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MULTIVARIATE ECOGARCH
PROCESSES

STEPHAN HAUG AND ROBERT STELZER
Technische Universitat Miinchen

A multivariate extension of the exponential continuous time GARCH(p, ¢g) model
(ECOGARCH) is introduced and studied. Stationarity and mixing properties of the
new stochastic volatility model are investigated, and ways to model a component-
wise leverage effect are presented.

1. INTRODUCTION

GARCH type processes have become very popular in financial econometrics to
model returns of stocks, exchange rates, and other series observed at equidis-
tant time points. They have been designed (see Engle, 1982, Bollerslev, 1986) to
capture so-called stylized facts of such data, which are, e.g., stochastic volatility
clustering, dependence without correlation, and tail heaviness. Another charac-
teristic is that stock returns seem to be negatively correlated with changes in the
volatility, i.e., that volatility tends to increase after negative shocks in the price
and to fall after positive ones. This effect is called the leverage effect and cannot
be modeled by a GARCH type process without further extensions. This finding
led Nelson (1991) to introduce the exponential generalized autoregressive condi-
tional heteroskedastic (EGARCH) process, which is able to model this asymme-
try. In that paper the log-volatility of the EGARCH(p, g) process was modeled as
an ARMA(q, p — 1) process.

Starting with Nelson (1990) continuous time models related to GARCH pro-
cesses have been investigated for a long time. As several important characteristic
features of GARCH processes get lost in the originally studied diffusion limits of
GARCH processes, Kliippelberg, Lindner, and Maller (2004) introduced the con-
tinuous time GARCH (COGARCH) process as a continuous time analogue of the
GARCH process, which inherits many of the characteristic features of GARCH
processes. Likewise, Haug and Czado (2007) recently defined and analyzed an
EGARCH process in continuous time, and Czado and Haug (2009) presented first
estimation results.
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MULTIVARIATE ECOGARCH PROCESSES 345

In this paper we develop and analyze a multivariate version of the exponen-
tial continuous time GARCH process (ECOGARCH) of Haug and Czado (2007).
Note that in discrete time matrix exponential GARCH processes have for the first
time been studied by Kawakatsu (2006) in a truly multivariate sense, whereas be-
fore only the variances, but not the whole covariance matrix, have been modeled
as EGARCH processes (for some typical examples, cf. Ostermark, 2001; Tse and
Hackard, 2004; Yang and Doong, 2004).

In our EGARCH specification we model the logarithm of the covariance matrix
process as a continuous time autoregressive moving average (CARMA) process
in the symmetric matrices using the multivariate CARMA processes introduced in
Marquardt and Stelzer (2007). Taking the exponential then automatically ensures
positive definiteness of the covariance matrix process. The standard mathematical
fact that the exponential of a symmetric matrix is positive definite seems to have
been used only very rarely to model covariance matrices so far (the recent paper
by Kawakatsu, 2006, e.g., does not credit any references for this idea). To the best
of our knowledge the first appearance in the statistics literature is Chiu, Leonard,
and Tsui (1996).

One main feature of our model is the inclusion of the leverage effect. We will
give some (approximate) calculations and examples that show how to choose the
parameters to obtain a leverage effect. In other multivariate models in continuous
time inclusion of this effect is far from easy. The multivariate Ornstein—Uhlenbeck
type model of Pigorsch and Stelzer (2009) loses (as in the univariate case,
see Barndorff-Nielsen and Shepard, 2001) much of its tractability and its pure
stochastic volatility nature. In the multivariate COGARCH of Stelzer (2009b) it
seems necessary to have only positive jumps in the volatility; thus one cannot
have positive shocks that lead to a lower volatility. In the multivariate variance
gamma model of Semeraro (2008) one does not have a volatility process and
needs the multidimensional time process to be independent of the multidimen-
sional Brownian motion. Finally, in purely Brownian motion based models, e.g.,
the Wishart models of Gourieroux (2006), one can have negative dependence
between volatility and price, but one can no longer speak of shocks and look at
the relation between jumps in the price and in the volatility, because there are no
jumps. Hence, in these models one has to quantify the leverage effect differently
than we do later on.

The paper is organized as follows. At the end of this section some notation
used throughout is given. In Section 2 we first recall some basic facts on mul-
tivariate Lévy processes and on the multivariate Lévy-driven CARMA process,
as defined in Marquardt and Stelzer (2007). We further give a sufficient condition
for the existence of the ath exponential moment of a CARMA process. In the sec-
ond part of the section we introduce a general specification of the discrete time
multivariate EGARCH process and propose two ways of modeling asymmetric
behavior in the vectorized log-volatility process. In the first part of Section 3 the
multivariate ECOGARCH process is defined and stationarity conditions are dis-
cussed. In the second part we show the strong mixing property of the volatility
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346 STEPHAN HAUG AND ROBERT STELZER

and the return process and briefly consider the mean and autocovariance function
of the return process. The third part provides an approximate calculation of the
leverage effect. In the last part we briefly discuss a result of Stelzer (2009a), viz.,
that for an ECOGARCH(1,1) process there exists a sequence of EGARCH(1,1)
processes converging to the ECOGARCH process, which adds important insight
regarding the relation between our continuous time model and discrete time mul-
tivariate EGARCH processes. Finally, we present some explicit examples along
with simulations in Section 4.

Notation. Throughout this paper we write R for the positive real numbers
including zero, and we denote the set of real d x m matrices by My, (R). If
d = m, we simply write M;(R) and denote the group of invertible d x d matrices
by G L4(R), the linear subspace of symmetric matrices by Sy, the (closed) positive
semidefinite cone by S;{, and the open (in Sy) positive definite cone by S}'*’. The
term /4 stands for the d x d identity matrix, det(A) for the determinant, and o (A)
for the spectrum (the set of all eigenvalues) of a matrix A € M;(R). Moreover,
vech : Sy — R4@+1/2 denotes the “vector-half” operator that stacks the columns
of the lower triangular part of a symmetric matrix below another. Finally, A* is
the adjoint of a matrix A € M4(R).

Norms of vectors and matrices are denoted by || - ||. If the norm is not specified
then it is irrelevant which particular norm is used.

The exponential of a matrix A is denoted by exp(A) or e? (for a detailed dis-
cussion, see Horn and Johnson, 1991, Ch. 6). Recall that for square matrices it is
defined by functional calculus and it holds that

00 Ak
exp(A) = —.
i k!

From functional calculus it is immediately clear that the matrix exponential maps
the symmetric d x d matrices to the positive definite ones. Moreover, we denote
by A!/2 the unique positive semidefinite square root of a matrix A € Sj{.

For a matrix A we denote by A;; the element in the ith row and jth column,
and this notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined
on a given appropriate filtered probability space (Q, F, P, (F;),cr+) satisfying
the usual hypotheses (complete and right continuous filtration). The term L” de-
notes as usual the space of all random variables with a finite pth moment, i.e., all
random variables X with E(]| X||”) < oo in a multivariate setting.

2. THE BUILDING BLOCKS

Before we introduce a general specification of the discrete time multivariate
EGARCH process, we briefly review multivariate Lévy and CARMA processes.
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MULTIVARIATE ECOGARCH PROCESSES 347

2.1. Multivariate Lévy and Lévy-Driven CARMA Processes

2.1.1. Basic Facts on Multivariate Lévy Processes. Now we state some ele-
mentary properties of multivariate Lévy processes that will be needed. For a more
general treatment and proofs we refer to Sato (1999), Applebaum (2004), and
Protter (2004).

We consider a Lévy process L = (L;);cr+ (Where Lo = 0 almost surely (a.s.))
in RY determined by its characteristic function E [ei s Le) ] =exp{tyr(u)}, t >0,
in the Lévy—Khintchine form where

1 4
L) = ity =3 Co+ [ () = 1=, x) Lo (1x1) ) ve @)

forueR?, y; eRY, Cp e Sj and vy is a measure on (R?, B(R%)) that satisfies
v, ({0}) =0 and fpa(||lx > A1) v (dx) < co. The measure vy, is referred to as the
Lévy measure of L. A Lévy process is said to be a pure jump one if the Brownian
part vanishes, i.e., C;, = 0.

It is a well-known fact that to every cadlag Lévy process L on R? one can
associate a random measure Nz on R x R \ {0} describing the jumps of L (see,
e.g., Jacod and Shiryaev, 2003, Sect. II.1). For any measurable set B C RT x
R4\ {0}, N.(B) =#{s >0: (s,Ls — Ly_) € B}. The jump measure N is a
Poisson random measure (as defined in Jacod and Shiryaev, 2003, Def. 11.1.20)
on Rt x R?\ {0} with intensity measure n (ds,dx) = dsvy (dx). By the Lévy—
1td6 decomposition we can rewrite L a.s. as

' .
L =yit+B + / /xNL(ds,dx)—i-lif& / /xNL(ds,dx) 2.1)
0 € 0

lxl=1 e<|lxll<1

for every t > 0. Here B is a Brownian motion in R with covariance matrix
Cyr, NL(ds,dx) = Np(ds,dx) —dsv(dx) is the compensated jump measure,
the terms in (2.1) are independent, and the convergence in the last term is a.s. and
locally uniform in # > 0.

In what follows we will sometimes work with a two-sided Lévy process L =
(Ly):er, constructed by taking two independent copies (L1,/)ser+, (L2,1);er+ Of
a one-sided Lévy process and setting

Li; ift>0
L= ' .
_LZ,—t— if t <O.

Assuming that vy satisfies additionally fo”>] lIxl?vL(dx) < oo, L has finite
mean and covariance matrix Xy givenby Xz = Cr + [pa xx* v (dx).

For the theory of stochastic integration and stochastic differential equations,
(with respect to Lévy processes and/or random measures) we refer to any of the
standard texts (e.g., Jacod and Shiryaev, 2003; Protter, 2004; Applebaum, 2004).
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348 STEPHAN HAUG AND ROBERT STELZER

2.1.2. Multivariate Lévy-Driven CARMA Processes. As the name ‘“‘contin-
uous time ARMA” (CARMA) already suggests, these processes are the con-
tinuous time analogue of the well-known ARMA processes. A d-dimensional
CARMAC(q, p) process Y with g, p € INg can be viewed as the stationary solu-
tion to the formal differential equation

Q(D)Yz = P('D)DL, 5

where L = (L;)seR is a d-dimensional Lévy process and D the differential oper-
ator with respect to ¢. The matrix-valued polynomials

Q@) =21+ A1z? + A2z + -+ Ay,
P(z)=Boz’+ Bz’ ' +---+B,

with By, ..., By, Aq,..., Ay € Mg(R), A; € GL4(R) and By # 0 are referred to as
the autoregressive and moving average polynomial, respectively. To be able to de-
fine CARMA processes properly one needs ¢ > p and that the zeros of det(Q(z))
have all strictly negative real parts. Then the CARMA(q, p) process Y is defined
as the unique stationary solution of

Y =(14,0,...,0)X;, 2.2)
dX,= AX,dt+ BdL,, (2.3)
where

0 1g 0

0 0 1y
A=l 1 P e My ®

0 0 0 ey

—A; —Aj1 —Ago - =AY

and B = (f?*, é;, e B(’;)* is a gd x d matrix with elements

- —j-1, = )
Bq—jZ_Z?:lj Aqu—j—i+Bp—j for j:O,l,...,q—l

(setting B; =0 for i < 0). The process X is usually called state space representa-
tion.

Later on we need the following result on the existence of exponential moments.
By Ei: R\{0} = R we denote the exponential integral, i.e.,

X ol 00 xk
Ei(x) = /_oo —dt =y +1nlx] +1§‘1 o forallx e R\{0} (2.4)

taking the Cauchy principal value of the integral for x > 0 and y being the Euler
constant.
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MULTIVARIATE ECOGARCH PROCESSES 349

PROPOSITION 2.1. Let Y be a stationary d-dimensional CARMA(q, p) pro-
cess satisfying

o(A) C (—00,0)+iR,
|- || @ norm on R¢ and its induced operator norm, a. > 0 and C,b > 0 such that
114, 0,...,00e¥ Bl < Ce™

forall s > 0. If
/”‘ Ei(aC|lx[)vz (dx) < 0o, 2.5)
x||>1

then E (e“”Y"”) < 00.

Let max(R(o (A))) be the maximal real part of all eigenvalues of A. Then for all
0 < b < —max(R(o (A))) there exists a C > 0 such that ||(14,0, ...,0)e* B|| <
Ce™ holds for all s > 0. If A is diagonalizable this holds also for b =
—max(R(o (A))). Furthermore, (2.5) is implied by

/“ " e*CI¥ly; (dx) < o0. (2.6)

Proof. It is elementary to see (using, e.g., the Jordan decomposition of A) that
o(A) C (—00,0)+ iR implies for all 0 < b < —max(R(c(A))) that there ex-
ists a C > 0 such that ||(Id,0,...,0)eA“1§|| < Ce™s holds for all s > 0. If A is
diagonalizable, this also shows that one can take b = —max(R (o (A))).

From Proposition 3.27 of Marquardt and Stelzer (2007) we know that the sta-
tionary distribution of Y is infinitely divisible. Denote by (yy, oy, vy) the charac-
teristic triplet of the stationary distribution of Y. Sato, (1999, Thm. 25.3) implies
that for all & > 0 we have E(e*1"1ll) < o0 if and only if

/“ . My (dx) < oo.
X[z

Proposition 3.27 of Marquardt and Stelzer (2007) implies

/ Il (dx)
lxl=1

00 $ -
= [ 0O B (1100, ..., 00 B v (dx) ds

0 —bDs
5/0 /Rd e €I o (@Ce™ x v (dx) ds

In(aC|lx|l)/b —bs
:/ / eaCe ||x||dva(dx)
Ix|>1/(aC) /0O
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350 STEPHAN HAUG AND ROBERT STELZER

1 aCllx|l o2
= - / —dzvy (dx)
b Jix|=1/(aC) J1 z

1

=5 (Ei(aCllx|) — Ei(1)) vz (dx).
l¥l1=1/(C)

Because vy is a Lévy measure, [, -1 /qc)Ei(1)vL(dx) < oo forall @ > 0 and the
integral foHzl/(aC) Ei(aC||x|)vr(dx) is finite if and only if f”xuzlEi(aCHxH)
v (dx) < oo. Therefore (2.5) is sufficient for E(e*I"11) < oco.

From (2.4) it follows that for any ¢ > 0 there exists a K(c) > 0 such that

|[Ei(x)| < K (c)e* for all x > c. This shows that (2.6) implies (2.5). n
If (g,p) = (1,0), A; is diagonal or unitarily diagonalizable, | - || is the
euclidean norm, and By = I;, then one can take b = —max(R(c(A))) and

C = 1. So a d-dimensional CARMA(1,0) process (Ornstein—Uhlenbeck process)
with unitarily diagonalizable A has at least as many exponential moments as the
driving Lévy process.

2.2. Multivariate EGARCH Processes in Discrete Time

Multivariate EGARCH processes have been introduced recently in Kawakatsu
(2006) as a natural extension of the univariate model of Nelson (1991). Yet, it
should be noted that the definition that follows is more general than the one of
Kawakatsu (2006). For the necessary background on multivariate ARMA pro-
cesses we refer to Brockwell and Davis (1991).

DEFINITION 2.1 (Multivariate discrete time EGARCH(p, q)). Let d,p,q €
N, u €Sq, ar,...,04,B1,..., fp € My (R) withm = (d(d +1))/2, € = (€n)nez
an independent and identically distributed (i.i.d.) sequence of R?-valued random
variables with E(e1) = 0, and var(e;) = I; and f : R¢ — R™ a measurable func-
tion such that f(e1) € L. Suppose aq #0, By #0, and that

det(l—ajz—---—ayz?) #0
on{z € C| |z| < 1}. Then the process Y = (Y;);cz, where
Y, =exp((u + Hr)/2)e

and the vectorized log volatility H is given by
p q
vech(Hy) = Y, B f(e—k) + Y, axvech(H;—)
k=1 k=1

forallt € Z, is called an EGARCH(p, q) process.

In the preceding discussion we have considered a general transformation f
of the noise sequence €. Concrete specifications should be made in such a way
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MULTIVARIATE ECOGARCH PROCESSES 351

that the model exhibits some desired properties, e.g., a leverage effect (i.e., an
asymmetric response to positive and negative shocks). In the univariate case the
“standard choice” introduced originally in Nelson (1991) is

f) =0n+y(nl—E(el)

with some real parameters ¢, y . This choice allows for a leverage effect and is at
the same time of a simple structure and ensures E(f(¢1)) = 0. The logarithmic
volatility models put forth in Kawakatsu (2006) can all be transformed into our
model using appropriate choices of f. However, all of them lead to functional
forms involving only the individual components €; ;, i = 1,...,d, of the innova-
tion sequence € and their absolute values |¢; ;| in a linear manner. In particular,
cross-products of the form ¢; ;€; , do not enter the specification of f. Dependence
on these cross-products seems, however, desirable, especially when comparing
things to multivariate GARCH specifications. We thus suggest two new possible
choices for f now. The first possible choice,

f)=0n+T (vech <(11;7*) 1/2) -E (vech ((ele;‘) 1/2))) (2.7)

with 77 € R, 0 e M, 4(R), and I' € M, (R), is a straightforward multivariate
extension of the standard choice. Note that (y5*)!/ can be interpreted as an exten-

sion of the absolute value to a multidimensional setting and that ((7]77*)1/ 2) =

i
ni1j/Inll2 with || - |2 denoting the euclidean norm on R?. The second possibility
we suggest is to use a generalized standard choice component-wise, viz.,

f(n) = vech(g(n) —E(g(e1))) with (2.8
g R Sa,  nmasna) o (85 0in) e,
gi(ni,mi) =0 imi +yiilnil fori=1,2,...,d,

ninj .
gii (i) i=0i j———=—=+yi j\/Ininjl fori=1,2,....d,

v min;l

j=1,2,...,i—1,
gl](r]hr/l)zgjl(”larlj) fOrl=1,2,,d, ]=l+131+2’)d9

where 0; ;,y; j withi =1,2,...,d, j =1,2,...,i are real parameters.
The following proposition shows that f as specified in (2.7) or (2.8) satisfies
the required conditions for EGARCH processes.

PROPOSITION 2.2. Let €; be an R?-valued random variable with €, € L?
and f : RY — R™ as specified in equation (2.7) or (2.8). Then f is well defined,
and f(e1) € L.

Proof. If f is specified by (2.8) this follows from an element-wise application
of the Cauchy—Schwarz inequality.
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If f is given by (2.7) we are free to choose any norm for the proof. Thus we
work in what follows with the euclidean norm || -|j>» on R¢, resp. R™, and
the induced operator norm on matrix spaces. Elementary calculations give
H(e1e1*)1/2”2 = |l€1]]2, which implies the well-definedness. Likewise, we use
the operator norm || - || induced by these choices for the vech operator. We have

£ (eDl2 < I1Ol2ll€rll2 + 1T [l2
* x\1/2
(2], () ) )

Using Jensen’s inequality one obtains

#\1/2
| (vech ((e161)") ) |, = IvechlEdler ).
Thus
£ (Dll2 < (191124 IT 2 lIvechl]) et 2+ T 12 vechlEClei ).

Because ¢; € L? this immediately implies f(e1) € L. u

3. MULTIVARIATE EXPONENTIAL COGARCH
3.1. Definition and Stationarity

Now we define the exponential continuous time GARCH(p, q) process by speci-
fying the vech-transformed log-volatility process as a CARMA (g, p — 1) process.

DEFINITION 3.1. Let L = (L;)t>0 be a d-dimensional zero-mean Lévy pro-
cess with Lévy measure vy such that f\lxl\zl Ixl?vL(dx) < oo and associated

jump measure Ny. Furthermore, let h : RY — R™ with m = (d(d +1))/2 be a
measurable function satisfying

/ 1A Py (dx) < oo, 3.1
Rd

p.q € Nwithqg > pand Ay,..., Ay, Bo,...,Bp—1 € M, R) with A; € GLy(R)
and By # 0 such that all zeros of the determinant det(Q(z)) of the autoregres-
sive polynomial Q(z) :=z9+ A1z9 '+ Ayz? 24+ 4 Ay, z € C, have strictly
negative real parts.

Then we define the d-dimensional exponential COGARCH(p, q) process G,
abbreviated to ECOGARCH(p, q), as the stochastic process satisfying

dG, :=exp((u+ H;-)/2)d L, >0, Go=0,

where 1 € Sq and the log-volatility process H = (H;);>0 is a process in Sg with
vectorial state space representation

vech(H;) := (I,4,0,...,0)X;, t>0, 3.2)
dX, = AX,dt+ BdM,, t>0, (3.3)
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with the initial value Xo € Ry, being independent of the driving Lévy process L
and

t ~
M; :=/ / h(x)Np(ds,dx), t >0,
0 JR4\{0}

being a zero-mean Lévy process. The matrices A € My, (R) and Be Mym m(R)

are defined by
0 In 0 0 b
0 0 L 0 By
A= : ., B= ,
0 0 0 Iy éq_]
—A; —Ago1 —Aga - =AY -
By

with coefficients Eq_j = —El-qz_]j_l Al-gq_j_l- +B,_1—jfor j=0,1,...,q—1
(setting B; =0 fori <0). If p=q =1, we have A= —A| and B = B,.

In a financial context G is understood to be the log price process of d stocks
with volatility (instantaneous variance) process exp(u + H). Moreover, the log
returns over a time interval of length » > 0 ending at time ¢, which are especially
relevant in a financial context, are described by the increments of G

Gl(r) =G, =G =/(

t—r,

exp((u + Hy—)/2)d Ly, t>r>0. 3.4
1]

Thus our continuous time model gives us the possibility to model ultra high fre-
quency data, which consists of returns over varying time intervals. On the other
hand an equidistant sequence of such nonoverlapping returns of length r is given
by (G,({r))ne]N. Such a sequence then corresponds to a discrete time multivariate
EGARCH process Y.

Remark 3.1.

(a) The condition (3.1) ensures that the integral defining the Lévy process M
is indeed well defined and that M has a finite variance.

(b) After extending the Lévy process (M;),cgr+ to one defined on the whole
real line the unique stationary version of H can be written as

t ~
vech(H,) :/ (I, 0,...,00e2 ") Bam, .
-0

(¢c) If ¢ > p+1 the log-volatility process is continuous and (¢ — p — 1)
times differentiable, which follows from the state space representation of
vech(H) (cf. Marquardt and Stelzer, 2007, Prop. 3.32). In particular, the
volatility will only contain jumps for p = gq.
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So far we have considered a general transformation / of the jumps of the driv-
ing Lévy process L. Concrete specifications should be made in such a way that
the model exhibits similar properties, e.g., a leverage effect, as in the discrete time
case. The choice

h(n) = @77+Fvech<(;7;7*)1/2>, 3.5)

with ® € M,, 4(R) and I' € M, (R), being the continuous time analogue of (2.7)
clearly is always a valid choice, as an inspection of the proof of Proposition 2.2
shows. Again it is noteworthy that this extends the standard choice from the uni-
variate literature.

A choice analogous to (2.8) is

h(n) = vech(g(n)) (3.6)

with g as in (2.8). That [pa 1A (x)]1?vz (dx) is finite is elementary to see.

Both specifications (3.5) and (3.6) obviously allow for asymmetric responses
to positive and negative shocks in the logarithmic (co)variance components. Con-
crete examples for the choice of ® and I in (3.5) are given in Section 4.

PROPOSITION 3.1. Let H and G be as in Definition 3.1 with h satisfying
(3.1). If the eigenvalues of A, which are the same as the zeros of deE(Q(z)), all
have negative real parts and X has the same distribution as [;° e BdM,,, then

X, H, and exp((u + H)/2) are strictly stationary. Further (Gf,rr))ne]N is strictly
Sstationary.

Proof. The result on X and H follows from Marquardt and Stelzer (2007, Thm.

3.12). If H is stationary the stationarity of (G,(fr) )nelN is obvious because the in-
crements of L are stationary and independent by definition. u

Remark 3.2. Necessary and sufficient conditions for the existence of a unique
stationary volatility process exist up to now only in the univariate case. Suppose
thatd =1,9 > 1, (Bo, ..., B;) #0, and the Lévy process M is not deterministic.
Then equations (3.2) and (3.3) have a unique strictly stationary solution H if and
only if E(log™(|M1])) < oo and all singularities of the meromorphic function
7+ Q(z)/P(z) on the imaginary axis are removable. This result follows from
Brockwell and Lindner (2009, Thm. 4.2). Moreover, Marquardt and Stelzer (2007,
Prop. 3.30) show that a multivariate CARMA process has finite second moments
if and only if the driving Lévy process has finite second moments, provided B
is injective. This shows that in the univariate case the conditions of Definition
3.1 are (up to adding common zeros in Q and P) basically the necessary and
sufficient conditions for the existence of the logarithmic volatility process H in
L?. We conjecture that a comparable result is true in the multivariate case, but
this first requires extending the results of Brockwell and Lindner (2009) to the
multivariate case, which is intricate and hence beyond the scope of the present

paper.
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3.2. Mixing and Second Order Properties

Mixing properties (for a comprehensive treatment, see Doukhan, 1994) are useful
for a number of applications, in particular for asymptotic statistics, because con-
sistency results and central limit theorems exist for mixing processes. Thus we
will derive mixing properties of the strictly stationary volatility process and the
return process. First we recall the definition of strong mixing, which is also called
o-mixing for a process with continuous time parameter.

DEFINITION 3.2 (Davydov, 1973). For a process Y = (Ys)s>0 define the o -
algebras '7:[}(1),141 =0 ((Yy)se[0,41) and .7:[);+l’oo) =0 ((Ys)ssu+t) for all u > 0.
Then Y is called strongly or o.-mixing if

a(t) = supa(}'[{),u],]-'[iﬂ,oo))
u>0

:=sup sup {|P(ANB) — P(A)P(B)|: A€ Fg,- B € Flyi100)} = O,

u>0

ast — oo.

In Definition 3.2 we denote by & (-) the generated completed o -algebra. The
strong mixing property with exponential rate of the log-volatility, volatility, and
return process is the subject of the next theorem. Here strong mixing with expo-
nential rate (exponential o-mixing) means that o (¢) decays to zero exponentially
fast for t — oo.

THEOREM 3.1. Let vech(H) be defined by (3.2) and (3.3). Assume that the
eigenvalues of A all have negative real parts and X has the same distribution as
' eA“BdM,; hence H and exp(u + H) are strictly stationary.

(i) Then there exist constants K > 0 and a > 0 such that

ag(t) < K-e™™ and Oexp(u+H) () < K-e7%, ast— oo,
where oy (t) and oexp(u+H)(t) are the a-mixing coefficients of the log-
volatility and volatility process, respectively.

(ii) Then for all r > O the discrete time process (Gﬁ,rr))ne]N, where G
fined in (3.4), is strongly mixing with exponential rate and ergodic.

ﬁ,rr) is de-

Proof.

(i) Because vech(H) is a CARMA(gq, p — 1) process the result follows from
Marquardt and Stelzer (2007, Prop. 3.34) and the fact that a-mixing is pre-
served under continuous transformations.

(ii) The proof works along the lines of the proof of Haug and Czado (2007,
Thm. 3.1). ]

COROLLARY 3.1. Let (ty)neN, be a strictly increasing sequence of observa-
tion time points with limy,_, o t,, = 00 and t, = kyc for all n € Ny, where k,, € Ny
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and ¢ > 0. Then the discrete time process (G,(nA”))nelN,

A
Gl(n ”) = th - th—l >
with A, = t, —t,—_1, is strongly mixing with exponential rate.

Proof. Simply expand the grid of observation times to an equidistant one with
step size c. Then clearly

G4 G© G(A) G©
Fio, a CFia e ad Flyn . CFl e jens
G4 (A1)
where F|7, ", is the o-algebra generated from the random vectors G, ", ...,

G I(IA’ ) and the other o -algebras are defined analogously. An application of Theo-
rem 3.1 then provides the result. u

Now we derive the second-order moment structure of the return process
(G;r))[zr considering only the case of a strictly stationary volatility process.

PROPOSITION 3.2. Let L be a Lévy process with E(L;) = 0 and
E(||L1]|?) < oo. Assume that the log-volatility process H is strictly station-
ary and E(||exp((u + H;)/2)|) < 0o. Then E(||G,||?) < oo for all t > 0, and for
everyt,h >r > 0 it holds that

EG" =0,
EG(G)) = /0 "E(exp((u + Hy—)/DE(L1 LYY exp(u + Hy—)/2))ds,

cov(G,G",) =0,

The results follow analogously to the univariate case in Haug and Czado (2007,
Prop. 5.1). Note that the second-order moment structure of vech(H) is clear
from Marquardt and Stelzer (2007), whereas for the volatility exp(ux + H) and
the “squared returns” G,(r) (G,(r) )* the formulas obtained in the univariate case
are already not explicit. Thus we refrain from stating them in our multivariate
setting.

Regarding the finiteness of “exponential moments” of H needed above we have
the following result.

PROPOSITION 3.3.

(i) Let || - ||« be an algebra norm on Sy and the ECOGARCH log-volatility
process H be strictly stationary. Then

E(e* Il « 0o withay, 0y > 0 3.7
implies
E (llexp(ai(u + H1)[$?) < oco. (3.8)
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(ii) Let moreover C > 0 be such that

sup {Hvech_l ((Im,O, e, O)eA‘Y§x>

xeR™ |lvech™! (x) =1

} S Ce—bs

forall s > 0 and some b > 0. Then (3.7) is in turn implied by

/ ) Ei (@102 lvech™ (G, ) v (d) < o0
xR, vech™ (h(x))[l+>1

or

/ exp (a1a2C||vech_1(h(x))||*) vi(dx) < 0.
xeR4, ||vech™ ! (h(x))[.>1

Proof.

(i) Because | - ||, is an algebra norm, |exp(ai(u + Hy))||%> < e*1e2lul
e®12lHill« This immediately shows (i).

(ii)) The second part follows from Proposition 2.1 using the norm || - || =
lvech™'(-)||, on R™ and the definition of M implying vy (dx) =
vz (h~(dx)), because vech(H) is an m-dimensional stationary CARMA
process. |

3.3. Approximate Calculation of the Leverage Effect

Intuitively it seems obvious that our model is capable of reproducing the leverage
effect (for the first asset) when one specifies the function /4 in such a way that
h(e)y is larger when € is negative (price of the first asset goes down) than when
€1 is positive. However, quantifying the leverage effect in our model is a very intri-
cate issue. Therefore, we will subsequently only give an approximate calculation
in the general case. However, in Section 4 we will show the presence in concrete
simulated examples and also one general class of models in dimension 2 where
the presence of the leverage effect can be shown rigorously. Note that we quantify
the leverage effect by looking at the covariance cov(A G, vec(exp(u + H;))) of a
jump in the price process and the volatility immediately after the jump. It is easy
to see that this quantity equals cov(A Gy, A(vec(exp(u + H;)))) if E(AL,) = 0.
To make everything well defined all these expectations and covariances have
to be understood as being conditional on ||AL;|| > € for some € > 0 (if L is
a compound Poisson process, ¢ = 0 may also be taken). Based on this quan-
tity we say that the leverage effect is present (in, e.g., the first component) if
(cov(A Gy, vec(exp(u + Hy))))11 < O (for all “sufficiently small” minimal jump
sizes €).

One of the main reasons why it is much more complicated to quantify the
leverage effect compared to the univariate case is as follows. In the univariate
case the sign of AG, equals the sign of AL,. However, in the multivariate case
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(AG)1, =X (exp((1+ H;~)/2))1i (AL;,) may be, e.g., negative and (AL ;)
positive, because the current covariance structure also allows jumps in the other
components of L to affect (AG1,;). Another problem is that the matrix exponen-
tial is not an operator monotone function (see Bhatia, 1997, Prob. V.5.1; Horn
and Johnson, 1991, p. 554). This means that if X,Y € S; satisfy X > Y, i.e.,
X —Y €S}, this does not imply that eX > e¥. Likewise no componentwise
monotonicity holds because in principle all components of X € S; contribute to,
say, (¢X)11. These problems are probably also the reason why Kawakatsu (2006)
claims but does not show that his models may capture the leverage effect.

Now we give an approximate calculation quantifying the leverage effect. De-
noting Frechet/total differentials with D and setting f : Myz(R) > Mz(R), X —
exp(X) we have

1
Df(A): MyR) = My(R), X / cI=DAX 1Ay,
0
See Bhatia (1997, Exmp. X.4.2(v)). In what follows all expectations and covari-
ances have formally to be understood as being conditional on ||AL;|| > € with
some € > 0. If L is compound Poisson, we can take ¢ = 0. Let G now be an

ECOGARCH(p, p) process driven by a Lévy process L satisfying E(AL;) = 0.
Then using a first-order Taylor approximation

cov(A Gy, vec(exp(u + Hy))™)
—E <exp((lu + H,-)/2) AL vec(exp(u + H,— + vech™ (B AM,)))*)

~E (exp((u + H;—)/2) A L;vec(exp(u + H;))*)

+E<exp((,u + H,_)/2)AL; x /01 vec (exp((l —u)(u + Hy;_))vech™!
x (B AM;) exp(u(e + Hi-))) du)

=E (exp((,u + H;_)/2)AL;vec(vech™ ! (B1 AM,))*

1
X /0 exp(u(u + Hi-)) @exp((1 —u)(u + Hz—))du> :

Hence, using the stochastic continuity of H

vec (COV(AG,, vec(exp(u + Hz))*))
1
~E (/0 exp(u(u + H;-)) @exp((1 —u)(u + H;-)) du

exp((u + H,_)/2)> E (Vec (ALtvec(vech_l(él AM;))*))
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1
=E (/0 exp(u(p + Hp)) @ exp((1 —u) (1 + Hy)) du @ exp((u + Hz)/2))

x E (Vec(vech_] (Boh(AL)) ® AL,)) . (3.9)

A very nice property of the preceding expression is that this approximation of
cov(A Gy, vec(exp(u + Hy))*) factorizes into one quantity that only depends on
the stationary distribution of H and a second factor depending only on the jumps
of L. The second factor can be easily calculated from the Lévy measure of L as

E (vec(vech_1 (Boh(AL)® AL,))

— (x> & / vec(veeh™! (Boh(x)) ®x)vz (dx),

llxlI>e

and regarding the first factor one should note that the stationary distribution of H
is known via its characteristic function/characteristic triplet (see Marquardt and
Stelzer, 2007, Prop. 3.27), because H is a multivariate CARMA process. The
second factor also resembles our intuition that we have the leverage effect, if By
and h are such that Byh(x) is bigger for “negative” x than for “positive” ones.
Of course, this is only valid when the first factor is such that the signs of the
elements corresponding to the variance (= diagonal) components of exp(u + H;)
are preserved.

Let us illustrate this with a concrete example where we without loss of gener-
ality consider the first component. Assume # is of the form (3.5) and the compo-
nents of L are completely independent, i.e., if L jumps then only one component
jumps or in other words vy, is concentrated on the axes. Then we have that

E (vec(vech—1 (Boh(AL))® ALt)l)

=E ((Boh(AL{))11AL1y)

m
=E ((2 Bo,1i (®i1AL1,r+Ti1|AL1,zI)> ALI,t) .
i=1

This shows—assuming that the first factor in (3.9) does not change the sign of
the first component—that we have a leverage effect in the first component when
> Boti (@ilALl,[ +F51|AL1,,|) is always positive, but larger for negative
values of AL, than for positive ones, and the jumps of L have a symmetric distri-
bution. Thus, as in the standard univariate case we have the leverage effect in the
first component if AL has a symmetric distribution and By 1;, I';;1, —®;1, i1 +
®;1>0foralli=1,...,m.

3.4. Approximation of ECOGARCH(1,1) Processes by EGARCH(1,1)
Processes

In this section we summarize a result of Stelzer (2009a) that provides an impor-
tant link to discrete time EGARCH models and may serve as a starting point for
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estimating ECOGARCH(1,1) processes based on discrete observations. As
Stelzer (2009a) is concerned with approximations of stochastic differential equa-
tions in general and the presentation and lengthy proofs there are rather technical,
it seems worthwhile to summarize the results for the ECOGARCH(1,1) process
here.

For the rest of the section we will just consider the ECOGARCH(1,1) process
G satisfying

dG =exp((u+ H;-)/2)d Ly, 1>0, Go=0,

where the vectorized log-volatility process X, := (vech(H;));>0 is the process in
R™ satisfying

dXt:_AIXtdt+B()th, > 0,

with the initial value X € R being independent of the driving Lévy process L. In
Stelzer (2009a) a first jump approximation of multivariate Lévy driven stochastic
differential equations is introduced. This result was then used to show the con-
vergence of a sequence of piecewise constant processes determined by discrete
time EGARCH(1,1) to the ECOGARCH(1,1) process in the Skorokhod topol-
ogy in probability. For a complete and separable normed space (E, | - ||g) we
denote the convergence of a sequence (Z™), ey of E-valued cadlag random pro-
cesses in probability in the Skorokhod topology to a cadlag random process Z
by p]imnﬁoodE(Z(”), Z) = 0 with plim denoting the limit in probability and dg a
metric inducing the Skorokhod topology (see, e.g., Kurtz and Protter, 1996). The
result is then as follows.

THEOREM 3.2 (Stelzer, 2009a, Thm. 4.1). Let (G,X) in R? x R™ be a
d-dimensional ECOGARCH(1,1) process G and its associated vectorized log-
volatility process X = vech(H) with initial value (G, Xo). Let (ti(n))ie]No for each

t(gn)

n € IN be a strictly increasing sequence in R™ with =0and lim;_, « tl.(") =00.

Defining oM = SUpP; ey {ti(") — ti(f)l} assume that lim;,_ oo 5 = 0.
Then there exists for each n € N a function h, : R x Rt — R™ and a se-
quence of independent random variables (ei(n)),-e]N in R? with finite variance

and E(el-(n)) =0Vi,n € IN such that h, (Ei(n),ti(”) —ti('_l)l> has finite variance,
E(hn (¢ =1)) ) =0, and

plimnﬁoodeme ((IY(H), X(n))s (G, X)) = 0’

where for each n € IN the process (1Y ™, XY jn R? x R™ is defined by

(15", X§") = (Go, Xo),
(n) _ yy () -1 y® (m)
IYti(Z) = IYti(',,_')1 +exp <(,u 4+ vech <Xt;f_l)l>> /2) gi" >
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A (1=
X0 (D) g g () o)
£ t.(_)] i i i—1

foralli e N, and

(IYt("),X,("))z<IY(('3,X(")) forte @™, ™), ieN.
i 1

The sequence (e( )),E]N can be chosen to be i.i.d. provided t(") (n)l =0" for
alli e N.

If h is continuous, h, can be chosen such that the sequence of functions hy,
R? x Rt — R™ satisfies

lim (sup sup { n (z, tl-(n) — tl-(f)l) —h(z) H }) =0 (3.10)

=00 \zeKielN

for all compact K C R. If h is uniformly continuous, h, can be chosen such that
(3.10) holds with R? instead of K .

When the time grids are equidistant, i.e., ti(") — ti(f)l =6 foralli e N, and

(El.(n)),-e]N is chosen i.i.d., then the increments (Y%g) (I Y(('f,? IY((Z? )
I ie]N i1/ ieN

of 1Y™ are a discrete time multivariate EGARCH(1,1) process with associated
vectorized log-volatility process (Xt((,,))> . Only var(e(")) = I; will usually

not be satisfied, but Stelzer (2009a, Thm. 4 4) provides a variant of the preceding
statement ensuring also this property up to a scaling corresponding to the size of
the time grid.

Remark 3.3. The function 4, in Theorem 3.2 can be specified as A, : RY x
Rt — R™,

_ e—l)L (J(n))l‘

1
(z,t)—> h <Z+UL(J(”))/J(")XUL(dx)>

1 _e—UL(J(”))t
- VL (J(")) 7 h(X)VL(d.X),

where J™ = {x e R : [|(x*, h(x)*)*|| > m™} and (m™),cn is a positive se-
quence such that condition (3.1) in Stelzer (2009a) is satisfied. Based on a choice
for h and given observations Gy, ..., G;, a quasi maximum likehood type estima-
tor for the unknown parameters could be defined similarly as in Maller, Miiller,
and Szimayer (2008).
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4. EXAMPLES AND SIMULATIONS

In this section we demonstrate how to choose the parameters in the model to
obtain a leverage effect. We simulate sample path trajectories for three different
examples. The first two examples are such that a leverage effect is present. To
empirically control the leverage effect we compute estimates for the following
quantities:

corrf(AG j1.«,exp(u+ Hpx)11) and  corr(AGy 2., exp(u + Hpzv)22), (4.1)

where t*, i = 1,2, is a jump time in the ith component.
As a first example we consider a bivariate ECOGARCH(1,1) process. The driv-
ing Lévy process L has the characteristic function

. 1 '
E[e’(”’l")] = exp [_zw’ Lu) +/2(g!(u,X> - 1)UL(dx)} >
R

where vy is a finite measure with density

[ mA | nyh [ ni oy
S ng—2\ np—2 m ( ny —2)”) 2 ( n2_2)€2>

and t, denotes the density of the ¢-distribution with n degrees of freedom. In this
particular example we choose ny = 4,n, = 10, and the rate 4 is set equal to 2.
The log-volatility process H has the vectorial state space representation

vech(H;) = X,
dX, =—AX,dt + B1dM,
with
—1.0490 —-1.5078 —0.4814
—A1 = —0.1496 0.1065 0.5105 |, B = By = L.
1.1074 0.6021 —0.9310

The Lévy process M is defined by the function

—0.40 —0.40 001 0 0
hip=| =001 —001 |n+| 0 01 0 Vech<(n;7*)l/2).
—0.40 —0.40 0 0 00l

From the choice of ® and T" it follows that future volatility should be negatively
correlated with current jumps in the price. The remaining parameter u € S; is set

o -8 0
0 -8)°
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In Figure 1 parts of the trajectories of the bivariate log-price G and also the
diagonal elements of the volatility process exp(u + H) are shown. The trajectories
of the log-volatility process were simulated by applying a stochastic Euler scheme
over the time points consisting of the jump times of the two compound Poisson
processes and a grid with step size 0.01.

The driving Lévy process L has independent components. Nevertheless we get
dependent volatilities exp(u + H)11 and exp(u + H )22 because of the choice of
parameters, as can be seen from the empirical estimate of the cross-correlation
function p12(h) = corr(exp(u + Hy+n)11,exp(u + Hy)22) in Figure 2, where a lag
of 1 corresponds to 0.01 units of time.

To estimate the quantities in (4.1) we simulated the trajectories 1,000 times and
then averaged over the 1,000 estimates to get

OM(AG 1o, exp(u + H,1.4)11) = —0.4665,

OM(AGy, .o, exp(p + Hpp.)22) = —0.4570.

The corresponding empirical standard errors are 0.0083 and 0.0074, respectively.
This empirical result is also confirmed by the following proposition.

PROPOSITION 4.1. Letd =2 and G be a d-dimensional ECOGARCH(p, p)
process with h given by (3.5). Assume that the driving Lévy process L has inde-
pendent components and that the distribution of the jumps of Ly, k = 1,2, is
symmetric, i.e., for all € > 0,

P(ALg; edx||ALg:| > €)= P(ALg; € —dx||ALk,| > €), t>0,k=1,2.
Then conditionally on the event | ALy ;| > €, the sign of
CoV(AGy ¢, exp(u + H)ik | |ALg,c| > €)
is negative if
(B1©)11=(B10©)31 <0 and (B1©)y <0, k=1
{(319)32 = (B1©)12 <0 and (Bi®)n<0, k=2

Proof. In case |ALy,| > € and AL;; = 0 for some time point #, the log-
volatility matrix is equal to

Ht: h],t h2,t ’
hz,z h3,t
where

hjr=Xj—+(B1©)jx AL+ (BiD)jig| ALkl Jj=12,3,

and i (k) = Lyy(k)+3- Ly (k).
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366 STEPHAN HAUG AND ROBERT STELZER

The volatility matrix at time ¢ is then given by

2 2
L (o, Oi2
exp(u+ Hy) = — ( ) N : )t

T \%i2: %22,
with
0—121’[ — o(Htunthi+h3)/2 <‘[ cosh (%) + (11 — 22 +h1 —h3)sinh (%)) ,

‘7122,z =2(up+ hz)e(,uu+ﬂzz+h1+h3)/2 sinh (%) ’

T ' -
0'222’t — oluntunthi+hs)/2 (r cosh <§) + (p22 — 111+ h3 — hyp) sinh (5)) ,

and 7 = \/(,un —u+hy —h3)2+4(u12+h2)?* (see, e.g., Rowland and
Weisstein, 2009).
Because the distribution of the jumps of Ly is symmetric, we obtain

E(AGk,||ALk | > €)=0.
Define PéL(dx) =P(ALy;edx||AL1| > €). Then we get fork = 1
cov(AG1,exp(u+ H)11 | |ALy | > €)

=E(AGyrexp(u+ H)i1||[AL1 | > €)

:/_1 exp(l(,u+Ht(a)))> [(@)d P (o),
(X (®3)) 2 11

where

() = / xe1/2(/111+/122+X1,zf(W)+X3,rf(w)+((l~31 F)11+(1§11")31)X>
x>e€

8 {6(519)1]+(1§1@))31)’2‘ [cosh <T+(x)> PO (ﬁ(x)ﬂ

2 tH(x) 2
_ o (B1O)1+(B10)3)} l:cosh (’ _2(x )> + j:g; sinh <T_2(x)>]} PL(dx)

with

is(x):/u“ _/u22+h§,[(x)_h§)t(x)9 § e{+a_}n

200 = /@ @P + s, ()2,
and
;i (x) = { Xia=+ (B1O)x+ (BiD)j1x, s = +

- . , Jj=12.3.
Xji——(B1©)j1x+ (B1D)j1x, s = —
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_An inspection of the integrand of /(w) reveals that I(w) is a.s. negative if
(B1®)11 = (B10)31 <0and (B1®)y; <0, which implies that the sign of

cov(AGy s,exp(p+ H)11 | |AL1 ] > €)

is negative. The same reasoning leads to the desired result for k = 2. n

Remark 4.1. Jumps in the kth component of G can of course also occur as a
result of jumps in the jth component in L, j # k. The sign of

cov(AGy 1, exp(u + H)ii | |ALj (| > €), J.ke{l,2}, J#k,

depends in this case also on the sign of exp (% (u+ H; (a)))) o To assure that the
J

off-diagonal elements in exp (% (u+H )) are also positive a.s., we would have to
assume that H is positive a.s. But this seems to be too restrictive.

In the second example we study a bivariate ECOGARCH(2,2) process. The
driving Lévy process L is the same as in the first example. The vectorial state
space representation is in this case given by

VeCh(Hl) = (1390)Xl ’
. 0 I él
dX, = (_Az —A1> X, di + <B2>dM”

—1.0890 1.3086  0.2193
—A;=| —1.2412 -0.6910  0.1966 | ,
—1.7537 —0.6331 —0.4548

with

0.0466 —0.5511 0.3881
—Ay = 0.2271 —1.6854 0.7785 |,
—0.9972  0.9893 0.0554
—0.0890 1.3086 0.2193

B =By=1Ix By =—ABo+B;i=| —1.2412 03090 0.1966
—1.7537 —0.6331 0.5452

The remaining parameters are chosen as for the ECOGARCH(1,1) process. In
Figure 3 we again see parts of the trajectories of the bivariate log-price G and also
the diagonal elements of the volatility process exp(u + H).

As in the first example we would again expect future volatilities to be negatively
correlated with current jumps in the price. To check this assumption we again
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FIGURE 3. Simulated trajectories of the log-price process G in the top row and the diagonal elements of the volatility process exp(u + H) in the
bottom row.
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estimated (4.1) from 1, 000 simulated trajectories, and the average values are
C/O?I‘(AGU],*, exp(,u + Htl,*)ll) =—0.2018,
C/O?r(AGL,z,* ,exp(u + Hpx)22) = —0.2243.

The corresponding empirical standard errors are 0.0074 and 0.0116, respectively.
We again see a negative correlation between current returns and future volatility.
The negative correlation between jumps in the log-price and the future volatility
can also be seen from the plots in Figure 3.

As a third example we consider again the ECOGARCH(1,1) process of the first
example. The only differences are the matrices ® and I'. Now they are chosen in
such a way that we will have a positive correlation between current returns and
future volatility. In particular they are given by

0.40 0.40 001 O 0
®=]001 0.01 and T = 0 010 O
0.40 0.40 0 0 0.01

Averaging again over 1,000 simulations we get the following empirical corre-
lations:

C/Oﬁ”(AGUL* ,exp(u + H,1,+)11) =0.3238,
&)?r(AGz’tz,* ,exp(u + Hp2,x)22) =0.2921.

The corresponding empirical standard errors are 0.0073 and 0.00067, respec-
tively, which shows that this is an example for the nonleverage case. Sample
trajectories for one of the simulations are shown in Figure 4.
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