller than the grid resolution and pressure gradients become
large, hence the discretization error will be large in the region if left unattended. Assuming a horizontally
isotropic permeability kh as in (5.23), the Peaceman well model [88] uses an approach based on the
assumption that near the well, flow is almost radial. The well is treated as an internal Neumann boundary
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Algorithm 5.7: Matrix-vector product kernel in sam(oa)2 for a full prism element, where
x1, x2, x3 are the unknown arrays located at the triangle vertices, r1, r2, r3 are residuals
and A is the matrix, stored in a sparse element matrix. The Fortran 2008 keyword contiguous
is a hint to the compiler that the array entries are stored without stride, allowing for some auto-
vectorization.

subroutine apply3D(x1, x2, x3, r1, r2, r3, A)
real, contiguous, intent(in) :: x1(:), x2(:), x3(:)
real, contiguous, intent(inout) :: r1(:), r2(:), r3(:)
real, contiguous, intent(in) :: A(:,:)

!bottom horizontal contributions
r1(1:_NZ) = r1(1:_NZ) + A(:,1) * (x1(1:_NZ) - x2(1: _NZ))
r2(1:_NZ) = r2(1:_NZ) + A(:,1) * (x2(1:_NZ) - x1(1: _NZ))
r3(1:_NZ) = r3(1:_NZ) + A(:,2) * (x3(1:_NZ) - x2(1: _NZ))
r2(1:_NZ) = r2(1:_NZ) + A(:,2) * (x2(1:_NZ) - x3(1: _NZ))

!vertical contributions
r1(1:_NZ) = r1(1:_NZ) + A(:,3) * (x1(1:_NZ) - x1(2:_NZ+1))
r1(2:_NZ+1) = r1(2:_NZ+1) + A(:,3) * (x1(2:_NZ+1) - x1(1:_NZ))

r2(1:_NZ) = r2(1:_NZ) + A(:,4) * (x2(1:_NZ) - x2(2:_NZ+1))
r2(2:_NZ+1) = r2(2:_NZ+1) + A(:,4) * (x2(2:_NZ+1) - x2(1:_NZ))

r3(1:_NZ) = r3(1:_NZ) + A(:,5) * (x3(1:_NZ) - x3(2:_NZ+1))
r3(2:_NZ+1) = r3(2:_NZ+1) + A(:,5) * (x3(2:_NZ+1) - x3(1:_NZ))

!top horizontal contributions
r1(2:_NZ+1) = r1(2:_NZ+1) + A(:,6) * (x1(2:_NZ+1) - x2(2:_NZ+1))
r2(2:_NZ+1) = r2(2:_NZ+1) + A(:,6) * (x2(2:_NZ+1) - x1(2:_NZ+1))
r3(2:_NZ+1) = r3(2:_NZ+1) + A(:,7) * (x3(2:_NZ+1) - x2(2:_NZ+1))
r2(2:_NZ+1) = r2(2:_NZ+1) + A(:,7) * (x2(2:_NZ+1) - x3(2:_NZ+1))

end subroutine
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re

p1

rw

p2

p4 p3

pw

Δx

Figure 5.9: A vertical well in a 2D domain that is aligned with the center vertex of the grid. As the well
radius rw is usually small compared to the mesh width ∆x, the steep pressure gradient near the well is
not captured properly by naive discretization. Applying the well model (5.55), a logarithmic error term
for the pressure function near the well is therefore introduced. In 2D the well element is modeled as
a spherical cell (big red sphere) with an effective cell radius re that is chosen as a function of ∆x to
match the numerical solution on the discrete well element (marked by the dashed lines) with the analytic
solution.

condition that adds an additional unknown and an additional equation to the system (5.25). The equation

Q =

∫
∂W

(λw + λn)kh(p− pw − ρ̄g(zw − z))
(

ln

(
re
rw

)
+ s

)
dΩ, (5.55)

correlates the total well flow rate Q and the well bottom hole pressure pw, of which at least one value
must be specified to close the system. Here,

∂W is the well surface.
p is the discretized cell pressure.
ρ̄ is the mobility-weighted average density in the well (assuming saturation is constant in the well).
Q is the total well flow rate.
pw is the bottom-hole well pressure, bounded by (pw)max ≥ pw in injection wells.
z is the position on the vertical axis.
zw is the bottom-hole z-coordinate.
rw is the well radius.
re is the effective cell radius, a control parameter to match the analytic pressure solution.
s is the skin factor that accounts for (e.g. drilling-induced) permeability changes near the well.

Figure 5.9 shows a vertical well in a 2D domain consisting of four primary elements. The well in the
image aligns with a vertex, which is not necessarily the case though.

For injection wells, the bottom hole pressure pw is usually assumed unknown and computed from the
well flow rate Q. If pw exceeds the maximum bottom hole pressure (pw)max, then the model switches
to a constant well pressure (pw)max and the well flow rate Q is determined from (pw)max instead. For
the production wells, the bottom hole pressure pw is constant in our case.

Even though the well equation does not appear to fit the discretization of the grid, implementation
of the model is possible in sam(oa)2. The goal is to rewrite the well equation into the form of (5.38), so
we are able to reuse the existing nonlinear solver with as little change as possible. Hence, we start by
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setting the discrete pressure degrees of freedom in the well (we call this subset W) to the well pressure

pj := pw + ρ̄g(zw − zj) for j ∈W. (5.56)

For production wells, we mark the pressure values as Dirichlet conditions. For injection wells, an
initial guess from the previous pressure solution or the maximum injection well pressure is chosen for
pw. Without further changes, the pressure solver would immediately violate (5.56), as it considers the
pressure unknowns in the well column independent of each other and consequently applies independent
updates. This undesired behavior can be avoided however, which will be explained in the next paragraph.

Well Pressure Equalization

The canonical way to prevent independent updates in the well degrees of freedom is to merge all dual
cells in the injector into a single cell with a single unknown pw and a single equation (5.55). This is
not directly possible, since sam(oa)2 assumes the number of unknowns per column is constant over all
columns. However, as the Conjugate Gradients method (Algorithm 5.3) derives the update vector d only
from the right-hand side b and matrix-vector products Ax, we merely have to ensure that right-hand-
side and matrix-vector product entries are equal for all degrees of freedom in the well, thus enforcing
uniform changes to all entries. One way to achieve this is to average over all matrix entries and right-
hand side entries that affect degrees of freedom in the cell. For any matrix vector product r = Ax the
result vector r is modified to return

rj ←
1

|W |
∑
k∈W

∑
i∈N(j)

Ak,ixi =
∑
i∈N(j)

(
1

|W |
∑
k∈W

Ak,i

)
xi for j ∈W,

bj ←
1

|W |
∑
k∈W

bk for j ∈W. (5.57)

This modified system is no longer symmetric in general but nevertheless, the Conjugate Gradients solver
has no trouble with the term in our test cases. Note that the weight 1

|W | improves the condition of the
linear system and does not affect the solution as it is applied both to the system matrix and the right-hand
side.

Well Pressure Correction

As stated before, the analytic pressure solution near the well is a logarithmic term, which is known
to be approximated with a harmonic function by first order finite elements discretization. Hence, a
discretization error is introduced in the pressure solution that increases with the distance from the well,
but is limited. Following Peaceman [88], the pressure error at infinite distance in a uniformly refined
grid with mesh width ∆x and homogeneous permeability kh is approximately

Q

2πkh
log

(
0.2∆x

rw

)
. (5.58)

In the well model (5.55), this corresponds to a skin of s = 0 and an effective cell radius of re = 0.2∆x.
The error is not directly applied to the well pressure as a correction term in sam(oa)2, because the
permeability is in general heterogeneous near the well. Instead, the discrete derivative pi−pj

∆xj,i
in (5.36) is

modified to account for the pressure difference. We achieve this by replacing the local mesh width ∆xj,i
with a custom value ∆wxj,i for computation of the matrix entries Aj,i in (5.38). Hence,

∆wxj,i := ∆xj,i

(
1 +

2

π
log

(
0.2∆xj,i
rw

))
if either j ∈Wor i ∈W. (5.59)

We will skip the proof here and refer to numerical analysis in Chapter 6 instead, where simulation results
are compared to the analytic solution for a simple heterogeneous problem.
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Adding Boundary Conditions to the Transport Step

The final update is an addition of well boundary conditions to the transport step. By setting pressure
Dirichlet conditions for production wells, we do not fulfill the mass balance in producer elements and
therefore accumulate additional mass that must be removed from the cell. As the excess total mass for
producers is given by the deviation of the total mass balance (Fw)j + (Fn)j , the wetting phase outflow
is obtained by inserting the total mass deviation into the phase velocity (5.15). Projected to the well
surface with the normal n, it is

uw · n =
λw(s)

λw(s) + λn(1− s)
(
uT · n + λn(1− s)(ρw − ρn)nTKg

)
(5.60)

The well is vertical, which implies that the grid is K-orthogonal in the well due to the horizontally
isotropic permeability. Consequently, nTK = 0 in each point of the well surface and the gravity term
disappears from the equation. Integration of the well surface in the cell j therefore returns the wetting
phase outflow

λw(sj)

λw(sj) + λn(1− sj)
((Fw)j + (Fn)j) . (5.61)

For injection wells, we assume a pure wetting phase injection that must be added to the element. Thus,
the wetting phase inflow is obtained by

λw(1)

λw(1) + λn(0)
((Fw)j + (Fn)j) = (Fw)j + (Fn)j . (5.62)

The transport step is now modified by adding the inflow and outflow terms to the fluxes, as described in
Algorithm 5.8.

Algorithm 5.8: Modified upstream transport with injector and producer cells.
Input: p, λ∗w, λ∗n, s, ∆t > 0
Output: s
traversal

first DoF kernel:
(Fw)j ← 0; (Fn)j ← 0;
volume kernel:
(Fw)j ← (Fw)j +

∑
i∈N (j)

(λ∗w)j,in
T
j,i Kj,i(−∇pj,i + ρwg);

(Fn)j ← (Fn)j +
∑

i∈N (j)

(λ∗n)j,in
T
j,i Kj,i(−∇pj,i + ρng);

last DoF kernel:
if is producer(j) then

sj ← sj − ∆t
Vj

(
(Fw)j − λw(sj)

λw(sj) + λn(1−sj) ((Fw)j + (Fn)j)
)

;

else if is injector(j) then
sj ← sj − ∆t

Vj
((Fw)j − ((Fw)j + (Fn)j)) = sj + ∆t

Vj
(Fn)j ;

else
sj ← sj − ∆t

Vj
(Fw)j ;

end
end
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5.6 Conclusion: Reservoir Simulation on Sierpinski Grids

We consider the presented scenario fairly advanced as it is able to handle many physical phenomena
that occur in porous media flow. At this point, it is able to simulate a basic 3D oil reservoir with
two distinct phases, strongly heterogeneous, (partially) anisotropic permeability and porosity fields, and
wells. With the given implementation, we will be able to conduct some numerical and performance
analysis on simple benchmarks and simulate the SPE10 scenario to compare results on a more complete
and production-ready example.

The model is has a few restrictions: miscible multi-component flow for gas modeling, fully anisotropic
permeability data and multi-phase flow with more than two phases are not supported. Additionally, nu-
merical methods are limited. Proper permeability upscaling methods, for example [23], are needed to
obtain good coarse scale results and the Conjugate Gradients solver is not an optimal choice for the
SPE10 scenario. The condition number of the linear system deteriorates for larger resolutions, an effect
which is further amplified by the strong heterogeneity of the permeability data. Geometric multigrid
solvers are suitable candidates due to their element-wise hierarchical formulation, fitting the recursive
nature of the space-filling curve. They have already been applied successfully to Sierpinski traver-
sals [13], however they are hard to implement in the framework and require substantial theoretical work
for good convergence speed, considering especially the strongly heterogeneous permeability data.
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6
Numerical Analysis of Porous Media Flow

Integrating all the components of sam(oa)2 with its complicated traversal algorithm and the rich function-
ality for adaptive mesh refinement and parallelization is a tedious, error-prone task with many potential
points of failure. In this chapter we will

• Verify the applied methods on a set of benchmarks for the porous media flow scenario and the
tsunami wave propagation scenario by simulation of a set of problems with known analytic so-
lutions. These problems are chosen to span a large test space to provide evidence of general
convergence.

• Evaluate the quality of the solution by investigating error convergence rates on adaptively refined
grids. Results are compared to an optimal approximation for a given grid, returning an absolute
measure for the solution quality.

• Run production scenarios to compare key values with reference simulations or real measurements.

We will start with an analysis of some benchmark problems and move on to production scenarios
afterwards.

6.1 Riemann Problems in Porous Media Flow

As benchmark scenarios we use General Riemann problems for porous media flow. This is a special
class of problems with simple initial conditions that can be solved analytically to allow comparison with
simulation results. We will shortly define general Riemann Problems here and look at some of their
solution properties.

6.1.1 Solution to General Riemann Problems

A general Riemann problem for the Buckley-Leverett Equations (5.20) is an initial value problem with
a single discontinuity on an infinite 1D domain without sources or sinks. The initial condition is chosen
as

s :=

{
sl if x < 0,
sr else

,

uT := const,

g := const. (6.1)

where sl and sr are left and right initial saturations respectively, uT is the total velocity and g is the
gravity. Note that the initial condition for the total velocity is redundant as the closed form of the system
(5.14) without sources or sinks already implies

(uT )x = 0⇒ uT = const.
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Material parameters are defined as

Φ := 0.2, k := 5 · 10−12,
νw := 3 · 10−4, νn := 3 · 10−3,
ρw := 312, ρn := 258.64.

(6.2)

The parameter space is chosen by the three relative permeability models (5.7), (5.8), and (5.9) combined
with four different initial states, resulting in twelve different problems in total. By choosing fluxes with
increasing polynomial order in the relative permeability terms, complexity of the model is gradually
increased. The four initial states cover the most important cases of the General Riemann Problem defined
in (6.1).

Analytical solutions were derived from the quasilinear form (5.17) for all cases, but the calculations
will not be shown explicitly here due to their length. The derivation of the pressure solution is simple
in 1D however, as the pressure is derived directly from total mass balance in the Buckley-Leverett
Equations (5.20). Thus,

uT = (λw(s) + λn(1− s))k(−px) + (λw(s)ρw + λn(1− s)ρn)kg,

px =
λw(s)ρw + λn(1− s)ρn
λw(s) + λn(1− s)

g − 1

λw(s) + λn(1− s)
k−1uT ,

p|x2 − p|x1 =

 x2∫
x1

λw(s)ρw + λn(1− s)ρn
λw(s) + λn(1− s)

dx

 g −

 x2∫
x1

1

λw(s) + λn(1− s)
dx

 k−1uT , (6.3)

where x1, x2 is any pair of positions in the domain. For the initial condition p(x, 0), the left state and
right state saturations are constant, therefore

p(x, 0)− p(0, 0) =


(
λw(sl)ρw+λn(1−sl)ρn
λw(sl)+λn(1−sl) g − 1

λw(sl)+λn(1−sl)k
−1uT

)
· x in x < 0,(

λw(sr)ρw+λn(1−sr)ρn
λw(sr)+λn(1−sr) g − 1

λw(sr)+λn(1−sr)k
−1uT

)
· x in x > 0.

(6.4)

Density Driven Flow: non-wetting phase displacement

Consider the Riemann problem

s :=

{
1 if x < 0
0 else

,

uT := 0,

g := −9.80665. (6.5)

This scenario consists of two layers of fluids, where the lighter fluid (oil) lies on top of the heavier fluid
(water). Top and bottom are defined by the direction of the gravity here. No fluid exchange happens and
the analytic solution is stationary. Ultimately, the goal of adaptive refinement is therefore only to resolve
the discontinuity in x = 0 as well as possible in order to get a good approximation of the solution.
Figure 6.1 (right column) shows that analytic solution and numerical results of a 1D simulation agree
well for all three permeability models. Figure 6.2 (bright green line) shows the L1 error reduction of the
scenario with increasing maximum refinement depth (left column) and increasing numbers of Degrees
of Freedoms (right column). The plots are separated into linear (top image), quadratic (middle image)
and Brooks-Corey (bottom image) relative permeability models. Table 6.1 (second row) and Table 6.2
(second row) show the corresponding convergence rates for increased maximum refinement depth and
increased number of degrees of freedom. In this scenario the convergence rate is always 1.0, implying
that the error decreases inversely proportional to the mesh width ε(∆x) = O(∆x−1) and the number
of Degrees-of-Freedom ε(N) = O(N−1). In comparison, a grid that is uniformly refined in both
dimensions could at best achieve a convergence rate of 0.5.
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Figure 6.1: Riemann solutions to density-driven Buckley-Leverett flow: The plots show analytic so-
lutions (in blue) and numerical solutions of the saturation for different maximum refinement depths
(yellow: 14, orange: 16, red: 18), where points on the x-axis are 1D positions and the y-axis corre-
sponds to wetting-phase saturation. Results for the three relative permeability models (5.7), (5.8)) and
(5.9))) are shown from top to bottom. In the left column, gravity points to the right and a rarefaction
wave at the interface results. The small peak at depth 16 in the top left plot is not an error, but caused
by a wall condition on the right end of the domain. In the right column, gravity points to the left and the
solution is stationary in all three cases.
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Figure 6.2: Error plots for all four considered Riemann problems. These double-logarithmic plots
compare the change of the L1 error norm for increasing grid resolutions, denoted by the maximum
refinement depth (left column) and the number of DoFs (right column) on the x-axis. Results are shown
for linear (top row), quadratic (middle row) and the Brooks-Corey (bottom row) permeability model.
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Riemann problem linear model quadratic model Brooks-Corey model

density wetting 0.66 0.76 0.79
density non-wetting 1.00 1.00 1.00

pressure wetting 0.71 0.77 0.82
pressure non-wetting 1.09 0.80 0.78

Table 6.1: Convergence rate α of the L1 error norm for decreasing minimum mesh width ∆x:
ε(∆x) = O(∆xα). The optimal value is 1. The minimum mesh width is computed from the maximum
refinement depth d with the formula ∆x = 2−

d
2 . This table compares the solution asymptotically to the

best possible approximation with the same minimum mesh width ∆x, indicating the quality loss from
adaptive coarsening. α was determined by a linear fit.

Riemann problem linear model quadratic model Brooks-Corey model

density wetting 0.53 0.64 0.68
density non-wetting 1.00 1.00 1.00

pressure wetting 0.60 0.61 0.69
pressure non-wetting 1.05 0.75 0.67

Table 6.2: Convergence rate β of the L1 error norm for increasing numbers of DoFs: ε(N) = O(N−β).
Grids that are uniformly refined in both dimensions achieve at best a value of 0.5 in 2D, the optimal
value is 1. This table shows how well Degrees-of-Freedom contribute to the solution, indicating the
overall quality of adaptive refinement and coarsening. β was determined by a linear fit.
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Density Driven Flow: wetting phase displacement

We consider a similar Riemann problem now, but this time gravity has the opposite direction, i.e.,

s :=

{
1 if x < 0
0 else

,

uT := 0,

g := 9.80665.

In contrast to the previous Riemann problem, the heavier fluid lies on top of the lighter fluid now.
Inevitably, they will swap positions, so the saturation in x < 0 will decrease and the saturation in x > 0
will increase.

Figure 6.1 (left column) compares the analytic solution to the numerical results of a 2D simulation
for variants of the relative permeability. The upwind solver is able to obtain good results for all prob-
lems, but some deviations from the numerical solution appear with higher resolutions. Still acceptable
convergence is achieved with a convergence rate of at least 0.53 Table 6.1 (first row) and Table 6.2 (first
row). The result improves with increasing nonlinearity of the relative permeability model, which is due
to the formation of shock waves that are captured much better by adaptive refinement than rarefaction
waves. For the linear model, a saturation peak at x = 1 is observed (Figure 6.1, top left image). The
reason is not an error but the boundary that acts as a wall condition for the fluids. The main reason for
the suboptimal convergence rate of all models is viscous fingering, e.g. [4]. To explain in detail, this
effect is a physical instability at the fluid interface that occurs when the viscous phase is replaced by
the non-viscous phase. In the first time step, the fluxes at the interface are identical. However, due to
coarsening, the dual cells at the interface have different volumes and therefore the net updates produce
different saturations (see Figure 6.3). Higher saturations locally increase the mobility of the non-viscous
phase. The non-viscous phase is accelerated in non-viscous regions and the viscous phase is slowed
down in viscous regions. The error is therefore amplified. Eventually the interface is visibly deformed,
resulting in the viscous fingers. As the effects are caused purely by a discretization error, they are un-
desired but hard to avoid. Increased diffusion would solve this issue, for example by reducing the time
step size or by application of diffusive flux solvers (Lax-Friedrichs, etc.), but it would also reduce the
quality of the result.

In addition to the saturation we will also evaluate the pressure solution for this scenario as in this
special case, the upwind solution is different from the analytic solution as explained in Section 5.3.2.
According to (6.4), the initial pressure is

p(x, 0) = p(0, 0) +

{
ρwgx in x < 0
ρngx in x > 0

We use the pressure difference

p(1
2 , 0)− p(−1

2 , 0) = 1
2(ρw + ρn)g = 0.4058...

in pounds-per-square-inch (psi) as reference data and compare it to simulation results for different min-
imum mesh widths in the maximum norm. Table 6.3 shows the results for decreasing minimum mesh
widths and increasing number of DoFs. The pressure error has a convergence of order 1.00 in the
maximum norm in both cases. Therefore, considering that a linear approximation is used, an optimal
convergence rate is achieved.
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Figure 6.3: Density-driven flow in 2D: The left image shows the saturation (gray ≤ 0.05, pink ≥ 0.1)
on the phase interface after the first time step. Due to coarsening at the interface, saturation is not
homogeneous. This discretization error causes viscous fingering, an inhomogeneous saturation front
(right image) in the solution (gray = 0.0, blue = 0.2, green = 0.5)

.

Minimum mesh width 2−1 2−2 . . . 2−7 2−8 2−9

Degrees of Freedom 12 32 . . . 802 1572 3118
Pressure error (L∞) 0.032 0.015 . . . 0.00047 0.00023 0.00012

Table 6.3: Maximum error norm of the initial pressure for density-driven flow with wetting phase
displacement and a linear relative permeability model. The table shows results for decreasing minimum
mesh widths ∆x = 2−

d
2 and increasing Degrees of Freedom N , where d is the maximum refinement

depth. In both error norms ε(∆x) = O(∆xα) and ε(N) = O(N−β), the convergence rates α and β are
1.00.
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Pressure Driven Flow: non-wetting phase displacement

The third case is a scenario without gravity but a non-zero total velocity uT < 0. More precisely,

s :=

{
1 if x < 0
0 else

,

uT := −0.54..,

g := 0.0.

The analytic solutions for this scenario are dominated by shocks as is shown in Figure 6.4 (right column).
The linear relative permeability model (top right image) (5.7) produces a shock wave, the other models
(middle right and bottom right image) produce an additional rarefaction wave for low saturations. The
error measurements in Tables 6.1 and 6.2 suggest a (theoretically impossible) superlinear error conver-
gence for the linear model. The reason for this number is that the convergence rate is only estimated
by comparison of test results from coarse and fine resolutions. Here the coarse grid result is suboptimal
and the difference of fine grid and coarse grid solution is insufficient to get a precise convergence rate.
In Figure 6.2 (top left image, yellow line) this is visible as the error decreases at a constant rate until
it suddenly increases at d = 16. For the other permeability models, the convergence rate is still good
but slightly worse, which is again due to the addition of a rarefaction wave and the effect of viscous
fingering.

Pressure Driven Flow: wetting phase displacement

The last case investigates the Riemann problem

s :=

{
1 if x < 0
0 else

,

uT := 0.54..,

g := 0.0.

where the total velocity is positive and no gravity is present. The behavior of the analytic solution with
increasing nonlinearity is exactly opposite to the third case as is shown in Figure 6.4 (left column).
The linear relative permeability model (top right image) (5.7) produces a rarefaction wave, the other
models (middle right and bottom right image) produce an increasingly strong additional shock wave.
Convergence rates improve for increasing nonlinearity as seen in Tables 6.1 and 6.2. In Figure 6.2 the
same behaviour is observed (all images, blue line) as the curves get steeper with increasing nonlinearity.

Conclusions from Benchmark Analysis

The observations made from solving the four types of Riemann problems are two-fold:
On the one hand, adaptive refinement is able to track shock waves optimally. This is shown in

particular for pure-shock wave solutions, which all have a convergence rate of 1. The other problems
are clearly solved better, the stronger the shock wave component of the solution is.

On the other hand, resolution of rarefaction waves is problematic. Viscous fingering causes a self-
amplifying error at the wave front. Also, features are not one-dimensional as in the case of a shock wave
and therefore it is harder for the refinement criterion to decide which cells should be refined and which
ones coarsened.

Still, for all examples the achieved convergence rates were better than what a uniformly refined
Cartesian grid could theoretically achieve. This is a strong indication that more complex examples will
also benefit from adaptive refinement and production scenarios are worth investigating.
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Figure 6.4: Riemann solutions to pressure-driven Buckley-Leverett flow: The plots show analytic so-
lutions (in blue) and numerical solutions of the saturation in space for different maximum refinement
depths (yellow: 14, orange: 16, red: 18). Results for the three relative permeability models (5.7), (5.8)
and (5.9) are shown from top to bottom. In the left images, the force acts to the right and the wetting
phase replaces the non-wetting phase. In the right images, the force acts to the left and the non-wetting
phase replaces the wetting phase.
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6.2 Well Model Accuracy

In order to verify the well model implementation introduced in Chapter 5.5.2 we set up a simple 2D
test case on a square domain with heterogeneous permeability that consists of four producer wells with
bottom hole pressure 0 in each corner and an injection well in the center of the domain that injects water
at a constant injection rate. Four distinct permeability values are chosen and assigned to each quadrant
of the domain, resulting in an axis-symmetric pressure solution with asymmetric fluxes. This test case
will only consider the pressure correction term (5.59) and neglect the equalization (5.57) and transport
step boundary conditions (5.61) and (5.62). This is a valid restriction, as an incorrect well pressure
equalization will prevent a solution to the linear system (5.38) and incorrect boundary conditions will
violate the mass balance and cause quick failure in the transport step (5.24). In contrast, an erroneous
pressure correction term will not return an unphysical solution as it corresponds to a different pressure
boundary condition.

Figure 6.5 (top) visualizes the permeability distribution in the domain and the pressure solution.
Convergence of the injector pressure over increased refinement depth (bottom left image) is slow without
the correction term and depends heavily on the well radius rw. When the well is over-resolved, the
target pressure is overshot (this would usually be handled however). With pressure correction (5.59), a
good convergence speed is achieved and the corrected solution matches the analytic solution near the
production well (bottom right image).

6.3 Comparison to SPE10 Reference Data

The SPE10 benchmark project provides lots of reference data that includes production rates, water cuts,
average pressure and cumulative oil production for the four producers P1 to P4 over time.

In order to validate the implementation, the code was executed on fully refined grids with 85 layers
and maximum depths 10, 12, 14 and 16, corresponding to 50k, 170k, 560k and 2.2M elements in the
final grid. The wall-clock time of the full scenario was 1h 12min for 2.4M time steps on 4 Haswell
nodes of the SuperMUC Phase II system [119]. Figure 6.7 shows a plot of oil production rates for
maximum depth 10, 12, 14 and 16. On the bottom axis the simulation time is plotted, The solid lines are
oil production rates in BBL

d for the field and for producer P1. In the first 85 days, production rates are
almost constant, then water starts to reach the producers, increasing the water cut and causing a rapid
decline in the production rate. Comparison of the field oil rate to reference results in the top curves
shows good agreement for all three simulations. Slight deviations are due to the decreased resolution.
Deviations are more prominent for producer P1. This is caused by a discretization error in the total
production rate of a producer. In contrast, this error does not occur in the total production rate of the
field, as it is determined by the injection rate of 5,000 BBL

d and thus affected only by numerical error.
The water cut of producer P1 in Figure 6.8 (bottom image) shows that for simulation depths 10 and 12,
water arrives too late compared to the reference simulations. As time progresses, the lines converge
however.

Figure 6.6 shows the saturation profile in the domain over time, where water spreads from the in-
jection well, causing a pressure-induced flow towards the production wells. It is clearly visible that
propagation speed differs strongly in the different layers due to the strong heterogeneity in material
permeability. On four Haswell nodes of the SuperMUC Phase II system [119], the scenario is solved
roughly in an hour, executing 2.4 million explicit time steps.
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Figure 6.5: Validation of the well pressure correction term (5.59) for a simple heterogeneous 2D five-
spot problem with uniform permeabilities in each quadrant of a 1m × 1m square domain (top left
image). Four producers are located at the corners of the domain and one injector is placed in the center.
The top right image shows the symmetric pressure solution on a fine grid with maximum depth 30. In
the bottom left image, the injection pressure is plotted at increasing refinement depths with (blue) and
without (red) pressure correction term, where the corrected method is observed to converge quickly. A
comparison of corrected and analytic single-well solution (bottom right image) over increasing distance
to the producers shows good agreement near the well. At a distance of 0.4 m and beyond, the analytic
solution does not hold any longer.
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Figure 6.6: SPE10 3D saturation profile at 25, 50, 75 and 100 simulation days. The lower right corner
has been clipped for better visibility.

Figure 6.7: SPE10: Logarithmic plot of field (top lines) and producer P1 (bottom lines) oil production
rates for simulations with maximum depths 10 to 16 over 2000 days of production. Fine scale reference
data from the original SPE10 comparison project (black) is added for comparison.
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Figure 6.8: SPE10: Producer P1 water cut for simulations with maximum depth 10 to 16 over 2000
days of production. Fine scale reference data from the original SPE10 comparison project (black) is
added for comparison.
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6.4 Conclusion: Riemann Problems and the SPE10 Benchmark

In this chapter we verified that the numerical components of the porous media flow scenario work as ex-
pected. The nonlinear systems are set up and solved correctly as the Riemann solutions and well model
comparisons showed. The SPE10 scenario was solved with satisfying accuracy, although some devia-
tions still exist, especially on grids that do not fully resolve the problem. More work on permeability
and porosity upscaling might be necessary to achieve better results.
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7
Performance of Porous Media Flow

In this chapter, we will analyze performance of the porous media flow scenario with a parameter choice
and an environment close to the conditions of a production run.

The target platform will be the SuperMUC supercomputer [119], whose subsystem specification is
given in Table 7.1. The system is located at Leibniz Supercomputing Center in Munich, Germany and
consists of two Petascale CPU clusters, a fat node cluster and a hybrid many-core cluster, of which the
latter is neglected for this analysis.

Most of the performance tests were executed on the SuperMUC thin node cluster (phase 1), which
features 9,216 light-weight nodes with eight cores on two sockets each, allowing concurrent execution
on up to 147,456 cores. For single node memory bandwidth tests, we additionally used the SuperMUC
fat node and Haswell nodes. Each fat node consists of four ten-core sockets and each Haswell node
contains 28 cores on two sockets. A cache-coherent Non-Uniform Memory Access (ccNUMA) layout
allows for shared memory parallelization in each node. Inter-node communication is realized by a peer-
to-peer pruned-tree topology.

sam(oa)2 was compiled with the Intel Fortran Compiler version 13.1 or higher. Two MPI libraries
are available on SuperMUC: A customized MPI version by IBM and Intel MPI version 4.1 and above,
both of which deliver comparable performance. For large scale tests we mainly used IBM MPI, for small
scale tests Intel MPI. Arithmetic operations were computed in double precision.

As the porous media flow scenario is computationally cheap and rarely requires remeshing, the focus
for performance analysis lies on determining the overhead of static grid traversals and communication.
We will compute the traversal overhead by comparing memory throughput and floating point operations
per second to the peak capabilities of a single node. Communication will affect the scenario mostly when
it is executed on a large number of cores. Hence, we executed scalability tests to determine the impact
of increased parallelism. Some of the performance tests presented here have already been published
in [75, 77].

7.1 Efficiency Measures

For performance analysis, we are mostly interested in analyzing single node efficiency and parallel
overhead of sam(oa)2. Application-specific scalability indicators such as the number of linear solver
iterations are important for production scenarios but will be neglected as they do not reflect parallel
performance of the framework.

Since the resolution in dynamically adaptive meshes is not controlled by a static depth value but
by dynamical, local criteria, it is hard to create a mesh with a fixed size that still reflects a production
environment. Classical weak scaling is therefore difficult to realize, as the default efficiency measure
t(1)
t(p) compares execution times t(p) for a test suite of scenarios with increasing mesh size and parallelism
p, requiring constant numbers of elements per core.

Hence, instead of execution times, we use a different measure to evaluate performance based on the
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Subsystem Fat Nodes Thin Nodes Haswell Nodes

Processor Intel Westmere Intel Sandy Bridge Intel Haswell
Xeon E7-4870 Xeon E5-2680 8C Xeon E5-2697 v3

Cores per node 40 16 28
Number of nodes 205 9216 3072
Memory bandwidth per node [GB/s] 136 102 137
Double precision ops per node [GFlop/s] 384 346 1165
Double precision ops total [TFlop/s] 79 3190 3580
Islands 1 16 6
Nodes Per Island 205 512 512
Interconnect Infiniband QDR Infiniband FDR10 Infiniband FDR14
Inter-Island Interconnect none 4:1 Pruned Tree 4:1 Pruned Tree

Table 7.1: The SuperMUC CPU clusters and their specifications [119]

number of element touches per second per core:

µ(p) :=
ET (p)

p t(p)
. (7.1)

ET (p) is the total number of element touches, where each grid traversal counts a single touch per
element. p is the degree of parallelism, i.e. the total number of concurrent threads over all MPI processes,
and t(p) is the measured wall clock time, depending on p.

Ideally, µ(p) is now constant for increased parallelism, but will include overhead from load balancing
and communication. Hence, it is more suitable to measure weak scaling efficiency than t(1)

t(p) as it allows
variations in the grid size while still returning comparable numbers.

In a strong scaling setting, the number of grid traversals and element touches should be constant
over all test runs as we ideally solve the same problem for each test. The only difference is the varying
degree of parallelism p. Hence, ET (p) = ET (1) = µ(1) t(1) and (7.1) can be written as:

µ(p) =
t(1)

p t(p)
µ(1) if ET (1) = ET (p). (7.2)

µ(p) therefore measures strong scaling efficiency t(1)
p t(p) scaled by the constant µ(1).

In practice, there may be minor differences in the grid during strong scaling as coarsening is re-
stricted to cells of the same section as mentioned in Chapter 4.5.1. With increased parallelism, the grid
is split into more sections and a pair of cells is more likely to be separated by a section boundary, which
prevents coarsening of the cells. Additionally, numerical error may cause differences in the last signif-
icant bits as the order of arithmetic operations is not necessarily the same for serial and parallel runs.
This can lead to slightly varying numbers of linear solver iterations for the Conjugate Gradients solver,
which is described in Section 5.3.4. These nondeterministic effects are small enough to be insignificant
for scalability tests however.

We will also investigate performance in more detail by splitting up computation into its components.
Here, a suitable measure is the normalized component time per element per core

τ(c, p) =
p t(c, p) s(c)

ET (c, p)
, (7.3)
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where t(c, p) is the total wall clock time spent in the component c with degree of parallelism p and
ET (c, p) is the total number of element touches in component c depending on p. Adding up the compo-
nent times t(c, p) and element touches ET (c, p) returns t(p) and ET (p) respectively:

t(p) =
∑
c

t(c, p) and ET (p) =
∑
c

ET (c, p) (7.4)

s(c) is a typical number of grid traversals per component, empirically chosen and independent of the ac-
tual number. This normalization is necessary to provide comparable data for linear solver performance,
whose iteration number varies with the problem size. Eventually, τ measures scalability of each compo-
nent while considering how much time is usually spent in each component, but smoothing differences
that occur in individual runs. With increased parallelism, we expect the values to grow. In a theoretical,
perfectly scaling code, they would remain constant.

7.2 Traversal Overhead on a Single Node

The first goal of this analysis is to determine how close sam(oa)2 approaches the theoretical performance
of a single node in order to define a performance baseline for scalability. We will therefore execute a
throughput performance evaluation in order to determine the ratio of actual performance to peak perfor-
mance. Next, scalability on a single node is analyzed with different parallelization implementations.

7.2.1 Node Level Roofline Analysis

In order to get a rough idea of performance limits, we will first conduct a Roofline analysis [128] with
the goal of investigating whether performance is bound by memory throughput, computation or other
factors.

Figure 7.1 shows the results of an analysis for a 2D scenario and for 3D scenarios with increasing
numbers of vertical layers, all of which correspond to the model in Chapter 5.2.3. Note that we already
use the fused Conjugate Gradients solver from Chapter 5.4.1 to improve computational intensity. When
the number of vertical layers is increased, computation, memory traffic and communication increase,
however the number of stack-&-stream data fetches during traversal remains constant. Hence, floating
point performance appears to be mainly limited by memory bandwidth, considering that the performance
of sam(oa)2 is fairly close to the output of the STREAM benchmark [73].

Table 7.2 displays the memory performance in detail for increasing numbers of layers. Memory
throughput in sam(oa)2 was estimated by summing up the amount of memory allocated for all cells and
all vertices once per traversal. Hence, we assume all data is touched at least once per traversal to get a
conservative estimate for the total amount of memory traffic. When this number is divided by the wall
clock time for all traversals, an estimate for the memory throughput is returned that can be compared
to the STREAM benchmark. We used a modified implementation of STREAM here that counts only a
single access to an array, while executing an in-place copying operator. This pattern matches the stream
access of sam(oa)2 and returns a useful benchmark value. Overhead from cache misses and access to the
stacks is not counted in sam(oa)2, hence the ratio of the numbers returns a measure of memory efficiency.

Memory throughput starts at 36% of STREAM performance in 2D and converges to 68% with
increased number of vertical layers, meaning sam(oa)2 does not achieve the full bandwidth in 3D, but
converges to a fairly high value. In the second row of Table 7.3 a comparison of memory throughput
on all three SuperMUC clusters shows that sam(oa)2 approaches the measured throughput by STREAM
better on the other systems, reaching almost 82% on the Haswell nodes and 86% on the fat nodes. The
reason for this discrepancy is that a thin node has the highest memory bandwidth per core with 6.4 GB/s,
whereas the fat nodes have 3.4 GB/s per core, and the Haswell nodes have 4.9 GB/s per core. Hence, the
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Figure 7.1: Roofline analysis of the porous media flow scenario on a single SuperMUC thin node.
Floating point performance of sam(oa)2 is compared to the theoretical peak performance for different
numbers of vertical layers in the 3D model. Higher Flop/s correspond to higher numbers of layers. The
output of the STREAM memory benchmark [73] is plotted as a ceiling in the graph.

Memory TP in GB/s (Ratio) 2D 1 layer 16 layers 64 layers 85 layers

STREAM 43 (100%)
sam(oa)2 15 (36%) 16 (38%) 25 (59%) 29 (68%) 29 (68%)

Table 7.2: Memory throughput of the porous media flow scenario in sam(oa)2, measured for runs
with 40M elements in 2D and 3D (1 to 85 layers) on a single SuperMUC thin node, compared to the
STREAM benchmark.

thin nodes read and write data faster than the other nodes. Traversal logic and computation have a higher
impact compared to the fat nodes and the Haswell nodes, which process memory slower while at the
same time having more FLOP/s available in total per node. Hence, we can conclude that performance
is limited mostly by memory throughput, however some influence of traversal logic and computation is
visible, too.

Adding Lazy Broadcasts in Shared Memory

The memory throughput comparison is also suitable to investigate how lazy broadcasts in shared memory
according to Section 4.3 affect performance. By removing redundant computation, we observe that the
effective memory throughput increases on all three systems consistently by 15% to 17% for this scenario,
reaching close to 100% on the fat nodes and the Haswell nodes.
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Memory TP in GB/s (Ratio) Fat Node Thin Node Haswell Node

STREAM 56 (100%) 43 (100%) 61 (100%)
sam(oa)2 original 46 (82%) 29 (68%) 53 (86%)

with lazy broadcasts 54 (97%) 34 (78%) 61 (100%)

Table 7.3: Memory throughput of the porous media flow scenario in sam(oa)2 with 85 layers on a single
fat node, thin node and Haswell node of the SuperMUC system. The scenario size was chosen suffi-
ciently high to exceed the cache size on each system. Also compared is the addition of lazy broadcasts
in shared memory, see Chapter 4.3.

7.2.2 Scalability on a Shared Memory Compute Node

Our next test is scalability on a single SuperMUC thin node. A SuperMUC thin node consists of two
NUMA sockets with eight cores each, suitable for strong scaling tests with pure OpenMP, pure MPI,
and hybrid OpenMP+MPI parallelization. We will test all three variants to try and identify potential
scalability issues.

Figure 7.2 shows a component breakdown for the 2D channel flow scenario in Chapter 5.2.2 to
evaluate the parallel efficiency from 1 to 16 cores.

The numerical components mentioned in the plot are described in Chapter 5.3.2, where

• “Permeability“ is the setup of the linear system which requires evaluation of permeabilities (Chap-
ter 5.3.3).

• ”Pressure Solver” is the Conjugate Gradients solver (Chapter 5.3.4).

• “Gradient“ is the time step computation from evaluation of the pressure gradients (Chapter 5.3.5).

• ”Transport“ is the discrete transport step (Chapter 5.3.2).

• ”Error Estimate“ is the error indicator for adaptive refinement and coarsening (Chapter 5.3.6).

Additionally, structural components of sam(oa)2 are integrated in the graph:

• ”Conformity” means the conformity correction traversals (Chapter 4.5.1).

• “Adaption“ is adaptive refinement and coarsening (Chapter 4.5).

• ”Neighbor Search“ is the neighbor data structure update. (Chapter 3.4.2).

• ”Load Balancing“ is the MPI load balancing component of sam(oa)2 (Chapter 3.2).

Clearly, the pressure solver has the most impact on performance, as it dominates the other components.
For the plot, we assumed 10 linear solver iterations per time step, applying the metric described in
Section 7.1, to normalize the linear solver time for better comparability. Usually, the number is higher.
All other components are counted only once per time step, which is accurate in most cases. With four
sections per core, performance for pure OpenMP, pure MPI and hybrid execution is mostly similar. MPI
performs a bit worse, which is more visible with eight sections per core. This is mostly due to overhead
from process management and MPI calls. All components scale appear to scale well on a single node
with only minor impediments.

A second component analysis in Figure 7.3 shows how ratios and total computation time per element
change with increased number of layers for the 3D scenario. While the total time doubles from 2D to 3D
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Figure 7.2: Strong scaling on a single thin node with MPI-only, OpenMP-only and hybrid paralleliza-
tion. Two runs per configuration have been executed, one with four (left bar) and one with eight sections
per core (right bar). OpenMP and hybrid parallelization perform best while MPI parallelization suffers
from some overhead especially with higher numbers of sections.

(0 to 1 layer), it slowly decreases to a value similar to the 2D case. This behavior reflects the memory
requirements per element well, which double from 2D to 3D. Since we need vertex columns of size n+1
for n layers of prism elements, twice as many vertices are needed for a single 3D layer than a 2D grid.
However, as n approaches infinity, the ratio n+1

n converges to 1 again like in the 2D case, explaining the
decline in the plot with four layers and more.

7.3 Scalability on Multiple Distributed Nodes

In order to determine communication overhead we will use the single node performance analysis as
baseline for absolute performance and determine parallel efficiency on large numbers of cores to find
out how communication affects scalability.

For multi-node performance tests the SuperMUC thin nodes were used again. With 147,456 cores,
they provide a suitable environment to test scalability in distributed memory. Our tests were conducted
on up to 32,768 cores, which is a quarter of the full machine and the maximum possible without special
permission for larger jobs.

For this study, we will investigate performance of both the 2D channel flow scenario and the 3D
SPE10 scenario.

7.3.1 Scalability of the SPE10 Scenario

In this test, we will investigate scalability of the 3D scenario described in Chapter 5.2.3 and Chapter 5.5.
The number of vertical layers was chosen to be 64. As local communication grows linearly with the
number of layers but traversal overhead and global communication remain constant, scalability should
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Figure 7.3: Component breakdown in 2D (0 layers) and 3D (1 to 85 layers): given is the time spent
in a single element per time step, broken down by components. For this plot, the pressure solver was
normalized to 10 iterations per time step.

be dominantly affected by local communication. We will show both a short weak and strong scaling
study, as already presented in [75].

Weak Scaling

The purpose of a weak scaling test is to investigate how increase of problem size affects scalability, in
order to predict performance of larger problems that may occur in future simulations.

For this study, the problem size was scaled from 500k elements on 1 core to 4G elements on 8192
cores. Figure 7.4 shows an excellent scalability with 86% from 1 to 8192 nodes and 91% from 16 to 8192
cores. Some performance loss occurs within a node due to the memory-bound nature of the problem.
Once the memory throughput of the node is reached, it becomes the bottleneck of the simulation. On
8192 cores, the most prominent reason for performance loss is global communication. Compared are an
optimal chains-on-chains solver and midpoint approximation for load balancing (see Chapter 3.2). As
the optimal solver is inherently serial, the scenario does not benefit from it at large numbers of cores in
this case.

Strong Scaling

As the SPE10 scenario consists only of a few million elements, scalability on a large number of cores
is not achievable for a memory-bound solver. Hence, we over-resolve the scenario to a size of 80M
elements and investigate strong scalability from 16 to 512 cores, eventually leaving each core with 150k
elements on 512 cores. Figure 7.5 shows the results, where time-based cost evaluation is compared to
the linear cost model. Due to the homogeneous kernels in the porous media flow scenario, the linear
cost model returns a better performance as it is not prone to measurement errors. A parallel efficiency
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Figure 7.4: Weak scalability of an over-resolved SPE10 scenario executed on 1 to 8192 cores. On the
left, an optimal chains-on-chains solver is used for load balancing and on the right midpoint approx-
imation is applied (see Chapter 3.2). While the optimal solver returns a slightly better intermediate
performance (96% at 512 cores for the optimal solver and 95% for midpoint approximation), its serial
implementation kicks in at 8192 cores and returns a worse performance (82% vs. 91%).

of 87% is achieved on 512 cores.

7.3.2 Scalability Limits of 2D Channel Flow

While the model of the 3D scenario is more interesting, the 2D scenario is simpler with less arithmetics
per kernel and therefore more sensitive to scalability issues caused by global communication and by
traversal overhead. We will therefore perform a weak scaling study and a strong scaling study to examine
how well the code behaves under increase of parallelism for problems with growing size and problems
with fixed size, to find out at which point performance breaks down.

Weak scaling of 2D Channel Flow

sam(oa)2 was executed with a problem size of 1 million elements per core and configured to sustain
this number for all test runs. As adaptive refinement and coarsening are active, this is not guaranteed
and some variation in the size is possible. The initialization phase of the grid, which is described in
Section 3.4.2, and the first time steps are neglected for the scalability test as the grid is typically strongly
imbalanced in the beginning and requires a few time steps to stabilize. This is a valid restriction as we
try to emulate sustained performance in a production run, which is not affected by the initial phase.

The number of processes is increased from 16 up to 32,768 cores (four SuperMUC thin node islands),
where eventually the grid contains around 40G elements. Results for the parallel efficiency are plotted in
Figure 7.6. 88% weak scaling efficiency is achieved on up to 4,096 cores, decreasing to 70% on 32,768
cores. Some erratic behavior occurs which needs explanation though. Hybrid scaling is a bit worse in
general, but comparable. Performance is slightly worse than for the 3D scenario due to the relatively
higher global communication.

A breakup into components (Figure 7.7) illustrates that the erratic behavior at 512 and 2048 cores is
caused purely by the linear solver. A closer investigation shows that in these two cases, the number of
linear solver iterations was particularly low during the time of measurements, causing a worse memory
throughput as the first Conjugate Gradients iteration is more expensive than the following ones.
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Figure 7.5: Strong scalability of an over-resolved SPE10 scenario with 80M elements. The left image
shows the results from 16 to 512 cores for a linear cost model. In the right image, time-based cost
evaluation is used. As the linear solver with its homogeneous kernels dominates performance, time-
based cost model performs worse with 84% efficiency compared to 87% parallel efficiency.

The performance loss on higher numbers of processes is caused mostly by increased global commu-
nication, which is worse for pure MPI parallelization than for hybrid parallelization. Hybrid paralleliza-
tion still returns a worse element throughput overall, however the reason is a different one. Figure 7.7
(top) shows that the neighbor search component appears to scale badly starting at 1, 024 cores. As the
earliest point of communication in adaptive traversals is in the neighbor search, the actual cause is a
postponed imbalance during adaptive traversal. Further analysis shows that thread-parallel access to the
ASAGI [5] library is the root cause, which was not fully supported at the time this test was conducted. If
adaptive traversals are neglected, hybrid parallelization performs much better: I.e. the memory through-
put of the linear solver is 50% higher in hybrid parallelization compared to pure MPI parallelization and
global communication time is reduced by over 70%.

Strong scaling of 2D Channel Flow

For a strong scaling setting we used a scenario with 77M elements, a minimum refinement depth of 26,
and a maximum refinement depth of 40. Due to adaptive refinement, the number of element changes
during the computation, continuously increasing the number of cells. We scaled the scenario from 16
to 8192 cores, a full island of the SuperMUC thin node cluster. The resulting performance is plotted in
Figure 7.8. Hence, at 8,192 cores, each partition consists of 9,000 elements, which is a very tough test
case for a memory-bound problem.

Parallel efficiency with Intel MPI ist at 88% on 512 cores and with IBM MPI at 83% on 512 cores.
At 2,048 cores we still obtain 62% with Intel MPI and 58% with IBM MPI. Pure Intel MPI performance
drops rapidly afterwards which is most likely due to switching from eager message sending to the ren-
dezvous protocol for communication, which strongly increases latency. Hybrid parallelization is not
affected yet as it works on a smaller number of processes and can still use the eager protocol. Eventu-
ally, efficiency is reduced to 36% on 8,192 cores. Note that at this point a single core holds only 10k
cells, which is an extremely low number for a memory-bound simulation. According to [127], scalability
cannot be upheld any longer under these conditions, hence the performance drop. Again, performance
is worse than for the 3D channel flow scenario, as in the 2D case scalability is affected much more by
global communication and traversal overhead.
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Figure 7.6: MPI Weak scaling of a dynamically adaptive simulation from 1 to 2,048 nodes and up
to 40G elements on the SuperMUC thin nodes with pure MPI (left) and hybrid (right) parallelization.
Performance oscillates due to varying numbers of CG iterations per time step in a weak scaling setting.

Sections per core 8 16 32

Memory TP in GB/s (Ratio) 334 340 326

Table 7.4: Finding the number of sections per core that maximizes memory throughput. An MPI-
parallelized simulation on 512 thin node cores with 1M elements per core returns similar results for all
three values, hence the choice has only a minor impact on performance. The optimal number of sections
per core appears to be around 16.

Choosing an optimal number of sections per core

An influential factor on scalability is the choice of the parameter for the number of sections per core
as explained in Chapter 3.2.2. If the value is too low, load balancing on atomic sections will return
large imbalances and communication is not hidden well. If the value is too high, section overhead will
start to affect performance. The optimal number is usually strongly dependent on the scenario and other
parameters, hence we measure exemplary results for pure MPI parallelization. Table 7.4 shows that
in this scenario the difference is rather small and an empirical value of 16 sections per core should be
sufficient to achieve good results. Note that for hybrid parallelization, the number is typically smaller, as
the distributed load balancing algorithm has more sections per process available for fine-grained balance.

7.4 Conclusion: A Scalable Memory Bound Problem

We showed in this chapter that the overall quality of parallel performance is satisfying for memory-
bound problems. The baseline performance analysis showed that memory throughput of the porous
media flow scenario is close to the on the test systems, and hence computationally very cheap. Hence,
the scenario is also hard to scale as it is much more sensitive to communication overhead than a compute-
bound problem. Nevertheless, weak scaling efficiency for the presented cases was shown to be around
90% on up to 8192 cores and strong scaling efficiency at 85% on 512 cores, which is an excellent result.

Most of the advanced load balancing techniques did not improve performance however, which is
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Figure 7.7: Component analysis of a weak scaling study for hybrid (top) and pure MPI (bottom) par-
allelization. Each bar shows the wall clock time per simulation time step per core for 1M elements,
split by components. This is not the actual number of elements per core, which depends on adaptive
refinement and coarsening, but a normalized value chosen for comparison.
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Figure 7.8: Pure MPI (blue) and Hybrid OpenMP+MPI (pink) strong scaling with 60M to 100M un-
knowns on 16 to 8192 cores of the SuperMUC thin nodes using Intel MPI (left image) and IBM MPI
(right image). Partitions are split into 16 sections per core for the pure MPI run and 4 sections per core
for the hybrid run. Intel MPI performance breaks down at 4096 cores while IBM MPI behaves more
stable, but also starts degrading. Hybrid parallelization scales worse in general.

due to the homogeneous nature of the linear solver that dominates performance of the scenario. Another
issue is scalability of the SPE10 scenario in its original size, which is too small to be parallelized on a
large number of cores.
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8
Modeling Tsunami Wave Propagation

This chapter discusses an implementation of a tsunami wave propagation scenario in the finite volume
interface of sam(oa)2. Performance is compute-bound, as we will discuss in the analysis in Section 10.2.
Therefore, the scenario is not suitable for examination of memory performance. However, in contrast
to the porous media flow scenario in Chapter 5, the overall computational effort per time step is low.
Therefore, the scenario is a good test case for the following goals:

• Demonstrating a use case of the finite volume interface of sam(oa)2 that includes communication
over edges.

• Examining the performance of adaptive mesh refinement and load balancing. Due to the small
computational effort per time step, the influence of these components is expected to be large in
this scenario.

This test case will not be discussed as extensively as porous media flow, taking into account that many
concepts are similar. Instead, the focus is mainly on new concepts, such as the finite volume interface.

8.1 The 2D Shallow Water Equations with Bathymetry Terms

For the simulation of shallow water waves, we consider a domain with three spatial dimensions that
contains three phases: water, air, and solid. Water is assumed inviscid and incompressible. Typical
wavelengths largely exceed the height of the water columns, as tsunami waves reach lengths of hundreds
of kilometers, whereas the ocean depth is only a few kilometers deep. The ratio of wave length to water
height defines the waves as shallow, allowing an approximation that integrates over the vertical axis and
ignores vertical derivatives, as explained in e.g. [67]. Note that this assumption is not always true near
coastal regions. The wave lengths may shrink to a few hundred meters and tsunamis can indeed become
deep water waves when they hit the shore.

Due to the vertical integration, solid, water and air are each assumed to be contiguous. Breaking
waves and complex geometric features such as caves or arcs cannot be represented. Instead, water is
modeled to form a single vertical pillar in each 2D position x = (x, y) with space- and time-dependent
height h(x, t) and particle velocity u(x, t), see Fig. 8.1. The pillar starts at the sea floor, whose height
is defined by the bathymetry data b(x), and ends at the water surface elevation η(x, t) = b(x) + h(x, t).

The governing equations for the system are the shallow water equations. Here, we consider three
different versions, starting with a simple 1D model, where the sea floor is assumed flat. Hence,

ht + (hu)x = 0,

(hu)t +
(
hu2 + 1

2gh
2
)
x

= 0, (8.1)

where g is the gravitational acceleration. The hyperbolic system of partial differential equations (8.1)
models the conservation of mass, represented by an advection term for the water height h, and the
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Figure 8.1: Modeling 2D ocean waves with the vertically integrated 1D shallow water equations and
bathymetry source terms. Bathymetry data b and water height h add up to the water surface elevation η.
The water height may become 0, which indicates a dry state.

conservation of momentum hu, where a similar advection term and the additional hydrostatic pressure
term 1

2gh
2 appear in the equation. If downgrade forces on the sea floor slopes are added, we obtain

the 1D shallow water equations with bathymetry source terms:

ht + (hu)x = 0,

(hu)t +
(
hu2 + 1

2gh
2
)
x

= −ghbx, (8.2)

where momentum conservation is replaced with a balance law, i.e. a conservation equation with source
terms. The additional term has a significant influence on the analytic solution as we will see in this
section. Extension of (8.2) to 2D space adds derivatives in y-direction and an equation for the second
momentum component; that is

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 + 1

2gh
2
)
x

+ (huv)y = −ghbx,
(hv)t + (huv)x +

(
hv2 + 1

2gh
2
)
y

= −ghby. (8.3)

Some complexity arises here due to the existence of a second flux function g and the change of scalar to
vector functions. The system (8.3) can be expressed in the general form of a balance law, which in the
2D case is

qt + f(q)x + g(q)y = Ψ(x), (8.4)

where

q :=

 h
hu
hv

 , f (q) :=

 hu
hu2 + 1

2gh
2

huv

 , g (q) :=

 hv
huv

hv2 + 1
2gh

2

 , Ψ(x) :=

 0
−ghbx
−ghby.


Systems of this form are well-known and hence, a couple of solutions and methods for general balance
laws and the shallow water equations in particular are available, see for example [15, 44, 49, 50].

Steady State Solutions

A particularly interesting subset of solutions for balance laws is the set of stationary solutions, which
are by definition invariant in time; i.e. the solution q̄ satisfies

q̄t = 0,
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and hence,

f(q̄)x + g(q̄)y = Ψ(x). (8.5)

A solution q̄ with this property is called steady state. For the shallow water equations, a set of steady
states is easily found by applying the chain rule to the terms

(
1
2gh

2
)
x

and
(

1
2gh

2
)
y

in (8.3). Then

ht + (hu)x + (hv)y = 0.

(hu)t +
(
hu2
)
x

+ (huv)y + gh (b+ h)x = 0,

(hv)t + (huv)x +
(
hv2
)
y

+ gh (b+ h)y = 0, (8.6)

suggesting that the equations will hold if hu = 0, hv = 0, and either h = 0 or (b+ h)x = (b+ h)y = 0
in each point. Hence, the lake-at-rest solution

h = ηeq − b,
hu = 0,

hv = 0, (8.7)

is a steady state, where ηeq > max(b) is a constant surface elevation greater than the maximum
bathymetry in the domain. Since hydrostatic pressure and downgrade forces are in an equilibrium, no
change in the solution occurs. Allowing ηeq ≤ max(b) requires a generalization to h = max(ηeq− b, 0)
in (8.7), permitting dry areas. If inundation of coasts is neglected, this case can be treated as an internal
wall boundary with complicated geometry though.

Steady states are important for numerical solvers, as they are non-trivial solutions that are hard
to stabilize in a numerical scheme. A numerical method that preserves them is called well-balanced.
See [15, 48, 67] for more information on this topic.

8.1.1 Quasilinear Form of the Shallow Water Equations

For the analysis we will also need the quasilinear form of the shallow water equations. The general
layout for 1D balance laws is:

qt + f ′(q) · qx = Ψ(x). (8.8)

In the case of the 1D shallow water equations, the matrix f ′(q) is easily derived from (8.2) by the
application of the chain rule, which yields

f ′(q) =

(
0 1

−u2 + gh 2u

)
.

Diagonalization of f ′(q) returns the matrix

Λ =

(
u−
√
gh 0

0 u+
√
gh

)
. (8.9)

The eigenvalues in the diagonal define the signal speeds in the system and will be important for the
numerical stability of the solution. Here they are used to determine a diffusion coefficient for a flux
solver in Section 8.2.2 as well as a stability condition for explicit time stepping in Section 8.2.4.

121



CHAPTER 8. MODELING TSUNAMI WAVE PROPAGATION

Extension to 2D

In 2D, the layout of the quasilinear form of multivariate balance laws changes to

qt + f ′(q) · qx + g′(q) · qy = Ψ(x). (8.10)

Hence, the derivatives of both flux functions f and g must be computed from (8.3), returning the matrices
f ′(q) and g′(q), which gives

f ′(q) =

 0 1 0
−u2 + gh 2u 0
−uv v u

 , g′(q) =

 0 0 1
−uv v u

−v2 + gh 0 2v

 ,

with the diagonal matrices

Λf =

u−√gh 0 0
0 u 0
0 0 u+

√
gh

 , Λg =

v −√gh 0 0
0 v 0
0 0 v +

√
gh

 . (8.11)

that contain the 2D eigenvalues.

8.2 Discretization on Cell Centered Finite Volumes

For the discretization, we adopt the finite volume approach by [68]. Unknowns are represented via
cell-averaged values in each element. The corresponding element-local vector

q
(t)
j =

 hj
hjuj
hjvj

(t)

(8.12)

contains the cell-averaged water height, momentum and bathymetry in element j at time t. Following
a wave-propagation approach, so-called net updates F

(
q

(t)
j ,q

(t)
i

)
are computed on the cell-incident

faces. The net updates represent transport of mass and of momentum into and out of the elements
through each face, which leads to the update scheme

q
(t+∆t)
j = q

(t)
j +

∆t

Vj

∑
i∈N (j)

Aj,i F
(
q

(t)
j ,q

(t)
i

)
, (8.13)

which is an explicit Euler time step. The equation computes the temporal change of the quantity vec-
tor q

(t)
j in cell j with volume Vj from numerical fluxes that act on the interface between cells j and i

with the intersection areas Aj,i. Furthermore, N (j) is the set of neighbor cells of j. Thus, a time step
consists of evaluating fluxes on all element interfaces and accumulating net updates in each element. A
flux solver computes the net updates F

(
q

(t)
j ,q

(t)
i

)
, where q

(t)
i and q

(t)
j are the quantity vectors of cells

adjacent to the corresponding face. Different choices for the flux solver are discussed in Section 8.2.2.

8.2.1 The Simulation Loop

In sam(oa)2, the resulting time stepping scheme is performed as described in Algorithm 8.1, where an
initial state is set and the grid is incrementally refined and distributed. Next, a displacement is applied to
the bathymetry data and the water height to create the initial tsunami wave. Finally, explicit time steps
are executed in a loop and combined with adaptive mesh refinement in each iteration.

Except for initializing the bathymetry, water height and displacements, which are simple component-
wise operations, the essential steps will be explained in detail in the following paragraphs.
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Algorithm 8.1: Parallel simulation of tsunami wave propagation with static displacements and
adaptive mesh refinement. In the first phase, the grid is set up and the displacements are applied.
The second phase alternates explicit time steps and adaptive mesh refinement.

Input: teq, tmax
Output: Cell states q(tmax) = (h, hu, hv, b) at time tmax

traversal: Initialize q, set refinement flags;
// Grid setup
while refinement flags are set do

traversal: Adapt grid, interpolate q, and balance load;
traversal: Initialize q, set refinement flags;

end
traversal: Displace bathymetry b and water height h;
// Tsunami time steps
while t < tmax do

traversal: Adapt grid, interpolate/restrict q, and balance load ;
traversal: Compute time step ∆t, update q with transport step, set refinement and coarsening
flags;
t← t+ ∆t;

end

• Section 8.2.2 explains how fluxes are computed with a simple scheme and an external solver.

• Section 8.2.4 discusses the computation of the time step size ∆t and update of unknowns with a
transport step, using an optimized traversal scheme for cell-centered finite volumes.

• In Section 8.2.5, an error indicator is defined for adaptive mesh refinement. Additionally, interpo-
lation and restriction of cell unknowns and bathymetry are analyzed.

8.2.2 From Lax Friedrichs Fluxes To Augmented Riemann Solvers

The most important component of the time stepping scheme in finite volume methods is the flux solver.
Different implementations exist in sam(oa)2, which we will slowly introduce by starting with the sim-
plest case, a solver for the 1D conservation equations (8.1). Afterwards, we will proceed to more com-
plicated flux solvers.

Solving the 1D Conservation Equations

As stated earlier, the 1D equations without bathymetry (8.1) are considered first, where state vectors
have only two components

q
(t)
j =

(
hj
hjuj

)(t)

. (8.14)

The Lax-Friedrichs method, described in [67] for example, computes updates for each cell j according
to

q
(t+∆t)
j =

1

2

(
q

(t)
j+1 + q

(t)
j−1

)
− ∆t

2∆x

(
f
(
q

(t)
j+1

)
− f

(
q

(t)
j−1

))
.
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In flux formulation, this corresponds to

q
(t+∆t)
j := q

(t)
j −

∆t

∆x
(Flf (qj ,qj+1)−Flf (qj−1,qj))

Flf (qj ,qj+1) :=
1

2

(
f (qj) + f (qj+1) +

∆x

∆t
(qj − qj+1)

)
,

where an artificial diffusion term ∆x
∆t (qj − qj+1) is introduced. This term reduces accuracy but is

necessary to maintain stability. Despite the diffusion term, the method converges to the true solution
when ∆x→ 0, since the term vanishes when the grid is refined infinitely [67]. The local Lax-Friedrichs
method, also known as Rusanov method [99], reduces the amount of diffusion by replacing the global
value ∆x

∆t with a local coefficient ξj,j+1, which is chosen as the absolute maximum of the signal speeds
determined from the quasilinear form (8.8). In 1D the value is

ξj,j+1 := max
(
|uj |+

√
ghj , |uj+1|+

√
ghj+1

)
, (8.15)

with the flux function

Fllf (qj ,qj+1) := 1
2

(
f (qj) + f (qj+1) + ξj,j+1 (qj − qj+1)

)
.

Adding the Bathymetry Source Term

We shall modify the local Lax-Friedrichs method to solve (8.2) by adding a source term to the system
and storing additional cell averaged bathymetry data bj in each cell. The flux solver must be modified
to handle the source terms and, in particular, should provide a well-balanced method. For the discrete
system, this translates to balancing quasi-steady state solutions, which are a set of cell states q̄j that
satisfy the condition

f (q̄j+1)− f (q̄j) = ∆xΨj,j+1 (8.16)

on all cell interfaces j, j + 1. Quasi-steady states do not strictly solve (8.5). Instead, they approximate
the steady state condition with a discrete source term. Using a finite difference approximation, we obtain

∆xΨj,j+1 =

(
0

−1
2g (hj + hj+1) (bj+1 − bj)

)
. (8.17)

This particular choice ensures that the lake at rest as in (8.7) is a quasi-steady state. With an extension
similar to [132], the Lax-Friedrichs method is modified to balance the lake at rest, which is

q
(t+∆t)
j := q

(t)
j −

∆t

∆x

(
Fllfb

(
q

(t)
j ,q

(t)
j+1)

)
−Fllfb

(
q

(t)
j−1,q

(t)
j

)
+ ∆xΨ

(t)
j−1,j

)
,

Fllfb (qj ,qj+1) :=

1

2

(
f (qj) + f (qj+1)−∆xΨj,j+1 + ξj,j+1

((
bj + hj
hjuj

)
−
(
bj+1 + hj+1

hj+1uj+1

)))
. (8.18)

With a rearrangement, (8.18) is generalized to

q
(t+∆t)
j := q

(t)
j −

∆t

∆x

(
Fllfb(q

(t)
j ,q

(t)
j+1)−Fllfb(q

(t)
j ,q

(t)
j−1)

)
,

Fllfb(qj ,qi) :=
1

2

(
f(qj) + f(qi)−∆xΨj,i + ξj,i

((
bj + hj
hjuj

)
−
(
bi + hi
hiui

)))
, (8.19)
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which holds for arbitrary pairs of neighbor cells (j, i). While the diffusion term next to the coefficient ξj,i
vanishes for the lake at rest, it will be nonzero in general. Other quasi-steady states are not preserved.
Hence, the method is not well-balanced. On a side note, modifying the coefficient so that it handles all
quasi-steady states returns Roe’s method [98]. Because of its simple algorithm the extended local Lax-
Friedrichs method is very useful as a quick reference solver; due to its aforementioned weaknesses, it
should not be used for production runs however. The solver is enabled in sam(oa)2 with the compilation
flag

scons flux_solver=llfbath

Advanced Riemann Solvers: Flux Differencing with Source Terms

The main problem of the Lax-Friedrichs solver is the diffusion term that degrades the quality of the
solution. Advanced solvers reduce this effect by approximating the analytic solution on each interface
between cells j and j + 1. This is achieved by choosing a matrix A on each interface that approximates
the derivative f ′(q) in the quasilinear form (8.8) and solves the equation

f(qj)− f(qi) = A (qj − qi) . (8.20)

Here we choose

A :=

(
0 1

−ū2 + gh̄ 2ū

)
, (8.21)

which is known as the Roe matrix in literature [98]. In (8.21), (h̄, ū)T denotes the Roe average of left
and right cell states, more precisely

h̄ = 1
2 (hj + hj+1) and ū =

√
hj uj +

√
hj+1 uj+1√

hj +
√
hj+1

. (8.22)

As A approximates the system matrix, waves and wave speeds of signals in the solution are also approx-
imated by the eigenvectors and eigenvalues of A, namely

λ1 := ū−
√
gh̄ and v1 :=

(
1

ū−
√
gh̄

)
, as well as

λ2 := ū+

√
gh̄ and v2 :=

(
1

ū+
√
gh̄

)
. (8.23)

The main idea of the f-wave method [15] is to use the Roe matrix A to create an eigenvalue decomposi-
tion of the balance term at the interface into flux waves [67]. This yields

f(qj+1)− f(qj)−∆xΨj,j+1 =

2∑
i=1

βi vi =

2∑
i=1

Zi.

where the coefficients βi are determined by solving the corresponding linear system of equations. The
flux solver decomposes the balance term into signals that carry deviations from the quasi-steady state.
Net updates are computed by splitting the signals into left- and right-going contributions, resulting in

q
(t+∆t)
j := q

(t)
j −

∆t

∆x

(
F−fw(q

(t)
j ,q

(t)
j+1)−F+

fw(q
(t)
j ,q

(t)
j−1)

)
,

F−fw (qj ,qj+1) :=

2∑
i=1

β−i vi =

2∑
i=1

Z−i ,

F+
fw (qj ,qj+1) :=

2∑
i=1

β+
i vi =

2∑
i=1

Z+
i , (8.24)
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where

β−i :=


0 if λi > 0
1
2βi if λi = 0
βi if λi < 0

and β+
i :=


βi if λi > 0
1
2βi if λi = 0
0 if λi < 0

.

Thus, the signal βi is transported along the wave Zi from cell j to cell j + 1 if the wave speed λi is
positive and in reverse direction if the wave speed is negative. If the wave speed is 0, the signal is split
between both cells to ensure that β−i + β+

i = βi always holds and thus

f(qj+1)− f(qj)−∆xΨj,j+1 = F−fw (qj ,qj+1) + F+
fw (qj ,qj+1) . (8.25)

The f-wave solver is not directly implemented in sam(oa)2 but instead provided by the GeoClaw package
[67]. It is enabled with the compilation flag

scons flux_solver=fwave

The package additionally contains an augmented Riemann solver that handles wetting and drying to
capture the inundation of coasts. Readers are directed to [49] for details. The corresponding compilation
flag is

scons flux_solver=aug_riemann

A verification of the flux solvers will be performed in Section 9.2 on a production scenario.

Extension to 2D

Finite volume discretization of a general 2D balance law (8.4) with an Euler time stepping scheme
returns the update rule

q
(t+∆t)
j = q

(t)
j −

∆t

Vj

∑
i∈N (j)

Aj,iF(q
(t)
j ,q

(t)
i ), (8.26)

which is in flux formulation for each cell j. The net updates are obtained by a flux solver F and the
discrete state vector in 2D is

q
(t)
j =

 h
hu
hv

(t)

j

. (8.27)

Extension of flux solvers to 2D appears straightforward, but there is a problem: Assume we have a 1D
flux solver F̂ , such as the local Lax-Friedrichs flux (8.19), then the additional flux function g prevents
us from directly reusing it on the 2D equations as the solver only knows the flux function f . The
solution is to transform all cell states, fluxes, and source terms from world space to normal space where
the second flux function disappears. While this is a valid method, it neglects waves that pass through
vertex-connected interfaces, and therefore involves a loss of accuracy [67].

Taking a closer look, the flux and source term for every state q on the interface between cells j and

i with surface area Aj,i and normal nj,i :=
(

(nx)j,i , (ny)j,i

)T
evaluate to:

f(q) (nx)j,i + g(q) (ny)j,i =
(
u (nx)j,i + v (ny)j,i

) h
hu
hv

+ 1
2gh

2

 0
(nx)j,i
(ny)j,i

 (8.28)
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and

∆xΨj,i = −1
2g (hj + hi) (bi − bj)

 0
(nx)j,i
(ny)j,i

 . (8.29)

Using the transformation

Tj,i :=

1 0 0
0 (nx)j,i (ny)j,i
0 −(ny)j,i (nx)j,i

 , (8.30)

we define  h
hû
hv̂

 := Tj,i

 h
hu
hv

 and ∆x Ψ̂j,i := Tj,i ∆xΨj,i. (8.31)

With this, the flux and source term can be written as

f(q) (nx)j,i + g(q) (ny)j,i = T−1
j,i

 hû
hû2 + 1

2 g h
2

hûv̂

 = T−1
j,i f(Tj,i q),

∆xΨj,i = T−1
j,i

 0
−1

2 g (hj + hi) (bi − bj)
0

 = T−1
j,i ∆x Ψ̂j,i. (8.32)

Intuitively, the linearity of f and ∆xΨj,i in Tj,i should also apply to the flux solver F , as the returned
net update is typically either a physical flux or a balance term. Hence, we substitute the 2D flux solver
F in (8.26) with a 1D flux solver F̂ and the corresponding forward and backward transformations to
obtain

q
(t+∆t)
j = q

(t)
j −

∆t

Vj

∑
i∈N (j)

Aj,i T−1
j,i F̂

(
Tj q

(t)
j ,Ti q

(t)
i

)
. (8.33)

Mapping cell states and net updates between world space and normal space, we are now able to apply
the 1D flux solvers defined in Section 8.2.2 to compute 1D net updates, using only the flux function
f and the transformed source term ∆x Ψ̂

(t)
j,i . As an example, in 2D the extended local Lax-Friedrichs

method has the form

q
(t+∆t)
j = q

(t)
j −

∆t

Vj

∑
i∈N (j)

Aj,i Fllfb(qj ,qi),

Fllfb (qj ,qi) := T−1
j,i F̂llfb(Tj,i q

(t)
j ,Tj,i q

(t)
i ),

F̂llfb(q̂j , q̂i) :=
1

2

f(q̂j) + f(q̂i)−∆x Ψ̂j,i + ξj,i

bj + hj
hj ûj
hj v̂j

−
bi + hi

hiûi
hiv̂i

 . (8.34)

Note that the lake at rest is a quasi-steady state in the transformed space and hence, the method is still
well-balanced in 2D.
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8.2.3 A Stability Condition for Shallow Water Solvers

Computing the CFL condition [35, 36] for the time step size is straightforward in this scenario. We
simply apply the formulas for porous media flow from Section 5.3.5 and obtain the condition

∆t ≤ Vj∑
i∈N (j)

Aj,i ξ
−
j,i

. (8.35)

The inbound wave propagation speed ξ−j,i at the interface (j, i) depends on the choice of the flux solver.
For an f-wave solver the smallest eigenvalue of the Roe matrix (8.11) is the maximum ingoing wave
speed:

ξ−j,i =

∣∣∣∣ū−√g h̄∣∣∣∣ . (8.36)

Hence, to compute the maximum allowed time step size ∆t, condition (8.35) must be evaluated on each
cell and minimized over all cells.

8.2.4 Pipelined Euler Time Stepping on Finite Volumes in a Single Traversal

Now we are able to implement a time stepping scheme in sam(oa)2 using the finite volume interface
presented in Section 4.1.2. Algorithm 8.2 shows a straightforward implementation that is based on a
projection kernel to apply the local cell-to-edge transformations and that stores a representation of the
cell data. For each cell-edge pair, the matrix Tj,i projects the quantity vector q

(t)
j to the normal space

of each edge, then the geometry-independent net updates are computed with a 1D flux solver F̂ , and
finally the quantity vector is updated with the accumulated, back-transformed net updates.

While this is a valid approach, it is not necessarily efficient. As stated in Section 4.4.5, the pro-
jection kernel is pipelined and will be executed in the previous time stepping traversal for color edges.
However, if adaptive mesh refinement is performed between traversals, the projection kernel must also
be called also in adaptive traversals on each color edge, causing redundant work. Hence, to improve the
performance, as little work as necessary should be performed in the projection kernels.

This gives rise to a second approach based on the 2D flux solver kernel described in Algorithm 8.3.
For each cell-edge pair, the quantity vector is copied to the edge, then the net updates are computed on
each edge using the 2D flux solver F and finally the quantity vector is updated with the accumulated
net updates. This implementation is more generic than Algorithm 8.2 as any 2D flux solver may now be
applied for F . Additionally, the projection kernel no longer executes obsolete Floating point operations
when evaluated redundantly.

8.2.5 Well Balanced Refinement

Due to the hyperbolic nature of the shallow water equations, interpolation and restriction of unknowns
on dynamically adaptive grids is very similar to the porous media flow scenario in Section 5.3.6 and
many of the concepts are applied similarly.

A Posteriori Error Indicator

Starting with the refinement indicator, a relative criterion based on upwind differences of the water
height is chosen: ∣∣∣∣∣h

(t+∆t)
j − h(t)

j

∆t

∣∣∣∣∣ V (Ωj) > Tolḣ V (Ωmin),
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Algorithm 8.2: Time stepping scheme for the tsunami wave propagation scenario using an ap-
proach based on a 1D flux function F̂ .

Input: q(t), ∆t > 0
Output: q(t+∆t)

traversal
projection kernel: q̂

(t)
j,i ← Tj,iq

(t)
j ∀i ∈ N (j);

flux solver kernel: r̂
(t)
i,j ← F̂

(
q̂

(t)
i,j , q̂

(t)
j,i

)
; r̂

(t)
j,i ← F̂

(
q̂

(t)
j,i , q̂

(t)
i,j

)
;

net update kernel: q
(t+∆t)
j ← q

(t)
j + ∆t

Vj

∑
i∈N (j)

Aj,i T−1
j,i r̂

(t)
j,i ;

end

Algorithm 8.3: 2D flux-based time stepping scheme for the tsunami wave propagation scenario.
This implementation is functionally identical to Algorithm 8.2, but more efficient as redundant
calls to the projection kernel are cheaper. Internally, the 2D flux function F may call a 1D flux
function F̂ again and apply the corresponding transformations.

Input: q(t), ∆t > 0
Output: q(t+∆t)

traversal
projection kernel: q

(t)
j,i ← q

(t)
j ∀i ∈ N (j);

flux solver kernel: r
(t)
i,j ← F

(
q

(t)
i,j ,q

(t)
j,i

)
; r

(t)
j,i ← F

(
q

(t)
j,i ,q

(t)
i,j

)
;

net update kernel: q
(t+∆t)
j ← q

(t)
j + ∆t

Vj

∑
i∈N (j)

Aj,i r
(t)
j,i ;

end

for an arbitrary, but fixed Tolḣ > 0. Considering the discrete update rule in (8.26), the left-hand-side
effectively translates to the flux divergence. This criterion is an empirical choice with the goal of refining
cells with a high inflow or outflow, indicating areas of strong change, and coarsening cells with a static
water height. With this choice, wave fronts will be refined and coarsening will mainly occur for lakes at
rest.

Well Balanced Interpolation and Restriction

In order to refine and coarsen cell data, we will use a method based on mass and momentum conservation
as in [48]. Most importantly, some quasi-steady states are preserved during refinement and coarsening
in order to keep errors local. If, for example, we refined a lake-at-rest solution and did not preserve
the quasi-steady state in (8.16), we would generate waves that propagate from the erroneous state and
introduce a global error in the solution. Clearly, this must be avoided.

Consider a 1D scenario, where we refine a single 1D cell with state (ĥ, ĥû, b̂)T and volume V̂ . When
splitting the cell into two cells with the states (h1, h1u1, b1) and (h2, h2u2, b2) and volumes V1 = 1

2 V̂

and V2 = 1
2 V̂ , respectively, discrete mass conservation requires

ĥV̂ = h1V1 + h2V2 = 1
2 (h1 + h2) V̂ . (8.37)

Similarly, discrete momentum conservation implies(
ĥû
)
V̂ = 1

2 (h1u1 + h2u2) V̂ . (8.38)
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Figure 8.2: An example for adaptive refinement of cell states, where mass conservation and quasi-
steady-state preservation are mutually exclusive, even though (8.40) is satisfied. A coarse 1D cell in (a)
with bathymetry b and water height h, is split into two cells after refinement (b), one of which is dry. In
this case, the lake at rest is preserved if and only if area A in (b) is filled with water, i.e. h2 = η − b2.
Mass conservation is fulfilled if and only if the striped area is left empty, i.e. h2 = 2h < η − b2.

According to (8.7) a necessary condition to preserve quasi-steady states is that the lake at rest has a
constant surface elevation ηeq. Hence,

ηeq = b̂+ ĥ = b1 + h1 = b2 + h2, (8.39)

which is a refinement condition for the water heights h1 and h2. At this point, we observe a problem, as
satisfying conditions (8.37) and (8.39) simultaneously implies

b̂ = 1
2(b1 + b2). (8.40)

This condition is not easily satisfied, because bathymetry data is external and only defined on the fine
scale. Hence, when bathymetry data is set in a coarse cell, the value must be chosen in such a way
that condition (8.40) is satisfied if the cell is further refined. The problem is very similar to porosity
refinement in Section 5.3.6, and indeed the solution is the same. We apply volume-weighted averaging
to the bathymetry data. Algorithm 8.4 shows a 2D implementation of the cell state adaption scheme that
uses an integration kernel for bathymetry refinement.

In wet cells, the full scheme conserves mass and momentum as expected. At coasts however, mass
conservation or the quasi-steady state can be violated when a cell is dried or flooded during adaptive
refinement, as shown in Figure 8.2. As violation of mass conservation triggers only a local error, we
accept it as the less destructive solution. In tsunami simulation, most of the domain is de facto in a
lake at rest, thus preserving the state is necessary for stability of simulations on dynamically adaptive
grids. However, other quasi-steady states are not preserved during adaptive refinement. This problem
was investigated e.g. in [38] with focus on dry zones and will not be considered further.

8.2.6 Extension to a Shallow Water Model with Hydrodynamic Pressure

One of the basic assumptions of the shallow water model is that anywhere in the domain, the wave
lengths are much bigger than the water height. This condition allows to neglect hydrodynamic pressure
effects without significant changes in the solution. Near coastal regions however, the assumption does
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Algorithm 8.4: 2D cell state interpolation and restriction. Bathymetry coarsening is realized by
averaging, transfer by copying and refinement by numerical integration over the destination ele-
ment via recursive newest vertex bisection. Here, q̂ is the state vector of the old grid, q is the
state vector of the new grid, dj is the refinement depth of cell j, dsrc is the refinement depth of
the source data and b(x) is the bathymetry source, defined in local coordinates. Water height and
momentum use simpler rules based on the corresponding conservation laws.

Input: q̂j =
(
ĥj , ĥj ûj , ĥj v̂j , b̂j

)T
for j = 1, 2, . . . , n̂

Output: qj =
(
hj , hjuj , hjvj , bj

)T for j = 1, 2, . . . , n

Function integrate(f, x1, x2, x3, d)
if d > 0 then

return 1
2integrate(f, x1, 1

2 (x1 + x3), x2, d− 1)
+1

2integrate(f, x2, 1
2 (x1 + x3), x3, d− 1);

else
return f(1

3 (x1 + x2 + x3));
end

end

traversal

transfer kernel: (hj , hjuj , hjvj , bj)
T ←

(
ĥj , ĥj ûj , ĥj v̂j , b̂j

)T
;

coarsen kernel: (hj , hjuj , hjvj , bj)
T ←

∑
i

V (Ωj ∩ Ω̂i)
V (Ωj)

(
ĥi, ĥiûi, ĥiv̂i, b̂i

)T
;

refine kernel:
(hj , hjuj , hjvj)

T ←
∑
i

V (Ωj ∩ Ω̂i)
V (Ωj)

(
ĥi, ĥiûi, ĥiv̂i

)T
;

bj ←integrate(b, (1, 0)T , (0, 0)T , (0, 1)T , dsrc − dj);
end
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not hold any longer, as tsunami waves typically grow, while their wavelength decreases when they
approach the shore.

The addition of a hydrodynamic pressure term becomes necessary to mitigate the model error [57].
Hence, Samfass [101] extended the scenario in sam(oa)2 with a non-hydrostatic pressure model that
adds the solution of a linear system of equations for a pressure term to each time step. Schaller [106]
extended the previous work by parallelizing the implementation to allow execution of larger scenarios
on supercomputers. While the addition of non-hydrostatic pressure significantly increases the time-to-
solution, it was shown that for certain benchmark scenarios, the simulation returned far more accurate
results.

8.3 Conclusion: Tsunami Simulation on Sierpinski Grids

The implementation described in this chapter is able to model the core principles which are necessary for
tsunami simulation, i.e. the conservation of mass, momentum balance, influence of gravity, and source
terms for initial displacements as well as bathymetry data. As such, the scenario is sufficient for tsunami
simulation but has limitations, because non-hydrostatic pressure, bottom friction, and Coriolis forces are
not considered. The first issue was addressed in a student thesis, the other two were neglected in this sce-
nario due to their expected minor impact on performance as additional right-hand-side terms. Moreover,
sam(oa)2 also imposes restrictions on the extensibility of the scenario. The element-wise formulation
forbids flux functions with stencils that span more than direct neighbor elements. Consequently, higher
order finite volume schemes or complex limiters may require extensions to the interface. Discontinuous
Galerkin approaches are supported though and currently implemented in the ASCETE project [6].
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9
Numerical Analysis of Tsunami Wave Propagation

In this chapter, a brief numerical analysis of the tsunami wave propagation scenario in Chapter 8 is
performed. Many of the applied methods are similar to porous media flow. Hence, this chapter contains
only a short recapitulation of a numerical study of Riemann problems for the shallow water equations,
where results of sam(oa)2 and simulations on Cartesian grids are compared. Afterwards, a more complex
production scenario is investigated, where the simulation output is verified on buoy measurements from
a real tsunami.

9.1 Riemann Solutions on Cartesian Grids and Sierpinski Grids

Similarly to the analysis of the porous media flow scenario, the tsunami wave propagation scenario
can be numerically evaluated on analytic solutions to Riemann problems. As part of her Bachelor’s
thesis, Rodrigues Monteiro [97] evaluated numerical results of a Riemann problem for the 1D shallow
water model without bathymetry described in (8.1). Comparison of a 2D simulation in sam(oa)2 to the
analytic solution and to equivalent simulations on Cartesian meshes in the teaching code SWE [120]
returned good agreement. Furthermore, convergence to the analytic solution with increasing refinement
depths of adaptive meshes in sam(oa)2 was demonstrated. The convergence rate was shown to be better
than on a Cartesian mesh.

9.2 The Tohoku Tsunami in 2011

The second test case for the tsunami wave propagation scenario is the Tohoku tsunami from 2011 that
was caused by tectonic shift and was preceded by an earthquake of magnitude 9 near the coast of Japan.
We used the GEBCO 2014 Grid, version 20150318 [47], as bathymetry data of the northern Pacific
ocean and the Sea of Japan in order to obtain a height map of the sea floor. The data is transformed
from spherical to Cartesian coordinates by an azimuthal equidistant projection. As origin, we chose the
earthquake hypocenter and thus, the propagation speed of the tsunami is fairly accurate.

The initial condition for the simulation is given by a lake at rest with height 0. Following Okada’s
model [85], a static displacement of the bathymetry and the water surface, adjusted for tidal waves,
is applied to simulate vertical plate movements [56]. As shown in Figure 9.1, sam(oa)2 simulates the
subsequent tsunami propagation, as well as the inundation of the Japanese coast.

We compared our results with the corresponding water displacements measured by DART (Deep-
ocean Assessment and Reporting of Tsunamis) buoys [84]. Figure 9.2 shows the placement of the buoys
in the domain and the propagation of the tsunami waves. The grid size varies between 22k and 140k
elements during the simulation, as the wavefront is progressively refined while it propagates through the
domain.

Tests with varying refinement depths in Figure 9.3 show that with increased resolution, the wave
features become more prominent, resulting in higher amplitudes, while the frequencies of the waves
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(a) Time: 2 minutes a.e. (b) Time: 10 minutes a.e. (c) Time: 20 minutes a.e.

Figure 9.1: Wave propagation of the Tohoku tsunami near the coast of Japan 2011. An adaptively refined
mesh of the Japanese sea and the coast of Japan is used to simulate 3 hours of wave propagation after
the initial earthquake. The water elevation is exaggerated by a factor of 100 for better visibility. Green
and red colored areas mark positive elevations above 1m and negative elevations below 1m, respectively.
Initially, an earthquake causes a vertical fault displacement that lifts the body of water above the Pacific
plate. The subsequent tsunami wave propagates radially from the fault and is simulated in sam(oa)2.
Snapshots are denoted by the elapsed time since the beginning of the earthquake.

(a) Time: 20 seconds a.e. (b) Time: 3 hours a.e.

Figure 9.2: Initial condition and final state in a simulation of the Tohoku tsunami from 2011. An
adaptively refined mesh of the Japanese sea and the coast of Japan is used to simulate 3 hours of wave
propagation after the initial earthquake. Green and red areas have a positive elevation above 0.1m
and a negative elevation below 0.1m, respectively. The three DART near the coast of Japan provide
measurement data [84] that was used for verification of simulated results. Snapshots are denoted by the
elapsed time since the beginning of the earthquake.
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remain similar. At depth 26, the bathymetry data is fully resolved and increased resolutions do not affect
the solution anymore. The agreement with the measured data from DART buoys is good up to 2.5 hours,
i.e. time step 70.34, of simulation time after the earthquake. Then, the DART buoy 21418 reports later
arrival of a coastal reflection wave than the simulation predicts.

Figure 9.4 shows that the choice of the flux solver among those described in Section 8.2.2 has a
comparably small influence on the simulation outcome. While the extended local Lax-Friedrichs solver
introduces a small artificial diffusion, the f-Wave solver and the augmented Riemann solver do not show
any significant differences. This behavior can be explained by measuring data far away from the shore,
as the inundation model provided by the augmented Riemann solver will mostly affect the coastal flow.

Sources for errors are two-fold. On the one hand, simulation data is erroneous due to various model
and input data restrictions. For instance, the model neglects bottom friction, as described in Section 8.3.
Moreover, displacement data originates from an empirical study and is not generated from actual earth-
quake measurements [56]. Thus an uncertain, incomplete initial condition is provided for the time
stepping scheme. On the other hand, buoy data is affected by noise such as surface waves, which cause
high frequency oscillations in the measurements.

9.3 Conclusion: Riemann Problems and the Tohoku Tsunami

This chapter shows that the scenario implementation solves Riemann problems accurately for the shal-
low water equations and that plausible solutions are returned for a real tsunami wave propagation sce-
nario. Reflected waves are not correctly captured which is attributed to restrictions in the model and the
input data. As the discretization in use is fairly simple, it is not further verified and we continue with
performance analysis in Chapter 10.
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Figure 9.3: A comparison of measured and simulated water elevation, defined as the difference to
standard sea level. The horizontal axis denotes time in days since New Year’s Day. From top to bottom,
results with the augmented Riemann solver and varying maximum refinement depths are compared at
the location of DART buoys 21413, 21418, and 21419 [84].
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Figure 9.4: A comparison of measured and simulated water elevation, defined as the difference to
standard sea level. The horizontal axis denotes time in days since New Year’s Day. From top to bottom,
results with a fixed maximum refinement depth 26 and three different flux solvers are compared at the
location of DART buoys 21413, 21418, and 21419 [84].
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10
Performance of Tsunami Wave Propagation

The tsunami wave propagation scenario offers different challenges in performance optimization than the
porous media flow scenario due to its heterogeneous flux solver kernels and a much higher remeshing
frequency. The computation in each time step is not memory-bound in general and therefore, static
traversal overhead is not as high. Patch-based approaches [28, 127] show good performance results for
this type of problem; however, they sacrifice fine-granular refinement and coarsening, which we strive
to support.

The augmented Riemann solver as described in Chapter 8.2.2 is heavily branched and produces
different workload depending on space and time. The load balancing algorithms of sam(oa)2 in Chap-
ter 3.2 are designed to handle this behavior and are examined here. Time steps are explicit and their size
matches the propagation time of the fastest wave in a cell. Hence, remeshing is required in each time
step in order to track the fastest signals. Therefore, we investigate the overhead caused by conformity,
adaptive grid traversals, and load balancing to determine the impact of adaptive mesh refinement on the
solver.

Simulation parameters are chosen to match an environment similar to the conditions of a production
run. Hence, in all test cases simulations on real tsunami data with adaptive mesh refinement and load
balancing are executed. The target system is the SuperMUC thin node cluster [119]. Some of the
performance tests presented here have already been published in [77].

10.1 Load Balancing Techniques

While the porous media flow scenario produces mostly uniform load due to its homogeneous kernels,
the tsunami wave propagation scenario is expected to behave differently. Some of the Riemann solvers
described in Chapter 8.2.2 use early exit conditions for dry cells, implying that kernel execution times
will vary strongly depending on the location in the domain. Hence, this scenario is expected to benefit
from the advanced load balancing techniques in Chapter 3.2, which are designed for management of
heterogeneous load. All experiments were conducted on the SuperMUC [119] thin node cluster to
obtain data from actual production-ready simulation runs and to investigate how performance is affected
by heterogeneity. The only flux solver used in these tests is the augmented Riemann solver, which is
described in Chapter 8.2.2. Its advanced model render it the best choice for production runs. At the
same time, it is heavily branched and has the least predictable and most heterogeneous performance of
the flux solvers available in sam(oa)2.

10.1.1 Work Stealing in Shared Memory

In shared memory, sam(oa)2 supports both work stealing and work sharing as load balancing algo-
rithms, which are realized by OpenMP task constructs around static load assignment, as presented in
Chapter 3.2.5. In general, work stealing returns a better performance than work sharing, as shown by
Table 10.1. The time-to-solution improves by 10% when work stealing is turned on. When the number
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Sections per core Work sharing Work stealing

16 78.19 s 71.37 s
32 82.28 s 74.24 s

Table 10.1: Exemplary time-to-solution for a tsunami wave propagation scenario with 1M elements
executed on a single node of the SuperMUC thin node cluster using OpenMP parallelization. Work
sharing and work stealing are both applied. The number of sections per core is increased from 16 to 32
to test how a more fine-grained partitioning affects work stealing.

of sections per core is increased, the additional traversal and scheduling overhead prevents further gain
of the execution time. Hence, for scenarios with small section sizes and uniform load, work sharing will
be the better choice, as it has much less algorithmic overhead. Larger scenarios will benefit more from
work stealing.

10.1.2 Load Balancing Strategies for Hybrid Parallelization

To understand how each combination of load balancing techniques affects performance, we will analyze
a test case thoroughly. A tsunami scenario with approximately 1 billion elements is executed on 512
cores of the SuperMUC thin node cluster, where the initial grid refinement phase and the first time steps
are neglected due to their heavy imbalances.

In general, there is no best setup that is suitable for all problems as the performance strongly de-
pends on the simulation properties, but the advantages and disadvantages of the available techniques are
discussed to determine where they are beneficial. Some combinations that do not make any sense, e.g.
section splitting with optimal chains-on-chains partitioning, are neglected.

Figure 10.1 and Figure 10.2 show component analyses for hybrid and pure MPI parallelization with
different choices for the cost model, the load distribution algorithm, and with or without section splitting.
The ratio of time stepping to the remaining components differs in the two plots, because remeshing and
load balancing were scheduled in every time step for the first plot, and only in every tenth time step for
the second plot.

Surprisingly, node-level hybrid parallelization performs worse than socket-level and pure MPI par-
allelization in both plots. Due to reduced MPI communication, less computational effort, and enabling
OpenMP work stealing, it should be the other way around. Figure 10.1 shows that this is mainly caused
by an imbalance of adaptive traversals in shared memory. Synchronization after adaptive traversals is
scheduled only during the neighbor search and hence the apparent execution time increases when hybrid
parallelization is enabled. This is also the reason, why in the first test case in Figure 10.1, pure MPI
performs best. In Figure 10.2, remeshing is reduced to every tenth time step and socket-level hybrid
parallelization is fastest.

Cost models

Time-based cost evaluation does not appear to improve the performance in some cases of Figure 10.1,
which is caused by running into the problem of chains-on-chains partitioning with intermediate syn-
chronization, which is explained in Chapter 3.3.4. As time steps and remeshing are two comparably
expensive phases with different load distributions, it is hard to balance them properly and sam(oa)2

sometimes fails to do so. This issue is much less problematic when remeshing is carried out less often,
as seen in Figure 10.2. Here, time-based cost evaluation almost always performs better than the linear
cost model. More precisely, time-based cost evaluation usually returns a better performance if there is a
dominant heterogeneity in the process load. Otherwise, the linear cost model is the better choice.
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Figure 10.1: Comparison of execution times for different load balancing strategies on 512 cores.
Remeshing and load balancing are performed in every time step. In each label, p × t is the number
of MPI processes p and OpenMP threads per process t. Section splitting is indicated by S, atomic sec-
tions by A, optimal chains-on-chains partitioning by C, midpoint approximation by M, time-based cost
evaluation by T, and the linear cost model by L. The simulation is divided into the advective transport
step (Time step), conformity correction (Conformity), remeshing (Adaption), regeneration of communi-
cation structures (Neighbor search) and load balancing (Load balancing).
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Figure 10.2: Comparison of load balancing strategies similar to Figure 10.1. Remeshing and load
balancing are performed in every tenth time step. In each label, p × t is the number of MPI processes
p and OpenMP threads per process t. Section splitting is indicated by S, atomic sections by A, optimal
chains-on-chains partitioning by C, midpoint approximation by M, time-based cost evaluation by T, and
the linear cost model by L.

Distribution Algorithms

As discussed in Section 3.3.1, an optimal chains-on-chains solver is inherently serial and does not scale
on large systems. In Figure 10.1 the benefit of better distributions is mostly outweighed by the additional
load balancing time for pure MPI parallelization. With hybrid parallelization enabled, load is not always
balanced better when the optimal solver is used. This is caused by side effects of the load balancing algo-
rithm, which becomes expensive enough to cause an imbalance itself, which only affects a single thread
per process. Figure 10.2 shows that with less frequent remeshing, the optimal solver indeed always re-
turns the best performance. Hence, on small clusters or problems without frequent remeshing, optimal
chains-on-chains partitioning is the best distribution algorithm. Otherwise, midpoint approximation is
recommended.

Section Splitting and Atomic Sections

In both plots, section splitting works very well for this scenario, which is mostly due to the small problem
size. When the number of cores exceeds 512, each core only holds around 100k elements and benefits
strongly from decreased traversal overhead. With enabled section splitting, the number of sections per
core is decreased to 4, as load balancing will return a perfect balance independent of the parameter. As
mentioned in Section 3.2.2, only MPI parallelization can benefit from this, as during hybrid paralleliza-
tion a higher number of sections is assigned per process. Hence, according to Section 3.3.2 a good load
balance in distributed memory is guaranteed. Splitting will lose its effect on larger numbers of cores, as
a smaller number of sections per core will cause a decreased overlapping of synchronization and com-
munication. Increasing the number of sections per core fixes this issue, but also mitigates the advantage
of splitting. Hence, on large clusters, it makes more sense to switch to atomic sections.
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10.2. IMPACT OF ADAPTIVE MESH REFINEMENT

10.1.3 Load Distribution Algorithms on Cartesian Grids

In [105] Schaller compared the quality of chains-on-chains partitioning algorithms to the longest pro-
cessing time algorithm. Tests were implemented in SWE [120], a parallel finite volume solver for the
shallow water equations that parallelizes Cartesian meshes via blocking. Schaller used the augmented
Riemann solver described in Section 8.2.2 to generate heterogeneous load and showed that the longest
processing time algorithm returned the best balance in general. It is worth mentioning that the chains-
on-chains solvers were not far behind and proved to be competitive.

10.2 Impact of Adaptive Mesh Refinement

In the tsunami wave propagation scenario, performance of time stepping is compute-bound, as the aug-
mented Riemann solver used for flux computations has a high computational intensity, which, in contrast
to the porous media flow scenario, is hardly affected by memory throughput. This is confirmed in [11],
where a detailed performance analysis of the flux solver was conducted. For their analysis, Bader et al.
used SWE [120], where a single precision, slightly simpler variant of the GeoClaw solver than the ver-
sion by sam(oa)2 is provided, i.e. the solver AugRieFun. The flux solvers in sam(oa)2 and SWE are both
not vectorized and should return similar execution times for the same setup. Hence, they are suitable
for a performance comparison. Apart from SWE, we also compared performance to GeoClaw, which
was analyzed by Malcher [72] on a single node of the Stampede supercomputer [117]. Stampede nodes
have the same hardware configuration as SuperMUC thin nodes, hence, performance results are directly
comparable.

SWE solves the tsunami scenario on a static Cartesian mesh, thus we use it to estimate the overhead
of dynamically adaptive execution of the tsunami scenario in sam(oa)2. To measure performance, we
count Riemann solutions per second, which are the total number of calls to the flux solver over the wall-
clock time of the simulation. Hence, in all three codes, all components that affect the time-to-solution
are considered.

In single precision and serial execution, sam(oa)2 achieves 3.2M Riemann solutions per second. On
the same system and for a similar problem, SWE is able to execute 6.8M Riemann solutions per second.
GeoClaw achieves 6.9M Riemann solutions per second, which is roughly the same number. Hence,
SWE and GeoClaw are twice as fast as sam(oa)2. In order to understand this ratio we conducted a
component analysis that breaks down the total execution time of sam(oa)2 into parts of the framework.
Figure 10.3 shows the results of a simulation on a single core and a single thin node of the SuperMUC
system with pure MPI, pure OpenMP, and socket-level hybrid parallelization.

Excluding communication, sam(oa)2 spends 60% of its execution time on pure computation in the
time step on a single core and 52% on a thin node consisting of 16 cores. This ratio decreases further
when parallelism is increased. On 8,192 cores, i.e. a full SuperMUC thin node island, only 37% of
the total execution time is used for computation. Hence, a significant fraction of time is required for
dynamical adaptivity, communication and load balancing, causing most of the performance loss. The
influence of dynamical adaptivity on the performance is presented in a weak scaling study in Figure 10.4.
There, pure MPI and hybrid parallelization both have an almost linear speedup on a static grid in the
range of 16 to 8,192 cores, whereas the performance on a dynamic grid starts dropping at 1,024 cores,
which is mostly caused by adaptive mesh refinement.

To understand whether the shown results are competitive, we compare normalized execution times of
remeshing to some other known adaptive mesh refinement packages in the field. Note that these results
are only qualitative, as the performance is strongly affected by the configuration of the target machine,
structure and shape of grid elements, as well as grid dynamics. Still, Table 10.2 shows that sam(oa)2

performs well compared to SAMRAI and p4est.
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Figure 10.3: Component analysis for the execution of the tsunami wave propagation scenario on a
single core and a single node with pure MPI, pure OpenMP, and socket-level hybrid parallelization. The
label p× t× s is an abbreviation for p processes, t threads per process, and s sections per thread.

Code Machine Conformity Refinement Load Balancing Total

SAMRAI Sequoia 0.60s
deal.II (p4est) Ranger 2s 1s 3s
sam(oa)2 static SuperMUC 0.22s 0.13s 0.01s 0.39s

dynamic SuperMUC 0.18s 0.25s 0.05s 0.48s

Table 10.2: Remeshing and load balancing execution times for sam(oa)2 and other adaptive mesh
refinement codes. Execution times are normalized to 1M degrees of freedom per core. Based on
p4est, a mantle convection problem was solved in deal.II [16, 17] on the Ranger supercomputer [94].
SAMRAI [52,53] is a software package for structured adaptive mesh refinement and was executed on Se-
quoia [113], a BlueGene/Q supercomputer which is ranked fourth in the Top500 list of June 2016 [122].
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Code Interface ratio Edge ratio

p4est (3D) 1.90 4.80
sam(oa)2 1.64 1.07

Table 10.3: Partition quality for sam(oa)2 and a 3D execution of p4est. Given are the ratios of partition
interfaces to an ideal, theoretical block-structured partitioning. The optimal value is 1 in all cases.

As partitions are generated on-the-fly with fast heuristics, they tend to be worse than those of high-
quality algorithms. Hence, we investigate the number of process boundary interfaces and process bound-
ary edges per partition size compared to a block-structured partitioning in Table 10.3. The ideal number
of boundary interfaces iid is defined as the total number of vertex-connected neighbors for p square-
shaped partitions, that is

iid := 8p.

In this estimate, we assume that p is large enough to be able to ignore the influence of the domain
boundary. The ideal number of boundary edges eid is defined as the total number of edges for p square-
shaped partitions that consist of fp triangles each. More precisely,

eid := 4p

√
f

2p
.

Here, consistent values for grids with a sufficient size and different degrees of parallelism are returned
by sam(oa)2. For reference, the values of a similar study on p4est [30] are included in Table 10.3. Again,
the results are not directly comparable, as p4est was executed in 3D and is based on non-conforming
grids, whereas sam(oa)2 was executed in 2D on conforming grids. However, the data may be used as
upper bounds for sam(oa)2, which handles the easier 2D case. As the interface and the edge ratio both are
comparably low, we deduce that the continuity of the underlying space-filling curve strongly promotes
the formation of well-formed partitions in sam(oa)2.

10.3 Scalability on Multiple Distributed Nodes

Our final study is a scalability analysis on multiple nodes of the SuperMUC thin node cluster. As for
the porous media flow scenario, a weak scaling test is performed first to observe how load balancing
and adaptive mesh refinement combined with global communication are affected by increased paral-
lelism. Next, a strong scaling study shows how the additional increase of local communication will
affect performance.

Weak scaling

In the weak scaling test, a scenario with 1M elements per core was chosen and scaled up to 30G elements
from 16 to 32,768 cores with pure MPI and socket-level hybrid parallelization. Figure 10.5 shows that
time steps and conformity scale well until 8,192 cores, at which point global communication starts to
affect performance. Adaptive traversals scale worse, which is clearly caused by global communication,
as hybrid parallelization performs better in this case. With 8 times as many MPI ranks, the pure MPI
version performs significantly more global communication. A parallel efficiency of 75% is achieved
from 16 to 32,768 cores, which is a good result, considering computation is only moderately expensive
and not able to hide the costs of communication, remeshing, and load balancing.
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(a) Parallel efficiency, pure MPI
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(b) Parallel efficiency, OpenMP+MPI
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(d) Component analysis, OpenMP+MPI

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1×
1×

4

1×
1×

8

16
×

1×
4

16
×

1×
8

1×
16
×

4

1×
16
×

8

2×
8×

4

2×
8×

8Se
c.

pe
rM

io
.E

le
m

en
ts

pe
rc

or
e

Processes, Threads, Sections

SWE component breakdown

Time step
Conformity

Adaption
Neighbor search

Load Balancing

Figure 10.5: Weak scalability for pure MPI and hybrid socket-level parallelization. Parallel efficiency is
shown for both cases. A component analysis breaks down the wall-clock time into time steps, conformity
traversals, remeshing with neighbor search, and load balancing.
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CHAPTER 10. PERFORMANCE OF TSUNAMI WAVE PROPAGATION

Strong scaling

For strong scaling, we picked a scenario with 60M elements, a minimum refinement depth of 8 and a
maximum refinement depth of 32. Scalability was tested from 1 node to 512 nodes of the SuperMUC
thin node system. Therefore, each partition eventually contains 7,000 elements on 8,192 cores. In
Figure 10.6 we see that strong scalability of pure MPI and hybrid parallelization both is fine up to 512
cores and then starts dropping. When 512 cores are reached, we obtain an efficiency of 82%. The early
performance loss is mostly caused by a load imbalance due to the heterogeneous flux solver. On 2048
cores, an efficiency of 71% is obtained, and on 8,192 cores efficiency drops to 54%. Compared to the
2D porous media flow scenario, which achieves 36% efficiency on 8,192 cores as seen in Section 7.3.2,
tsunami wave propagation scales worse in the beginning, but performs better at large numbers of cores.
The tsunami scenario is affected more by adaptive mesh refinement and load balancing, however the
increase of communication appears to have a stronger impact on performance. As Figure 10.6 shows,
performance of the tsunami scenario starts to deteriorate on 2,048 cores, where load balancing and
adaptive mesh refinement become increasingly expensive, especially for hybrid parallelization. On 8,192
cores each core only holds 7,000 elements, which is a very low number, and strong scalability is only
47%. Hence, the problem size per core is clearly too small at this point.

10.4 Conclusion: Scalable Remeshing and Load Balancing

The single node analysis showed that the tsunami wave propagation scenario offers a good baseline
performance when compared to a Cartesian mesh solver, but overhead from adaptive mesh refinement
is significant. The flux solver kernels are compute-bound, but clearly not expensive enough to dominate
performance.

Adaptive mesh refinement was observed to scale well in a weak scaling test up to 2048 cores and in a
strong scaling test up to around 512 cores. The tsunami wave propagation exhibits good weak scalability
with 75% efficiency from 16 to 32,768 cores. In particular, this test shows that load balancing scales
well to the extreme scale if 600k elements or more are assigned to each core. We also tested advanced
load balancing techniques, namely time-based cost evaluation, section splitting and optimal chains-on-
chains partitioning, of which the latter two are most suitable for execution on up to a few hundred cores.
Furthermore, time-based cost evaluation proved to be beneficial for this scenario in many cases.

In a strong scaling setting, a parallel efficiency of 82% from 16 to 512 cores was obtained. At some
point, adaptive mesh refinement and load balancing start to impair performance seriously; however, the
overhead from global communication is still larger, as we saw in the comparison to the porous media
flow scenario. Another issue is that hybrid parallelization did not improve strong scalability, but instead,
load balancing and adaptive mesh refinement perform worse in this case. Some of our tests indicate that
the reason for this behavior is a serialization of MPI messages when OpenMP threads attempt concurrent
MPI communication. In a peer-to-peer-topology, this method is never faster than the fully concurrent
communication of a pure MPI parallelization. Nevertheless, with its design for large scale systems,
sam(oa)2 shows very good scalability both in a weak scaling and a strong scaling setting.
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Figure 10.6: Strong scaling of tsunami wave propagation on up to 512 nodes of the SuperMUC thin
node system. Scalability is shown for pure MPI (blue) and socket-level hybrid parallelization (pink)
using IBM MPI. A component analysis is shown for pure MPI and socket-level hybrid parallelization.
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Summary

Looking back at the motivation of this thesis, we formulated three major requirements for
high-performance software to cope with the current transition of hardware towards massive parallelism
with increasingly restricted resources per core. These requirements are efficiency, flexibility, and scal-
ability. We will shortly summarize the outcome of each of them and consider potential improvements
afterwards.

The kernel interface of sam(oa)2 demonstrates flexibility, as it supports finite element and finite
volume discretizations, as well as adaptive mesh refinement and parallelization. Based on this interface,
two test cases were implemented. First, a porous media flow scenario was realized that simulates oil
recovery from underground reservoirs and second, an oceanic wave propagation scenario for tsunami
simulation was realized.

The efficiency requirement is satisfied by sam(oa)2 trough a traversal scheme that is based on the
Sierpinski space-filling curve and that supports fully adaptive mesh refinement as well as cache-oblivious
data access. By exploiting local data dependencies, a single grid traversal suffices for implementation
of explicit time stepping schemes in the kernel interface. Temporary data is realized without a persistent
memory footprint.

Scalability was shown for both test cases. For the porous media flow scenario, up to 90% parallel
efficiency on 8,192 cores in a weak scaling test and 85% effiency on 512 cores in a strong scaling test
were achieved. The tsunami wave propagation scenario scaled up to 32,768 cores with 75% efficiency
and strong scalability of 71% on 2,048 cores was obtained. Furthermore, both scenarios demonstrate
a good baseline efficiency. The porous media flow scenario is memory-bound and achieves 80% of
the STREAM benchmark on a single SuperMUC thin node. Moreover, the tsunami wave propagation
scenario performs well compared to a Cartesian mesh code and other adaptive mesh refinement codes.

When sam(oa)2 is compared to other software in the field, its performance is a clear selling point.
However, to become truly competitive there are still some issues left that need to be resolved. First, the
implementation of scenarios in the interface is too complicated. A kernel layer that couples sam(oa)2

with an abstract description or to a library with a fully opaque interface would be beneficial. Second, an
improved support for hybrid parallelization and many-core architectures will become more important as
heterogeneous hardware becomes more prevalent in high-performance computing. Finally, some of the
functionality for adaptive mesh refinement should be optimized to deal better with local changes in the
grid in order to decrease the overhead from grid management. However, a big step towards a generic
framework for parallel, adaptive mesh refinement is taken. In its current state, sam(oa)2 provides fast,
fully adaptive mesh refinement and dynamic load balancing for the efficient execution of heterogeneous
applications with billions of grid cells on thousands of cores.
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A
Outlook: Heterogeneous Chains on Chains Solvers

In this chapter, we present a short outlook on the extended chains-on-chains partitioning problem for
heterogeneous hardware, which processes identical tasks on different cores with different execution
times. Note that sam(oa)2 does not yet support any of the extensions described here.

The problem of load balancing on heterogeneous hardware has been discussed for some time. An ef-
ficient optimal solver and various approximations for heterogeneous chains-on-chains partitioning [92]
have been developed. Further work on the topic indicates that the best load balance is achieved if
the system execution time model is determined at runtime from profiling data [21, 37, 43, 58, 61, 104].
While some of these approaches develop very detailed performance models, they are not scalable, as-
sume knowledge of task costs, require training phases during the execution, or simply converge slowly.
Clearly, sam(oa)2 needs a scalable solution with fast a convergence rate, as grids are processed in parallel
and refined frequently. Training phases are problematic, too, as they have to reflect the performance of
the real computation to predict execution times accurately. The knowledge of tasks and heterogeneities
is assumed in the beginning of this chapter, but later on, this restriction is dropped for a more flexi-
ble model. We will restrict ourselves to the discussion of the heterogeneous chains-on-chains problem
though, which is the model that corresponds to the load balancing policy of sam(oa)2.

A.1 Modeling Heterogeneous Hardware

The chains-on-chains model (3.5) as described in Chapter 3.3.1 is extended to the following setting. Let
ci > 0 be the cost of each task i for i = 1, . . . , n. We assume that the cost is independent of the target
core and is measured in some arbitrary cost unit. For j = 1, . . . , p we denote by vj ≥ 0 the throughput
of core j, which we measure in cost units per second. The throughput vj may be a static value that
reflects the processor clock rate or the memory bandwidth, but it could also be evaluated and updated at
runtime, allowing some degree of fault-tolerance by adjusting to turbo modes, overheating, or resource
contention. In the context of invasive computing – see [121] for an overview of the topic – it may even
incorporate a logical flag that indicates whether a core is enabled or disabled to handle invasion and
retreat mechanisms. To model this, the value vj needs to be allowed to be zero. However, for the sake
of simplicity, we assume that vj > 0 at any time and relax the condition later. Assuming that ci and vj
are known, the time to execute task i on core j is

ti,j =
ci
vj
. (A.1)

Similarly to Section 3.3.1, the prefix sums

Ci :=
i∑

k=1

ck for i = 0, . . . , n and Vj :=

j∑
k=1

vk for j = 0, . . . , p. (A.2)

are defined. The problem is to find a map from cores to tasks, which assigns each core j to a set of
consecutive tasks {s(j − 1) + 1, . . . , s(j)} while minimizing the maximum execution time over all
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cores. Hence, we have to find a monotonically increasing function s : {0, . . . , p} → {0, . . . , n} with
s(0) := 0 and s(p) := n that minimizes the maximum load per core

ts := max
j∈{1,...,p}

s(j)∑
i=s(j−1)+1

ti,j = max
j∈{1,...,p}

s(j)∑
i=s(j−1)+1

ci
vj

= max
j∈{1,...,p}

Cs(j) − Cs(j−1)

vj
. (A.3)

A.1.1 Continuous Solution

As before, we will first derive a lower bound for ts that depends on the load of each core j, more
precisely

ts ≥
Cs(j) − Cs(j−1)

vj
, for all j ∈ {0 . . . , p},

or equivalently,

tsvj ≥ Cs(j) − Cs(j−1). (A.4)

Summing (A.4) over all cores j = 1, . . . , p yields

ts
∑

j∈{1,...,p}

vj = tsVp ≥
∑

j∈{1,...,p}

Cs(j) − Cs(j−1) = Cs(p) − Cs(0) = Cn,

or in short

ts ≥
Cn
Vp
. (A.5)

Hence, a lower bound for the maximum load is the cost of all tasks over the sum of all throughputs. To
find a continuous solution, we assume that there is a monotonically increasing map ŝ from {1, . . . , p}
to {1, . . . , n} with

tŝ =
Cn
Vp
. (A.6)

Then, (A.5) and (A.6) imply that ŝ minimizes the maximum load as defined in (A.3). Now,

tŝVp − Cn =
∑

j∈{1,...,p}

tŝvj −
(
Cŝ(j) − Cŝ(j−1)

)︸ ︷︷ ︸
≥0

= 0. (A.7)

In (A.4) equality holds, implying

tŝvj = Cŝ(j) − Cŝ(j−1),

for all j ∈ {1, . . . , p}. Hence,

Cn
Vp
vj = Cŝ(j) − Cŝ(j−1)

for all j ∈ {1, . . . , p} due to (A.6). Computing the prefix sum on left- and right-hand side returns

Cn
Vp
Vj =

Cn
Vp

j∑
k=1

vk =

j∑
k=1

(
Cŝ(k) − Cŝ(k−1)

)
= Cŝ(j), (A.8)
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Thus for each core j ∈ {1, . . . , p}, the value ŝ(j) is defined implicitly by

ŝ(j) = i if
Ci
Cn

=
Vj
Vp
. (A.9)

Note that ŝ is well-defined and unique if the Ci and the Vj are strictly increasing. Again, reinterpretation
of the Ci as a piece-wise linear function guarantees existence of a continuous solution, which can be
used for section splitting, see Section 3.2.2. In the next section, we exploit the existence of ŝ to find a
discrete approximation to the continuous version of the problem.

A.2 Explicit Treatment of Heterogeneities

While (A.9) is not as easy to invert as its simpler variant for homogeneous systems from (3.12), a
continuous solution still exists and may be exploited once again to derive a discrete approximation
based on rounding to integer values, similar to (3.15), which was derived for the homogeneous case. In
addition to the approximation, we will also discuss an optimal solution to the problem in this section.

A.2.1 Midpoint Approximation

Figure A.1 illustrates an extension of the midpoint approximation in Chapter 3.3.1 to the case of assign-
ing tasks to heterogeneous cores. One disadvantage of the approach is that for strongly heterogeneous
systems, remote communication of notification messages will occur even if no changes to the load dis-
tribution are necessary. The method returns a map s that satisfies

ts ≤
Cn
Vp

+

max
i∈{1,...,n}

ci

min
j∈{1,...,p}

vj
, (A.10)

which says that the imbalance is bounded by the cost of the most expensive task over the throughput
of the slowest core. This ratio can be rather high and will cause problems on strongly heterogeneous
hardware.

A.2.2 Optimal Solution

Computing an optimal solution to heterogeneous chains-on-chains partitioning is surprisingly easy,
as the EXACT-BISECT algorithm in [91] requires only minor adjustments to handle heterogeneous
throughput data, as shown in [92]. An extension of the optimal solver in sam(oa)2 is straightforward.

A.3 Implicit Treatment of Heterogeneities

Instead of assuming explicit knowledge of throughputs, there is also the possibility to assume they are
unknown. First, we attempt to use time-based cost evaluation as described in Section 3.2.3 to solve the
problem, which will fail. Second we successfully model the heterogeneities as unknowns that are fitted
by profiling the application.

A.3.1 Time Based Load Balancing

As mentioned before, hardware heterogeneities are not modeled explicitly in sam(oa)2. However, a
possibility to treat them implicitly is provided by time-based cost evaluation from Section 3.2.3. Denote
by ci the cost of section i and v(k)

i the throughput of the core assigned to section i in the k-th load
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normalized distribution

P1 P2 P3 uniformP4

weightedv1 v2 v3 v4

P1 P2 P3

currentc1

P4

c2 c3 c4 c5 c6 c7

P1 P2 P3 P4

0 1

Figure A.1: Sketch of distributed load balancing on heterogeneous cores by approximate chains-on-
chains partitioning. First, tasks are distributed uniformly to intermediate cores purely based on the cost
distribution (ci)i=1,...,n marked by the red arrows in the top. Next, each intermediate core passes its
tasks further along to their destination cores according to the throughput distribution (vj)j=1,...,p, which
is indicated by the red arrows in the bottom. Assignment of tasks to intermediate cores, as indicated by
the top black arrows, is identical to the homogeneous case, where notification messages to communicate
task ranges are sent. On intermediate cores, assignment functions from tasks to destination cores are
constructed from notification messages sent by the destination cores. The process is represented by the
black arrows in the bottom.

balancing iteration. Since the cost of a section is estimated by its actual execution time, the chains-on-
chains solver will try to find a map that minimizes

t(k)
s := max

j∈{1,...,p}

s(j)∑
i=s(j−1)+1

t
(k)
i = max

j∈{1,...,p}

s(j)∑
i=s(j−1)+1

ci

v
(k)
i

, (A.11)

where

t
(k)
i :=

ci

v
(k)
i

for all i ∈ {1, . . . n}.

Tasks that are executed on a slow core are assumed to be more expensive and distributed to other cores.
This behavior suggests that the chains-on-chains solver will recognize imbalances and reduce the load
of slow cores.

Pachalieva [86] investigated performance of time-based cost evaluation in sam(oa)2 on the hetero-
geneous SuperMIC cluster of the SuperMUC system [119]. The cluster consists of 32 Intel Ivy Bridge
nodes with two Intel Xeon Phi cards each. Compared to an Ivy Bridge node, the Xeon Phi card runs at
a lower clock rate and with less memory bandwidth per core, but has superior computing capabilities,
as it supports 120 shared memory threads per card and supplies vector registers that fit 8 double preci-
sion numbers. Pachalieva found that sam(oa)2 adapts well to the heterogeneity of the system on up to
a few hundred MPI ranks, which are distributed to a single Ivy Bridge node and two Xeon Phi cards in
symmetric mode. A memory throughput comparison of pure Ivy Bridge, pure Xeon Phi and symmet-
ric mode executions implies good load balancing. However, for larger numbers of nodes, suboptimal
distributions and load oscillations occurred, which were not further investigated in the thesis [86].
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Convergence with Atomic Sections

With some analysis, it is possible to show that the issues on multiple nodes are due to misinterpretation
of hardware heterogeneity as a change of costs. Consider the following example with two identical tasks
on two strongly heterogeneous cores:

ĉ1 := 1, ĉ2 := 1, v̂1 := 4, v̂2 := 1. (A.12)

We assume that an optimal chains-on-chains solver, such as EXACT-BISECT, is applied to compute
distributions. Distributing the tasks to both cores returns the maximum load

max

(
ĉ1

v̂1
,
ĉ2

v̂2

)
= max

(
1
4 , 1
)

= 1.

Executing both tasks on Core 1 instead returns

max

(
ĉ1

v̂1
+
ĉ2

v̂1
, 0

)
= max

(
1
4 + 1

4 , 0
)

= 1
2 < 1.

As Core 1 is much faster than Core 2, the best solution is to keep both tasks on the first core. We assume
this state is the initial state and define

t
(0)
1 :=

ĉ1 + ĉ2

v̂1
= 1

2 and t
(0)
2 := 0 (A.13)

As the chains-on-chains solver is not aware of the heterogeneity, it assumes that both cores have the
same speed. Therefore, the second task is moved to the second core and the optimal distribution will not
be preserved, because

max

(
ĉ1

v̂1
,
ĉ2

v̂1

)
= 1

4 < max
(
t
(0)
1 , t

(0)
2

)
= 1

2 . (A.14)

However, due to the low throughput of the second core, execution time will be longer instead of shorter.
We have

t
(1)
1 =

ĉ1

v̂1
= 1

4 and t
(1)
2 =

ĉ2

v̂2
= 1, (A.15)

which satisfies

max(t
(1)
1 , t

(1)
2 ) = 1 > max

(
t
(0)
1 , t

(0)
2

)
= 1

2 . (A.16)

The solver incorrectly assumes that the cost of the second task has changed and executing both tasks on
the first core would add up their load; that is

max(
ĉ1

v̂1
+
ĉ2

v̂2
, 0) = 5

4 > max(t
(1)
1 , t

(1)
2 ) = 1. (A.17)

At this point, the algorithm terminates. While the solver recognizes an imbalance in the final state, it is
satisfied under the wrong impression that the imbalance cannot be reduced further. So the tasks are kept
on different cores and a suboptimal solution is returned.
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Convergence with Section Splitting on Two Cores

Consider the problem from the previous paragraph once more. The chains-on-chains solver terminated
when it was not able to assign the load in a more fine-grained way to the two tasks, even though it
recognized the imbalance. Hence, the next canonical step is to use section splitting, as described in
Section 3.2.2, which allows subdivision of tasks into arbitrary size. On two cores a simple update rule
for the load of both cores is obtained, namely

t
(k+1)
1 = t

(k)
1 + min

(
t
(k)
2 − t

(k)
1

2
, 0

)
+ max

(
t
(k)
2 − t

(k)
1

2
, 0

)
v2

v1
,

t
(k+1)
2 = t

(k)
2 + min

(
t
(k)
1 − t

(k)
2

2
, 0

)
+ max

(
t
(k)
1 − t

(k)
2

2
, 0

)
v1

v2
. (A.18)

The idea is that one of both cores gives away half of the load by which it exceeds the load of the other
core. The other core gains the migrated amount of load, but executes it at its own speed, therefore the
execution time is adjusted by the factor vi

vj
. At iteration k + 1 the load difference satisfies

t
(k+1)
2 − t(k+1)

1 =


t
(k)
2 −t

(k)
1

2

(
1− v1

v2

)
if t(k)

2 < t
(k)
1

t
(k)
2 −t

(k)
1

2

(
1− v2

v1

)
if t(k)

2 ≥ t(k)
1

. (A.19)

If v1 ≥ v2 > 0, then

1 > 1− v2

v1
≥ 0 and 1− v1

v2
≤ 0. (A.20)

If v2 ≥ v1 > 0, then

1 > 1− v1

v2
≥ 0 and 1− v2

v1
≤ 0. (A.21)

Without loss of generality we assume that v1 ≥ v2, as otherwise the indexes can be switched. If
t
(0)
2 < t

(0)
1 , then

t
(1)
2 − t

(1)
1 =

t
(0)
2 − t

(0)
1

2

(
1− v1

v2

)
≥ 0. (A.22)

Furthermore, if there is a k ∈ N ∪ {0} with t(k)
2 ≥ t(k)

1 , then

t
(k+1)
2 − t(k+1)

1 =
t
(k)
2 − t

(k)
1

2

(
1− v2

v1

)
≥ 0. (A.23)

Thus t(k)
2 ≥ t(k)

1 for each k ∈ N and

t
(k+1)
2 − t(k+1)

1 =
(
t
(k)
2 − t

(k)
1

) 1− v2
v1

2
=
(
t
(1)
2 − t

(1)
1

)(1

2
− v2

2v1

)k
. (A.24)

As 0 ≤ 1
2 −

v2
2v1

< 1
2 , this term converges to 0 for k →∞. Therefore, the optimal load balance is found

at some point.
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Figure A.2: Load balancing with time-based cost evaluation. Tasks with random costs are distributed
to 512 cores with heterogeneous throughputs. The algorithm does not appear to converge.

Convergence with Section Splitting on Multiple Cores

Here, we will try to extend the result to multiple cores now where the update rule is more complicated.
Fix some p > 2. Then the update rule is for each i ∈ {1, . . . , p}:
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, (A.25)

where l(I) is defined as the length of the 1D interval I and

T
(k)
i :=

i∑
j=1

t
(k)
j (A.26)

is the prefix sum over the current load of each core i. In this case, it is uncertain if the algorithm
converges. Indeed, the sandbox tests in Figure A.2 indicate that the algorithm will not converge if the
throughput of the cores varies strongly.

In fact, whether or not the algorithm converges is not the main issue as the algorithm has a fundamen-
tal problem, which is already visible in the case p = 2. Due to the cost multiplier vj

vi
of inbound tasks,

the algorithm always overloads slow cores. This behavior leads to strongly imbalanced intermediate
states and divergence or slow convergence in general. In simulations on dynamic grids, the imbalanced
state is never resolved.

Some improvements are possible. First, cores can be sorted by their throughput to align the direction
of task migration. However, if there are large jumps in the sorted throughputs, oscillations may still
occur. Second, reducing the number of exchanged subtasks by an under-relaxation mitigates oscillations,
but it slows down convergence further, resulting in even longer periods where the grid is in an imbalanced
state. Eventually, forcing convergence might be possible at the price of slow convergence speed with
102 to 104 iterations. This is far from practical however, as a method that needs more than 102 iterations
for convergence is not suitable to resolve dynamic imbalances.

A.3.2 A Black Box Regression Model for Cost and Throughput Estimates

The previous approach showed that ignoring the heterogeneity of the system can lead to bad perfor-
mance and slow convergence speed of the load balancing algorithm. Hence, it is better to preserve the

159



APPENDIX A. OUTLOOK: HETEROGENEOUS CHAINS ON CHAINS SOLVERS

heterogeneity data instead of discarding it. The idea is to model the hardware heterogeneities as in (A.1),
but assume both the cost vector

c := (ci)i=1,...,n (A.27)

and the throughput vector

v := (vj)j=1,...,p (A.28)

are degrees of freedom this time, subject to ci > 0 and vj > 0, which is similar to [43]. However, in
contrast to Galindo et al. we still restrict ourselves to the chains-on-chains problem.

Similar to time-based cost evaluation, the execution time of each task is measured at runtime. We
assume that there are m independent measurements, where the kth measurement tk is executed for a
task i(k) ∈ {1, . . . , n} on a core j(k) ∈ {1, . . . , p} and the resulting time is stored in a vector t :=
(tk)k=1,...,m. To determine the vectors c and v, we set up a system of equations now, namely

ci(k)

vj(k)
= tk for every k ∈ {1, . . . ,m}. (A.29)

Note that the solution of (A.29) cannot be unique, as multiplying cost and throughput vectors with
any non-zero constant will not change the left-hand side. To linearize the system, we transform it into
logarithmic space and obtain

log(ci(k))︸ ︷︷ ︸
c̃i(k)

− log(vj(k))︸ ︷︷ ︸
ṽj(k)

= log(tk)︸ ︷︷ ︸
t̃k

for every k ∈ {1, . . . ,m}. (A.30)

Now, the problem reduces to solving a linear system of equations, which can be written as

Mcc̃−Mvṽ = t̃, (A.31)

where Mc ∈ {0, 1}m×n is 1 in each entry (k, i(k)) and 0 everywhere else. Similarly, Mv ∈ {0, 1}m×p
is 1 in each entry (k, j(k)) and 0 everywhere else. As k > n + p in most cases, the system is usually
overdetermined. Thus, a least squares approach is applied, where a quadratic function f : Rn+p → R
with

f(c,v) :=
(
Mcc̃−Mvṽ − t̃

)2
. (A.32)

is minimized with respect to c and v to approximate the solution to (A.31). The minimum of f is found
by solving the least squares system

−MT
v

(
Mcc̃−Mvṽ − t̃

)
= 0,

MT
c

(
Mcc̃−Mvṽ − t̃

)
= 0. (A.33)

To simplify the description of the system, we define Dv := MT
v Mv, Dc := MT

c Mc, and S := MT
c Mv.

The matrices Dc and Dv are diagonal, and thus easy to invert.

Dvṽ − ST c̃ + MT
v t̃ = 0,

Dcc̃− Sṽ −MT
c t̃ = 0. (A.34)

Either ṽ or c̃ can now be eliminated from the system of equations. Assuming n ≥ p, we eliminate c̃ and
obtain (

Dv − STD−1
c S

)︸ ︷︷ ︸
A

ṽ = −
(
MT

v − STD−1
c MT

c

)
t̃︸ ︷︷ ︸

b

,

Dcc̃ = Sṽ + MT
c t̃, (A.35)
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Figure A.3: Imbalance over the number of iterations for black-box modeling and explicit modeling of
n = 10,000 heterogeneous tasks on p = 2,000 heterogeneous cores. Cost and throughput distributions
are randomly generated, ranging over at least two orders of magnitude. The result are from explicit
solvers and regression solvers using heterogeneous variants of optimal chains-on-chains partitioning
and midpoint approximation to balance load estimates.

which is solved successively. One can show that the matrix A of the upper system is symmetric and
positive semi-definite. It must be singular, as we already observed that (A.31) does not have a unique
solution. Indeed, the all-ones vector (1, 1, . . . , 1)T is always an eigenvector of A with the eigenvalue 0.
This issue is fixed by adding the equation ṽ1 = 0 to the system. Only the top left entry in the matrix
Dv must be modified and incremented by 1. The resulting matrix is symmetric and positive definite
if enough measurements are available. The main advantage of this formulation is that it boils down to
the solution of a linear system, for which scalable methods exist. For instance, a parallel Conjugate
Gradients method solves the system quickly.

This method is slightly similar to the ideas in [104]. However, in our case, a least squares solver is
used to fit the task and core heterogeneities, in contrast to determining an execution time model from
known task heterogeneities for each core independently. In our case, finding a good load distribution
simply means solving the explicit heterogeneous chains-on-chains problem. Additionally, due to the
simple model, no training phase is required, as the unknowns are fitted on-the-fly using time-based cost
evaluation.

Results on artificial cost and throughput distributions are illustrated in Figure A.3. The regression
solver converges quickly, as only three time steps are required to find accurate distributions and to obtain
an imbalance which is as good as for explicit methods. However, the algorithm is not cheap and does
not scale per se, as it solves a linear system of equations in each iteration that grows with the number
of cores p. To simplify the solution of the system and to keep memory requirements low, measurements
can be stored in a distributed cache with a replacement strategy based on hash values generated from the
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task and core indexes i and j. Additionally, there is no need to set up Mc, Mv, and t̃ explicitly. Instead,
the matrices Dc, Dv, S, and the right-hand sides are constructed incrementally. Moreover, S remains
sparse as the number of non-zero entries in S is bounded by the cache size.

A.4 Conclusion: Explicit and Implicit Treatment of Heterogeneous
Hardware

To conclude, implicit treatment of heterogeneities by time-based cost evaluation clearly fails, as it does
not appear to converge in acceptable time. Modeling the heterogeneities is the method of choice. On
the one hand, additional knowledge by means of a throughput model for each core may be applied. On
the other hand, throughput can be considered to be unknown, in which case a linear system of equations
must be solved in each time step to evaluate the heterogeneities correctly.

We do not consider this problem further, as it implies knowledge of heterogeneities in the hardware
that we do not assume to have. The test systems we employed are homogeneous, where any variations
in hardware performance are volatile and unpredictable.
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I love deadlines. I love the whooshing noise
they make as they go by.

Douglas Adams (1952 – 2001)
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Berlin Heidelberg, Berlin, Heidelberg, 1891.

[56] USGS model for mar 11, 2011 earthquake, honshu , japan. http://earthquake.usgs.
gov/earthquakes/eventpage/usp000hvnu. Retrieved in July, 2016.

[57] J. Horrillo, Z. Kowalik, and Y. Shigihara. Wave dispersion study in the indian ocean-tsunami of
december 26, 2004. Marine Geodesy, 29(3):149–166, 2006.

[58] Susan Flynn Hummel, Jeanette Schmidt, R. N. Uma, and Joel Wein. Load-sharing in heteroge-
neous systems via weighted factoring. In Proceedings of the Eighth Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA ’96, pages 318–328, New York, NY, USA, 1996.
ACM.

[59] T. Isaac, C. Burstedde, and O. Ghattas. Low-cost parallel algorithms for 2:1 octree balance. In
Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 426–
437, May 2012.

[60] T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas. Recursive algorithms for distributed forests
of octrees. SIAM Journal on Scientific Computing, 37(5):C497–C531, 2015.

166

http://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_30_second_grid
http://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_30_second_grid
http://digital.library.unt.edu/ark:/67531/metadc845234/m1/1/
http://digital.library.unt.edu/ark:/67531/metadc845234/m1/1/
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post115.html
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post115.html
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post115.html
http://earthquake.usgs.gov/earthquakes/eventpage/usp000hvnu
http://earthquake.usgs.gov/earthquakes/eventpage/usp000hvnu


BIBLIOGRAPHY

[61] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali. Adaptive heterogeneous
scheduling for integrated gpus. In Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, PACT ’14, pages 151–162, New York, NY, USA, 2014. ACM.

[62] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

[63] D. E. Keyes. Exaflop/s: The why and the how. Comptes Rendus Mecanique, 339:70–77, February
2011.

[64] D. Klimenko. Evaluation of preconditioners for element-oriented conjugate gradients solvers.
Studienarbeit/sep/idp, Institut für Informatik, Technische Universität München, April 2015.
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