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Abstract

The spatial variability of topsoil texture and organic matter across fields was studied using aitborne
hyperspectral imagery to lead towards improved fine-scale soil mapping procedures. Two
important topsoil features for precision farming applications, soil organic matter and texture, were
correlated with spectral properties of the airborne HyMap scanner. Sand, clay, organic carbon and
total nitrogen contents can be predicted “quantitatively and simultaneously by a multivariate
calibration approach using Partial Least Square Regression or Multiple Linear Regression. The
suite of topsoil parameters.can be determined simultaneously frem a single spectral signature since
the various features.are represented by varying combinations of wavebands across the spectra.
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Introduction

Topsoils frequently show a fine tessellated pattern and heterogeneity across fields indicated by e.g.
color, roughness, infiltration, erosion and surface sealing phenomena. Consequently topsoii :
heterogeneity causes differences in.¢rop germination, nutrient and water uptake and thus markedly
influence crop growth and plant coverage. This has implications for the pattern and the spatial
extent of appropriate land use management practices and soil consérvation strategies including site
specific management in precision agriculture systems. For optimizing crop growth, soil tillage,
seed bed preparation, fertilization and herbicide use in particular must be adapted to the local
topsoil propertles

However, there is still no effective way to map fine scale soil heterogeneity so as to derive site
specific -data about topsoil physical/chemical characteristics. Several authors established
relationships between soil spectral reflectance data and organic matter characteristics (Dalal & -
Henry 1986, Udelhoven et al. 2003) and soil texture (Al-Abbas et al.,1972, Ben-Dor & Banin
1995). Both groups of parameters play an interdependent and decisive role in assessmg topseil
characteristics e.g. soil aggregatlon, aggregate stability and resistance to water and wind erosion
(Neemann 1991) and as a consequence it would be an advantage to be able to map both sets of
physncal characteristics from the one set of image data.

The aim of the work reported here was to develop a method of mapping fine scale topsoil organic

and texture parameters from a combination of field and hyperspectral image data. The work

investigated the use of both Multiple Linear Regression and Partial Least Squares Regression to
construct the models to estimate the soil physical/chemical variables from the image data. Field
data was combined with the image data for the construction of the models. This innovative
approach to digital soil mapping achieves the simultaneous estimation of a suite of topsoil

parameters. The use of high resolution remotely sensed data avoids the need for interpolation with -

its attendant problems of accurate and reliable spatial prediction. a
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Material and methods
Study area

The East German study area Wulfen (11°55°E, 51°49°N) is characterised by a slightly undulated
tertiary plain at 70 m altitude that is covered by athin Loess layer up to 1.2 m and an alluvial plain
(glacial valley) of the river Elbe at 50 m altitude that served as origin for the Aeolian deposit in
the tertiary plain. The predominant soil type of the Loess covered Tertiary plain is Chernozem in
conjunction with Cambisols and Luvisols. The altuvial plain is characterised by coarse sand to fine
sand, loamy and clayey sediments. The predominant soil types are Mollic Gleysols, Fluvisols and
Planosols. The fine-scale pattern of soil texture and organic matter within the fields of the
landscapes results in highly diverse soil properties-and virtually forces. the application of site
specific management. e - : R

Datasets - o P : :
The remotely sensed data was acquired using the HyMap™ scanner (Integrated Spectronics Pty
Litd, Australia), installed on a Cessna Caravan aircraft. The scanner records spectra from 420 nm
t0.2480 nm wavelength, in 128 wavebands with full width half maximum (FWHM) bands of 15
and 20-nm for the (420 - 1803 nm range) and (1949 - 2480 nm range) ranges respectively. The
imagery was acquired with 6m nadir pixels and a swath width of 30 degrees from 12:30 to 13:15
hours on-19% May 1999, The data was atmospherically and geometrically corrected using the
ATCOR procedures (Richter & Schldpfer 2002) and a rectification procedure (Schldpfer & Richter
2002). | - o o |
To ensure a most representative calibration soil data set, we did not focus on extended data
sampling but rather designed the sample selection procedure in terms of soil forming geo-factors
and factor-combinations-across the test site’s landscapes. To represent a relevant spectrum of soil
organic matter (SONI) andtexture that is frequently found with arable soil, the study was based on
72 samples. From these samples, 46 were on 12 bare soil fields across the study area and used as
a calibration test set for multivariate regression modeling purposes. For validation purposes (see
also application and-discussion-paragraph), we. additionally sampled two subsets of 16 and 12
samples respectively. All samples were passed through a 2 mm sieve and were air dried. The soils
were analyzed for total amount. of organic carbon (C,yp) and the total amount of nitrogen (N,) by

Table 1. Partial Least Square Reg‘ressi'éni (PLSR) and Multiple Linear Regression (MLR) m.odels
statistics for the different topsoil parameters. : -

Para- Range (%) 'n= PLSR : MLR
meter - '

Factors R? RMSECV Wavelength (nm) R? RMSECVY

Cog 07-385 46 7 0.90 0.29 800,830, . 086 022
. N 1194,1322 -~ = -

N, 007-036 46 7 . 092 0026 11942115, 087 0019

| 2185,2220 - .

Sand 16-88 46 9 095 9.7 2202, 2238, 087 129

| , 2322,2371 ;
Clay 7-22 46 5 071 42 902, 950, 065 38
' 998, 1165
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dry combustion using an elemental analyzer. The particle size distribution was analyzed using sieve
analysis for the sand fractions and the coarse silt fraction and pipette analysis for the fine fractions
of silt and clay. The min-max ranges of the soil data are shown in Table 1. Effects of soil surface
moisture and roughness were excluded from this study by selecting bare soil fields after seed bed
preparation and organizing the flight campaign after a period of soil surface drying.

Methodology

In this paper, we focus on the development of spectral model calibration towards large scale soil
mapping of C, .., N and the sand and clay contents. Complexity of soil forming and therefore
expected auto-correlatlons between soil parameters, as were found for example between C_, and
N,, has led to the use of multivariate calibration techniques. Two multivariate regression techmques
were used to develop the models to estimate soil parameters from the hyperspectral image data.
These techniques allow the simultaneous quantitative determination of several soil parameter from
individual spectral signatures. Multivariate calibration was performed using Multiple Linear
Regression (MLR) and. Partial Least Square Regression (PLSR). Our goal was to test the
applicability of multivariate regression techniques in hyperspectral remote sensing rather than to
compare the statistical level of model fit. Thus a more simple (MLR) and a more sophisticated and
data compression technique (PLSR) were chosen.
To optimise the derived PLSR model and ensure that it is robust agamst variability of natural
factors, the whole spectra should be considered (Dardenne, 1996). Similarly, it would be usual to
include all of the possibly occurring variations of natural factor combinations in the model
construction so as to achieve a robust model algorithm (Schenk & Westerhaus, 1991). PLSR
reduced the reflectance spectra to a few relevant factors and regressed them to the soil value of a
given sample (Martens & Nees, 1989). The PLSR algorithm will automatically give high weights
to the decisive wavelength regions and low or zero weights to uninformative wavelengths
provided that the spectral and natural variability included in the-calibration set is high enough. As
distinct from PLSR, MLR performs a regression model selecting and combining the: most
significant wavebands from the spectrum. The methods are discussed in detail in Martens & Nas
(1989) and Nas et al. (2002) respectively..
From these regression procedures, models were derived enablmg predlctlon of the s011 value from
the spectra of samples with. unknown soil value. Various wavelength regions and ‘data pre-
treatments were analysed using an optimization routine to find the best calibration algorithm. The
algorithms with the lowest root mean square error of cross validation (RMSECV) was chosen as
statistically the best. Since several data pre-treatments result in similar error, those were chosen that
had the lowest number of factors included in the regression model (Nes et al., 2002).
Finally, the optimal calibration model for each soil parameter was used to predict the particular
parameter from the HyMap spectra for each HyMap image pixel of bare soils resulting in a map

showing the distribution of the topsoil parameter. For independent prediction of the respective-

parameter, it was desirable similarly to find calibration algorithms for the different parameters that
depend on different wavebands. The spectrum of each of the sample sites was extracted from the
image data. For this, we applied a seeded region growing algorithm to identify the spectrally most
similar neighboring pixels. From the spectra of these pixels, the' mean spectrum of €ach site was
calculated. The channel at 1949 nm was excluded from. the spectra due to insufficient s1gna1 to
noise ratio at this water mduced absorption band
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Results
Calibration procedure by PLSR -

The PLSR algorithm will automatically give high weights to the decisive wavelength regions and
low or zero weights to uninformative wavelengths provided that the spectral and natural variability
included in the calibration set is high enough. PLSR reduces the whole reflectance spectra to a few
relevant factors and regresses them to the measured parameter of a given sample. While doing so,
it is recommended to use a calibration design which covers the whole range of possible values
(Brereton 2000). It is also reported that a certain redundancy within the spectra is useful to stabilize

- PLSR models against noise (Martens & Nees 1989) and therefore have to be considered so as to

be more robust than MLR calibration models. This might be relevant in particular for SOM
parameters, since SOM has numerous broad overlapping absorption features located throughout
the.spectra and consequently influence the overall shape of the reflectance curve (Baumgartner et

. al. 1985): Thus, multivariate calibration was performed with PLSR first.
~ From the aforementioned regression, a model was derived enabling prediction of the C, content

from the spectra of samples with unknown C__. The same calibration procedure was a]so employed
to derive a prediction model for the N, content as well as prediction models for the sand and clay
contents. All wavelength regions of tﬁe spectra and different data pre-treatments were analyzed
using an optimization routine to find the best calibration algorithm. Overall the min-max
normalisation gave the best results for the different data pre-treatments. The PLSR models statistics
are compiled in Table 1. : o ,

Calibration procedure by MLR :

Since the PLSR procedure reduces the spectra to a few factors it does not support the idea of
identifying the most significant individual wavebands. Thus, we also applied multivariate
calibration by MLR. Due to the dramatic increase of calculation time with the number of regression
variables, the selection of algorithms was lnmted for the time being to regression models with a
maximum of 4 spectral variables.

Thus, all possible subsets of regression models w1th at least 1 and up to any combination of 2, 3
and 4 spectral variables were calculated for each of the selected soil parameters. The algorithm with
the lowest RMSECYV was.chosen as statistically the best for each soil variable. As before with the
PLSR calibration, overall the min-max normalization gave the best results for the different data pre-
treatments. The MLR models statistics are compiled in Table 1 as well.

The best MLR C_, model [1] was based on the spectral channels C,¢ (wavelength: 800 nm), Cys
(830 nm), C, (1184 nm) and C,, (1322 nm):

Cong=3.5688 -0.0318 Cy +0.0362 Cyg - 00173 C, +00122C,,  [%] . ()

The best MLR Nt model [2] was based on fhe spectral channels C52 (wavelength: 1194 nm), C106
(2115 nm), C110 (2185 nm) and C112 (2220 nm):

Nz =0.3691 - 0.0001529 Cy, - 0.0007059 C, o + 0.002087 Ci1o1t0.001208C,;, [%] (@)
The calibration model output is shown versus the measured reference values for C_, in Figure 1

and for N, in Figure 2. Both models are in the same range of quality expressed by R? a;gd RMSECV.
Most channels are different in the two models, except for channel 52 at 1194 nm mean -

‘wavelength. This underlines the independency of the C,_ and the N, prediction from the spectral

domain.
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F|gure I. Predicted organic carbon (Corg) from callbrated model versus C vaiues measured by
dry combustion reference method.
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Flgure 2. Predlcted total nitrogen (N,)from calibrated model versus N; vaiues measured by dry
combustion reference method
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Flgure 3. Predicted sand content- from calibrated model versus.- sand va!ues measured by sieve
analysis.
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Flgure 4. Predicted clay content from callbrated model versus clay values measuired by pipette
analysis.

The best MLR sand model [3] was based on the spectral channels Cm (wavelength 2202 nm),
Ci153 (2238 nm), C, (2322 nm) and CL.,‘l (2371-nm):

SAND =33 - 068Cm+1ISCU3-076C118+03C121 P | 3)

" The best MLR clay model {4] was based on the spec_:tral chanriels C34 (wavelength: 902 nm), C37

(950 nm), C40 (998 nm) and C51 (1165 nm):
CLAY = 1948 - 0.19 Cy, +0.14 C 5, +0.14 C, - 0.09 C, . @

The calibration model output is shown versus the measured reference values for sand in Figure 3
and for clay in Figure 4. The sand model fits well to the calibration data as expressed by R? and
RMSECY, whereas the clay model is charactetized by a much weaker regression fit. Both texture
models employ different wavebands likewise as against the SOM parameters models. All four
models are mdependent in their parameter prediction: from the spectral domain.

. Application

The optimal calibration models were used to calculate the Corg N sand and clay contents from
the HyMap spectra of each HyMap image pixel. Both the PLSR and the MLR calibration
procedures led to models which are characterized by comparable results in terms of R2 and
RMSECV. As the MLR models were more suitable for simple grid operations, they were used to
calculate C ., N, sand and clay maps of reference fields. Resulting topsoil maps (Figures 5 t0.8)
show the distn'butions of C, org N sand and clay contents across an 88 ha-sized reference field as
an example. The C values (Figure 5) range from 1.2 % (light color) to 2.5 % (dark color). The

N, values (Figure 6) range from 0.13 % (light color) to 0.24 % (dark color). The sand values (Figure
~7) range from 10 % (light color) to 50 % (dark color). The clay values (Figure 8) range from 5 %
(light color) to 20 % (dark color). As silt content supplements sand and clay to 100 % (silt = 100- '
- sand-clay), a silt map was calculated from the sand and clay map (Figure 9). A silt model was

attempted so far.
A validation test using 12 mdependent samples from this field (not used in the cahbratlon
procedures) indicated a close relation of R? = 0.89%** (*** = significant level at P <0,001) and
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Figure 5. Spatlal distribution of the organic carbon content (Corg) across the 88 ha reference
field “Pfingstbreite” (range from 1.2 % = light color to 2.5 % = dark color)

i, Figure 6. Spatial distribution of the total nitrogen content (Nt) across the 88 ha reference fi eld
: f “Pfingstbreite” (range from 0.13 % = light color to 0.24 % = dark color)

Flgure 7. Spatlal dlstmbutmn of the: sand content across the 88 ha reference fi eld “Pf“ ngstbrelte”
(range from 10 % = hght color to 50 % = dark color)
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Figure 8. Spatial distribution of the clay content across the 88 ha reference field “Pfingstbreite”
{range from 5 % = light color to 20 % = dark color) .' . : Lo

Figure 9. .'Spatial distribution of the silt éonﬁent across the 88 ha reference field “Pfingstbreite”
(range from 30 % = light color to 75 % = dark color) .

R2= 0;9'-1‘***,, respectively bétWecn the C,, and N, 6onten§ predicted from the Hymap data using
the MLR models and the'C, ., and N, content measured by-dry combustion method as standard
reference value. The validation test gave relations of R2 = 0.94%** and R% = 0.64***, respectively

“between the sand and clay content predicted from the Hymap data using the MLR models and the
" sand and clay) content measured by sieve and pipette analysis as standard reference value.

With both calibration techniques, PLSR and MLR, we. achieved. similar results for R? and
RMSECYV. This is an unexpected result as there is generally multi-collinearity and strong auto-

. correlation between soil and spectral data. These characteristics have-been found to cause & problem

when using MLR but not when using PLSR (Nes: et ‘al.;"2002) and as a consequence it was
expected that PLSR would give a statistically -better result-than MLR. Further investigation is
required of this issue, for which an extended data set over that used in this study would be

. pecessary. . : o . S .
The relatively weak regression model for clay content might be attributed to the relatively narrow
range of data values. The effect of soil surface moisture was excluded from this study by organizing

flight campaigns after crop seeding and a period of bare soil surface drying.
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Conclusion

This remote sensing approach shows the potential benefits of using image data with carefully

located in-situ field data in digital soil mapping. The results also indicate that soil mapping

procedures must be adapted to the soil parameter of interest and that multivariate calibration
techniques allow calibration modelling as a generic procedure. With the HyMap™ spectrometet,
the wavebands that are relevant to the mapping of the different soil parameters can be recorded and
used in adapted calibration models to simultaneously predict a suite of different soil parameters.
The method proposed provides a2 means of simultaneously estimating topsoil SOM and texture in
an extensive, rapid and non-destructive manner, whilst avoiding the spatial accuracy problems
associated with interpolation. The use of remotely sensed data in the manner proposed in this paper
can also be used to monitor and better understand the influence of management and land use
practices on SOM composition and content. In precision agriculture, it can be used to establish the
precise spatial locations of specific management practices, as a pre-requisite to much of the
modeling and estimation that needs to be conducted for variable rate applications. How this
modeling and estimation is best integrated with site specific management has not yet been
completely resolved. :
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