Düngung von Zuckerrüben

Bedarf, Anlieferung und Effizienz der Nährstoffe

Prof. Dr. A. Amberger, Lehrstuhl für Pflanzenernährung der TU München-Weihenstephan

Die Grundformel ist der (sortenabhängige) durchschnittliche Nährstoffbedarf (bzw. entzug kg/ha) zur Erzeugung von 100 dt/ha Rüben plus Blätter:

- 40 N – 15 P₂O₅ – 60 K₂O 14 – MgO

Für einen tatsächlich ermittelten (oder jedenfalls angestrebt) Ertrag von beispielsweise 500 dt/ha Rüben (+ ca. 350 dt Blätter) sind demnach notwendig:

- 200 N – 75 P₂O₅ – 300 K₂O – 70 MgO/ha.

Die Nährstoffanlieferung errechnet sich aus dem Anteil der

- Bodennährstoffe (abhängig von Standort und Fruchtfolge) und der

- organischen Düngung.

Der Fehlbetrag zum Nährstoffbedarf muß durch mineralische Düngung ergänzt werden unter Berücksichtigung von Verlusten und zeitweiliger Immobilisierung, d. h. letztlich der Ausnutzung. Diese auf Anhieb sehr einfach erscheinende Bilanzrechnung entbehrt aber nicht gewisser Unsicherheiten und Schwierigkeiten (vor allem, was den Stickstoff anlangt) und erfordert daher als flankierende Maßnahmen eine ständige Beobachtung des Aufwuchses und möglichst mehrjährige Erfahrungswerte auf dem jeweiligen Standort.

Stickstoff

Der Anteil des aus dem Boden gelieferten Stickstoffs setzt sich zusammen aus dem im Frühjahr zur Saat im Bodenprofil von 90 cm ermittelten sogenannten Nₘ₀-stickstoff (kg N/ha Nitrat + Ammonium)

Wesentlich schwieriger ist die Ermittlung der Nettomineralisation im Verlauf der Vegetationszeit als Ergebnis zweier entgegengesetzter, nebeneinander verlaufender und vorwiegend biologischen Prozesse.
Die Düngung

Zur Erzielung hoher Rübenleistungen hat sich als Ergebnis umfangreicher Versuche auf Böden von unterschiedlicher Fruchtbarkeit eine Aufdüngung des tatsächlich ermittelten \text{N}_{\text{app}}\text{-Wer tes mit Mineraldünger-} und Gülle-N auf \text{N}_{\text{app}}\text{-Soll werte von 180–200 kg N/ha (je nach Bodenfruchtbarkeit und Ertragshöhe) bewährt (in der Regel mindestens 50 aber höchstens 120–140 N/ha).

Was die N-Form anlangt, ist Kalkammonsalpeter in ganzer Gabe vor der Saat
Phosphor

Nach einem geringen Bedarf im Anfangswachstum der Zuckerrübe erfolgt die Haupt-P-Aufnahme im Stadium intensiver Blattentwicklung (Abb. 2). Während aber Nitrat und Kalium durch Massenteuf (also mit dem Bodenwasser) an die Wurzeln transportiert werden, beruht die Aufnahme des relativ unbeweglichen Phosphors ausschließlich auf Diffusion aus der wurzelnahen Bodenzone (wenige mm), die damit selbst bei guter P-Versorgung des Gesamtbodens rasch erschöpft wird. Ein Teil des Boden-P und bei Oberflächenbehandlung auch des Dünger-P ist aber bei der ökologischen Drillweite von 45 cm insbesondere auf Böden mit mäßiger P-Versorgung nur teilweise oder erst später den Wurzeln zugänglich, Galle-P (Rinder- und Schweinegalle 5 kg P$_2$O$_5$/m²) sowie P aus Getreidestroh (10 kg P$_2$O$_5$/ha) oder Körnermaisstroh und Zwiebelbrüchtern (20–30 kg P$_2$O$_5$/ha) können voll in die Düngereinträge eingesetzt werden. Zur Erhöhung der Effizienz der P-Versorgung empfiehlt sich die Reihen- oder Unterluftdüngung (5–7 cm neben, 3–6 cm unter die Saat) z. B. mit Ammonphosphat durch Plazierung in den Bereich der Phosphatwurzeln (Abb. 4). Von den Rübenwurzeln abgeschiedene Anionen organischer Säuren (vor allem Zitronensäure) konkurrieren mit den an Fe/Al-Oxiden/Hydroxiden sorbierten Orthophosphat-Ionen (1) und können diese damit desorbiieren (= wuREF_aufnahmbar machen). Darüber hinaus sind diese organischen Anionen auch in der Lage, Ca$^{2+}$ oder andere Kationen zu chelatisieren (2) und vor Ausfällung mit Phosphat zu schützen; Gleichfalls von den Wurzeln ausgeschiedene Protonen (3) sät von den unmittelbaren Wurzelbereich an (pH-Senkung) und erhöhen damit die Löslichkeit und Mobilität von (Dünger-) Ca-Phosphaten (Abb. 4). Diese Vorgänge sind aber ausschließlich auf den Rhizosphärenbereich beschränkt (daher Plazierung) und erhöhen damit die Effizienz der P-Düngung.

Kalium und Natrium

Was die Kaliversorgung anlangt, so ergeben sich unter Berücksichtigung des K-
Bedarfes kaum Probleme, wenn man von den relativ seltenen K-
fixierenden Standorten (ton- bzw. schluffreiche Aueböden) ab-
sieht. Die K-Aufnahme elt der Substanzproduktion weit voraus
(Abb. 2); der größte Teil des aufgenommenen Kalium ist in den
Blättern lokalisiert und weist auf dessen große Bedeutung für or-
motische und stoffwechselphysiologische Prozesse hin. In die K-
Bilanz gehen ein: die Anlieferung aus Boden (durch Versuche er-
mißt), organischer Düngung (Rindergülle enthält ca. 6, Schwe-
nergülle 3 kg K₂O/m²), aus Pflanzenrückständen (Getreidestroh
80, Körnermais 120 K₂O/ha) und Zwischenfrüchten (40–50 kg
K₂O/ha). Eine K-Überdüngung ist zu vermeiden, da hohe K-Wer-
te in der Rübe die Zuckererträge behindern. Der relativ hohe
Na-Bedarf kann z. B. befriedigt werden durch Magnesium-Kainit
(20 % Na) oder Kornkali (3 % Na).

Magnesium

Der Mg-Bedarf (14 kg MgO/100 dt Rüben + Blätter) kann ent-
weder durch Mg-haltige Ein- (z. B. Stickstoffmagnesia) oder
Mehrhaltstoffdünger oder über Mg-Kalke abgedeckt werden.

Bor

Der Bor-Bedarf der Zuckerrübe (Bedarf ca. 2 kg B/ha)
will Rechnung getragen durch borhaltige Dünger oder durch Bo-
raxspritzung.

Zusammenfassung

Zur Optimierung der Zuckerrübenerträge ist eine Bilanzierung
der Nährstoffsituation auf dem jeweiligen Standort notwendig, er-
gänzt durch kontinuierliche Beobachtung des Bestandes und
Berücksichtigung mehrjähriger Erfahrungswerte sowie eine qua-
litatsorientierte Düngung. Moderne Methoden der Düngerappli-
kation verringern einerseits Nährstoffverluste und Umweltbelas-
tung und erhöhen andererseits die Effizienz der Nährstoffe.

Literatur

 tagung „Stabilisierte Stickstoffdünger“ 71–76.
 Nitrataustrag landwirtschaftlich genutzter Flächen. Broschüre Fachtagung „Stabili-
 schenfrüchte? DLG-Mitteilungen, 2, 66–68.
 dünger auf die Nitratverlagerung bzw. -auswaschung. Broschüre Fachtagung „Sta-
 Dicyandiamid zu Gülle in der Zeit zwischen Spätherbst und Frühjahr. Z. Pflanzen-
 ernährung u. Bodenkunde. 150, 47–50.