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Mechanical Response of Semi-Brittle
Ceramics Subjected to Tension-
Compression State. Part I:

Theoretical Modeling

TOMASZ SADOWSKI*
Technische Universit&auml;t M&uuml;nchen
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ABSTRACT : This article discusses the construction of constitutive equations for the
quasi-static deformation process of semi-brittle materials from the onset to the state pre-
ceding final failure. The simple connection between mesomechanical and phenomenologi-
cal modelling of damage is possible. The generalization of the damage measurement idea
by unloading modulus [31] allows one to follow the whole non-linear unloading process in
the multi-axial state of stress, specifying all mechanisms contained in it.

1. INTRODUCTION

HE EXISTENCE OF cracks, pores and other defects within solids diametricallychanges the material response to applied load. Many effective continuum
models have been proposed to estimate mechanical properties of materials (for
example, References [1-9]). In the case of semi-brittle ceramics, a small amount
of plasticity also influences the total material response [10-12].
The aim of this paper is to follow the two-dimensional, quasi-static deforma-

tion process (tension-compression) of semi-brittle ceramics. The mechanical re-
sponse of polycrystalline continua, weakened by a set of slits, is modelled by ap-
plication mean field theories [13-15]. According to the experimental results
(MgO) [16-18], limited plastic flow is created by dislocation motion within the
range of grains of the representative volume element. Microcracks are initiated
by Zener-Stroh’s mechanism and propagate mainly intergranularly, along grain
boundaries (zig-zag cracks), leading to final failure of the material.
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This study focuses mainly on the description of gradual material degradation
including micromechanically based estimation of current elastic properties. The
degradation process is related not only to numbers of defects, like in many
models, but is also strongly dependent on the real crack shapes and their distribu-
tion within the unit cell. Smooth transition from uniaxial tension to uniaxial com-

pression by the two dimensional states is analysed with specification of particular
modes of crack shapes and their distribution within the unit cell, up to the state
preceding final failure.

2. MEAN FIELD MODEL

To describe material behaviour, it is necessary to consider the problem in two
scales (see, for example, References [1-3,7,10-15]). In macroscale, the material
behaves as a continuum and we denote the states of stress and strain by Q and E ,
respectively. In mesoscale, the solid is inhomogeneous and anisotropic. In this
case, local values of the stress and strain (Q’, £’) describe different defects exis-
tent in grains or at the grain boundaries. Connection of these two scales is possi-
ble by an averaging procedure over the unit cell.

where A is the area of the unit cell. In general, the strain components of poly-
crystalline materials can be decomposed into the elastic part, El, and parts
associated with defect (dislocation bands, cracks, voids or inclusions, etc.) crea-
tion &euro;~.):

where f and f d‘’ are the surface area density of all defects (Ad ), and i th defects
(AJ’», respectively. N, denotes the number of defects within the unit cell. The
superposition in Equation (2) is possible with the application of the Taylor
model.

In the most general case, the continuous damage process is defined by consti-
tutive relations expressed as a tensor function of two variables: the stress tensor
Q and damage tensor w (see, for example, Reference [19]), i.e.

where E is the strain tensor has been assumed to be the only internal parame-
ter. When the deformation process is under consideration, an evolution equation
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should be postulated for the damage parameter w

(-) means the change of damage in time.
In the case of a quasi-static increase of the external load of a material, it would

seem reasonable to postulate a steady change of damage with time, i.e.

Solving Equation (4) with this assumption, a direct relation between the tensors
of damage and stress can be obtained, namely

Thus, the specified set of Equations (3)-(6) creates a dual description for damag-
inn m!:ltpn!:l1c: in rp1o.:ltinn tn Dpf....røn,...... [/O].
A detailed discussion of constitutive equations and damage criteria, as well as

failure, is presented in Reference [20]. Here, we limit our consideration to the
analysis of the overall (macro) compliance tensor S, built up on the basis of
quasi-static changes within the unit cell, reflecting degradation of the internal
structure of the polycrystalline material. According to Equations (2) and (3), we
have

and (e.g., References [3] and [21])

where S° is the compliance of the virgin material and ~* is the compliance at-
tributable to the propagation of all microdefects N,. 

-

3. MODELLING OF SEMI-BRITTLE CERAMICS
UNDER LOADING PROCESS

The quasi-static deformation process of MgO polycrystalline ceramic was the-
oretically investigated for a uniaxial state of tension [10,11] and compression [12].
The present paper proposes a unified description of the material behaviour for a
two-dimensional state of stress (Figure 1) obeying the above two limiting cases.
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Figure 1. Schematic diagram of the considered problem.

In the matrix notation, the constitutive relations (7) simplify to:

when the Voight’s description was applied. Further [22], the deformation process
will be limited to so-called proportional loading defined by

where k is a constant. Under these assumptions, the influence of the q increase
on the particular form of the compliance tensor S* will be investigated.

3.1 Slip Phase

Experimental evidence [16,17] shows that after the purely elastic phase, dislo-
cation sources activate within grains, creating conjugate slip systems (100)

 at Technical University of Munich University Library on November 2, 2016ijd.sagepub.comDownloaded from 

http://ijd.sagepub.com/


216

<110); they pile up to grain boundaries, but cannot cross them, in general, be-
cause of the strong energetic barrier to easy glide. In this way, surrounding grains
resist free deformation of crystals with activated slip systems. According to Ref-
erence [12], the following components of S are different from zero.

wh~&oelig; !V. is ihe number of grains with conjugate slip systems mside the unit cell,
T so is the lattice resistance to dislocation glide, p,(D) is the grain size distribution
function, Dm and DM are the smallest and largest grains sizes, respectively, Go is
the Kirchhoff modulus of the virgin material, and bi is the coefficient connected
with the shape of the grains. 0 is the angle of the slip band inclination to the axis
XI, whereas j8t < 0 < {32 denotes the fan of Ns grains.

3.2 Mesocrack Creation and Development

The mechanism of crack initiation is strictly connected to the grain boundary
properties of the material. Namely, the surface energy ’Yllb along the grain bound-
aries, considerably lower in comparison to pure crystals Y, [16,17,23], creates
profitable conditions to the Zener-Stroh crack initiation. A minimal value of the
shear resolved stress 7-.c potent enough to produce microcracks can be estimated
[10-12]:

where Go is the shear modulus of the virgin material, and d is the pile up length.
In order to describe the microcrack development phase, let us consider a single

straight slit in the local coordinate system xi x2 inclined to the global one under
angle 0. Depending on the state of stress and 0, the crack can be opened or
closed. In the first case, it propagates under mixed mode
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where vo is the Poisson coefficient of the virgin material. The closed slit is sub-
jected to action of the shear stress Ts , creating displacement discontinuity

and growth under mode II. Thus, in the unit cell we have closed microcracks,
open and sliding slits and mesocracks occupying straight segments of grain
boundaries [see Figure 2, valid for Equation (10)].
The mesocracks are opened when the local value of the stress component, nor-

mal to the crack face, is positive. Then the total influence of the N9> opened slits
on the overall material response is equal (see Appendix A):

where pi(§) and p,(D) are the inclination of mesocrack and grain distribution

Figure 2. Domains of the crack response within the unit cell for the state preceding final
failure.
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functions, respectively, and M i ~ is the two-dimensional matrix (Appendix A):

whereas <~’ < ~ ~°’ < ~ ~z’ denotes the fan of N9~ cracks.
Similarly, generalizing Reference [12], the closed slits N,~&dquo;‘’ change the material

response according to (see Appendix B):

where M;.‘~ is the following matrix
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3.3 Mesocrack Deflection (Kinking)

The mesocracks, which occupy the straight segment of the grain boundary, can
deflect, changing the direction of their propagation (toughening mechanism). We
consider the intergranular mode of slit propagation (see experimental results
[16,18,23]) since the surface energy of the grain boundaries ’Ygb is substantially
less [23] in comparison to the surface energy of pure crystals ’Yg.
According to References [7], [12] and [24], in the case of simple compression,

a kinking crack is described by the introduction of thin straight mesocracks en-
dowed with frictional resistance which nucleate tension cracks at their tips
[Figure 3(a)]. For the two-dimensional case, where opened mesocracks also exist
within the unit cell, one can simply generalize this model. Namely, a zig-zag
crack can be approximated by an equivalent crack of length 21, subjected to a pair
of concentrated forces F and F* created by sliding and opening effects of the
mesocrack [Figure 3(b)]. Their values are equal:

Here, ul and ul denote local values of the state of stress. The forces F and F*
influence the stress intensity factors at the tips Q and Q’ as follows:
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Figure 3. (a) Straight mesocrack PP’ with tension cracks PO and P’O’ and (b,) equivalent
crack. 

’&dquo; ’ ’

The upper expressions in the braces are related to closed mesocracks, whereas
the lower expressions are related to opened ones. The second parts of Equations
(23) and (24) present an influence of external load; I + 1* is the equivalent kink
length [24].
Under the above assumptions, the overall material response can be described

for opened mesocracks, 1il2°> , potent enough for kink creation:

where matrix M,;°~ is equal (see Appendix C):
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In Equation (25), pk, and p,,,, are the tension cracks length and the inclination an-
gle distribution function, respectively. n7> s 7 ~ 1)§~ characterize the fan of
the length, whereas 017> + 0 ’k*,’ s 0 + 0 S 8 k2’ + ~ kz’ characterizes the fan
of the kinked crack inclination.
For closed mesocracks iilQ> forming kinks at their ends, we have (see Refer-

ence [12] and Appendix D):

and

~k;’ _< I s n~> characterizes the fan of the length, whereas 0 (c) + 0 (c) <
8 + c/> ~ 0~~ + - 0 (k c) characterizes the fan of kinked crack inclination.
The last component of the compliance S * is connected with the closing or

opening effect of kinks under an external loading or unloading process. The
amount of change can be estimated from (see Appendix E):

where Mi, is the following matrix:
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3.4 Total Overall Response

The total overall response, defined by Equation (8), will be calculated by the
summation of all previously discussed components: Equations (11)-(13), (17),
(19), (25), (27) and (29). Finally, we gain

Equation (31) shows a rather complicated structure of the compliance tensor,
postulated for the Taylor model. It strongly depends on the inclination fans of ex-
isting mesocracks and the propagation mode of the secondary cracks. They are
strictly connected with the actual state of stress (UI, Q2).

In the most general case, formula (31) should be extended to a description of
the interaction effects between cracks [20], but these effects were observed only
for two-phase ceramics like Ab03/zr02 or SiC/TiB2 [25]. Theoretical deriva-
tions also lead to the conclusion that the toughness enhancement by shielding
effect is almost exactly counterbalanced by the reduction of toughness in the iso-
tropically microcracked material (References [26]-[28] and others).

4. MODELLING OF SEMI BRITTLE CERAMICS
UNDER UNLOADING PROCESS

Let us define the unloading process of the material in the two-dimensional
stress state. We assume that this process begins when:

1. The stress components do not increase.
2. At least one of the two components Ql and U2 decrease.

A lot of material models with internal degradation (e.g., References [4] and
[28]) postulate total reversibility of the strain during unloading. However, ex-
perimental observations suggest that some amount of strain remains after com-
plete unloading; this was noted in References [8] and [29], and theoretically
described for uniaxial compression of semi-brittle MgO ceramics in Reference
[12]. In general, the value of &dquo;back strains&dquo; depends on the (1) roughness of the
mesocrack surfaces and (2) the real crack shape (zig-zag deflection). One can
simply estimate the strains for any state of the considered process using decom-
position into independent components of the compliance tensor [Equation
(31)]. Additionally, we postulate that during unloading:
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1. The plastic strains do not change.
2. The mesocracks can remain closed or opened depending on the local state of

stress Q’.
3. The kinks of the mesocracks start to open, close or propagate in relation

to Q’ .

Thus, the compliance tensor for unloading paths of the material response can be
calculated

The components ~..*(O), S_u*c‘’, ~..*(O), S_’&dquo;*c‘’ and S;* for any given modification
of the current stress o, can be estimated from Equations (17), (19), (25), (27)
and (29). Obviously, they differ from the appropriate counterparts in Equation
(31).

In general, the number of mesocracks

and the number of existing kinks

although, in particular cases of the current state a, small changes are possible.
Assumptions (33) and (34) are valid particularly for the state preceding the final
failure where the so-called saturation state of mesocracks is reached [12].
The constitutive equations for unloading are similar to Equation (7) and the

values of recoverable strains are equal:

5. PHENOMENOLOGICAL DESCRIPTION OF THE
DAMAGE STATE IN THE MATERIAL

Usually, micromechanically based material models evaluate the state of dam-
age by introduction parameters that are connected with a density of straight slits
and their dimensions (e.g., Reference [30]). There are good measures for early
stages of the matearial deformation, where no crack defection occurs.
As was noted above (Sections 3 and 4), in the case of multi-axial stress _Q, the

state of solid fissuration is more complicated. Therefore, it seems reasonable to
introduce another measure of internal degradation, describing all effects appear-
ing within the unit cell subjected to the loading process.
The easiest method proposed for uniaxial tension [31] is damage characteriza-

 at Technical University of Munich University Library on November 2, 2016ijd.sagepub.comDownloaded from 

http://ijd.sagepub.com/


224

tion just by unloading modulus E*:

where E° is the initial Young’s modulus. As was pointed out in Reference [2], the
advantage of such a representation results from the fact that it &dquo;can be measured
in a very simple and unambiguous manner&dquo;.
A simple generalization of the concept in Equation (36) was proposed in Refer-

ence [12] for the description of the uniaxial compression process of semi-brittle
ceramics and the two-dimensional damage state. According to the &dquo;hypothesis of
stress equivalence;’ one can postulate the following damage definition:

where eT is the total strain recoverable during unloading, and AeT is its part
associated with crack existence. With definitions (32) and (35), Ae can be calcu-
lated as:

and then Equation (37) takes the final form:

It is worth pointing out that definition (37) allows a deep physical interpretation
of all components of the tensor w -not only ú.)1 and ú.)2, but also ú.)6. It shows that
&dquo;damage&dquo; contains numerous complicated mechanisms, as described in Sections
3 and 4.

6. CONCLUDING REMARKS

This paper discusses the construction of constitutive equations for the quasi-
static deformation process of semi-brittle materials from the onset to the state

preceding final failure. The most important mechanisms influencing the overall
compliance tensor were specified. Many effects, such as crack interaction and
bridging phenomenon by coarse grains, were not taken into account; they have
greater significance on the material behaviour at the final failure and post-critical
stages [20].
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The simple connection between mesomechanical and phenomenological mod-
elling of damage is possible. The generalization of the damage measurement idea
by unloading compliance allows one to follow the whole non-linear unloading
process, specifying all mechanisms contained in it [22].
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APPENDIX A

The state of strain associated with the opened, straight crack (of length 2c) ex-
istence considered in the local coordinate system (Figure 1) can be described:

where n,’ are the components of the unit vector, which is normal to the crack sur-
face, u,’ are the components of the crack displacement vector, and fdlol is the

opened crack area density. In our case, n; = 0, n2’ = 1 and

Taking the above into account, Equation (Al) gives only one component:

Rewriting Equation (A3) in terms of the global coordinate system and using a
simple orthogonal transformation [1,7,12],
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we gain the influence of one slit on the overall material response:

where matrix M;°~ can be expressed

In the case when grains (of diameter D) are not equal and Nit> mesocracks oc-

cupy straight segments of crystals (c = D/4) in the unit cell, the overall compli-
ance can be finally estimated by an averaging procedure

where p, (0) and P2(D) are the inclination of the mesocrack and the grain size dis-
tribution functions, respectively. For homogeneous distributions, pl and p2 are
equal:

<~ < Q ~ °’ < 0 c(,o) denotes the fan of N::) cracks.

APPENDIX B

The strains created by the closed, straight slit will be calculated according to
Equation (Al). Case (A2) takes the form:
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and Equation (A3), appropriately (see Reference [12]):

where f d‘~ is the closed crack area density.
Performing a similar procedure to that in Appendix A, one can obtain

where matrix M;.‘~ can be expressed

In the case where grains (of diameter D) are not equal and N!:) mesocracks oc-
cupy straight segments of crystals (c = D/4) in the unit cell, the overall compli-
ance can be finally estimated by an averaging procedure

where the function pl(~) is equal

and P2(D) is defined by Equation (A8). ~~~) < ~ ~‘’ < ~~2’ denotes the fan of
lV&dquo;,‘’ cracks.
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APPENDIX C

A particular discussion of the strain state associated with the kink development
was presented in Reference [7]. For our purposes, let us consider the straight
crack PQ shown in Figure 3. In the local coordinate system x,x2’, we have the fol-
lowing strain components:

where T = llc is the dimensionless length of the crack, whereas b is the meso-
crack PP’ dimensionless slip

d is the dimensionless averaged opening of the mesocrack PP’ 
-’

Introducing Equations (C2) and (C3) to (Cl) and using (Al), we gain

where f a°~ is the surface area density of the opened mesocracks. Using the
transformation rules:
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where g,, is the matrix similar to Equation (A4):

Equation (C4) takes the following form for one slit in the global coordinate
system:

In the case where grains (of diameter D) are not equal and Nit> mesocracks oc-

cupy straight segments of crystals (c = D/4) in the unit cell, the overall compli-
ance can be finally estimated by an averaging procedure

In Equation (C9), pkl and pkZ are the tension crack length and their inclination
angle distribution functions, respectively

l k°,’ <_ I s n~> characterizes the fan of the length, whereas 8 t> + <~ ~
0 + 0 s 0 k2’ + § k~’ characterizes the fan of kinked crack inclination.
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APPENDIX D

In the case of closed mesocracks, Equation (C2) becomes (see Reference [12])

whereas

Introducing Equations (D2) and (D3) to (Cl) and using (A), we gain

where I’dc’ is the surface area density of the closed mesocracks. Performing the
nnmo &dquo;...n.....~çn.~n+~.n...... n ~ A ~~orW~~ ~ +U- ntnfem~ n+__;- :- +U- -1-U-1 -A.--+-
03&dquo;&dquo;’U’&dquo; UUU03-&dquo;V.U.UUvu L1J 111 ro.PP&dquo;’U&dquo;UA y 1d11r 03UU.’&dquo; Vl Jl.1G1111 111 ~111n 5-&dquo;Vl./~U WVl~il11C11V

system is

and the matrix 3iJy~ , appropriately

Finally, the compliance tensor has the following form when grains (of diameter
D) in the unit cell are not equal and N!:) closed mesocracks occupy straight seg-
ments of crystals (c = D/4)
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1[?~ S I s 1[§~ characterizes the fan of the length, whereas 0~ + ~ k;’ <_
0 + ø s 0~~ + ~ k‘’ characterizes the fan of kinked crack inclination.

with the assumption of homogeneous distribution of defects.

APPENDIX E

The closing or opening process of the tension crack PQ depends on the actual
state of the external stress. According to Equations (C5b), (A2) and (Al), the
strain can be calculated:

where f d&dquo;‘~ is the kink density in the unit cell. After tranformation Equation (El)
to the global coordinate system:

and

Then the total compliance for opened and closed mesocracks will be estimated
as a sum of:
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The distribution functions p, , and pk2 are similar to Equations (C10), (Cll) and
(D8), (D9).
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