
IMA Journal of Numerical Analysis (2014) 34, 1–27
doi:10.1093/imanum/drs048
Advance Access publication on May 3, 2013

Quasi-optimal a priori estimates for fluxes in mixed finite element methods and
an application to the Stokes–Darcy coupling

J. M. Melenk

Institut für Analysis und Scientific Computing, TU Wien, Wiedner Hauptstrasse 8-10,
A-1040 Wien, Austria
melenk@tuwien.ac.at

and

H. Rezaijafari and B. Wohlmuth∗

M2 Zentrum Mathematik, Technische Universität München, Boltzmannstraße 3,
D-85748 Garching, Germany

∗Corresponding author: rezaijafari@ma.tum.de wohlmuth@ma.tum.de

[Received on 2 February 2012; revised on 28 September 2012]

We show improved a priori convergence results in the L2 norm on interfaces for the approximation of
the normal component of the flux in mixed finite element methods. Compared with standard estimates
for this problem class, additional factors of

√
h| log h| for the lowest-order case and of

√
h in the higher-

order case in the a priori bound for the flux variable are obtained. An important role in the analysis play
new error estimates in strips of width O(h) and the use of anisotropic and weighted norms. Numerical
examples including an application to the Stokes–Darcy coupling illustrate our theoretical results.
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1. Introduction

An important goal of many simulations in applications is to obtain accurate and reliable values for the
normal flux across certain interfaces or the boundary of the domain. As an example, we mention that
the treatment of complex problems in physics or engineering quite often requires the use of a variety
of models in different parts of the computational domain, which in turn are coupled through the normal
flux across common interfaces. On the level of numerical methods, this entails a need to understand
and quantify the discretization error in the normal flux at interfaces. In the present paper, we study this
question, taking the Poisson problem in mixed form as our model problem. Our setting is motivated by
more complex problems in porous media applications such as the well-known Stokes–Darcy coupling
problem. There, discretizations that are (locally) conservative are of a particular interest, and one such
class is mixed finite element methods (FEMs). An attractive feature of mixed FEM is that, in contrast
to the popular, well-established finite volume schemes, methods of arbitrary order are available.

In numerical methods that are based on a primal–dual formulation, the normal flux at an interface
can be extracted directly from the flux variable. The errors in the primal and dual variables are linked
to each other, and the standard saddle point theory as described, for example, in Nicolaides (1982) or
Brezzi & Fortin (1991) leads to a priori estimates for the flux variable in the L2 norm on an interface
which are at most of order l − 1

2 , where l is the order of the flux error in the L2 norm on the domain.

c© The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 J. M. MELENK ET AL.

However, the best approximation error for the normal flux in mixed FEMs is typically better by a factor√
h. It is this gap in the a priori analysis that the present paper removes (up to a logarithmic factor in

the lowest-order case). We mention at this point that this improved estimate is fairly easily achievable
if optimal-order estimates in L∞ are available; however, this requires significantly more regularity than
the present analysis.

In view of the technical nature of the paper, in Section 2 we formulate our model problem and state
the main result which yields quasi-optimal a priori error estimates for the normal flux. The remainder
of the paper is devoted to the proofs of the a priori bound and to numerical results. In Section 3, we
introduce a suitable anisotropic norm and a dual problem with right-hand sides that are supported in a
strip of width O(h) near the interface. Section 3 also discusses the regularity properties of the solutions
of these dual problems. Section 4 quantifies the approximation properties of the Fortin operator in these
anisotropic norms. In Section 5, the convergence analysis for the dual problems is given, and the proof of
the main result, Theorem 2.3, is presented. Finally, in Section 6, we provide numerical results including
the application to a Stokes–Darcy coupling.

2. Problem formulation and main results

Let Ω ⊂ Rd , d = 2, 3 be a convex and bounded polyhedral domain and let f ∈ L2(Ω). We consider the
model problem

−Δu = f in Ω , u = 0 on ∂Ω

in its saddle point formulation based on H(div; Ω) and L2(Ω), where

H(div; Ω) := {τ ∈ L2(Ω)d , div τ ∈ L2(Ω)}.

We state the saddle point formulation: find (σ , u) ∈ H(div; Ω) × L2(Ω) such that

a(σ , σ̃ ) + b(σ̃ , u) = 0, σ̃ ∈ H(div; Ω), (2.1a)

b(σ , ũ) = −(f , ũ)0, ũ ∈ L2(Ω), (2.1b)

where the bilinear forms a(·, ·) and b(·, ·) are given, for τ , τ̃ ∈ H(div; Ω) and v ∈ L2(Ω), by

a(τ , τ̃ ) :=
∫

Ω

τ · τ̃ dx, b(τ , v) :=
∫

Ω

div τv dx.

The saddle point formulation is well posed (Brezzi & Fortin, 1991, Section IV.1.2). We note that in
contrast to the primal weak formulation, the homogeneous Dirichlet boundary conditions do not enter
into the definition of the spaces.

For integer k ∈ N0, Sobolev norms on Ω are denoted by ‖ · ‖k; the seminorm k � 1 is denoted by
| · |k . For s 	∈ N0 the Aronstein–Slobodeckij characterization for norms and seminorms is employed. A
second, lower index, for example, ‖ · ‖s;ω or | · |s;ω, indicates that the norm or seminorm is not considered
on Ω but on ω, which will typically be an element or an edge or a face. We will also work with the
Besov spaces Bs

2,q(Ω), which are defined as interpolation spaces using the ‘real method’ (see Tartar,
2007, Chapter 22 and Triebel, 1995, Section 1.3,4.4 for details): for positive s 	∈ N and q ∈ [1, ∞], we
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QUASI-OPTIMAL A PRIORI ESTIMATES FOR FLUXES 3

set

Bs
2,q(Ω) := (H
s�(Ω), H�s(Ω))s−
s�,q.

To assist readers more familiar with Sobolev spaces, we mention that, for each ε > 0 and noninteger s,
we have the continuous embedding Hs+ε(Ω) ⊂ Bs

2,1(Ω) ⊂ Hs(Ω).

2.1 Discretization

For simplicity of notation, we restrict ourselves to a family of quasi-uniform simplicial meshes Th and
use standard mixed finite elements. We write Eh for the set of edges in two dimensions and for the set
of faces in three dimensions. We consider uniformly inf–sup-stable pairings V k

h × M k
h ⊂ H(div; Ω) ×

L2(Ω) where V k
h is either a Raviart–Thomas (RT) or a Brezzi–Douglas–Marini (BDM) finite element

space. For details, we refer the reader to Brezzi (1989, 2003), Brezzi & Fortin (1991) and Wriggers &
Carstensen (2009) and the references therein and to the original contributions Raviart & Thomas (1977),
Nédélec (1980), Arnold & Brezzi (1985) and Brezzi et al. (1985, 1986). More precisely, we set

RTk
h := {τ ∈ H(div; Ω), τ |T ∈ RTk(T), T ∈ Th}, RTk(T) := (Pk(T))d + Pk(T)x,

BDMk
h := {τ ∈ H(div; Ω), τ |T ∈ BDMk(T), T ∈ Th}, BDMk(T) := (Pk(T))d ,

where k ∈ N0 in the case of RT elements and k ∈ N for BDM elements. The local spaces on the element
T are denoted by Vk(T). We recall that RTk

h ⊂ BDMk+1
h ⊂ RTk+1

h , k ∈ N0. Quite often, lowest-order
finite element spaces are used. The popular choice RT0

h has exactly one degree of freedom per edge/face
e ∈ Eh, whereas BDM1

h has two/three degrees of freedom per edge/face.
For the approximation in L2(Ω), we use piecewise polynomials

Pk
h := {v ∈ L2(Ω), v|T ∈ Pk(T), T ∈ Th}.

It is well known that the pairings (V k
h , M k

h ) := (RTk
h, Pk

h), k ∈ N0 and (V k
h , M k

h ) := (BDMk
h, Pk−1

h ), k ∈ N
are uniformly inf–sup stable (Brezzi & Fortin, 1991, Section IV.1.2). As can be easily seen, mixed finite
elements satisfy the inverse estimate

‖τhn‖0;e � C√
h
‖τh‖0;T , τh ∈ Vk(T), T ∈ Th, e ∈ Eh with e ⊂ ∂T . (2.2)

We note that all our constants 0 < c, C < ∞ are generic constants and do not depend on the mesh size
but possibly depend on the order k.

Of crucial importance for our analysis will be the so-called Fortin operator Ik
h (see, for example,

Brezzi & Fortin, 1991, Section III.3.3), which maps a dense subset of H(div; Ω) onto V k
h . Analo-

gously to the nodal Lagrange interpolation operator for standard conforming elements, Ik
hτ |T ∈ Vk(T) is

uniquely defined by τ restricted to T . Introducing Π k
h as the elementwise defined L2 projection onto Pk

h,
we have

div Ik
hτ = Π k

h div τ if V k
h = RTk

h, (2.3a)

div Ik
hτ = Π k−1

h div τ if V k
h = BDMk

h. (2.3b)
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4 J. M. MELENK ET AL.

For simplicity of notation, we abbreviate

Π∗
h :=

{
Π k

h if V k
h = RTk

h,

Π k−1
h if V k

h = BDMk
h.

(2.4)

Hence, div ◦Ik
h = Π∗

h ◦ div. Furthermore, Ik
h commutes with π k

h , i.e.,

(Ik
hτ)n|e = π k

h (τn)|e, (2.5)

where π k
h is the L2 projection onto

∏
e∈Eh

Pk(e). To each e ∈ Eh, we associate a unit normal n. If e ⊂ ∂Ω ,
then n is given by the outer unit normal, otherwise the orientation is arbitrary but fixed. Moreover, the
Fortin operator has the following local best approximation properties (Brezzi & Fortin, 1991, Proposi-
tion 3.6, Section III.3.3):

‖τ − Ik
hτ‖j;T � Chs+1−j|τ |s+1;T , τ ∈ (Hs+1(T))d , 0 � s � k, j ∈ {0, 1}, (2.6a)

‖(τ − Ik
hτ)n‖0;e � Chs+1|τn|s+1;e, τ ∈ Hs+1(e), − 1

2 � s � k. (2.6b)

It is obvious that (2.6b) results directly from (2.5). We remark that (2.6) holds for both choices of V k
h ,

whereas for estimates in the L2 norm of the divergence, we have to consider the two families separately;
due to (2.3), we have

‖ div τ − div Ik
hτ‖0;T � Chs+1| div τ |s+1;T , div τ ∈ Hs+1(T),

{
0 � s � k if V k

h = RTk
h,

0 � s � k − 1 if V k
h = BDMk

h.

By (σh, uh) ∈ V k
h × M k

h , we denote the finite element solution of the mixed formulation, i.e., (σh, uh)

satisfies (2.1) if the test spaces are restricted to V k
h and M k

h . Moreover, (σh, uh) ∈ V k
h × M k

h is uniquely
characterized by the following Galerkin orthogonalities:

a(σ − σh, σ̃h) + b(σ̃h, u − uh) = 0, σ̃h ∈ V k
h , (2.7a)

b(σ − σh, ũh) = 0, ũh ∈ M k
h . (2.7b)

With Π∗
h defined in (2.4), we remark that (2.7b) implies the relationship

div σh = Π∗
h div σ . (2.8)

2.2 Main result

We start with a result from Li et al. (2010, Lemma 2.1) that will be an important ingredient for our
recovering an additional factor

√
h for the L2 error of the flux on Γ when compared with standard

estimates. This result allows us to control the L2 norm of a function in a small tubular neighbourhood of
a (d − 1)-dimensional manifold. For sufficiently smooth functions, this L2 norm scales with the volume
of this tubular neighbourhood.
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QUASI-OPTIMAL A PRIORI ESTIMATES FOR FLUXES 5

Lemma 2.1 Let γ be a finite union of (d − 1)-dimensional manifolds such that Ω is decomposed into
a finite number of Lipschitz domains. For αmax � α � 1 and h > 0, define tubular neighbourhoods of
γ by

Sαh,γ := {x ∈ Ω | dist(x, γ ) < αh}. (2.9)

Then there exists a constant C > 0, independent of h and α but depending on the Lipschitz character of
γ and αmax, such that

‖z‖0;Sαh,γ � C
√

h‖z‖B1/2
2,1 (Ω)

, z ∈ B1/2
2,1 (Ω), (2.10)

‖z‖
(B1/2

2,1 )′ � C
√

h‖z‖0, z ∈ L2(Ω), supp z ⊂ Sαh,γ . (2.11)

Proof. The estimate (2.10) is taken directly from Li et al. (2010, Lemma 2.1). The bound (2.11) is
obtained from (2.10) by a simple duality argument, which can be found in Melenk & Wohlmuth (2012,
proof of Lemma 5.2). �

Let Γ be a finite union of (d − 1)-dimensional manifolds such that Ω is decomposed into finitely
many Lipschitz domains by Γ . We stress that, while Ω is assumed to be convex, the subdomains need
not be convex. We assume, furthermore, that the mesh Th resolves Γ . Hence, Γ can be written as the
union of O(h1−d) edges/faces in Eh, i.e., Γ̄ :=⋃e∈EΓ ⊂Eh

ē. Using the definition (2.9), we set

Sαh := Sαh,Γ , 1 � α � αmax < ∞. (2.12)

Lemma 2.2 Let (σ , u) ∈ H(div; Ω) × L2(Ω) be the solution of (2.1) and let (σh, uh) ∈ V k
h × M k

h be its
finite element approximation determined by (2.7). If σ ∈ (Bk+3/2

2,1 (Ω))d , then the L2-norm error of the
flux on the interface Γ can be bounded by

‖(σ − σh)n‖0;Γ � C

(
hk+1‖σ‖Bk+3/2

2,1
+ 1√

h
‖σ − σh‖0;Sh

)
,

where ‖ · ‖Bk+3/2
2,1

stands for the Besov space (Bk+3/2
2,1 (Ω))d norm.

Proof. Starting with the triangle inequality and using (2.2) and (2.5), we obtain the upper bound

‖(σ − σh)n‖0;Γ � C

(
‖σn − π k

h (σn)‖0;Γ + 1√
h
‖σ − Ik

hσ‖0;Sh + 1√
h
‖σ − σh‖0;Sh

)
.

The first two terms on the right-hand side yield, due to the best approximation property of π k
h and

the local character of Ik
h , order hk+1 estimates, provided that the solution is sufficiently smooth. More

precisely, for the second term, we can apply (2.6a) in combination with (2.10).
The first term can be bounded using (2.6b) with s = k and the fact that the trace operator is a bounded

linear operator Bk+3/2
2,1 (Ω) → Hk+1(Γ ) (Triebel, 1995, Theorem 2.9.3). Here, the norm of Hk+1(Γ ) is

understood to be taken edge/facewise. �

Lemma 2.2 shows that there is some hope to recover an extra factor of
√

h in the a priori estimates
for the normal flux at the interface. We point out that this factor can be trivially found if the regularity
permits optimal-order L∞ estimates. We refer to Wang (1989) for L∞ estimates for mixed finite elements
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6 J. M. MELENK ET AL.

and note that these estimates require rather strong regularity assumptions. In the following theorem,
which is the principal result of the paper, this assumption is considerably relaxed.

Theorem 2.3 Let Ω ⊂ Rd , d ∈ {2, 3} be a convex polygon/polyhedron. Fix an interface Γ satisfying
the above assumptions. Let (σ , u) ∈ H(div; Ω) × L2(Ω) be the solution of the model problem (2.1) and
let (σh, uh) ∈ V k

h × M k
h be its finite element approximation, which satisfies (2.7). If σ ∈ (Bk+3/2

2,1 (Ω))d ,
then the L2-norm error of the flux on the interface Γ can be bounded by

‖(σ − σh)n‖0;Γ � Chk+1‖σ‖Bk+3/2
2,1

{
| log h| for the lowest-order case,

1 else.
(2.13)

Here, the lowest-order case is k = 0 for RT elements and k = 1 for BDM elements.

3. Dual problems and their regularity

The analysis of the L2 error on the strip Sh, defined by (2.12), is based on a dual problem and closely
related to the Aubin–Nitsche trick. However, we have to use suitable anisotropic norms and study the
dual problem with right-hand sides supported by Sh.

3.1 Dual problem formulation

We denote by (λ, w) ∈ H(div; Ω) × L2(Ω) the solution of the dual problem

a(λ, σ̃ ) + b(σ̃ , w) = (χ(σ − σh), σ̃ )0, σ̃ ∈ H(div; Ω), (3.1a)

b(λ, w̃) = 0, w̃ ∈ L2(Ω), (3.1b)

where 0 � χ � 1 is a smooth cut-off function that is equal to 1 in Sh and vanishes on Ω \ Sκh with κ

sufficiently large but independent of the mesh size. We will also assume

‖∇χ/
√

χ‖L∞ � Ch−1. (3.2)

The mixed finite element approximation to (3.1) is denoted by (λh, wh) ∈ V k
h × M k

h and satisfies the
Galerkin orthogonalities

a(λ − λh, σ̃h) + b(σ̃h, w − wh) = 0, σ̃h ∈ V k
h , (3.3a)

b(λ − λh, ũh) = 0, ũh ∈ M k
h . (3.3b)

It is well known that a higher-order a priori estimate can be obtained for the pressure; namely, using the
convexity of Ω , one can show (see, for example, Brezzi & Fortin, 1991, outset of Section V.3)

‖wh − Π∗
h w‖0 � Ch‖λ − λh‖0. (3.4)

For further developments, it will be useful to note that for sufficiently regular w, we have

− Δw = div(χ(σ − σh)) in Ω , w = 0 on ∂Ω (3.5)

and correspondingly λ = χ(σ − σh) + ∇w.
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QUASI-OPTIMAL A PRIORI ESTIMATES FOR FLUXES 7

3.2 Regularity

Our a priori analysis is based on regularity results for the solution (λ, w) of (3.1). Let us study
this problem in more generality by considering, for g ∈ (L2(Ω))d , the problem of finding (λg, wg) ∈
H(div; Ω) × L2(Ω) such that

a(λg, σ̃ ) + b(σ̃ , wg) = (g, σ̃ )0, σ̃ ∈ H(div; Ω), (3.6a)

b(λg, w̃) = 0, w̃ ∈ L2(Ω). (3.6b)

Let us denote by TM = (TM
λ , TM

w ) the solution operator g �→ (λg, wg) for (3.6), i.e., λg = TM
λ g and wg =

TM
w g. Then, the following two technical lemmas give us suitable regularity and stability results for the

w component TM
w g.

Lemma 3.1 Let Ω be a bounded Lipschitz domain. Then TM
w is a bounded linear operator with the

following mapping properties:

(i) TM
w : (H(div; Ω))′ → L2(Ω);

(ii) TM
w : (L2(Ω))d → H1

0 (Ω);

(iii) if Ω is convex, then TM
w : H(div; Ω) → H2(Ω) ∩ H1

0 (Ω);

(iv) if Ω is convex, then TM
w : ((B1/2

2,1 (Ω))d)′ → B1/2
2,∞(Ω).

Proof. Statement (i) follows from the well-posedness of the saddle point problem (3.6). To see (ii), let
ŵg ∈ H1

0 (Ω) satisfy

(∇ŵg, ∇ϕ)0 = −(g, ∇ϕ)0, ϕ ∈ H1
0 (Ω) (3.7)

and set λ̂g := g+∇ŵg. Then, we find div λ̂g = 0 and thus (λ̂g, ŵg) ∈ H(div; Ω) × L2(Ω). Moreover,
(λ̂g, ŵg) satisfies (3.6a) and (3.6b). Since the solution of (3.6) is unique, we conclude wg = ŵg; thus (ii)
is valid.

For g ∈ H(div; Ω), an integration by parts shows that wg not only solves (3.7) but also

(∇wg, ∇ϕ)0 = (div g, ϕ)0, ϕ ∈ H1
0 (Ω).

The standard shift theorem for convex domains then gives wg ∈ H2(Ω), and thus (iii) holds.
Finally, we show (iv). The proof exploits an equivalence of the weak and the very weak formulation

of Poisson problems in convex domains. We consider the variational problem: find y ∈ L2(Ω) such that

B(y, ϕ) := (y, Δϕ)0 = 〈g, ∇ϕ〉((H1(Ω))d )′×(H1(Ω))d , ϕ ∈ H2(Ω) ∩ H1
0 (Ω), (3.8)

where 〈·, 〉(((H1(Ω)))d )′×(H1(Ω))d stands for the duality pairing between ((H1(Ω))d)′ and (H1(Ω)d) (with
pivot space (L2(Ω))d ). By the convexity of Ω , the bilinear form B satisfies an inf–sup condition, and
thus the solution operator TD

vw : (H1(Ω)d)′ → L2(Ω) given by g �→ y is bounded and linear. Selecting
ϕ ∈ H2(Ω) ∩ H1

0 (Ω) in (3.7) and integrating by parts shows that wg also solves (3.8). By uniqueness,
we thus get that the solution y = TD

vwg = wg ∈ H1
0 (Ω) if g ∈ (L2(Ω))d . Having that TD

vw : (L2(Ω))d →
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8 J. M. MELENK ET AL.

H1
0 (Ω) ⊂ H1(Ω) is bounded and linear, we can apply an interpolation argument to find that

TD
vw : ((H1(Ω))d)′, ((L2(Ω))d)1/2,∞ → (L2(Ω), H1(Ω))1/2,∞ = B1/2

2,∞(Ω)

is bounded. Finally, we recall that TD
vw = TM

w on (L2(Ω))d and note that (see, for example (Triebel, 1995,
Theorem 1.11.2), or (Tartar, 2007, Lemma 41.3)), we have

((H1(Ω))d)′, ((L2(Ω))d)1/2,∞ = ((H1(Ω))d , (L2(Ω))d)1/2,1)
′ = (B1/2

2,1 (Ω)d)′. �

Remark 3.2 The assumption of the convexity of Ω in Lemma 3.1(iv) can be weakened: it suffices that
Ω admits a shift theorem by more than 1/2; see Lemma A3, for details.

Next, we provide stability results in weighted Sobolev norms. As weight, we introduce the regular-
ized distance δ from Γ , namely

δ(x) := h + dist(x, Γ ). (3.9)

Lemma 3.3 Let the bounded Lipschitz domain Ω ⊂ Rd , d ∈ {2, 3} be a polygon (d = 2) or a polyhedron
(d = 3). Fix c0 � 1 and β ∈ R. Then there exists c2 > c1 > c0 independent of h such that the following
is true: if y ∈ B1/2

2,∞(Ω) solves −Δy = 0 in Ω \ Sc0h, then

‖
√

δ∇y‖0;Ω\Sc2h � C
√

| log h|‖y‖B1/2
2,∞(Ω)

, (3.10a)

‖
√

δ∇2y‖0;Ω\Sc2h � C
√

| log h|‖y‖B3/2
2,∞(Ω)

if y ∈ B3/2
2,∞(Ω), (3.10b)

‖δβ∇3y‖0;Ω\Sc2h � C‖δβ−1∇2y‖0;Ω\Sc1h . (3.10c)

Proof. The upper bound (3.10b) is given by Melenk & Wohlmuth (2012, proof of Lemma 5.4,
Equation (5.4)), and the proof of (3.10a) follows by the same type of arguments. The estimate (3.10c)
expresses interior regularity for harmonic functions and is also taken from Melenk & Wohlmuth (2012,
Lemma 5.4). �

We are now in a position to apply Lemmas 3.1 and 3.3 to the dual problem (3.1), i.e., we set g =
χ(σ − σh) in (3.6).

Lemma 3.4 Let Ω be convex and (λ, w) ∈ H(div; Ω) × L2(Ω) be the solution of (3.1). Then w ∈
H2(Ω) ∩ H1

0 (Ω), and it satisfies

‖
√

δ∇w‖0 � C
√

h
√

| log h|‖χ(σ − σh)‖0, (3.11a)

‖
√

δ∇2w‖0 � C
√

h
√

| log h|‖ div(χ(σ − σh))‖0. (3.11b)

Proof. We note that the support properties of χ imply that w is harmonic in Ω \ Sκh, and thus we are
in the setting of Lemma 3.3 with c0 equal to κ , where the constant κ is the constant appearing in the
definition of χ . We start with the bound (3.11a) and decompose the domain Ω into Ω \ Sc2h and Sc2h.
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QUASI-OPTIMAL A PRIORI ESTIMATES FOR FLUXES 9

Then Lemma 3.1(iv) in combination with (3.10a) and (2.11) yields

‖
√

δ∇w‖0;Ω\Sc2h � C
√

| log h|‖χ(σ − σh)‖((B1/2
2,1 (Ω))d )′ � C

√
| log h|

√
h‖χ(σ − σh)‖0.

Recalling that δ is bounded by Ch on Sc2h, we have the trivial bound ‖√δ∇w‖0;Sc2h � C
√

h‖∇w‖0;Sc2h .

Then Lemma 3.1(ii) implies ‖∇w‖0 � C‖χ(σ − σh)‖0 and thus ‖√δ∇w‖0;Sc2h � C
√

h‖χ(σ − σh)‖0.
To prove (3.11b), we proceed as in the proof of (3.11a). Starting with the L2 norm on Sc2h, we get,

in view of Lemma 3.1(iii),

‖
√

δ∇2w‖0;Sc2h � C
√

h‖∇2w‖0 � C
√

h‖ div(χ(σ − σh))‖0.

We note that Melenk & Wohlmuth (2012, Lemma 5.2) states

‖w‖B3/2
2,∞(Ω)

� C‖ div(χ(σ − σh))‖(B1/2
2,1 (Ω))′ . (3.12)

To bound the weighted norm on Ω \ Sc2h, we use (3.10b), (3.12) and (2.11) to obtain

‖
√

δ∇2w‖0;Ω\Sc2h � C
√

| log h|‖w‖B3/2
2,∞(Ω)

� C
√

| log h|
√

h‖ div(χ(σ − σh))‖0. �

4. Approximation in anisotropic norms

In this section, we introduce anisotropic norms and reconsider the approximation properties of the Fortin
operator Ik

h and the L2 projection Π∗
h with respect to these norms.

4.1 Anisotropic norms

The definition of our anisotropic norms is based on the idea of viewing a d-dimensional domain as the
product of a one-dimensional interval and a (d − 1)-dimensional manifold. The anisotropic norm arises
from treating these two directions differently. As will become clear below, this point of view is closely
related to certain weighted Sobolev spaces with weight given by the distance from Γ .

For τ � 0, let us introduce the (d − 1)-dimensional manifold γτ by

γτ := {x ∈ Ω , dist(x, Γ ) = τ }, τ � 0.

We set D := diam Ω and note that, for τ � D, we have γτ = ∅. We place ourselves in the setting of the
Fubini–Tonelli formula for integration over Ω and assume the existence of a measure dμτ such that

∫
Ω

w dx =
∫ D

τ=0

∫
γτ

w dμτ dτ .

We point out that this is done for simplicity of exposition—in the general case, we can use a localiza-
tion technique and fitted coordinate systems as in Melenk & Wohlmuth (2012). A second simplifying
assumption is that the Lipschitz character of γτ may be assumed to be independent of τ ∈ [0, D].
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10 J. M. MELENK ET AL.

Next, we introduce our anisotropic norms,

‖v‖L(p;2) := ‖v‖Lp((0,D);L2(γτ )) :=
(∫ D

τ=0

(∫
γτ

v2 dμτ

)p/2

dτ

)1/p

, 1 � p < ∞, (4.1a)

‖v‖L(∞;2) := ‖v‖L∞((0,D);L2(γτ )) := sup
τ∈(0,D)

(∫
γτ

v2 dμτ

)1/2

, (4.1b)

and observe that, for p = 2, we recover by Fubini–Tonelli the standard L2(Ω) norm. As a consequence
of the one-dimensional Hölder inequality, we find

∣∣∣∣
∫

Ω

vṽ dx

∣∣∣∣� ‖v‖L(p;2)‖ṽ‖L(q;2),
1

p
+ 1

q
= 1. (4.2)

4.2 Approximation in anisotropic norms

In this section, we reconsider the Fortin operator and its approximation properties with respect to our
newly defined anisotropic norms. The definition (4.1b) of the L(∞; 2) norm shows that we have to
consider the L2(γτ ) norm in more detail. As a preliminary step, we introduce the set

Tτ := {T ∈ Th : γτ ∩ T̄ |= ∅} (4.3)

and observe that
⋃

T∈Tτ
T̄ ⊂ Sh,γτ

.

Lemma 4.1 For σ ∈ (Bk+3/2
2,1 (Ω))d , we have

‖σ − Ik
hσ‖L(∞;2) � Chk+1‖σ‖Bk+3/2

2,1
, (4.4a)

‖ div σ − Π∗
h div σ‖L(∞;2) � Chk‖ div σ‖Bk+1/2

2,1
. (4.4b)

Proof. Recalling (4.1b), we see that we have to bound the L2(γτ ) norm. A scaling argument allows us
to bound the L2(γτ ∩ T̄) norm in terms of a combination of weighted L2(T) and H1(T) norms. Owing
to (2.6a), we then obtain

‖σ − Ik
hσ‖2

0;γτ
=
∑
T∈Tτ

‖σ − Ik
hσ‖2

0;γτ ∩T̄ � C
∑
T∈Tτ

(
1

h
‖σ − Ik

hσ‖2
0;T + h‖∇(σ − Ik

hσ)‖2
0;T

)

� C
∑
T∈Tτ

h2k+1|σ |2k+1;T � Ch2k+1|σ |2k+1;Sh,γτ
.

The definition (4.3) guarantees that an additional factor of h can be recovered using Lemma 2.1; that is,
|σ |2k+1;Sh,γτ

� Ch‖σ‖2
Bk+3/2

2,1

and thus (4.1b) yields (4.4a).
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Now, we focus on (4.4b) and proceed as before:

‖ div σ − Π∗
h div σ‖2

0;γτ
=
∑
T∈Tτ

‖ div σ − Π∗
h div σ‖2

0;γτ ∩T̄

� C
∑
T∈Tτ

(
1

h
‖ div σ − Π∗

h div σ‖2
0;T + h‖∇(div σ − Π∗

h div σ)‖2
0;T

)

� C
∑
T∈Tτ

h2k−1| div σ |2k;T � Ch2k−1| div σ |2k;Sh,γτ
� Ch2k‖ div σ‖2

Bk+1/2
2,1

.
�

Remark 4.2 We note that Lemma 4.1 is not sharp in the case where V k
h = RTk

h. Then k on the right-
hand side of (4.4b) can be replaced by k + 1, provided that the solution is regular enough. However,
this sharper result does not significantly improve the global estimate for the normal flux on the interface
and is thus not stated.

5. Proof of the main result, Theorem 2.3

In this section, we provide the proof of Theorem 2.3. To start with, in Section 5.1 we consider a local
L2 estimate for the error σ − σh. In Section 5.3, we focus on a priori bounds for the error in the flux of
the dual problem. Finally in Section 5.4, the main result (2.13) is established.

5.1 Local L2 estimates

The Aubin–Nitsche trick in combination with the Hölder-type inequality (4.2) allows us to bound
‖√χ(σ − σh)‖0.

Lemma 5.1 Let (σ , u) ∈ H(div; Ω) × L2(Ω) be the solution of (2.1) and (σh, uh) ∈ V k
h × M k

h be its finite
element approximation. Let (λ, w) ∈ H(div; Ω) × L2(Ω) be the solution of the dual problem (3.1) and
(λh, wh) ∈ V k

h × M k
h be its finite element approximation. Then, for σ ∈ Bk+3/2

2,1 (Ω), we have

‖√χ(σ − σh)‖2
0 � Chk(h‖λ − λh‖L(1;2) + ‖w − Π∗

h w‖L(1;2))‖σ‖Bk+3/2
2,1

. (5.1)

Proof. A crucial observation for the proof is that div λh = 0. This follows from the fact that div V k
h =

M k
h and (3.1b), (3.3b). Moreover, we recall that, by (2.1b), we have b(σ − σh, vh) = 0 for all vh ∈ M k

h .
The symmetry of the bilinear form a(·, ·) yields, in combination with (2.1a), that a(τh, σ − σh) = 0
for all τh ∈ V k

h with div τh = 0. Using the definition of the dual solution and exploiting the Galerkin
orthogonality (2.7a), we find

‖√χ(σ − σh)‖2
0 = (χ(σ − σh), σ − σh)0 = a(λ, σ − σh) + b(σ − σh, w)

= a(λ − λh, σ − σh) + b(σ − σh, w − wh).

Now, using the Galerkin orthogonality (3.3a), we can replace the finite element solution σh by the Fortin
interpolation of σ and wh by the L2 projection of w:

‖√χ(σ − σh)‖2
0 = a(λ − λh, σ − Ik

hσ) + b(σ − Ik
hσ , w − wh)

= a(λ − λh, σ − Ik
hσ) + b(σ − Ik

hσ , w − Π∗
h w).
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12 J. M. MELENK ET AL.

The Hölder-type inequality (4.2) for our anisotropic norms yields

‖√χ(σ − σh)‖2
0 � ‖λ − λh‖L(1;2)‖σ − Ik

hσ‖L(∞;2)

+ ‖w − Π∗
h w‖L(1;2)‖ div σ − Π∗

h (div σ)‖L(∞;2).

To obtain a bound for ‖√χ(σ − σh)‖2
0 in terms of the mesh size, we have to control the terms on the

right-hand side. The two terms associated with the solution σ and the Fortin interpolant Ik
hσ are covered

by Lemma 4.1. For σ ∈ Bk+3/2
2,1 (Ω), we have ‖ div σ‖Bk+1/2

2,1
� ‖σ‖Bk+3/2

2,1
and thus (4.4a) in combination

with (4.4b) gives (5.1). �

5.2 Estimating ‖w − Π∗
h w‖L(1;2)

Lemma 5.1 shows that we need to estimate ‖λ − λh‖L(1;2) and ‖w − Π∗
h w‖L(1;2). The case of ‖w −

Π∗
h w‖L(1;2) is significantly simpler and covered in the present subsection. Several ingredients of its

proof will reappear in the treatment of ‖λ − λh‖L(1;2).
First, we relate our anisotropic L(1; 2) norm, defined by (4.1a), to a weighted L2 norm: it can easily

be shown by decomposing the interval (0, D) into the two subintervals (0, αh) and (αh, D) that

‖v‖L(1;2) =
∫ αh

τ=0

(∫
γτ

v2 dμτ

)1/2

dτ +
∫ D

τ=αh

(∫
γτ

v2 dμτ

)1/2

dτ

�
√

αh‖v‖0;Sαh +
(∫ D

τ=αh
τ−1 dτ

∫ D

τ=αh

∫
γτ

τv2 dx dτ

)1/2

�
√

αh‖v‖0;Sαh + C| log αh|1/2‖
√

δv‖0;Ω\Sαh . (5.2)

Similarly, for arbitrary ε > 0, one can show that

‖v‖L(1;2) �
√

αh‖v‖0;Sαh + Cεh−ε‖δ1/2+εv‖0;Ω\Sαh . (5.3)

We will use the bound (5.2) to handle the lowest-order case and (5.3) for higher-order elements.
With these observations in hand, we formulate the following result.

Lemma 5.2 (i) For the lowest-order cases (i.e., k = 0 for RT elements and k = 1 for BDM elements)
there holds

‖w − Π∗
h w‖L(1;2) � Ch3/2| log h|‖χ(σ − σh)‖0. (5.4)

(ii) For higher-order elements, there holds

‖w − Π∗
h w‖L(1;2) � Ch3/2‖χ(σ − σh)‖0.

Proof. The case of lowest-order elements is proved by combining (5.2) with (3.11a) to obtain

‖w − Π∗
h w‖2

L(1;2) � Ch‖∇w‖2
0;S2h

+ Ch2| log h|‖
√

δ∇w‖2
0 � Ch3| log h|2‖χ(σ − σ)‖2

0.

The case of higher-order elements relies on (5.3). Let c � 1 be such that w is harmonic on Ω \ Sch. For
ε > 0 sufficiently small but fixed, we get from (5.3), in view of the fact that the image space of Π∗

h
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QUASI-OPTIMAL A PRIORI ESTIMATES FOR FLUXES 13

contains (discontinuous) piecewise linear functions,

‖w − Π∗
h w‖2

L(1;2) � Ch‖w − Π∗
h w‖2

0;S2ch
+ Ch−2ε‖δ1/2+ε(w − Π∗

h w)‖2
0;Ω\S2ch

� Ch‖w − Π∗
h w‖2

0;S2ch
+ Ch−2εh4‖δ1/2+ε∇2w‖2

0;Ω\S(2c−1)h

� Ch‖w − Π∗
h w‖2

0;S2ch
+ Ch3‖∇w‖2

0 � Ch3‖∇w‖2
0.

In the last step, we have exploited that w is harmonic on Ω \ Sch and thus, in view of (3.10c), we obtain
‖δ1/2+ε∇2w‖0;Ω\S(2c−1)h � C‖δ−1/2+ε∇w‖0. Then, the stability assertion of Lemma 3.1 (ii) allows us to
conclude the argument. �

5.3 A priori bounds on the error in the dual flux

The estimate for σ − σh in Lemma 5.1 involves anisotropic norms of the FEM error λ − λh and the
approximation error w − Π∗

h w for the solution (λ, w) of the dual problem (3.1). In this subsection, we
focus on the error in the flux variable λ and use the regularity assertions for w given in Lemma 3.4.

We start with some preliminary technical results which play an important role in the bound for
the flux error. As is standard for localized estimates in finite element approximation, we have to use
a ‘superapproximation’ property formulated in Lemma 5.3. We refer to, for example, Wahlbin (1995,
Chapter 2.3) for its use in a Poisson-type problem and to Gastaldi & Nochetto (1989) for its application
in mixed FEMs.

Lemma 5.3 (‘Superapproximation’) Fix T ∈ Th. Let z ∈ W 1;∞(T). Then there exists a constant C > 0
depending only on the shape regularity of T and k such that

‖zτh − Ik
h (zτh)‖0;T � Ch‖∇z‖W 0;∞(T)‖τh‖0;T , τh ∈ Vk(T), (5.5a)

‖Ik
h (zτh)‖0;T � C(‖z‖W 0;∞(T) + h‖∇z‖W 0;∞(T))‖τh‖0;T , τh ∈ Vk(T). (5.5b)

Proof. We start with the stability bound (5.5b). Since the Fortin operator is not H(div; T) stable, we
use the triangle inequality, the approximation property (2.6a) and an inverse estimate for polynomials
to find

‖Ik
h (zτh)‖0;T � ‖zτh − Ik

h (zτh)‖0;T + ‖zτh‖0;T � C(h|zτh|1;T + ‖zτh‖0;T )

� C(h‖∇z‖W 0;∞(T)‖τh‖0;T + ‖z‖W 0;∞(T)‖τh‖0;T ).

Equation (5.5a) can easily be shown using (5.5b). Recalling that Π0
h z|Tτh ∈ Vk(T) and that the definition

of Ik
h (zτh) only involves values of zτh restricted to T , we obtain

‖zτh − Ik
h (zτh)‖0;T = ‖(z − Π0

h z)τh − Ik
h ((z − Π0

h z)τh)‖0;T � Ch‖∇z‖W 0;∞(T)‖τh‖0;T ,

where we observed ‖z − Π0
h z‖W 0;∞(T) � Ch‖∇z‖W 0;∞(T) and applied (5.5a) with z − Π0

h z taking the role
of z there. �

The proof of the following Lemma 5.4 requires the introduction of some notation. Recall the
definition of δ in (3.9). For x ∈ Ω we select two balls B̃i

δ;x, i ∈ {1, 2}, centred at x with radii κiδ(x),
where 0 < κ1 < κ2 are suitably chosen independent of the mesh size so that certain covering arguments
can be carried out below. We set Bi

δ;x := B̃i
δ;x ∩ Ω , select χx ∈ W 1;∞(Rd), with supp χx ⊂ B̃2

δ;x and χx ≡ 1
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14 J. M. MELENK ET AL.

on B1
δ;x, and require ‖∇χx‖W 0;∞ � Cδ(x)−1. Then we obtain, with the aid of the local superapproximation

property (5.5a) and the bound on the gradient of χx, the estimate

‖χxτh − Ik
h (χxτh)‖0 � C

h

δ(x)
‖τh‖0;B2

δ;x
, τh ∈ V k

h . (5.6)

Lemma 5.4 Let (σ , u) ∈ H(div; Ω) × L2(Ω) be the solution of (2.1) and (σh, uh) ∈ V k
h × M k

h be its finite
element approximation. Let (λ, w) ∈ H(div; Ω) × L2(Ω) be the solution of the dual problem (3.1) and
(λh, wh) ∈ V k

h × M k
h be its finite element approximation. Then, we have the bounds

‖λ − λh‖2
L(1;2) � Ch| log h|‖χ(σ − σh)‖2

0 + h3| log h|2‖ div(χ(σ − σh))‖2
0 if k = 0, (5.7a)

‖λ − λh‖2
L(1;2) � Ch‖χ(σ − σh)‖2

0 + h3‖ div(χ(σ − σh))‖2
0 if k � 1. (5.7b)

Proof. We start with the proof of (5.7a). For c � 1 sufficiently large, we use (5.2) to write

‖λ − λh‖2
L(1;2) � Ch‖λ − λh‖2

0;S2ch
+ C| log h|‖

√
δ(λ − λh)‖2

0;Ω\S2ch
(5.8)

and note that we have to bound the two terms on the right-hand side separately. Recalling div λ =
div λh = 0, we easily get, from (3.1) and (3.3), the stability estimate

√
h‖λ − λh‖0;Sch �

√
h‖λ − λh‖0 �

√
h‖χ(σ − σh)‖0; (5.9)

hence, we have a stronger estimate for the first term on the right-hand side of (5.8) than required.
For the treatment of ‖√δ(λ − λh)‖0;Ω\S2ch , we assume that c � 1 is so large that w is harmonic on

Ω \ Sch. We fix x ∈ Ω . We start by considering the L2 norm of λ − λh restricted to B1
δ;x. Using the

superapproximation property (5.6), the Galerkin orthogonality (3.3a), and the fact that δ(x) � h, we find

‖λ − λh‖2
0;B1

δ;x
� (χx(λ − λh), λ − λh)0 = (χx(λ − Ik

hλ), λ − λh)0 + (χx(I
k
hλ − λh), λ − λh)0

� C‖λ − λh‖0;B2
δ;x

(
‖λ − Ik

hλ‖0;B2
δ;x

+ h

δ(x)
‖λh − Ik

hλ‖0;B2
δ;x

)

+ b(Ik
h (χx(I

k
hλ − λh)), wh − w)

� C‖λ − λh‖0;B2
δ;x

(
‖λ − Ik

hλ‖0;B2
δ;x

+ h

δ(x)
‖λh − λ‖0;B2

δ;x

)

+ b(Ik
h (χx(I

k
hλ − λh)), wh − Π∗

h w). (5.10)

To estimate the contribution from the bilinear form b(·, ·), we use the properties (2.3a), (2.3b), the bound
for ∇χx, the product rule, and the fact that Ik

hλ and λh are divergence-free, to obtain

b(Ik
h (χx(I

k
hλ − λh)), wh − Π∗

h w) = b(χx(I
k
hλ − λh), wh − Π∗

h w)

� ‖ div(χx(I
k
hλ − λh))‖0‖wh − Π∗

h w‖0;B2
δ;x

� C

δ(x)
‖Ik

hλ − λh‖0;B2
δ;x

‖wh − Π∗
h w‖0;B2

δ;x
. (5.11)
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Next, we consider a countable, locally finite covering of Ω \ S2ch by balls {B1
δ;xi

}xi such that the asso-
ciated covering {B2

δ;xi
}xi is locally finite; for details of the construction we refer to Melenk & Wohlmuth

(2012, Appendix). We assume, furthermore, that the sets B2
δ;xi

are contained in Ω \ Sch. We note that,
for each y ∈ B2

δ;xi
, we have the equivalence of δ(y) and δ(xi).

Applying Young’s inequality for ε > 0, using (5.9–5.11), we get, by summation and the fact that the
coverings are locally finite,

‖
√

δ(λ − λh)‖2
0 � C

∑
xi

δ(xi)‖λ − λh‖2
0;B1

δ;xi

+ ‖
√

δ(λ − λh)‖2
0;S2ch

� C
∑

xi

(δ(xi)‖λ − Ik
hλ‖0;B2

δ;xi
‖λ − λh‖0;B2

δ;xi
+ h‖λh − λ‖2

0;B2
δ;xi

)

+ C
∑

xi

1√
h
‖wh − Π∗

h w‖0;B2
δ;xi

√
h‖Ik

hλ − λh‖0;B2
δ;xi

+ h‖(λ − λh)‖2
0;S2ch

� C

((
1

ε
+ 1

)
‖
√

δ(λ − Ik
hλ)‖2

0;Ω\Sch
+ ε‖

√
δ(λ − λh)‖2

0;Ω\Sch

+ h‖λh − λ‖2
0 + 1

h
‖wh − Π∗

h w‖2
0

)
. (5.12)

Selecting ε > 0 sufficiently small, but fixed, to absorb the term ε‖√δ(λ − λh)‖2
0;Ω\Sch

of the right-hand
side in the left-hand side, we obtain from (2.6a) with s = 0 and the observation λ = −∇w for some
suitable c′ < c,

‖
√

δ(λ − λh)‖2
0 � C

(
h2‖

√
δ∇λ‖2

0;Ω\Sc′h + h‖λh − λ‖2
0 + 1

h
‖wh − Π∗

h w‖2
0

)

� C(h2‖
√

δ∇2w‖2
0;Ω\Sc′h + h‖χ(σ − σh)‖2

0).

In the last step, we have first used the superapproximation property (3.4) which bounds ‖wh − Π∗
h w‖0;Ω ,

and second (5.9). To bound ‖√δ∇2w‖0, we use (3.11b) and note that this term introduces another log
factor in the upper bound.

The proof of (5.7b) is quite similar. The main difference is that we do not use the weighted L2 norm
of ∇2w given by (3.11a) but the standard L2 estimate given in Lemma 3.1(iii). For small α > 0 we
compute, similarly as in (5.12),

‖δ1/2+α(λ − λh)‖2
0 � C

∑
xi

δ(xi)
1+2α‖λ − λh‖2

0;B1
δ;xi

+ ‖δ1/2+α(λ − λh)‖2
0;S2ch

� C
∑

xi

(
δ(xi)

1+2α‖λ − Ik
hλ‖0;B2

δ;xi
‖λ − λh‖0;B2

δ;xi
+ h

1

δ(xi)
‖δ1/2+α(λh − λ)‖2

0;B2
δ;xi

)

+ C
∑

xi

δ(xi)
−1/2+α‖wh − Π∗

h w‖0;B2
δ;xi

δ(xi)
1/2+α‖Ik

hλ − λh‖0;B2
δ;xi

+ h1+2α‖(λ − λh)‖2
0;S2ch
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16 J. M. MELENK ET AL.

� C

((
1

ε
+ 1

)
‖δ1/2+α(λ − Ik

hλ)‖2
0;Ω\Sch

+ ε‖δ1/2+α(λ − λh)‖2
0;Ω\Sch

+ sup
x∈Ω\S2ch

h

δ(x)
‖δ1/2+α(λh − λ)‖2

0 + 1

ε
h−1+2α‖wh − Π∗

h w‖2
0 + ε‖δ1/2+α(Ik

hλ − λh)‖2
0

)
.

The constant C > 0 is independent of c, and ε > 0. Selecting now ε sufficiently small and fixing c � 1
sufficiently large so as to make supx∈Ω\Sch

h/δ(x) sufficiently small, we arrive at

‖δ1/2+α(λ − λh)‖2
0 � C‖δ1/2+α(λ − Ik

hλ)‖2
0;Ω\Sch

+ h−1+2α‖wh − Π∗
h w‖2

0. (5.13)

Selecting ε > 0 sufficiently small, we get, from (2.6a) with s = 0 and the observation λ = −∇w for some
c′ < c,

‖δ1/2+α(λ − λh)‖2
0 � C

(
h2‖δ1/2+α(λ − Ik

hλ)‖2
0;Ω\Sc′h + h‖λh − λ‖2

0 + 1

h
‖wh − Π∗

h w‖2
0

)

� C(h2‖δ1/2+α∇2w‖2
0;Ω\Sc′h + h‖χ(σ − σh)‖2

0).

Since we assume k � 1 and have λ = −∇w, we get, with the approximation properties of Ik
h , (5.13) and

(3.10c),

h−2α‖δ1/2+α(λ − λh)‖2
0 � Ch4−2α‖δ1/2+α∇2λ‖2

0 + h−1‖wh − Π∗
h w‖2

0

� Ch4−2α‖δ−1/2+α∇2w‖2
0 + h−1‖wh − Π∗

h w‖2
0

� Ch4−2αh−1+2α‖∇2w‖2
0 + h−1‖wh − Π∗

h w‖2
0.

Recalling (3.5) gives ‖∇2w‖0 � C‖ div(χ(σ − σh))‖0. Then (3.4), (5.9) yield the desired estimate. �

Remark 5.5 We note that in Lemma 5.4, the log factor appears only for RT0
h elements, whereas, in

Lemma 5.2, the log factor arises for both RT0
h and BDM1

h elements.

5.4 Proof of the main result, Theorem 2.3

Theorem 2.3 is obtained by combining Lemmas 2.2, 5.1, 5.2 and 5.4. Since the case of higher-order
elements is proved very similarly to the case of lowest-order elements, we restrict the presentation to
that case and leave the other one to the reader.

Inserting the result of Lemma 5.4 and the bound (5.4) into Lemma 5.1, we find

‖√χ(σ − σh)‖4
0 � Ch2k+3| log h|2‖σ‖2

Bk+3/2
2,1

(‖χ(σ − σh)‖2
0 + h2‖ div(χ(σ − σh))‖2

0).

Since div(χ(σ − σh)) = ∇χ · (σ − σh) + χ div(σ − σh), we get, in view of (3.2), (2.8) and (2.10),

‖ div(χ(σ − σh))‖2
0 � C

(
1

h2
‖√χ(σ − σh)‖2

0 + ‖χ(div σ − Π∗
h div σ)‖2

0

)

� C

(
1

h2
‖√χ(σ − σh)‖2

0 + h2k+1‖σ‖2
Bk+3/2

2,1

)
.
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QUASI-OPTIMAL A PRIORI ESTIMATES FOR FLUXES 17

Finally this bound results in

‖√χ(σ − σh)‖4
0 � Ch2k+3| log h|2‖σ‖2

Bk+3/2
2,1

(‖√χ(σ − σh)‖2
0 + h2k+3‖σ‖2

Bk+3/2
2,1

)

and thus ‖(σ − σh)‖0;Sh � ‖√χ(σ − σh)‖0 � Chk+3/2| log h|‖σ‖Bk+3/2
2,1

. Now, our main result, the a priori

bound (2.13), follows from Lemma 2.2.

6. Numerical results

In this section, we present two examples to confirm the theoretical convergence rates for the Laplace
operator and one example with an application to the Stokes–Darcy coupling. In all three examples,
we consider problem settings with a given solution on Ω ⊂ R2. In addition to the finite elements on
triangles, which we introduced in Section 2.1, we also consider finite elements on quadrilaterals such
as RT[k]

h , BDM[k]
h and define Brezzi–Douglas–Fortin–Marini (BDFM)

[k]
h , k ∈ N0 (Fig. 1). Following the

notation of Brezzi & Fortin (1991, Chapter V.2), the superscript [·] indicates the association to quadri-
lateral elements. Note that, unlike the triangular case where we have that RTk

h ⊂ BDMk+1
h ⊂ RTk+1

h ,
this relationship does not hold any more for the quadrilateral case, since div(RT[k]

h ) = Qk � Pk =
div(BDM[k+1]

h ). Figure 1 illustrates the elements employed and shows the number of degrees of freedom
associated with the edges and elements.

6.1 Two-dimensional model problems

We set Ω = (0, 1) × (0, 1). The exact solution u is prescribed in terms of polar coordinates (r, φ) as

u = rα sin φ;

here, the origin of the coordinate system is taken to be the point (0.75, 0.5) and the angular variable φ

measures the angle from the line y = 0.5. The interface Γ is placed at y = 0.5 and is resolved by the
mesh. The initial mesh, however, is such that (0.75, 0.5) is not a mesh point.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 1. Degrees of freedom of RT and BDM elements on triangles and quadrilaterals.
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18 J. M. MELENK ET AL.

Table 1 L2 error in the flux for α = 1.5

Level RT0
h Rate BDM1

h Rate RT1
h Rate BDM2

h Rate

1 9.42e−2 — 4.84e−2 — 2.20e−2 — 1.75e−2 —
2 5.03e−2 0.904 2.48e−2 0.964 1.07e−2 1.040 8.76e−3 1.000
3 2.70e−2 0.896 1.24e−2 1.003 5.36e−3 1.003 4.37e−3 1.002
4 1.44e−2 0.905 6.19e−3 1.001 2.68e−3 1.001 2.19e−3 1.001
5 7.65e−3 0.916 3.09e−3 1.000 1.34e−3 1.001 1.09e−3 1.001
6 4.03e−3 0.925 1.55e−3 1.000 6.64e−4 1.000 5.45e−4 1.002

Table 2 L2 error in the flux for α = 1.75

Level RT0
h Rate BDM1

h Rate RT1
h Rate BDM2

h Rate

1 8.44e−2 — 3.36e−2 — 1.12e−2 — 8.35e−3 —
2 4.23e−2 0.996 1.44e−2 1.225 4.40e−3 1.349 3.51e−3 1.252
3 2.14e−2 0.985 5.92e−3 1.280 1.84e−3 1.257 1.48e−3 1.248
4 1.08e−2 0.987 2.46e−3 1.265 7.72e−4 1.252 6.21e−4 1.250
5 5.43e−3 0.990 1.03e−3 1.256 3.24e−4 1.252 2.61e−4 1.249
6 2.73e−3 0.993 4.33e−4 1.252 1.36e−4 1.257 1.10e−4 1.250

We focus on the choices α = 1.5 and α = 1.75. We note that, for 3
2 < α < 2, the solution is in B3/2

2,1 (Ω)

but not in W 2,∞(Ω), and that full convergence rates cannot be expected owing to limited regularity. The
numerical solution (σh, uh) ∈ V k

h × M k
h is uniquely characterized by (2.7). We note that inhomogeneous

Dirichlet boundary conditions gD enter as
∫

∂Ω
gDσ̃n ds on the right-hand side of (2.1a). Here, we set

gD equal to the trace of the given exact solution. The accuracy of the numerical solution for different
choices of the pairings (V k

h , M k
h ) and on different types of meshes is compared.

6.1.1 Simplicial mesh. In Tables 1 and 2, the L2 errors of the normal fluxes across the interface are
presented for the limiting case α = 3

2 and the case α = 1.75 for various levels of uniform refinement.
On unstructured simplicial meshes we use RT0

h, RT1
h, BDM1

h and BDM2
h elements. As expected from the

theory, the asymptotic convergence rates are determined by the low regularity of the problem. We point
out that the singularity is not placed at a vertex of the initial mesh.

In Figs 2 and 3, the normal flux of the numerical solutions is plotted against that of the exact solution
u for both choices of α. We point out that, only for RT0

h, the flux is approximated by a piecewise constant,
whereas for the cases RT1

h and BDM1
h the flux is approximated by linears and for BDM2

h by quadratics.

6.1.2 Quadrilateral mesh. Tables 3 and 4 show the same type of results but for mixed finite ele-
ments on a quadrilateral mesh, in particular for RT[0]

h , RT[1]
h , BDM[1]

h , BDM[2]
h and BDFM[3]

h elements. In
Table 3, the case α = 1.5 is displayed. Here, we cannot expect a higher convergence rate than 1 indepen-
dently of the choice of the finite element order. We recall that BDM[1]

h and RT[1]
h have the same degrees

of freedom per edge but RT[1]
h has additional interior degrees of freedom, and thus has a significantly
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QUASI-OPTIMAL A PRIORI ESTIMATES FOR FLUXES 19

Fig. 2. Numerical approximation of the normal flux across the interface Γ for α = 1.5 (left) and α = 1.75 (right) on refinement
level 1 (simplicial mesh).

Fig. 3. Numerical approximation of the normal flux across the interface Γ for α = 1.5 (left) and α = 1.75 (right) on refinement
level 4 (simplicial mesh).

Table 3 L2 error in the flux for α = 1.5, quadrilateral mesh

Level RT[0]
h Rate BDM[1]

h Rate RT[1]
h Rate BDM[2]

h Rate BDFM[3]
h Rate

0 1.18e−1 — 8.98e−2 — 8.41e−2 — 6.59e−2 — 5.28e−2 —
1 9.28e−2 0.348 5.97e−2 0.589 1.81e−2 2.218 3.40e−2 0.955 1.88e−2 1.486
2 5.14e−2 0.852 3.07e−2 0.956 8.73e−3 1.051 1.65e−2 1.038 9.45e−3 0.996
3 2.77e−2 0.890 1.54e−2 0.998 4.37e−3 0.999 8.28e−3 1.000 4.72e−3 1.000
4 1.48e−2 0.902 7.68e−3 1.004 2.18e−3 1.000 4.14e−3 1.000 2.36e−3 1.000
5 7.88e−3 0.913 3.84e−3 1.001 1.09e−3 1.000 2.07e−3 1.000 1.18e−3 1.000
6 4.16e−3 0.923 1.92e−3 1.000 5.46e−4 1.000 1.03e−3 1.000 5.91e−4 1.000

smaller error on all levels. Although BDM[2]
h and BDFM[3]

h have more degrees of freedom per edge than
RT[1]

h , the quantitative errors are sensitive to the number of degrees of freedom per element.
Compared with α = 1.5, the solution for α = 1.75 is more regular, and thus we only expect for the

lowest-order RT[0]
h /RT0

h discretization an asymptotic rate of 1. In all other cases, we observe asymptoti-
cally a rate of ∼ 1.25. There is no qualitative difference between an unstructured simplicial mesh and a
regular quadrilateral mesh.
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20 J. M. MELENK ET AL.

Table 4 L2 error in the flux for α = 1.75, quadrilateral mesh

Level RT[0]
h Rate BDM[1]

h Rate RT[1]
h Rate BDM[2]

h Rate BDFM[3]
h Rate

0 1.21e−1 — 8.36e−2 — 6.82e−2 — 4.79e−2 — 3.55e−2 —
1 8.33e−2 0.540 4.41e−2 0.923 7.81e−3 3.125 2.07e−2 1.212 1.05e−2 1.758
2 4.29e−2 0.959 1.89e−2 1.222 2.92e−3 1.418 8.35e−3 1.307 4.44e−3 1.240
3 2.16e−2 0.986 7.83e−3 1.272 1.23e−3 1.247 3.52e−3 1.246 1.87e−3 1.250
4 1.09e−2 0.987 3.25e−3 1.267 5.21e−4 1.243 1.48e−3 1.249 7.85e−4 1.250
5 5.49e−3 0.990 1.36e−3 1.257 2.19e−4 1.249 6.23e−4 1.250 3.30e−4 1.250
6 2.76e−3 0.993 5.71e−4 1.253 9.26e−5 1.250 2.62e−4 1.250 1.39e−4 1.250

Table 5 L2 error in the flux, quadrilateral mesh

Level RT[0]
h Rate BDM[1]

h Rate RT[1]
h Rate BDM[2]

h Rate BDFM[3]
h Rate

1 1.69e−0 — 1.55e−0 — 1.10e−0 — 2.64e−0 — 1.49e−0 —
2 8.13e−1 1.053 8.45e−1 0.871 4.15e−1 1.408 7.49e−1 1.819 3.32e−1 2.167
3 4.08e−1 0.996 2.11e−1 2.004 4.83e−2 3.103 1.41e−1 2.414 2.43e−2 3.774
4 1.81e−1 1.168 6.51e−2 1.695 8.55e−3 2.499 1.86e−2 2.915 1.24e−3 4.291
5 8.51e−2 1.091 1.75e−2 1.890 2.08e−3 2.042 2.33e−3 3.001 7.11e−5 4.123
6 4.18e−2 1.027 4.53e−3 1.953 5.19e−4 2.001 2.91e−4 3.001 5.78e−6 3.622
7 2.08e−2 1.012 1.15e−3 1.979 5.19e−4 2.001 3.63e−5 3.000 6.16e−7 3.230

Table 6 L2 error in the flux, simplicial mesh

Level RT0
h Rate BDM1

h Rate RT1
h Rate BDM2

h Rate

1 1.83e−0 — 1.67e−0 — 1.57e−0 — 1.90e−0 —
2 9.26e−1 0.987 8.35e−1 1.004 4.10e−1 1.934 2.83e−1 2.749
3 4.19e−1 1.145 2.26e−1 1.886 8.16e−2 2.329 5.32e−2 2.410
4 1.86e−1 1.173 5.45e−2 2.051 1.41e−2 2.534 7.42e−3 2.842
5 8.62e−2 1.108 1.33e−2 2.039 2.67e−3 2.398 9.54e−4 2.960
6 4.20e−2 1.038 3.33e−3 1.995 5.79e−4 2.206 1.20e−4 2.990
7 2.08e−2 1.010 8.38e−4 1.989 1.36e−4 2.089 1.50e−5 2.997

6.1.3 Higher-order convergence. In the second example, we consider the piecewise smooth solution

u =
{

e−x sin(2πy)2 − (y − 1
2 )[xy(x − 1

2 )2 + ey cos(8πxy)(x + 1
2 )2] if y < 1

2 ,

e−x(y − 1
2 )24π2 − (y − 1

2 )[xy(x − 1
2 )2 + ey cos(8πxy)(x + 1

2 )2] if y � 1
2

on Ω = (0, 1) × (0, 1). The interface Γ is placed at y = 0.5 and resolved by the mesh. Since the exact
solution is sufficiently smooth, we expect full convergence rates. Tables 5 and 6 show the numerical
results for a uniform quadrilateral and a simplicial mesh, respectively. The observed convergence rates
confirm our theoretical result. Note that the absolute errors for BDM[2]

h are larger than for RT[1] on the
first four refinement levels although it has an additional degree of freedom per edge.
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6.2 Stokes–Darcy coupling

In this subsection, we consider a more general problem setting that is not covered by our theoretical
results. The coupling of the Stokes problem with the Laplace equation plays an important role in many
applications. Of special interest are porous media applications where the Darcy velocity can be used to
describe a single-phase single-component transport. On the pore scale, the pore structure is resolved and
the Navier–Stokes equations model the flow in the free-flow region and within the pores. On the ‘rep-
resentative elementary volume’ scale, however, the mathematical model can be considerably simplified
by applying the potential theory resulting in Darcy’s law in the porous media. Two-domain models
exploit this observation and use suitable transfer conditions at the interface to couple the simple Darcy
model for porous media with, for example, the simplified Stokes equation in the free-flow domain.

6.2.1 Model equations and coupling conditions. The unknown quantities in the Darcy domain ΩD

are the pressure pD and the Darcy velocity uD, whereas in the Stokes domain ΩS, the velocity uS and
the pressure pS are sought. In ΩD, we consider the first-order velocity system

uD = −K∇pD, div uD = fD,

where fD stands for a source term and K is a positive-definite tensor that characterizes the intrinsic
permeability of the porous medium. In ΩS, we consider the second-order velocity system

−div(2μD(uS)) + ∇pS = −fS, div uS = 0,

where fS stands for a source term, D(uS) := (∇uS + ∇uT
S)/2 denotes the deformation tensor and μ is

the fluid viscosity. To close the system, we have to specify boundary and coupling conditions. In theory,
the coupling conditions can be derived by applying volume-averaging techniques as described by Gray
et al. (1993) and Whitaker (1999). In practice, however, simplified coupling conditions are often used.
Here, we apply in a tangential direction the Beavers–Joseph velocity-jump condition due to Beavers &
Joseph (1967) in combination with the modification by Saffman (1971) (see also Jäger & Mikelic, 2000,
2009). This condition can be written as

uS · τττ −
√

k

γ
2n · D(uS) · τττ = 0. (6.1)

The unit normal vector n points from ΩS to ΩD, and τττ stands for the tangential vector on the interface.
For a parameter μ > 0 the value k := τττ · μK · τττ describes the dynamic viscosity. The parameter γ >

0 is a dimensionless constant that has to be determined experimentally. In the normal direction, the
continuity of normal forces and mass conservation across the interface is assumed:

uS · n = uD · n, (6.2)

pS − 2μn · D(uS) · n = pD; (6.3)

see also Layton et al. (2002).

6.2.2 Numerical results. For the numerical discretization, we follow a hybrid discontinuous Galerkin
approach based on mixed finite elements of possibly different orders in both subdomains given by
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Table 7 L2-error and convergence rate of velocities on the interface Γ for
the lowest-order RT [0]

h /BDM [1]
h coupling

Level uS · n error Rate uS · τττ error Rate uD · n error Rate

1 1.48e−02 — 3.06e−02 — 2.77e−01 —
2 1.69e−03 3.125 3.48e−03 3.137 1.39e−01 1.000
3 2.68e−04 2.662 7.20e−04 2.273 6.94e−02 1.000
4 5.58e−05 2.262 1.63e−04 2.142 3.47e−02 1.000
5 1.33e−05 2.068 3.96e−05 2.045 1.73e−02 1.000
6 3.29e−06 2.016 9.81e−06 2.012 8.67e−03 1.000
7 8.20e−07 2.004 2.45e−06 2.002 4.33e−03 1.000

Table 8 L2-error and convergence rate of velocities on the interface Γ for
the RT [1]

h /BDM [2]
h coupling

Level uS · n error Rate uS · τττ error Rate uD · n error Rate

1 1.55e−02 — 2.29e−02 — 1.54e−02 —
2 1.68e−03 3.205 1.81e−03 3.656 1.71e−03 3.169
3 2.06e−04 3.028 1.96e−04 3.211 2.24e−04 2.930
4 2.53e−05 3.020 2.19e−05 3.162 3.38e−05 2.727
5 3.13e−06 3.014 2.54e−06 3.108 6.42e−06 2.396
6 3.89e−07 3.009 3.04e−07 3.064 1.45e−06 2.143
7 4.85e−08 3.005 3.70e−08 3.036 3.54e−07 2.040

Girault & Rivière (2009) and Kanschat & Rivière (2010). Here, we consider the coupled Stokes–Darcy
system on the unit square Ω := (0, 1) × (0, 1) which is subdivided into two subdomains,

ΩS := (0, 1) × (0.5, 1), ΩD := (0, 1) × (0, 0.5),

with the exact solution

uS = (ωeωy sin(ωx) + 2x2(y − ξ) − 2G3, −ωeωy cos(ωx) − 2x(y − ξ)2)T,

uD = (ω2eω/2 sin(ωx)y − G2(y + 0.5)2, −ωeω/2 cos(ωx) − 2x(y + 0.5)G2)T,

pS = ωeω/2 cos(ωx)(K−1y − 2ωμ) + Gx(G − 8μ),

pD = K−1(ωeω/2 cos(ωx)y + x(y + 0.5)2G2),

where μ := 1.0 , K := 1.0 , γ := 2.0 , G := √
Kμ/γ , ω := 1/2G and ξ := 0.5 − G. The solution is cho-

sen to fulfil the coupling conditions (6.1–6.3) on the interface Γ = Ω̄S ∩ Ω̄D, and we assume that
K = diag(K). Note that the velocity has a continuous normal component on Γ but is discontinuous
in the tangential direction. The domain is discretized by a sequence of uniformly refined quadrilateral
meshes, where the numerical solution in ΩS is computed by the symmetric interior penalty Galerkin
method using BDM[k+1]

h elements, and in ΩD we apply a mixed FEM using RT[k]
h elements. We mention

that the choice of the pairing is motivated by the idea of having the same order of convergence for the
two subdomains. In Tables 7 and 8, the L2 errors of the velocities on Γ are listed for all refinement
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Fig. 4. Numerical approximation of the normal velocity across the interface Γ for the RT[0]
h /BDM[1]

h coupling (left) and the

RT[1]
h /BDM[2]

h coupling (right).

Table 9 L2(ΩD) and H1(ΩS) errors for the RT[k]
h /BDM[k+1]

h coupling, k = 0 and k = 1

k = 0 k = 1

Level uS error in H1 Rate uD error in L2 Rate uS error in H1 Rate uD error in L2 Rate

1 1.05e−01 — 2.08e−01 — 1.06e−01 — 1.40e−02 —
2 2.57e−02 2.031 1.05e−01 0.991 2.36e−02 2.169 3.32e−03 2.077
3 7.68e−03 1.744 5.23e−02 0.998 5.74e−03 2.038 8.27e−04 2.007
4 2.80e−03 1.454 2.62e−02 0.999 1.42e−03 2.012 2.07e−04 2.001
5 1.23e−03 1.185 1.31e−02 1.000 3.55e−04 2.003 5.16e−05 2.000
6 5.92e−04 1.057 6.55e−03 1.000 8.87e−05 2.001 1.29e−05 2.000
7 2.93e−04 1.016 3.27e−03 1.000 2.22e−05 2.000 3.23e−06 2.000

levels for k = 0, 1. In Fig. 4, the normal velocities of the numerical solutions are plotted against the
exact solution on two consecutive grid levels. Table 9 shows the H1(ΩS) and the L2(ΩD) errors for
the velocities since these norms are natural, given that the Stokes system is (essentially) a second-order
equation, whereas the Darcy equation is a first-order system. The results show full convergence rates
for both choices of k.
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Appendix A. Regularity

In Lemma 3.1, we showed assertion (iv) under the assumption of the convexity of Ω , i.e., under the
assumption of full regularity. This assumption can be weakened: it suffices that Ω admits a shift theorem
by more than 1/2 as we now show.

For simplicity of exposition, we formulate this shift theorem as an assumption but point out that, for
example, for d = 2 it is valid for polygonal Lipschitz domains Ω .

Assumption A1 There exists s0 > 1/2 such that T̃D is a bounded linear operator T̃D : H−1+s0(Ω) →
H1+s0(Ω). Here, T̃D : H−1(Ω) → H1

0 (Ω) is the solution operator for the Poisson problem: given
g ∈ H−1(Ω), find y ∈ H1

0 (Ω) such that

−Δy = g in Ω , y = 0 on ∂Ω .

We now show an analogue of Melenk & Wohlmuth (2012, Lemma 5.2).

Lemma A2 Assume the validity of the shift theorem of Assumption A1. Consider the following varia-
tional problem: given g ∈ (L2(Ω))d , find y ∈ H1

0 (Ω) such that

(∇y, ∇z)0,Ω = (g, ∇z)0,Ω ∀ z ∈ H1
0 (Ω).

Then, the solution operator TD : (L2(Ω))d → H1
0 (Ω), given by g �→ y, extends to a bounded linear map

TD : ((B1/2
2,1 (Ω))d)′ → B1/2

2,∞(Ω).

Proof. Step 1. Our starting point is a very weak formulation. Fix ε > 0 such that 1/2 + ε < s0. We
introduce the bilinear form B on H1/2−ε(Ω) × (H3/2+ε(Ω) ∩ H1

0 (Ω)) by

B(y, v) := 〈y, −Δv〉1/2−ε,−1/2+ε .

A few comments are in order: first, 〈·, ·〉1/2−ε,−1/2+ε stands for the duality pairing between H1/2−ε(Ω)

and H−1/2+ε(Ω). We point out that the assumption ε > 0 implies that H1/2−ε(Ω) = H1/2−ε
0 (Ω) so that

the duality pairing is indeed well defined. Second, from the mapping properties of −Δ (taken in the
distributional sense), −Δ : H2(Ω) → L2(Ω) and −Δ : H1(Ω) → H−1(Ω), we obtain by interpolation
that −Δ : H3/2+ε(Ω) → H−1/2+ε(Ω) so that B is indeed well defined.

We claim that B satisfies an inf–sup condition. To that end, let u′ ∈ C∞
0 (Ω) be arbitrary. By our

assumptions on the mapping properties of T̃D stated in Assumption A1, there exists v ∈ H3/2+ε(Ω) ∩
H1

0 (Ω) such that

(∇v, ∇z)0,Ω = (u′, z)0,Ω = 〈u′, z〉−1/2+ε,1/2−ε ∀ z ∈ C∞
0 (Ω),

together with the bound ‖v‖3/2+ε;Ω � C‖u′‖−1/2+ε,Ω . By the definition of the distributional Laplacian,
we obtain

B(z, v) = 〈u′, z〉−1/2+ε,1/2−ε ∀ z ∈ C∞
0 (Ω).

Taking the supremum over z ∈ C∞
0 (Ω), recalling the density of C∞

0 (Ω) in H1/2−ε(Ω) = H1/2−ε
0 (Ω) and

using the bound ‖v‖3/2+ε;Ω � C‖u′‖−1/2+ε;Ω , we obtain

sup
z∈C∞

0 (Ω)

B(z, v)

‖z‖1/2−ε;Ω‖v‖3/2+ε;Ω
= sup

z∈C∞
0 (Ω)

〈u′, z〉−1/2+ε,1/2−ε

‖z‖1/2−ε;Ω‖v‖3/2+ε;Ω
= ‖u′‖−1/2+ε;Ω

‖v‖3/2+ε;Ω
� C > 0.
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Furthermore, the bilinear form B satisfies the ‘sup–sup’ condition so that the bilinear form B induces an
isomorphism between (H3/2+ε(Ω) ∩ H1

0 (Ω))′ and H1/2−ε(Ω).
Step 2. Consider the following problem: given g ∈ ((H1/2+ε(Ω))d)′, find y ∈ H1/2−ε(Ω) such that

B(y, z) = 〈g, ∇z〉(H1/2+ε)′×H1/2+ε ∀ z ∈ H3/2+ε(Ω) ∩ H1
0 (Ω). (A.1)

By the first step, the solution operator

TD
vw : ((H1/2+ε(Ω))d)′ → H1/2−ε(Ω)

given by g �→ u is well defined and a bounded linear operator. We next claim that TD
vw also has the

mapping property

(L2(Ω))d → H1
0 (Ω).

In fact, we will show the stronger statement

TD
vw = TD on (L2(Ω))d .

To see this, let g ∈ (L2(Ω))d . In order to see y := TD
vwg ∈ H1(Ω), let ϕ ∈ (C∞

0 (Ω))d and define zϕ :=
T̃D(∇ · ϕ) ∈ H3/2+ε(Ω) ∩ H1

0 (Ω). We note the classical estimate ‖zϕ‖1,Ω � C‖ϕ‖0;Ω . We also observe
that we have pointwise −Δzϕ = ∇ · ϕ. Hence, an integration by parts together with the definition of the
weak gradient ∇y yields

〈∇y, ϕ〉 def= −(y, ∇ · ϕ)0,Ω = (y, Δzϕ)0,Ω = −B(y, zϕ)
(A.1)= 〈g, ∇zϕ〉(H1/2+ε)′×H1/2+ε = (g, ∇zϕ)0,Ω .

For the right-hand side, we have |(g, ∇zϕ)0,Ω | � ‖g‖0;Ω‖∇zϕ‖0;Ω � ‖g‖0;Ω‖ϕ‖0;Ω . Hence, ∇y ∈ L2(Ω).
As a next step towards showing that y = TD

wvg = TDg =: ỹ, we show that y − ỹ is harmonic. To that
end, let ϕ ∈ C∞

0 (Ω). Then

〈−Δ(y − ỹ), ϕ〉 def= (y − ỹ, −Δϕ)0,Ω = B(y, ϕ) − (∇ ỹ, ∇ϕ)0,Ω = (g, ∇ϕ)0,Ω − (g, ∇ϕ)0,Ω = 0.

Next, we show y ∈ H1
0 (Ω). In order to establish this, we note that, since −Δ(y − ỹ) = 0, the co-normal

derivative ∂n(y − ỹ) is a well-defined element of H−1/2(∂Ω). For all ϕ ∈ C∞
0 (Ω̄) we have

0 = 〈∂n(y − ỹ), ϕ〉 = (∇(y − ỹ), ∇ϕ)0,Ω = (y, ∂nϕ)0,∂Ω − (y, Δϕ)0,Ω − (∇ ỹ, ∇ϕ)0,Ω

= (y, ∂nϕ)0,∂Ω + B(y, ϕ) − (g, ∇ϕ)0,Ω = (y, ∂nϕ)0,∂Ω .

By varying ϕ ∈ C∞
0 (Ω), we conclude that y = 0 on ∂Ω .

We have thus shown that the very weak solution y = TD
vwg ∈ H1

0 (Ω) if g ∈ L2(Ω). An integration
by parts then shows that y solves the weak formulation, and the uniqueness of the weak solution thus
provides y = ỹ. This shows that TD

vw is the unique extension of TD to ((H+1/2+ε(Ω))d)′.
Step 3. The above steps have shown that TD

vw has the following mapping properties:

TD
vw : ((H1/2+ε(Ω))d)′ → H1/2−ε(Ω), TD

vw : (L2(Ω))d → H1
0 (Ω).

By a standard interpolation argument, TD
vw is a bounded linear operator,
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TD
vw : ((L2(Ω))d , ((H1/2+ε(Ω))d)′)θ ,∞ → (H1

0 (Ω), H1/2−ε(Ω))θ ,∞ ⊂ (H1(Ω), H1/2−ε(Ω))θ ,∞

for every θ ∈ (0, 1). Select θ ∈ (0, 1) such that 1/2 = θ(1/2 + ε). Then (H1, H1/2−ε)θ ,∞ = B1/2
2,∞(Ω).

Furthermore, by Triebel (1995, Theorem 1.11.2) or Tartar (2007, Lemma 41.3),

((B1/2
2,1 (Ω))d)′ = (((L2(Ω))d , (H1/2+ε(Ω))d)θ ,1)

′ = ((L2(Ω))d , ((H1/2+ε(Ω))d)′)θ ,∞.

We conclude that TD
vw is a bounded linear operator from ((B1/2

2,1 (Ω))d)′ to B1/2
2,∞(Ω). As we have already

ascertained that TD
vw = TD on (L2(Ω))d , the proof is complete. �

Lemma A3 Let Ω satisfy Assumption A1. Then the operator TM
w of Lemma 3.1 is a bounded linear

operator,
TM

w : ((B1/2
2,1 (Ω))d)′ → B1/2

2,∞(Ω).

Proof. The proof follows by observing that, on (L2(Ω))d , the operator TM
w coincides with the weak

solution operator TD of Lemma A2, which has the stated mapping property. �
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