Non-linear station motions in the DGFI realization of the ITRF2014

M. Seitz, M. Bloßfeld, D. Angermann, R. Schmid

Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM)

E-mail: manuela.seitz@tum.de

EGU General Assembly 2016 Session G2.2 2016-04-19

ТЛП

DTRF2014 solutions

- ➢ ITRS realization 2014 by DGFI-TUM
- Based on combination of normal equations (NEQs) of individual techniques reconstructed from SINEX files
- > For the first time, non-tidal loading (NT-L) signals are considered
- Solutions computed:
 - **conventional solution**: without non-tidal loading corrections
 - □ corrected solution: corrected a posteriori for non-tidal atmospheric (NT-ATML) and hydrological (NT-CWSL) loading (models provided by GGFC) → still under construction!

This talk:

- ➢ How are the NT-L corrections applied a posteriori at the NEQ level?
- What is the impact of NT-L corrections on parameters of the singletechnique DTRF2014 solutions?

DTRF2014 input data

Ш

Space geodetic techniques:

	Service	Solution type	Resolution	Time span	
VLBI	IVS	Free NEQ	Session-wise	04/80 - 12/14	35 years
SLR	ILRS	Loosely constrained solution	Before 1993.0: 15 days After 1993.0: weekly	12/82 - 01/15	32 years
GNSS	IGS	Minimum constraint solution	Daily	01/94 - 02/15	21 years
DORIS	IDS	Minimum constraint solution	weekly	01/93 - 01/15	22 years

Local ties and loading data:

	Provided by	Format
Local ties	 Co-location sites, surveying teams Collected and prepared by Z. Altamimi 	SINEX
Non-tidal atmospheric, hydrological (and oceanic) loading data	 GGFC of the IERS Atmospheric: based on NCEP model Hydrological: based on GLDAS model Oceanic: not used (time series only from 1994) 	Free format

Frame of NT-L corrections

- > NT-L corrections are provided in [mm] in a local horizontal frame (NEU)
- > Transformation of $\delta[NEU]_{load}(CM)$ to $\delta x_{load}(CM) = \delta[XYZ]_{load}(CM)$

Expected impact on DTRF datum parameter time series

- $\succ \delta x_{load}$ is related to the Earth's CM \rightarrow CF-CM is applied through model
 - CF-CM variation is a significant part of NT-L corrections
 - SLR NEQs are related to CM; if corrected for $\delta x_{load} \rightarrow$ impact on SLR-derived weekly translations
- Impact on scale should be small except for effects induced by transformation network (due to inhomogeneous distribution of transformation stations)
- Impact on orientation is minimized by NNR condition

NT-L correction applied a posteriori at NEQ level

- $\succ \delta x_{load} = \delta x_{\rm NT-ATML} + \delta x_{\rm NT-CWSL}$
- Computation of mean δx_{load} per day/session/week
- NT-L corrections are applied before accumulation of NEQs

$$\widetilde{N} = N$$
$$\widetilde{y} = y + N\delta x_{load}$$
$$\widetilde{l}^{T}\widetilde{P}\widetilde{l} = l^{T}Pl + \delta x^{T}(2y + N\delta x)$$
$$\widetilde{x_{0}} = x_{0}$$

> only \tilde{y} and $\tilde{l}^{\tilde{T}} \tilde{P} \tilde{l}$ change, NEQs remain unchanged

DTRF2014, EGU General Assembly 2016

- Stations with short observation intervals are affected most
- Can NT-L corrections help to consider short-interval velocities for the TRF?
- Improvement or degradation of the TRF?

- Validation of NT-L corrections using SLR-GPS local ties (LTs) at stations with large impact on velocity
- > 3D difference of technique-specific TRFs w.r.t. LT at measurement epoch

GPS-SLR LT at Borowiec		LT (1994.0)	3D(conv.)-LT	3D(corr.)-LT
	Χ	+25.767 m	+14.4 mm	+10.6 mm
	Y	-72.908 m	+5.0 mm	+5.7 mm
		-0.324 m	+14.0 mm	+12.3 mm
GPS-SLR LT at Cagliari		LT (1995.4)	3D(conv.)-LT	3D(corr.)-LT
	Χ	+19.036 m	+6.1 mm	+1.9 mm
	Y	+23.844 m	-7.9 mm	-8.8 mm
	Ζ	-40.947 m	-4.5 mm	-3.5 mm
GPS-SLR LT at Wettzell		LT (2002.1)	3D(conv.)-LT	3D(corr.)-LT
	X	+3.824 m	-4.2 mm	-3.0 mm
	Y	+68.202 m	+1.8 mm	+2.2 mm
	Ζ	-15.518 m	+0.2 mm	+0.3 mm

DTRF2014, EGU General Assembly 2016

WRMS [mm]	Tx	Ту	Tz
conventional solution	3.38	3.48	5.61
corrected solution	3.31	3.72	5.52

spectra of transformations

WRMS [mm]	Tx	Ту	Tz
conventional solution	3.38	3.48	5.61
corrected solution	3.31	3.72	5.52

> CM-related NT-L corrections cause significant change in SLR origin

DTRF2014, EGU General Assembly 2016

WRMS [mm]	Тх	Ту	Tz	Sc
conventional solution	3.38	3.48	5.61	3.03
corrected solution	3.31	3.72	5.52	2.95

spectra of transformations

- scale change might be caused by transformation network
- seasonal signal is also affected in VLBI scale time series
- > only small reduction of WRMS due to high scatter of time series

WRMS [mm]	Тх	Ту	Tz	Sc
conventional solution	3.38	3.48	5.61	3.03
corrected solution	3.31	3.72	5.52	2.95

Does scatter of station position residual time series decrease?

mean WRMS of SLR stations [mm]	north	east	height
conventional solution	15.16	13.80	16.60
corrected solution	13.91	13.63	16.17
mean WRMS of DORIS stations [mm]	north	east	height
conventional solution	10.87	16.46	12.95
corrected solution	10.94	16.50	12.85
mean WRMS of VLBI stations [mm]	north	east	height
conventional solution	3.71	3.47	10.86
corrected solution	3.79	3.56	10.74

 \rightarrow GPS: still processing...

- SLR residuals improve in all components
- no distinct improvement in N/E, slight improvement in H
- residuals seem to be dominated by other than loading effects

Summary: improvement due to NT-L corrections?

- NT-L corrected solution finished for SLR, DORIS and VLBI contribution
- Impact mostly on stations with short observation intervals
- Validation of NT-L-induced velocity improvements via LT comparisons
 - Discrepancy between 3D-differences of single-technique solutions and LT measurements are getting smaller
 - Possible introduction of more LTs
- Significant impact of NT-L corrections on datum parameters which are implicitly realized in NEQs
 - SLR origin (Ty needs further investigation) and scale
 - VLBI scale

Impact of NT-L corrections on residual time series is not distinct

- Only for SLR, WRMS(NEU) is decreased
- WRMS(H) is decreased for SLR, DORIS and VLBI

How to get the DTRF2014?

□ Final DTRF2014 solution will comprise:

- SINEX files for all techniques
- Station position residual time series which enable the user to correct the DTRF2014 positions to the true position at epoch
- Loading time series applied in DTRF2014 computation
- SSC and EOP files
- Publication will be announced in IERS mailing lists
- DTRF2014 paper: in preparation

Thank you very much for your attention!

Non-linear station motions in the DGFI realization of the ITRF2014

M. Seitz, M. Bloßfeld, D. Angermann, R. Schmid

Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM)

Email: manuela.seitz@tum.de

The final solution of the DTRF2014 will be published soon at the **PANGAEA** data base!

For further information, please have a look at **www.dgfi.tum.de**

Changes of ILRS-only EOP due to NT-L corrections

ILRS-only WRMS w.r.t. IERS 08C04	x-pole [mas]	y-pole [mas]	LOD [ms]
conventional solutions	0.214	0.208	0.032
corrected solutions	0.202	0.207	0.032

- Seasonal signal in difference time series of pole coordinates (also in other techniques)
- Seasonal signal w.r.t. IERS 08C04 is decreased in both components