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Abstract

In this thesis we present a dedicated study of heavy-quark pair production
near threshold in e+e− collisions. Precise theory predictions for this process
allow the extraction of the top and bottom quark masses from experimental
data. Besides the conceptual importance of the accurate determination of the
fundamental parameters in nature, there are also significant phenomenological
benefits.

The calculation is organized with potential non-relativistic QCD (PNRQCD)
and Unstable-Particle Effective Theory. We review the notion of a heavy-quark
mass and the effective field theory framework in detail. We then compute elec-
troweak and non-resonant corrections to the cross section at next-to-next-to-
leading order (NNLO) and P-wave and Higgs corrections at NNNLO. Together
with the recently completed NNNLO calculation in pure QCD, this provides
full NNNLO QCD plus NNLO electroweak accuracy for the cross section near
threshold.

Based on this prediction we discuss the physics potential of a threshold scan of
top-pair production at a future lepton collider. In addition to the extraction
of the top-quark mass with an estimated uncertainty of just 50 MeV, it also
provides accurate determinations of the strong coupling constant and the top-
quark width and Yukawa coupling.

Furthermore, we present the first complete NNNLO determination of the bot-
tom-quark mass from non-relativistic sum rules, which was performed in the
context of this dissertation. Our result for the mass in the MS scheme is given
by mMS

b (mMS
b ) = 4.203+0.016

−0.034 GeV . We then demonstrate that our approach is
completely insensitive to non-perturbative corrections.

v



Zusammenfassung

In dieser Arbeit präsentieren wir eine ausführliche Studie der Paarproduktion
schwerer Quarks in e+e− Kollisionen nahe der Produktionsschwelle. Präzise
Theorievorhersagen für diesen Prozess ermöglichen die Extraktion der Top-
und Bottomquarkmasse aus experimentellen Daten. Neben der konzeptionellen
Relevanz der präzisen Bestimmung der fundamentellen Naturkonstanten gibt
es auch erheblichen phänomenologischen Nutzen.

Die Rechnungen wurden in potentieller nicht-relativistischer QCD (PNRQCD)
und der Effektiven Theorie Instabiler Teilchen durchgeführt. Wir bieten einen
Überblick über die Definitionen von Quarkmassen und das effektive Feldtheo-
riegerüst. Dann werden elektroschwache und nichtresonante Korrekturen zum
Wirkungsquerschnitt in nächst-nächst-führender Ordnung (NNLO), sowie
P-Wellen- und Higgskorrekturen in NNNLO berechnet. Zusammen mit der
kürzlichen Vervollständigung der NNNLO-Rechnung in reiner QCD erhalten
wir eine Vorhersage für den Wirkungsquerschnitt nahe der Produktionsschwelle,
die sämtliche NNNLO QCD und NNLO elektroschwache Korrekturen beinhal-
tet.

Anhand dieser Vorhersage diskutieren wir das Physikpotential einer Schwel-
lenabtastung des Toppaarproduktionswirkungsquerschnitts an einem zukünfti-
gen Leptonenkollider. Zusätzlich zu der Extraktion der Topquarkmasse mit
einer geschätzten Unsicherheit von nur 50 MeV ermöglicht sie auch die akku-
rate Bestimmung der starken Kopplungskonstante und der Zerfallsbreite und
Yukawakopplung des Topquarks.

Weiterhin stellen wir die erste Bestimmung der Bottomquarkmasse aus nicht-
relativistischen Summenregeln mit vollständiger NNNLO Genaugkeit vor, die
im Rahmen dieser Dissertation durchgeführt wurde. Unser Ergebnis im MS
Schema lautet mMS

b (mMS
b ) = 4.203+0.016

−0.034 GeV . Anschließend demonstrieren wir
die Unabhängigkeit dieser Herangehensweise von nichtperturbativen Korrek-
turen.

vi
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1. Introduction

The first years of operation of the Large Hadron Collider (LHC) have been an astonishing
success story for the Standard Model (SM) of elementary particles, culminating in the
discovery of the Higgs boson in 2012 [10,11]. Since then a plethora of analyses has revealed
no statistically significant deviation from the SM. There is, however, observational evidence
for physics beyond the SM from the baryon asymmetry of the universe, neutrino oscillations
and dark matter. Their common drawback is that they cannot be associated with a
specific new physics scale, since it has been demonstrated that new physics from well below
the electroweak scale all the way up to the Planck scale constitute possible explanations.
Most prominent models of new physics therefore invoke additional guiding principles like
minimality, naturalness or similar notions of aesthetics.

The LHC and the next generation of collider experiments will provide an extremely
stringent test of these models and the respective assumptions. Therefore, it is paramount
that the high precision on the experimental side is matched by theory predictions within
the SM. The complete automatization of next-to-leading order (NLO) QCD corrections
for hadron collider processes [12], the first computation of NNLO QCD corrections to a
2 → 2 process with all external particles being colored [13–15] and even NNNLO QCD
corrections to Higgs boson production in gluon fusion [16] are merely some select highlights
of the tremendous theory effort employed towards this goal in recent years.

The most straightforward way to further improve theory predictions is to achieve the
highest possible precision for SM parameters. Often parametric uncertainties are of com-
parable size than scale uncertainties, which are used to estimate missing higher order
perturbative corrections. For processes involving colored external particles, the most im-
portant are the strong coupling constant αs and the quark masses mq, where the present
uncertainties are of the order of 1%. This thesis focuses mainly on the determination of
the top-quark and bottom-quark masses. Their current status and the importance for
phenomenology will be discussed in the following.

Currently, the top quark is the heaviest known elementary particle with a mass that
is about 185 times that of the proton. Thus, it plays a unique role in the SM. It is of
particular importance for the Higgs sector due to its large Yukawa coupling. The pre-
cise measurements of its properties, that are possible at a future linear collider, are an
essential probe of the SM and its extensions. So far, the most precise determination of
the top-quark mass mMC

t = 173.34 ± 0.76 GeV was achieved from the direct reconstruc-
tion of top quarks from their decay products at the TeVatron and LHC experiments [17].
Unfortunately, this value has to be taken with a grain of salt because it corresponds to
a so-called Monte-Carlo mass whose relationship to a proper short-distance mass scheme
contains an unknown non-perturbative contribution, that is estimated to be of the order

1
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Figure 1.1.: The shaded areas show the regions of absolute stability (green), metastability
(white) and instability (red) of the electroweak vacuum in the mH−mt param-
eter space. The upper left red point shows the current values of the Higgs mass
and top Monte-Carlo mass with the ellipses denoting the 1,2 and 3 σ contours.
The authors of [23] find that this is compatible with absolute stability at the
level of only 1.3σ, when the additional uncertainty in the relation of the pole
and Monte-Carlo masses is ignored. Figure from [23].

of 1 GeV [18]. Even worse, the concept of a Monte Carlo mass is not universal, as different
Monte Carlo generators can correspond to different Monte Carlo mass schemes. Alterna-
tively, it is possible to directly extract the top-quark pole mass from the measured total
top-pair production cross section [19–21] or from a fit to electroweak precision data and
flavor observables [22]. This, however, comes at the cost of an increased uncertainty at
the level of 2− 3 GeV. In reverse, the observables considered for these fits obviously ben-
efit from a precise independent determination of the top-quark mass. The most striking
example for the importance of the top-quark mass is related to the destabilization of the
electroweak vacuum due to the effects of top-quark loops on the renormalization group
evolution (RGE) of the quartic Higgs coupling. The size of this effect depends crucially
on the Higgs and top-quark masses and the most recent results show a scenario that is
intriguingly close to the absolute stability bound [23], see Figure 1.1.
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In the field of B physics many important experimental results are expected in the coming
years from the LHCb and Belle II collaborations. The precise knowledge of the bottom-
quark mass is highly important for theory predictions of B-meson decay rates. For example,
the total lifetime of B mesons depends on the fifth power of the bottom-quark mass. It
is also of considerable importance for Higgs branching ratios. In the SM the dominant
decay channel H → bb̄ scales as m2

b , whereas the other channels exhibit at most a mild mb

dependence. Therefore, the parametric uncertainty for the branching ratios is given by

[δBr(H → X)]mb
Br(H → X)

= Br(H → bb̄)
2δmb

mb

. (1.1)

The present PDG average of the bottom-quark MS mass is mb(mb) = 4.18±0.03 GeV [24].
Thus, the branching ratios of all Higgs decay channels apart from bb̄ are plagued by a 1%
parametric uncertainty, which dominates for most tree-level decay channels assuming an
eventual uncertainty of 100 MeV for the Higgs mass from 300 fb−1 of data [25].

To understand the challenges that are associated with the precise determination of heavy-
quark masses, it is crucial to first understand their nature. The key point is that they aren’t
physical observables, but constitute renormalization scheme and, in general, renormaliza-
tion scale dependent quantities. Just like e.g. the strong coupling constant, heavy-quark
masses are parameters in the Lagrangian of the SM and can’t be predicted in the frame-
work of the SM. Thus, they can only be determined by comparing predictions for a physical
observable, made using the heavy-quark mass in a specific renormalization scheme and at
a specific scale, with experimental results. To obtain an accurate result the considered ob-
servable has to satisfy three necessary conditions. First of all, it has to be experimentally
clean, which suggests considering lepton collisions since there the partonic center-of-mass
energy is known and backgrounds are significantly smaller. Secondly, it must be theoret-
ically well understood and the computation of higher-order perturbative corrections must
be possible. This suggests inclusive processes with as few external particles as possible.
Thirdly, the observable has to depend strongly on the parameter that is to be determined.
For heavy-quark masses this suggests considering a processes near the threshold, where a
new channel including the heavy quark opens up.

For the top-quark mass, the three criteria are fulfilled by the total inclusive cross section
for the production of top pairs in electron positron collisions e+e− → tt̄X for center-of
mass energies near the top threshold s ≈ 4m2

t . Experimentally, this threshold scan is
possible at a future linear collider within about one year of running. The results of a
simulation [26], assuming the design of the ILC, and the estimated statistical uncertainties
for the simultaneous extraction of the top-quark mass and the strong coupling constant are
shown in Figure 1.2. The dependence on variations of the top-quark mass δmt manifests as
a shift of the shape of the cross section by 2δmt, as depicted by the blue dashed curves. This
facilitates the determination of mt and αs with a statistical uncertainty of only 27 MeV
and 0.0008, respectively [26]. To achieve a theory uncertainty in the same ballpark, the
prediction for the cross section must be very precise. NNLO QCD corrections have been
computed at the end of the 90’s by various groups and turned out to be large [27]. Thus, it
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Figure 1.2.: The upper plot shows simulated data points (black error bars) for the top-pair
production cross section near threshold together with the theory prediction
(red line). The blue dashed lines show the theory prediction using an input
mass that is shifted by ±200 MeV. There is a large sensitivity to the top-
quark mass in the region, where the slope of the cross section is biggest. The
lower plot shows the statistical uncertainty of the top-quark mass and strong
coupling constant extracted from the simulated data in a simultaneous fit.
Figures from [26].
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Figure 1.3.: The top-pair production cross section near threshold, normalized to the muon-
pair production cross section, R(s) = σ(tt̄X)/σ0(µ+µ−) at NLO (blue), NNLO
(red) and NNNLO (black). The bands are spanned by variation of the renor-
malization scale in the range from 50 GeV to 350 GeV. Figure from [28].

was necessary to further improve the accuracy of the computation. Following a tremendous
effort from a large collaboration, the computation of the full NNNLO QCD contributions
has been completed recently [28] and is now available in the form of the public code
QQbar Threshold [29]. The corrections proved to be small and the scale uncertainty is
greatly reduced with respect to the NNLO result and now at the level of just ±3%, thus
proving that strong dynamics are under control, see Figure 1.3. The computation of
subleading non-QCD contributions to the cross sections is described in this thesis. The
corrections are larger than the remaining QCD uncertainties and affect the determination
of the top-quark mass significantly. The sensitivity of the threshold scan to the top width,
top Yukawa coupling and the strong coupling constant will also be discussed.

It is not possible to determine the bottom-quark mass from the direct comparison of the
shape of the bottom-pair production cross section near threshold with experimental data,
because of the presence of very large non-perturbative corrections in this region. It was
originally proposed in [30,31] to consider moments

Mn =

∫ ∞

0

ds
Rb(s)

sn+1
(1.2)

of the normalized cross section

Rb(s) =
σ(e+e− → bb+X)

σ(e+e− → µ+µ−)
(1.3)

https://qqbarthreshold.hepforge.org/
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Figure 1.4.: The blue curve shows the experimental data for the normalized cross section
Rb in the threshold region from the Υ resonances [24] (left), the BaBar col-
laboration [32], including corrections for initial state QED radiation from [33],
and the assumption Rb = 0.3 ± 0.2 for higher center-of-mass energies (right).
The red line shows the weight factor in the integral (1.2) for the tenth moment.

instead. They are much less sensitive to infrared QCD contributions than the cross sec-
tion itself and, therefore, provide the possibility of a very clean determination of mb by
making use of the results from [28]. The available experimental data on Rb comes from
measurements of the properties of the Υ resonances [24] and from the BaBar collaboration
for center of mass energies between 10.6178 GeV and 11.2062 GeV [32] and is depicted in
Figure 1.4. Data for higher energies is not available so far and the conservative assumption
Rb(
√
s > 11.2062 GeV) = 0, 3 ± 0.2 is made in the following. The experimental uncer-

tainty of the moments thus decreases for larger n because the sensitivity to the poorly
known energy region is reduced by the weight factor 1/sn+1 in the integral. In addition,
the mass dependence of the moments is increased for larger n because, for dimensional rea-
sons,M∼ m−2n

b . However, for arbitrarily large n the moments are completely dominated
by the Υ(1S) resonance and non-perturbative contributions can no longer be ignored. A
good compromise is reached by values of n near 10. The first full NNNLO analysis for the
bottom-quark mass from moments in this range was obtained in the course of this thesis
and will be described here in detail.

The methods used for the determination of the top and bottom-quark masses rely on
the precise computation of the respective pair production cross sections near the partonic
thresholds

√
s = 2mq + E with E ∼ mqα

2
s � mq and q = t, b. For kinematic reasons, the

heavy quarks are non-relativistic, i.e. have a small velocity v = (E/mq)
1/2 ∼ αs � 1. The

presence of so-called Coulomb corrections, which scale as (αs/v)n ∼ 1, causes the break-
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Figure 1.5.: Ladder diagram contributing to the e−e+ → qq̄ amplitude (left). The effect of

Coulomb resummation is shown on the right for top quarks. The red curve is
the Born cross section and the blue curve the resummed result at LO.

down of the conventional perturbative expansion in αs. The responsible class of Feynman
diagrams is shown in Figure 1.5, where each additional gluon exchange yields another fac-
tor of αs/v. It is, therefore, necessary to resum this kind of contributions to obtain a
realistic prediction for the cross section. The dramatic effect of this resummation is shown
in Figure 1.5. This introduces narrow Coulomb bound-state resonances below threshold
(cf. Figure 1.4), which are smeared out in the top-pair production cross section by the
sizeable decay width of the top quarks. At higher orders in the resummed perturbation
theory, the remnant of the 1S toponium resonance is visible as a distinct peak as shown
in Figure 1.3. The comparison with the Born result in Figure 1.5 demonstrates that the
cross section is also substantially enhanced above the production threshold. The resum-
mation can be achieved with an effective field theory called potential non-relativistic QCD
(PNRQCD) [34–38]. In this theory, the ladder exchanges of gluons are described by an
instantaneous, but spatially non-local, color-Coulomb potential, which constitutes a lead-
ing order effect in the non-relativistic power counting αs ∼ v � 1 and is therefore treated
non-perturbatively. PNRQCD provides a framework in which higher-order corrections in
αs and v around the resummed solution can be computed in a systematic fashion. The
consistent treatment of the large top-quark width requires an extension to Unstable Par-
ticle Effective Theory [39, 40], which also accounts for the non-resonant production of the
decay products of the top pair. Higgs and general electroweak corrections can be described
in the same framework.

The structure of this thesis is as follows. In Chapter 2, we discuss various heavy quark
mass schemes and their properties. The effective field theory framework upon which all
computations in this thesis are based is described in Chapter 3. Since it is clearly impos-
sible to cover all the aspects in depth, the purpose of these review chapters is to serve as
a pedagogical introduction to the concepts and to the respective literature. The compu-
tation of the non-resonant and resonant contributions is performed in Chapter 4 and 5,
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respectively. In Chapter 6, we study the phenomenological implications on the top thresh-
old scan at a future linear collider. The determination of the bottom-quark mass from
non-relativistic sum rules is discussed in Chapter 7. We then present some preliminary
and previously unpublished results on non-perturbative gluon-condensate corrections to
bottomonium sum rules and bound states in Chapter 8. We conclude in Chapter 9.



2. Heavy quark mass definitions

The first step towards a determination of heavy quark masses must necessarily be their
precise definition. This is already a subtle point due to the confining nature of QCD. In the
bare QCD Lagrangian, bare quark masses mq,0 appear as the coefficient of a local operator,
just like the strong coupling constant. As such, they are subject to renormalization mq,0 =
Zmqmq, which induces a scheme dependence of the renormalized masses mq, since the mass
renormalization constants Zmq must absorb the divergences, but are otherwise arbitrary.

Masses defined in different schemes are related by m̃q = (Zmq/Z̃mq)mq. When physical
observables are expressed in terms of mq, this scheme dependence cancels at the considered
order in perturbation theory. The convergence of the perturbative expansion can however
differ substantially in different mass schemes. Thus, to determine a heavy quark mass
precisely, it is crucial to choose a mass scheme that leads to the best possible behaviour
for the considered observable.

The most common definitions are the pole and MS masses. The pole mass scheme is
convenient for analytical computations, since expressions usually take a simpler form. We
make use of this in later chapters, where the index for the pole mass is dropped, mq ≡ mpole

q ,
whereas mq without a superscript denotes a generic quark mass in this chapter. However,
it has severe shortcomings, as discussed in Section 2.1, and therefore it is not used for the
determination of the masses.

In the MS scheme, ZMS
mq is defined as a minimal subtraction of divergences after the

shift µ2 → µ̃2 ≡ µ2(eγE/(4π)) is applied. The MS mass is well suited for a wide range of
observables. However, threshold processes involve small energies Epole ≡ √s − 2mpole

q ∼
mqα

2
s and the use of the MS mass interferes with the power counting because ∆mq ≡

mpole
q −mMS

q ∼ mqαs and thus

EMS ≡ √s− 2mMS
q = Epole + 2∆mq ∼ mqαs � mqα

2
s ∼ Epole. (2.1)

For the threshold production of heavy quarks, one therefore requires a mass definition
that only differs from the pole mass by terms of the order mqα

2
s and that does not have the

shortcomings of the pole mass. We will discuss a scheme that fulfills these specifications
in Section 2.2.

2.1. The pole mass

The pole mass of a heavy quark is defined, at any given order in perturbation theory, as the
real part of the location of the pole of the full heavy quark propagator. Its IR finiteness and

9



10 2. Heavy quark mass definitions

. . .

Figure 2.1.: Leading contribution to the quark self energy in the large β0 limit. The bubbles
correspond to insertions of the total one-loop gluon vacuum polarization and
are summed to all orders.

gauge independence have been proven in [41]. Thus, from a purely technical point of view, it
fulfills all criteria for a sound mass definition. However, the pole mass definition refers to a
free heavy quark, i.e. to an unphysical object due to confinement. This implies an inherent
uncertainty of the order of the confinement scale ΛQCD in the definition of the pole mass,
which manifests in the perturbative expansion as an IR renormalon ambiguity [42–44].

To understand this issue in more detail, we consider the relation between the pole and
MS mass in the large β0 limit, i.e. an expansion in αs � 1 while counting β0αs ∼ 1.
There is a powerful machinery for computations in this limit, which allows us to study the
large order behaviour of the expansion coefficients in this approximation. Assuming that
the exact perturbative expansion follows the same basic patterns, strong statements are
possible.

The leading contribution in the large β0 approximation is given by the diagram shown
in Figure 2.1. Each bubble insertion counts as αsβ0 ∼ 1 and the chain with an arbitrary
number of insertions must be summed. This yields [45]

∆m(µ) ≡ mpole −mMS(µ) = −4πiCF µ̃
2ε

∫
ddk

(2π)d
αs(ke

−5/6)
γµ(/k + /p+m)γµ

k2[(k − p)2 −m2]

∣∣∣∣
p2=m2

,

(2.2)
where

αs(ke
−5/6) =

αs(µ)

1 + Π(k2)
=

αs(µ)

1− αs(µ)β0 log(k2e−5/6/Λ2)
, (2.3)

and it is understood that the UV divergence of the integral is subtracted in the MS scheme.
The beta function in the convention of (2.3) is given by

β(αs) =
1

µ2

∂αs
∂µ2

= β0α
2
s + β1α

3
s + . . . , (2.4)

β0 = − 1

4π

(
11Nc

3
− 2nf

3

)
. (2.5)

Eq. (2.2) has the exact same form as the one-loop result in conventional perturbation
theory, but with the strong coupling constant evaluated at the momentum running in the
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loop. We compute it following the procedure introduced in [46]. The first step consists in
introducing the dispersion relation

1

1 + Π(k2)
=

1

π

∞∫

0

dλ2 1

k2 − λ2

Im Π(λ2)

|1 + Π(λ2)|2 +

∞∫

−∞

dλ2 1

k2 − λ2

λ2
Lδ(λ

2 − λ2
L)

−β0αs
, (2.6)

where the second term is localized at the Landau pole

λ2
L = −µ2 exp

(
1

β0αs
+

5

3

)
. (2.7)

Using partial fractioning for 1/(k2(k2 − λ2)), (2.2) can be written as a dispersion integral
over the one-loop self energy with a massive gluon

∆m(µ) =
mαsCF

4π

∞∫

−∞

dλ2

λ2

(
θ(λ2)Im Π(λ2)

π|1 + Π(λ2)|2 +
λ2
Lδ(λ

2 − λ2
L)

−β0αs

)(
r0(λ2)− r0(0)

)
, (2.8)

where

r0(λ2) = −(4π)2

m
iµ̃2ε

∫
ddk

(2π)d
γµ(/k + /p+m)γµ

[k2 − λ2][(k − p)2 −m2]

∣∣∣∣
p2=m2

. (2.9)

The difference ∆r0(λ2) ≡ r0(λ2)− r0(0) is obtained by a straightforward computation

∆r0(λ2) = x− x
2

2
log x−

√
x(8 + 2x− x2)√

4− x

[
arctan

2− x√
x(4− x)

+ arctan

√
x√

4− x

]
, (2.10)

where x ≡ λ2/m2. After integration by parts, (2.8) becomes

∆m(µ) =
mαsCF

4π



∞∫

0

dλ2Φ(λ2)∆r′0(λ2) +
∆r0(λ2

L)

−β0αs


 , (2.11)

where ∆r′0(λ2) = (d/dλ2)∆r0(λ2) and

Φ(λ2) =
1

παsβ0

arctan

[ −παsβ0

1− αsβ0 log(λ2e−5/3/µ2)

]
+
θ(−λ2

L − λ2)

αsβ0

. (2.12)

The first term in (2.11) can be interpreted as an integral over the contribution ∆r′0(λ2)
from gluons with virtuality of the order λ2 weighted with an effective charge Φ(λ2). The
effective charge Φ(λ2) is a monotonous function, that approaches Φ(0) = 1/(β0αs) and
Φ(λ2 → ∞) → 0 logarithmically. The contribution from the Landau pole of the strong
coupling has been absorbed into the second term ∆r0(λ2

L)/(−β0αs). The function ∆r′0(λ2)
has the asymptotic behaviour

∆r′0(λ2 → 0) = − π√
m2λ2

+
3

m2
− 9π

8m2

√
λ2

m2
+

(
7

6
− log

λ2

m2

)
λ2

m4
+ . . . , (2.13)

∆r′0(λ2 →∞) = − 3

λ2
−

(
20− 12 log λ2

m2

)
m2

3λ4
−

(
51− 36 log λ2

m2

)
m4

2λ6
+ . . . . (2.14)
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Φ(λ2)Δr0'(λ2)m2

-Δr0'(λ2)m2

-Φ(λ2)

0.001 0.010 0.100 1 10 100 1000

0.001

0.010

0.100

1

10

100

1000

λ
2/m2

Figure 2.2.: The integrand of (2.11) for µ2 = m2.

The behaviour of the complete integrand is shown in Figure 2.2. We observe that the
integral is not saturated by contributions from virtualities λ2 near the physical scale m2

of the problem, but receives large contributions from the IR and UV regions λ2 � m2

and λ2 � m2. This property is the core of the renormalon contributions. For a more
precise formulation we define the Borel transform B[∆m] of ∆m (stripped of the prefactor
(mαsCF )/(4π))

∆m ≡ mαsCF
4π

∞∑

n=0

rn(−β0αs)
n ⇒ B[∆m](u) ≡

∞∑

n=0

rn
un

n!
. (2.15)

It was computed exactly in [42]

B[∆m](u) =

(
µ2

m2

)u
e

5u
3 6(1− u)

Γ(u)Γ(1− 2u)

Γ(3− u)
+
G̃0(u)

u
, (2.16)

where G̃0(u) is a subtraction term for the UV divergence in (2.2) and is specified in [42].
The Borel transform B[∆m](u) can be used as a generating function for the expansion
coefficients

rn =
dn

dun
B[∆m](u)|u=0. (2.17)

Numerical results for the coefficients at µ = m are shown in Table 2.1. We observe
that the perturbative expansion of ∆m has a vanishing radius of convergence due to the
factorial growth of the coefficients. However, it can be summed by making use of the Borel
transform (2.16), which converges for |u| < 1/2 due to the additional 1/n! in the series
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n rn IR(1/2) IR(3/2) UV(−1) UV(−2)

0

1

2

3

4

5

6

7

8

4

18.7446

70.4906

439.435

3495.7

35358.7

423257.

5939874

94962946

9.2039

18.4078

73.6312

441.787

3534.3

35343.

424116.

5937622

95001956

−6.09125

−4.06083

−5.41444

−10.8289

−28.877

−96.2567

−385.027

−1796.79

−9582.89

−0.755502

0.755502

−1.511

4.53301

−18.1321

90.6603

−543.962

3807.73

−30461.9

0.160533

−0.080267

0.080267

−0.1204

0.240799

−0.601999

1.806

−6.32099

25.2839

Table 2.1.: Coefficients rn(µ = m) for the pole-MS relation as defined in (2.15). For com-
parison, the contributions from the leading and next- to-leading IR and UV
renormalons are given as well.

expansion. The Borel integral

∆̃m =
mαsCF

4π

∞∫

0

du e−u/(−β0αs)
B[∆m](u)

(−β0αs)
(2.18)

has the same series expansion as the original function and may therefore be used to assign
a numerical value to the divergent series.1 In doing so, we have to shift the contour up or
down by an infinitesimal amount in the complex u plane because the Borel transform (2.16)
has poles for real positive u. As a result, the Borel integral acquires an imaginary part

Im
(

∆̃m
)

= ±πmαsCF
4π

∑

ui

e−ui/(−β0αs)
ResuiB[∆m](u)

(−β0αs)
, (2.21)

where the sum picks up all residues from poles on the positive real axis and the sign depends
on the way the contour is deformed. Poles in the Borel transform are usually referred to

1For a convergent series S(z) =
∑∞

n=0 anz
n this is easy to show. We insert factors of one in the sum and

obtain

S(z) ≡
∞∑

n=0

anz
n =

∞∑

n=0



∞∫

0

dt
tne−t

n!


 anz

n =

∞∫

0

du
e−u/z

z
B[S](u), (2.19)

with u = tz and the Borel transform

B[S](u) =

∞∑

n=0

an
n!
un. (2.20)

In the last step of (2.19) we used the convergence of S(z) to change the order of summation and integration.
It was generalized to a larger class of functions [47], which does however not encompass the pole-MS
relation (2.2), whose Borel transform has poles on the positive real axis.
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as renormalons and the dependence of (2.21) on the choice of the contour is called a
renormalon ambiguity.2 The poles in (2.16) originate from the asymptotic behaviour of
the integrand in (2.11). The Borel transform of (2.11) is [46,48] (ignoring additional terms
required for quantities, that require renormalization, see [46, 48])

−sin(πu)

πu

∞∫

0

dλ2

(
λ2

µ2
e−5/3

)−u
∆r′0(λ2). (2.22)

For illustrational purposes, we split this integral into three parts by introducing cut-offs
ξ2

IR � m2 and ξ2
UV � m2. In the IR region 0 ≤ λ2 ≤ ξ2

IR the expansion (2.13) for the
integrand can be used to reproduce the poles and residues of (2.16) at positive half-integer
and integer values of u, which are therefore called IR renormalons. Similarly, using (2.14)
in the UV region ξ2

UV ≤ λ2 ≤ ∞ gives the poles and residues at negative integer values
or UV renormalons. Note that the pole at 0 is canceled by the subtraction term G̃0(u)/u
in (2.11). The poles and their residues are independent of the artificial parameters ξIR/UV.
The intermediate region only yields a regular contribution.

Poles related to higher order terms in (2.13) and (2.14) yield renormalon poles that are
further away from u = 0. Consequently, the poles closest to u = 0 will be called the
leading, next-to leading, ... renormalons. The contributions to the coefficients rn(m) from
the leading and next-to leading IR and UV renormalons are also shown in Table 2.1. We
observe that the IR renormalons lead to same sign divergent behaviour of the coefficients
and UV renormalons to sign-alternating divergences. Therefore, the UV renormalons are
Borel summable and do not cause any ambiguities, whereas the IR renormalons are not
naively Borel summable. This property is characteristic of the confining nature of QCD.
In QED the beta function has opposite sign and the definition of the Borel sum (2.18)
must be changed, such that the exponent is negative. This implies that the IR and UV
renormalon behaviour is interchanged in QED.

The coefficients rn of the large-β0 expansion are quickly dominated by the first IR renor-
malon contribution. The exact expansion coefficients of the pole-MS relation have recently
been computed up to four-loop order [49]. The comparison shows that the rn are indeed
a good approximation to the full result already at relatively low orders, with the precise
size of the deviations depending on the heavy quark flavour through the number of light
quarks nf (see Table 2.2 for the bottom mass). Thus, the exact expansion coefficients are
also dominated by the leading IR renormalon contribution.

2 The same ambiguity appears in the “direct computation.” In (2.2), the order of the loop integration and
summation over bubble contributions was interchanged. The sum was then evaluated, which results in
the change of the argument of the strong coupling constant. Since the summation is divergent, this is not
mathematically justified and also leads to an ambiguity. The real part of the result (2.11) of the ”direct
computation” is identical to the principal part of the Borel integral (2.18). (2.11) also gets an imaginary
part from the Landau-pole term ∆r0(λ2L)/(−β0αs) due to a branch cut in ∆r0 along the negative real
axis. It agrees with (2.21), see [46].
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Renormalon ambiguities indicate the presence of power corrections. They scale as

e−ui/(−β0αs) = e
ui log

Λ2
QCD

µ2 =

(
Λ2

QCD

µ2

)ui
. (2.23)

When they appear in physical observables, they are expected to cancel with contributions
from higher-dimensional operators. Thus, renormalon ambiguities are not a shortcoming
of QCD, but rather of applying perturbation theory to QCD without also accounting for
power corrections. The leading ambiguity of the pole-MS mass relation from the u = 1/2
IR renormalon is of the order ΛQCD. Since the MS mass involves only a minimal subtraction
of UV divergences, the renormalon ambiguity is part of the pole mass. Since the heavy
quark pole mass refers to an unphysical object, it is not clear how its definition could be
generalized beyond perturbation theory. Thus, its IR renormalon ambiguity cannot be
canceled by including non-perturbative corrections. Parametrically, the concept of a pole
mass can therefore not be made more precise than the confinement scale ΛQCD. A recent
study [50] found that size of the ambiguity for the top-quark mass is around 70 MeV. This
is larger than the estimated accuracy in a threshold scan and thus demonstrates that the
pole mass is not suited for this kind of application. Instead a different mass definition will
be used, where the leading IR renormalon is canceled in the perturbative expansion.

2.2. The potential subtracted mass

We discuss the potential subtracted (PS) mass [51] as an example for a mass definition
that only differs from the pole mass by terms of order mqα

2
s and does not contain an IR

renormalon at u = 1/2. Other examples for mass definitions, that comply with these
specifications are the 1S-mass [52], the kinetic mass [53] and the renormalon subtracted
mass [54].

The definition of the PS mass is inspired by the observation that the total energy
Estatic(r) = 2mpole

q + VC(r) of a static heavy-quark pair qq̄ separated by a distance r �
1/ΛQCD is an observable and therefore unambiguous [51, 55]. Since the static energy re-
ceives no O(ΛQCD) power corrections, this implies that the leading ambiguity of the pole
mass must be canceled by an opposite ambiguity in the static potential. Below, we demon-
strate this cancellation explicitly in the large-β0 limit. The ambiguities in the mass and
potential can be removed by a redefinition of both quantities by an opposite mass shift.3

The large-β0 approximation for the Coulomb potential in momentum space is given by

ṼC(q2) = −4παsCF
q2

1

1 + Π(−q2)
. (2.24)

We now consider its Fourier transform and repeat the same steps as for the pole-MS mass

3 The 1S mass is based on the same idea, but considers a different observable, the mass of the Υ(1S)
resonance.



16 2. Heavy quark mass definitions

relation

VC(r) =

∫
d3q

(2π3)
eiq·rṼC(q2)

= −4παsCF



∞∫

0

dλ2Φ(λ2)d′0(λ2) +
d0(λ2

L)− d0(0)

−β0αs


 , (2.25)

where d0(λ2) = e−λ|r|/(4π|r|) is the Yukawa potential in position space. We are only
interested in the leading IR renormalon. Thus, we expand the integral in (2.25) in λ2|r|2

VC(r) =
αsCF

2

ξ2
IR∫

0

dλ2Φ(λ2)

(
1√
λ2
− |r|+ . . .

)
+ . . . . (2.26)

In the comparison of (2.26) with (2.11) and (2.13) we observe that the leading 1/
√
λ2

contribution is independent of the distance |r| and indeed cancels in the large-β0 approxi-
mation for the static energy of a heavy quark pair. This suggests introducing a subtraction
term to also remove the leading IR renormalon from the mass definition and the potential
separately. The result is a subtracted potential

VC(r, µf ) = VC(r) + 2δm(µf ) (2.27)

and the potential subtracted mass

mPS
q (µf ) = mpole

q − δm(µf ), (2.28)

where

δm(µf ) ≡ −
1

2

∫

|q|<µf

d3q

(2π)3
ṼC(q2). (2.29)

It is clear from (2.26) that only the leading term in an expansion of the factor eiq·r =
1 + O(q · r) is required in (2.29) to achieve the cancellation of the pole at u = 1/2. The
subtraction scale µf introduced in the definitions above is assumed to be of the order mqαs.
This assures that the PS mass has the scaling required for threshold problems.

We define the Borel transform of δm(µf ) in the large β0 approximation by

δm(β0) ≡ µfαsCF
4π

∞∑

n=0

hn(−β0αs)
n ⇒ B[δm(β0)](u) ≡

∞∑

n=0

hn
un

n!
. (2.30)

We obtain

B[δm(β0)](u) = 4e5u/3

(
µ2

µ2
f

)u
1

1− 2u
, (2.31)

which only has one IR renormalon pole at u = 1/2. The coefficients hn are obtained
from its derivatives at u = 0. In Table 2.2, we show a comparison of the perturbative
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n ∆m
(β0)
b ∆m

(exact)
b δm

(β0)
b δm

(exact)
b (∆mb − δmb)

(β0) (∆mb − δmb)
(exact)

0

1

2

3

4

5

6

7

8

0.40107

0.28043

0.15735

0.14636

0.17372

0.26219

0.46829

0.98057

2.33909

0.40107

0.19988

0.14537

0.135(2)

0.19099

0.14677

0.12980

0.13605

0.17172

0.26060

0.46866

0.97997

2.33995

0.19099

0.11942

0.11342

0.13628

0.21009

0.13366

0.02755

0.01032

0.00201

0.00159

−0.00038

0.00060

−0.00087

0.21009

0.08046

0.03194

−0.001(2)

Table 2.2.: The terms in the perturbative expansion of the pole-MS (∆mb), the pole-PS
(δmb) and the PS-MS (∆mb − δmb) mass relation are shown for the bottom
quark in the large β0 approximation and exactly, where available. We use
mMS
b (mMS

b ) = 4.2 GeV, µ = 4.2 GeV, αs(µ) = 0.225 and µf = 2 GeV as inputs
and neglect all light-quark masses.

expansions of the pole-MS, the pole-PS and the PS-MS mass relation for the bottom
quark. We observe that both the pole-MS and the pole-PS mass relation start to diverge
from the order α5

s (n = 4). The exact expansion is known up to order α4
s and we see

that already for n = 2, 3 the large β0 approximation reproduces the full result up to
O(10%) corrections. The PS-MS mass relation is much better behaved. The minimal
term is reached for n = 6, where the contributions from the leading UV renormalon begin
to dominate. Recall that UV renormalons are naively Borel summable and do not cause
ambiguities. The remaining renormalon ambiguity is due to the pole at u = 3/2 in (2.16)
and of the order Λ3

QCD/m
2
b ∼ 1 MeV, which is completely negligible compared to other

uncertainties. Thus, the PS mass is ideally suited for threshold problems. Furthermore,
it can lead to improved convergence with respect to the MS scheme in observables where
a heavy quark is close to its mass shell like inclusive B decays. Comparisons of different
mass schemes in this context can be found in [9, 56].





3. Effective field theory setup

In this chapter we describe the effective field theory setup, that all computations in this the-
sis are based upon. In Section 3.1, we discuss the basic scaling properties of the threshold
production of heavy quarks. Section 3.2 discusses how loop integrals can be systematically
expanded according to these scaling rules prior to the loop integration. Rather than per-
forming expansions on a diagrammatic level, it is beneficial to construct an effective field
theory, whose Feynman rules directly give the expanded form of the contributions. It is
provided by PNRQCD, as described in Section 3.3. Finally, Section 3.4 shows how the
setup can be generalized to also account for the decays of the top quarks. The procedure
introduces spurious divergences in the resonant and non-resonant contributions to the full
cross section, which cancel when they are treated in a consistent way. We therefore devote
Section 3.5 to a detailed description of the organization of the computation.

3.1. Kinematics and basic structure

We consider the production of a top pair in e+e− collisions by the s-channel exchange of
a photon. The tree-level diagram for this process is shown in Figure 3.1. The threshold
region for this process is defined by s = q2 ≈ 4m2

t , or more precisely in the center-of-mass
frame by q = (2mt + E,0) with E ∼ mtα

2
s. The top quarks can be off-shell by a small

t

t̄

q

pt

pt̄

Figure 3.1.: Tree-level diagram for the production of a top pair from a s-channel photon.

amount determined by their width Γt ∼ mtα. Our counting for the coupling constants is
α ∼ α2

s, which is numerically well justified. We parametrize the top-quark momentum by
small fluctuations around them being at rest, pt = (mt,0) + p and pt̄ = (mt,0) + p̄. The
condition

p2
t −m2

t ∼ mtΓt ∼ m2
tα

2
s (3.1)

19
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gives the following scaling for the top momentum

p0 ∼ mtα
2
s, p ∼ mtαs, (3.2)

and the same for the anti-top. We observe that, near threshold, the tops are non-relativistic
with a small velocity of the order of the strong coupling constant

v ≡
√
E/mt ∼ αs � 1. (3.3)

This implies that threshold production involves three different scales, which are the hard
scale, set by the top mass mt, the soft scale, set by the spatial top momentum p ∼ mtv ∼
mtαs, and the ultrasoft scale, set by the kinetic energy p0 ∼ mtv

2 ∼ mtα
2
s of the tops.

The presence of multiple scales makes the computation of higher order corrections very
challenging and it requires sophisticated methods, which will be described in Sections 3.2
and 3.3.

First however, let us consider the expansion of the diagram in Figure 3.1 in the small
velocity v. For non-relativistic systems it is convenient to use the Dirac basis

u(pt) =
√

2mt + p0

(
ξ

σ·p
2mt+p0 ξ

)
, (3.4)

v(pt̄) =
√

2mt + p̄0

( σ·p̄
2mt+p̄0η

η

)
, (3.5)

γ0 =

(
1 0
0 −1

)
, (3.6)

γi =

(
0 σi

−σi 0

)
. (3.7)

The two-spinors are normalized according to ξ†ξ = η†η = 1. Due to the ward identity
qµΓµ = 0, the zero component of the vertex vanishes in the center-of-mass frame. The
spatial components are simply

ūγiv = 2mtξ
†σiη +O(v2), (3.8)

where the missing terms are only relevant at NNLO in the non-relativistic power counting
v ∼ αs. We now consider the virtual one-loop correction shown in Figure 3.2. In the
threshold region, real radiation is restricted to very small momenta k ∼ mtv

2 by momentum
conservation and is therefore strongly suppressed. Thus, it will not be considered here.
Instead of the whole loop diagram integrated over all momentum regions, we focus only on
the part where the top quarks inside the loop are also non-relativistic. This implies that
the loop momentum k also scales like (3.2). The expansion of the numerator in this region
yields

ūγα(/k + /pt +mt)γ
i(/k − /pt̄ +mt)γαv

= m2
t ūγα(1 + γ0)γi(1− γ0)γαv + . . .

= −8m3
t ξ
†σiη +O(ε) +O(v2), (3.9)
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Figure 3.2.: One-loop diagram for the production of a top pair from a s-channel photon.

which has the same structure as the tree-level result (3.8). When the same expansion is
also applied to the denominators, one obtains

i

∫
ddk

(2π)d
1

k2[(k + pt)2 −m2
t ][(k − pt̄)2 −m2

t ]

= i

∫
ddk

(2π)d
1

[−k2][2mt(k0 + p0)− (k + p)2][2mt(E − k0 − p0)− (k + p)2]
+ . . .

=
1

4mt

∫
dd−1k

(2π)d−1

1

[−k2][mtE − (k + p)2]
+ . . .

=
1

4mt

Γ(1/2 + ε)

(4π)3/2−ε

1∫

0

dx

[x(1− x)p2 − xmtE]1/2+ε
+ · · · ∼ 1

m2
tv

+ . . . . (3.10)

In the second step the contour in the k0 plane has been closed in the upper half-plane and
the residue of the pole at k0 = E − p0 − (k + p)2/(2mt) + i0 has been picked up. The
remaining integral over the spatial components of the loop momenta is straightforward.
We can already see from its Feynman parametrization that it scales like 1/v because both
p2 and mtE are of the order m2

tv
2. It may seem odd that the integrand is expanded

non-relativistically, whereas the integration is performed over the whole domain of loop
momenta. In the framework of the expansion by regions, discussed in the next section, this
will turn out to be a well-defined contribution to the complete loop integral expanded in v.
For now, we are mainly concerned with the scaling of the integral and note that it could
also have been obtained from applying the power counting k0 ∼ mtv

2, k ∼ mtv to the inte-
gration measure ddk = dk0dd−1k ∼ m4

tv
5 and the denominators, which all scale like m2

tv
2.

In conclusion, the considered contribution from the one-loop correction is proportional to
the same structure ξ†σiη as the leading order result and has the relative scaling αs/v. Since
v ∼ αs, this contribution is not suppressed relative to the tree-level one. This generalizes
to arbitrary loop orders, which can be demonstrated by applying the power counting to
the type of diagrams shown in Figure 3.3, which scale like (αs/v)n ∼ 1. Additional gluons
do not change the structure of the numerator (3.9). Thus, the Dirac algebra is trivial at
LO in the non-relativistic regime. The scaling of the ladder diagrams demonstrates the



22 3. Effective field theory setup

t
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Figure 3.3.: Ladder type diagram for the production of a top pair from a s-channel photon.

breakdown of conventional perturbation theory in αs for threshold problems. To obtain a
reliable prediction, it is necessary to sum these ladder type contributions to all orders.

We note that a naive power counting analysis leads to the fallacy that other structures
with an equal number of propagators are also unsuppressed, e.g. ladders with crossing
rungs or with vertex corrections to rungs. It is simple to show that these examples vanish
because the poles in the zero component of one of the loop momenta lie on the same side of
the contour, which can thus be closed without picking up either of the residues. However,
it is difficult to generalize these arguments to all possible contributions, especially when
higher orders in the expansion are considered. Clearly, a more formal approach is required.

3.2. Expansion by regions

The threshold production of top quarks is governed by a hierarchy of three scales. They
are set by the mass mt, the spatial momentum mtv and the non-relativistic energy mtv

2

and denoted as the hard, soft and ultrasoft scale, respectively. Having three different
scales makes the exact evaluation of multiloop integrals particularly difficult. Instead of
attempting to solve the integrals exactly, the large hierarchy between the scales makes it
possible to expand in their ratios, which is equivalent to an expansion in the small velocity
v. This can be done prior to the loop integration by a method denoted as expansion by
regions [57–59]. The relevant momentum regions for threshold problems are

hard region (h): k0 ∼ mt, k ∼ mt,
soft region (s): k0 ∼ mtv, k ∼ mtv,
potential region (p): k0 ∼ mtv

2, k ∼ mtv,
ultrasoft region (us): k0 ∼ mtv

2, k ∼ mtv
2.

(3.11)

The recipe to obtain the expansion of a given one-loop integral is

Tv
∫
ddkf(k) =

∫
ddkT(h)f(k) +

∫
ddkT(s)f(k) +

∫
ddkT(p)f(k) +

∫
ddkT(us)f(k), (3.12)

where Tv corresponds to a Taylor expansion of the loop integral with respect to the ve-
locity and T(r) to a Taylor expansion of the integrand with respect to the scaling (3.11)
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Figure 3.4.: Two-loop example for the expansion by regions.

of the region r for the loop momentum k. It is assumed that the parametrization of the
loop momentum satisfies what is called ”canonical routing” in [57]. This means that the
large external momenta of heavy quarks are routed through the heavy quark lines in the
loop as well. The formulation (3.12) of the threshold expansion is for example not valid
for Figure 3.2 with the reparametrization k → k − pt. A reparametrization-independent
formulation in terms of subgraphs of different momentum regions can be found in [57].

The expanded integrands are integrated over the whole domain and all scaleless integrals
are set to zero. In general, this procedure leads to additional divergences in the individual
integrals, that cancel in the sum over regions. It was proven that there is no multiple
counting associated with the fourfold integration over the whole domain in [59]. This relies
on the use of dimensional regularization for the integrals and the homogeneous scaling
in the small parameter v of all the regions. In general, the expansion by regions can be
formulated including so-called overlap contributions, which account for multiple counting.
In the application to threshold production these overlap integrals are all scaleless and
vanish. The formalism of [59] also assures that no regions are missed. Any additional
regions one might introduce only yield scaleless integrals.

The ad hoc treatment used in the previous section for the diagram in Figure 3.2 cor-
responds to the leading contribution from the potential region. Section 4 of [59] shows
how the expansion of the full result for the scalar integral of the diagram in Figure 3.2 is
reproduced by the expansion by regions in a mathematically rigorous way.

The expansion by regions can also be applied to multiloop integrals. In this case a
formulation in terms of subgraphs is mandatory because, in a given parametrization (even
for ”canonical routing”), there can, for example, be contributions, where the loop momenta
k and l are hard, but a certain linear combination of them is potential. This is the case
in Figure 3.4 with k and l hard, but k + l potential. The proper description is that the
subgraph involving the lines 3, 4, 5, and 6 is hard and the remainder potential. Loosely
speaking, the full result is obtained by taking the sum over all possible assignments of
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regions to subgraphs. Since the procedure is very intuitive, we refrain from describing
the algorithm for obtaining the result for a general diagram in the expansion by regions
meticulously and refer to [57] instead.

3.3. Non-relativistic and potential non-relativistic QCD

The expansion by regions provides a method to expand an individual loop integral in a small
parameter. At higher orders in perturbation theory, the number of diagrams grows rapidly.
For applications at NNNLO, it is therefore advantageous to perform this expansion at the
Lagrangian level by introducing effective field theories. The corresponding Feynman rules
provide a way to obtain the terms of a certain order in the expansion by regions directly,
without referring to diagrams in the full theory. This section only deals with QCD and
the discussion of electroweak effects is postponed to Section 3.4. The complete setup
necessary for the NNNLO QCD computation is described in detail in [60] (see also [61,62]
for additional reviews). We restrict our discussion to the basic concepts and refer to the
literature for detailed results.

The production of a top pair in e+e− annihilation proceeds via the exchange of photons
and Z bosons. The coupling of photons to fermions is vector-like and the Z boson couples
to vector currents and axial-vector currents with the respective strengths

vf =
T f3 − 2ef sin2 θw
2 sin θw cos θw

, af =
T f3

2 sin θw cos θw
, (3.13)

where θw is the weak mixing angle, ef the electric charge and T f3 the third component of
the weak isospin of the fermion f .

We define the ratio R = σtt̄X/σ0 as the inclusive tt̄ production cross section σtt̄X =
σ(e+e− → tt̄X) normalized to the high-energy limit of the µ+µ− production cross section
σ0 = 4πα2

em/(3q
2). The optical theorem can be used to relate the R-ratio to the imaginary

part of the spectral functions Π(v,a) of vector and axial-vector currents

R = 12π Im

[
e2
tΠ

(v)(q2)− 2q2

q2 −M2
Z

vevtetΠ
(v)(q2)

+

(
q2

q2 −M2
Z

)2

(v2
e + a2

e)(v
2
tΠ

(v)(q2) + a2
tΠ

(a)(q2))

]
.

(3.14)

The spectral functions are defined as

Π(X)
µν (q2) = i

∫
ddx eiq·x

〈
0
∣∣T
[
j(X)
µ (x)j(X)

ν (0)
] ∣∣ 0
〉

= (qµqν − q2gµν) Π(X)(q2) + qµqνΠ
(X)
L (q2).

(3.15)

for the vector current j
(v)
µ = t̄γµt and the axial-vector current j

(a)
µ = t̄γµγ5t. We want

to determine the cross section in the non-relativistic expansion αs ∼ v � 1. Including
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the all-order summation of the ladder graphs in Figure 3.3 (Coulomb resummation), the
counting is

R ∼ v
∑

k

(
αs
v

)k
×





1 LO

αs, v NLO

α2
s, αsv, v

2 NNLO

α3
s, α

2
sv, αsv

2, v3 NNNLO

. (3.16)

The prefactor v comes from the phase-space, which is suppressed near threshold. We
describe below, how the Coulomb resummed cross section can be computed using effective
field theories.

The construction of the effective field theory makes use of the large scale hierarchy.
The hard and soft scale can be integrated out because external particles with these large
momentum modes cannot appear as final states in the threshold region due to kinematic
restrictions (see Section 3.1). The full theory, QCD, contains heavy quarks Q and massless
particles g (gluons, light quarks and ghost are abbreviated here with g for simplicity of
notation) of all momentum regions. However, heavy quarks cannot be ultrasoft. This
is equivalent to the statement that all terms with an ultrasoft heavy quark line lead to
scaleless integrals. The procedure consists of two steps:

LQCD[Q(h,s,p), g(h,s,p,us)] µ > m
y

LNRQCD[Q(s,p), g(s,p,us)] mv < µ < m
y

LPNRQCD[Q(p), g(us)] µ < mv

(3.17)

In the first step, non-relativistic QCD (NRQCD) [63–65] is constructed by integrating
out the hard scale. In the process hard subgraphs are contracted to local vertices. In
the spectral function, the hard subgraph can either contain both external currents, one
of them or neither one. In the first case, the imaginary part vanishes since there are no
on-shell cuts involving hard modes. Hard subgraphs, that contain one external current,
are absorbed into hard Wilson coefficients cv, dv and ca of the non-relativistic currents

j(v)k = cvψ
†σkχ+

dv
6m2

ψ†σkD2χ+ . . . , (3.18)

j(a)k =
ca

2mt

ψ†
[
σk, (−i)σ ·D

]
χ+ . . . , (3.19)

where ψ(χ) are the non-relativistic heavy quark (anti-quark) fields, which can be either
soft or potential. The Wilson coefficients can be computed in perturbation theory through
a matching computation. The NNLO corrections to cv are known since the 90’s [66,67] and
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the full NNNLO result required for the third-order cross section was computed recently [68–
70]. The coefficient dv multiplies the subleading term in the non-relativistic expansion of
the vector current, which is suppressed by v2 ∼ α2

s. Thus, it is only required up to NLO [60].
The axial-vector current is of order v ∼ αs. The interference contribution of a vector and
axial-vector current vanishes when integrated over phase-space and, therefore, ca is also
only needed at NLO. It is known up to NNLO [70].

Last but not least, hard subgraphs, that do not contain either one of the external cur-
rents, are represented by local operators in the NRQCD Lagrangian. The NRQCD La-
grangian contains only the non-relativistic degrees of freedom indicated in (3.17). The
matching computations, that are relevant for the NNNLO cross section, were performed
in [60], where the Lagrangian and the Feynman rules can be found.

The spectral functions in NRQCD take the form

Π(v)(q2) =
1

(d− 1)q2
Π

(v)
ii (q2) =

Nc

2m2
t

cv

[
cv −

E

m

(
cv +

dv
3

)]
G(E) + . . . , (3.20)

Π(a)(q2) =
1

(d− 1)q2
Π

(a)
ii (q2) =

Ncc
2
a

2m4
t

d− 2

d− 1
GP (E) + . . . , (3.21)

where the dots stand for terms that are beyond NNNLO. The expressions G and GP are
non-relativistic S-wave and P-wave Green functions

G(E) =
i

2Nc(d− 1)

∫
ddxeiEx

0 〈
0
∣∣T
(
[ψ†σkχ]†(x)[ψ†σkχ](0)

) ∣∣ 0
〉

NRQCD
, (3.22)

GP (E) =
i

8Nc(d− 2)

∫
ddxeiEx

0 〈
0
∣∣T
(
[ψ†Γkχ]†(x)[ψ†Γkχ](0)

) ∣∣ 0
〉

NRQCD
, (3.23)

where Γk = (−i)
[
σk,σ ·D

]
. They must be evaluated with the NRQCD Lagrangian.

In the second step of (3.17), the soft modes and massless potential modes are integrated
out. If the soft subgraph connects to both external currents, there are again no on-shell
cuts. If it connects to one external current, it gives a contribution to the soft Wilson
coefficients for the external current. However, it was demonstrated in [60] that the soft
matching for the external currents is trivial, since all integrals are scaleless. Soft subgraphs,
that do not connect to the external currents, are absorbed into the Lagrangian of an
effective field theory called potential non-relativistic QCD (PNRQCD) [34–38]. It has the
form

LPNRQCD = ψ†
(
i∂0 +

∂2

2m
+ gsA0(t,0)− gsx · E(t,0) +

∂4

8m3

)
ψ

+ χ†
(
i∂0 −

∂2

2m
+ gsA0(t,0)− gsx · E(t,0)− ∂4

8m3

)
χ

+

∫
dd−1r

[
ψ†aψb

]
(x+ r)Vab;cd(r, ∂)

[
χ†cχd

]
(x).

(3.24)

In PNRQCD, the heavy quark fields are purely potential and the gluon field is purely
ultrasoft. Thus, they have a manifest power-counting in the velocity v. The counting
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ψ ∼ (mv)3/2 for the heavy quark fields can be deduced from the expansion of the full
theory propagator

〈0 |Tq(x)q̄(y) | 0〉 =

∫
d4p

(2π)4

i(/p+m)

p2 −m2 + i0
e−ip·(x−y) (3.25)

in the non-relativistic region, where

i(/p+m)

p2 −m2 + i0
=

im(1 + γ0)

2mp0 − p2 + i0
+ · · · ∼ 1

mv2
(3.26)

and d4p ∼ m4v5. The i∂0 and ∂2/(2m) terms in (3.24) have the same counting in v because
they act on a potential mode with p0 ∼ mv2 and p ∼ mv. The leading order kinetic term
of the heavy quarks has the typical structure for non-relativistic modes and is of the order
m4v5. The non-relativistic quark and anti-quark fields interact via potentials Vab;cd. The
leading effect is the color Coulomb potential given by

Vab;cd(r, ∂) = −αs|r|T
A
abT

A
cd, (3.27)

which comes from integrating out potential gluon exchange. Counting r = |r| ∼ 1/(mv),
the LO potential term in (3.24) is of the same order m4v5 as the kinetic terms. Thus, it
must be treated non-perturbatively, which accounts for the Coulomb resummation in the
cross section. Contrary to most field theories, the LO approximation of PNRQCD does not
describe the propagation of free particles, but the propagation of heavy quark-antiquark
pairs, that interact via the instantaneous LO color Coulomb potential.

The effective theory described by (3.24) is local in time, but non-local in space due to
the appearance of the potentials. This may seem peculiar, but can be understood in a very
simple way. The first step in the construction of an effective field theory is to integrate out
certain particles or momentum modes. This does not rely on any hierarchies whatsoever.
Any modes, that do not appear externally, can be integrated out in principle, which always
yields a nonlocal action. The size of the non-localities is determined by the typical distance,
over that the modes were propagating, i.e. they are of the size xnl ∼ 1/m for the hard
modes integrated out in the first step in (3.17). In the construction of NRQCD, one then
exploits that the remaining modes are at most soft, which means that they only fluctuate
significantly over distances of the order xfluc ∼ 1/(mv) or larger. The hierarchy xnl � xfluc

enables us to perform an operator product expansion (OPE) [71] to obtain a local effective
theory. The physical picture corresponding to the expansion is that the wavelength of the
remaining modes is much larger than the size of the non-localities, which implies that they
cannot be resolved and non-local operator products appear point-like.

In the second step of (3.17), soft modes and massless potential modes are integrated
out. From the expansion of the propagator, we observe that massless potential modes
only propagate in the spatial components. Thus, integrating out these modes yields non-
localities of the order tnl ∼ |xnl| ∼ 1/(mv). The remaining potential heavy quark fields
fluctuate significantly over time differences of the order tfluc ∼ 1/(mv2) and spatial distances
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of the order |xfluc| ∼ 1/(mv). Fluctuations of the ultrasoft modes occur over similar or
larger scales tfluc ∼ |xfluc| ∼ 1/(mv2). We observe that there is a hierarchy between the size
of the non-localities and of the remaining fluctuations in the time component tnl � tfluc,
but not in the spatial components |xnl| ∼ |xfluc|. Thus, an expansion in the time component
can be performed to render the effective theory local in time, but the non-localities in the
spatial components remain. This explains the structure of PNRQCD.

Similar scaling arguments also demonstrate why the ultrasoft gluon field has to be mul-
tipole expanded in (3.24). The ultrasoft gluon field can resolve the temporal, but not the
spatial fluctuations of potential heavy quark modes. Thus, the ultrasoft gluon fields are
multipole expanded in their spatial components in the interaction terms with heavy quarks
in (3.24). The multipole expansion in position space corresponds to the strict expansion
by regions in momentum space, which renders all terms homogeneous in v. Details on the
origin of the ultrasoft gluon interaction terms can be found in [56].

The leading term in the multipole expansion gsA0(t,0) couples to the net color charge
of the heavy quark pair. Since the initial state is colorless the net color charge vanishes
and the gsA0(t,0) coupling does not contribute. Technically, this can be demonstrated by
performing a field redefinition involving a Wilson line of the A0 field

ψ(x)→ P̄ exp


−igs

∞∫

0

dtA0(x+ (t,0))


ψ(x), (3.28)

and analogously for the anti-quark field [72]. The symbol P̄ stands for anti-path ordering of
the exponential. The redefinition (3.28) removes the gsA0(t,0) term from the Lagrangian.
It introduces a Wilson line in the couplings to gsx ·E(t,0), which modifies the Lagrangian
only beyond NNNLO.

The chromoelectric dipole term gsx · E(t,0) is of the order m4v13/2, i.e. suppressed
by v3/2. It contributes at NNNLO because two insertions are required to obtain a non-
vanishing effect. The ultrasoft corrections due to the chromoelectric dipole operator have
been computed in [73,74].

The Coulomb resummed cross section is obtained by evaluating the non-relativistic Green
functions (3.22) and (3.23) in PNRQCD. Due to the triviality of the soft matching of the
external currents, they are given by the expressions (3.22) and (3.23) with the only differ-
ence that the matrix elements have to be evaluated within PNRQCD instead of NRQCD.
Derivations of the PNRQCD Feynman rules can be found in [38, 60]. Barring ultrasoft
effects, PNRQCD perturbation theory works exactly like time-independent perturbation
theory in quantum mechanics and the particle numbers of the heavy quark and anti-quark
are separately conserved. The crucial difference with respect to quantum mechanics is that
the potentials are not phenomenological, but follow directly from a matching procedure
to the full theory, QCD. Furthermore, PNRQCD also describes ”vacuum fluctuation” ef-
fects in a systematic way. For example, its cousin PNRQED provides a completely linear
derivation of the Lamb shift [35], without any complications like the need to introduce
an artificial photon mass [75]. It is therefore also an ideal framework for some precision
calculations in atomic physics, see e.g. [76].
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Figure 3.5.: Graphical representation of the Lippmann-Schwinger equation.

The Coulomb resummed propagator for a heavy quark pair in a color singlet state is given
by a non-relativistic Green function and higher order potentials are treated perturbatively

G0 ≡ . . .

(m + E/2,p)

(m + E/2,−p)

(m + E/2,p′)

(m + E/2,−p′)

iG̃0(p,p′;E),

δVx

(m + E/2,p)

(m + E/2,−p)

(m + E/2,p′)

(m + E/2,−p′)

iδVx(p,p
′).

(3.29)

The Green function G̃0(p,p′;E) satisfies the d-dimensional Lippmann-Schwinger equation
(

p2

mt

− E
)
G̃0(p,p′;E)− µ̃2ε

∫
dd−1k

(2π)d−1

4πCFαs
k2

G̃0(p− k,p′;E)

= (2π)d−1δ(d−1)(p− p′),

(3.30)

where µ̃ = µ [eγE/(4π)]1/2 has been chosen such that the minimal subtraction of 1/ε poles
corresponds to the MS instead of the MS scheme. The equation (3.30) has the structure
shown in Figure 3.5, which comes from splitting the sum over arbitrary number of gluon
exchanges into zero exchanges and the sum over at least one exchange. The tilde is used
to indicate that the Green function is given in momentum space. Its Fourier transform

G0(r, r′;E) =

∫
dd−1p

(2π)d−1

∫
dd−1p′

(2π)d−1
eip·re−ip

′·r′G̃0(p,p′;E) (3.31)

is the solution to a Schrödinger equation
(
−
∇2

(r)

mt

− CFαs
r
− E

)
G0(r, r′;E) = δ(3)(r− r′) (3.32)

in four dimensions. Representations for the Green function are only known in d = 4
dimensions [77–80]. It is convenient to decompose the Green function in terms of partial
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waves

G0(r, r′;E) =
∞∑

l=0

(2l + 1)Pl

(
r · r′
rr′

)
G[l](r, r

′;E), (3.33)

where l is the quantum number of the angular momentum of the quark pair and Pl(z) are
the Legendre polynomials. We will make use of the integral representation from [77],

G[l](r, r
′;E) =

mtp

2π

(2pr)l(2pr′)l

Γ(l + 1 + λ)Γ(l + 1− λ)

×
1∫

0

dt

∞∫

1

ds [s(1− t)]l+λ [t(s− 1)]l−λ exp {−p [r′(1− 2t) + r(2s− 1)]} ,

(3.34)
valid for r′ < r and a sum representation from [79,80],

G[l](r, r
′;E) =

mtp

2π
(2pr)l(2pr′)le−p(r+r

′)
∞∑

s=0

s!L
(2l+1)
s (2pr)L

(2l+1)
s (2pr′)

(s+ 2l + 1)!(s+ l + 1− λ)
, (3.35)

with the Laguerre polynomials

L(α)
s (z) =

ezz−α

s!

(
d

dz

)s [
e−zzs+α

]
. (3.36)

We have also defined
p =

√
−mtE,

λ =
mtαsCF

2p
.

(3.37)

The non-relativistic correlators (3.22) and (3.23) can now be evaluated in the resummed
perturbation theory. The Feynman diagrams up to NNLO are shown in Figure 3.6. The
higher order potentials have been determined in [37, 81–87] and can be found in [60]. For
the computation of the P-wave contribution, we require only the colour-singlet projection

V (p,p′) =
1

Nc

δbcδdaVab;cd(p,p
′) (3.38)

of the general potential up to NLO. It is given by

V (p,p′) = −4πCFαs
q2

[
V(0)
C +

αs
4π
V(1)
C +O(α2

s)
]

+ . . . , (3.39)

where the coefficients of the LO and NLO Coulomb potential in d dimensions are

V(0)
C = 1, (3.40)

V(1)
C =

[(
µ2

q2

)ε
− 1

]
β0

ε
+

(
µ2

q2

)ε
a1(ε), (3.41)
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LO NLO

δV2

δV1

δV1 δV1+

NNLO

G0 G0 G0

G0 G0 G0 G0 G0

Figure 3.6.: The Green functions (3.22) and (3.23) in PNRQCD perturbation theory.
The vertices correspond to the insertion of the non-relativistic currents given
in (3.18) and (3.19).

with

a1(ε) =
(
CA[11− 8ε]− 4TFnf

)eγEεΓ(1− ε)Γ(2− ε)Γ(ε)

(3− 2ε)Γ(2− 2ε)
− β0

ε
, (3.42)

and

β0 =
11CA

3
− 4TFnf

3
, (3.43)

where CA = 3, TF = 1/2 and nf is the number of massless quarks. Using the Feynman
rules (3.29) for the non-relativistic correlators (3.22) and (3.23) at NLO, we obtain

G(E) =
i

2Nc

∫
ddxeiEx

0 〈
0
∣∣T
(
[ψ†χ]†(x)[ψ†χ](0)

) ∣∣ 0
〉

PNRQCD

= G0(E) + δ1G(E) + . . .

= µ̃4ε

∫
dd−1p

(2π)d−1

∫
dd−1p′

(2π)d−1

[
G0(p,p′;E)

+ µ̃4ε

∫
dd−1p1

(2π)d−1

∫
dd−1p2

(2π)d−1
G0(p,p1;E) i

(
− α2

sCF
(p1 − p2)2

V(1)
C

)
iG0(p2,p

′;E)

+ . . .

]
, (3.44)

GP (E) =
i

2Nc

∫
ddxeiEx

0 〈
0
∣∣T
(
[ψ†iDkχ]†(x)[ψ†iDkχ](0)

) ∣∣ 0
〉

PNRQCD

= GP
0 (E) + δ1G

P (E) + . . .

= µ̃4ε

∫
dd−1p

(2π)d−1

∫
dd−1p′

(2π)d−1
p · p′ ×

[
G0(p,p′;E)
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+ µ̃4ε

∫
dd−1p1

(2π)d−1

∫
dd−1p2

(2π)d−1
G0(p,p1;E) i

(
− α2

sCF
(p1 − p2)2

V(1)
C

)
iG0(p2,p

′;E)

+ . . .

]
. (3.45)

We have used the spin independence of the NLO potential (3.39) to evaluate the spin
algebra once and for all in the first step. The leading order terms G0(E) and GP

0 (E) of the
non-relativistic correlator for the vector and axial-vector current project out the S-wave
and P-wave component of the full Green function (3.33), respectively. The arguments
are r = r′ = 0 because the quark pair is produced and annihilated by a hard process,
which is represented by a local operator in the effective theory. Using the four-dimensional
representation (3.34), we see that the Green functions are divergent for r, r′ → 0. These
divergences will be regulated dimensionally. The result for the LO S-wave Green function
in dimensional regularization is

G0(E) =
m2
tαsCF
4π

[
1

4ε
+ Lwλ +

1

2
− 1

2λ
− ψ̂(1− λ) +O(ε)

]
, (3.46)

expressed through Lwλ = log(λµw/(mtαsCF )), and ψ̂(x) = γE + ψ(x), where ψ is the
logarithmic derivative of the gamma function. We distinguish between the renormalization
scale µr, which appears in (3.46) only implicitly as the argument of the strong coupling
constant αs ≡ αs(µr), and the scale µw, which is introduced together with the spurious
divergences (cf. Section 3.2) by the splitting of loop integrals into different momentum
regions. We note that the imaginary part of (3.46) is independent of the scale µw. The
µw dependence of the pair production cross section first appears at NNLO and only when
the decay width of the heavy quark is taken into account. The consistent treatment of the
heavy-quark decays, which we describe in Section 3.4 and 3.5, guarantees the cancellation
of the spurious divergences and the related µw dependence.

Results for the S-wave Green function up to NNNLO were computed in [60, 74, 88, 89].
We have evaluated the P-wave Green function up to NLO in [1], which will be reviewed
in Section 5.2. Some earlier results are available as well [90–93], but none of them were
obtained in dimensional regularization and, thus, they cannot be combined consistently
with the rest of the computation.

The resummation of the Coulomb exchanges produces bound-state poles in the Green
function. The locations and residues of these poles correspond to the bound-state energies
and the wave functions at the origin of the vector resonances, respectively. Explicitly, the
exact Green function contains single poles of the form

G(E)
E→En=

|ψn(0)|2
En − E − i0

+ regular (3.47)

=
|ψ(0)
n (0)|2(1 + F

(1)
n + . . . )

(E
(0)
n + E

(1)
n + . . . )− E − i0

+ regular, (3.48)
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where at LO

E(0)
n = −mα

2
sC

2
F

4n2
, |ψ(0)

n (0)|2 =
1

π

(
mαsCF

2n

)3

, (3.49)

and E
(i)
N and F

(i)
N describe perturbative corrections to the energy levels and wave functions,

respectively. When computing higher-order corrections, we however obtain the Green
function in its perturbatively expanded form

G(E)
E→En=

|ψ(0)
n (0)|2

E
(0)
n − E − i0

+

[
−|ψ(0)

n (0)|2E(1)
n

(E
(0)
n − E − i0)2

+
|ψ(0)
n (0)|2F (1)

n

E
(0)
n − E − i0

]
+ · · ·+ regular. (3.50)

Due to the different structure, the perturbative and exact Green functions differ numeri-
cally in the vicinity of the resonances. This can be cured by performing a pole resummation,
where we subtract (3.50) from the perturbative result for the Green function and add back
the exact form of the poles (3.48). To do so, it is necessary to determine the perturbative
corrections to the energy levels and wave functions, which can be read off from the expan-
sion of the Green function around the bound-state poles. We do this for all contributions
and it is implied that pole resummation is used throughout. For the P-wave contributions,
it is done explicitly in Section 5.2.3.

3.4. Top decays and generalization to Unstable Particle
Effective Theory

Previously, we have treated the heavy quarks as stable particles. The decay width of the
bottom quark is of the order Γb ∼ m5

bα/m
4
W , not counting an additional CKM suppression.

With respect to the lowest scale of the threshold production process, the energy E ∼ mbα
2
s,

it is suppressed by (mb/MW )4 ∼ 10−5. Thus, it is perfectly justified to neglect the decays
of the bottom quarks. The top width is, however, of the order Γt ∼ mtα, which is the
ultrasoft scale. Consequently, the decays of the top quarks cannot be factorized in the
sense of a narrow-width approximation and modify the cross section near threshold in a
non-perturbative way. Thus, the top-quark pair production cross section is ill-defined near
threshold. Instead one should consider the inclusive production cross section for its decay
products Xbb̄W+W− in the same kinematic region.1 This final state can also be produced
without an intermediate non-relativistic top pair, i.e. non-resonantly. Physically, these
contributions cannot be distinguished. Thus, they must be summed to get a well-defined
result for the Xbb̄W+W− cross section near the top-pair production threshold.

This structure is also reflected by divergences, that appear separately in both parts.
In the resonant contribution, they come from the UV limit of the loop momenta, where
the virtuality of the top quarks becomes large, although being small parametrically. In
the non-resonant contribution, the situation is reversed. The virtuality of the top-quarks

1 We will however continue to also use the phrase top-pair production near threshold with the understand-
ing that it really refers to the production of Xbb̄W+W− in the kinematic region s ≈ 4m2

t .



34 3. Effective field theory setup

is parametrically large and divergences arise from the IR region of loop momenta, where
the tops are numerically close to on-shell. These divergences cancel in the sum over both
contributions, which renders the cross section well-defined.

The inclusion of electroweak effects requires a generalization of the effective field theory
framework described above. The required steps for the construction of Unstable Particle
Effective Theory have been described in detail for a toy model in [39, 40]. The setup was
then used to compute the cross section for the process e−e+ → µ−ν̄µud̄X in the resonant
W+W− region at NLO [94, 95] and N3/2LO [96] in the power counting α ∼ v2 ∼ α2

s. For
top-pair production, NLO [97] and partial NNLO [98–100] results are known. A review of
Unstable Particle Effective Theory and its applications can be found in [101]. Below, we
describe the setup that is required for the full NNLO electroweak corrections.

Let us begin by studying the momentum regions, that are relevant for the additional
particles. In the center-of-mass frame, the incoming electrons and positrons are very en-
ergetic, but close to their mass shell. We can use the direction of the electron momentum
to define a light-like vector n. With a second light-like vector n̄, that satisfies the relation
n · n̄ = 2, one can perform a light-cone decomposition of momenta

kµ =
1

2
(n̄ · k) nµ +

1

2
(n · k) n̄µ + kµ⊥, (3.51)

where n · k⊥ = n̄ · k⊥ = 0. A natural choice for n̄ would be the direction of the incoming
positron. The region collinear to n is defined as

n-collinear: n̄ · k ∼ mt, n · k ∼ mtα
2
s, k⊥ ∼ mtαs. (3.52)

This implies that collinear momenta have small virtuality k2 ∼ m2
tα

2
s. The interactions of

such modes with massless gauge bosons can be described within Soft-Collinear Effective
Theory (SCET) [102–106]. We refrain from giving an introduction to SCET here and refer
to the very nice review [107], that has appeared recently.

Hard modes can appear from interactions of collinear modes with different directions.
E.g. a hard photon can be produced from the annihilation of the incoming collinear electron
and positron. In addition a collinear electron can radiate either a collinear or an ultrasoft
photon, while preserving its collinear scaling. The latter region is usually denoted as the
soft region in the SCET literature, but we stick with our convention and call it ultrasoft
to avoid any ambiguities between soft in the sense of SCET and PNRQCD. Of course,
photons can also be soft or potential, when they couple to the non-relativistic modes in
the PNRQCD sector of the final state and electrons soft in the vacuum polarization of
potential photons.

Electroweak W±, Z and Higgs bosons have masses that are of the same order as the top-
quark mass. Thus, they can only be hard.2 The bottom-quark mass will be neglected here.
Bottom quarks are singled out from other massless fermions because they are produced by
the decay t→ bW+. Bottom quarks produced by this decay or other electroweak processes

2The non-relativistic modes of the top quark are only present because the experimental setup is tuned to
the top threshold. Thus, they need not be considered for the electroweak bosons.
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are always hard because they have large energy and no direction is distinguished in the
inclusive cross section, i.e. they are not described by collinear modes. They can also have
momenta in other regions, e.g. when they appear in the context of a sum over all light
quarks in the vacuum polarization of the gluon, but this contribution is not specific to the
quark flavour and we assume it is already taken into account as part of generic massless
modes.

To sum up, we have to take the following additional regions into account:

e±, γ hard, collinear, ultrasoft; soft; potential photons,
W±, Z,H hard,

b hard (when produced in electroweak processes).
(3.53)

Unstable Particle Effective Theory is constructed in the same manner as PNRQCD, by
integrating out all hard, soft and massless potential modes. Consequently, it is formulated
in terms of the same dynamical modes as PNRQCD with the addition of collinear electrons
and collinear and ultrasoft photons. We note that it is also possible to integrate out
collinear modes that differ from the external states by a collinear momentum, and to
only keep so-called external-collinear modes for the electron field [39, 40]. While this has
clear advantages for the production of a single resonant particle, it is not essential for our
treatment of top-pair production and will not be discussed.

Let us consider the imaginary part of the forward scattering amplitude A. Similar to
before, hard subgraphs can either connect to both the incoming and outgoing collinear
electron and positron, only one side, or none. Now however, the first type yields a non-
vanishing contribution because, unlike tt̄, cuts like tb̄W− and t̄bW+, corresponding to
the final state bb̄W+W−X, are kinematically possible in the hard region. Integrating out
such a hard subgraph gives production-annihilation operators O(k)

4e with the field content

O(k)
4e ∼ (ēc1Γ1ec2)(ēc2Γ2ec1), where Γi are shorthands for a combination of Dirac matrices,

c1 and c2 are the directions of the incoming electron and positron and eci the respective

collinear fields. The respective Wilson coefficients C
(k)
4e are complex now and the imaginary

part corresponds to the non-resonant contribution to the cross section.
Integrating out hard subgraphs, that only connect to the incoming or the outgoing

collinear states, gives production or annihilation operators O(k)
p with the field content

O(k)
p ∼ (ēc1Γ1ec2)(ψ†Γ2χ). They replace the external currents in the pure-QCD framework

since the collinear electron field is now also part of the effective theory. The respective
Wilson coefficients C

(k)
p acquire an imaginary part from cuts over full-theory diagrams like

those shown in Figure 3.7. Only cuts that correspond to the inclusive bb̄W+W−X final
state must be taken into account. These contributions describe the interference of the
resonant and non-resonant production mechanisms. To the left of the cuts in Figure 3.7,
the final state t̄bW+ is produced in a hard tree level process, i.e. non-resonantly. On
the right, it is created from a non-relativistic top pair through the decay t → bW+, i.e.
resonantly. These contributions are attributed to the resonant part because they contain
the propagation of a non-relativistic top pair.

Last but not least, integrating out the remaining hard subgraphs yields the sum of the
SCET and NRQCD Lagrangians, which contain additional terms from the electroweak
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e+

γ, Z
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b t
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W
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W
t

t̄
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Figure 3.7.: Examples for full theory diagrams that contribute to the imaginary part of the
Wilson coefficients C

(k)
p .

sector. After soft and massless potential modes are also integrated out, one obtains the
effective Lagrangian

Leff = LPNRQCD + δEWLPNRQCD + Lc1 + Lc2 . (3.54)

The PNRQCD Lagrangian was shown in (3.24), supplementary terms due to electroweak
effects will be given in (3.67) below and

Lci = ēci

(
in ·D + i /D⊥ci

1

in̄ ·Dci + i0
i /D⊥ci

)
/̄n

2
eci −

1

4
FciµνF

µν
ci

+ . . . (3.55)

is the SCET Lagrangian for the ci-collinear sector, where indices ci refer to ci-collinear
fields and the covariant derivative with no index includes couplings to the ultrasoft and
ci-collinear photon field.

On the whole, one obtains the master formula [40] for the forward scattering amplitude

iA =
∑

k,l

C(k)
p C(l)

p

∫
d4x 〈e−e+|T[iO(k)†

p (0) iO(l)
p (x)]|e−e+〉

+
∑

k

C
(k)
4e 〈e−e+|iO(k)

4e (0)|e−e+〉 , (3.56)

where the first line corresponds to the resonant contribution and the second line to the non-
resonant part. The matrix elements must be evaluated with the effective Lagrangian (3.54),
describing the interactions of the collinear as well as the non-relativistic sector. However,
in the resonant part, no collinear lines may cross from the incoming collinear sector to the
outgoing collinear sector, as this is kinematically forbidden.

We briefly recapitulate the expressions for the LO cross section in this new notation.
We have

σLO = σLO
res = σ0

24πNc

s

[
C(v)2

+ C(a)2
]

Im [G0(E)] , (3.57)

where σ0 = 4πα2/(3s) is the high-energy limit of the muon pair production cross section
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at leading order and E =
√
s− 2mt.

C(v) = eeet + vevt
s

s−m2
Z

, (3.58)

C(a) = −aevt
s

s−m2
Z

, (3.59)

C
(v)
P-wave = −veat

s

s−m2
Z

, (3.60)

C
(a)
P-wave = aeat

s

s−m2
Z

(3.61)

are the leading order Wilson coefficients of the production operators

O(v) =
4πα

s
ēc2Wc2γkW

†
c1
ec1 ψ

†σkχ, (3.62)

O(a) =
4πα

s
ēc2Wc2γkγ

5W †
c1
ec1 ψ

†σkχ, (3.63)

O(v)
P-wave =

4πα

s
ēc2Wc2γkW

†
c1
ec1 ψ

†
[
σk, (−i)σ ·D

]

2mt

χ, (3.64)

O(a)
P-wave =

4πα

s
ēc2Wc2γkγ

5W †
c1
ec1 ψ

†
[
σk, (−i)σ ·D

]

2mt

χ, (3.65)

where ψ(χ) is the non-relativistic top (anti-top) field and ec denotes a collinear electron
field in the light-like direction c. The directions c1 and c2 are set by the electron and
positron beams, respectively. The collinear Wilson lines

Wci(x) = P exp


ig

0∫

−∞

dtc̄i · Ac(x+ c̄it)


 (3.66)

have been introduced to make the operators invariant under covariant gauge transfor-
mations. The factor of 4πα/s is absorbed into the operators to render the coefficients
dimensionless and of order one. The P-wave production operators and Wilson coefficients
will be required below. The non-relativistic Green function at LO is the same as before,
see (3.46).

The additional electroweak terms in the PNRQCD Lagrangian up to NNLO are

δEWLPNRQCD = ψ†
[
eteA

(γ)
0 (t,0)− ∆

2
− ∆∂2

4m2
t

+
∆2

8mt

+ . . .

]
ψ

+χ†
[
eteA

(γ)
0 (t,0) +

∆

2
+

∆∂2

4m2
t

− ∆2

8mt

+ . . .

]
χ

+

∫
dd−1r

[
ψ†ψ

]
(x+ r)δVQED(r)

[
χ†χ
]

(x). (3.67)
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The leading coupling to the ultrasoft photon field A
(γ)
0 does not contribute and can be

removed in the same way as the respective gluon coupling. The QED Coulomb potential

δVQED(r) = −e
2
tα

r
(3.68)

is a NLO effect and other electroweak potentials only appear at NNNLO. ∆ is a short-
distance coefficient, that can be determined by matching the renormalized full theory
propagator to the effective theory as described in the following.

First we review the pole mass and width definitions for unstable fermions following
loosely [108]. The renormalization constants are defined through

mt,0 = mt + δmt, (3.69)

tL/R,0 = Z
1/2
L/RtL/R = (1 + δZL/R/2 + . . . )tL/R, (3.70)

where the index 0 denotes the bare mass and bare fields. We parametrize the renormalized
top self energy3 as

Σ(/pt) = /pt
(
ΣL(p2

t )PL + ΣR(p2
t )PR

)
+mtΣS(p2

t ), (3.71)

with the left and right-handed projectors PL/R = (1 ∓ γ5)/2. The coefficients have the
form

ΣL/R(p2
t ) = Σbare

L/R(p2
t ) + δZL/R, (3.72)

ΣS(p2
t ) = Σbare

S (p2
t )−

δZL + δZR
2

− δmt

mt

. (3.73)

To make the pole position in the renormalized propagator apparent, we complete the square

i

/pt −mt + Σ(/pt)
=
i
[
/pt +mt + /pt(ΣL(p2

t )PL + ΣR(p2
t )PR)−mtΣS(p2

t )
]

p2
t [1 + ΣL(p2

t )][1 + ΣR(p2
t )]−m2

t [1− ΣS(p2
t )]

2
. (3.74)

We obtain an implicit equation for the pole position M2
? of the denominator

M2
? = m2

t

[1− ΣS(M2
? )]

2

[1 + ΣL(M2
? )] [1 + ΣR(M2

? )]
. (3.75)

Each of the coefficients in the self-energy can be expanded in the coupling order and around
the mass shell

ΣX(p2
t ) =

∑

m,n

Σ
(m,n)
X

(
p2
t −m2

t

)n
, (3.76)

3A pseudo-scalar contribution to the self-energy would violate CP [109] and is thus put to zero.
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with Σ
(m,n)
X of order αm, i.e. m can also take half-integer values from QCD corrections.

Since we focus on electroweak corrections here, we assume that the ΣX are of order α.
Then, we can solve (3.75) perturbatively

M2
? = m2

t −m2
t

[
Σ

[1]
L + Σ

[1]
R + 2Σ

[1]
S

]
+m2

t

[
− Σ

(2,0)
L − Σ

(2,0)
R − 2Σ

(2,0)
S

+Σ
(1,0)2

L + Σ
(1,0)
L Σ

(1,0)
R + Σ

(1,0)2

R + Σ
(1,0)2

S + 2(Σ
(1,0)
L + Σ

(1,0)
R )Σ

(1,0)
S

+m2
t

(
Σ

(1,0)
L + Σ

(1,0)
R + 2Σ

(1,0)
S

)(
Σ

(1,1)
L + Σ

(1,1)
R + 2Σ

(1,1)
S

) ]
+ . . . , (3.77)

with Σ
[1]
X = Σ

(1,0)
X + Σ

(3/2,0)
X . The complex pole is parametrized through the pole mass mt

and the pole width Γt via
M2

? = m2
t − imtΓt. (3.78)

We deduce that the on-shell renormalization conditions require the real part of the square
brackets on the right-hand side of (3.77) to vanish. The pole width in perturbation theory
is determined by the respective imaginary part. To perform the expansion of the full-theory
renormalized top propagator in the non-relativistic region, we still need to determine the
field renormalization constants. We require the residue of the renormalized propagator to
be unity

lim
p2
t→M2

?

i

/pt −mt + Σ(/pt)
=

i

/pt −M?

. (3.79)

Keeping only the leading order terms in the expansion, this gives the conditions

Σ
(1,0)
L = Σ

(1,0)
R , (3.80)

iΓt
mt

= Σ
(1,0)
L + Σ

(1,0)
R + 2Σ

(1,0)
S , (3.81)

0 = Σ
(1,0)
L + Σ

(1,0)
R + 2m2

(
Σ

(1,1)
L + Σ

(1,1)
R + 2Σ

(1,1)
S

)
. (3.82)

With the restriction that δm is real, this fixes the top width and renormalization constants
at order α as follows

Γt = mt Im
[
Σ

bare,(1,0)
L + Σ

bare,(1,0)
R + 2Σ

bare,(1,0)
S

]
+ . . . , (3.83)

δmt = mt Re
[
Σ

bare,(1,0)
L + Σ

bare,(1,0)
R + 2Σ

bare,(1,0)
S

]
+ . . . , (3.84)

δZL = −Σ
bare,(1,0)
L −m2

t

[
Σ

bare,(1,1)
L + Σ

bare,(1,1)
R + 2Σ

bare,(1,1)
S

]
+ . . . , (3.85)

δZR = −Σ
bare,(1,0)
R −m2

t

[
Σ

bare,(1,1)
L + Σ

bare,(1,1)
R + 2Σ

bare,(1,1)
S

]
+ . . . . (3.86)

The expansion of the renormalized full theory propagator (3.74) with momentum pt =
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(mt,0) + p in the potential region is

i

/pt −mt + Σ(/pt)
=


 i(1 + γ0)

2
(
p0 − p2

2mt
+ iΓt

2

)




v−2

+


 −iγ · p

2mt

(
p0 − p2

2mt
+ Γt

2

)




v−1

+


−

i(1 + γ0)
(

p2

2mt
− iΓt

2

)2

4mt

(
p0 − p2

2mt
+ iΓt

2

)2 −
i p

2

m2
t

4
(
p0 − p2

2mt
+ iΓt

2

)

−i(1− γ
0)

4mt

− i(1 + γ0)(Σ
(1,0)
L PL + Σ

(1,0)
R PR)

2
(
p0 − p2

2mt
+ iΓt

2

)




v0

+ . . . , (3.87)

where we have indicated the order in v of the various terms, but not expanded out higher-
order terms in the top width to keep the expressions compact. The first two lines in (3.87)
are reproduced by the EFT propagator multiplied by a factor

/pt +M?

2Ep

=
1 + γ0

2
− γ · p

2mt

− p2

4m2
t

+ . . . , (3.88)

which accounts for the different spin sum and normalization of states in the full and effective
theory (cf. [40, 94]). The matching condition in the pole scheme becomes

∆ = −iΓ, (3.89)

where Γ is the pole width of the top quark. The first term in the third line does not contain
a pole in the complex p0 plane. Thus, it produces only scaleless integrals in the potential
region4 and can be dropped. The remaining term does not have the form of an operator
insertion into the EFT propagator, but is a correction to the residue from the renormalized
self-energy. It must be taken into account in the matching for the production and decay
operators. By expressing the renormalized self energy through (3.72), (3.85) and (3.86) we
observe that the correction to the residue is only related to derivatives of the self energies.
Therefore, the structure of the expanded top propagator (3.87) exactly mirrors the one of
the W propagator discussed in [94].

3.5. Organization of the computation

Because of the presence of divergences in the resonant and non-resonant part, it is manda-
tory to perform both calculations in the same computational scheme. We discuss in the
following, how this can be done consistently including all effects up to NNLO.

In the master formula (3.56), the non-resonant contribution is expressed through the

Wilson coefficients C
(k)
4e of the four-electron operators, multiplying matrix elements which

4The p0 contour can be closed in the upper half-plane such that the pole from the anti-top propagator is
not picked up.
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are trivial at NNLO. Thus, instead of computing C
(k)
4e through a matching procedure, we

determine the NNLO non-resonant contribution to the cross section directly. As discussed
in [97, 98], it is equivalent to the sum of the NLO cross sections for the processes e+e− →
t̄W+b and e+e− → tW−b̄ at the center-of-mass energy

√
s = 2mt.

5 Since the self-energy
of the top quark is parametrically smaller than the off-shellness of the non-resonant top
quarks mtΣ(/pt) ∼ m2

tα� p2
t−m2

t ∼ m2
t , they must be treated perturbatively. This renders

the cross section singular at the endpoints of the phase space, where (pb + pW+)2 → m2
t

or (pb̄ + pW−)2 → m2
t . Consistency with the resonant computations demands that these

divergences must be regularized dimensionally [97, 98]. They then cancel the finite width
divergences present in the resonant part, as it has been demonstrated up to NNLO in [98].

We split the NNLO non-resonant contribution into separate parts, which are each eval-
uated using different methods or computational schemes. The set of endpoint singular
diagrams in unitary gauge has been identified in [98]. We divide it into the O(αs) cor-
rections to the diagram h1 (see Figure 3.8) and the contributions hia with i = 2, 3, 4 (see
the first row of Figure 3.9). The former is IR and UV finite and will be referred to as
the squared contribution. The latter is also IR finite, but contains UV divergences from
the loop integration. A closer look at the diagrams hia in Figure 3.9 reveals that they
can be split into a UV finite, but endpoint divergent part and an endpoint finite, but UV
divergent part.6 Below, we will introduce artificial counterterms to subtract the UV diver-
gences. The whole set of contributions in Figure 3.9 will be denoted as the interference
contribution and is split into three parts

σinterference = σ
(EP)
interference + σ

(UV)
interference + σ

(c.t.)
interference. (3.90)

This allows us to separate the non-resonant NNLO corrections into a completely finite
part and an endpoint divergent, but UV and IR finite, part

σNNLO
non-res =

(
σNNLO

non-res − σsquared − σ(EP)
interference

)
finite

+
(
σsquared + σ

(EP)
interference

)
EP divergent

. (3.91)

The endpoint divergences in σ
(EP)
interference cancel with the part of the resonant contribution

associated with the bare absorptive contribution to the matching coefficients C(k), discussed
in Section 5.1.4. The endpoint divergences in σsquared cancel with the remaining resonant
contributions. Accordingly, we divide the resonant part in two contributions

σNNLO
res =

(
σNNLO

res − σ
C

(k)
Abs,bare

)
+ σ

C
(k)
Abs,bare

. (3.92)

This allows us to decompose the full NNLO correction to the inclusive bb̄W+W− cross

5 We do not consider the small contributions from the processes e+e− →W+W−H and e+e− →W+W−Z
with H → bb̄ or Z → bb̄ because they can easily be removed on the experimental side by imposing invariant
mass cuts on bb̄.

6E.g. by performing a tensor decomposition of the loop integral. Only the scalar integral C0 yields an
endpoint divergence and only the tensor C00 yields a UV divergence. The other tensor structures, Ci and
Cij with i, j = 1, 2, give finite contributions and can be assigned arbitrarily to either part.
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Figure 3.8.: Gluon corrections to the tree-level diagram h1. This set of endpoint divergent
diagrams is UV and IR finite and will be denoted as the squared contribution.
Symmetric diagrams and diagrams with tW−b̄(g) cuts are not displayed.
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Figure 3.9.: Additional endpoint singular diagrams that contribute to the NNLO non-
resonant part. We have introduced artificial UV counterterms (lower panel) to
render the set of diagrams UV finite. It is denoted as the interference contri-
bution. Symmetric diagrams and diagrams with tW−b̄ cuts are not displayed.

section (3.56) into three separately finite parts

σNNLO =
(
σsquared + σNNLO

res − σ
C

(k)
Abs,bare

)
finite

(3.93)

+
(
σ

(EP)
interference + σ

C
(k)
Abs,bare

)
finite

(3.94)

+
(
σNNLO

non-res − σsquared − σ(EP)
interference

)
finite

, (3.95)

We now have the freedom to choose a different computational scheme for each of the
parenthesis (3.93), (3.94) and (3.95), as long as it is applied to all the parts, that are
contained within.

The scheme for (3.93) is fixed by the existing QCD results for σNNLO
res . The resonant QCD

cross section factorizes into a leptonic tensor L and a hadronic spectral function Π(q2). The
former is evaluated in 4 dimensions and the latter completely in d dimensions and using the
naive dimensional regularization scheme (NDR). The squared contribution also factorizes
into the same leptonic tensor L and a hadronic tensor H and the same conventions must be
applied. We compute this part in Section 4.2.1. The electroweak NNLO corrections to the
resonant part must also abide by this description (apart from σ

C
(k)
Abs,bare

) and are discussed

in Section 5.1.
It would be a natural choice to use the same scheme for the contribution (3.94). We can

however simplify the computation of this part by performing the Dirac algebra and one of
the loop integrations in 4 dimensions. The details of this scheme and the computation of
σ

(EP)
interference and σ

C
(k)
Abs,bare

are shown in Section 4.2.2 and 5.1.4, respectively.

The part (3.95) contains a large number of non-resonant diagrams, that are endpoint
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finite. Thus, it is possible and beneficial to use automated programs for the most part
of (3.95). For technical reasons, this requires a subdivision

(3.95) =
(
σNNLO

non-res − σsquared − σinterference

)
finite, but scheme dependent

(3.96)

+
(
σ

(UV)
interference + σ

(c.t.)
interference

)
finite, but scheme dependent

. (3.97)

Both parts are finite, but must obviously use the same definition for the artificial coun-
terterms introduced in Figure 3.9. In Section 4.1, we define the scheme and evaluate the
automated part (3.96) using MadGraph [12] code with some minor modifications. The
remainder (3.97) is computed in the same scheme in Section 4.2.2.



4. Non-resonant contribution to
top-pair production near threshold at
NNLO

Our main focus is the non-resonant NNLO correction to the full cross section σ(e+e− →
bb̄W+W−X), but we also present results in the presence of loose cuts on the invariant mass
of the top and anti-top quark

(mt −∆Mt)
2 ≤ p2

t,t̄ ≤ (mt + ∆Mt)
2. (4.1)

The cut is considered to be loose when ∆Mt � Γt. Thus, a loose cut never affects the
resonant contribution to the cross section, where the off-shellness of the tops is paramet-
rically of order Γt.

1 To describe the implementation of the cut, we consider an event that
contributes to the full cross section, i.e. it contains reconstructed b and b̄ jets and a recon-
structed W+ and W−, as well as radiation with momenta ri, . . . , rN . The event passes the
cut, if, for at least one of the subsets sI of S = {1, . . . , N}, the conditions

(mt −∆Mt)
2 ≤

(
pb + pW+ +

∑
i∈sI

ri

)2

≤ (mt + ∆Mt)
2

(mt −∆Mt)
2 ≤

(
pb̄ + pW− +

∑
i∈S\sI

ri

)2

≤ (mt + ∆Mt)
2

(4.2)

are simultaneously fulfilled. If we apply this to the e+e− → t̄W+b or e+e− → t̄W+bg cross
sections at threshold, the cut can be expressed as a single Heaviside function θ((pb+pW+)2−
ym2

t ) or θ((pb + pW+ + pg)
2 − ym2

t ), respectively. We have defined y ≡ (mt −∆Mt)
2/m2

t .
The simplicity of the cut for the t̄W+bg final state is due to the special kinematics near
threshold, where (4.2) being fulfilled for sI = {} implies that (4.2) is also fulfilled for
sI = {1}. Thus, the gluon is always effectively combined with the bottom quark and W+

boson, irrespective of whether it is considered as part of the bottom jet or not. This implies
that the NNLO cross section with the cut (4.1) does not depend on the jet algorithm.

We don’t support other cuts, but it is straightforward to implement them as long as
they are loose. A general cut is a function c(pi) of the external momenta that evaluates to

1 This argument also applies to the interference of the resonant and non-resonant production mechanisms,
which is considered to be part of the resonant contribution. The loose cut is automatically fulfilled for
kinematic configurations where the non-resonant amplitude has a non-vanishing overlap with the resonant
one.

45
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one if the event passes the cut and to zero otherwise. We define the complementary cut
as c̄(pi) = 1 − c(pi). Assuming that c(pi) is loose, the non-resonant cross section σc̄non-res

in the presence of c̄(pi) is finite and can be computed with automated NLO parton level
event generators like MadGraph [12]. The non-resonant contribution with the original
cut is given by subtracting σc̄non-res from the total non-resonant cross section, where the
cancellation of divergences between the resonant and non-resonant parts is already taken
care of. This approach will also be exploited in Section 4.3 to perform a powerful check on
our computation.

A generalization to tight cuts would affect the resonant contributions and is beyond
the scope of this work. Recently however, first results of an implementation of the fully
differential cross section with NLL accuracy near threshold matched to the NLO fixed
order result have been presented [110].

4.1. The automated part

We first recall some aspects of MadGraph that are relevant to our definition of the com-
putational scheme applied for (3.95).

1. IR singularities are subtracted before the phase-space integration using the FKS
method [111,112]. The phase-space integration is then always done in 4 dimensions.

2. In the virtual corrections, MadGraph uses rational R2 terms [113] to absorb the
(−2ε)-dimensional parts of the numerators. For a given diagram with the amplitude
C the decomposition takes the form

C ≡
∫
ddl̄

N̄(l̄)∏
i D̄i

=

∫
ddl̄

N(l)∏
i D̄i

+R2, (4.3)

where Di = (l̄+pi)
2−m2

i , quantities with a bar are (4−2ε)-dimensional and quantities
without a bar are 4-dimensional. The non-R2 term can be written as a sum over
4-dimensional coefficients multiplying d-dimensional tensor integrals. The (−2ε)-
dimensional parts related to the implementation of the ’t Hooft-Veltman scheme [114]
in MadGraph are all contained in the R2 terms.

3. The amplitudes for the non-R2 terms, the R2 terms, the UV counterterms and the
FKS subtraction terms are written as separate lists, each of them containing the
coefficient of the 1/ε2 pole, the 1/ε pole and the finite part. Afterwards, only 4-
dimensional operations are performed, i.e. the multiplication with the conjugated
4-dimensional born amplitude and the 4-dimensional phase-space integration. Mad-
Graph will terminate, if the 1/ε2 or 1/ε pole of the renormalized and FKS subtracted
squared amplitude does not vanish. This is why we have to introduce the countert-
erm diagrams in Figure 3.9 to cancel the UV divergences in σ

(UV)
interference and render

the automated part finite.
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Given the way that (3.96) is defined, we never have to modify the construction of an
amplitude Ai and only have to remove certain contributions AiA∗j in the squared amplitude
|A|2 =

∑
i,j AiA∗j . All the contributions associated with the diagrams in Figure 3.8 have to

be removed, i.e. also the R2 parts, the UV counterterms and the FKS subtraction terms.
There is however an ambiguity in the subtraction of the contributions in Figure 3.9, which
determines the scheme in which (3.97) must be computed. We choose to only subtract
the non-R2 terms of hia with i = 2, 3, 4 and define the artificial counterterm contributions
σ

(c.t.)
interference as a minimal subtraction of the UV divergences. Following the discussion of the

items 1 and 2 above, this implies that (3.97) has to be computed by using dimensional
regularization for the tensor integrals. All other steps in the computation of (3.97) are then
performed in 4 dimensions and the UV divergence also has to be subtracted minimally.

In the following, we describe the steps we performed in MadGraph to obtain the con-
tribution (3.96) in the scheme defined above. It is obvious that this can’t be achieved by
modifying the process generation because (3.96) does not correspond to a squared ampli-
tude. Thus, we first generate the full process e+e− → t̄W+b including QCD corrections.
By not invoking the complex mass scheme, we make sure that the self-energy insertions
are treated perturbatively. Hence, the cross section diverges rapidly for center-of-mass en-
ergies approaching

√
s = 2mt from below. We remove the contribution from the endpoint

divergent born diagram h1, the diagrams shown in Figures 3.8 and the non-R2 terms from
Figure 3.9 by editing the code generated by MadGraph. The counterterm contribution in
Figure 3.9 can be added by modifying the 1/ε component of the existing field renormaliza-
tion contributions, but leaving the respective finite part unchanged. The discussion under
item 3 above implies that this indeed constitutes a minimal subtraction since the finite
part is unaffected.

Finally, we have to deactivate some checks inside the code that are invalidated by the
modifications. After the subtractions, the tree-level cross section and the real corrections
are no longer the squared absolute value of an amplitude and, thus, no longer positive for
all phase-space points. The positivity of these expressions is not necessary to make the
code run properly, but only serves as an internal check [115]. Therefore, we can safely
switch it off. The code can now be evaluated directly at the threshold

√
s = 2mt. The

desired contribution (3.96) is given by the difference of fixed order runs at NLO and LO,
multiplied by a factor two to account for the tb̄W− contribution, which gives the same
result due to CP invariance.

4.2. The manual part

All the endpoint divergences are contained in this part of the computation. To understand
the challenges associated with this contribution, we consider the phase-space integral of a
virtual diagram hix, where the integrand fix is a Lorentz scalar, i.e. it only depends on
scalar products of its arguments.

∫
dLIPSe+e−→t̄W+bfix(pe+ , pe− , pt̄, pW+ , pb)θ

(
(pW+ + pb)

2 − ym2
t

)
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=
m2
t

2π

1∫

y

dt

∫
dLIPSe+e−→tt̄

∫
dLIPSt→W+bfix(pe+ , pe− , pt̄, pW+ , pb)

≡
1∫

y

dtgix(t), (4.4)

where t ≡ (pW+ + pb)
2/m2

t . The Heaviside function accounts for the cut on the invariant
mass of the top quark discussed in Section 4. The real corrections can be brought into the
same form as (4.4) with the variable t∗ ≡ (pW+ + pb + pg)

2/m2
t instead of t. In [98], the

leading terms in an expansion around t ∼ 1 of the integrands gix(t) have been obtained
using the expansion by regions approach [57, 59]. The remaining t-integration for the
expanded result is trivial

1∫

y

dt(1− t)−a−bε =
(1− y)1−a−bε

1− a− bε . (4.5)

The divergent integrals with a ≥ 1 are regulated dimensionally by the bε in the exponent.
Negative powers of (1−t) occur from top-quark propagators. At NNLO, endpoint divergent
integrals with a = 1, 3/2, 2 contribute, but only those with a = 1 manifest as 1/ε poles.
This is related to the well-known artifact of dimensional regularization that it renders some
formally divergent integrals finite for ε→ 0.

It is obvious from (4.5) that the integrands gix(t) must not be expanded in ε because it
would spoil the dimensional regularization of the endpoint divergences. This implies that
the loop integrals in Figures 3.8 and 3.9 can’t be expanded in ε. Expressions for scalar
one-loop integrals in general d dimensions with up to four external legs were obtained
recently [116], but we have used a different strategy instead. We take the results for the
endpoint divergent terms from [98] as subtractions to the complete integrand. The integrals
(4.4) are decomposed as follows:

1∫

y

dtgix(t) =

1∫

y

dt


gix(t)−

∑

a=1, 3
2
,2

∑

b

ĝ
(a,b)
ix

(1− t)a+bε


+

∑

a=1, 3
2
,2

∑

b

ĝ
(a,b)
ix (1− y)1−a−bε

1− a− bε , (4.6)

where the required coefficients ĝ
(a,b)
ix of the series expansion in (1− t) are available from [98]

up to order O(ε0). This renders the t-integration on the right-hand side finite and allows
us to expand the subtracted expression in the square bracket in ε. Thus, the integral can
be performed numerically. Additionally, we require the O(ε) contributions to ĝ

(1,b)
ix because

the coefficients with a = 1 are multiplied with a 1/ε pole in (4.6). They must be determined
using the same conventions as their counterparts in the resonant part and are therefore
treated differently, depending on whether they belong to (3.93) or (3.94).
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4.2.1. The squared contribution

The squared contribution is fully contained in (3.93). The contributions from the individual
diagrams to the hadronic tensor H are evaluated in d dimensions and are written in the
form (4.6). The numerical t (or t∗) integral contains all terms with positive integer or
half-integer powers of (1 − y). With the exception of h1b, the subtracted integrands were
all obtained in analytical form. The integrand for h1b contains an additional numerical
angular integral. The expressions for the integrands are rather lengthy and will not be
given explicitly. The numerical integrals are plagued by integrable singularities involving
1/
√

1− t and log(1− t) terms, that cause numerical instabilities in the contributions from
some diagrams. As a remedy, we computed additional terms in the expansion in (1 − t)
analytically and used them as further subtractions.

The contributions corresponding to the second term in (4.6) are given by the sum of the

respective expressions from [98] and terms from the O(ε) contributions to ĝ
(1,b)
ix . The latter

encapsulate the dependence of the squared contribution on the computational scheme and
are therefore specified below. In the notation of [98] and the scheme for (3.93), we obtain

H1a = H1a|from [98] +Nε

[(
−623 + 239x+ 1154x2 − 192(2 + 2x+ 5x2) log 1−x

2

144(1− x)(1 + 2x)

)
vL
t v

R
t

−
(

2 + 3x

2 + 4x
− 1

2
log

1− x
2

)
vL
t a

R
t +

(
11 + 16x

18 + 36x
− 1

3
log

1− x
2

)
aL
t a

R
t

]
+O

(
Λ

mt

)
,

H1b = H1b|from [98] +Nε

[(
1− 2x+ 15x2 − 3 (1 + x+ 2x2) log 1−x

2

2(1− x)(1 + 2x)

)
vL
t v

R
t

+

(
−17− 28x− 6(1− 2x) log 1−x

2

18(1 + 2x)

)
vL
t a

R
t

+

(
5− 4x− 6(1− 2x) log 1−x

2

18(1 + 2x)

)
aL
t v

R
t

]
+O

(
Λ

mt

)
, (4.7)

with the prefactor

Nε =

(
µ2

m2
t

)3ε

mtΓBNcCF
αs
4π
, (4.8)

and ΓB is the tree-level top decay width in four dimensions. The other diagrams in Fig-
ure 3.8 do not contain 1/εEP poles and, therefore, no terms of this type are present. The
contribution of an individual diagram hix to the non-resonant part is

σix = −8π2α2ns
∑

L,R=γ,Z

vLe v
R
e + aLe a

R
e

(s−m2
L)(s−m2

R)
Re (Hix) , (4.9)

where ns is a symmetry factor, that is either two for diagrams which are symmetric with
respect to the cut, or four for diagrams which are not symmetric with respect to the cut.
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The photon couplings are vγf = −ef and aγf = 0, where ef is the fermion charge measured
in units of the positron charge. The couplings of the fermions to Z bosons are given by

vZf ≡ vf =
T f3 − 2efs

2
w

2swcw
, aZf ≡ af =

T f3
2swcw

, (4.10)

where T f3 is the third component of the weak isospin of the fermion f and sw and cw are the
sine and cosine of the Weinberg angle, respectively. The photon mass obviously vanishes,
mγ = 0.

In (4.9), O(ε) terms in the leptonic tensor have been discarded, as discussed in Sec-
tion 3.5. For our result, we have checked explicitly that IR and UV divergences cancel in
the sum over the diagrams in the squared contribution.

4.2.2. The interference contribution

The interference contribution is split into σ
(EP)
interference and σ

(UV)
interference +σ

(c.t.)
interference. The latter

is endpoint finite and the respective integrands g
(UV+c.t.)
ix (t) can be expanded in ε without

the necessity of introducing subtraction terms. It is computed in the scheme of (3.95) and

only contributes at the order O(Λ/mt) in the expansion used in [98]. For h4a and h
(c.t.)
4 , the

contribution to the cross section could only be expressed as a two-dimensional numerical t
and angular integral. The other parts are obtained as a 1-dimensional numerical integral
over t. Again, we refrain from giving explicit expressions for the integrands due to their
length. The integrable singularities are treated as described in Section 4.2.1.

The contribution σ
(EP)
interference is endpoint divergent and therefore treated in the fashion

of (4.6). Again, the terms from the O(ε) contributions to ĝ
(EP),(1,b)
ix contain the dependence

on the computational scheme. In the notation of [98] and the scheme for (3.94), we obtain

H
(EP)
2a = H2a|from [98] +Nε




(1− 5x− 2x2)
(

8− 3 log µ2

4m2
t

)

36(1 + x)(1 + 2x)


 vL

t (vR
b + aR

b ) +O
(

Λ

mt

)
,

H
(EP)
3a = H3a|from [98] +Nε


−

(2 + 5x− 2x2)
(

8− 3 log µ2

4m2
t

)

36x(1 + 2x)


 IL

WWv
R
t +O

(
Λ

mt

)
,

∆σ
(EP)
4a = ∆σ4a|from [98] +Nε

π2α2

s2
w

1

s

(
etee
s

+
vt(ve + ae)

s−M2
Z

)[
−
(

2− log
µ2

4m2
t

)

×(1− x) (1− 2x− 23x2) + 12x2 log
(

2
x
− 1
)

3x(1− x)3(1 + 2x)

]
+O

(
Λ

mt

)
. (4.11)

The contribution of h2a and h3a follows from equation (4.9) with ns = 4 and the contribu-
tion of h4a is given by (4.11), multiplied with the symmetry factor ns = 4.
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4.3. Consistency checks

Having performed the computation of the non-resonant part in the presence of the invari-
ant mass cut (4.1), denoted by c∆Mt(pi), allows us to perform a very powerful numerical

consistency check. The non-resonant cross section σ
c̄∆Mt
non-res in the presence of the comple-

mentary cut c̄∆Mt(pi) = 1− c∆Mt(pi) is finite. Therefore, we can evaluate it using unedited
MadGraph code. On the other hand, it can be obtained from our result by taking the
difference σnon-res− σc∆Mtnon-res. The comparison for various values of the cut ∆Mt numerically
tests the whole non-resonant result, with the exception of the contributions from the O(ε)

parts of the ĝ
(1,b)
ix terms in (4.6), which originate from the t(∗) → 1 region and are inde-

pendent of the value of the cut, i.e. which are not present in σ
c̄∆Mt
non-res. The result is shown

in Figure 4.1. We have performed the same check for the individual contributions of the
diagrams hia with i = 2, 3, 4. In particular, this provides very welcome reassurance that
the scheme dependence in (3.96) and (3.97) has been treated consistently. Additionally,
it provides a strong test on the correctness of the actual computation, which is extremely
important since a significant part of it has not been checked independently yet.
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Figure 4.1.: Consistency check for various values for the complementary cut p2
t ≤ (mt −

∆Mt)
2. The line in the upper panel is our result for the manual part σ

c̄∆Mt
manual

in pb, given by the sum of the contributions from the tree-level diagram h1,
the squared and the interference contributions. The points give the same
quantity obtained from the difference of MadGraph runs with the unedited
and edited code. The lower panel shows the same results normalized to ours.
The MadGraph results have been obtained for the default value of the bottom-
quark mass mb = 4.7 GeV and a negligible value mb = 0.1 GeV. All points with
the latter value agree with our result (obtained by neglecting the bottom-quark
mass) within less than 1%, which is the estimated numerical uncertainty of our
result. For the sake of this check, we have furthermore used the default values
of MadGraph, mt = 173 GeV, µ = mZ , αs(mZ) = 0.118 and α = 1/132.507.



5. Resonant non-QCD contributions to
top-pair production near threshold

5.1. Resonant contributions of electroweak origin

In this section, we discuss electroweak corrections to the resonant contribution up to NNLO.
The contribution σ

C
(k)
Abs,bare

has been separated in (3.92). The remainder contains the fol-

lowing parts

σNNLO
res − σ

C
(k)
Abs,bare

= σQCD + σP-wave + σH + σδVQED
+ σΓ + σ

C
(k)
EW

+ σ
C

(k)
Abs,Zt

+ σconv
IS . (5.1)

In the scheme of (3.93), the pure QCD S-wave contribution σQCD has been determined
in [37,60,89] and top-pair production in a P-wave state σP-wave is considered up to NNNLO
in Section 5.2. Higgs contributions σH that only involve the top Yukawa coupling are taken
into account up to NNNLO in Section 5.3. The effects σδVQED

of the LO QED Coulomb
potential δVQED = −4παe2

t/q
2 have also been considered up to NNNLO [4]. At NNLO, top

decays introduce additional contributions to the bilinear part of the PNRQCD Lagrangian,
that yield an additional contribution σΓ to the non-relativistic Green function (see Section
5.1.1). Furthermore, there are electroweak corrections to the hard matching coefficients
C(k), which yield a contribution σ

C
(k)
EW

, see Section 5.1.3. They contain an imaginary part

from cuts over all possible final states. However, only the part corresponding to the t̄W+b
(tW−b̄) final state contributes to the cross section [117]. It is split into a bare contribution
σ
C

(k)
Abs,bare

(see Section 5.1.4) and a contribution from field renormalization σ
C

(k)
Abs,Zt

(see

Section 5.1.2) because the two parts must be treated in different schemes. Finally, we
consider effects from initial state radiation (ISR), σconv

IS , in Section 5.1.5.
From power counting one would also expect corrections to the color Coulomb potential

from electroweak gauge bosons at NNLO, which however vanish in the on-shell scheme
(see Section 5.1.2). Partial results for the mixed-QCD-electroweak corrections to the hard
matching coefficients C(k) are available [118,119], but they only contribute at NNNLO and
will not be considered here.

5.1.1. Contributions to the NNLO Green function

We consider the corrections to the NNLO Green function from the electroweak contribu-
tions to the PNRQCD Lagrangian given in (3.67). As argued in Section 3.4, there are
no ultrasoft photon corrections at this order. The single insertion of the QED Coulomb

53



54 5. Resonant non-QCD contributions

potential (3.68) constitutes a NLO effect. At NNLO, there is the double insertion of (3.68),
as well as mixed QCD and QED Coulomb corrections. All insertions can be inferred from
the computation of the QCD corrections in [89], even up to NNNLO. Thus, we include the
effects of the QED Coulomb potential (3.68) up to third order, see [4].

The remaining terms depend on the top-quark decay width. At LO, it is required in d
dimensions

Γ0 =
mtα

16s2
w

(1− x)2(1 + 2(1− ε)x)

x

√
π

2Γ(3/2− ε)

(
4µ2eγE

m2
t (1− x)2

)ε
, (5.2)

with x = m2
W/m

2
t . QCD corrections are only needed in 4 dimensions and are known up to

NNLO [120, 121]. The term (iΓ0/2)(ψ†ψ − χ†χ) in (3.67) belongs to the LO Lagrangian
and must be treated non-perturbatively. It leads to the replacement E → E + iΓ0, that
has been used to define the QCD contribution. In the implementation of the top-pair
production cross section [29] the width is treated as a parameter. This implies that higher
order corrections to the width are also treated non-perturbatively through the replacement
E → E + iΓ. The O(ε) terms in the width have not been considered there. They are
however included in the non-resonant part and consistency requires that we also add them
to the resonant part. This is done in (5.6) below. The remaining terms in (3.67) that
contain the width are treated perturbatively. Only two simple insertions are required. We
denote the correction to the Green function G0(E) from the terms (X/2)(ψ†ψ − χ†χ) and
(X/2)(ψ†∂2ψ − χ†∂2χ) by δXG(E) and δX∂2G(E), respectively. They are given by

δXG(E) = XG′0(E) =
X

mα2
sC

2
F

m2αsCF
4π

[
λ+ 2λ2 + 2λ3ψ1(1− λ)

]
, (5.3)

δX∂2G(E) = −mXm2αsCF
4π

[
− 3

4λ
+

1

2ε
+

1

2
+ 2L

(w)
λ − 2ψ̂(1− λ) +

λ

2
ψ1(1− λ)

]
. (5.4)

The NNLO contribution to the Green function from top decays is

δ2,ΓG(E) =

(
δXG(E)|

X=− Γ2

4mt

)
+

(
δX∂2G(E)|X= iΓ

2m2
t

)
, (5.5)

where we assume that Γ is a parameter, i.e. 4-dimensional. The additional contributions
to the cross section from the O(ε) terms in (5.2), that multiply finite width divergences
in (5.5) and the pure QCD result, are added explicitly:

δΓε/εσ = σ0
mtΓBαsCFNc

s

[
2(1 + x)

1 + 2x
+ log

µ2
w

m2
t

− 2 log(1− x)

]

×
[
C(v)2

+ C(a)2

+ C
(v)2

P-wave + C
(a)2

P-wave

]
, (5.6)

where ΓB is the ε→ 0 limit of (5.2). On the whole, we obtain

σΓ = σ0
24πNc

s

[
C(v)2

+ C(a)2
]

Im [δ2,ΓG(E)] + δΓε/εσ. (5.7)
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Figure 5.1.: Cancellation of the electroweak gtt vertex corrections in the on-shell scheme.

It is understood that we resum the top-width contributions to the poles in the Green
function. They can be determined from the expansion of (5.5) around the resonances and
are given by

δΓE
(2)
n =

Γ2

4mt

+
iΓα2

sC
2
F

8n2
, δΓF

(2)
n = − 3iΓ

2mt

, (5.8)

in the notation of (3.48). We note that the bound-state poles are defined for stable quarks,
i.e. with Γ = 0. Nevertheless, we can resum the higher-order poles of the form (3.50) from
the width contribution to retain the structure (3.48), which contains only single poles.

5.1.2. Corrections to the Coulomb potential and field renormalization

Electroweak corrections to the gtt vertex are of order α ∼ α2
s and contribute to the bare

color Coulomb potential. With the external momenta in the potential region, it is straight-
forward to show, that only the hard region contributes to the loop integrals in Figure 5.1.
This implies that the external momenta are expanded out of the loop integrals. The cor-
rections to the Coulomb potential therefore effectively involve on-shell vertex corrections,
which vanish in the on-shell scheme, see Figure 5.1.

The top-quark field renormalization also contributes to the hard matching coefficients
C(k). At NNLO it becomes complex due to bW+ loop corrections. The imaginary part
contributes to the finite width divergence of the resonant part in (3.93). Thus, it has
to be determined in d dimensions in accordance with the scheme used to evaluate the
other components of (3.93). The other absorptive contributions to C(k) are, however,
part of (3.94) and therefore have to be computed in 4 dimensions. Since the two parts are
treated using different conventions, we find it convenient to separate them also in notation.
Our convention for the Wilson coefficients up to NNLO is

C
(k)
full = C(k)

[
1 + c

(1)
k

(αs
4π

)
+ c

(2)
k

(αs
4π

)2

+
y2
t

2
c

(2)
vH + . . .

]
+
(
C

(k)
EW + iC

(k)
Abs

) α

4π
+ . . . , (5.9)

C
(k)
Abs = C

(k)
Abs,Zt

+ C
(k)
Abs,bare. (5.10)

The bare result is computed in Section 5.1.4. The real electroweak corrections C
(k)
EW do not

yield any finite width divergences at NNLO. Thus, it is not necessary to split them as well.
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We obtain

C
(v)
Abs,Zt

=
πΓ0

mtαs2
w(4c2

w − x)(1− x)(1 + 2x(1− ε))
×
[
(1 + 4ees

2
w)(2− ε+ x(2− 5ε+ 2ε2) + 2x2(1− ε)2)

−2s2
wet(1 + ee(4− x))(3− 2ε)(1 + x(1− 2ε) + 2x2(1− ε))

]
, (5.11)

C
(a)
Abs,Zt

=
−πΓ0

mtαs2
w(4c2

w − x)(1− x)(1 + 2x(1− ε))
[
2− ε+ x(2− 5ε+ 2ε2)

+2x2(1− ε)2 − 2ets
2
w(3− 2ε)(1 + x(1− 2ε) + 2x2(1− ε))

]
. (5.12)

The contribution to the NNLO cross section is given by

σ
C

(k)
Abs,Zt

= σ0
12αNc

s
[C(v)C

(v)
Abs,Zt

+ C(a)C
(a)
Abs,Zt

] Re [G0(E)] , (5.13)

where the finite terms from the multiplication of the 1/ε divergence in the real part of
the Green function (3.46) with the O(ε) parts of (5.11) and (5.12) must be included. We
stress again that this contribution, which is caused by the interference of the resonant and
non-resonant amplitudes, is not affected by loose cuts.

5.1.3. Electroweak contribution to the hard matching coefficient

The real electroweak contributions to the NNLO matching coefficients C(k) have been
computed in [122–124]. Pure QED corrections have been neglected there. Therefore, we
split

C
(k)
EW = C

(k)
QED + C

(k)
WZ, (5.14)

where

C
(v,a)
WZ =

s

α2
Cew
V,A(ν = 1)− C(v,a) y

2
t

2
c

(2)
vH , (5.15)

with Cew
V,A(ν = 1) given in [124]. The subtraction term is present because Higgs effects

that only involve the top Yukawa coupling are treated separately. Corrections that involve
Higgs couplings to gauge bosons or Goldstone bosons remain in (5.15).

There is no contribution from the box diagram involving two photons, since only its
interference with the production of the top pair through the vector component of the s-
channel γ or Z boson is of NNLO and the correlator of three vector currents vanishes [125].
The QED vertex correction to the γe+e− and Ze+e− vertices contains divergences, that
cancel among initial state radiation contributions (see Section 5.1.5). Therefore, we con-
sider it to be part of the ISR, to render both, σ

C
(k)
EW

and σIS finite, separately. Then, the

only pure QED effect is the photon vertex correction to the γtt̄ and Ztt̄ currents, which is
given by

C
(v,a)
QED = −8e2

tC
(v,a). (5.16)
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The contribution from the electroweak corrections to the hard matching coefficients of the
production operators is given by

σ
C

(k)
EW

= σ0
12αNc

s
[C(v)C

(v)
EW + C(a)C

(a)
EW] Im [G0(E)] . (5.17)

The matching coefficients given in [122–124] are expressed in terms of the fine-structure
constant α. This scheme suffers from a large spurious dependence on the light fermion
masses, that cancels explicitly with the self-energy corrections to the matching coefficients,
when the fine-structure constant is expressed in terms of a less infrared-dependent definition
of the electroweak coupling constant. We use the running on-shell coupling α(µα) [126],
that coincides with the fine-structure constant for µα → 0. The cross section can be
expressed in this scheme with the simple replacements

α → α(µα), (5.18)

ΠAA′(0) → ΠAA(µ2
α)/µ2

α. (5.19)

The latter replacement rule for the photon self-energy insertion is written in the notation
of [122] because the term ΠAA′(0) only appears in the electroweak contributions to the
matching coefficients C(k). The derivative and the explicit factor 1/µ2

α appear because [122]
defines the photon vacuum polarization ΠAA as a dimensionfull quantity and do not imply
a power-dependence of the cross section on the scale µα.

5.1.4. Absorptive contribution to the hard matching coefficient

The bare absorptive part of the matching coefficients C
(k)
Abs,bare is given by the contributions

from the diagrams shown in Figure 3.7, which have an obvious correspondence with the
interference contribution. In 4 dimensions, we find

C
(v)
Abs,bare = − π

24s4
wx (1− x2) (4c2

w − x)

[
(1− x)

(
5 + 44x+ 28x2 − 4x3 − x4

)

−(1− x)s2
w

[
(ee(1− x)2

(
et(4− 21x− 3x2 + 2x3)− 4 + 4x− 4x2

)

+et(1− x)2(1− 5x− 2x2) + 4 + 48x+ 36x2 + 8x3
]

−12x(1 + x)(4c2
w − x)arctanh(1− x)

]
, (5.20)

C
(a)
Abs,bare =

π

24s4
wx (1− x2) (4c2

w − x)

[
(1− x)

(
5 + 44x+ 28x2 − 4x3 − x4

)

−(1− x)s2
w

[
et(1− x)2(1− 5x− 2x2) + 4 + 48x+ 36x2 + 8x3

]

−12x(1 + x)(4c2
w − x)arctanh(1− x)

]
. (5.21)

We have checked that, in the limit ε → 0, (5.10) reproduces the result in [117]. The
contribution to the cross section in the scheme used for (3.94) is given by

σ
C

(k)
Abs,bare

= σ0
12αNc

s
[C(v)C

(v)
Abs,bare + C(a)C

(a)
Abs,bare] Re

[
3

3− 2ε
G0(E)

]
. (5.22)
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We recall that at LO the Dirac structure of the top pair becomes trivial in the non-
relativistic regime and only yields a prefactor 3 − 2ε. Thus, by introducing the factor
3/(3− 2ε) in front of the Green function in (5.22), we have adapted the expression to the
correct scheme, which involves 4-dimensional Dirac algebra. The contribution (5.22) is not
affected by loose cuts.

We have verified the correctness of (5.22) by computing the sum of the diagrams h2a, h3a

and the resonant terms from the corresponding contributions of the absorptive matching
conditions (left and middle diagram in Figure 3.7) in d dimensions in the NDR scheme. This
combination is finite and the result agrees with the one obtained in the scheme of (5.22).
This allows us to avoid the much harder evaluation of h4a and the respective contribution
to the absorptive matching coefficient in d dimensions.

5.1.5. Initial state radiation

Last but not least, we take into account effects from initial state radiation. The non-
resonant part is only affected at NNNLO and will not be considered. With the exception
of the hard region, all contributions are universal and the treatment closely follows the one
for W pair production near threshold in [94–96].

We evaluate the contributions from different momentum regions separately. The con-
tribution to the hard matching coefficients C(v,a) from the QED γ/Zee vertex correction
makes up the hard part. We find

C
(v,a)
γ/Zee = Re

[
C(v,a) α

4π

(
µ2

−4m2
t − i0

)ε(
− 2

ε2
− 3

ε
− 8 +

π2

6

)]

= −C(v,a) α

4π

(
2

ε2
+

1

ε

(
3 + 2 log

µ2

4m2
t

)
+ log2 µ2

4m2
t

+ 3 log
µ2

4m2
t

+ 8− 7π2

6

)
. (5.23)

We only kept the real part because the imaginary part comes from cuts that do not cor-
respond to the final state bb̄W+W−. The correction to the cross section from hard ISR
is

σ
(H)
IS = σ0

12πNc

s
[C(v)C

(v)
γ/Zee + C(a)C

(a)
γ/Zee] Im [G0(E)] . (5.24)

The contributions from the ultrasoft momentum region are shown in Figure 5.2. Virtual
ultrasoft corrections are scaleless. The diagram with the photon attached to incoming and
outgoing electron vanishes because it is proportional to the square of the light-like direction
c1. No ultrasoft corrections that couple to the collinear and non-relativistic sector occur
at NNLO because the leading ultrasoft photon coupling to the final state vanishes, as
discussed in Section 5.1.1. Thus, the contribution to the cross section from the ultrasoft
region is due to the right diagram in Figure 5.2 and reads

σ
(US)
IS = σ0

24πNc

s
[C(v)2

+ C(a)2

]
α

4π

−8
√
π

εΓ(1/2− ε)
(
µ2eγE

)ε
Im



∞∫

0

dk
G0(E − k)

k1+2ε


 . (5.25)
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Figure 5.2.: Ultrasoft photon corrections to the resonant cross section. The symmetric dia-
grams, obtained by the interchange of electrons and positrons, are not shown.

Real collinear corrections are kinematically forbidden in the resonant part because they
carry away a hard momentum fraction and push the top-pair off-shell. Virtual collinear
corrections are scaleless.

Thus, when the small electron mass is neglected, the photon radiation corrections are
given by the sum of (5.24) and (5.25). We observe that the 1/ε2 pole cancels, but a
collinear divergence remains because the cross section is not infrared safe for me = 0.
This divergence can be regularized by a non-zero electron mass, which in turn yields large
logarithms ln(s/m2

e). They can be resummed into an electron distribution function, which
accounts for collinear radiation off the incoming electron and positron. The cross section
with resummed ISR is given by

σ(s) =

1∫

0

dx1

1∫

0

dx2ΓLL
ee (x1)ΓLL

ee (x2)σ̂conv(x1x2s), (5.26)

where the structure function ΓLL
ee (x) describes the probability of finding an electron with

momentum xp in the ’parent electron’ with momentum p. Expressions for the structure
function can be found in [127–130]. The superscript LL implies that terms of the form
(α ln(s/m2

e)/π)n have been resummed to all orders. The partonic cross section σ̂conv(x1x2s)
is defined in a different scheme than the one used above. First, we need to change the
regulator to a finite electron mass. Then, the O(α) terms that appear in the convolution
of the structure functions with the LO cross section have to be subtracted from the fixed
order NNLO partonic cross section to avoid double counting.

The presence of an additional scale, given by the non-vanishing electron mass me �
mtα

2
s, introduces additional regions

n-hard-collinear: n̄ · k ∼ mt, n · k ∼ m2
e

mt
, k⊥ ∼ me,

n-soft-collinear: n̄ · k ∼ mtα
2
s, n · k ∼ m2

eα
2
s

mt
, k⊥ ∼ meα

2
s,

(5.27)

with k2 ∼ m2
e and k2 ∼ m2

eα
4
s, respectively. These regions yield only scaleless integrals

for me = 0. The soft-collinear region contributes in the diagrams shown in Figure 5.2.
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As before, the left diagram vanishes. For the right diagram, both the c1-soft-collinear and
c2-soft-collinear regions must be taken into account. One finds

σ
(SC)
IS = σ0

24πNc

s
[C(v)2

+ C(a)2

]
α

4π
8Γ(ε)

(
m2
t

m2
e

)ε (
µ2eγE

)ε
Im



∞∫

0

dk
G0(E − k)

k1+2ε


 . (5.28)

The hard-collinear contribution comes from the c1-hard-collinear and c2-hard-collinear re-
gions of the γ/Zee vertex correction diagram

σ
(HC)
IS = σ0

24πNc

s
[C(v)2

+ C(a)2

] Im [G0(E)]

× α

4π

[
4

ε2
+

1

ε

(
6 + 4 ln

µ2

m2
e

)
+ 2 ln2 µ

2

m2
e

+ 6 ln
µ2

m2
e

+
π2

3
+ 12

]
. (5.29)

The collinear 1/ε poles cancel in the sum of the hard and hard-collinear, and ultrasoft
and soft-collinear contributions, separately. The collinear sensitivity is instead expressed
through the large logarithms ln(4m2

t/m
2
e). The remaining singularities cancel in the sum

over all regions. To make the cancellation explicit, one can expand the factor 1/k1+2ε in
the distribution sense:

1

k1+2ε
= −a

−2ε

2ε
δ(k) +

1

[k]a+

+O(ε), (5.30)

where a > 0 is arbitrary and we have introduced the modified plus-distribution

∞∫

0

dk
f(k)

[k]a+

=

∞∫

0

dk
f(k)− f(0)θ(a− k)

k
. (5.31)

With z = m2
e/(4m

2
t ), we obtain

σIS = σ
(H)
IS + σ

(HC)
IS + σ

(US)
IS + σ

(SC)
IS

= σ0
24πNc

s
[C(v)2

+ C(a)2

]
α

4π

{
− 8 ln(z)

∞∫

0

dk
Im [G0(E − k)]

[k]a+

+

[
4π2

3
− 4− 6 ln(z)− 4 ln

(
a2

m2
t

)
ln(z)

]
Im [G0(E)]

}
, (5.32)

which is finite, such that the four-dimensional expression (3.46) for the LO Green function
can be used. The a dependence cancels.

We determine the subtraction terms by expanding the convolution of the LO cross section
with the structure function in the coupling constant. The perturbative expansion of the
structure function is written as

ΓLL
ee (x) = δ(1− x) + ΓLL(1)

ee (x) +O(α2). (5.33)
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We take the expression for the electron structure function from [130] with βexp = βS =
βH = −(2α/π)(ln(z) + 1). The non-logarithmic term accounts for a subset of terms at
NLL.1 For the cross section near threshold, only the limit x→ 1 is important

ΓLL(1)
ee (x)

x→1−→− α

4π
[ln(z) + 1]

[
4

[1− x]+
+ 3δ(1− x)

]
. (5.34)

The O(α) term in the convolution of the leading order partonic cross section with the
structure functions is

2

1∫

0

dxΓLL(1)
ee (x)σ̂LO(xs) = σ0

24πNc

s
[C(v)2

+ C(a)2

]
α

4π
[ln(z) + 1]

×



−6Im [G0(E)]− 8

mt∫

0

dk
Im [G0(E − k)]

[k]+



 , (5.35)

where the non-relativistic Green function was evaluated at
√
xs−2mt = E−mt(1−x) and

we have substituted k = mt(1− x). The partonic cross section in the conventional scheme
for the electron structure function is given by (5.32) with (5.35) subtracted. We obtain

σconv
IS = σ0

24πNc

s
[C(v)2

+ C(a)2

]
α

4π

×



8

mt∫

0

dk
Im [G0(E − k)]

[k]+
+

(
4π2

3
+ 2

)
Im [G0(E)]



 , (5.36)

where we have set a = mt and neglected the imaginary part of the Green function for non-
relativistic energies E < −mt. The photon radiation contribution to the cross section (5.36)
in this scheme is finite and free of large logarithms of the electron mass.

The treatment of ISR presented here is complete at the NNLO plus LL level. We find,
however, that it leads to a huge modification of the cross section at the level of −(30−45)%.
This clearly shows that the determination of the full NLL corrections is mandatory for the
threshold scan, where a prediction for the cross section with an uncertainty at the level
of a few % is required. This necessity is not specific to the top threshold scan, since the
structure functions are universal and a future lepton collider will probe many processes
with unprecedented precision. A crude estimate for the size of the NLL corrections can be
obtained by comparing to the results with βexp = βS = βH = −(2α/π) ln(z) without the
constant term. The difference is of the order of 2%, which is comparable to the overall
scale uncertainty.

1 For the resummation of ISR we adopt the usual counting conventions. NkLL includes all terms of the
order αn lnn−k(z).
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5.2. The P-wave contribution at NNNLO

In this section, we compute the axial-vector correlation function (3.21). The hard matching
coefficient ca in the naive anti-commuting (NDR) scheme for γ5 is given by [131]

ca = 1− 4CF
αs
4π

[
1− ε ln

m2
t

µ2
+O(ε2)

]
+O(α2

s). (5.37)

The P-wave Green function (3.45) up to NLO is determined below. In Section 5.2.4, the
full result for the P-wave contribution to the cross section up to NNNLO is obtained.

5.2.1. Leading order Green function

We recall that already the leading-order S-wave Green function (3.46) contains a 1/ε pole
proportional to αs, i.e. from the 2-loop contribution. The one-loop part is also divergent,
but finite in dimensional regularization. The P-wave Green function contains an additional
factor p · p′ and simple power counting demonstrates that ladder diagrams with up to
four loops are UV divergent. The knowledge of the 4-dimensional representations (3.34)
and (3.35) for the leading order Green function is not sufficient for the computation of
GP

0 (0, 0;E) in the MS scheme because the limit r, r′ → 0 diverges. In d = 4, but keeping
the distance r as a regulator in (3.45), we obtain

GP
0 (E)|r = lim

r,r′→0
〈∇r · ∇r′G0(r, r′;E)〉

= lim
r,r′→0

1

(4π)2

∫
dΩr

∫
dΩr′∇r · ∇r′G0(r, r′;E)

=
m4α3

sC
3
F

32πλ3

[
λ

(pr)2
− 1− 2λ2

pr
+ 2(λ− λ3) log(pr)

+ 1−
(

9

2
− 4γE − 2 log(2)

)
λ− 3λ2 + (3− 4γE − 2 log(2))λ3

+ 2(λ− λ3)ψ(2− λ) +O(pr)

]
.

(5.38)

The integrals over the directions of r and r′ project out the P-wave component of the Green
function. Consistent with our expectations, only terms with up to three powers of αs in
the expression (5.38) are singular for r → 0.

To obtain GP
0 (0, 0;E) in MS, we can split off the divergent diagrams, the sum of which

is denoted by G
P (≤3ex)
0 , and compute them in momentum space, using dimensional regular-

ization and conventional loop methods. The remainder G
P (≥4ex)
0 is finite and regularization

independent. Thus, it can be obtained by expanding (5.38) in αs and subtracting all terms
with three or less powers of αs.
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The contribution of a diagram with n gluon exchanges to the Green function in d = 4−2ε
dimensions is given by

G
P (nex)
0 ≡

∫ n+1∏

j=1

[
dd−1pj
(2π)d−1

]
(CFg

2
s)
nmn+1 (p1 · pn+1)

[p2
1 − Em](p1 − p2)2 . . . (pn − pn+1)2[p2

n+1 − Em]

=
(CFg

2
s)
nmn+1

2(−Em)
n−3

2
+(n+1)ε

∫ n+1∏

j=1

[
dd−1kj
(2π)d−1

]
(k2

1 + 1) + (k2
n+1 + 1)− 2− (k1 − kn+1)2

[k2
1 + 1](k1 − k2)2 . . . (kn − kn+1)2[k2

n+1 + 1]
.

(5.39)
where we have rescaled all momenta by pi →

√
−mEki. The numerator k1 · kn+1 has

been decomposed into irreducible terms. The first two give massless tadpoles in either
kn+1 or k1 and therefore vanish. The other two can be reduced to known master integrals
using integration by parts, which is described in detail in e.g. [132]. We used the package
FIRE [133, 134] to perform this reduction. The required master integrals are known for
general dimensions d [135] and have also been reproduced within more general calculations
for the NLO contribution. The result is

G
P (≤3ex)
0 (E) =

m4
tC

3
Fα

3
s

32πλ3
+ 4πCFαs

[
I00

P [1] + I10
P [1] + I20

P [1]
]
, (5.40)

where the contribution from the one-loop, zero-gluon exchange diagram is stated explicitly.
Its scaling 1/λ3 ∼ E3/2 ∼ v3 is characteristic for the threshold behaviour of the P-wave

production. The notation I
(n−1)0
P [1] for the higher-loop integrals, corresponding to diagrams

with n gluon exchanges, is explained in more detail in the context of the NLO calculation.
Explicit results can be found in Appendix A.

The correlation function in dimensional regularization is given by the sum G
P (≤3ex)
0 +

G
P (≥4ex)
0 and takes the form

GP
0 (E) =

m4
tC

3
Fα

3
s

32πλ3

[
1−

(
1

2ε
+ 2Lwλ + 4

)
λ− 3λ2 +

(
1

4ε
+ 2Lwλ +

7

2

)
λ3

+ 2(λ− λ3)ψ̂(2− λ)

]
,

(5.41)

where

Laλ = ln

(
λµa

mtαsCF

)
= −1

2
ln

(−4mtE

µ2
a

)
, (5.42)

with a ∈ {r, w}. Minimal subtraction of the poles in (5.41) yields the result in the MS
scheme. We find that only the residue of the 1/ε pole in the first line of (5.41) is complex for
a non-zero width. The residue of the second pole is energy-independent and real. Thus, the
finite-width divergence in (5.41) is purely due to the two-loop, one exchange contribution.
It is in agreement with the result of [98, 136]. When the top width is neglected, the
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imaginary part of the P-wave Green function is finite, and has the form

Im
[
GP

0 (E)
]

=

(
mtCFαs

2

)5 ∞∑

n=2

n2 − 1

n5
δ(E − En)

+
m4
t

4π

(
E

mt

+
C2
Fα

2
s

4

)
πCFαs

1− e−CFαsπ/v θ(E), (5.43)

where v ≡
√
E/mt. It contains an infinite number of narrow resonances below threshold

with the bound-state energies En = −(mtC
2
Fα

2
s)/(4n

2) with n ≥ 2. Above the threshold,
the cross section is enhanced by the famous Sommerfeld factor. Our result (5.43) is in
agreement with [90].

5.2.2. Next-to-leading order Green function

Following the same approach as the S-wave computation [89], one can define the single-
insertion function

IP[x+ u] =

∫ [ 4∏

i=1

dd−1pi
(2π)d−1

]
p1 · p4 G̃0(p1,p2;E)

1

(q2
23)x

(
µ2

q2
23

)u
G̃0(p3,p4;E), (5.44)

where qij = pi − pj. The NLO correction to the P-wave Green function (3.45) can be
expressed through this function as follows:

δ1G
P (E) = CFα

2
s

[
β0

ε

(
IP[1 + ε]− IP[1]

)
+ a1(ε)IP[1 + ε]

]
. (5.45)

Again, the diagrams with up to four loops are UV divergent. We use the same approach
as at LO and split the NLO correction into a divergent (a) and a finite part (b). Due
to the insertion of the NLO Coulomb potential, this has a more complicated structure as
indicated in Figure 5.3. Due to the non-zero top width, divergences of the type Γt/ε, arising
from poles of the form E/ε, appear in the imaginary part of (a). Thus, in the computation
of part (a), the NLO Coulomb potential (3.41) must not be expanded in ε before the loop
integration. This differs from the S-wave [88], which has a finite imaginary part, and where
the potential can be expanded. Similarly, the imaginary part of (b) is finite and, therefore,
the potential can be expanded prior to the integration.

In the computation of I
(b)
P [1 + u], it is simpler to perform the necessary subtractions

of the divergent diagrams after some initial simplifications. Thus, we first consider the
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1
rall all − (b)1

r
≤ 1 ≤ 1 1

r−2×

1
r

≤ 1 ≤ 1 1
r+2× (a)

Figure 5.3.: We split the NLO correction to the Green function into a divergent part (a),
that contains all diagrams with up to four loops, and the finite remainder (b).

complete IP[1 + u] in position space:

IP[1 + u] = lim
x,y→0

〈
(∇x · ∇y)

∫
dd−1rG0(x, r;E)

µ2u (r2)
u− 1

2

4πΓ(1 + 2u) cos(πu)
G0(r,y;E)

〉

= lim
x,y→0

9m2
t (2p)

6µ2u

(4π)3Γ(1 + 2u) cos(πu) Γ(2 + λ)2Γ(2− λ)2

×
1∫

0

dt1

1∫

0

dt2 [(1− t1)(1− t2)]1+λ [t1t2]1−λ
∞∫

1

ds1

∞∫

1

ds2 [s1s2]1+λ [(s1 − 1)(s2 − 1)]1−λ

×
〈

(∇x · ∇y)

∫
dd−1r (x · r) (y · r)

(
r2
)u− 1

2 e−p[x(1−2t1)+y(1−2t2)+2r(s1+s2−1)]

〉
. (5.46)

The integral over r is straightforward:

∫
dd−1r rirj r2u−1e−2pr(s1+s2−1) =

δij

d− 1

2π(d−1)/2Γ(d+ 2u)

Γ((d− 1)/2)
[2p(s1 + s2 − 1)]−d−2u .

(5.47)
After taking the derivatives and the limit x,y → 0, the integrations over t1 and t2 are
simple and one obtains

IP[1 + u] =
m2
t (2p)

6−d−2uµ2u

4(4π)3Γ(1 + 2u) cos(πu)

2π(d−1)/2Γ(d+ 2u)

Γ((d− 1)/2)

×
∞∫

1

ds1

∞∫

1

ds2
[s1s2]1+λ [(s1 − 1)(s2 − 1)]1−λ

(s1 + s2 − 1)d+2u
.

(5.48)

The αs dependence of this expression is isolated in the exponents λ of the si and (si − 1)
factors. The necessary subtractions are the terms up to the order λ3 in an expansion for
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small λ. For the finite remainder (b), we can set d = 4. We find

I
(b)
P [1 + u] =

m2
tp

2

(4π)2

(
− µ2

4mtE

)u
jP(u), (5.49)

where, after the substitution ti = si − 1, we have

jP(u) =
Γ(4 + 2u)

Γ(1 + 2u) cos(πu)

∞∫

0

dt1

∞∫

0

dt2
t1t2(1 + t1)(1 + t2)

(1 + t1 + t2)4+2u

[(
(1 + t1)(1 + t2)

t1t2

)λ

− 1− λ log

(
(1 + t1)(1 + t2)

t1t2

)
− λ2

2
log2

(
(1 + t1)(1 + t2)

t1t2

)]
. (5.50)

We can exploit the finiteness of part (b) and expand the Coulomb potential in ε. This
yields the following simplification:

δ1G
P (b)(E) = CFα

2
s

[
β0

d

du
I

(b)
P [1 + u]

∣∣∣
u=0

+ a1(0)I
(b)
P [1]

]

=
m4
tα

4
sC

3
F

64π2λ2
[β0 (2jP(0)Lλ + j′P(0)) + a1(0)jP(0)] .

(5.51)

In the first line, we have written the logarithm of q2 in the expanded potential as a
derivative at zero u. This way, we do not require a solution of (5.50) for general u, but
only its value and its first derivative at u = 0. We show the computation in Appendix A.
The solution is

jP(0) = −1 +

(
π2

3
− 2

)
λ+ 3ζ(3)λ2 +

(
1− 3λ2

)
ψ̂(2− λ) +

(
λ3 − λ

)
ψ1(2− λ),

(5.52)

j′P(0) =
π2

6
− 50

9
+

[
−4 +

2π2

3
− 4ζ(3)

]
λ+

[
34

3
+
π2

6
− π4

180
+ 6ζ(3)

]
λ2

+
[
4 + 6λ− 10λ2

]
ψ̂(2− λ) +

(
3λ2 − 1

) [
ψ̂(2− λ)2 − 3ψ1(2− λ)

]

+
(
λ3 − λ

) [(22

3
− 2ψ̂(2− λ)

)
ψ1(2− λ) + ψ2(2− λ)

]

+
3

2(λ− 2)
4F3(1, 1, 4, 4; 5, 5, 3− λ; 1), (5.53)

with ψn(z) the nth derivative of the ψ function. The numerical evaluation of the hyper-
geometric function 4F3 for complex values of λ requires an analytic continuation. This is
briefly discussed in Appendix B, where the necessary formulas are given.

To compute the divergent part (a), we have to solve loop integrals like those in (5.39)
with the exponent of one of the gluon propagators raised by u. Part (a) is given by (5.45)
with IP replaced by

I
(a)
P [1 + u] = I00

P [1 + u] + 2I10
P [1 + u] + 2I20

P [1 + u] + I11
P [1 + u], (5.54)
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where InmP [1 + u] is the contribution from the diagram with n potential gluon exchanges
to the left and m to the right of the insertion of the NLO Coulomb potential. As at LO,
the diagrams again have up to four loops, but with one propagator raised to a non-integer
power. They must be calculated in dimensional regularization and we show the details and
the results for the InmP [1 + u] in the second part of Appendix A. The final result for the
NLO correction to the Green function in dimensional regularization is:

δ1G
P (E) = −m

4
tα

4
sC

3
F

64π2λ2

×
{
β0

[(
− 1

12ε2
+

59

9
+

5π2

72
+ 4Lrλ + 2LrλL

w
λ − (Lwλ )2

)
+ (9 + 6Lrλ)λ

+

(
3

40ε2
+

1

20ε
− 344

15
− π2

8
− 21

2
Lrλ +

1

2
Lwλ − 6LwλL

r
λ + 3 (Lwλ )2

)
λ2

+
[
−4− 6λ+ 10λ2 + 2(3λ2 − 1)Lrλ

]
ψ̂(2− λ)

+
(
λ− λ3

) [
ψ1(2− λ)

(
22

3
+ 2Lrλ − 2ψ̂(2− λ)

)
+ ψ2(2− λ)

]

+
(
3λ2 − 1

) [
3ψ1(2− λ)− ψ̂(2− λ)2

]
+

3

4− 2λ
4F3(1, 1, 4, 4; 5, 5, 3− λ; 1)

]

+ a1(ε)

[
1

6ε
+ 2 + Lwλ + 3λ−

(
3

10ε
+

26

5
+ 3Lwλ

)
λ2 +

(
3λ2 − 1

)
ψ̂(2− λ)

+
(
λ− λ3

)
ψ1(2− λ)

]}
. (5.55)

We have distinguished the renormalization scale µr and the scale µw related to finite width
divergences as described in Appendix A. The scales can also be identified by demanding
that the dependence on the renormalization scale cancels at NLO. By expanding the run-
ning coupling αs in the leading order Green function, we can identify the logarithms of µ
in (5.55), that are required for the cancellation, and assign them to µr. The remaining
µ-dependence is related to the width, i.e. denoted by µw, and persists in the pure-QCD
result. It will only cancel, when non-resonant effects are taken into account at NNNLO.
One can see that the µw-dependence is polynomial in E and cancels in the imaginary part
for Γt = 0. This is a further check for the consistency of the result.

5.2.3. Pole resummation

Due to the non-perturbatively strong color Coulomb interaction, the Green function de-
velops bound-state poles below threshold. In the P-wave Green function they correspond
to would-be toponium states with angular momentum l = 1. In conventional perturbation
theory, these poles would never emerge. Accordingly, they are only present in the finite
parts of the computation that sum over an infinite number of diagrams. In the formulas,
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the poles appear in the polygamma and hypergeometric functions at positive integer values
λ ≥ 2.

When the exact Green function is expanded around the energy EP
n of the nth P-wave

bound state, it has the form

GP (E)
E→EPn=

|ψ′n(0)|2
EP
n − E − iε

+ regular, (5.56)

where ψ′n(0) the derivative of the wave function of the nth bound state at the origin. Thus,
the NLO Green function also contains the information necessary to determine the NLO
corrections to the bound-state, parametrized by

EP
n = EP (0)

n

(
1 +

αs
4π

eP1 +O(α2
s)
)
, |ψ′n(0)|2 = |ψ′(0)

n (0)|2
(

1 +
αs
4π
fP1 +O(α2

s)
)
. (5.57)

The expansion of the perturbative result (3.45) for the Green function near the bound-state
poles also contains higher poles because the energy-levels and wave functions in (5.56) are
expanded

GP (E)
E→EP (0)

n=
|ψ′(0)
n (0)|2

E
P (0)
n − E − iε

+
αs
4π


 fP1 |ψ′(0)

n (0)|2

E
P (0)
n − E − iε

− eP1 |ψ′(0)
n (0)|2EP (0)

n(
E
P (0)
n − E − iε

)2




+O(α2
s) + regular. (5.58)

The results for the bound-states follow from an expansion of our results for the Green
function for E near E

P (0)
n , or, equivalently, λ near positive integer n. Alternatively, the

leading order terms can be read off from the imaginary part (5.43) of GP
0 :

EP (0)
n = −mtC

2
Fα

2
s

4n2
, |ψ′(0)

n (0)|2 =
1

π

(
mtCFαs

2

)5
n2 − 1

n5
. (5.59)

The expansion of (5.55) is

δ1G
P (E)

λ→n
=

m4
tα

4
sC

3
F

4(4π)2

×
{

n2 − 1

n2(n− λ)

[
2β0

(
2Lrn + 4 +

3

n− 1
− 4n2

n2 − 1
ψ̂(n+ 2)− 2nψ1(n+ 2)

)
+ 2a1

]

+
n2 − 1

n(n− λ)2

[
2β0(Lrn + ψ̂(n+ 2)) + a1

]
+ regular

}
. (5.60)

Comparing this to (5.58), we find:

eP1 =2a1 + 4β0

[
Lrn + ψ̂(n+ 2)

]
, (5.61)

fP1 =5a1 + 2β0

[
5Lrn + 4 +

3

n− 1
− n2 + 3

n2 − 1
ψ̂(n+ 2)− 2nψ1(2 + n)

]
, (5.62)
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with Lrn = ln (nµr/(mtCFαs)). This is in agreement with the results of [91, 92].
With these expressions, it is possible to resum the singular bound-state terms in (5.58)

into the form (5.56), which contains only single poles. This defines the pole-resummed
Green function

GP
PR(E) = GP (E) +

∞∑

n=2

{[ |ψ′n(0)|2
EP
n − E − iε

]

unexpanded

−
[ |ψ′n(0)|2
EP
n − E − iε

]

expanded

}
. (5.63)

Obviously, one can’t take the sum up to infinity in the numerical evaluation. Fortunately,
it is sufficient to apply a rather small cutoff due to the 1/n3 behaviour of the square of the
derivative of the wave function at the origin. In practice, only the poles up to n = 6 are
resummed.

5.2.4. P-wave contribution to the cross section

We recall from Section 3.5 that the correct treatment of finite terms, that arise from
finite width divergences, is crucial for the consistent combination of the resonant and
non-resonant part. Our prescription for the P-wave contribution is that the spectral
function (3.21) is computed completely in d dimensions and the leptonic tensor in 4 di-
mensions. This implies that finite terms from the finite width divergences in the Green
function multiplying the d-dimensional prefactor (d − 2)/(d − 1) × c2

a in (3.21) must be
taken into account. We parametrize the short-distance coefficient (5.37) in the form

ca = 1 + [c
(1)
a + εc

(1ε)
a ] + O(α2

s), where the scale µ in the logarithm in c
(1ε)
a should be

identified with µw, and the Green function at LO (5.41) and NLO (5.55) as

GP
0 (E) =

1

ε
G0,div +GP

0,MS, δ1G
P (E) =

1

ε2
δ1Gdiv2 +

1

ε
δ1Gdiv1 + δ1G

P
MS. (5.64)

In terms of these expressions, the NLO result for the spectral function Π(a)(q2) in the MS

scheme with the NDR treatment of γ5 is given by Π(a)(q2) = Π
(a)
0 (q2) + δ1Π(a)(q2) with

Im [Π
(a)
0 (q2)] =

Nc

2m4
t

2

3
Im [GP

0,MS(E)]− 2

9

Nc

32π

αsCFΓt
mt

, (5.65)

Im [δ1Π(a)(q2)] =
Nc

2m4
t

2

3
Im [δ1G

P
MS(E)] + 2c(1)

a Im [Π
(a)
0 (q2)]

+2c(1ε)
a

2

3

Nc

32π

αsCFΓt
mt

+

(
β0

81
− a1(0)

27

)
Nc

32π2

α2
sCFΓt
mt

, (5.66)

where the finite terms proportional to the top width Γt have been worked out explicitly. We
observe that they do not depend on the energy because they stem from poles that cancel
with the non-resonant part, which is also energy independent. In (5.66), we have assumed
that the width Γt is treated as a parameter, i.e. that it is not expanded in perturbation
theory and it is 4-dimensional. In the non-resonant part, analytical expressions for the
width are used. For a consistent combination, also the finite terms from O(ε) terms in the
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analytic expression for Γt must be taken into account. These terms are attributed to σΓ

and were discussed in Section 5.1.1. The result for the P-wave contribution to the NNNLO
cross section is given by

σP-wave = 12πσ0

(
C

(v)2

P-wave + C
(a)2

P-wave

)
Im [Π

(a)
0 (q2) + δ1Π(a)(q2)]. (5.67)

5.3. Higgs effects at NNNLO

In this section we consider the effects of the Higgs boson up to NNNLO. At this point,
only Higgs contributions which exclusively contain the top Yukawa coupling are taken into
account. Corrections that also involve Higgs-gauge boson interactions are considered a
general electroweak effect and treated as part of σ

C
(k)
EW

in Section 5.1.3.

The Higgs contribution involves two new parameters, the Higgs mass mH , and top-quark
Yukawa coupling yt. The power counting of the Higgs mass is crucial for the structure of
the contributions, as we argue below. It has been considered to be hard in Section 3.4,
mH ∼ mt, which is numerically well justified. In earlier analyses [137], before the Higgs
boson discovery, it was implicitly assumed that the Higgs boson mass is of the order of the
soft scale mtαs. Higgs exchange contributions have been described by a Yukawa potential
exp(−mHr)/r. Counting the Higgs mass as hard, the exponent in the Yukawa potential
scales like 1/v and the potential becomes non-analytic in the velocity expansion. This is
clearly inconsistent and violates the spirit of the effective field theory approach, where all
terms should have an unambiguous scaling. Thus, the results of [137] can’t be used in
the light of the physical Higgs mass. Instead, one has to perform a proper matching with
the correct scaling, in which case a local interaction δ(3)(r)/m2

H is obtained. This directly
follows from the Higgs propagator 1/(q2 + m2

H) in momentum space, where our counting
implies that q2 ∼ m2

tv
2 can be expanded out with respect to m2

H . The leading Higgs
potential in momentum space is therefore simply

δHV = − y2
t

2m2
H

. (5.68)

With mH ∼ mtv, both terms in the Higgs propagator would be of the same order and the
Yukawa potential would be retained.

On the other hand, the counting of the top-quark Yukawa coupling merely determines at
which order in perturbation theory the contributions appear. The standard model Yukawa
coupling is related to the other parameters by the relation

y2
t =

2m2
t

v2
=

2παm2
t

m2
W s

2
w

. (5.69)

Our choice to considermW ∼ mt as hard in Section 3.4 implies the counting y2
t ∼ αEW ∼ α2

s,
that will be used here. Alternatively, one might take treating y2

t ∼ αs into consideration
because of the large value of the top-quark mass. Below, we compare the actual size of



5. Resonant non-QCD contributions 71

t

H

t

Figure 5.4.: One-loop Higgs correction to the colour Coulomb potential.

the Higgs corrections to QCD terms of the same order and show that our approach is
appropriate.

The Higgs corrections appear in two ways. Firstly, there are contributions to the hard-
matching coefficient of the external vector current or the production operators, respectively.
Being a hard corrections, this is only suppressed by the coupling constant, which is given
by y2

t . In our counting, it constitutes a NNLO effect. At NNNLO, we also have to consider
mixed Higgs-QCD contributions of this type. They are discussed in Section 5.3.1. The
second effect is the Higgs potential (5.68). With respect to the leading QCD Coulomb
potential αs/q

2, it is a NNNLO effect. The correction to the non-relativistic correlation
function is calculated in Section 5.3.2.

Naive power counting suggests that NNLO corrections to the colour Coulomb potential,
as shown in Figure 5.4, are present. Only the hard loop momentum region is relevant for
mH ∼ mt. However, the external momenta are potential and must be expanded out in
the loop integral. Thus, one obtains an O(y2

t ) correction to the ψ†ψA0 top-quark-gluon
coupling of the NRQCD Lagrangian at zero momentum transfer. In the on-shell scheme
this contribution is canceled by the top-quark field renormalization because the vertex is
effectively on-shell (cf. Section 5.1.2).

5.3.1. Short-distance effects

The NNLO Higgs contributions to the hard-matching coefficient of the vector current have
been computed in [122–124]. Here we only consider terms that contain the square of the
top-Yukawa coupling. Other Higgs boson corrections are tiny and taken into account at
NNLO in Section 5.1.3. For the mixed Higgs and QCD corrections at NNNLO, the leading
six terms in expansions mH ≈ mt or mH � mt have been determined in [118]. It was
found that the NNNLO coefficient is IR divergent. The divergence was absorbed into the
renormalization constant

Z̃v = 1 + [pure QCD] +
αsCF

4π

y2
tm

2
t

2m2
H

1

4ε
. (5.70)

for the vector current. We write the renormalized hard matching coefficient in the form

cv = 1 + [pure QCD] +
y2
t

2

[
c

(2)
vH +

αs
4π
c

(3)
vH

]
+ . . . . (5.71)
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In our convention, the results of [118] read

c
(2)
vH =

1

π2

[
3z − 1

12z
− 2− 9z + 12z2

48z2
ln z +

2− 5z + 6z2

24z
Ψ(z)

]
, (5.72)

with z = m2
t/m

2
H and

Ψ(z) =





√
4z − 1

z
arctan

√
4z − 1, z ≥ 1/4,

√
1− 4z

2z
ln

1−
√

1− 4z

1 +
√

1− 4z
, z < 1/4.

(5.73)

c
(3)
vH =

4CF
π2

[π2

8
(1− y) ln

m2
t

µ2
− 5.760 + 5.533y − 0.171y2 + 0.0124y3 + 0.0304y4

+ 0.0296y5 + . . .
]
, (5.74)

with y = 1− z. The approximate result 1b from [118] has been used for c
(3)
vH . It converges

quickly for the physical Higgs boson mass and we neglect the truncation error, which we
estimate to be well below one percent.

We can now compare the size of these corrections to the QCD contributions to assess
the appropriateness of the power counting yt ∼ αs. The numerical result for the hard
matching coefficient is given by

cv = 1− 0.103|αs − 0.022|α2
s

+ 0.031|y2
t
− 0.070|α3

s
− 0.019|y2

tαs
+ . . . , (5.75)

where we have used αs(µ = 80 GeV) = 0.1209. The coupling orders for the various contri-
butions are shown explicitly. The power counting is obviously justified here. Additionally,
the Higgs potential (5.68) can be compared to its natural QCD counter-part, the local
QCD contribution to the potential. This is the spin-projected QCD NNLO Darwin po-
tential δVD = 8παsCF/(3m

2
t ) = 1.35/m2

t , where we have used the numerical value for αs
from above. The Higgs potential δHV = −0.98/m2

t is only slightly smaller, but we believe
that our counting is valid because the Darwin potential itself is only a small correction
compared to the overall NNLO QCD effect.

5.3.2. Potential contributions

The NNNLO correction to the non-relativistic S-wave Green function due to the Higgs
potential (5.68) has the form

δHG(E) = 〈0| Ĝ0(E) iδHV iĜ0(E) |0〉 = −δHV G0(E)2, (5.76)

where G0(E) is the LO Green function (3.46), evaluated at r = r′ = 0. The Green function
G0(r, r′, E) describes the propagation of a non-relativistic top-pair in the presence of the
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leading order Coulomb potential. The square of G0 appears in (5.76) because the top pair
is produced by a local current, then interacts via the local Higgs potential, i.e. is produced
and annihilated at zero spatial separation, and is finally annihilated by a local current.

The real part of the LO Green function (3.46) contains a 1/ε pole of UV origin from the
one-gluon exchange diagram. This implies that G2

0 contains a pole in the imaginary part.
Explicitly, the divergence in the imaginary part of the Higgs correction reads

Im [δHG(E)]|div =
y2
t

m2
H

m2
tαsCF
16πε

Im [G0(E)] . (5.77)

We note that, as it stands, (5.77) also contains an unknown finite part from the O(ε)
terms in the imaginary part of G0. However, in the Higgs contribution to the spectral
function the combination Im[(cvZ̃

−1
v )2G(E)] appears and the divergence (5.77) is canceled

by the renormalization constant (5.70). This cancellation also extends to the unknown
finite terms mentioned above. In the NNLO QCD part, an analogous cancellation happens
between the divergent part of the single insertion of the QCD Darwin potential and part
of the two-loop QCD contribution to the renormalization constant of the vector current
Z̃v. Thus, it is sufficient to consider the minimally subtracted Green function

δHGfin(E) =
y2
t

2m2
H

(
m2
tαsCF
4π

[
Lλ +

1

2
− 1

2λ
− ψ̂(1− λ)

])2

, (5.78)

and the renormalized hard matching coefficient.
Similar to our discussion for the P wave in Section 5.2.3, one can resum the Higgs

contributions to the poles of the S-wave Green function, which correspond to 3S1 toponium
bound states. Near these poles, the S-wave Green function has the form

G(E)
E→En−→ |ψn(0)|2

En − E − iε
, (5.79)

with the energy levels En and squared wave functions at the origin |ψn(0)|2. We parametrize
Higgs corrections in the following way:

En = E(0)
n

(
1 + [pure QCD] +

αs
4π

y2
t

2
eH

)
,

|ψn(0)|2 = |ψ(0)
n (0)|2

(
1 + [pure QCD] +

αs
4π

y2
t

2
fH

)
,

(5.80)

where

E(0)
n = −mt

(
αsCF

2n

)2

, |ψ(0)
n (0)|2 =

1

π

(
mtαsCF

2n

)3

. (5.81)

As described in Section 5.2.3, the higher order perturbative corrections to the Green func-
tion contain knowledge of the corrections to the bound state. We can determine eH , fH
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from a comparison of the expansions of (5.78) and (5.79) around the bound-state energies,
or equivalently an expansion for λ near positive integer values n. We obtain

δHGfin(E) =
y2
t

2m2
H

m4
tα

2
sC

2
F

16π2

[
1

(n− λ)2
+

2

n− λ

(
Ln +

1

2
− 1

2n
− ψ̂(n)

)
+ . . .

]
, (5.82)

where Ln = log(nµ/(mtαsCF )) and regular terms in the limit λ→ n have been discarded.
We find

eH =
m2
tCF
m2
H

2

n
, fH =

m2
tCF
m2
H

(
2Ln + 1 +

4

n
− 2S1(n)

)
, (5.83)

where S1(n) =
∑n

k=1 k
−1 is the nth harmonic number of order one. Our expressions agree

with the results for the energy levels and the Υ(1S) wave function in [118].

5.3.3. Combined Higgs effects

Having collected all the parts, we can give expressions for the complete NNNLO Higgs
corrections to the cross section, with the exception of the tiny corrections involving Higgs-
gauge boson couplings. The NNLO correction to the vector correlation function (3.20)
reads

δ2HΠ(v) =
3

2m2
t

y2
t c

(2)
vHG0(E), (5.84)

and the NNNLO correction is given by

δ3HΠ(v) =
3

2m2
t

[αs
4π
y2
t (c

(3)
vH + c

(2)
vHc1)G0(E) + y2

t c
(2)
vHδ1G(E) + δHGfin(E)

]
. (5.85)

It also contains mixed NNLO Higgs and NLO QCD terms. The NLO QCD contributions
to the Green function and the hard-matching coefficient have been written in the usual
parametrization G(E) = G0(E) + δ1G(E) + . . . and cv = 1 + αsc1/(4π) + . . .. The Higgs
contribution to the top-pair production cross section has the form

σH = 12πσ0

(
C(v)2

+ C(a)2
)

Im [δ2HΠ(v)(q2) + δ3HΠ(v)]. (5.86)



6. Phenomenology of top-pair
production near threshold

In this section, we present a phenomenological survey of the threshold scan of top-pair
production from a theory perspective. Several experimental simulations [26,138,139] have
found that the statistical uncertainties are tiny in realistic running scenarios at future linear
colliders. First results from an experimental study [140] based on the theory prediction
available in QQbar threshold [29] have recently become available and have given a first
combined account of the achievable accuracy. Therefore, we focus solely on the theory
prediction and its uncertainty.

To avoid the IR renormalon ambiguities discussed in Section 2, we exclusively employ
the PS Shift (PSS) mass scheme throughout this section. It is defined by

σPSS(
√
s,mPS

t ) = σpole(
√
s,mPS

t + δmt), (6.1)

where the order of the pole-PS mass relation δmt is correlated with the order of the
prediction. One could also expand the right-hand side in δimt ∼ mtα

2+i
s with i ≥ 1,

which defines the PS Insertion (PSI) scheme introduced in [89]. As discussed there, this
leads to unphysical behaviour close to threshold and is therefore not considered below. It
is mandatory to resum the resonance poles in the Green function to achieve renormalon
cancellation in the PSS scheme. We do this for the first six poles following the procedure
outlined in Section 3.3.

For the numerical evaluation we adopt the input values

mPS
t = 171.5 GeV, αs(mZ) = 0.1184, α(mZ) = 1/128.944

mH = 125 GeV, mZ = 91.1876 GeV, mW = 80.385 GeV,
Γt = 1.33 GeV, µr = 80 GeV, µw = 350 GeV,

(6.2)

where the running electroweak coupling is taken from [126], see the discussion in Sec-
tion 5.1.3.

6.1. Analysis of non-QCD contributions

We first consider the P-wave contribution to the total cross section. Our results at LO and
NLO are shown in Figure 6.1. Compared to the S-wave, the overall effect is below 1% in
the threshold region because on top of the v2 suppression of the P-wave, the ratio of the

75
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Figure 6.1.: The P-wave contribution to the cross section in pb. We used the PSS scheme
with the parameter values of (6.2). The dashed and solid lines are the LO and
NLO results, respectively. Due to the v2 suppression of the P-wave, they con-
tribute at NNLO and NNNLO to the total cross section. The shaded regions
indicate the respective uncertainties from variation of µr between 50 GeV and
350 GeV. The dotted line denotes the Born-level result, where the Coulomb
singularities are not resummed.
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Figure 6.2.: The full QCD cross section up to NNNLO, including the small P-wave con-
tribution. The bands are spanned by variation of µr between 50 GeV and
350 GeV.
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couplings (v2
e + a2

e)a
2
t/e

2
t ≈ 0.28 is small.1 The shaded bands are determined by variation

of the renormalization scale µr between 50 GeV and 350 GeV, while keeping µw = 350 GeV
fixed. The µw dependence is related to uncanceled finite-width divergences in the pure-
QCD result and will be discussed below.

There is very good convergence between the LO and NLO P-wave results and the de-
pendence on the renormalization scale is greatly reduced. Thus, we can conclude, that
perturbation theory works well already at low orders for the P-wave contribution. The
comparison with the Born result (dotted curve in Figure 6.1) shows the importance of
Coulomb resummation, similar to the observation made for the S-wave result in Figure 1.5.
However, the P-wave does not develop a visible resonance peak because the sizeable top-
quark width completely smears out the small residue of the lowest n = 2 P-wave bound
state.

We define a reference QCD prediction by adding the small P-wave contribution to the S-
wave result of [28]. The result is shown in Figure 6.2, where the uncertainty bands are again
due to variation of the renormalization scale. The conclusions of [28] are unchanged by
this. On the basis of this reference QCD result, we show the effect of non-QCD corrections
in Figure 6.3.

In the top-panel we show the relative effect of the Higgs contribution σH at NNLO
and NNNLO. At NNLO there is an almost constant relative shift because only the hard-
matching coefficient c

(2)
vH is present. At NNNLO, it is partially compensated by the negative

mixed Higgs-QCD corrections like c
(3)
vH . Furthermore, there is a contribution from the local

Higgs potential, which modifies the position of the peak. Due to the attractive nature of
the potential, the binding energy is increased and the peak is shifted to the left. At the
same time the Higgs corrections increase the cross section by 4 − 8%, depending on the
value of

√
s, and make the peak more pronounced.

The effects from the remaining electroweak contributions σδVQED
, σΓ, σ

C
(k)
EW

and σ
C

(k)
Abs,bare+Zt

to the “partonic” resonant cross section are shown in the middle panel. The dashed line
corresponds to the correction from the QED Coulomb potential only. It is attractive and
therefore leads to an increase of the cross section by 2 − 8% and a shift of the peak to-
wards a smaller center-of-mass energy. The solid line shows the full correction. The width
contribution σΓ changes the cross section by only (−0.6) − (0.4)%. Including the real
part of the electroweak matching coefficient leads to an almost constant relative shift of
about −4%. The absorptive part of the matching coefficient multiplies the real part of
the non-relativistic Green function, which has a broad peak, roughly centered around the
point where the imaginary part has its maximal slope, on top of a smooth background.
Thus, the absolute contribution has only a mild energy dependence and is of the order of
−(6− 8)% near and above the peak. However, it becomes even more important below the
peak, where the cross section is small and it modifies the result by up to −18%.

The lower panel illustrates the behaviour of the non-resonant contribution to the total
cross section. Its absolute size is nearly energy-independent. Thus, the shape of the curves

1However, it may be possible to extract the P-wave contribution experimentally using different beam
polarizations, see [93].
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Figure 6.3.: Relative corrections to the QCD cross section from Higgs effects (top), elec-
troweak effects (middle) and the non-resonant contribution (bottom).
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is given by the inverse of the QCD cross section. At NLO, the effect is of the order−(3−4)%
near and above the peak and reaches up to −20% for low center-of-mass energies, where
the resonant cross section becomes small. The NNLO corrections compensate about half of
the NLO result. This is in contrast to the findings of [98,99], where an enhancement of the
negative non-resonant correction from an approximate NNLO result was observed. The
apparent discrepancy is, however, entirely explained by the vastly different scale choices
made in [98, 99] (µw = 30 GeV) and here (µw = 350 GeV). The dependence of the full
result on µw is very mild as discussed below and, thus, mainly the size of the individual
contributions (most notably the non-resonant correction and the one from the absorptive
part of the hard matching coefficients) is affected.

The net effect of all the corrections barring ISR is shown in Figure 6.4. The non-QCD
effects chisel out the peak, whose height is slightly increased and which moves towards
smaller center-of-mass energies. Above the peak the cross section is slightly decreased by
−(2 − 3%). The largest effect is observed below the peak, where the absorptive parts
of the matching coefficients and the non-resonant contribution dominate the non-QCD
corrections. Here, the bands cease to overlap at around

√
s = 341.5 GeV. The size of the

uncertainty band is slightly increased and now reaches almost ±5% directly below the peak,
where the uncertainty estimate for the QCD result is ±3.8%. In the remaining regions it
is however of the size of ±3%. The increase of the scale uncertainty is mainly due to the
Higgs potential insertion.

We recall that the bands only include the variation of the renormalization scale between
50 GeV and 350 GeV, while the scale µw = 350 GeV is kept fixed. The dependence on
the scale µw cancels exactly between all contributions of a given order. We show the µw
dependence of the resonant cross section and the full cross section in Figure 6.5. For the
resonant-only cross section, it is mild near and above the peak, but is significantly larger
than the renormalization scale dependence blow the peak. The sensitivity to µw is greatly
reduced for the full cross section, where the variation by a factor of 14 considered in the
plots only yields a ±0.3% effect near and above the peak and only a mild ±2% below the
peak. The remaining µw dependence is of NNNLO, where the full QCD corrections, but
only a few electroweak effects are considered and therefore no full cancellation is achieved.

We have discussed the possibility of imposing loose cuts, which only affect the non-
resonant part of the cross section, in Section 4. The dependence on the cut defined in (4.2)
is shown in Figure 6.6, where the dotted and solid lines denote the NLO and NNLO non-
resonant contribution. Very loose cuts with ∆Mt ≥ 30 GeV have only a mild influence
on the cross section. More tight cuts ∆Mt = (30, 20, 10, 5) GeV reduce the cross section
by (0.007, 0.014, 0.038, 0.086) pb. We observe that for ∆Mt around 4 GeV the NNLO non-
resonant contribution becomes as large as the NLO one. Here, the assumption that the cut
is loose is no longer appropriate and our description breaks down. It is however unimpaired
for ∆Mt & 6 GeV.

The dashed line in Figure 6.6 shows the approximate NNLO result [98], which includes
only the endpoint divergent terms, for comparison. It describes the dependence on the cut
very well, since the endpoint divergent terms are most sensitive to it, but it is shifted by
-0.006 pb for the full cross section and up to -0.009 pb in the presence of invariant mass cuts.
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Figure 6.4.: The cross section including the corrections from Figure 6.3 (red hatched band)
and in pure QCD (gray hatched band). The bands represent the uncertainty
from scale variation. The upper panel shows the cross section in pb and the
lower panel shows the results normalized to the full one for the central scale
µr = 80 GeV.
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√
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Figure 6.6.: The dependence of the non-resonant contribution to the cross section on the
invariant mass cut (4.2). The dotted line shows the result at NLO and the solid
line the NNLO correction (without the NLO terms). The dashed line denotes
the approximate NNLO result from [98]. The full cross section corresponds to
∆Mt = mt −mW .

In the absence of any cuts the exact result corresponds to a 75% correction with respect
to the approximate NNLO result. We note, however, that for the scale choice of [98] and
in the range of loose, but not too loose, cuts Γt � ∆Mt � mt the approximation is much
better.

We finally discuss the effects of initial state QED radiation, which have so far only been
taken into account in the experimental studies. Figure 6.7 shows the overall effect from
σconv

IS and the convolution with the electron structure functions. The former is a small effect
of the order −(0.4 − 1.5)%. For the latter we have not used (5.26), but the numerically
less expensive relation

σ(s) =

1∫

0

dx
(

ΓLL
ee (x)

∣∣
β→2β

)
σ̂conv(xs) (6.3)

from [128, 130], which is LL accurate. The black band is spanned by four different im-
plementations of the convolution of the full NNNLO QCD plus NNLO EW cross section
according to (6.3). This involves an extrapolation of the cross section for energy values
outside of the range of the grids available in QQbar Threshold [29]. We either use the
shape of the LO cross section below

√
s = 328 GeV, rescaled to match the full result

at
√
s = 328 GeV, or an alternative implementation that interpolates linearly between

σ(
√
s = 320 GeV) = 0 pb and our result at

√
s = 328 GeV. Numerically, we find a small

difference of 0.2% near and above the peak, which goes up to 1.3% at
√
s = 340 GeV. For

both implementations we consider the structure functions with and without the constant
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Figure 6.7.: The effect of initial state QED radiation on the cross section. The dotted curve
shows the full partonic result. The solid band (ISR) is the envelope of results
obtained by convoluting the full partonic result with the structure functions
with different systematics (see text). The dashed line (ISR0) is obtained by
convoluting only the leading order partonic cross section with the structure
function and adding the full partonic corrections on top.

term in βexp = βS = βH = −(2α/π)(ln(z) + 1). As discussed in Section 5.1.5, the differ-
ence yields a rough estimate for the order of the missing NLL terms. It is in the range of
1.3− 2.2%, but we cannot exclude larger corrections.

For comparison we furthermore show the result

σISR0(s) = σ̂full(s)− σ̂LO(s) +

1∫

0

dx
(

ΓLL
ee (x)

∣∣
β→2β

)
σ̂LO(xs) (6.4)

denoted by the dashed line. Formerly, the difference is a N1/2LL effect. Due to the
sizeable higher-order corrections to the cross section it is, however, substantial. Thus, it is
mandatory to evaluate (6.3) for the full partonic result.

The effects of ISR are huge, reducing the cross section by 30 − 45%. It also leads to
a significant modification of the shape. The peak is shifted by almost 200 MeV to the
right and smeared out considerably. Its height is reduced by about 40%. This emphasizes
the need for a full NLL treatment of ISR and a proper analysis of the convergence and
remaining uncertainty, which is of universal importance for e+e− collider processes, but is
beyond the scope of this work.
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6.2. Sensitivity to SM parameters

The comparison of the theoretical prediction for the top-quark pair production cross section
to the experimental results from a future lepton collider can be used to extract precise values
for several standard model parameters. The most characteristic features are the steep rise
and peak of the cross section. Figure 6.8 shows the impact of the non-QCD corrections
on the peak (upper panel) and maximum slope (lower panel). However, we do not take
the effects of ISR into account for the discussion in this section since the important NLL
corrections are presently unknown. The error bar is obtained by adding the uncertainties
from renormalization scale variation between 50 GeV and 350 GeV and variation of αs(mZ)
by ±0.001 in quadrature, while the inner bar only captures the uncertainty from the strong
coupling.

The Higgs contributions shift the peak by −35 MeV and increase its height by 6%.
The remaining electroweak corrections cause an additional shift of −50 MeV. The QED
Coulomb potential enhances the height of the peak, but is overcompensated by the negative
electroweak contribution to the matching coefficients of the production and annihilation
operators, such that the height is reduced by −1.9%. The non-resonant contribution is
nearly energy-independent and therefore leaves the position of the peak unchanged, while
reducing its height by −1.6%. The effect of the non-QCD effects on the extracted value
of the top-quark mass is essentially determined by half of the shift of the peak position,
which yields −42 MeV. This is of the same order as the expected theory uncertainty and
demonstrates the importance of taking these contributions into account. Overall the cor-
rections enhance the absolute height of the peak only marginally, but they also decrease
the normalization of the ”background”, such that the peak becomes more pronounced.

The position of maximal slope experiences almost the same shifts as the peak. The max-
imal slope is however increased by 9.7%, mainly due to the Higgs contribution. The non-
resonant contribution has no influence on the slope, since it is nearly energy-independent.

The top mass and width dependence of the cross section is shown in more detail in
Figure 6.9. The upper panel demonstrates the effects due to variation of the top-quark PS
mass by ±50 and ±100 MeV. The shape of the corresponding curves corresponds mainly to
a shift of the cross section by 2δmt in

√
s. The cross section is most sensitive to the mass

about 1.5 GeV below the peak, where we observe a change of ±7% for δmPS
t = ∓50 MeV.

Since the respective scale uncertainty is slightly below ±5%, we may expect that the theory
uncertainty on the top-quark mass determination is even below ±50 MeV.

The sensitivity to the top width is considered in the lower panel, where we study shifts
δΓt of ±100 MeV. Since the top width is responsible for the ”smearing” of the would-be
toponium resonances, the peak becomes narrower and more pronounced for a decrease
of Γt. The opposite happens for an increase in the width. The variation by ±100 MeV
leads to curves well outside of the uncertainty band, which shows that the expected theory
uncertainty on the determination of the top-quark width is significantly below 100 MeV.

The threshold scan further offers an important consistency check for the SM from the
measurement of the top-quark mass and Yukawa coupling in the same process. In the SM
the fermion masses and Yukawa couplings are connected by yf =

√
2mf/v. Any significant
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Figure 6.8.: The peak position and peak height (upper panel) of the cross section for
QCD-only (red), QCD+Higgs (green), QCD+Higgs+EW (blue) and includ-
ing all contributions barring ISR (black). The uncertainty is determined by
the quadratic sum of the errors from renormalization scale variation and varia-
tion of αs(mZ) by ±0.001. The size of the latter is indicated by the inner error
bars. The lower panel shows the maximum slope using the same conventions.
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panel) and top width (bottom panel) is shown in comparison to the uncertainty
band from scale variation (cf. Figure 6.4). The prediction is normalized to the
full cross section with (6.2).
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deviation from this relation would be an unambiguous signal for new physics and provide
important insight into the mechanism of electroweak symmetry breaking in nature. This
is particularly interesting for the top quark because it is by far the most massive fermion
in the SM and many new-physics explanations have been invoked to try to explain this
happenstance. Such a deviation can, for example, be caused in the model-independent2

framework of the dimension-six effective Lagrangian [141, 142]. To demonstrate this, we
consider the operator

∆L = −cNP

Λ2
(φ†φ)(Q̄3φ̃tR) + h.c., (6.5)

where φ̃ = iσ2φ∗, cNP is a new dimensionless coupling and Λ � v is the scale of new
physics. For simplicity, we have assumed that only the third generation is affected. After
electroweak symmetry breaking, the operator yields corrections to the mass term and
Yukawa term of the top,

∆L ⊃ − cNPv
2

2
√

2Λ2
(vt̄LtR + 3ht̄LtR) + h.c., (6.6)

where h denotes the physical Higgs field. The coefficients of the two terms differ by a factor
three, which breaks the SM relation. We parametrize the correction with

κt ≡
yt√

2mt/v
= 1 +

cNP

Λ2

v3

√
2mt

, (6.7)

where

mt =
v√
2

(
ySM
t +

cNPv
2

2Λ2

)
and yt = ySM

t +
3cNPv

2

2Λ2
. (6.8)

The SM relation is recovered for κt = 1. We observe that this naturally leads to the
κ-formalism that has been widely used to study Higgs couplings. It has also been demon-
strated in [143] that there is a rigorous effective field theory justification for this formalism
in general. The cross section is obviously also sensitive to other operators in the dimension-
six Lagrangian – in particular those that cause further anomalous top couplings, e.g. to
gluons. A complete treatment of these contributions is beyond the scope of this work.

We now apply our approach to study the sensitivity of the cross section to a rescaling
of the Yukawa coupling yt in the Higgs potential (5.68) and hard matching coefficients by
non-unity values of κt. This is equivalent to the assumption that the top-quark mass and
Yukawa coupling are independent parameters. The curves obtained for different values of
κt are shown in Figure 6.10 in comparison to the scale uncertainty of the SM result. The
results are normalized to the full cross section with µr = 80 GeV. The overall normalization
of the cross section changes due to the modification of the strength of the attractive Higgs
potential, while the effect on the shape of the cross section is rather mild. Explicitly, we find
an increase of the cross section by 5–10% for κt = 1.5 and a decrease of 3–5% for κt = 0.5,
as well as shifts in the position of the peak by −44 MeV and +27 MeV, respectively.

2 Assuming new physics are heavy!
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Figure 6.10.: The sensitivity of the cross section to variations of the Yukawa coupling (up-
per panel) and the strong coupling (lower panel). The uncertainty band is the
same as in Figure 6.9. The prediction is normalized to the full cross section
with the input values (6.2).
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Figure 6.11.: The effect of the variation of the Yukawa coupling (red line) and the strong
coupling (green line) on the position and height of the peak. The outer error
bar is obtained by adding the uncertainties from the renormalization scale
and variation of αs(mZ) by ±0.001 in quadrature, while the inner bar shows
only the latter contribution (cf. upper plot in Figure 6.8).

We can get a first estimate for the theoretical uncertainty in a determination of yt by
comparing the effect of the variations of κt to the theory uncertainty from variation of the
renormalization scale µr. The curves lie only outside the band for rather large deviations
from the SM Yukawa coupling of roughly +20% or −50%. A more detailed analysis that
also takes the shape of the curve into account may however reveal that there is better
sensitivity.

We note that the variation of the strong coupling constant shown in the lower panel of
Figure 6.10 has a very similar effect as the variation of κt, although the energy dependence
of the effect is somewhat different. The red curve, corresponding to αs(MZ) = 0.1204, lies
1−6% above our central prediction and the blue curve, corresponding to αs(MZ) = 0.1164,
lies −(1 − 5)% below. The partial degeneracy of the two effects is also apparent for the
position and height of the peak as shown in Figure 6.11. Without a full-fledged analysis of
the energy dependence it remains unclear to what degree the effects can be disentangled.
Thus, it is also not settled to which degree the measurement of the top-quark Yukawa
coupling and the strong coupling from a simultaneous fit is impaired by the degeneracy.
One may however use αs(mZ) from other sources as an input and determine yt in this
way. Even with the present uncertainty of the order of ±0.001, the αs(mZ) uncertainty is
significantly smaller than the scale uncertainty. Assuming an improvement by a factor of
two by the time a linear collider becomes available, we find that the added uncertainty on
the determination of yt is marginal.

The authors of [139] conclude that the top Yukawa coupling can be determined with
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a statistical uncertainty of only 4.2% in a threshold scan. Their analysis is based on the
assumption that the SM Higgs effects lead to an energy-independent increase of the cross
section by 9%, which is somewhat at odds with our findings based on a rigorous treatment.
Both the theoretical uncertainty of the cross section and the correlation with the strong
coupling constant have not been considered in [139]. Our discussion shows that it is
unlikely that the Yukawa coupling can be obtained with such high accuracy in a threshold
scan. At a future linear collider, it can however also be determined from the cross section
for tt̄h with an estimated uncertainty of 10% or 4% at

√
s = 500 GeV or

√
s = 1 TeV,

respectively [144], in which case the extraction of the Yukawa coupling from a threshold
scan would still provide an important independent check.

6.3. Top-pair production in photon collisions

Our results for the P-wave Green function are also of interest beyond their tiny contribution
to the total cross section for top-pair production in e+e− collisions. It is for example possible
to produce top pairs in a pure P-wave state in photon collisions by adjusting their helicities
to be opposite. A lepton collider can be converted into a high-energy photon collider via
the back-scattering method [145]. This idea was considered in the Technical Design Report
for TESLA [146] and is also discussed as an option for the ILC (see Sec. 12.6 of [147]).
With opposite photon helicities, the cross section takes the form [91,92]

σ+−
γ ≡ σ+−

γγ→tt̄X =
32πNce

4
t

m4
t

C+−
h (αs) Im

[
GP (E)

]
, (6.9)

near threshold. The hard matching coefficient is only known in four dimensions

C+−
h (αs) = 1− 16CF

αs
4π
. (6.10)

Therefore, we subtract the finite-width divergences minimally in the P-wave Green func-
tion. The corresponding scheme and scale dependence can be cured by taking non-resonant
effects into account.

Our results in the PSS scheme are shown in Figure 6.12. The cross section is larger
than the P-wave contribution in e+e− collisions by an order of magnitude because of the
different size of the involved couplings and numerical prefactors. Otherwise, its features
are very similar. In particular, the substantial reduction of the scale uncertainty at NLO
is also observed here, which is apparent from the (hardly visible) width of the dark-shaded
band in Figure 6.12. Due to the different hard matching coefficient the NLO correction to
the cross section is somewhat larger here, but the NLO band is still completely contained
in the LO one.

The cross section (6.9) has previously been computed in [91, 92], where the scheme-
dependent finite-width terms have been determined by matching the resonant contribution
to the full theory diagram with an off-shell top decay. This approach captures the part of
the non-resonant contributions, that dominates the respective non-resonant contribution
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Figure 6.12.: The top-pair production cross section σ+−
γ in collisions of photons with op-

posite helicities at LO (dashed) and NLO (solid). We adopt the same coding
as in Fig. 6.1.

in e+e− collisions, but is technically not complete at LO. If a high-energy photon col-
lider becomes available, the computation of the non-resonant contributions to the process
γγ → W+W−bb̄ with opposite photon helicities must be performed. We have compared
our expressions for the LO P-wave Green function to the result of [91,92] and found com-
plete agreement for the scheme-independent terms. The NLO P-wave Green function is
also determined in [91, 92], but is given only as a sum representation, which makes the
symbolic comparison of even the scheme-independent terms difficult. There is, however,
good numerical agreement between our results and the plots presented in [91,92], if we set
the scale in the hard matching coefficient and the finite-width scale and µw to the hard
scale.

6.4. Stop-pair production at lepton and hadron colliders

The pair production of stops, the scalar supersymmetric partners of the top quark, has
been studied extensively at both hadron and e+e− colliders. At hadron colliders it is very
challenging to exclude the complete parameter space for light stops. A lepton collider can,
however, exclude all electrically charged particles with masses up to half its center-of-mass
energy. The stop-pair production cross section near threshold in e+e− collisions can also
be determined in the effective field theory framework described in Chapter 3. It was first
studied in [90]. The stops are produced in a P wave since the coupling of squarks to
photons and Z bosons contains a derivative. We consider only the lighter mass eigenstate
t̃ ≡ t̃1 = t̃L cos θt̃ + t̃R sin θt̃, and assume the other mass eigenstate t̃2 to be sufficiently
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heavy that it cannot be pair produced close to the t̃1 threshold. The cross section is given
by

σt̃˜̄tX = 12π σ0

(
e2
t̃ −

2q2

q2 −M2
Z

vezt̃et̃ +

(
q2

q2 −M2
Z

)2

(v2
e + a2

e)z
2
t̃

)
Im
[
Π(∂)(q2)

]
, (6.11)

where zt̃ denotes the coupling constant for the Zt̃˜̄t vertex and Π(∂)(q2) the spectral function
of the derivative current. In NRQCD the derivative current matches to

j(∂)k =
1

mt̃

ψ∗ i∂kχ∗, (6.12)

where ψ and χ are the stop and anti-stop fields in the non-relativistic normalization ψ ∼
χ ∼ m

3/2

t̃
. Up to NLO, the spectral function takes the form

Π(∂)(q2) =
Nc

4(d− 1)m4
t̃

c2
∂ G

P (E), (6.13)

with the hard matching coefficient of the current j(∂)k [148]

c∂ = 1− 4CF
αs
4π

+O(α2
s), (6.14)

and the P-wave Green function

GP (E) =
i

Nc

∫
ddx eiEx

0 〈
0
∣∣T
(
[χi∂kψ](x)[ψ∗i∂kχ∗](0)

) ∣∣ 0
〉

PNRQCD
. (6.15)

The results for the cross section (6.11) depend strongly on the SUSY parameters, most
notably the stop mass and decay width. For generic stops with a large decay width Γt̃ �
ΛQCD the cross section has the same qualitative features as the P-wave contributions to
top-pair production. In particular, it can be fully described within perturbative QCD as
observed in [90]. This implies that the stop properties could be determined similar to the
top threshold scan from a measurement of the cross section. In some regions of parameter
space the stop can be long-lived and a different approach, similar to the one used for the
determination of the bottom-quark mass in Chapter 7, would be required.

The P-wave Green function is also required for the resummation of Coulomb effects in
the production of stop pairs in the quark-anti-quark channel at hadron colliders. For the
light-flavored squarks the t-channel gluino exchange diagram dominants the pair produc-
tion cross section. The respective stop-pair production diagram is negligible because it is
suppressed by the minuscule top parton distribution function in the proton. Therefore, the
dominant contribution in this channel is from s-channel gluon exchange, which creates stop
pairs in a colour-octet P-wave state. The stop-pair production mechanism in gluon fusion
is not flavour sensitive and can be taken over from the respective squark-pair production
results.
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A formalism for the combined resummation of soft and Coulomb corrections in the pro-
duction of pairs of heavy colored particles in a S-wave state was derived at next-to-next-to-
leading logarithmic order (NNLL) in [72] and was applied to the production of squarks and
gluinos in [149]. The approach was extended to stop-pair production in [150, 151]. While
the formal proof was only done at NLL the arguments presented there strongly suggest that
the factorization formula is still valid at NNLL. The dominant missing part of the poten-
tial function JRα in the factorization formula is given by the potential NLO corrections to
P-wave color-octet Green function, which accounts for NNLL terms beginning with α2

s/β.
They can be obtained from our result for the color singlet by a simple replacement of the
color factor −CF → D8 = 1/(2Nc) in (3.41). To achieve full NNLL accuracy one also needs
terms beginning with α2

s log β [152], which arise from contributions of the non-Coulomb
potentials.





7. Determination of the bottom-quark
mass from non-relativistic sum rules
at NNNLO

The extraction of the top-quark mass in a threshold scan relies on the direct compar-
ison of the experimentally measured shape of the cross section with the theory predic-
tion within perturbation theory. This approach is valid because the hadronization time
thad ∼ 1/ΛQCD ∼ 2 · 10−24s of the top quarks is much larger than their average lifetime
Tt ∼ 1/Γt ∼ 5 · 10−25s. Thus, non-perturbative hadronization effects never become rele-
vant for the cross section. A somewhat more formal formulation of this observation is that
the large top width provides an IR cutoff and, therefore, protects the top quark from the
non-perturbative regime of QCD, that is responsible for confinement.

The bottom quark, on the other hand, has a lifetime of the order of Tb ∼ 1.5 · 10−12s,
and is not protected against non-perturbative hadronization effects. At any order, pertur-
bation theory predicts the production of free quarks and gluons and cannot be expected
to reproduce the cross section measured by experiments, which involves only hadrons. To
salvage the situation, one must find a way to introduce an artificial IR cutoff in analogy
to the top-quark case, where the role is played by the width. In [153] it was demonstrated
that smearing the cross section

R(s,∆) =
∆

π

∞∫

0

ds′R(s′)

(s′ − s)2 + ∆2
(7.1)

with a Breit-Wigner shape of width ∆, effectively works as an IR cutoff, similar to a natural
decay width of the order ∆/

√
s. For sufficiently large ∆, one may therefore assume that the

smeared theory prediction and smeared experimental result agree, which is known as quark-
hadron duality. Consequently, it is possible to extract the bottom-quark mass in a similar
fashion as the top-quark mass, but with the cross section averaged over an appropriate
energy range. The smearing mechanism must provide a compromise between retaining
the most information on the bottom-quark mass and suppressing the non-perturbative
corrections. The most prominent approach is provided by the so-called moments Mn,
which are defined through a sum rule, first introduced in [30, 31]. We will review this
idea in the following. Afterwards, we discuss the first full NNNLO bottom-quark mass
determination from non-relativistic sum rules, provided by us in [2, 3, 6].

95



96 7. Bottom-quark mass

Figure 7.1.: Three gluon cut in the correlator of two heavy-quark vector currents at O(α3
s).

7.1. The sum rule

The sum rule [30, 31] is based on the analytic properties of the spectral function Πb(s)
in the complex s plane. Its singularities correspond to physical states. In non-relativistic
perturbation theory, including the effects of Coulomb resummation, they are given by an
infinite number of isolated poles for real s below threshold, corresponding to bb̄ bound
states, and a branch cut on the real axis above the threshold, which represents the open bb̄
continuum. At higher orders, subtleties, like a branch cut starting from s = 0 due to the
three gluon cut shown in Figure 7.1, appear [154]. These cuts must be subtracted from the
spectral function. The bb̄ cuts of the same diagram can be described through a NNNLO
contribution to the hard matching coefficient cv or are of higher order [60]. Heavy quark
radiation from light quarks is even more suppressed in the threshold region [60].

It is assumed that the analytic structure does not change qualitatively in the presence
of non-perturbative effects, i.e. the pole positions can move by a small amount on the
real axis, but no new singularities are generated. In the vicinity of the singularities, non-
perturbative effects become important because the physical states are very sensitive to the
IR properties of QCD. On the other hand, far away from the singularities, the bottom-pair
state has a large virtuality, that acts as an IR cutoff. Thus, the spectral function can be
computed as an operator product expansion (OPE) [71] in the ratio of the QCD scale over
the virtuality, including non-perturbative effects. Clearly, this OPE breaks down in the
vicinity of the singularities, where the bottom-quark pair is near its mass shell. We study
the non-perturbative terms in the OPE approach in Section 8. Anticipating these results we
can demonstrate this behaviour explicitly. For example, the smeared cross section (7.1) is
proportional to the difference Πb(s+i∆)−Πb(s−i∆) of the spectral function. We show the
relative correction to the smeared cross section from the leading dimension four condensate
as a function of the center-of-mass energy and the smearing width ∆ in Figure 7.2. For
∆ large enough, the hadronic effects are insignificant. On the other hand the OPE clearly
breaks down where the absolute value of the ratio exceeds one, which happens for energies
close to threshold and small smearing width.1 We observe that, even for ∆ → 0, the

1 In fact the non-perturbative contribution also contains a perturbative suppression by v2, cf. the discussion
in Section 8.4.1. This implies that the breakdown of the OPE already occurs for smaller values of the
ratio of the order v2 � 1.
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Figure 7.2.: The ratio δ〈G2〉Rb(s,∆)/Rb,0(s,∆) as a function of
√
s and ∆. The input values

are the same as in Table 8.1.

corrections are small for energies above the threshold. This happens because the velocity
becomes large, i.e. of order one, and the non-perturbative corrections are suppressed by
powers of ΛQCD/mb.

We now choose a complex momentum s = Q2, which is supposed to be far away from the
singularities, but otherwise arbitrary. The analytic properties can be exploited to relate
Πb(Q

2) to the physical cross section, i.e. the imaginary part of the spectral function at the
physical cut. We use Cauchy’s theorem

Πb(Q
2) =

1

2πi

∮

C

dz
Πb(z)

z −Q2
(7.2)

to express Πb(Q
2) through the contour integral indicated in Figure 7.3. The contour can

then be deformed in the indicated way with the radius going to infinity without crossing
any singularities. With Πb(s+ iε)− Πb(s− iε) = 2i Im Πb(s), we obtain

Πb(Q
2) =

1

π

∞∫

s0

ds
Im Πb(s)

s−Q2
+

1

2πi

∮

©

dz
Πb(z)

z −Q2
. (7.3)

This dispersion relation still contains a non-zero integration over the circle at infinity. It
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→

Figure 7.3.: Deformation of the contour in the complex s plane. The crosses and wiggly
line on the real axis represent the bottomonium bound states and open bb̄
continuum, respectively.

can be removed by taking derivatives in s. With Q2 = 0, we obtain the sum rule

Mn =

∫ ∞

0

ds
Rb(s)

sn+1
=

12π2

n!

(
d

dq2

)n
Πb

(
q2
)∣∣∣∣
q2=0

. (7.4)

The sum rule can be used to determine experimental momentsMexp
n from the integral over

the measured cross section. At the same time, theory moments Mth
n can be computed as

an OPE in ΛQCD/(mb/n), through derivatives of the spectral function. The scale mb/n is
the effective smearing range for the n’th moment and the breakdown of the OPE prohibits
the applicability of the sum rule to arbitrarily large moments. On dimensional grounds,
the theory moments are strongly dependent on the bottom-quark mass Mth

n ∼ m−2n
b .

Quark-hadron duality allows us to determine the bottom-quark mass from the condition
Mth

n (mb) =Mexp
n .

Note that we use a different convention for Πb in this section, than the one introduced
in Section 3. Electroweak effects are suppressed by the small mass ratio m2

b/m
2
W,Z,H and

are therefore neglected. Since this removes the s-channel Z-exchange contribution, it is
convenient to absorb the global factor e2

b from the photon coupling into Πb.
For small values of n, the suppression of the large-energy region s & 4m2

t through the
factor 1/sn+1 in the integral is mild and the moments receive contributions from a large
energy range. Thus, conventional perturbation theory is adequate and can be applied
to calculate the moments directly from the derivatives of the spectral function. With
increasing n, the convergence of the fixed-order perturbative approach deteriorates and it
breaks down around n = 10 [155,156].

At these larger values of n ∼ 10, the integral is saturated by the threshold region [157,
158], where the characteristic velocity of the bottom-quarks is in the non-relativistic regime
v ∼ 1/

√
n � 1. Thus, the moments must be computed in non-relativistic perturbation

theory, where the velocity of the bottom quarks is counted as the strong coupling v ∼ αs �
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1 and Coulomb singularities (αs/v)n are unsuppressed. This implies that the methods and
results discussed in Section 3 can be used. The mass determination from large-n moments
profits from lower experimental uncertainties and higher sensitivity of the moments to the
mass. This comes at the cost of an increased IR sensitivity, which implies a larger theory
uncertainty.

7.2. Experimental moments

The experimental moments Mexp
n contain contributions from the Υ(1S) to Υ(4S) reso-

nances and the continuum. For the former, the narrow width approximation is applied.
We obtain

Mexp
n = 9π

4∑

N=1

1

α(MΥ(NS))2

ΓΥ(NS)→l+l−

M2n+1
Υ(NS)

+

∫ ∞

scont

ds
Rb(s)

sn+1
. (7.5)

The masses MΥ(NS) and leptonic widths ΓΥ(NS)→l+l− of the resonances are taken from the
PDG [159]. A universal value α(2mb) ≈ 1.036α [126] is used for the running QED coupling
at the bound-state energies.

Data for the continuum cross section is only available in the region between
√
scont =

10.6178 GeV and 11.2062 GeV [32]. We use the inputs from [33], where corrections for
initial state radiation have been applied. The sensitivity of the large moments to the
unknown cross section at higher energies is greatly suppressed. This allows us to make a
very conservative estimate Rb = 0.3± 0.2 without forfeiting the precision of the result. In
analyses, that involve small n, much more aggressive assumptions have commonly been
applied [33,160]. We determine the uncertainty of a given experimental moment by adding
in quadrature the errors induced by uncertainties in the Υ masses and leptonic widths, the
BaBar data [32] and our estimate in the high-energy region.

Our results for the experimental moments (7.5) are summarized in table 7.1. We observe
that the continuum contribution is indeed subleading for n ∼ 10 and the uncertainty from
the continuum with respect to the resonances is not excessive for n = 7− 9 and even small
for n & 10.

7.3. Theory moments

In practice, we do not compute the theory moments from derivatives of the spectral func-
tion, but use the dispersion relation (7.5) and calculate the integral over the normalized
cross section Rb instead. At NNNLO in non-relativistic perturbation theory, the cross
section is given by (see Section 3)

Rb = 12πe2
b Im

[
Nc

2m2
b

(
cv

[
cv −

E

mb

(
cv +

dv
3

)]
G(E) + . . .

)]
. (7.6)

The Green function contains an infinite number of poles below threshold, that correspond
to narrow S-wave bb̄ bound states. Their binding energies EN and wave functions at the
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n 6 7 8 9 10

resonances 0.1861(20) 0.2004(22) 0.2166(24) 0.2351(27) 0.2560(29)
continuum 0.0240(85) 0.0182(58) 0.0140(41) 0.0110(29) 0.0088(21)
total 0.2101(88) 0.2185(62) 0.2307(47) 0.2461(39) 0.2648(36)

n 11 12 13 14 15

resonances 0.2797(33) 0.3064(36) 0.3364(40) 0.3702(45) 0.4081(50)
continuum 0.0070(15) 0.0057(11) 0.0046(8) 0.0038(6) 0.0031(4)
total 0.2867(36) 0.3120(38) 0.3410(41) 0.3740(45) 0.4112(50)

Table 7.1.: The experimental momentsMexp
n in units of (10 GeV)−2n. The individual con-

tributions from the Υ resonances and the continuum are shown as well.

origin ψN(0) can be determined from the expansion of the Green function around these
poles. Like the experimental moments (7.5), the theory moments may therefore be split
into bound-state and continuum contributions

Mth
n =

12π2Nce
2
b

m2
b

∞∑

N=1

ZN
(2mb + EN)2n+1

+

∫ ∞

4m2
b

ds
Rb(s)

sn+1
. (7.7)

The residues

ZN = cv

[
cv −

EN
mb

(
cv +

dv
3

)]
|ψN(0)|2 + . . . . (7.8)

are the squared absolute values of the amplitude for a lepton pair forming a Υ(NS) bound
state. They also have a direct correspondence to the leptonic decay rate Γ(Υ(NS) →
l+l−) [86]. Thus, the ZN are physical quantities and scale and scheme independent at the
considered order in perturbation theory.

The following ingredients are required for the moments (7.7) at NNNLO:

• The hard matching coefficient cv for the leading non-relativistic current at order
α3
s [68] and dv for the subleading current at order αs [161].

• The NNNLO corrections to the Υ(NS) energy levels EN [88, 162, 163], to the wave
functions at the origin |ψN(0)|2 [88, 163, 164], and to the continuum Green function
G(E) [88, 89] from insertions of the potentials up to NNNLO [60,83–87].

• Ultrasoft corrections to the energy levels [165], wave functions [73] and Green func-
tion [74].

These quantities are available for top-pair production, where the energy is shifted in the
complex plane by iΓ. The numerical evaluation for bottom quarks sometimes requires that
the expressions are analytically continued in the limit Γ → 0, i.e. for complex energies
approaching the branch cut. Details of this step have been described in [2] and will not be
recapitulated here.
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7.4. Scheme definitions

We have discussed the shortcomings of the pole mass in depth in Section 2. Here, we
describe the mass schemes we employ in the determination of the bottom-quark mass and
other conventions related to the treatment of terms that are formerly beyond NNNLO.

The ambiguities, that are inherent in the pole mass scheme, can be removed by the use
of a renormalon free mass definition like the PS mass [51] or the MS mass. Their relation
to the pole mass is parametrized by

mb = mM
b +

∞∑

i=0

δmM
i , (7.9)

where M = PS,MS. At NNNLO terms up to i = 3 are required. The expressions for the
PS and MS mass can be found in [88] and [49, 166, 167], respectively. In the PNRQCD
Lagrangian, this introduces additional terms

Lδm =
∞∑

i=0

δmM
i

(
ψ†ψ − χ†χ

)
. (7.10)

We observe that the leading order term in (7.10) in the MS mass scheme is of order v4 and
enhanced with respect to the kinetic terms in the non-relativistic power counting. Thus,
the naive use of the MS scheme is inconsistent. In the PS scheme, the leading order term in
(7.10) is of the same order v5 as the kinetic terms and must be treated non-perturbatively. A
consistent scheme, denoted PS-insertion (PSI) in [89], can be defined by strictly expanding
the cross section in δmPS

i up to the considered order. However, this introduces unphysical
behaviour near threshold [89]. It was observed there that this behaviour can be cured
by treating the complete mass shift non-perturbatively, which defines the PS-shift (PSS)
scheme. To maintain the cancellation of renormalons, the factor (2mb + EN)−(2n+1) in
equation (7.7) must not be expanded in the PSS scheme. This is equivalent to the pole
resummation in the cross section, that we have already discussed for top-pair production.

To compute the NkLO moments in the PSS scheme for a given PS mass mPS
b , we first

determine the respective pole mass m
[k]
b from the relation (7.9), truncated after the kth

term. In the resonance contribution to the moments (7.7), the residues (7.8) are truncated
after the kth order, but the denominators are left unexpanded. The continuum part is not
affected by the pole resummation and the NkLO cross section Rb in the pole mass scheme
with m

[k]
b is used (cf. [89]).

The same procedure can also be applied starting from a MS mass, which defines the
MSS scheme. Despite of the issues with the MS mass in threshold processes, this scheme is
consistent because the MS-pole mass relation is not expanded and the renormalons cancel.

In the expressions (7.6), (7.7) and (7.8), a prefactor 1/s in the spectral function has been
expanded according to the non-relativistic counting and is therefore treated in a different
way as the factor 1/sn+1 in the moment integral (7.7) in the shift schemes. This is the
source of a renormalon ambiguity, which is suppressed by 1/n compared to the ambiguity
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in the pole mass scheme. We define alternative moments M̃th
n , where this factor is kept

unexpanded, through

R̃b = 12πe2
b Im

[
2Nc

s

(
cv

[
cv −

E

mb

dv
3

]
G(E) + . . .

)]
, (7.11)

Z̃N = cv

[
cv −

EN
mb

dv
3

]
|ψN(0)|2 + . . . , (7.12)

M̃th
n = 48π2Nce

2
b

∞∑

N=1

Z̃N
(2mb + EN)2n+3

+

∫ ∞

4m2
b

ds
R̃b(s)

sn+1
. (7.13)

The difference is formerly of higher order, but we find that numerically it is of similar
size as the other theory uncertainties. Without a careful analysis, it is not clear which
scheme should be preferred because the expansion in the kinetic energy is not the only
source of subleading renormalons. Such an analysis is beyond the scope of this work.
We find however in Section 7.6.3 that the masses extracted from different moments show
better consistency when the 1/s prefactor is not expanded non-relativistically. Thus, the
moments (7.13) will be used as our default scheme. The uncertainty due to the scheme
ambiguity is not taken into account for our result, but we make sure that the mass values
obtained with the moments (7.7) lie within our quoted theory uncertainty.

7.5. Charm-quark mass effects

In Section 7.3, we listed the necessary ingredients for the moments, which are available from
the NNNLO top-pair production cross section. These results assume the light quarks to
be massless, which is well justified there due to the large hierarchy between the top-quark
and light-quark masses. The mass of the charm quark is however of the same order as the
inverse Bohr radius mbαs ∼ mbv of the Bottomonium system, which sets the soft scale for
the bottom cross section. Thus, the effects from a non-vanishing charm-quark mass have
to be taken into account as well. An analysis of charm-mass effects at NNLO [168] found
a sizeable shift of about −30 MeV in the extracted MS bottom-quark mass.

However, the results of [168] are only available for moments, where the factor 1/sn+1

is expanded non-relativistically and cannot be incorporated in our expressions (7.7) and
(7.13). We discuss how a non-zero charm-quark mass contributes and determine its effects
on the cross section at NNLO. This way, the corrections can be adopted to any scheme
one might employ for the moments.

We recall from Section 3 that the computation of the cross section can be organized in
three steps. These are the hard matching, the soft matching and the calculation of the
spectral function in the effective theory. The soft charm-quark mass is expanded out in the
hard matching. Consequently, the effects must be analytic in m2

c/m
2
b ∼ α2

s and enter only
at subleading order. Inserting a charm-quark loop into a gluon line thus yields a relative
suppression αsm

2
c/m

2
b ∼ α3

s and is beyond NNNLO.
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The charm quark is integrated out in the soft matching procedure. It has been demon-
strated in [60] that the soft Wilson coefficient of the external vector current is trivial, as
long as the light quarks are considered to be massless because the associated loop integrals
are scaleless. A soft charm-quark mass introduces a scale in the soft loops and this state-
ment must be reconsidered. However, charm-quark contributions only enter at two loops
and must vanish in the limit mc → 0. Since the only other scale in the soft matching of
the current is mb, there must be an additional suppression of at least mc/mb ∼ αs, which
implies that this is a higher-order effect.2 Thus, only the Coulomb potential is affected at
NNLO. We split off the difference Vmc between a massive and a massless charm quark in
the potential, such that we obtain

V = Vmassless + Vmc , (7.14)

where Vmc vanishes for mc → 0.3 The correction Vmc has been computed up to NNLO
in [169, 170]. We use the convenient representations from [168], which can be found in
Appendix C.1.

It remains to compute the contributions to the spectral function from the charm-quark
correction to the Coulomb potential Vmc . The single insertion of V

(1)
mc contributes at NLO.

At NNLO, one requires the single insertion of V
(2)
mc , the double insertions of V

(1)
mc and

the mixed double insertion of V
(1)

massless and V
(1)
mc . Details on the computation of the NLO

correction to the Green function can be found in Appendix C.3. In Appendix C.4, the
full results for the NNLO charm-quark mass effects on the energy levels EN and the wave
functions |ψN(0)|2 are given. The parts that are available in the literature [168,171] coincide
numerically with our expressions.

The effects of a non-zero charm-quark mass also have to be taken into account in the
conversion from the PS or MS mass to the pole mass, that is needed for the implementation
of the PSS and MSS schemes discussed in Section 7.4. These corrections are known at order
α3
s [172] for the relation between the pole and the MS scheme. We have computed the charm

quark contributions to the relation between the PS and the pole mass at NNLO order and
give results in Appendix C.2.

With these results, we can now discuss the impact of the non-zero charm-quark mass on
the phenomenology of the sum rule analysis. The MS mass scheme, with µc set to the renor-
malization scale µ, is employed for the charm quark. The value of mMS

c (µ) is determined

via 4-loop running from the input value mMS
c (3 GeV) = 0.986 GeV [33].4 The parametric

uncertainty from the charm-quark mass is negligible in comparison to the missing NNNLO
contributions.

The insertion of a charm-quark loop into a gluon line effectively provides an IR cutoff on
the virtuality of the gluon. Thus, we expect the non-zero charm-quark mass effects to be
significant for quantities with large infrared sensitivity, but small for observables with little

2We also checked through an explicit computation that there is no NNLO contribution.
3 The effects on the running of αs are included in the Coulomb potential. We use the same convention
as [168], where the potential is defined for αs evolving with nl,massless + 1 flavors.

4The renormalization group evolution is performed with RunDec [173].
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N = 1 2δmPS
1,mc 2δmPS

2,mc E
(1)
1,mc E

(2)
1,mc f

(1)
1,mc f

(2)
1,mc

single insertion {mc} 9.50 23.21 -6.82 -18.02 0.0335 0.0644
double insertions
{mc,massless} – – – -1.46 – -0.0043
{mc,mc} – – – -0.02 – -0.0001

∑
9.50 23.21 -6.82 -19.50 0.0335 0.0600

Table 7.2.: The effects of a non-zero charm-quark mass on the binding energy E
(i)
1,mc =

E
(0)
1 e

(i)
1,mc and squared wave function at the origin |ψ1(0)|2 = |ψ(0)

1 (0)|2
(
1 +∑∞

i=1 f
(i)
1

)
of the Υ(1S) resonance. f

(i)
1,mc is the charm correction to f

(i)
1 . The

values were obtained in the pole-mass scheme with the inputs mb = 5 GeV,
µ = 5 GeV, αs(5 GeV) = 0.2135 and mc(5 GeV) = 0.892 GeV. Furthermore,
we show results for the charm-quark mass corrections to the relation between
the pole mass and the PS mass for µf = 2 GeV. A significant cancellation in
the Υ(1S) mass MΥ(1S) = 2mb+E1 = 2mPS

b +2
∑∞

i=1 δm
PS
i +E1 can be observed

due to the reduced IR sensitivity in a short-distance mass scheme like the PS-
scheme. The corrections to the mass shift 2δmPS

i,mc and the binding energy E
(i)
1,mc

are given in units of MeV, whereas f
(i)
1,mc is dimensionless.

IR sensitivity. This behaviour is illustrated in Table 7.2, which provides numerical results
for the energy level and wave function at the origin of the Υ(1S) resonance. The individual
charm-quark contributions to the mass shift and binding energy are big, but largely cancel
against each other in the PS mass scheme. We can also show this cancellation analytically,
by expanding the corrections in the limit of a small charm-quark mass. The linear terms in
this expansion drops out in the sum of the corrections to the energy levels and the PS-pole
mass relation (cf. [168]). The large IR sensitivity, that manifests itself through the linear
charm-quark mass dependence, is related to the IR renormalon at u = 1/2 discussed in
Section 2, which is absent in the PS-mass scheme.

In the following we analyze the effect of a non-zero charm-quark mass on the MS bottom-
quark mass determined from the tenth moment at NNNLO. Let us begin by only consid-
ering the corrections to the binding energies and the wave functions from single inser-
tions. Including these effects up to NNLO (NLO) shifts the result for the bottom mass by
+16 MeV (+4 MeV). As expected from the above discussion, we observe a significant can-
cellation when the charm effects in the PS-pole mass relation are also taken into account.
The combined charm correction reduces to only +0.5 MeV (−0.5 MeV). Since both the PS
and the MS scheme are renormalon free, we expect the charm-effects in the conversion to
be small. We find that the combined shift amounts to −3.5 MeV (−2 MeV) in the MS
bottom-quark mass.

As of yet, the effects due to double insertions and the continuum cross section have been
neglected. The double insertions do not contribute to the linear term in the expansion
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for small charm-quark masses and are found to be small compared to the single insertions
(cf. [168]). They shift the extracted bottom-quark mass by only +0.5 MeV. The effect of
the NLO corrections to the continuum contributions provided in Appendix C.3 amounts
to less than 0.1 MeV, as expected from the large suppression of the overall continuum
contribution to the tenth moment. Since the double insertions and the charm corrections
to the continuum cross section are rather time-consuming and numerically negligible, we
use them only to determine the central value of our analysis and switch them off when
determining the theory uncertainty.

We observe that the perturbative corrections to the individual contributions considered
above show no sign of convergence. The behaviour is however significantly improved for
observables with reduced IR sensitivity like the Υ(1S) mass or the moments. The overall
shift for the MS mass extracted from the tenth moment is −3 MeV (−2 MeV) at NNLO
(NLO), which suggests that the charm corrections converge. Nevertheless, we adopt the
total size of the non-zero charm-quark mass effects for the bottom-quark mass obtained at
NNLO as a conservative estimate for the missing higher order corrections.

We point out that there is a large discrepancy between our result of −3 MeV for the
overall mass shift and the one from [168], which amounts to about −30 MeV. According to
our findings, this cannot be accounted for by the differences in the analyses, like the non-
relativistic expansion of the factor 1/sn+1 in [168], the choices of the renormalization scale
and the different values of the charm-quark mass. In particular, the claim of [168] that the
effect on the 20th moment is as large as 50% appears suspicious to us. [168] employs the
1S mass scheme, where by definition charm effects cancel completely in the combination
2m1S

b + 2
∑∞

i=1 δm
1S
i + E1 ≡ 2m1S

b . Since the moments for such large n are completely
dominated by the contribution from the Υ(1S) state, only the charm corrections to the
residue Z1 are relevant. Our results show (cf. table 7.2) that they are significantly smaller
than 50% and independent of n.

7.6. Numerical analysis

7.6.1. Choice of the renormalization scale

The adequate choice for the value of the renormalization scale is not obvious for observables
that receive contributions from multiple physical scales, like the non-relativistic moments.
In the NNLO analyses performed about 15 years ago, values for the renormalization scale
at the soft scale were favored. E.g. [174] fixed the central value to µ = 2mb/

√
n based on

the observation that the logarithms log(µ2/(−4mbE)) vanish there for the characteristic
energy E = mb/n of the nth moment.

We show the scale dependence of the tenth moment for µ between 2 GeV and 10 GeV at
the available orders in perturbation theory in Figure 7.4. There is no overlap at all in this
region between subsequent orders up to NNLO, which made it very difficult to estimate
the uncertainties due to missing perturbative effects. It is also disconcerting that the
NNLO corrections are significantly larger than the NLO ones. Both observations clearly
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Figure 7.4.: Scale dependence of the tenth moment M̃th
10 in the PSS scheme (7.13) in units

of (10 GeV)−20 for mPS
b (2 GeV) = 4.5 GeV and αs(MZ) = 0.1184.

motivate the determination of NNNLO corrections. A possible explanation for the large
NNLO corrections is that both relativistic corrections and non-Coulomb potentials first
contribute at this order. The third order stands out because ultrasoft effects first appear
there and all systematic types of contributions are considered.

Looking at Figure 7.4, one can indeed see a drastic improvement from the inclusion of
third order corrections. For µ in the range from 3 GeV to 10 GeV, the NNNLO band is
entirely contained in the NNLO one. Below 3 GeV however, there is no sign of convergence.5

Therefore we use the central scale µ = mPS
b and estimate the perturbative uncertainty from

variation of µ between 3 GeV and 10 GeV.
Further insight on the adequate choice of the renormalization scale can be obtained from

resumming logarithms ln
√
n of the ratios of the different scales by applying renormalization

group methods. We do not attempt this in our analysis because αs ln
√
n ≈ 1.15αs � 1

for n ∼ 10. The available NNLL analyses [175, 176] show a significant stabilization of the
results for low values of the renormalization scale and fairly small impact for larger scales.
With our scale choice, we therefore expect that the resummation of logarithms would lead
to a small reduction of the perturbative uncertainty due to better behaviour for µ . 3 GeV,
but no no significant change of the central value.

7.6.2. Comparison to the fixed-order continuum

We have discussed the possibilities of using small and large n moments for the sum rule
analysis as well as their particular advantages and disadvantages in Section 7.1. Ideally,

5The leptonic decay width of the Υ(1S) resonance [86] follows the same pattern.
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one would like a unified description, that is valid in the complete range from n = 1 up to
n ≈ 10. It is a fair assumption that this could be achieved by merging the results for the
cross section in non-relativistic perturbation theory and conventional perturbation theory.
The latter is known analytically [177] up to order αs and as a Padé approximation [178–180]
at orders α2

s and α3
s. The respective perturbative expansions miss terms, which scale as

Im
[
ΠNRPT
>NNNLO

]
∼ v5

∞∑

i=0

(αs
v

)i ∞∑

j=0

vj, (7.15)

Im
[
ΠCPT
>NNNLO

]
∼ α4

s

v3

∞∑

i=0

(αs
v

)i ∞∑

j=0

vj, (7.16)

whereas the merged result would only lack the contributions

Im
[
ΠMerged
>NNNLO

]
∼ vα4

s

∞∑

i=0

(αs
v

)i ∞∑

j=0

vj. (7.17)

The merging relies on both approximations providing a good description in an interme-
diate region, where the hierarchy αs � v � 1 is fulfilled, i.e. both the assumptions v � 1
made in the non-relativistic expansion and v � αs made in conventional perturbation the-
ory are valid. Expanding (7.15) and (7.16) in this limit, we find that the leading missing
contributions are roughly equal and of the order of 3 − 6% for v ∼ 0.4 − 0.5 based only
on power counting. Applying the same approach to the merged result gives an estimate
of only 0.2% for the missing higher-order terms. Thus, one would naively expect that
the continuum NNNLO cross sections in PNRQCD and conventional perturbation theory
agree at the level of about 10% in this region. Figure 7.5 depicts the respective predictions
in the pole-mass scheme with mb = 5 GeV, and keeping the factor 1/s in the polarization
function unexpanded.

One finds good agreement at NLO and NNLO (upper panel) for velocities around v ∼ 0.4.
The NNNLO curves, however, miss each other completely (lower panel). It appears that
this can mainly be attributed to the NNNLO PNRQCD curve, which lies considerably
below its NNLO equivalent. The difference between consecutive orders of the PNRQCD
result is much larger when going from NNLO to NNNLO compared to the step from NLO to
NNLO. Furthermore, the dependence on the renormalization scale is significantly increased
with respect to the NNLO result and even extends to unphysical negative values.6

On the other hand, the Padé approximation used for the prediction in conventional
perturbation theory lacks some input from the naive threshold expansion of the NNNLO
result. The missing terms scale like vα3

s and can in principle be determined from the
expansion of the NNNLO PNRQCD result in αs. By construction, the behaviour of the
Padé approximation follows the input of the naive threshold expansion for v → 0. An
example for a particularly large missing contribution is the product of the α3

s correction to

6In contrast to the continuum cross section, the Υ(1S) bound-state energy and leptonic decay rate have a
much better behaved perturbative expansion and scale dependence at NNNLO [86].
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Figure 7.5.: Predictions for R̃b as a function of v =
√
E/mb with a pole mass mb =

5 GeV in non-relativistic perturbation theory (left curves) and conventional
perturbation theory (right curves). The uncertainty from variations of the
renormalization scale between 3 GeV and 10 GeV is illustrated by the shaded
bands.



7. Bottom-quark mass 109

the hard matching coefficient of the vector current with the leading order Green function
G0(E). In spite of the large parametric suppression, this term still shifts the normalized
cross section Rb by ∼ −0.2 for v = 0.4 due to the numerically large factor in the matching
coefficient. This attribute persists at higher orders in conventional perturbation theory,
e.g. the order α4

sv
0 term from the product described above yields a further shift of −0.2

at v = 0.4. Thus, it may be possible that the discrepancy between predictions can be
reconciled.

In practice, the determination of the potential contributions to the missing term is
straightforward, but the complete extraction of the ultrasoft contribution appears to be
rather involved and has not been attempted. The ultrasoft contributions to the logarithmic
terms vα3

s ln v and vα3
s ln2 v were however determined from the results of [73,74]. One finds

that neither the inclusion of the potential contributions nor of the full logarithmic terms
can noticeably improve the behaviour of the Padé [181] or the analytical reconstruction
of the polarization function based on the procedure developed in [182, 183]. The Padé
becomes instable when partial contributions for the vα3

s term are included and the result
of the analytical reconstruction is hardly affected when only the logarithmic terms are
included or breaks down when only the potential corrections are included.7 We point out
that the reconstructed results provide predictions for the missing coefficients based on
the included input coefficients. The likely explanation for the instabilities appears to be
that the reconstruction methods cannot accommodate inputs which show large discrepancy
with respect to the predictions based on the lower order coefficients. We infer that the
determination of the complete order vα3

s coefficients is mandatory to settle the question, if
the conventional perturbation theory result is affected significantly by the missing terms.
Yet, even if the Padé result with complete input would join with the PNRQCD result for
velocities v ∼ 0.4, the issues with the behaviour of the PNRQCD expansion would remain.

The sum rule approach does, however, not depend on the behaviour of the continuum
cross section by itself, but only on the moments, which are dominated by information on the
Υ(NS) bound states. The moments are much less infrared sensitive than the continuum
cross section, which must be due to cancellations between the continuum and resonance
contributions. Therefore, one may also expect a partial cancellation of the scale dependence
between the continuum and resonance part. In Figure 7.6, we show the continuum contri-
bution to the tenth moment as a function of the renormalization scale 3 GeV < µ < 10 GeV
at different orders in PNRQCD perturbation theory. At NNNLO, the continuum contri-
bution amounts to less than 5% for the central renormalization scale µ = mb and about
15% for µ = 10 GeV and is significantly smaller than at lower orders. We find, however,
that the inclusion of the continuum contribution reduces the renormalization scale depen-
dence at each order as well as the difference between consecutive orders in perturbation
theory. We conclude that the rather poor perturbative behaviour of the continuum cross
section does not prohibit a determination of the bottom-quark mass from non-relativistic
moments. Merging the non-relativistic and conventional perturbation theory does, how-
ever, not appear to be a viable option at NNNLO given the mismatch in the continuum

7This manifests by a wrong behaviour of the reconstructed polarization function in the limit v → 1.
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Figure 7.6.: The shaded bands show the continuum contribution to the tenth moment
M̃th

10 in units of (10 GeV)−20 for mPS
b (2 GeV) = 4.5 GeV as a function of the

renormalization scale. The lower boundaries of the bands are the resonance
contributions, such that the upper boundaries correspond to the full moments.

cross section in Figure 7.5.

7.6.3. Determination of the bottom-quark mass

The bottom-quark mass can now be determined from the sum rule Mth
n (mb) = Mexp

n for
moments with n ≈ 10. We will first present results for the PS mass mPS

b (µf ) obtained in
the PSS scheme described in Section 7.4, which are then converted to the MS scheme. The
MS mass is then also extracted directly in the MSS scheme.

We estimate the error on the extracted bottom-quark mass from a given moment Mn

by adding the following sources of uncertainties in quadrature:

• Experimental uncertainty. As detailed in Section 7.2 we add in quadrature the un-
certainties from the Υ(NS) masses and leptonic width, the BaBar data [32] and our
estimate Rb = 0.3± 0.2 for the continuum cross section at higher energies.

• Unknown higher-order corrections. We choose the PS mass itself as a renormalization
scale for the extraction of the central value of mPS

b . Based on the discussion in
Section 7.6.1, we estimate the error made by truncation of the theory moments at
NNNLO in PNRQCD perturbation theory by varying the renormalization scale µ
between 3 GeV and 10 GeV.
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• Uncertainty in the strong coupling. We use αs(mZ) = 0.1184 ± 0.0010 as input for
the strong coupling constant and evolve it down to the renormalization scale using
four-loop running. The bottom quark is decoupled at µthr = 2mb. Variations of the
decoupling scale are numerically negligible.

• QED effects. Our analysis includes corrections from the leading order QED Coulomb
potential, which formally modifies the moments at NLO in the counting α ∼ α2

s.
The leading QED contribution is also taken into account in the conversion to the MS
scheme. The effect on the extracted bottom-quark mass amounts to less than 1 MeV
in either scheme.

• Number of theoretical resonances. The infinite sum over the resonances in the the-
oretical moments (7.7), (7.13) is truncated after the sixth term. The corresponding
error is approximated by the difference to the result, where only four resonances are
considered.

• Scheme conversions. We determine PS masses for values of the subtraction scale µf
between 1 GeV and 3 GeV. To determine the conversion error in the result for the
PS mass mPS

b (µf = 2 GeV), we convert the values to the PS mass at the central

scale µf = 2 GeV. The value for the PS mass is converted to the MS mass mMS
b (µ)

at an intermediate scale µ, which is independent of the renormalization scale µ and
varied between between 3 GeV and 10 GeV. This conversion is alway performed using
the order α4

s relation, irrespective of the order of the moments. The scale-invariant

mass mMS
b (mMS

b ) is determined using renormalization group evolution at four-loop
order. The small numerical uncertainty in the four-loop result for the pole-MS mass
relation [49] results in an error of just 2 MeV on the MS mass. The overall scheme
conversion error for the MS bottom-quark mass is estimated by adding all uncertain-
ties in quadrature.

• Charm-mass effects. The error due to missing third order charm-quark mass effects
is estimated by taking the difference between the NNLO results with and without
the corrections from a non-vanishing charm-quark mass (cf. Section 7.5).

• Non-perturbative effects. Following [158] (see also [184]), we estimate the size of
non-perturbative corrections from the leading dimension-four gluon condensate cor-
rection in the operator product expansion (OPE) of the moments. The OPE is based
on the hierarchy mbv

2 ∼ mb/n � ΛQCD, which suggests a breakdown for moments
with n ∼ 16. Better insight on the validity of the OPE for the moments and the
properties of the Υ resonances requires the calculation of higher-dimensional conden-
sate corrections and αs corrections to the dimension four condensate contribution.
Some preliminary results are given in Section 8.

Assuming the validity of the OPE for the tenth moment, we only find a tiny effect of
less than 1 MeV on the value of the bottom-quark mass from the leading dimension
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Figure 7.7.: Results for the MS mass mMS
b (mMS

b ) in units of GeV obtained from conversion

of mPS
b extracted from different moments M̃n.

four condensate correction. This is rather surprising given that the respective cor-
rections to the Υ(1S) are very large, when similar assumptions on the value of the
gluon condensate and the scale choice are made (cf. the recent discussion in [86]).
While the moments are constructed with cancellations of non-perturbative effects in
mind, the extend of the cancellation is somewhat puzzling to us. The perturbative
contribution from the Υ(1S) resonance makes up about 80% of the tenth moment,
but the cancellation between non-perturbative effects on the Υ(1S) resonance contri-
bution and the remainder is effective at about one part in 500. We therefore refrain
from extending the sum rule rule analysis to values of n significantly larger than 10.
A more detailed discussion of non-perturbative effects can be found in Section 8.

The MS masses obtained from conversion of the PS mass extracted in the PSS scheme
from unexpanded moments M̃n are shown in Figure 7.7 for 6 ≤ n ≤ 15. The results from
moments with n ≈ 10 show good compatibility and there appears to be decent convergence
of the values at different orders in perturbation theory. The behaviour becomes increasingly
worse for lower values of n, where relativistic corrections are more important and the
sensitivity to the poorly behaved continuum cross section (cf. section 7.6.2) is enhanced.
Figure 7.8 demonstrates the decrease of the bottom mass values extracted from lower n,
which can be attributed to an increased weight of the small NNNLO continuum cross
section in the moments. The effect is even more pronounced for results obtained from
expanded moments Mn (see lower panel).

It is apparent from Figure 7.8 that there is a sizeable difference between the masses
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n ≤ 4 as obtained in [33] for comparison.
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determined from unexpanded moments M̃th
n and expanded momentsMth

n . The expansion
of the kinetic energy factor shifts the MS mass, extracted from the tenth moment, by as
much as −26 MeV. This effect is however contained in our estimate for the perturbative
uncertainty based on renormalization scale variation.

As stated in Section 7.4, we therefore use the unexpanded moments to determine our
result and only consider scale variation to determine the perturbative uncertainty. Our
final results for the PS and MS masses are based on the tenth moment M̃th

10, which yields

mPS
b (2 GeV) =

[
4.532+0.002

−0.035(µ)± 0.010(αs)
+0.003
−0 (res)± 0.001(conv)

± 0.002(charm)+0.007
−0.013(n)± 0.003(exp)

]
GeV

= 4.532+0.013
−0.039 GeV . (7.18)

mMS
b (mMS

b ) =
[
4.203+0.002

−0.031(µ)± 0.002(αs)
+0.003
−0 (res)+0.013

−0.004(conv)

± 0.002(charm)+0.006
−0.012(n)± 0.003(exp)

]
GeV

= 4.203+0.016
−0.034 GeV . (7.19)

In these results, we have also taken into account an additional contribution to the uncer-
tainty from the difference of the mass values obtained from M̃th

8 and M̃th
12 to the central

result, which is denoted with the label (n). It is added in quadrature to the other sources
of uncertainties discussed above. We observe that the uncertainty related to the value of
the strong coupling constant is significantly reduced by the conversion from the PS to the
MS scheme.

Our result (7.19) for the MS mass is compatible with other recent precision determina-
tions from relativistic sum rules at NNNLO in conventional perturbation theory [33, 185]
and partial NNNLO large-n sum rules [186]. We provide a more detailed comparison in
Section 7.6.4.

We discussed the possibility to determine the bottom-quark MS mass directly from the
moments expressed in the MSS scheme in Section 7.4. Based on the tenth unexpanded
moment we obtain the result

mMS
b (mMS

b ) =
[
4.204+0.000

−0.019(µ)± 0.002(αs)
+0.003
−0 (res)+0.002

−0.005(conv)

± 0.002(charm)+0.007
−0.013(n)± 0.003(exp)

]
GeV

= 4.204+0.008
−0.024 GeV . (7.20)

The central value is (almost) unchanged with respect to (7.19), but the use of the MSS
scheme leads to significantly smaller estimates for the perturbative and scheme conversion
uncertainty. Since the difference between masses extracted from “unexpanded” and “ex-
panded” moments is not covered, we feel that (7.19) better reflects the actual uncertainties
in the non-relativistic sum rule approach and adopt it as our final result.

7.6.4. Comparison with previous works

Our result (7.19) for the bottom-quark MS mass is in very good agreement with the

PDG [24] average mMS
b (mMS

b )PDG = 4.18± 0.03 GeV. A comprehensive overview of results
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Analysis Central moment Perturbative order mMS
b (mMS

b ) [GeV]

CKMMMSS [33] M2 α3
s 4.163± 0.016

DHM [185] M2 α3
s 4.176± 0.023

HRS [175] M10 NNLO + NNLL 4.235± 0.055
PZ [186] M15 approx. NNNLO 4.169± 0.009

This work M10 NNNLO 4.203+0.016
−0.034

Table 7.3.: Values of the scale invariant bottom-quark MS mass obtained from recent sum
rule analyses. We have added the experimental and theoretical errors quoted
in the HRS analysis in quadrature.

for the bottom-quark mass can be found in [24]. We therefore focus on a detailed com-
parison to other recent precision determinations based on sum rules. The values shown in
Table 7.3 are in decent agreement and we will discuss the differences in the analyses in the
following.

Chetyrkin et al. (CKMMMSS) [33]

The analysis of CKMMMSS is based on relativistic moments Mn with n ≤ 4, which are
determined in conventional perturbation theory up to the order α3

s. The determination of
the experimental moments only differs in the estimate for the high-energy continuum. Due
to the large sensitivity of the relativistic moments to the continuum, CKMMMSS must rely
on stronger assumptions than we do. They assume that the perturbative QCD prediction
is valid above 11.24 GeV and interpolate linearly between this region and the last BaBar
data point at 11.2062 GeV. This leads to a peculiar jump between the BaBar data and the
continuum and to a very small uncertainty estimate from the continuum region because
the uncertainty of the perturbation theory result is tiny. In [160], CKMMMSS contemplate
two options for relaxing the assumptions and smoothing out the jump. In particular, we
find their Option A compelling, which assumes that the perturbative result is only valid
above 13 GeV and interpolates linearly in between. This leads to an identical (up to 1 MeV)

central value of mMS
b (mMS

b ) = 4.183 GeV for the masses extracted for the moments with
n = 1, 2, 3 and significantly better agreement with our result (7.19). However, CKMMMSS
stick to their original result because ”the shift (for n = 2) is (...) only slightly higher than
the uncertainty of 16 MeV.” [160]

To estimate the uncertainties from higher orders in perturbation theory, CKMMMSS fix
the scale µ for the MS mass to the renormalization scale and vary them simultaneously
between 5 GeV and 15 GeV. Our approach of varying the scales independently leads to a
more conservative result, which makes direct comparison of the perturbative uncertainties
difficult.



116 7. Bottom-quark mass

Dehnadi et al. (DHM) [185]

DHM have performed an analysis based on the same theoretical inputs as CKMMMSS,
but applying different systematics and using other values for the experimental moments.
For the latter a smooth fit between the BaBar data and the perturbative result for the
continuum is performed, which coincides with the perturbative result for

√
s & 11.5 GeV.

Thus, the experimental moments lie in between those of [33] and Option A of [160]. Similar
to our approach, DHM vary the scale µ for the strong coupling constant and the scale µ for
the MS mass independently. DHM then argue that this might overestimate the error. Thus,
the perturbative uncertainty estimate from independent variation is reduced by excluding
a subset of (µ, µ) values based on a convergence test. Through an extensive analysis, DHM
demonstrate the stability of the result under modifications of the analysis strategy.

The final result of DHM has a larger error than CKMMMSS due to a more conservative
estimate for the uncertainty of the experimental continuum and the independent scale vari-
ation. It is in good agreement with our result and the one of CKMMMSS. It is interesting
that independent scale variation in the low-n moments leads to a basically identical overall
error budget compared to our value, although the relativistic and non-relativistic sum rule
analysis have completely different systematics.

Hoang, Ruiz-Femeńıa and Stahlhofen (HRS) [175]

The analysis of HRS uses moments Mn with 6 ≤ n ≤ 14 and the default value of n = 10
in the framework of vNRQCD [187]. Besides Coulomb singularities αs

√
n, HRS also resum

Coulomb logarithms αs ln
√
n to NNLO + (partial) NNLL accuracy. Like CKMMMSS and

DHM, they estimate the unknown experimental high-energy continuum by the perturbative
QCD prediction, but assume an uncertainty of 10%. Within the errors, their experimental
moments are in agreement with ours.

HRS apply the sum rule to first extract a 1S mass and then convert to the bottom-quark
MS mass with three-loop accuracy. The conversion error is estimated to be 15 MeV, which
is about a factor two larger than what we find for the PS-MS conversion based on the
four-loop relation. They also find an almost complete cancellation of the αs dependence
in the conversion from a threshold mass scheme to the MS mass.

Our central values for the MS mass at NNLO and NNNLO almost coincide, but are
smaller by about 35 MeV and 70 MeV than the NNLL and NNLO results obtained by
HRS. The two analyses differ in a number of aspects. As mentioned above, HRS extract
the 1S instead of the PS mass before conversion to the MS scheme, which is done at
three-loop accuracy. Furthermore, they expand the factor 1/sn+1 in the moments non-
relativistically and expand the resonance poles, the 1S-pole mass relation and the kinetic
factor 1/s in the vacuum polarization function. HRS use a moment-dependent renormal-
ization scale µ = mb(1/

√
n + 0.2) instead of our fixed µ = mb, but apply the hard scale

for the matching coefficients of the vector current. Charm-mass effects are not included
in the analysis of HRS because they are currently unknown in their renormalization group
improved framework. When adopting our analysis to the NNLO one of HRS, we find that
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the differences in central values are mainly due to the different scale choice. The precise
size of the remaining changes in the analysis depends on the order in which they are imple-
mented, but the effects are only moderate in size. We were able to reproduce the NNLO
value obtained by HRS up to a negligible difference of 2 MeV.

Based on scale variation, HRS arrive at an estimate for the perturbative uncertainty
at NNLO, which is about twice as large as ours. This originates from renormalization
scale variations to lower values, where there appears to be a breakdown of non-relativistic
fixed-order perturbation theory [88]. Based on the very good convergence of the successive
perturbative approximations from NNLO to NNNLO at the scale µ = mb (see figure 7.4),
we believe that our assignment for the error due to truncation of the perturbative expansion
is sufficiently conservative.

The resummation of logarithms performed by HRS reduces the scale dependence and
leads to a stabilization of the result for lower scales in particular. Thus, the large difference
in the bottom-quark masses at NNLO from the lower renormalization scale is partially
compensated through the resummation and HRS obtain the value quoted in Table 7.3 as
their final result at NNLL. Previously, a less complete renormalization group improved
analysis obtained mMS

b (mMS
b ) = 4.19± 0.06 at NNLO + partial NNLL [176].

Penin and Zerf (PZ) [186]

The analysis of PZ also employs non-relativistic sum rules, but uses still higher moments
with a central value of n = 15. The validity of the OPE, which is based on the hierarchy
nΛQCD/mb, is dubious for these high values (see the discussion in Section 8). Assuming
it is valid, the result for the bottom-quark MS mass is increased by about 12 MeV when
using n = 15 instead of n = 10.

For n ∼ 15, the moments are dominated by the Υ resonances, which PZ exploit to
neglect the experimental high-energy continuum. PZ compute the theory moments using
the complete NNNLO PNRQCD prediction for the resonances, but employ an estimate of
Rb = ρZNNNLO

1 /ZNNLO
1 RNNLO, 0.5 ≤ ρ ≤ 2, to estimate the effects of the (then) unknown

NNNLO contribution to the continuum. The comparison with our calculation shows that
the true result lies somewhat below the range of values covered by variation of the auxiliary
parameter ρ. Replacing the NNNLO continuum with the rescaled NNLO approximation
increases the resulting mass value extracted fromM15 by about 5 MeV. PZ however expand
the factor 1/s in the polarization function (cf. Section 7.4), which lowers the mass by
17 MeV. PZ forgo the use of an intermediate threshold mass and directly extract the MS
mass. The effect on the final value is minimal, as can be seen from the comparison of (7.20)
and (7.19). Based on the findings of [168], PZ apply an ad hoc mass shift of −25± 5 MeV
to account for the effects of a non-vanishing charm-quark mass, while our computation
yields a shift of only about −3 MeV (see the discussion in Section 7.5). In the absence
of QED and charm-mass effects and using the estimate [54] for the four-loop contribution
to the pole-MS mass relation employed by PZ, the central values of PZ and our analysis
coincide (4.194 GeV vs. 4.195 GeV).

PZ claim a strikingly small overall uncertainty of only 9 MeV in the value of the bottom-
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quark mass. The three dominant sources of uncertainties considered by us (scale variation,
scheme conversion and variation of n) are each similar in size or even exceed this value. The
confrontation of their error estimate of 2.2 MeV for the scheme conversion with the shift of
13 MeV implied by the use of the exact four-loop pole-MS mass relation [49] demonstrates
the severe underestimation of some sources of uncertainties. We believe that this is also
the case for the perturbative uncertainty, where PZ assume 2.1 MeV.
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The key virtue of the sum rule approach is that non-perturbative effects can be included
systematically by means of an OPE. In Section 7 we have only considered the perturbative
contributions with the understanding that non-perturbative effects should be small for
moderate n ∼ 10. Here, we demonstrate that this is indeed the case and then discuss
the spectroscopy and leptonic decays of the Υ(NS) states. The leading dimension four
condensate contributions to Bottomonium states have first been evaluated in [80, 188].
This has been extended to the dimension six contribution in [189]. In the context of
non-relativistic sum rules, the leading non-perturbative corrections were first discussed
in [158]. For the relativistic moments, O(αs) corrections to the dimension four condensate
correction [190,191], as well as contributions from higher-dimensional condensates [192,193]
are known. We refer to [194–196] for more general reviews on condensate corrections.

The OPE relies on the QCD scale being small with respect to the hard, soft and ultrasoft
scales that govern the perturbative evaluation of the moments. Accordingly, the gluon field
in the PNRQCD Lagrangian can be split into two parts

Aµ(t,x) = Aus
µ (t,x) + Abg

µ (t,x). (8.1)

The superscripts denote the ultrasoft and the non-perturbative background gluon field.
The latter can be multipole-expanded in the time and spatial components because it only
fluctuates over scales of the order 1/ΛQCD and can neither resolve the dynamics of the
potential heavy quark nor the ultrasoft massless fields. Thus, it behaves like a constant
(in time and space) background field. A convenient gauge choice for background fields is
given by Fock-Schwinger gauge

x ·Abg(t,x) = 0, Abg
0 (t,0) = 0, (8.2)

which removes the coupling of the heavy quarks to the Abg
0 field.1 The PNRQCD La-

grangian then receives an additional term

Lnon-perturbative = ψ†
(
−gsx · Ebg(0,0) + . . .

)
ψ + χ†

(
−gsx · Ebg(0,0) + . . .

)
χ, (8.3)

which is of the order m2
bv

2Λ2
QCD because the strong coupling at the QCD scale is counted

as order one. This implies that the chromoelectric dipole coupling to the background
field is suppressed by v(ΛQCD/(mbv

2))2 with respect to the leading order Lagrangian. The

1The gluon propagator in this gauge contains spurious singularities as discussed e.g. in [197]. Therefore
this gauge will not be applied to the ultrasoft gluon modes, where its naive use can lead to inconsistencies
as observed in [198].
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gsE
i gsE
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Figure 8.1.: Leading dimension four condensate contribution to the Green function. The
single and double lines denote the LO color-singlet and color-octet Green func-
tions, respectively.

multipole-expanded coupling of the background field to ultrasoft gluons is only relevant at
higher orders. There is obviously no contribution from a single insertion of the chromo-
magnetic dipole operator (8.3) into the Green function because the vacuum expectation
value of Ebg vanishes, as can be seen for example by Lorentz invariance. The vacuum
expectation value of the double insertion of (8.3) is therefore the leading non-perturbative
correction. It can be related to the well-known gluon condensate by making use of Lorentz
and SU(3)c invariance

〈0|EA
i (0)EB

j (0)|0〉 = − 1

(N2
c − 1)d(d− 1)

δABδij〈0|GC
αβ(0)GC

αβ(0)|0〉. (8.4)

We evaluate this contribution in Section 8.1 and give some preliminary results for the
dimension six condensate contribution and the O(αs) corrections to the dimension four
contribution in Section 8.2 and 8.3, respectively. Finally, the phenomenological impact is
studied in Section 8.4.

8.1. Dimension four contribution at leading order

The leading condensate contribution to the Green function comes from the diagram in
Figure 8.1 and is given by

δ〈G2〉G(E) = 〈0|Ĝ(E)iD̂iĜ(E)iD̂iĜ(E)|0〉

=
(gs

2

)2

〈0|EA
i (0)EB

j (0)|0〉〈0|Ĝ(E)ξAx̂iĜ(E)ξBx̂jĜ(E)|0〉, (8.5)

where D̂ is the chromoelectric dipole operator from (8.3) and ξA = T (3)A⊗1(3)−1(3)⊗T (3)A.
The hierarchy between the QCD scale and the perturbative scales has been used to factorize
the physical state into a direct product of the quarkonium and the gluonic vacuum state.
This is possible because interactions between the heavy quarks and gluons are treated as

perturbations. With (8.4), the color identity T
(3)A
ab = −T (3)A

ba and the decomposition

Ĝ(E) = Ĝ(0)(E)P0 + Ĝ(8)(E)P8, (8.6)
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with the color-singlet and color-octet projectors (with the color indices attached counter-
clockwise to the external legs of the Green function shown in Figure 3.29, starting at a for
the outgoing quark, see also [60])

P0 =
1

Nc

δbcδda, P8 = 2TAbcT
A
da, (8.7)

we obtain

δ〈G2〉G(E) = −2〈0|παsG2|0〉
Ncd(d− 1)

〈0|Ĝ(0)(E)x̂iĜ(8)(E)x̂iĜ(0)(E)|0〉. (8.8)

The superscripts (0) and (8) denote the color-singlet and color-octet Green function (see
also [60]). The expression (8.8) is free of divergences and can be computed in d = 4
dimensions in configuration space (cf. [184])

δ〈G2〉G(E) = −〈0|παsG
2|0〉

18

∫
d3r

∫
d3r′ (r · r′)G(0)(0, r;E)G(8)(r, r′;E)G(0)(r′, 0;E),

(8.9)
We use the integral representation (3.34) for the color-singlet and the sum representa-
tion (3.35) for the color-octet Green function. In the latter, we have to replace λ by
λ(8) = (D8/(−CF ))λ = −λ/8 to account for the different color factor D8 = CA/2 − CF
instead of −CF in the LO Coulomb potential. The angular integrals in (8.9) project out
the P-wave component of the color-octet Green function. We obtain

δ〈G2〉G(E) = −π
2

18
K4

m2αsCF
4π

λ5

∞∑

s=0

s!H〈G2〉(s)
2

(s+ 3)!(s+ 2 + λ/8)
, (8.10)

where

K4 =
〈αs
π
G2〉

m4
b(αsCF )6

. (8.11)

The coefficients can be integrated directly

H〈G2〉(s) =

∞∫

0

dt

(
1 + t

t

)λ ∞∫

0

dρρ4e−ρ(1+t)L(3)
s (ρ)

= −(s+ 3)!

s!
λ

Γ(5)Γ(s− λ)

Γ(5 + s− λ)
. (8.12)
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The sum in (8.10) yields

δ〈G2〉G(E) = −π
2

18
K4

m2αsCF
4π

λ5

{
8

9(8− 9λ)2(16− 9λ)2(16 + 9λ)2

(
14155776 + 43024384λ

+212248576λ2 − 136918656λ3 − 607347072λ4 + 444623094λ5

+321157305λ6 − 245939085λ7 − 47534445λ8 + 37200870λ9
)

+
16λ2 (26624− 101216λ2 + 109935λ4 − 25515λ6)

16384− 25920λ2 + 6561λ4

(
ψ1(λ)− π2

sin2(πλ)

)

+
134217728λ (64− λ2)

9 (16384− 25920λ2 + 6561λ4)2

(
ψ(1− λ)− ψ

(
2 +

λ

8

))}
. (8.13)

The condensate corrections to the S-wave energy levels EN and the wave functions at the
origin |ψN(0)|2 can be obtained from the expansion of (8.13) for λ near positive integer
values N . We parametrize these corrections as

EN = E
(0)
N

∞∑

k,l=0

e
(k,l)
N , (8.14)

|ψN(0)|2 = |ψ(0)
N (0)|2

∞∑

k,l=0

f
(k,l)
N , (8.15)

where e
(k,l)
N , f

(k,l)
N are the (ΛQCD/(mbα

2
s))

kαls corrections to the Nth energy level and wave
function, respectively. We obtain

e
(4,2)
N = −π

2

18
K4

32N6 (25515N6 − 109935N4 + 101216N2 − 26624)

(6561N4 − 25920N2 + 163841)
, (8.16)

f
(4,2)
N =

π2

18
K4

32N6

9 (6561N4 − 25920N2 + 163841)2

×
(

4519905705N10 − 36791660430N8 + 101725313184N6

−112065638400N4 + 50981371904N2 − 7583301632
)
, (8.17)

in agreement with the results from [80,188].

8.2. Dimension six contribution

The dimension six contribution to the energy levels and wave functions has been determined
in [189]. Unfortunately, the expressions for the correction to the Green function have
not been given there (although they were computed), so we repeat the calculation here
following [189].
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Figure 8.2.: Leading dimension six condensate contribution to the Green function.

At higher dimensions, the leading condensate corrections arise from insertions of the
gluon Hamiltonian between the two insertions of the chromoelectric dipole operator [189].
These contributions are of the order α2

s(ΛQCD/(mbv
2))4+nH , where nH counts the insertions

of the gluon Hamiltonian and must be even (cf. [189]). In comparison, additional insertions
of (8.3) count as αnDs (ΛQCD/(mbv

2))2nD , where nD ≥ 2 is the number of dipole operators,
and are thus subleading. The dimension six contribution shown in Figure 8.2 takes the
form

δ6G(E) = 〈0|Ĝ(E)iD̂iĜ(E)iĤgiĜ(E)iĤgiĜ(E)iD̂iĜ(E)|0〉 (8.18)

=
g2
s

4
〈0|EA

i (0)HgHgE
B
j (0)|0〉〈0|Ĝ(E)ξAx̂iĜ(E)Ĝ(E)Ĝ(E)ξBx̂jĜ(E)|0〉,

where Hg is the gluon Hamiltonian. The condensate has been worked out in [189]. We
obtain

δ6G(E) = O1〈0|Ĝ(0)(E)x̂iĜ(8)(E)Ĝ(8)(E)Ĝ(8)(E)x̂iĜ(0)(E)|0〉, (8.19)

where in d = 4

O1 =
1

108

[
26

3
π2α2

s〈0|q̄q|0〉2 +
3

4
〈G3〉

]
. (8.20)

The calculation is done in configuration space. Again, the angular integrals project out
the P wave components of the color octet Green functions. We find

δ6G(E) = K6
m2αsCF

4π
λ9

∞∑

s1=0

∞∑

s2=0

∞∑

s3=0

s1!H〈G2〉(s1)

(s1 + 3)!(s1 + 2 + λ/8)

s2!K1(s1, s2)K1(s2, s3)

(s2 + 3)!(s2 + 2 + λ/8)

s3!H〈G2〉(s3)

(s3 + 3)!(s3 + 2 + λ/8)
, (8.21)

where

K6 =
O1

m6
b(αsCF )10

. (8.22)

and the function K1 reads

K1(a, b) =

∞∫

0

dρρ4e−ρL(3)
a (ρ)L

(3)
b (ρ)

=
(max(a, b) + 3)!

min(a, b)!
[(2a+ 4)δa,b − δa,b−1 − δa−1,b] . (8.23)
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Since K1(a, b) is only non-vanishing for |a − b| ≤ 1 the triple sum in (8.21) reduces to a
single sum, which can be solved in terms of polygamma functions.

For the dimension six corrections to the energy levels and wave functions, we obtain

e
(6,2)
N = K6

4096N10

81 (9N2 − 64) (6561N4 − 25920N2 + 16384)3 (8.24)

×
[
65241222927111N16 − 1327743092409993N14 + 10789755579716526N12

−46158344158975776N10 + 114216987240880128N8 − 168309372752363520N6

+145600287615221760N4 − 68153404341354496N2 + 13295844358881280
]
,

f
(6,2)
N = K6

4096N10

81(64− 9N2)2(1024− 81N2)(6561N4 − 25920N2 + 16384)4

×
[
1560233733912305862795N24 − 68302865242974003997572N22

+1257835587897041879681466N20 − 12922847845013954087408448N18

+82659284132080163141376000N16 − 347414281805040198547931136N14

+985563190675064665304727552N12 − 1906052104684436293825855488N10

+2504628423489707401549971456N8 − 2195117868501221112538988544N6

+1227049495579909701471567872N4 − 395519535823226068598259712N2

+55919902706900903797981184
]
. (8.25)

The correction to the energy levels is identical to the result of [189]. Our result for the wave
function correction however differs from the one in [189] in the coefficients in the square
bracket that multiply factors of N . The constant term is in agreement. Numerically the
difference is tiny, dropping from 3 permille for N = 1 to 1.8 permille for N = 10.

8.3. Dimension four contribution at NLO: Potential
contributions

There is a number of effects that could possibly contribute to the O(αs) corrections to the
dimension four condensate contribution to the Green function:

• An additional insertion of the NLO Coulomb potential, see Figure 8.3.

• An ultrasoft gluon correction from the color charge term gsA
us
0 (t,0) coupling to the

color-octet state, see Figure 8.4.

• An αs correction to the Wilson coefficient of the chromoelectric dipole operator (8.3).
The Wilson coefficient was found to be trivial up to O(α2

s) in [199].

• O(m2
bv

3Λ2
QCD) terms in the multipole expansion (8.3) of the gluon coupling to heavy

quarks in the spatial components. They are identical to the multipole expansion of
the coupling to the ultrasoft gluon field and were determined in [200], where they are
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Figure 8.3.: Potential corrections to the dimension four condensate contribution to the
Green function.

gsE
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j

+ . . .

+

+

Figure 8.4.: Ultrasoft correction to the dimension four condensate contribution to the
Green function.

denoted as h
(1,0)
SO . There is no contribution from these coupling because they either

have vanishing tree level Wilson coefficients and are thus suppressed by an additional
power of αs ∼ v or involve the chromomagnetic instead of the chromoelectric field,
which only yields a vanishing condensate

〈
0
∣∣EA

i B
B
j

∣∣ 0
〉

= 0 at NLO.

• Contrary to the ultrasoft gluon-heavy quark coupling, the interactions of the back-
ground field must also be multipole expanded in the time component. The expansion
of the A0 component is trivial due to our gauge choice (8.2) and already the linear
term t(∂0Ai)(0,0) in the expansion of the spatial component is only relevant at higher
powers. Thus, no contributions of this type must be considered.

The potential corrections are determined below, whereas the ultrasoft contribution is post-
poned to future work. The color octet Coulomb potential required for the diagram on the
left in Figure 8.3 in known up to NNNLO [201,202]. At NLO only the global color factor
must be adjusted.

The O(αs) potential corrections to the gluon condensate contribution to the Green func-
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tion are expressed through two triple-insertion functions

δ〈G2〉G
(1)
pot(E) = δ〈G2〉G

(1)
GV G(E) + 2δ〈G2〉G

(1)
GGV (E)

=
〈0|παsG2|0〉

18

[
a1 + β0

d

du

]

[
(α2

sD8)I〈G2〉[G, 1 + u,G] + 2(−α2
sCF )I〈G2〉[G,G, 1 + u]

]
u=0

. (8.26)

Again the angular integrals project out the P wave Green function in the color octet states.
The first triple insertion function takes the form

I〈G2〉[G, 1 + u,G] =
1

4πΓ(1 + 2u) cos(πu)

∫
d3r

∫
d3r′

∫
d3r′′(r · r′′)G(0)(0, r;E)

G(8)(r, r′;E)r′−1+2uG(8)(r′, r′′;E)G(0)(r′′, 0;E)

=
λ6

(4π)2m2(αsCF )6

∞∑

s1=0

s1!H〈G2〉(s1)

(s1 + 3)!(s1 + 2 + λ/8)

∞∑

s2=0

s2!H〈G2〉(s2)

(s2 + 3)!(s2 + 2 + λ/8)
KV (u, s1, s2), (8.27)

where

KV (u, s1, s2) =
(µ/2p)2u

Γ(1 + 2u) cos(πu)

∞∫

0

dρρ3+2ue−ρL(3)
s1

(ρ)L(3)
s2

(ρ). (8.28)

For u = 0 the integral gives

K
(0)
V (s1, s2) ≡ KV (0, s1, s2) =

(s1 + 3)!

s1!
δs1s2 . (8.29)

Its derivative at zero can be solved by applying the methods used for the Coulomb triple
insertion in [89]. We obtain

K
(1)
V (s1, s2) ≡ d

du
KV (u, s1, s2)|u=0 = 2

[
(Lλ + γE)

(s1 + 3)!

s1!
δs1s2 + k1(s1, s2)

]
, (8.30)

where

k1(s1, s2) =

{
11 + 12s1 + 3s2

1 + (s1+3)!
s1!

ψ(1 + s1), s1 = s2

− (min(s1,s2)+3)!
min(s1,s2)!|s1−s2| , else.

(8.31)
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The second triple-insertion function yields

I〈G2〉[G,G, 1 + u] =
1

4πΓ(1 + 2u) cos(πu)

∫
d3r

∫
d3r′

∫
d3r′′(r · r′)G(0)(0, r;E)

G(8)(r, r′;E)G(0)(r′, r′′;E)r′′−1+2uG(0)(r′′, 0;E)

=
m2

4π

λ6

4πm4(αsCF )6

∞∑

s1=0

s1!H〈G2〉(s1)

(s1 + 3)!(s1 + 2 + λ/8)

∞∑

s2=0

H(u, s2 + 1)

(s2 + 1)(s2 + 1− λ)
KG(s1, s2), (8.32)

where

KG(s1, s2) =

∞∫

0

dρρ4e−ρL(3)
s1

(ρ)L(1)
s2

(ρ)

=

{
(−1)s1+s24! (s1+3)!

s2!(s1+3−s2)!
(s2+1)!

s1!(s2+1−s1)!
, −1 ≤ s2 − s1 ≤ 3

0, else,
(8.33)

and H(u, k) is defined as in [89]. One requires

H(0)(k) ≡ H(0, k) =
k

k − λ, (8.34)

H(1)(k) ≡ ∂

∂u
H(u, k)|u=0 =

2k

k − λ

[
Lλ − ψ̂(k − λ) +

λ

k

(
ψ̂(1− λ)− ψ̂(k + 1− λ)

)]
.

(8.35)

The infinite sums in (8.27) and (8.32) converge quickly and can be truncated with negligible
uncertainty at si ∼ 30.

We briefly sketch what is required for the missing ultrasoft contribution of Figure 8.4.
Power counting demonstrates that the ultrasoft correction is free of overall divergences.
There are, however, UV subdivergences in the self-energy and vertex-correction diagrams
shown on the right-hand side of Figure 8.4. Nevertheless, we proceed with the a priori
ill-defined expressions for the ultrasoft diagram in d = 4 dimension with the understanding
that the necessary subtractions for the subdivergence must still be applied. We find

δ〈G2〉G
(1)
us (E) =

〈0|παsG2|0〉
6

g2
s

∫
d3r

∫
d3r′

∫
d3r′′

∫
d3r′′′ (r · r′′′)G(0)(0, r;E) (8.36)

×G(8)(r, r′;E)i

∫
d4k

(2π)4

G(8)(r′, r′′;E − k0)

k2 + i0
G(8)(r′′, r′′′;E)G(0)(r′′′, 0;E).

We can proceed by closing the k0 contour in the lower half plane, which picks up the residue
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at k0 = |k| − i0 from the gluon propagator. This yields

δ〈G2〉G
(1)
us (E) =

〈0|παsG2|0〉
6

αs
π

∫
d3r

∫
d3r′

∫
d3r′′

∫
d3r′′′ (r · r′′′)G(0)(0, r;E) (8.37)

×G(8)(r, r′;E)

∞∫

0

d|k||k|G(8)(r′, r′′;E − |k|)G(8)(r′′, r′′′;E)G(0)(r′′′, 0;E),

where the angular integrals are only non-vanishing for the P-wave component of the color-
octet Green functions. After simplifications one obtains

δ〈G2〉G
(1)
us (E) =

π2K4

6

αs
π

m2αsCF
4π

λ9

∞∑

s1=0

s1!H〈G2〉(s1)

(s1 + 3)!(s1 + 2 + λ/8)

∞∑

s2=0

s2!

(s2 + 3)!

∞∑

s3=0

s3!H〈G2〉(s3)

(s3 + 3)!(s3 + 2 + λ/8)

∞∫

0

dk̂ k̂η3Kus(η, s1, s2)Kus(η, s3, s2)

s2 + 2 + λ/(8η)
,(8.38)

where we have defined η =
√

(E − |k|)/E and substituted k̂ = |k|/(mα2
sC

2
F ). The structure

of the expression (8.38) is similar to the dimension six contribution (8.21), but complicated
by the additional momentum integral. Unfortunately, the presence of the dimensionless
variable η breaks the symmetry of Kus under exchange of its arguments and yields a rather
complicated result

Kus(η, a, b) =

∞∫

0

dρρ4e−
1+η

2
ρL(3)

a (ρ)L
(3)
b (ηρ)

= 256
(−1)b(4 + a+ b)!

a!b!(4 + a)(4 + b)
[2 + a− (2 + b)η]

(η − 1)a+b−1

(η + 1)a+b+7

×
[
aη 2F1

(
1− a,−b,−4− a− b;

(
η + 1

η − 1

)2
)

−(1 + (2 + a)η + η2) 2F1

(
−a,−b,−4− a− b;

(
η + 1

η − 1

)2
)]

. (8.39)

In contrast to (8.23), where only the diagonal and next-to-diagonal elements are non-
vanishing, the matrix Kus has all non-zero entries and we cannot reduce the triple sum to
a single sum. The subdivergence manifests through the divergence of the infinite sums.

The contributions to the energy levels and wave functions from the potential corrections
can be extracted by expanding (8.27) and (8.32) for λ near positive integer values N . The
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results are given by

e
(4,3)
N =

π2K4

18

αs
4π

[
D8

CF
ẽ GVG
N + ẽ GGV

N + ẽ us
N

]
, (8.40)

f
(4,3)
N =

π2K4

18

αs
4π

[
D8

CF
f̃ GVG
N + f̃ GGV

N + f̃ us
N

]
, (8.41)

(8.42)

where ẽ, GVG
N , ẽ GGV

N , ẽ, GVG
N and f̃ GGV

N are given in Appendix D and the ultrasoft contri-

butions ẽ us
N and f̃ us

N are still missing.

8.4. Size of non-perturbative corrections

The size of non-perturbative corrections to the moments and to the properties of the
Upsilon resonances has been strongly disputed. Based on the leading dimension four con-
densate contribution Voloshin found that the relative corrections to the moments do not
exceed about 1% for n ≤ 20 [158]. On the other hand, the expansion parameter nΛQCD/mb

of the OPE is of order one for n ∼ 16 indicating a much earlier breakdown.
The leading condensate correction to the Υ(1S) mass is of the order of 100 MeV and the

applicability of the condensate expansion to excited states is doubtful. Nevertheless, it has
been argued [203–205] that the Υ(1S) mass is in the perturbative domain. Intriguingly,
the bottom-quark mass values obtained from the mass of the Υ(1S) state [203–205] are
almost identical to ours, when the non-perturbative contribution to the bound-state energy
is ignored. The leptonic decay width of the Υ(1S) resonance has been studied at NNNLO
in [86] with the conclusion that the perturbative result stabilizes at NNNLO and makes
up about 70% of the experimental value. Similar to the non-relativistic moments, there is
however no sign of convergence for renormalization scales below about 3 GeV. On the other
hand, the condensate corrections appear to only converge for considerably lower scales near
the inverse Bohr radius [189]. Thus, it remained unclear whether the Υ(1S) state can be
fully understood in the domain of the local condensate expansion.

Below, we attempt to gain some further insight into the condensate corrections from
an analysis of the dimension six contribution and the partial NLO dimension four results.
Unfortunately, we are mostly constrained to hierarchical statements because, firstly, the
values of the condensates themselves are very uncertain. We use the estimates

〈αs
π
G2〉 = 0.012 GeV4, O1(µ) = (3.13 + αs(µ) 7.41) · 10−4 GeV6, (8.43)

from [206] and [189], respectively.2 Even worse, the expressions K4 and K6 in (8.11)
and (8.22) contain large powers of αs and are thus very sensitive to the renormalization
scale.

2 The gluon condensate is scale independent because the operator G2 has vanishing anomalous dimension.
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n 8 10 12 16 20 24

Mexp,Υ(1S)
n /Mexp

n 0.738 0.803 0.850 0.913 0.948 0.969

M̃pert,Υ(1S)
n /M̃pert

n 0.769 0.814 0.849 0.899 0.932 0.953

M̃pert,rest
n /M̃pert

n 0.231 0.186 0.151 0.101 0.068 0.047

δ
(0)

Λ4 M̃Υ(1S)
n /M̃pert

n 1.711 1.842 1.953 2.135 2.281 2.404

δ
(0)

Λ4 M̃rest
n /M̃pert

n -1.713 -1.845 -1.957 -2.144 -2.296 -2.427

δ
(0)

Λ4 M̃n/M̃pert
n -0.002 -0.003 -0.005 -0.009 -0.015 -0.023

δ
(1∗)
Λ4 M̃Υ(1S)

n /M̃pert
n -5.322 -5.748 -6.118 -6.741 -7.263 -7.722

δ
(1∗)
Λ4 M̃rest

n /M̃pert
n 5.322 5.748 6.118 6.742 7.263 7.719

δ
(1∗)
Λ4 M̃n/M̃pert

n 0.0003 0.0004 0.0004 0.0002 -0.0008 -0.003

δ
(0)

Λ6 M̃Υ(1S)
n /M̃pert

n -8.402 -9.104 -9.723 -10.79 -11.71 -12.54

δ
(0)

Λ6 M̃rest
n /M̃pert

n 8.402 9.104 9.723 10.79 11.71 12.54

δ
(0)

Λ6 M̃n/M̃pert
n 0.00002 0.00004 0.00008 0.0002 0.0005 0.001

Table 8.1.: We show the contribution of the Υ(1S) state and the remaining resonances
combined with the continuum (rest) to the experimental moments and the
perturbative and non-perturbative contributions to the moments, separately.
We use the inputs mPS

b (2 GeV) = µ = 4.53 GeV, αs = 0.220486, mc = 0, and
in K4 and K6 the condensates from (8.43) and the pole mass mb = 4.717 GeV
computed from mPS

b (2 GeV) at LO. The perturbative moments are evaluated
at NNNLO in the PSS scheme, and the LO and partial NLO (denoted by a
star and slanted numbers) dimension four contributions and the dimension six
contribution in the pole scheme.

8.4.1. Non-relativistic moments

We can determine the condensate contributions to the moments through contour inte-
gration in the complex-energy plane. Contrary to the perturbative contribution, we may
not split the condensate corrections into a resonance and continuum part, since both are
separately divergent. The divergence in the resonance part appears in the sum over the
principal quantum number because the dimension four and six contributions to the residues
ZN grow as N5 and N9 for N →∞. The continuum contribution is too singular for E → 0.
The corrections to the moments are however well-defined, since the moments only rely on
the OPE in the Euclidean region.

It is also well-defined to split the condensate correction into the finite contribution from
the Υ(1S) resonance and the rest. The corresponding values for the experimental and
perturbative moments, as well as the LO and partial NLO dimension four and the LO
dimension six condensate contributions are shown in Table 8.1.

Our first observation is that the Υ(1S) contribution obtained perturbatively is very
close to the experimental one. It makes up the dominant contribution for the considered
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n 8 10 12 16 20 24

(nΛQCD/mb)eff, dim 4 0.357 0.431 0.505 0.649 0.790 0.927
(nΛQCD/mb)eff, dim 4∗ 0.362 0.441 0.520 0.681 0.845 1.013
(nΛQCD/mb)eff, dim 6 0.231 0.277 0.321 0.408 0.493 0.575
(nΛQCD/mb)eff, dim 6 × 151/6 0.363 0.434 0.504 0.641 0.774 0.904

Table 8.2.: Estimates for the effective non-perturbative expansion parameter (nΛQCD/mb)
based on the results of the leading dimension four condensate corrections, the
partial NLO dimension four condensate corrections and the dimension six con-
densate corrections. See text for further explanations.

moments, rising from about 80% for n = 10 to above 95% for the 24th moment. It is
somewhat puzzling that this nice agreement is completely spoiled by the leading dimension
four condensate contribution, which is more than twice as large as the perturbative part
for the estimate (8.43) and our central scale choice. It is, however, almost entirely canceled
by the condensate contribution to the rest, which exceeds the perturbative estimate for
the rest by an even larger factor. The degree of cancellation is up to 1 part in 1000 for
n = 8 and still effective at the 1% level for n = 24. Therefore, the overall dimension four
condensate contribution is very small, only about 2% for n = 24 where power counting
arguments clearly predict a breakdown of the OPE.

While the exact size of the condensate terms is rather ambiguous, as discussed above,
this cancellation and the smallness of the total contribution is intrinsic. Although the
moments were designed precisely for that reason, the extend of the cancellations is aston-
ishing, as this behaviour is even enhanced for the partial NLO corrections to the dimension
four contribution and the dimension six part. The Υ(1S) contribution from both is even
larger than the leading order dimension four part, but cancels to a still larger degree with
the remaining contribution. Unless the cancellation is much less effective for the miss-
ing ultrasoft correction to the dimension four part, it therefore naively appears that the
condensate expansion is converging well up to very high values of at least n ∼ 20− 24.

The overall smallness of the condensate contributions is, however, partially due to the
suppression of the dipole operator (8.3) by v ∼ αs, which manifests as an additional
suppression by 1/n in the condensate corrections to the moments. We can therefore use

(nΛQCD/mb)eff, dim 4 =

∣∣∣∣∣
n δ

(0)

Λ4 M̃n

M̃pert, LO
n

∣∣∣∣∣

1
4

(8.44)

(nΛQCD/mb)eff, dim 4∗ =

∣∣∣∣∣
n δ

(1∗)
Λ4 M̃n

M̃pert, NLO
n

∣∣∣∣∣

1
4

(8.45)

(nΛQCD/mb)eff, dim 6 =

∣∣∣∣∣
n δ

(0)

Λ6 M̃n

M̃pert, LO
n

∣∣∣∣∣

1
6

(8.46)
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to estimate the size of the expansion parameter (nΛQCD/mb) based on our results for the
condensate corrections. The results are shown in Table 8.2. We observe that the estimate
for the effective expansion parameter based on the dimension four results becomes order
one in the ballpark of n = 20. This hints that a breakdown of the OPE indeed happens
around this region, which implies that the perturbative treatment of the ultrasoft correction
is no longer appropriate. We refer to [61] for a review of EFTs, that can be constructed for
heavy quarkonium with different hierarchies between the soft, ultrasoft and QCD scale.

The dimension six contribution is smaller, than a naive estimate based on the effective
expansion parameter from the dimension four terms would predict. This might indicate
that the expansion is better behaved, which is reflected by lower estimates for the expansion
parameters from dimension six. It was however pointed out in [193] that the dimension
six contribution is numerically suppressed by a factor 1/15, which is not present at dimen-
sion eight. Intriguingly, if we compensate for this factor, the estimates for the expansion
parameters are nearly identical to dimension four as shown in the lowest row of Table 8.2.
Thus, it might be interesting to consider the dimension eight terms, which should provide
further insight on the convergence of the condensate expansion. It is a straightforward
exercise to determine the relevant coefficients along the lines of Section 8.2, but reliable
information on the corresponding condensate is practically non-existent.

The results in Table 8.1 and 8.2 clearly demonstrate that condensate contributions are
insignificant for our analysis based on the tenth moment. They affect the extracted bottom-
quark mass by less than 1 MeV and are therefore neglected. To be on the safe side,
we refrain from using n ≥ 16 in our analysis for the bottom-quark mass because we
can presently not exclude that the breakdown of the OPE, although veiled by the 1/n
suppression and the numerical suppression of the dimension six contribution, indeed occurs
in this region.

8.4.2. Upsilon resonances

We illustrate the perturbative and non-perturbative contribution to the mass of the Υ(1S)
resonance in Figure 8.5. Similar to the non-relativistic moments, we observe that perturba-
tion theory does not converge well for small renormalization scales, roughly µ ≤ 2.5 GeV.
However, near µ = mb the behaviour of the perturbative series is excellent. The reverse
happens for the condensate corrections. They exceed the perturbative corrections for scales
larger than about 2 GeV and show no convergence neither in the power series nor for the
preliminary αs corrections (although the latter could possibly be remedied by the missing
ultrasoft correction). For very small scales near 1 GeV, the condensate corrections are tiny
and the results indicate that the expansion is convergent.

The combined result for the Υ(1S) mass does not behave satisfactory for any given scale.
It must therefore be doubted that the hierarchy ΛQCD � EΥ(1S) provides an adequate
description of the 1S system. It seems however possible that the resummation of threshold
logarithms stabilizes the scale behaviour and yields a small intermediate region of the
renormalization scale, where the perturbative and condensate expansions converge. Also
here, it would be interesting to consider the dimension eight condensate to probe the
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Figure 8.5.: Mass of the Υ(1S) resonance. We show the perturbative results up to NNNLO
(upper left), the condensate corrections on top of the NNNLO perturbative
result (upper right), the absolute condensate corrections (lower left) and the
relative dimension six and NLO dimension four corrections with respect to the
leading dimension four contribution (lower right). The gray horizontal line in
the upper panel corresponds to the experimental value.
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Figure 8.6.: Leptonic decay rate of the Υ(1S) resonance. See Figure 8.5 for details.

hypothesis of the dimension six contribution being numerically small (cf. [193]), in which
case the breakdown of the condensate expansion would be unambiguous.

In Figure 8.6 and 8.7 we show the same results for the leptonic decay width of the
Υ(1S) resonance and the Υ(2S) mass, respectively. The condensate contributions may be
converging for the leptonic Υ(1S) decay rate in the region around µ = 1 GeV, if the missing
ultrasoft corrections partially compensate the large other NLO dimension four corrections,
but the perturbative part is clearly not convergent below roughly µ = 3 GeV and no stable
overall result can be expected. The condensate corrections to the Υ(2S) mass do not even
converge for scales as low as 800 MeV, which clearly invalidates the approach for the 2S
state. This may not be so surprising after all, since even expansions in ΛQCD/mc of fully
inclusive quantities like D-meson mixing and lifetimes [7,8,207] only converge rather slowly
and the charm-quark mass is significantly larger than the binding energies of the Υ(NS)
resonances.
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Figure 8.7.: Mass of the Υ(2S) resonance. See Figure 8.5 for details.





9. Conclusions and Outlook

Precision determinations of SM parameters offer a direct way to improve theory predictions
for a large number of observables. Since the parameters are, in general, not observables
themselves, they cannot be measured directly. They can only be extracted from the com-
parison of experimental data with theory predictions. In this dissertation we have studied
the production of heavy-quark pairs in electron-positron collisions in the particularly inter-
esting energy region near the heavy-quark production threshold. In this region the cross
section is highly sensitive to the heavy-quark mass, which facilitates the determination of
the top and bottom masses with a very small uncertainty. In addition, one can extract
precise values for the strong coupling constant, the top-quark width and the top-quark
Yukawa coupling.

Near the production threshold conventional perturbation theory in the strong coupling
breaks down due to the non-perturbatively strong Coulomb interaction between the non-
relativistic heavy quark and anti-quark. A meaningful prediction for the cross section can
only be obtained by resumming the Coulomb effects to all orders. A systematic approach
based on non-relativistic effective field theories has been developed, generalized for unsta-
ble particles, and applied in the last 20 years. The recent completion of the NNNLO QCD
result for top-pair production [28] has resolved the long-standing problem with the large
perturbative uncertainty of NNLO predictions [27]. Based on variation of the renormal-
ization scale the estimated size of missing higher-order QCD contributions is ±3%.

The first major result of this work is the computation of the full NNLO and partial
NNNLO non-QCD corrections to the top-quark pair production cross section. Our results
show that these corrections are significantly larger than the remaining QCD uncertainty,
reaching up to more than 20% below the characteristic peak of the cross section. This
demonstrates the importance of the non-QCD contributions for a threshold scan of top-
pair production at a future linear collider. Neglecting the non-QCD effects would distort
the extracted value of the top-quark mass by an amount that is comparable to the overall
uncertainty of the determination.

The large correction below the peak is mostly due to the non-resonant production of
the top-pair decay products W+W−bb̄ and its interference with the production of resonant
top pairs. The resonant cross section by itself is ill-defined for unstable top quarks, which
manifests through a divergence that only cancels once the non-resonant contribution is
taken into account as well. Special care was taken that the divergences and the respective
scheme dependences are treated consistently in both parts. On top of the full NNLO
treatment of electroweak effects, we include NNNLO P-wave and Higgs corrections. The
latter is especially interesting because the top threshold scan is sensitive to deviations
of the top-quark Yukawa coupling yt from its SM value and can therefore probe a large

137
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number of possible extensions to the SM that predict a non-standard coupling. A realistic
result for the modification of the shape of the cross section under variation of yt is only
obtained at NNNLO, where the effects of the Higgs potential appear.

To estimate the physics potential of a top threshold scan we have compared the size
of the modifications of the cross section under variation of the input parameters to the
theory uncertainty. Based on this approach we expect the theory uncertainties to be
about or below 50 MeV for the top-quark MS or PS mass and below 100 MeV for the top-
quark width. Adopting the same approach for the top Yukawa coupling and the strong
coupling constant we expect the threshold scan to be sensitive to variations of the order
+20
−50% and 0.0015, respectively. Their determination in a simultaneous fit however suffers
from a strong correlation and it is presently not clear to which degree this affects the
results. This question will be settled by a simulation based on the theory prediction of
QQbar Threshold [29], that is currently being performed. First results for the top-quark
mass [140] are in very good agreement with our estimate. Furthermore statistical and
experimental systematic uncertainties are expected to be at the level of only 20 MeV and
a few 10 MeV, respectively, which implies that the total uncertainty should be well below
100 MeV.

The other major result presented in this dissertation is the first complete NNNLO deter-
mination of the bottom-quark mass from non-relativistic moments of the pair production
cross section. In addition to the NNNLO QCD corrections (cf. [28]) we consider NNLO
charm-quark mass effects, NLO QED corrections and dimension four condensate correc-
tions, which are all tiny. Just as for the top-pair production cross section [28], the NNNLO
corrections lead to a substantial stabilization and to better insight into the scale behaviour
of the result. Consequently, we observe a significant reduction of the uncertainty com-
pared to previous NNLO results. The masses obtained from perturbative moments with
8 ≤ n ≤ 15 are in good agreement with each other. We adopt n = 10 for our central
value and find mPS

b (2 GeV) = 4.532+0.013
−0.039 and mMS

b (mMS
b ) = 4.203+0.016

−0.034 in the PS and MS
schemes, respectively. Our values are in good agreement with the current PDG average
and other recent sum rule results.

We have studied the impact of subleading condensate corrections on the non-relativistic
moments and the Υ(NS) properties. The results of [189] for the dimension six contributions
to the Upsilon resonances are extended and applied to the moments. Furthermore, we
computed the potential NLO QCD corrections to the dimension four contribution. To
obtain complete NLO QCD accuracy, the contributions from ultrasoft gluons must still
be determined. Due to the numerical uncertainty of the condensates and the strong scale
dependence, we only focus on the convergence properties. The results clearly show that
the moments with n ∼ 10 receive only minuscule non-perturbative corrections. Because of
a possible numerical suppression of the dimension six contribution (cf. [193]), it remains
unclear for which values of n the breakdown of the OPE occurs. A future calculation of the
dimension eight contribution should settle this question. Our results for the mass of the
Υ(1S) resonance show that the condensate expansion is questionable even here since there
is no value of the renormalization scale where the perturbative and condensate expansion
both converge. If an analysis of the dimension eight correction substantiates the numerical
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smallness of the dimension six contribution, the breakdown of the OPE would be obvious.
The condensate expansion doesn’t show any sign of convergence for either the leptonic
decay rate of the Υ(1S) or the masses of the exited resonances.

In the future the results discussed in this work could be further improved in a number
of ways. Firstly, both the top threshold scan and the determination of the bottom-quark
mass would benefit from a NNNLO plus NNLL QCD prediction for the cross section, which
could by achieved by a combination of the results of [28,208,209]. This could further reduce
the perturbative uncertainty and stabilize the scale behaviour. The resummation of ISR
at NLL accuracy is of integral importance for the top threshold scan as shown by the
substantial modification of the cross section from ISR at the LL level. Since this effect is
universal, it is of similar relevance for a future linear collider as precise parton distribution
functions are for the LHC. The full treatment of NNNLO electroweak corrections in the
resonant contribution would be desirable. Partial results for the hard matching coefficients
are already available [118, 119]. However, the determination of the full NNNLO non-
resonant contributions is not feasible with present methods. Last but not least, it would
be interesting to extend the formalism beyond the total cross section to other observables
like the forward-backward asymmetry [92] to fully exploit the physics opportunities of the
top threshold scan.





A. Details on the computation of the
NLO P-wave Green function

We show how the results (5.52) and (5.53) can be obtained. To get rid of the prefactor
in (5.50), we define j̃P(u) = [Γ(1 + 2u) cos(πu)/Γ(4 + 2u)]jP(u). Setting z = (1 + t1 +
t2)/(t1t2) and y = t1/(1 + t1 + t2), the Jacobian is (1 + yz/(y2(1− y)2z3)) and we obtain

j̃P(u) =

∞∫

0

dz

1∫

0

dy
y2u(1− y)2u(1 + z)

z3−2u(1 + yz)1+2u

[
(1 + z)λ − 1− λ log (1 + z)− λ2

2
log2 (1 + z)

]
.

(A.1)
In the case of j̃P(0), the y-integration is straightforward. For the z-integration we introduce
an analytic regulator z−α and rewrite the logarithms in the following way:

log(1 + z)n =

(
d

dβ

)
(1 + z)β|β=0. (A.2)

This way, the individual integrals can be solved

j̃P(0) = lim
α→0

[
d

dβ
B(−3− α, 2 + α− β − λ)− d

dβ
B(−3− α, 2 + α− β)

−λ d2

dβ2
B(−3− α, 2 + α− β−)− λ2

2

d3

dβ3
B(−3− α, 2 + α− β)

]

β=0

(A.3)

in terms of the Euler Beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∞∫

0

dz
za−1

(1 + z)a+b
. (A.4)

It is now straightforward to obtain

j̃P(0) =
1

6

[
−1 +

(
π2

3
− 2

)
λ+ 3ζ(3)λ2 +

(
1− 3λ2

)
ψ̂(2− λ) +

(
λ3 − λ

)
ψ′(2− λ)

]
.

(A.5)
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The computation of the derivative at zero proceeds similarly

j̃′P(0) =2

∞∫

0

dz

1∫

0

dy
1 + z

z3(1 + yz)
log

(
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(A.6)

We set t = z
1+z

:

j̃′P(0) =

1∫

0

dt
1− t
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(A.7)
The remainder of this section describes the computation of part (a), the divergent con-

tribution of the single-insertion function (5.54), which is performed in momentum space.
After the integrations over the zero-components of the loop momenta are performed, the
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product of the top and antitop propagators reduces to the simple form 1/(p2 −mE) and
the ”mass” mE of the non-relativistic heavy quark propagators is the only scale in the in-
tegrals. It is convenient to rescale the loop momenta by p→

√
−mE k, which reveals that

the loop integrals only depend on the dimension d and the non-integer power 1 + u from
the NLO Coulomb insertion. We have used FIRE [133, 134] to reduce the diagrams to a
small set of master integrals. We use solid lines to denote the rescaled massive propagators
of the form 1/(k2 + 1), dashed lines for potential gluons and a wavy line for the insertion
of the NLO Coulomb potential, i.e. the gluon propagator with an index 1 + u. At first, we
assign µr to all µ with an exponent proportional to u and µw to all µ with an exponent
proportional to ε, since the former are related to the running of the strong coupling in
the NLO Coulomb potential. We note, however, that this introduces some spurious terms,
which will be addressed in more detail below. We find

I00
P [1 + u] = m3E

(−mE
µ2
r

)−u(−mE
µ̃2
w

)−2ε [
1 + u

1− u− 2ε

]
, (A.8)
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×
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]
, (A.9)
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. (A.11)

With the exception of the diagram with three massive lines, all master integral have been
computed with standard methods. We obtain
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The remaining master integral is more difficult:

≡
∫ [ 4∏
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dd−1kj
(2π)d−1

]
1

[k2
1 + 1][k2

2 + 1][k2
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.

(A.16)

For u = 0 one can reduce the integral with FIRE and obtain a result in terms of the other
master integrals. The result agrees with the one in [135]. For u = ε we only compute the
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solution in expanded form, where terms up to order ε2 are required because the coefficient
of this master integral in (A.10) and the NLO potential each contain a factor 1/ε. We derive
a Mellin-Barnes representation and perform an analytic continuation of the integrals with
the mathematica package MB [210]. The result can be rewritten in terms of single and
double infinite sums over the residues in the integration variables by closing the contours.
Through algebraic manipulations like partial fractioning these sums can be transformed
to cyclotomic harmonic sums. This step was achieved in a semi-automatic fashion with
a private mathematica code. After the work was completed, the fully automated package
MBsums [218] has appeared, that should considerably simplify similar tasks. We use the
Harmonic Sums package [211–217] to reduce the cyclotomic harmonic sums to a set of
known basis sums. Our result is given by

∣∣∣
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)

+
4π2

225
ε2
(

43560− 326π4 − 72000 ln 2 + 58500 ln2 2

−30000 ln3 2 + 9375 ln4 2 + 1920(4− 5 ln 2)ζ(3)
)

+O(ε3)

]
. (A.17)

Inserting the results for the master integrals into (A.8)–(A.11) yields the results for the
diagrams of part (a). We observe, however, that using u = ε in (A.8)–(A.11) produces in
spurious logarithms ln(µr/µw) through terms of the form

1

nε+ u
µurµ

nε
w

u=ε
=

1

(n+ 1)ε
+ ln(µw) +

1

n+ 1
ln

(
µr
µw

)
+O(ε). (A.18)

This signifies the fact that, in general, the origin of poles cannot be unambiguously identi-
fied in dimensional regularization. We derive the correct scale assignment by subtracting
the scale dependent logarithms from the results of (A.8)–(A.11) and then adding back
the respective terms obtained with the Coulomb potential expanded in ε, i.e without the
identification u = ε. Furthermore, we set the scales µr and µw equal in the singular terms
ln(µr/µw)/ε to render the pole terms scale independent. Our results for the individual
diagrams are given by:

I00
P [1] =

m3E

(4π)2

[
1

4ε
+ 1 + Lwλ

]
,

I00
P [1 + ε] =

m3E

(4π)2

[
1

6ε
+ 1 + Lwλ

]
,

1

ε

[
I00

P [1 + ε]− I00
P [1]

]
=

m3E

(4π)2

[
− 1

12ε2
+ 1 +

17π2

72
+ 2Lrλ + 2LrλL

w
λ − (Lwλ )2

]
. (A.19)
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I10
P [1] = I10

P [1 + ε] =
m3E

(4π)2
λ

[
1

2
+
π2

6

]
,

1

ε

[
I10

P [1 + ε]− I10
P [1]

]
=

m3E

(4π)2
λ

[
5

2
+
π2

3
− 2ζ(3) +

(
1 +

π2

3

)
Lrλ

]
. (A.20)

I20
P [1] = I11

P [1] =
m3E

(4π)2
λ2

[
− 1

8ε
− 7

4
+ ζ(3)− Lwλ

]
,

I20
P [1 + ε] =

m3E

(4π)2
λ2

[
− 1

10ε
− 17

10
+ ζ(3)− Lwλ

]
,

1

ε

[
I20

P [1 + ε]− I20
P [1]

]
=

m3E

(4π)2
λ2

[
1

40ε2
+

1

20ε
− 29

10
− π2

24
− π4

180
+ 2ζ(3) +

1

2
Lwλ

−
(

7

2
− 2ζ(3)

)
Lrλ + (Lwλ )2 − 2LwλL

r
λ

]
. (A.21)

I11
P [1 + ε] =

m3E

(4π)2
λ2

[
− 1

10ε
− 9

5
+ ζ(3)− Lwλ

]
,

1

ε

[
I11

P [1 + ε]− I11
P [1]

]
=

m3E

(4π)2
λ2

[
1

40ε2
− 1

20ε
− 29

5
+
π2

8
+

π4

180
+ 2ζ(3)− 1

2
Lwλ

−
(

7

2
− 2ζ(3)

)
Lrλ + (Lwλ )2 − 2LwλL

r
λ

]
. (A.22)



B. Evaluation of the hypergeometric
function

The series defining the generalized hypergeometric function in the NLO P-wave Green
function (5.55) only converges for Re (λ) < 3. Values of λ with a large positive real
part may however occur for particles with vanishing or very small width when the energy
approaches the threshold from below. Therefore, we perform an analytic continuation for
the generalized hypergeometric function by expressing it in terms of harmonic sums for
which the analytic continuation can be easily done, see for example [215, 219]. In a first
step we perform a change of arguments to more suitable values

4F3(1, 1, 4, 4; 5, 5, 3− λ; 1) = 4(λ− 2)(λ− 1)λ(λ+ 1)

[
2

3(1 + λ)
4F3(1, 1, 1, 1; 2, 2,−λ; 1)

+
1

27

(
λ(λ(3(8− 17λ)λ− 20) + 11)− 18

(λ− 1)2λ2(λ+ 1)
− 33ψ1(2− λ)

)]
. (B.1)

The remaining hypergeometric function has been rewritten in terms of harmonic sums in
Appendix A.1 of [220]. This was achieved by rewriting it as the Mellin transform of a
dilogarithm, which can then be expressed as

1

(1 + λ)
4F3(1, 1, 1, 1; 2, 2,−λ; 1) = −M

[
Li2(1− x)

1− x

]
(−2− λ)

= − [S1(−2− λ)S2(−2− λ)− ζ(2)S1(−2− λ) + S3(−2− λ)− S2,1(−2− λ) + ζ(3)] .
(B.2)

We have used the FORM [221] program HARMPOL [216] for the latter step. The (nested) har-
monic sums are defined in the usual way as Sa(N) =

∑N
i=1

1
ia

and Sa,b(N) =
∑N

i=1
1
ia
Sb(i).
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C. Charm-quark mass effects in the
bottom-quark pair production cross
section

C.1. Charm effects in the Coulomb potential

We consider the Coulomb potential in the presence of nl light quarks, one of which has a
non-zero mass, denoted by mc. The Coulomb potential can be split into a part containing
the contributions from nl massless quarks and the charm-quark mass correction:

Ṽ = Ṽmassless + Ṽmc , (C.1)

where the charm-quark mass correction Ṽmc vanishes for mc = 0.
The charm-quark mass corrections to the Coulomb potential have been determined at

NNLO in [169,170]. We employ convenient dispersion relation representations from [168],
which simplify the computations of the corrections to the cross section. The momentum
space potential is given by

Ṽmc(q) =
∞∑

i=1

δṼ (i)
mc (q) , (C.2)

δṼ (1)
mc (q) = −4παsCF

q2

αs
3π
TF

[
Π(q2)−

(
ln

q2

m2
c

− 5

3

)]
, (C.3)

δṼ (2)
mc (q) = −4παsCF

q2

(αs
4π

)2
{

8TF
3

[
Π(q2)−

(
ln

q2

m2
c

− 5

3

)](
a1 − β0 ln

q2

µ2

)

+

(
4TF

3

)2 [
Π(q2)−

(
ln

q2

m2
c

− 5

3

)]2

+
76TF

3

[
Ξ(q2)−

(
ln

q2

m2
c

− 161

114
− 26

19
ζ3

)]}
,

(C.4)

with

a1 =
31

9
CA −

20

9
TFnl , (C.5)

β0 =
11

3
CA −

4

3
TFnl , (C.6)
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Π(q2) = 2q2

∞∫

1

dx
f(x)

q2 + 4x2m2
c

, (C.7)

Ξ(q2) = 2c1q
2

∞∫

c2

dx

x

1

q2 + 4x2m2
c

+ 2d1q
2

∞∫

d2

dx

x

1

q2 + 4x2m2
c

, (C.8)

f(x) =

√
x2 − 1

x2

(
1 +

1

2x2

)
. (C.9)

We take the parameters c1, c2, d1, d2 from [168]

c1 =
ln A

d2

ln c2
d2

, d1 =
ln c2

A

ln c2
d2

, (C.10)

c2 = 0.470 , d2 = 1.120 , (C.11)

A = exp

(
161

228
+

13

19
ζ3 − ln 2

)
, (C.12)

and neglect the tiny uncertainties, which were found to be numerically insignificant. The
potential in configuration space follows from a Fourier transformation. We find

δV (1)
mc (r) = − CFαs

r

αs
3π



∞∫

1

dxf(x)e−2mcrx +

(
ln(m̃cr) +

5

6

)
 , (C.13)

δV (2)
mc (r) = − CFαs

r

(αs
3π

)2
{[
− 3

2

∞∫

1

dxf(x)e−2xmcr

×
(
β0

[
ln

4x2m2
c

µ2
− Ei(2xmcr)− e4xmcrEi(−2xmcr)

]
− a1

)

+ 3

(
ln (m̃cr) +

5

6

)(
β0 ln (µ̃r) +

a1

2

)
+ β0

π2

4

]

−
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1
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5

3
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1
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+

√
x2 − 1(1 + 2x2)

2x3
ln
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√
x2 − 1
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√
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+
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(
ln(4x2)− Ei(2xmcr)− e4xmcrEi(−2xmcr)−

5
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)

−
(

ln (m̃cr) +
5

6
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− π2

12
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+
57

4

[
c1Γ(0, 2c2mcr) + d1Γ(0, 2d2mcr) + ln (m̃cr) +

161

228
+

13

19
ζ3

]}
, (C.14)



C. Charm-quark mass effects 151

where
m̃c = mce

γE , µ̃ = µeγE . (C.15)

We have found some typos in Eq. (30) of [168] and corrected them in (C.14). We also
correct an integral representation in [168] that should read

e−x Ei(x) + ex Ei(−x) = P
∞∫

0

dt
2te−xt

1− t2 . (C.16)

However, to our understanding the computations in [168] were performed with the correct
potential.

C.2. Charm effects in the relation between PS and pole
mass

We recall the definition of the PS mass at the subtraction scale µf [51]:

mb = mPS
b (µf )−

1

2

∫

|q|<µf

d3q

(2π)3
Ṽ (|q|) = mPS

b (µf ) +
∞∑

i=0

δmPS
i . (C.17)

The charm-quark mass corrections to the PS-pole relation will be denoted by

∞∑

i=1

δmPS
i,mc = −1

2

∫

|q|<µf

d3q

(2π)3
Ṽmc(|q|) , (C.18)

and vanishes for mc = 0. We obtain

δmPS
1,mc =

αs
π
CFµf

αs
4π

4

3
TF

(
IΠ(z) + Iln(mc) +

5

3

)
, (C.19)
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TF
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TF
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3
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)
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z
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)

+ 2a1

(
IΠ(z) + Iln(mc) +

5

3

)
+

161
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+ 26ζ3

]
(C.20)



152 C. Charm-quark mass effects

where

z =

(
µf

2mc

)2

, (C.21)

Iln(m) = ln
m2

µ2
f

+ 2 , (C.22)

Iln,ln(m0,m1) = ln
m2

0

µ2
f

ln
m2

1

µ2
f

+ 2 ln
m2

0

µ2
f

+ 2 ln
m2

1

µ2
f

+ 8 , (C.23)

IΞ(ẑ) = 2
arctan

√
ẑ√

ẑ
+ ln(1 + ẑ)− 2 , (C.24)

IΠ(z) =
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[
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1 1
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3
3F2
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2
5
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, (C.25)
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(C.26)

IΠ2(z) =
1

45z3

{
z
(
− 9 + z(48 + 785z)

)

− 6
√
z(1 + z)

(
− 3 + z(17 + 110z)

)
arsinh(

√
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+ 9 (−1 + 5z + 20z3) arsinh(
√
z)2

+ z
5
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− 18π2 + 36 arsinh(

√
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(

ln(z)− 2 ln(−1 +
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− 36 Li2
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(
√
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√

1 + z)−2
)

+ 144 Li2
(
(
√
z +
√

1 + z)−1
)]}

.

(C.27)

The parameters c1, c2, d1, d2 are given in (C.10)–(C.12). Li2(x) =
∑∞

i=1 x
i/i2 is the dilog-

arithm function and PFP−1 denotes (generalized) hypergeometric functions. We refrain
from expressing the 2F1 and 3F2 functions in (C.25) and (C.26) through elementary func-
tions because of the length of the resulting expressions. The strong coupling αs is defined
assuming nl = 4 active flavours, i.e. αs = α

(nl)
s (µ).

The Eqs. (C.19)–(C.21) are given in the pole-mass scheme for the charm quark. In the
MS mass scheme, (C.20) must be modified by

δmPS
2,mc → δmPS

2,mc +
αs
π
CFµf

(
αs
4π

)2
16

3
TFCF

(
2 + 3 ln

µc

mMS
c (µc)

)(
1− zI ′Π(z)

)
(C.28)

where mMS
c (µc) is the charm-quark MS mass and

I ′Π(z) =
1

2(z + 1)
+

z − 2

10(z + 1)
2F1

(
1 1

7
2

∣∣∣∣− z
)
− 1

30
3F2

(
1 1 3

2
5
2

7
2

∣∣∣∣− z
)
. (C.29)

In the numerical analysis, we set the scale µc to the renormalization scale µ.
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C.3. NLO charm effects in the non-relativistic current
correlator

We describe the calculation of the NLO corrections to the non-relativistic vector-current
correlator in detail. We parametrize the perturbative expansion of the Green function
G(E) defined in (3.22) as

G(E) = G0(E) +
∞∑

i=1

δiG(E) . (C.30)

Again, the charm-quark mass corrections δiGmc(E) are defined such that they vanish for
mc = 0. We then have

δiG(E) = δiGmassless(E) + δiGmc(E). (C.31)

The NLO contribution δ1Gmc(E) is given by the single insertions of the potential (C.13).
We find it convenient to split the correction into a part A given by the two loop diagram,
i.e. with no additional Coulomb exchange between the quark and the anti-quark, and a
part B, which contains the remainder, i.e. all ladder diagrams with at least one Coulomb
exchange. This distinction follows [89] (see also Section 5.2), although here both parts are
finite.

We first compute the two-loop diagram of part A in momentum space

δ1Gmc,A(E) = −
∫ [ 4∏

i=1

d3pi
(2π)3

]
G̃

(0ex)
0 (p1,p2;E)δṼ (1)

mc (p3 − p2)G̃
(0ex)
0 (p3,p4;E)

= m2
b

4TfCfα
2
s

3

[
2IA[Π] +

d

du
IA[1 + u]

∣∣∣
u=0,µr→mc

+
5

3
IA[1]

]
, (C.32)

where G̃
(0ex)
0 is the zero-gluon exchange part of the Green function, the single insertion

function IA[1 + u] is defined as in [89], and

IA[Π] = µ̃4ε

∞∫

1

dxf(x)

∫
dd−1~p

(2π)d−1

∫
dd−1~p′

(2π)d−1

1

~p2 −mbE

1

(~p− ~p′)2 + 4x2m2
c

1

~p′2 −mbE
,

(C.33)
is the single insertion function associated with the contribution of a massive charm quark,
without the subtraction of the massless contribution. We employ the Mellin-Barnes repre-
sentation (see e.g. [132])

1

(X + Y )η
=

1

Γ(η)

1

2πi

+i∞∫

−i∞

dzΓ(η + z)Γ(−z)
Y z

Xη+z
, (C.34)

where the contour must be chosen to the left of all poles from Γ(−z) and to the right of all
poles from Γ(η+ z), to simplify the denominator from the potential. The expression under
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the Mellin-Barnes integral then corresponds to part A of the single insertion function of
the massless potential known from [89]. We find

IA[Π] = µ̃4ε 1

2πi

i∞∫

−i∞

duΓ(1 + u)Γ(−u)

∞∫

1

dxf(x)(4x2m2
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u (C.35)

×
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.

The 1/ε poles cancel with those of the massless part in (C.32) and we obtain

δ1Gmc,A(E) =
m2
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2
sCF

96π2
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+
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,

where
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λ = log

mcλ

mbαsCF
. (C.37)

The first line in Eq. (C.36) is equivalent to the subtraction of the contribution from a
massless light quark and the Mellin-Barnes integral in the second line to the contribution
from a massive charm quark. One can deform the contour across the pole at u = 0 to
simplify the result

δ1Gmc,A(E) =
m2
bαsCF
4π

αs
4π

1

2πi

i∞∫

−i∞

du
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,

(C.38)



C. Charm-quark mass effects 155

where the contour now must be chosen to the right of the pole at u = 0, i.e. such that
0 < Re(u) < 1/2 on the real axis. The integral can be performed numerically.

Now we consider part B, i.e. the contributions with more than two loops. It can be
computed in configuration space

δ1Gmc,B(E) = −
∫
d3rδV (1)

mc (r)
[
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1
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]
, (C.39)

where p =
√
−mE, we have used the integral representation (3.34) for the LO Green

function and applied the integral transformations described in [89] and Appendix A. The
j0,1 can be taken from [89] and

δJ (1)
c =

∞∫

1

dxf(x)

∞∫

0

dz

1∫

0

dy
1 + yz

y2(1− y)2z3
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[
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y(1−y)z

+ x
ξ

]2 . (C.40)

A convenient strategy to simplify (C.40) is to introduce the following Mellin-Barnes-type
representation1

λ

Γ(1− λ)

1

2πi

i∞∫

−i∞

dw
Γ(−λ+ w)Γ(w)Γ(1− w)

Γ(1 + w)
zw (C.41)

= − λ

Γ(1− λ)

∞∑

n=1

(−1)n

n!
Γ(−λ+ n)zn

= (1 + z)λ − 1.

1 This applies in more generality to situations, where one would like to use a series representations to
simplify an integrand, but the individual terms in the series are singular after integration. A Mellin-
Barnes-type representation, if it can be found, naturally provides an analytical regulator and yields extra
or higher order poles in the Mellin-Barnes integral instead of singular terms in the sum.
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Applying (C.42) and (C.34) to (C.40), we find
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Γ(1 + w)

×
∞∫

1

dxf(x)

(
x

ξ

)u ∞∫

0

dz

1∫

0

dy
zw+u−1

(1 + yz)u+1
yu(1− y)u

z→z/y
=

λΓ(3/2)

2Γ(1− λ)

1

(2πi)2

i∞∫

−i∞

du
Γ(2 + u)Γ(−u)

ξu

i∞∫

−i∞

dw
Γ(−λ+ w)Γ(w)Γ(1− w)

Γ(1 + w)

×
[

Γ(−u/2)

Γ(3/2− u/2)
+

Γ(1− u/2)

2Γ(5/2− u/2)

] ∞∫

0

dz

1∫

0

dy
zw+u−1

(1 + z)u+1
y−w(1− y)u

=
λΓ(3/2)

2Γ(1− λ)

1

(2πi)2

i∞∫

−i∞

du
Γ(2 + u)Γ(−u)

ξu

i∞∫

−i∞

dw
Γ(−λ+ w)Γ(w)Γ(1− w)3

Γ(1 + w)

×
[

Γ(−u/2)

Γ(3/2− u/2)
+

Γ(1− u/2)

2Γ(5/2− u/2)

]
Γ(u+ w)

Γ(2 + u− w)
, (C.42)

which can be evaluated numerically. The contours must be chosen such that Re u ∈ (−1, 0),
Re w ∈ (0, 1) and Re u + w > 0 on the real axis. After the contour of the u-integral is
pushed across the pole at u = 0 and the corresponding residue has canceled the massless j0,1

terms in (C.39), the result for part B can be written as a two-dimensional Mellin-Barnes
integral

δ1Gmc,B(E) =
m2
bαsCF
4π

αs
4π

(
−
√
π

Γ(−λ)

)
1

(2πi)2

i∞∫

−i∞

dw Γ(w + 1− λ)Γ∗(−w − 1)Γ(−w)2

×
i∞∫

−i∞

du I(1)(u)ξ−u
Γ(2 + u)Γ(−u)Γ(1 + u+ w)

Γ(1 + u− w)
, (C.43)

where

I(1)(u) =
Γ(2− u

2
)

uΓ(5−u
2

)
. (C.44)

The contour for the integral over the variable u should now be chosen such that 0 <
Re(u) < 1 on the real axis. In going from (C.42) to (C.43) we have furthermore redefined
w. Following [132], the notation Γ∗(−w−1) implies that the contour should be fixed to the
right of the first pole at w = −1. Above threshold, i.e. for E > 0, λ is purely imaginary and
left and right poles are separated. Thus, the natural choice for the contour is parallel to the
imaginary axis with −1 < Re(w) < 0 and the integration can be performed numerically.
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For positive integer values N of λ, i.e. below threshold, part B (C.43) contains poles in
N−λ because of the pinching of the contour in the complex w plane by left and right poles.
We recall from Section 5.2.3 that the singular terms in an expansion of the Green function
for λ near N determine the corrections to the energy levels and wave functions of the
resonances. It is now straightforward to extract the expressions for the NLO charm-mass
corrections to the resonances, that are given in Appendix C.4.

The calculation of the NNLO charm-quark effects for the resonances was performed in
the same way, i.e. applying the representation (C.34) to the potentials and (C.42) for the
term (1 + z)λ − 1, and proceeding otherwise as for the conventional Coulomb corrections
described in [89]. We refrain from showing the details of this lengthy computation and
only present the results in Appendix C.4.

C.4. Charm corrections to bound-state energies and wave
functions

We parametrize the energies and wave functions of the bound states by

EN = E
(0)
N

(
1 +

∞∑

i=1

e
(i)
N

)
, (C.45)

|ψN(0)|2 = |ψ(0)
N (0)|2

(
1 +

∞∑

i=1

f
(i)
N

)
, (C.46)

with EN = −mb(αsCF/(2n))2 and |ψN(0)|2 = (mbαsCF/(2n))3/π. The higher-order terms

e
(i)
N , f

(i)
N are again split into two parts

e
(i)
N = e

(i)
N,massless + e

(i)
N,mc

, (C.47)

f
(i)
N = f

(i)
N,massless + f

(i)
N,mc

, (C.48)

where e
(i)
N,massless, f

(i)
N,massless are the known corrections with massless charm quarks and

e
(i)
N,mc

, f
(i)
N,mc

vanish for mc = 0. The NLO (i = 1) mass corrections are due to the sin-
gle insertion of the NLO Coulomb potential in the Green function. The NNLO (i = 2)
contributions are further split into three parts

e
(2)
N,mc

= e
(2)
N,{mc} + e

(2)
N,{mc,mc} + e

(2)
N,{mc,massless} , (C.49)

f
(2)
N,mc

= f
(2)
N,{mc} + f

(2)
N,{mc,mc} + f

(2)
N,{mc,massless} , (C.50)

where the subscript {mc} denotes the single insertions of the NNLO potential V
(2)
mc , {mc,mc}

denotes the double insertion of the NLO potential V
(1)
mc and {mc,massless} denotes the

mixed double insertion of the charm-correction Vmc and the massless potential Vmassless.
Our results for these contributions are given below.



158 C. Charm-quark mass effects

The single insertion corrections to the energy levels and wave functions read

e
(1)
N,mc

= −2 Γ(1/2)Γ(N)
αs
4π

1

2πi

∫ i∞

−i∞
du ξ−uN I(1)(u)

N∑

i=1

ηc(u, i,N) , (C.51)

e
(2)
N,{mc} =

4

3
Γ(1/2)Γ(N)

(
αs
4π

)2
1

2πi

∫ i∞

−i∞
du ξ−uN I(2)(u)

N∑

i=1

ηc(u, i,N) , (C.52)

f
(1)
N,mc

= −Γ(1/2)Γ(N + 1)
αs
4π

1

2πi

∫ i∞

−i∞
du ξ−uN I(1)(u)

N∑

i=1

φc(u, i,N) , (C.53)

f
(2)
N,{mc} =

2

3
Γ(1/2)Γ(N + 1)

(
αs
4π

)2
1

2πi

∫ i∞

−i∞
du ξ−uN I(2)(u)

N∑

i=1

φc(u, i,N) , (C.54)

where

ξN =
αsCFmb

2Nmc

, (C.55)

ηc(u, i,N) =
Γ(−u)Γ(u+ 2)

Γ(N − i+ 1)Γ(i)2Γ(i+ 1)

Γ(u+ i)

Γ(u− i+ 2)
, (C.56)

φc(u, i,N) = ηc(u, i,N)

(
3− u
N
− ψ(N + 1) + 2ψ(i) + ψ(i+ 1)

− ψ(u+ i)− ψ(u− i+ 2)

)
, (C.57)

I(2)(u) =
2 Γ(3− u

2
)

(u− 2)Γ(7−u
2

)
− Γ(2− u

2
)

uΓ(5−u
2

)

(
3a1 − 3β0 ln

(
m2
c

µ2

)

+ (2 + 3β0)

[
2

u
+ ψ

(
2− u

2

)
− ψ

(
5− u

2

)
− ln(4) + π cot

(π
2
u
)])

+

(
− 2

3

Γ(u−5
2

)

(u− 6)Γ(u
2
− 2)

− 2
Γ(u−3

2
)

(u− 4)Γ(u
2
− 1)

+
8

3

Γ(u+1
2

)

uΓ(u
2

+ 1)

)
cot
(π

2
u
)

− 38√
π

1

u

(
c1c

u
2 + d1d

u
2

)
, (C.58)

and I(1)(u) given in (C.44). The integration contour must be chosen such that 0 < Re(u) <
1 on the real axis as discussed in Appendix C.3.2

The above expressions are given in the pole-mass scheme for the charm quark. In terms

2 We recall that the corrections due to a massive charm quark are actually recovered by choosing −1 <
Re(u) < 0. The pole at u = 0 amounts to the contribution for massless charm quarks and is absorbed
into the massless part. Our contour choice 0 < Re(u) < 1 thus corresponds to the definitions (C.47),

(C.48) of e
(i)
N,mc

and f
(i)
N,mc

, where the massless part is subtracted.
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of the MS mass mMS
c (µc), the results receive an additional contribution

e
(2)
N,{mc} → e

(2)
N,{mc} +

(
αs
4π

)2[
4

3
+ 2 ln

(
µc

mMS
c (µc)

)]

×
(
− 8Γ(1/2)Γ(N)

1

2πi

∫ i∞

−i∞
du u ξ−uN I(1)(u)

N∑

i=1

ηc(u, i,N)

)
, (C.59)

f
(2)
N,{mc} → f

(2)
N,{mc} +

(
αs
4π

)2[
4

3
+ 2 ln

(
µc

mMS
c (µc)

)]

×
(
− 4Γ(1/2)Γ(N + 1)

1

2πi

∫ i∞

−i∞
du u ξ−uN I(1)(u)

N∑

i=1

φc(u, i,N)

)
.

(C.60)

We find numerical agreement between our results for the binding energy of the Υ(1S)

resonance up to NNLO with [168]. In addition, the NLO energy levels e
(1)
N,mc

and wave

functions f
(1)
1,mc agree numerically with [171].

The results for the contribution of the double insertion of the NLO potential V
(1)
mc to the

binding energies and the wave functions are as follows:

e
(2)
N,{mc,mc} =

(
αs
4π

)2
π

Γ(N)2

{
h

(0)
mc(N)

N2

[
h(0)
mc(N)

(
7 + 4Nψ(N)

)
− 4h(1)

mc(N)
]

+ 2
∞∑

s=1
s 6=N

h
(0)
mc(s)

2

s(s−N)

}
− e(1)

N,mc
f

(1)
N,mc

, (C.61)

f
(2)
N,{mc,mc} =

(
αs
4π

)2
π

Γ(N)2

{
1

N2

[
h(1)
mc(N)2 + h(0)

mc(N)

(
3h(0)

mc(N)− 4h(1)
mc(N)[1 +Nψ(N)]

+ h(2)
mc(N) +Nh(0)

mc(N)
[
4ψ(N) +N

(
2ζ2 + 2ψ(N)2 − ψ(1)(N)

)])]

−
∞∑

s=1
s 6=N

h
(0)
mc(s)

s(s−N)

[
2h(1)

mc(s)− h(0)
mc(s)

(
2 + 2Nψ(N) +

N

N − s

)]}
. (C.62)

The coefficients h
(j)
mc can be expressed as single Mellin-Barnes integrals

h(j)
mc(s) =

s∑

k=1

(−1)kΓ(s+ 1)

k Γ(k)2Γ(s− k + 1)

× 1

2πi

∫ i∞

−i∞
du ξ−uN I(1)(u)

(k + u)Γ(k + u)2Γ(−u)

Γ(1 + k + u−N)
κ(j)(u, 1 + k + u−N) , (C.63)
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where

κ(0)(u, x) = 1 , (C.64)

κ(1)(u, x) = u+Nψ(x) , (C.65)

κ(2)(u, x) = u(u− 1) +Nψ(x)
(
2u+Nψ(x)

)
−N2ψ(1)(x) , (C.66)

and ξN and I(1)(u) have been defined in (C.55), (C.44). The contour should again be fixed
such that 0 < Re(u) < 1. The infinite sums in (C.61) and (C.62) converge quickly and can
be truncated after the tenth term for all six resonances considered in the sum rule. There
are however large cancellations in the finite sum in (C.63), which makes the evaluation
rather time consuming.

The results for the contribution of the mixed double insertion of the NLO potentials V
(1)
mc

and Vmassless to the binding energies and the wave functions are as follows:

e
(2)
N,{mc,massless} =

(
αs
4π

)2
4
√
π

Γ(N)
(−1)N+1

{
h

(0)
massless(N)h

(0)
mc(N)

N

+
h

(−1)
massless(N)

N2

[
h(1)
mc(N)− h(0)

mc(N)

(
7

2
+Nψ(N)

)]

+
∞∑

s=1
s 6=N

h
(−1)
massless(s)h

(0)
mc(s)

s(N − s)

}
− e(1)

N,mc
f

(1)
N,massless − e

(1)
N,masslessf

(1)
N,mc

, (C.67)

f
(2)
N,{mc,massless} =

(
αs
4π

)2
2
√
π

Γ(N)
(−1)N+1

{
1

2N2

[
2N
(
−Nh(1)

massless(N)h(0)
mc(N)

+ h
(0)
massless(N)

[
− h(1)

mc(N) + h(0)
mc(N)

(
2 +Nψ(N)

)])

− h
(−1)
massless(N)

(
h(2)
mc(N)− 2h(1)

mc(N)
(
2 +Nψ(N)

)

+ h(0)
mc(N)

[
6 + 4Nψ(N) +N2

(
ψ(N)2 − ψ(1)(N) + 2ζ2

)])]

+
∞∑

s=1
s 6=N

1

s(N − s)

[
− h(−1)

massless(s)h
(1)
mc(s)−Nh

(0)
massless(s)h

(0)
mc(s)

+ h
(−1)
massless(s)h

(0)
mc(s)

(
N

N − s + 2 +Nψ(N)

)]}
, (C.68)

with the coefficients h
(j)
mc from (C.63) and

h
(−1)
massless(s)

s<N
= 2β0

s

N − s , (C.69)

h
(−1)
massless(N) = −N

[
a1 + 2β0

(
LN + S1(N)

)]
, (C.70)

h
(−1)
massless(s)

s>N
= 2β0

N

s−N , (C.71)
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h
(0)
massless(s)

s<N
=

1

N − s
{
− h(−1)

massless(s)− a1s

+ 2β0

[
N
(
ψ(N − s)− ψ(N)

)
+ s
(
S1(N − s)− LN

)]}
, (C.72)

h
(0)
massless(N) = −2β0

(
1 + S1(N − 1) +Nψ(1)(N)

)
, (C.73)

h
(0)
massless(s)

s>N
=

1

s−N
{
h

(−1)
massless(s) + a1s

− 2β0

[
N
(
ψ(s−N)− ψ(N)

)
+ s
(
S1(s−N)− LN

)
− 2
]}

, (C.74)

h
(1)
massless(N) = β0

[ 1

N
+ 2S2(N − 1)−N

(
ψ(2)(N) + 4ζ3

)]
. (C.75)

The Si(n) =
∑n

k=1 k
−i are generalized harmonic numbers of rank i.





D. Mixed QCD-condensate corrections
to the energy levels and wave
functions: Potential contributions

We give the lengthy expressions for the potential contributions to the energy levels (8.40)
and wave functions at the origin (8.42):

ẽ, GVG
N =

128N6

9 (6561N4 − 25920N2 + 16384)2

{
2 [a1 + 2β0 (S1 + LN)]

×
(

167403915N10 − 1486558575N8 + 4690934208N6 − 6303780864N4

+3483631616N2 − 536870912
)

+ β0(9N − 8)
(

94419351N9 + 46727442N8

−800382951N7 − 381105162N6 + 2367378684N5 + 1061906784N4

−2883647232N3 − 1162401792N2 + 1320550400N + 405274624
)}

, (D.1)

ẽ, GGV
N = [a1 + 2β0 (S1 + LN)]

32N6

9 (6561N4 − 25920N2 + 16384)2

(
5859137025N10

−48288205485N8 + 136847786688N6 − 159273676800N4 + 81059381248N2

−15166603264
)
− β0

32N6

3 (6561N4 − 25920N2 + 16384)

(
451332N6 − 161595N5

−1797839N4 + 646725N3 + 1160272N2 − 425280N + 7168
)
, (D.2)

f̃ , GVG
N = (a1 + 2β0LN)

256N6

81 (6561N4 − 25920N2 + 16384)3

(
− 29655101330505N14

+370819521046350N12 − 1836925493383872N10 + 4598115283537920N8

−6194386829574144N6 + 4467901285269504N4 − 1563638678683648N2

+189115999977472
)

+ β0
128N5

81 (6561N4 − 25920N2 + 16384)2

{

1

9 (6561N4 − 25920N2 + 16384)2

(
− 8888937845922281277N19
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+2334805437953319660N18 + 146679930871209367335N17

−38038386654486402750N16 − 1019696917323083770998N15

+260020266583548188160N14 + 3893749911649043582976N13

−970389752080885235712N12 − 8954749600639565709312N11

+2161122845010608259072N10 + 12847315095944310030336N9

−2955869597186629042176N8 − 11551005743863723720704N7

+2436883078824792686592N6 + 6290577008666263683072N5

−1065043454471757103104N4 − 1829313053453482721280N3

+131764347572768997376N2 + 182269121168985292800N

+36893488147419103232
)

+
36NS1

6561N4 − 25920N2 + 16384

×
(
− 3295011258945N14 + 41202169005150N12 − 204102832598208N10

+510901698170880N8 − 688295779762176N6 + 498462848188416N4

−178391466639360N2 + 21990232555520
)
− 33554432N

6561N4 − 25920N2 + 16384

×
[
(
−32805N6 + 2177280N4 − 4993024N2 + 1048576

)
S1

(
N

8

)

+
(
−111537N6 + 124416N4 − 5386240N2 + 7340032

)
S1

(
9N

8

)]

−36N2

(
S2 −

π2

6

)(
− 167403915N10 + 1486558575N8 − 4690934208N6

+6303780864N4 − 3483631616N2 + 536870912
)}

, (D.3)

f̃ , GGV
N = (a1 + 2β0LN)

64N6

81 (6561N4 − 25920N2 + 16384)3

(
− 385516317296565N14

+4654961778867030N12 − 21965572921731408N10 + 51360436390947840N8

−63132424989769728N6 + 41064256744980480N4 − 13147993330941952N2

+1582746988183552
)

+ β0
32N5

81 (6561N4 − 25920N2 + 16384)2

{

1

9 (6561N4 − 25920N2 + 16384)2

(
61405383018172307058N19

−22180651660556536770N18 − 965837565458451500139N17

+351080411169493108575N16 + 6289521884171512783128N15

−2307675798943664843520N14 − 21902675740289714221056N13

+8153996687233488691200N12 + 44045654765398681780224N11
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−16799371281675894915072N10 − 51685121285332515422208N9

+20621242559717072437248N8 + 33974735719419655225344N7

−14944437608241652826112N6 − 10679923278040006656000N5

+6036677324559894970368N4 + 609631074176867500032N3

−1054643390588414590976N2 + 220638101144321654784N

−18446744073709551616
)

+
4NS1

6561N4 − 25920N2 + 16384

×
(
− 652412229271110N14 + 7881876138460500N12 − 37221596700680304N10

+87133432412759040N8 − 107286357009825792N6 + 69985956437950464N4

−22538834096947200N2 + 2696552267120640
)

+
16777216N

6561N4 − 25920N2 + 16384( (
203391N6 − 13405824N4 + 24866816N2 + 1048576

)
S1

(
N

8

)

+
(
−465831N6 + 30824064N4 − 64811008N2 + 7340032

)
S1

(
9N

8

))

−18N2

(
S2 −

π2

6

)(
− 5859137025N10 + 48288205485N8 − 136847786688N6

+159273676800N4 − 81050992640N2 + 14629732352
)}

, (D.4)

where LN = ln(Nµ/(mαsCF )), S1(x) =
∑x

k=1 k
−1 is the analytic continuation of the

harmonic number to non-integer values and Si =
∑N

k=1 k
−i without an explicit argument

is the Nth harmonic number of rank i.
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[227] T. Huber and D. Mâıtre, HypExp 2, Expanding Hypergeometric Functions about Half-
Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443 [hep-
ph]].
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