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Epithelial to mesenchymal transition
(EMT) correlates with high-grade malig-
nancy including the competence to form
metastases. In addition, EMT has recently
been linked to cellular self-renewal
programmes of cancer stem cells and
apoptosis/anoikis resistance, which are all
features of therapeutic resistance. The
EMT programme is driven by several
transcription factors (TFs), such as the
transcriptional regulators SNAIL, SLUG,
ZEB1 and ZEB2 and the basic helix-
eloopehelix factors E47 and TWIST.
These proteins target and repress the
CDH1 gene, which encodes for E-cadherin,
an important caretaker of the epithelial
state. Expression studies in human
pancreatic cancer showed expression of
SNAIL in 78% and of SLUG in 50% of
cases.1 Although no or low levels of
TWIST are expressed in pancreatic
cancers, up-regulation of this gene under
hypoxic condition may argue for a contri-
bution towards tumour progression.1 2

Expression of the ZEB2 gene was recently
found to be silenced by promoter meth-
ylation in the majority of pancreatic
cancers. This finding argues against ZEB2
as a major repressor of E-cadherin in
pancreatic cancer.3 In addition to such
expression data, the functional relevance
of SNAIL and SLUG for EMT and repres-
sion of the CDH1 gene has been described
in various pancreatic cancer models in
vitro and in vivo.4e7

Aghdassi et al (see page 439) present
new compelling evidence that the zinc-
finger TF ZEB1 is a repressor of E-cadherin
expression.8 Based on the observation that

40% of pancreatic cancers have reduced E-
cadherin levels and that low E-cadherin
expression correlates with a poor prog-
nosis after pancreatic cancer resection,
regulation of E-cadherin was investigated.
Mutations of CDH1 and hyper-
methylation of CpG islands in the CDH1
promoter could be excluded as general
mechanisms for reduced E-cadherin
expression. When they compared the
levels of E-cadherin and ZEB1, Aghdassi
et al detected an inverse correlation in
pancreatic cancer cell lines and tumour
specimens.8 Consequently, binding of
ZEB1 to the CDH1 promoter was found
specifically in cell lines lacking E-cadherin
expression and inhibition of ZEB1
expression restored E-cadherin expression,
grabbing ZEB1 into the row of EMT
regulators and CDH1 repressors in
pancreatic cancer. In accordance with
these data, the Brabletz group has recently
demonstrated that ZEB1 represses the
expression of miR-200 family members in
pancreatic cancer cells, which contributes
to the activation of the tumour promoting
NOTCH pathway.9 ZEB1 expression was
especially found in undifferentiated (G3
and G4) pancreatic cancers, restricted
to invasive areas with signs of EMT,9

which confirms the inverse correlation of
E-cadherin with ZEB1 described by
Aghdassi and colleagues.8

EMT-TFs can act in hierarchical
cascades to cooperatively induce EMT. For
example, TWIST can activate SNAIL10

and SLUG11 expression, whereas SNAIL12

and SLUG13 can drive ZEB1 expression.
Consistent with this, Aghdassi et al
observed that high SNAIL and ZEB1
expression was often directly correlated in
pancreatic cancer cell lines. Furthermore,
the IKK-NFkB signalling pathway, a well
characterised inducer of EMT,14 was
recently shown to induce SNAIL and ZEB1
in pancreatic cancer cells.15 While these
observations provide some evidence for the
existence of a SNAIL-ZEB1 axis, further
studies are needed to precisely identify an

EMT-TF hierarchy in pancreatic cancers.
Considering the diverse features cells
acquire during EMT, such as invasiveness,
migration, stemness or anoikis resistance,
it will be important to decipher where
EMT-TFs possess unique competence and
where and how the factors cooperate.
As a consequence of the fast progress in

sequencing technologies, we know that
pancreatic cancer is characterised by an
extreme genetic heterogeneity. Therefore,
it is important to find and distinguish
molecular mechanisms, which are
common in pancreatic cancerdthe node
concept. For the regulation of E-cadherin
during EMT in pancreatic cancer cells,
Aghdassi et al now demonstrate that
histone deacetylases (HDACs), especially
HDAC1 and HDAC2, are critically
involved. HDACs deacetylate the e-amino
group of lysines located at the N-terminal
tail of histones. This can lead to a repres-
sive chromatin structure (heterochro-
matin) and altered gene transcription.16 By
modulating these epigenetic acetylation
marks, HDACs can promote proliferation
and confer therapeutic resistance.16

HDAC1 and HDAC2 are both overex-
pressed in pancreatic cancer, and especially
high HDAC2 expression was observed in
poorly differentiated cancers.17 18 Aghdassi
et al demonstrate that ZEB1 can directly
bind HDAC1 as well as HDAC2 and that
ZEB1 can recruit a HDAC1/2 containing
repressor complex to the CDH1 promoter
in pancreatic cancer cells.8 Accordingly, the
repression of the CDH1 gene in mesen-
chymal murine pancreatic cancer cell lines
derived from the genetic KrasG12D model,
as well as the repression of E-cadherin in
TGFb-induced EMT of pancreatic cancer
cells, rely onHDAC activity.6 Furthermore,
repression of E-cadherin by HDAC1/2 was
recently demonstrated with in vivo selec-
tion models of pancreatic cancer EMT.6

Recruitment of catalytically active
HDAC1 or HDAC2 to the CDH1 promoter
was demonstrated with chromatin
immunoprecipitation assays in tissue
sections of human pancreatic cancer,
corroborating the importance of HDAC-
dependent repression of E-cadherin in
vivo.8 The observation that Aghdassi et al
detected exclusively HDAC1 or HDAC2
recruited to the CDH1 promoter in human
pancreatic cancer tissue section is
intriguing. Both enzymes are highly
homologous, cooperatively act in co-
repressor complexes, and share redundancy
for many biological processes. Although
the reasons for the specific recruitment of
either HDAC remain unclear, an explana-
tion might be the different ability of the
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EMT-TFs to interact with certain HDACs
in specific cellular contexts. The authors
report that ZEB1 interacts with HDAC1
and HDAC2 in PaTu-8988T cells but only
with HDAC2 in MiaPaCa2 cells.8 More-
over, SNAIL preferentially interacts with
HDAC2 in an in vivo selection model of
pancreatic cancer EMT.6 Here, it will be
important to decipher determinants of
these context-specific interactions of EMT-
TFs. It may also be relevant to test a role for
HDAC3 as the authors used the HDACi
MS-275 which also blocks this class I
HDAC in addition to HDAC1/2. Differ-
ences in HDAC protein stability at specific
genetic loci and during transcription cycles
may also be a critical issue. Aghdassi et al
found induction of E-cadherin in cells
exposed to apoptosis inducing concentra-
tions of HDACi, which might point to
protein stability as a possible regulator.
Furthermore, in light of the fact that EMT-
TFs as well as HDACs become post-trans-
lationally modified, such structural alter-
ations might be the key for a better
understanding of EMT in pancreatic cancer.
Although many questions regarding EMT
of pancreatic cancer cells remain unre-
solved, the demonstration of an important
ZEB1-HDAC axis (figure 1) influences
further preclinical studies. These are needed
to dissect the EMT program in molecular
detail. For example, it will be important to
determine if ectopic expression of ZEB1 in
the genetically engineered KrasG12D-
dependent mouse model of pancreatic
cancer drives tumour progression by
inducing EMT, invasion and metastasis in
vivo. This will also allow deciphering
modulators of EMTwhich are potentially
suitable for therapeutic intervention. In an
analogous manner, HDAC functions
should be addressed in vivo. Considering
the present data revealing that HDAC1
and/or HDAC2 are essentially involved in
the regulation of the CDH1 gene, it will be
important to see whether one or both
enzymes are needed for EMT and metas-
tasis. According to the node concept,
inhibiting HDACs rather than blocking
individual EMT-TF might be an attractive
and promising anti-metastatic treatment
strategy in the future. Since HDAC inhibi-
tors are currently evaluated in clinical phase
II and III studies in a wide variety of solid
cancers, this might be a straight forward
approach for anti-EMT directed chemo-
therapies. Altogether, Aghdassi et al provide
new insights into the molecular mecha-
nisms by which EMT-TFs act in concert
with HDACs to direct EMT and tumour
progression. This will direct the way to
novel therapeutic approaches in the future.
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Figure 1 ZEB1 is an important repressor of the CDH1 gene in pancreatic cancer. In epithelial
pancreatic cancer cells, transcription of the CDH1 gene, encoding E-cadherin, is activated by
a multiprotein complex containing transcription factors (TF) which recruit RNA polymerase II (Pol II)
via an coactivator complex (CAC) to the CDH1 promoter. During the dynamic process of epithelial
to mesenchymal transition (EMT), the CDH1 gene is epigenetically silenced. One pathway involves
the transcriptional repressor ZEB1, which recruits HDAC1 and/or HDAC2 containing corepressor
complexes (CRC) to inhibit transcription of the CDH1 gene.
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