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We have performed fully resolved three-dimensional numerical simulations of a
statically unstable monochromatic inertia–gravity wave using the Boussinesq equations
on an f -plane with constant stratification. The chosen parameters represent a gravity
wave with almost vertical direction of propagation and a wavelength of 3 km breaking
in the middle atmosphere. We initialized the simulation with a statically unstable
gravity wave perturbed by its leading transverse normal mode and the leading
instability modes of the time-dependent wave breaking in a two-dimensional space.
The wave was simulated for approximately 16 h, which is twice the wave period.
After the first breaking triggered by the imposed perturbation, two secondary breaking
events are observed. Similarities and differences between the three-dimensional and
previous two-dimensional solutions of the problem and effects of domain size and
initial perturbations are discussed.
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1. Introduction
Today there is no longer any doubt that gravity waves play an important role in the

global circulation in the atmosphere. Sawyer (1959) was one of the first to note the
necessity of taking gravity waves into account in numerical weather forecast models.
Several authors (Bretherton 1969; Lilly 1972; Blumen & McGregor 1976) attempted to
quantify the gravity wave drag exerted by orographic gravity waves on the mean flow,
finding values of the order of 1 Pa, which can be sufficient to accelerate the mean
flow by several metres per second per day (Nappo 2002). Chun & Baik (1998) found
even larger values of acceleration and deceleration due to gravity waves generated
by thermal forcing in cumulus convection. The direct effects of gravity waves on the
general circulation in the troposphere and lower stratosphere are only minor, although
gravity wave breaking can lead to clear-air turbulence and locally enhanced turbulent
diffusion in this region. On the other hand, gravity waves strongly influence the
circulation in the mesosphere (the altitude range between 50 and 90 km), where they
are responsible for the cold summer pole mesopause (Houghton 1978), and in the
stratosphere, where together with other equatorial waves they lead to the quasi-biennial
oscillation in equatorial winds (Dunkerton 1997a).
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Despite this unquestioned importance of gravity waves, their treatment in present
general circulation models remains unsatisfactory. The major part of the gravity wave
spectrum is not or is only marginally resolved by the numerical grids and must thus
be explicitly parameterized. Various parameterizations have been proposed, e.g. by
Lindzen (1981), Holton (1982) and others. Reviews of gravity wave parameterization
schemes are provided by McLandress (1998) and Fritts & Alexander (2003). Generally,
the upward propagation of linear waves through the atmosphere is computed using the
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approximation, which is based on the
assumption of a slowly varying background flow field. During the upward propagation
of the wave, the amplitude typically grows as the ambient density decreases. The wave
becomes more nonlinear until it reaches the threshold of static stability (i.e. where the
vertical gradient of total potential temperature becomes locally negative) and breaks.
Most parameterization schemes account for this effect by transferring some fraction of
the wave momentum to the mean flow and reducing the wave amplitude accordingly.

All aspects of gravity wave parameterization, i.e. sources, propagation and breaking,
are associated with large uncertainties. Consequently, the schemes have to be carefully
tuned in order to obtain realistic results for the general circulation. An improvement
of the gravity wave parameterization (without ad hoc tuning) requires a better
understanding of the physical process of wave breaking, which can only be obtained
through a detailed analysis of breaking events.

Theoretical analyses of inviscid (Mied 1976; Drazin 1977) and weakly viscous
(Klostermeyer 1982) breaking gravity waves show that monochromatic high-frequency
gravity waves (HGWs), i.e. waves unaffected by rotation, are linearly unstable
regardless of their amplitude, either through parametric subharmonic instability or
convective instability. Unlike HGWs, low-frequency inertia–gravity waves (IGWs) are
influenced by the Coriolis force and thus have a non-zero third velocity component
perpendicular to the plane of the wave. Dunkerton (1997b) and Achatz & Schmitz
(2006b) showed that this influences the orientation of the most unstable perturbations.
Hence the breaking mechanism in IGWs differs fundamentally from HGWs and has to
be investigated separately.

The onset of gravity wave breaking, i.e. the initial growth of some instability modes,
can be treated as a two-dimensional problem with three velocity components. However,
the breaking process itself is inherently three-dimensional, and the breaking dynamics
in two- and three-dimensional simulations strongly differ from each other, as pointed
out first by Andreassen et al. (1994) and later by Fritts, Isler & Andreassen (1994) and
Fritts et al. (2009).

The analysis of the breaking process of gravity waves in the atmosphere at realistic
scales and Reynolds numbers requires highly resolved nonlinear three-dimensional
simulations. For IGWs, which are affected by rotation, no such simulations have yet
been published. The high-resolution simulations of Fritts et al. (2009) are restricted
to HGWs, where the velocity vector of the base wave lies in the plane of the wave.
Lelong & Dunkerton (1998) simulated breaking IGWs at a greatly reduced ratio
of the Brunt–Väisälä frequency to the Coriolis parameter compared to atmospheric
values. There and in many other studies (Winters & D’Asaro 1994; Andreassen
et al. 1998; Dörnbrack 1998; Afanasyev & Peltier 2001, and others) no attempt is
made to resolve all turbulence scales at realistic Reynolds numbers. Instead, either
a subgrid-scale (SGS) parameterization of turbulence or a hyperviscosity formulation
is used. Alternatively, the Reynolds number is greatly reduced to match laboratory
experiments. In none of the aforementioned studies have the SGS parameterizations
used been validated using turbulence-resolving reference simulations. Clearly, however,
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FIGURE 1. (a) Computational domain in the rotated coordinate system x, y, z. The Earth
coordinates are denoted as x′, y′, z′; cp and cg indicate the phase and group velocity. (b) Initial
condition with secondary singular vector (SV) perturbation. Contours of buoyancy are shown
in blue to red colours and an iso-surface at b= 0 in green.

possible effects of the SGS parameterization on the general breaking process can only
be excluded by fully resolving all turbulence scales.

Since three-dimensional simulations are computationally expensive and thus not
suitable for investigating a large space of parameters, the following multi-step
approach for the simulation of IGW breaking was proposed by Fruman & Achatz
(2012). First, they computed the leading primary instabilities of a given IGW. Second,
they performed high-resolution nonlinear simulations initialized with the superposition
of the IGW and its leading unstable modes. These simulations are restricted to a two-
dimensional domain but contain three independent velocity components, so they are
referred to as ‘2.5’-dimensional. Next, this 2.5-dimensional time-dependent flow was
analysed for stability with respect to secondary perturbations varying in the remaining
spatial direction. We will now extend this procedure by adding a fourth and last
step: a fully three-dimensional nonlinear integration of the breaking event. The initial
condition is the same as that of the 2.5-dimensional simulations, but perturbed by the
fastest growing secondary perturbation. The resulting initial flow field is then fully
three-dimensional. The domain size is determined by the wavelength of the base wave
and by the scales of the primary and secondary perturbations.

2. Physical and mathematical model
Inertia–gravity waves have a horizontal wavelength that can easily reach some

hundreds of kilometres. We can avoid simulating in such a large domain by rotating
the coordinate system so that one coordinate axis is aligned with the direction of
propagation of the wave. Figure 1(a) shows the unrotated and rotated coordinate
systems for the case of a transverse primary perturbation. We obtain the wave
coordinates x, y, z by rotating the Earth coordinates x′, y′, z′ first by 90◦ − Θ about
the y′-axis and then by 90◦ about the z-axis. Then x is the direction of the primary
perturbation, y is the direction of the secondary perturbation and the base wave varies
in the z-direction. In this coordinate system the true vertical direction is described by
the unit vector ez′ = [0, sinΘ, cosΘ].

We can write the non-dimensional Boussinesq equations on an f -plane as

∇ ·u= 0, (2.1a)
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∂tu+∇ · (uu)=−ez′ × u
Ro

−∇p+ b

Fr2 ez′ + 1
Re
∇2u, (2.1b)

∂tb+∇ · (bu)=−N̂2u · ez′ + 1
Pr Re

∇2b, (2.1c)

where velocities u are made non-dimensional by U , the maximum velocity in the
initial condition, all spatial coordinates x by the IGW wavelength L , normalized
pressure p by U 2, and time t by L /U . Density deviations from the background
mean are measured by the buoyancy b = (θ∗ − θ)/θ0 (θ : background potential
temperature, θ∗: local potential temperature, θ0: reference potential temperature). The
non-dimensional parameters are

Ro= U

fL
, Fr = U√

gL
, Re= U L

ν
, N̂2 = ∂b

∂z′
= N2 L

g
, Pr = ν

α
, (2.2)

where f is the Coriolis parameter, g is the gravitational acceleration, ν is the kinematic
viscosity, N2 = (g/θ0) dθ/ dz′ is the Brunt–Väisälä frequency and α is the thermal
diffusivity.

If we use the rotated coordinates as defined above, we find that the monochromatic
gravity wave is an exact solution to the Boussinesq equations (2.1):

[u, v,w, b] = a

[
f /K

cosΘ
cosϕ,− Ω/K

sinΘ cosΘ
sinϕ, 0,− N2/K

g sinΘ
cosϕ

]
, (2.3)

where K = 2π/λ is the base wavenumber, ϕ = Kz−Ωt is the phase angle of the wave
and the wave frequency Ω is determined by the dispersion relation

Ω2 = N2cos2Θ + f 2sin2Θ. (2.4)

The non-dimensional wave amplitude a is defined such that the wave is statically
unstable for a > 1 and statically stable for a < 1. For the detailed derivation of the
wave solution in the rotated coordinate system and for the primary and secondary
instability analysis, see Achatz (2005, 2007) and Fruman & Achatz (2012).

The flow under investigation is highly three-dimensional and thus requires
appropriate definitions for quantifying turbulent mixing. Fully resolved direct
numerical simulations (DNS) allow a direct evaluation of the local dissipation rates
εk and εp of kinetic energy uiui/2 and available potential energy b2/2N̂2Fr2 from the
velocity and buoyancy fields:

εk = 1
Re
〈(∂xjui + ∂xiuj)(∂xjui + ∂xiuj)〉, (2.5)

εp = 1

Pr Re N̂2Fr2
〈(∂xib)(∂xib)〉, (2.6)

where 〈· · ·〉 indicates an appropriate spatial average. These definitions fully exploit
the three-dimensional information available in DNS and, in particular, they do not
involve any assumptions about the ratio of horizontal to vertical scales, as sorting
procedures (Thorpe 1977) generally do. For a detailed analysis of the energy transfer
and dissipation in a stably stratified turbulent flow we refer to Remmler & Hickel
(2012b).

The Boussinesq equations are discretized by a finite-volume fractional-step
method on a staggered Cartesian mesh. For time advancement the explicit third-
order Runge–Kutta scheme of Shu (1988) is used. The time step is dynamically
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adapted to satisfy a Courant–Friedrichs–Lewy condition with CFL 6 1.0. The spatial
discretization is based on non-dissipative central schemes with fourth-order accuracy
for the advective terms and second-order accuracy for the diffusive terms and the
pressure Poisson solver. The Poisson equation for the pressure is solved at every
Runge–Kutta substep, using a direct method (based on the fast Fourier transform
and modified wavenumbers consistent with the underlying staggered grid method) in
the z-direction and an iterative stabilized bi-conjugate gradient (BiCGSTAB) solver
in the x–y planes. For more details on our flow solver INCA (www.inca-cfd.org),
its performance and validation for atmospheric flows we refer to Remmler & Hickel
(2012a,b).

3. Test case definition

We consider a statically unstable monochromatic inertia–gravity wave whose
parameters are chosen such that inertial and buoyancy forces have similar magnitudes.
All physical parameters are summarized in table 1. A comparable 2.5-dimensional
(2.5-D) case has already been investigated by Achatz (2007) and Fruman & Achatz
(2012) at a wavelength of λ= 6 km. To reduce the necessary domain size, we repeated
their analysis for a wavelength of only λ= 3 km and found that the wavelengths of the
perturbations scale with the base wavelength without changing the general character
of the breaking event. The kinematic viscosity used here and in the preceding
2.5-D studies corresponds to a geopotential altitude of 81 km in the US Standard
Atmosphere, which is in the upper part of the range where gravity wave breaking
occurs and affects the middle-atmosphere circulation. We refrain from using a lower
kinematic viscosity (corresponding to lower altitudes) to limit the computational costs
and to keep our results comparable to the previous work.

The base wave as described by (2.3) is initially disturbed by its leading transverse
normal mode (Achatz 2007), which has a wavelength of 3891 m. This wavelength
determines the domain size in the x-direction. The perturbed wave field is further
perturbed by the fastest growing singular vector (SV) of (2.1) linearized about the
time-dependent nonlinear 2.5-D solution (Fruman & Achatz 2012). This singular
vector has a wavelength of 400 m, which determines the domain size in the y-
direction. The amplitude of the SV perturbation is somewhat arbitrary. We chose
the amplitude such that the maximum energy density in the SV is 1 % of the
maximum initial energy density in the wave and primary normal mode. The initial
condition is displayed in figure 1(b). The domain size for the simulations presented
here was 3981 m × 400 m × 3000 m. We conducted two simulations on different
grids: a fine simulation designed to fully resolve all turbulence scales and a second,
coarser simulation at approximately half the resolution. The grid of the fine simulation
had 1350 × 128 × 1000 cells, which corresponds to a uniform cell size ∆ ≈ 3 m in
all directions. The coarse grid had a resolution of ∆ ≈ 6 m (640 × 64 × 500). The
governing equations were integrated in time for 34 000 s (fine) and 60 000 s (coarse).

4. Results and discussion

We verified the chosen grid resolution by computing the Kolmogorov length
η = ν3/4ε

−1/4
k with the maximum of the kinetic energy dissipation rate in the domain,
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FIGURE 2. Time series for (a) Kolmogorov length and (b) non-dimensional amplitude of the
primary wave and total energy dissipation. Solid lines: full resolution 3-D DNS; dashed lines:
half resolution 3-D DNS; symbols: 2.5-D DNS; dash-dotted lines: laminar decay.

Wavelength λ= 3 km

Wave vector orientation Θ = 89.5◦

Dimensional wave amplitudes û= 8.97 m s−1; v̂ = 14.56 m s−1; b̂= 0.0234

Non-dimensional wave
amplitude

a= 1.2

Kinematic viscosity ν = 1 m2 s−1; Re= 43665

Coriolis parameter f = 1.367× 10−4 s−1; Ro= 35.5

Brunt–Väisälä frequency N = 0.02 s−1; N̂ = 6.12

Gravitational acceleration g= 9.81 m s−2; Fr = 0.0848

Thermal diffusivity α = 1 m2 s−1; Pr = 1

Horizontal wavelength λx′ = 343 km

(Downward) phase velocity cp = 0.106 m s−1

Wave oscillation period T = 7.87 h

TABLE 1. Physical parameters of the investigated inertia–gravity wave. The non-
dimensional numbers were computed based on the wavelength L = λ = 3 km and the
maximum velocity in the initial condition U = v̂ = 14.56 m s−1.

see figure 2(a). According to Yamazaki, Ishihara & Kaneda (2002), the low-order
statistics of turbulence are basically unaffected by the resolution as long as kmaxη & 1,
i.e. ∆ < πη. By this criterion, we find that the fine simulation is fully resolved and
the coarse simulation is insufficiently resolved. Nevertheless, the coarse simulation
remains free of unphysical oscillations without requiring any artificial numerical
dissipation, which we attribute to the good spectral resolution properties (modified
wavenumber) of staggered-grid methods.
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FIGURE 3. Spatial mean values of energy dissipation: (a) contributions to the energy
dissipation for the fine grid, (b) Γ = εp/εk in coarse and fine simulation.

The most important quantities extracted from the simulations are the amplitude
of the primary wave and the spatially averaged energy dissipation rate, shown in
figure 2(b). For comparison, we added the curves for a purely laminar wave decaying
like a(t)= a0 exp(−νK2t) with the parameter a0 fitted to match the final (laminar) state
of the original wave.

During the first wave period (T = 28 342 s), there are three distinct occurrences of
wave breaking characterized by a rapid decrease of the wave amplitude and a strongly
increased total dissipation rate. After t = 35 000 s the wave has become laminar and no
longer shows signs of turbulence and enhanced dissipation.

Both three-dimensional simulations predict basically the same temporal development
of the amplitude. There are some differences in the dissipation rate between the
fine and coarse simulations, especially during the second and third breaking events.
However, the overall agreement between the two simulations is very good. This
indicates that the full-resolution simulation yields a grid-converged solution.

We compare the three-dimensional (3-D) DNS to a 2.5-D simulation performed with
the model of Achatz (2007) initialized with just the IGW and the leading transverse
normal mode. The wave amplitude from the 2.5-D simulation with ∆ ≈ 3 m is also
plotted in figure 2(b). While the temporal evolution of the wave amplitude is not
exactly the same in the 2.5-D and 3-D simulations, the duration of the breaking event
and the total energy decrease due to the breaking are similar. Details, such as the
secondary breaking events observed in the 3-D simulations, are not reproduced by the
2.5-D simulation and the breaking lasts longer in the 3-D simulations.

We decompose the energy dissipation into kinetic εk and potential energy dissipation
εp in figure 3(a). Both show peaks during the three breaking events, but the peaks
of εk are much more pronounced, so that the ratio Γ = εp/εk is temporally reduced
during these events (figure 3b). The strongest reduction is observed during the third
event. This means that the energy dissipation is caused by strong gradients in the
velocity field rather than the buoyancy field during this event.

The dissipation rates averaged in the x–y plane (perpendicular to the wave vector)
are plotted against time in figure 4. The coordinate system is moving with the phase
speed of the primary wave, so the most unstable region is always in the upper half of
the domain and the most stable part in the lower half. An indicator of stability is the
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FIGURE 4. Hovmöller plots of Richardson number (a) and kinetic and potential energy
dissipation (b and c). The dashed lines indicate a fixed position in space while the coordinate
system is moving downward with the phase speed of the wave. (a) Ri; (b) εk; (c) εp.

Richardson number

Ri= N̂2 + 〈∂z′b〉
Fr2〈(∂z′u′)

2+ (∂z′v′)
2〉 =

N̂2 +
〈∑

i

∂xib ez′,i

〉

Fr2

〈∑
k

(∑
j

∂xk u′h,jez′,k

)2〉 , (4.1)

where u′h,j = uj − (u · ez′)ez′,j is the horizontal velocity in the Earth frame and
〈· · ·〉 indicates an average in the x–y plane. The Richardson number is shown in
figure 4(a). Blue regions indicate static instability, because the Richardson number is
negative there. Violet regions correspond to 0< Ri< 0.25 and hence possible dynamic
instability. Comparison of figures 4(a) and 4(b) shows that turbulent dissipation of
kinetic energy is spatially and temporally correlated with static and dynamic instability
of the mean state. Note that this is an average Richardson number in the x–y plane, so
locally the value of Ri can strongly differ from this average.

The first breaking event triggered by the initial perturbation is spread over the whole
domain. Turbulence (indicated by enhanced kinetic energy dissipation, figure 4b) is
generated in the stable and unstable regions of the wave, but only in the stable region
does this lead to strong potential energy dissipation, see figure 4(c). Both secondary
breaking events (around t = 12 000 s and t = 16 000 s) have hardly any signature in εp.
Most energy is dissipated mechanically in the unstable half of the domain.

Figure 5 shows some snapshots of the wave field during the
first breaking event. The yellow iso-surface of Q = (1/2)(|Ω |2− |S|2) =
(1/8)(|∂xjui − ∂xiuj|2− |∂xjui + ∂xiuj|2) is used to visualize turbulent vortices. During
the first 1000 s strongly three-dimensional turbulence structures develop in the
unstable half. The strong perturbations of the isopycnals quickly vanish. In the
meantime a strong two-dimensional overturning develops in the stable region,
eventually breaking and generating three-dimensional turbulence around t = 1500 s.
While turbulence is sustained for a long time in the unstable half of the wave, it
decays quickly through the damping effect of stratification in the stable half. In the
2.5-D simulations, the turbulence in the stable half of the wave is much longer lived.
Achatz & Schmitz (2006a) and Achatz (2007) attribute this turbulence to small-scale
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FIGURE 5. Temporal evolution of the first breaking event. Background: contours of buoyancy
in blue to red colours in the plane y = 400 m; foreground: iso-surface of Q = 0.004 s−2,
indicating turbulent vortices, in yellow. (a) t = 0 s: (b) t = 280 s; (c) t = 520 s; (d) t = 1055 s;
(e) t = 1570 s and (f ) t = 2000 s.
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FIGURE 6. Temporal evolution of the second breaking event. Colouring as in figure 5.
(a) t = 12 680 s; (b) t = 13 100 s; (c) t = 13 560 s.

waves excited near the level of maximum static instability encountering a critical level
associated with the zero in the v component of the original wave. This effect appears
to be less important in three dimensions.

The second breaking event (figure 6) is much weaker than the first. It is initiated by
a growing instability of the large-scale wave that spans both the statically stable and
unstable regions. Note that the non-dimensional amplitude of the wave drops below
the threshold of static instability just before the event becomes visible. Unlike the first
event, the instability is too weak to generate turbulence in the stable region, but some
turbulence appears in the unstable region.

The third breaking event (figure 7) is stronger than the second, but still much
weaker than the first. It is not preceded by a visible instability of the primary wave.
The isopycnals in figure 7(a) are almost perfectly horizontal. The turbulence emerges
‘out of nothing’ in the unstable region, causes some mixing there and eventually
decays. An explanation can be found in figure 4(b). By the time of the third breaking
event, the primary wave has propagated about half a wavelength downwards, so the
unstable region of the wave has arrived at the fixed point in space where the wave
was most stable at the beginning of the simulation. There seems to be some ‘leftover’
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FIGURE 7. Temporal evolution of the third breaking event. Colouring as in figure 5.
(a) t = 16 110 s; (b) t = 16 650 s; (b) t = 17 110 s.

turbulence generated by the first breaking, which is amplified as soon as the stability
in this region has decreased sufficiently. Therefore, the third event is not really a
third breaking event, but rather a burst of turbulence triggered by the arrival of the
dynamically unstable part of the wave in a region preconditioned by the first breaking
event.

In order to investigate the effect of the particular choice of secondary perturbation
on the three-dimensionalization and overall evolution of the flow, we conducted
additional simulations at the 6 m resolution with the SV perturbation replaced by
low-level white noise and with the domain size Ly in the direction of the secondary
perturbation varied between 200 and 800 m. Since white noise is a superposition of
perturbations with all possible scales, it also contains contributions of the SV that
lead to maximum energy growth, as long as the domain size is large enough. For
Ly = 400 m and Ly = 800 m, the wave amplitude decay and energy dissipation are
similar to those of the SV initialization, but for the smaller domain size the initial
peak of the dissipation rate is smaller and the second and third breaking events are
missing completely, see figure 8(a). A close look at the first hour of the integrations
in figure 8(b) reveals that the quick three-dimensionalization seen in the SV simulation
occurs only in the simulation with Ly = 800 m, while the other two white noise
simulations follow the 2.5-D solution, and three-dimensional effects take longer to
emerge. This reassures us that the SV is physically meaningful and representative of
the perturbations that grow spontaneously even in a larger domain with many more
degrees of freedom.

5. Conclusion
We have presented the first turbulence-resolving three-dimensional simulations of an

inertia–gravity wave breaking under environmental conditions realistic for the middle
atmosphere. The breaking was stimulated by optimal perturbations of the wave derived
from linear theory.

The primary breaking of the unstable wave stretches over the complete space of the
wave and is responsible for a strong reduction of the wave amplitude by more than
12 % within less than 10 000 s (of the order of half a wave period). A pure laminar
decay of the wave would take three times as long for the same amplitude reduction.

We observed a second and a third burst of turbulence after the first breaking event.
During these secondary events turbulence appears only in the unstable region of the
wave and most energy is dissipated mechanically rather than thermally. The second
event is negligible with regard to its reduction of the amplitude of the primary wave.
It is preceded by a weak instability of the wave, which has an amplitude close to
the threshold of static instability at that time. During the third event the reduction
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FIGURE 8. Time series for the non-dimensional amplitude of the primary wave and total
energy dissipation for different secondary perturbations and domain sizes: (a) full time range,
(b) amplitude during the first 5000 s (circles: 2.5-D simulation).

of the primary wave amplitude is more severe, amounting to ∼5 % of the amplitude.
However, the third event is not really a breaking event, but rather a burst of turbulence
in the unstable region of the wave triggered by disturbances created during the first
breaking of the wave.

As previous simulations of breaking IGWs employed a 2.5-D approximation, i.e.
a two-dimensional domain and three velocity components, we conducted a 2.5-D
simulation of the same wave breaking case to investigate the effects of three-
dimensionality. Details such as the secondary breaking events observed in the 3-D
DNS are not reproduced by the 2.5-D simulation and the breaking lasts longer in the
3-D simulations. However, the overall results in terms of total amplitude reduction and
breaking duration are similar between the 3-D and 2.5-D simulations. This similarity
is important to note, since the singular-vector analysis that we used to determine the
domain size for the 3-D DNS was based on the 2.5-D simulation.

DNS where we replaced the secondary singular-vector perturbation by white noise
and varied the domain size, showed that a singular-vector initialization is both
physically meaningful and efficient, as it leads to a realistic three-dimensionalization
of the flow in the smallest possible domain.

With these first fully resolved three-dimensional DNS of a breaking IGW we hope
to present a valuable reference case for testing and validation of models involving
less brute-force resolution and more physics-based parameterization. This may include
large-eddy simulations as well as more abstract methods like WKBJ models, which
can lead to efficient and more reliable representation of gravity waves in atmospheric
circulation models.
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