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Zusammenfassung

In dieser Arbeit werden Protokolle zur Bewältigung verschiedener Kommunikationsaufgaben
unter Beteiligung quantenmechanischer Quellen unter Einbeziehung von Quellunsicherheit prä-
sentiert.
Zugrunde liegen den Betrachtungen zwei aus der klassichen Informationstheorie wohlbekann-
te Modelle der Quellunsicherheit: zusammengesetzte gedächtnislose und beliebig variierende
Quantenquellen. In beiden Modellen wird die Statistik der Quelle nicht, wie im Falle einer ge-
dächtnislosen quelle mit perfekter Systemkenntnis, durch einen einzelnen generierenden Quan-
tenzustand beschrieben. Die statistischen Eigenschaften der Quelle sind vielmehr durch eine
Konfidenzmenge möglicher Zuständen auf dem Hilbertraum des Systems definiert.
Im ersten der genannten Quellenmodelle, der zusammengesetzten gedächtnislosen Quelle, er-
halten die beteiligten Kommunikationsparteien zwar Ausgaben einer gedächtnislosen Quanten-
quelle. Der generierende Zustand ist den Parteien allerdings unbekannt und lediglich als ein
Element der Konfidenzmenge identifiziert.
Das Modell der beliebig variierenden Quantenquelle geht von einem wesentlich höheren Grad
der Unwissenheit der Systemnutzer aus. Die Statistik jedes der von der Quelle emittierten Sy-
steme kann durch einen beliebigen, der in der generierenden Menge enthaltenenen Zustände,
beschrieben sein.
In Kapitel 3 wird das Quanten-State Merging mit klassischer Vorwärtskommunikation unter den
genannten Modellen von Quellunsicherheit betrachtet. Unter der Annahme einer zusammenge-
setzten Zweiparteien-Quantenquelle werden universelle, asymptotisch fehlerfreie, Protokolle für
das Quanten-State Merging hergeleitet. Diese erreichen asymptotisch sowohl in ihrer Verschrän-
kungsbilanz als auch hinsichtlich der klassischen Vorwärtskommunikation optimale Raten.
Unter Vorraussetzung einer beliebig variierenden Quantenquelle, erweisen sich die für viele an-
dere Kodierungsprobleme generisch geeigneten Robustifizierungstechniken allerdings als sub-
optimal.
Unter Anwendung der Ergebnisse aus Kapitel 3 werden in Kapitel 4 Protokolle für die Ver-
schränkungsdestillation mit unidirektionaler klassischer Kommunikation für zusammengesetzte
Zweiparteien-Quantenquellen hergeleitet, die asymptotisch optimale Raten der Verschränkungs-
ausbeute erreichen.
Wird das weitergehende Modell einer beliebig variierenden Zweiparteienquelle veranschlagt,
erweist sich der Robustifizierungsansatz hier als erfolgreich. Dies ermöglicht die Herleitung von
Protokollen, die auch für dieses Quellenmodell asymptotisch optimal bezüglich ihrer Verschrän-
kungsausbeute sind.
In Kombination mit entsprechenden Beweisen der Umkehrungen ergeben sich daher vollstän-
dige Kodierungssätze für die Verschränkungsdestillation unter Assistenz unidirektionaler klas-
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sischer Kommunikation für beide Modelle von Systemunsicherheit. Wie in der Quanteninfor-
mationstheorie häufig der Fall, werden die Kapazitäten funktionell durch Multi-Letter-Formeln
charakterisiert, die im allgemeinen nicht vollständig durch die Statistik einer einzelnen Quel-
lausgabe bestimmt sind. Allerdings erlauben die Kapazitätsformeln, eine Stetigkeit und damit
Stabilität der Güte des Systems bei Störung der Konfidenzmenge nachzuweisen.
In Kapitel 5 wird die Erzeugung klassischer sicherer Schlüssel aus zusammengesetzten teilklas-
sischen Dreiparteien-Quantenquellen untersucht. Neben zwei legitimierten Nutzern des Systems
hat ausserdem eine dritte, abhörende, Kommunikationspartei Zugriff auf von der Quelle emit-
tierte Teilsysteme.
Die legitimerten Nutzer haben die Aufgabe, eine möglichst perfekt gleichverteilte gemeinsa-
me Zufallsvariable aus ihren Quellausgaben zu generieren. Darüberhinaus dürfen dem Abhörer
Messungen auf seinen Systemen asymptotisch keine Rückschlüsse auf die Ergebnisse dieser Zu-
fallsgrösse ermöglichen. Zur Quantifizierung dieser Geheimhaltungsanforderung wird ein star-
kes Sicherheitskriterium veranschlagt.
Unter der Annahme, dass einer der legitimierten Nutzer lediglich klassische Quellausgaben er-
hält und dieser als Sender zusätzlich die Freiheit öffentlicher klassischer Kommunikation hat,
werden universelle Protokolle zur Erzeugung solch sicherer Schlüssel entwickelt. Unter zusätz-
licher Vorraussetzung einer geeigneten Regularitätsbedingung an die Konfidenzmenge von Zu-
ständen erweisen sich diese als asymptotisch optimal bezüglich der erreichten Schlüsselraten.
Kontrastierend dazu wird die Aufgabe der Erzeugung sicherer Schlüssel auch in dem Fall unter-
sucht, dass der sendende, legitimierte, Nutzer perfekte Kenntnis der Marginalstatistik auf seinen
Teilsystemen besitzt. Es wird eine funktionelle Charakterisierung der Güte für die Schlüsseler-
zeug hergeleitet, wobei hier auf eine zusätzliche Regularitätsbedingung verzichtet werden kann.
Interessanterweise gleichen sich Schlüsselerzeugungskapazitäten mit und ohne diese Kenntnis
des Marginalzustands, solange die generierende Konfidenzmenge die gennante Regularitätsbe-
dingung erfüllt, während die Kapazitäten substantiell differieren können, falls die Quelle nicht
regulär ist.
Anhand eines Beispiels wird demonstriert, dass perfekte Kenntnis der Marginalstatistik beim
legitimierten Sender bisweilen extreme Vorteile gegenüber der Situation ohne diese Kenntnis
zur Folge hat. Während mit Marginalkenntnis des legitimierten Senders auf einfachem Wege ein
in Sicherheit und Gleichverteilung perfekter Schlüssel schon in endlicher Blocklänge generiert
werden kann, ist ohne diese Kenntnis keine positive Rate der Schlüsselerzeugung erreichbar.
Abschließend werden die oben genannten Regularitätsbedingungen einer genaueren Betrach-
tung unterzogen. Es zeigt sich, dass allgemeine Resultate über Halbstetigkeiten mengenwertiger
Abbildung in Kombination mit den gegeben Performanz- und Sicherheitskriterien sogar eine
Abschächung der oben genannten Regularitätsbedingungen erlauben.
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Abstract

In this thesis, protocols for several communication tasks involving quantum sources are pre-
sented, which are robust against statistical uncertainties of the involved systems.
Two prominent models of source uncertainty which are well known in classical as well as quan-
tum information theory are considered, compound memoryless and arbitrarily varying quantum
sources. For both models, the statistics of the source is - opposed to the case of perfect system
knowledge - rather described by a set of generating states than by a single state.
If the first of the mentioned models, the compound memoryless quantum source, is considered,
the communication parties receive systems emitted by a memoryless source, while the generat-
ing state can be any element from the set of possible states.
If an arbitrarily varying quantum source is considered, the users face system uncertainties on a
substantially higher level. Each of the source outputs can have statistics according to any state
from the set.
In Chapter 3 the quantum state merging task is considered for both of the mentioned models of
source uncertainty. First, presence of a compound memoryless bipartite quantum source is as-
sumed. Universal and asymptotically faithful protocols for quantum state merging with classical
forward communication are developed, which achieve optimal entanglement as well as classical
forward communication rates.
In case of a general arbitrarily varying quantum source, it turns out, that the so-called robusti-
fication approach which is generically sucessful for several other coding problems, turns out to
be suboptimal.
As an application of the results from Chapter 3, one-way entanglement distillation protocols for
bipartite compound memoryless quantum sources, which are optimal regarding their entangle-
ment rates are derived.
For arbitrarily varying bipartite quantum sources, the aforementioned robustification approach
is shown to be suitable. In this way, protocols which achieve optimal entanglement rates are
developed also for general arbitrarily varying sources.
The derived protocols combined with proofs for the corresponding converse bounds result in full
coding theorems for one-way entanglement distillation for both models of system uncertainty.
As often observed in quantum information theory, a multi-letter characterization of the capaci-
ties is given rather than a description in terms of functions which can be evaluated on a single
source output. However, the obtained capacity functions are shown to be continuous, which at
least guarantees a certain stability of the capacities against perturbations of the uncertainty sets.
In Chapter 5, generation of secret keys from compound memoryles tripartite semiclassical quan-
tum sources is considered. Besides two legitimate users of the system, also an eavesdropping
third party has access to subsystems emitted by the source.
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The legitimate users try to generate a perfectly correlated and equdistributed joint random vari-
able from their samples. Moreover, it is demanded, that the eavesdropper gains asymptocally
zero knowledge about the random variable from performing measurements on his/her subsys-
tems. To quantify privacy of the key, a strong security criterion is established.
Assuming one of the legitimate parties receiving classical systems from the source and more-
over being granted with the possibility of unlimited classical public communication, universal
protocols for secret-key distillation are derived. If in addition a certain regularity condition is
fulfilled for the generating uncertainty set of states, the achieved secret-key rates turn out to be
optimal in the asymptotic limit of infinitely large numbers of source outputs.
To contrast the obtained results, secret-key distillation from compound memoryless semiclassi-
cal sources is considered also in situations, where the legitimate sender is equipped with perfect
knowledge of the marginal source statistics on his/her systems deriving from the source state. A
capacitiy formula for the forward secret-key distillation capacity is derived for this case, while
the assumption of regularity is not necessary.
Interestingly, capacities are equal with and without sender marginal knowledge as long the
source fulfills the regularity condition, while they may substiantially differ for non-regular
sources.
An example is given to demonstrate, that sender’s perfect marginal knowledge may lead to ex-
treme advantage compared to the case without this knowledge being granted. While having
marginal knowledge allows to obtain perfect secret-keys at positive capacity via simple proto-
cols which provide perfectly secure keys even for finite blocklengths, lack of sender marginal
knowledge forbids to distill secret-keys at any strictly positive rate.
The considerations on regularity are concluded by a review of the mentioned regularity condi-
tion. It turns out, that application of the general theory of continuity of set-valued maps together
with properties of the defined performance and security measures allow even to weaken the reg-
ularity conditions. This yields a larger class of compound memorless quantum sources with a
general capacity formula.
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Notation
R+ Set of nonnegative real numbers
L(H,K) Set of linear maps fromH to K
L(H) Set of linear maps fromH toH
S(H) Set of density matrices onH
P(X) Set of probability distributions of X
C(H,K) Set of completely positive and trace preserving (c.p.t.p.) maps

from L(H) to L(K) (we also use the term quantum channel)
C↓(H,K) Set of completely positive and trace nonincreasing maps

(operations) from L(H) to L(K)
CQ(X ,H) Set of classical quantum channels X → S(H)
conv(A) Convex hull of A
A Closure of A
Ac Complement of A
A ⊂ B A is a (not necessarily proper) subset of B
⌊a⌋ Largest integer not exceeding a
⌈a⌉ Smallest integer not less then a
[N] The set {1, . . . ,N}, N ∈N
exp, log Are understood to the base 2
H(p) Shannon entropy of probability distribution p
h(x) Shannon entropy of the binary probability distribution with values (x,1 − x), x ∈ [0,1]
S(ρ) Von Neumann entropy of density matrix ρ
S(A∣B,σAB) Conditional von Neumann entropy of bipartite density matrix σAB
I(A;B,σAB) Quantum mutual information of a bipartite state σAB
Ic(ρ,N) Coherent information of a density matrix ρ and quantum channel N
I(A⟩B,σAB) Coherent information of the bipartite density matrix σAB
D(p∣∣q) Kullback-Leibler divergence of probability distributions p, q
D(ρ∣∣σ) Quantum relative entropy of density matrices ρ, σ
sr(ψ) Schmidt rank of the bipartite state vector ψ
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1 Preliminaries

In this chapter, we fix notation and state some conventions which are freely used throughout
this thesis. Many other results have become quite standard in classical and quantum information
theory. If not referenced within the text, they can be easily found in the textbooks [CK11] and
[Wil13].
All Hilbert spaces appearing in this work are considered to be finite dimensional complex vector
spaces. L(H) is the set of linear maps and S(H) the set of states (density matrices) on a Hilbert
spaceH in our notation. For a finite alphabet X and a Hilbert space K, we denote by CQ(X ,K)
the set of classical-quantum channels, i.e. maps from X to S(K)
Regarding states on multiparty systems, we make use of the following convention. For a system
with subsystems belonging to parties X,Y,Z, for instance, we writeHXY Z ∶= HX ⊗HY ⊗HZ ,
and denote the marginals by the letters assigned to subsystems, i.e. σXZ ∶= trHY (σ) for σ ∈
S(HXY Z) and so on.
We denote the quantum fidelity of positive definite matrices ρ, σ ∈ L(H) by

F (ρ, σ) ∶= ∥ρ
1
2σ

1
2 ∥

2

1
.

If ρ, σ are density matrices, we frequently use the inequalities

1 −
√
F (ρ, σ) ≤ 1

2
∥ρ − σ∥1 ≤

√
1 − F (ρ, σ) (1.1)

relating fidelity to the trace norm distance of ρ and σ.
Informational quantities
The von Neumann entropy of a quantum state ρ is defined by

S(ρ) ∶= −tr(ρ log ρ),

where we denote by log(⋅) and exp(⋅) the base two logarithms and exponentials throughout this
paper. Given a quantum state ρ on HXY , we denote the conditional von Neumann entropy of ρ
given Y by

S(X ∣Y, ρ) ∶= S(ρ) − S(ρY ),

the quantum mutual information by

I(X;Y, ρ) ∶= S(ρX) + S(ρY ) − S(ρ).
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Chapter 1. Preliminaries

A convenient way of representing systems which have quantum as well as classical subsets is to
coherify the classical systems. The density matrix

ρ ∶= ∑
x∈X

PX(x) ∣x⟩ ⟨x∣ ⊗ ρx ∈ S(HX ⊗KB) (1.2)

represents a density matrix of a source, where the statistics of a subystem is driven by a classical
random variable X with values in X and ρx ∈ S(KB) is a density matrix on KB for each x ∈ X .
A quantum system with Hilbert spaceHX ∶=C∣X ∣ was introduced where each x ∈ X corresponds
to the element ∣x⟩ of a once and for all fixed orthonormal basis (we may assume that this is for
each system introduced the canonical basis). We set the convention to indicate the quantum
systems belonging to coherified classical systems by the corresponding random variable. This
convention extends to notation of entropic quantities. E.g.

I(X;B,ρ) =H(X) + S(ρB) − S(ρ). (1.3)

corresponds to the quantum mutual information of the state ρ in (1.2). The conditional quantum
mutual information of a density matrix σABX is defined

I(A;B∣X,σ) ∶= S(σAX) + S(σBX) − S(σABX) − S(σX).

If X belongs to a classical system i.e

σ = ∑
x∈X

PX(x) ∣x⟩ ⟨x∣ ⊗ σAB,x

with ρAB,x being a bipartite density matrix on the remaining systems Hilbert spaces, it holds

I(A;B∣X,σ) = ∑
x∈X

PX(x) I(A;B,ρAB,x).

Whenever informational quantities are evaluated on classical systems, we feel free to express
them in terms of the corresponding classical informational quantities evaluated on the corre-
sponding probability distributions resp. random variables where we completely adopt the nota-
tion and calculational rules as presented in [CK11] if no special reference is given.

Types, typical sequences/subspaces
From there, we also take the definition and properties of types and typical sequences. For given
alphabet X and n ∈ N (which we always regard being finite) we denote the set of probability
distributions on X as P(X). We will use [N] use as a shortcut for the set {1, . . . ,N} for each
N ∈N. The set of types (i.e. empirical distributions) on X n is denoted by T(n,X), it holds

∣T(n,X)∣ ≤ (n + 1)∣X ∣.

For given type λ ∈ T (n,X), we denote the set of λ-typical words in X n by Tnλ . For each δ > 0,
p ∈P(X), the set of δ-typical sequences for p in X n is defined by

Tnp,δ ∶= {xn ∈ X n ∶ ∀a ∈ X ∶ ∣ 1nN(a∣xn) − p(a)∣ ≤ δ ∧ p(a) = 0⇒ N(a∣xn) = 0} , (1.4)
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where N(a∣xn) is the number of occurrences of a in xn. Several kinds of bounds are known for
these sets, we will explicitly employ the bound

pn ((Tnp,δ)c) ≤ 2−ncδ
2

(1.5)

which holds with the universal constant c ∶= 2
ln 2 for each δ > 0 and large enough n.

Hausdorff distance
For any two nonempty sets X ,Y of a metric space (M,d), their Hausdorff distance is defined
by

dH(X ,Y) ∶ = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

= inf{ε > 0 ∶ Y ′ ⊂ Xε ∧ X ⊂ Yε}

whereAε denotes the ε-blowup ofA (with regard to d) for each setA. We use this concept mainly
with the underlying spaces being the set of probability distributions on a finite set equipped with
the metric induced by the variational distances or on the set of density matrices on a Hilbert
space equipped with the trace distance. On the set of subsets of a bounded set, dH has only finite
values. Several properties of the Hausdorff distance are inherited from the trace norm. We will
use the triangle inequality

dH(A,C) ≤ dH(A,B) + dH(B,C) (A,B,C ⊂ H) (1.6)

and monotonicity of the Hausdorff distance under c.p.t.p. maps, i.e. for each N ∈ C(H,K),
A,B ∈ S(H), it holds

dH(A,B) ≥ dH(N(A),N(B)), (1.7)

where N(X) is the image of each set X under N .

Local operations and classical communication (LOCC) channels
An important class of protocols for our considerations in Chapter 3 and Chapter 4 are local oper-
ations and classical communication (LOCC) channels In this section, we give a short account to
the class of one-way LOCC channels which we use in our considerations. For further informa-
tion, we recommend the survey article by Keyl [Key02] (and references therein). A more recent
general treatment can be found in Ref. [Chi+14].
Crucial for the definition of LOCC channels is the concept of an instrument. Instruments (or op-
eration valued measures[DL70]) were introduced to model the situation, where a measurement
is made, and not only the measurement results but also the state transformations according to
the measurement values are taken into account. To each measurement result i, there is assigned
a positive trace non-increasing cp map Ii which transforms the input state. In this paper, we
restrict ourselves to finite sets of possible measurement results.
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Chapter 1. Preliminaries

Definition 1. A (finite) instrument A is a map

A ∶ I → C↓(H,K)
i↦ Ai (i ∈ I)

with a finite index set I and Hilbert spaces H, K, such that ∑i∈I Ai is trace preserving. The
instrument A is completely determined by the family {Ai}i∈I . We will sometimes write A =
{Ai}i∈I to denote the instrument A.

For bipartite systems, an instrument at, say, A’s (the sender’s) site can be combined with a
parameter-dependent channel use, which is defined by a function

B ∶ I → C(HB,KB)
i↦ Bi (i ∈ I),

i.e. each Bi is a completely positive and trace preserving map. A one-way LOCC channel is
then defined as a combination of an instrument and a parameter-dependent channel. This leads
to the following definition.

Definition 2. A channelN ∈ C(HAB,KAB) is calledA→ B one-way LOCC channel, if it takes
the form

N(ρ) = ∑
i∈I
Ai ⊗Bi(ρ) (ρ ∈ S(HAB)), (1.8)

where A = {Ai}i∈I , Ai ∈ C↓(HA,KA), is an instrument and {Bi}i∈I is a parameter-dependent
channel.

A one-way LOCC can also again be considered as a “one-way local” instrument[Chi+14] with
members {Ai ⊗ Bi}i∈I . There is a convenient way of handling one-way LOCCs. One can
equivalently write the instrument A used on A’s site in channel form

A(ρ) = ∑
i∈I
Ai(ρ) ⊗ ∣ei⟩ ⟨ei∣ (ρ ∈ S(HA))

with an orthonormal basis {ei}i∈I ⊂ C∣I ∣. If the basis is assigned to a system on B’s site (which
models a classical communication and coherent storage of the measurement results at the re-
ceiver’s system), the parameter-dependent channel can be written in the form

B(ρ) ∶= ∑
i∈I

∣ei⟩ ⟨ei∣ ⊗ Bi(ρ) (ρ ∈ S(HB))

(this map may not not be trace-preserving). Then we have for ρ ∈ S(HAB)

N(ρ) = (idKA ⊗B) ○ (A⊗ idHB)(ρ)
= ∑
j,i∈I
Ai ⊗Bj(ρ) ⊗ ∣ei⟩ ⟨ei∣ ∣ej⟩ ⟨ej ∣

= ∑
i∈I
Ai ⊗Bi(ρ) ⊗ ∣ei⟩ ⟨ei∣ ,

4



where the second line includes a permutation of the tensor factors. Tracing out the classical
information exchanged within the application of the map (i.e. the system with space C∣I ∣) leads
back to the form given in Eq. (1.8). The more general class of two-way LOCC channels exhibits
a more intricate definition for which we refer to [HZ12].
Moreover, Def. 2 should not be confused with the definition of the class of separable channels.
A channelM ∈ C(HAB,KAB) is called separable, if it takes the form

M(ρ) = ∑
i∈I
Ai ⊗Bi(ρ) (ρ ∈ S(HAB)) (1.9)

where Ai ∈ C↓(HA,KA) and Bi ∈ C↓(HB,KB) for all i ∈ I . From eqns. (1.8) and (1.9), the
difference between the one-way LOCC and separable channels can be observed. While separable
channels allow general trace decreasing cp maps for both parties, the receiver party is restricted
to usage of trace preserving cp maps (i.e. channels) in the one-way LOCC class of channels.
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2 Introduction

System uncertainties are an unavoidable feature of real-world communication systems. On the
theoretical side, it is therefore a major challenge to develop protocols and coding schemes which
have the property of being robust regarding variations of the statistical parameters of communi-
cation systems. This thesis presents results of endeavours in this direction within the framework
of quantum Shannon theory, where mainly communication systems including statistical uncer-
tainties in the states of quantum sources are considered.
We consider the two following prominent models of source uncertainty, where the statistics of
the source is in each of both cases described by a set X ∶= {ρs}s∈S of density matrices on the
system Hilbert space:

• Compound memoryless quantum source. A compound memoryless quantum source
models the situation, where the source outputs have memoryless structure in each case,
but the generating state can be any member of X. A block of n outputs of the source is
described by a state

ρs ⊗ ⋅ ⋅ ⋅ ⊗ ρs
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

,

where ρs can be any state from X.

• Arbitrarily varying quantum source (AVQS). If the communication parties are con-
fronted with an arbitrarily varying quantum source, the users cannot even be sure, that
the state generating the output statistics remains constant. A block of n outputs of the
source are described by a sequence

ρs1 ⊗ ⋅ ⋅ ⋅ ⊗ ρsn ,

where (s1, . . . , sn) can be any n-sequence of letters contained in the index set S.
The AVQS model covers a highly pessimistic assumption on the scenario. It can be un-
derstood to include presence of an additional malicious party (a “jammer”) which attacks
the communication by freely choosing source states from X.

The above introduced models of source uncertainty have been studied extensively within the
framework of classical Shannon theory since the sixties of the past century for source as well
as channel coding problems (see the excellent resource [CK11] for an exhaustive overview
of the results gained). When the research leading to this thesis was launched, the first results
regarding compound and arbitrarily varying systems within quantum Shannon theory where
just published or close to be published. Here we mention the full coding theorem for classical
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message transmission over compound classical-quantum channels [BB09], the full coding
theorem for the quantum capacities of compound quantum channels [BBN08], [BBN09], and
the corresponding results [AB07], [Ahl+12] considering the capacities of arbitrarily varying
classical-quantum and quantum channels. The mentioned results covered problems for systems
under uncertainties of quantum channel resources. Their source counterparts introduced above
did receive hardly any scientific attention up to then. Explicitly, only two major results where
known, the first being a generalization of the Sanov Theorem [San57] well known in classical
stochastics proven in [Bje+05], and a universal version of the quantum source compression
theorem [Sch95], which appeared in [Joz+98].
The results presented here summarize an attempt, to remove a bit of this blind spot, and add
some insights on this topic to the panorama of results in quantum Shannon theory.
In this work, three different communication tasks are considered, which are introduced in the
following.

Forward quantum state merging (results partly published in [BBJ13], [BJ14b]).
Quantum state merging, introduced by Horodecki, Oppenheim, and Winter [HOW05] is
regarded as one of the primitive protocols close to the root of the so-called “family of quantum
protocols” [DHW04], [Abe+09]. In this document we use the term “(quantum) state merging”
to label the corresponding communication task rather then the protocol construction to perform
this task as used in [HOW05], [HOW07].
Within the quantum state merging task, two communication parties A and B have access on
the outputs of a bipartite quantum source. They aim to transfer A’s share of the source state to
B such that after the process, B holds systems which are prepared according to the statistics
of the complete source output. To accomplish this state transfer, they are allowed to perform a
so-called one-way Local Operations and Classical Communications (LOCC) protocol, where
they act locally on their systems while A is allowed to send classical messages to B over a
noiseless classical channel. As an additional commmunication resource, the have access to
additional shared maximally entangled states.
In [HOW07] the optimal asymptotic entanglement and classical communication costs where
determined in a case of a memoryless quantum source with perfectly known state.
For a memoryless source with generic density matrix ρAB , the optimal entanglement cost was
determined to be given by the conditional von Neumann entropy S(A∣B), which was shown to
be achievable with optimal classical forward communication cost rate I(A;E), which is the
quantum mutual information between A and a system E purifying the source.
The result from [HOW07] where appealing for several reasons. On one hand, it provided the
negative values of the conditional von Neumann entropy a clear operational meaning. Some-
times state merging can be accomplished with a gain rather than consumption of maximally
entangled systems (negative entanglement rates), which in turn can be used as a resource in
further communication tasks.
The protocol introduced in [HOW07] on the other hand, has the property of being of primitive
nature in the sense, that optimal protocols for several other communication tasks can be derived
from it. Examples for such tasks are one-way entanglement distillation [Dev05], distributed
compression of quantum sources (which is regarded as a fully quantum version of the classical
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Slepian Wolf protocol), and entanglement generation of quantum multiple access channels
[YHD08].
In light of these facts, it seems highly desirable, to develop protocols for quantum state merging
being universal in the sense, that they are robust against imperfections in the user’s knowledge
of the source density matrix.
Chapter 3 is devoted to this goal. Assuming the bipartite source subject to state merging to be
a compound memoryless quantum source, we continue research begun in the author’s diploma
thesis [Jan10]. We develop protocols, which are optimal regarding their entanglement as well
as classical forward communication rates. Moreover we provide a new, stronger, lower bound
to the forward classical communication rate demanded to accomplish asymptotically perfect
merging of memoryless quantum sources. It turns out, that the needed classical communication
rate cannot substantially be decreased by allowing suboptimal entanglement rates. This enables
us, to give a full single-letter characterization of the classical forward communication and
entanglement rate resource tradeoff region of quantum state merging in case of an arbitrary (not
necessarily finite or countable) compound memoryless quantum source.
Assuming presence of an arbitrarily varying quantum source, we point out, that so-called
robustification and elimination techniques developed by Ahlswede [Ahl78] in the regime of
classical channel coding do not lead to optimal entanglement consumption rates. We give a
counterexample, where strictly higher entanglement rates are possible for an arbitrarily varying
quantum source generated by a finite set of quantum states, then achieved by application of the
robustification technique.

Forward entanglement distillation (results partly published in [BBJ13], [BJ14b]).
Entanglement is known as a powerful and versatile communication resource in quantum infor-
mation theory. An early striking example of this fact is delivered by the quantum teleportation
protocol [Ben+93], where shared maximal entanglement and the possibility of classical forward
communication enables two communication parties to simulate a noiseless quantum channel.
A further development of this idea seems to open a way to future long-distance transmission
lines within a future “quantum” internet. It is impossible to coherently implement repeater sta-
tions in the manner established in present technology because the no-cloning theorem of quan-
tum mechanics prevents universal read-and-repeat procedures. Therefore, genuinely “quantum”
repeater protocols [Dür+99] built from nested teleportation and entanglement swapping proce-
dures are a promising alternative. To empower such quantum repeaters, it will be necessary to
distill nearly maximal entangled pairs from noisy entanglement generated by systems under un-
certainty.
In case of a memoryless bipartite quantum source with the generating density matrix being per-
fectly known to the communication parties, optimal asymptotic entanglement distillation rates
of LOCC protocols with uni- as well as bidirectional classical communication where determined
in [Dev05]. Therein, a correspondence between protocols for distillation of classical secret keys
and quantum entanglement where exploited.
As a first result, we determine the optimal entanglement rates for one-way LOCC protocols for
compound memoryless bipartite quantum source. Rather than utilizing the connection between
entanglement distillation and classical secret-key distillation mentioned above, we derive en-
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tanglement distillation protocols from quantum state merging protocols for compound quantum
sources. We characterize the one way entanglement distillation capacity by a multi-letter for-
mula which generalizes the one derived in [Dev05] in this direction.
We apply the obtained results, to give another proof of the coding theorem for the entangle-
ment generation capacity of compound quantum channels originally proven in [BBN09]. Our
approach allows a conceptually simple proof, by deriving entanglement generation codes for
compound channels from protocols for entanglement distillation from effective joint states ob-
tained between sender and receiver by channel transmission.
Opposed to our observations made for quantum state merging protocols, the robustification and
elimination techniques lead to optimal entanglement distillation protocols for arbitrarily varying
quantum sources. By following this strategy, we also to determine the optimal rates for one-way
entanglement distillation also in case of arbitrarily varying quantum sources. Unfortunately, the
characterizations of the one-way entanglement distillation capacities for both models of source
uncertainty are given in terms multi-letter formulae which are not very convenient for calcula-
tion of numerical values of the entanglement distillation capacities.
However, since the capacity formulas derived in the compound as well as arbitrarily varying case
are continuous functions of the uncertainty sets, we are able to prove stability of the problem. If
two sets of generating density matrices are close in the Hausdorff distance, their one-way entan-
glement capacities are close for the corresponding compound and arbitrarily varying quantum
sources.

Forward secret key distillation.
Common randomness shared by cooperating communication parties which additionally has the
property of being uncorrelated to a third, eavesdropping party is well-known as a valuable re-
source in classical as well as quantum information theory. This fact becomes apparent e.g. when
legitimate parties use a one-time pad coding [Ver26] procedure to securely randomize codewords
to enhance the security of messages sent over an insecure transmission line.
A possible way to generate this resource is, to distill it from potentially noisy and insecure cor-
relations pre-shared by the parties. Development of methods to obtain such secret-keys was for
long a classic domain cryptographic research [DH76]. The cryptographic approach is usually,
to exploit assumed limited computational capabilities of eavesdropping parties which lead to
substantial advantages deriving from cooperation of legitimate parties when they apply high-
complexity protocols. We follow the more recent so-called information-theoretic approach,
where rather the principal limitations of the eavesdropping parties are utilized to obtain secu-
rity. Initiated by works of Ahlswede and Csiszar [AC93] and Maurer [Mau93], this direction
was intensively studied in the past decades, such that integrating security on the physical layer
of communication systems more and more heads towards technological application [WTS07].
The possibilities of distilling secret keys by information theoretic methods was also studied for
quantum systems in [Dev05], where the secret-key distillation of classical-quantum-quantum
sources and completely quantum sources where studied. However, to obtain these results, the
sources where assumed to be memoryless with statistical properties (i.e. the generating density
matrix) perfectly known to the legitimate parties.
In this thesis, we consider presence of a compound memoryless classical-quantum-quantum
(cqq) source where one receiver is assumed to receive outputs of a classical source, while the re-
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maining communication parties receive quantum systems. The classical systems-receiving party
is also allowed to broadcast classical messages to both of the other parties to support processing.
It turns out, that some compound cqq sources are notoriously hard to approximate. This fact
leads us to introducing a regularity condition on sets of cqq density matrices, where we demand,
the possible sets of marginal states of the sender-legitimate receiver and sender-eavesdropper
systems only to differ in a controllable amount when the derived marginals on the sender system
alone do not differ much. For the class of density matrices fulfilling this property, the approxi-
mation methods we develop lead to a proof of achievability, whose optimal rates are also optimal
in general, i.e. we obtain a full characterization of the forward secret-key capacity.
We also consider the case, where the sending party is equipped with perfect knowledge of the
marginal distribution on his/her systems derived from the source. The capacities are shown to
be equal for the cases with and without this kind of sender information. Moreover, the formula
derived is shown to be also valid for all irregular sources.
The reader may ask for a general proof of validity of the mentioned capacity formula also for the
case of no sender state information. Regarding this question we prove a disappointing negative
result. The forward secret-key distillation capacities with and without sender state information
differ substantially for some compound cqq sources.
Things get even harder. A counterexample we introduce shows, that the legitimate parties can
achieve positive capacity with zero error and zero correlation of the key in case of sender-state
knowledge, while they are unable to achieve any positive rate without sender state knowledge.
This sheds some light on the structure of compound cqq sources. Even if there may be weaker
regularity conditions than the one presented here which lead to a general capacity formula, the
notion of regularity bears an operational core. While perfect knowledge of the sender’s marginal
state does not help to achieve higher forward secret-key distillation rates for regular sources,
irregularity of the source can split both capacities.
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3 Quantum state merging under source
uncertainties

3.1 Definitions and results

In this section, we provide precise definitions regarding one-way quantum state merging for
compound and arbitrarily varying quantum sources. We first describe the general type of proto-
cols we admit for quantum state merging where we are interested in the entanglement as well as
classical resource costs of quantum state merging.
A quantum channel M is an (l, kl,Dl) A → B merging for bipartite sources on HAB ∶=
HA ⊗HB , if it is an A→ B LOCC channel (according to Definition 2 in Chapter 1)

M ∶ L(Kl0,AB ⊗H⊗l
AB) → L(Kl1,AB ⊗H⊗l

B′B), (3.1)

with kl ∶= dimKlA,0/dimKlA,1, where we assume KA,i ≃ KB,i (i = 1,2), and

M(x) =
Dl

∑
k=1

Ak ⊗Bk(x). (x ∈ L(Kl0,AB ⊗H⊗l
AB)) (3.2)

where {Ak}Dlk=1 ⊂ C↓(Kl0,A ⊗ H⊗l
A ,Kl1,A) constitutes an instrument and {Bk}Dlk=1 ⊂ C(KlB,0 ⊗

H⊗l
B ,KlB,1 ⊗ H⊗l

B′B) is a family of channels depending on the index k ∈ [Dl]. The spaces
KlAB,0,KlAB,1 are understood to represent bipartite systems shared by A and B, which carry
the input and output entanglement resources used in the process. As a convention, we will
incorporate the maximally entangled states φli ∈ S(KlAB,i), i = 0,1 into the definition of the
protocol, we set

kl ∶=
dimKl0,A
dimKl1,A

=
dimKl0,B
dimKl1,B

= sr(φl0)
sr(φl1)

. (3.3)

As a measure of success for merging procedures, we define the merging fidelity ofMl given a
state ρ ∈ S(H⊗l

AB) by

Fm(ρ,Ml) ∶= F (Ml ⊗ idHlE(φ
l
0 ⊗ ψ), φl1 ⊗ ψ′) . (3.4)

In (3.4), ψ is a purification of ρ with an environmental system described on an additional Hilbert
space HlE (usually HlE = H⊗l

E with some space HE), and ψ′ is a state identical to ψ but defined
onH⊗l

B′B completely under control ofB. In [Jan10], a representation of the merging fidelity was
derived, which implies the following properties of Fm, we will use frequently within the next
chapters.
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Lemma 3 ([Jan10], cf. [BBJ13]). For a state ρ ∈ S(HAB) and a cptp mapM as introduced
above, it holds

1. Fm(ρ,M) does not depend on the chosen purification of ρ

2. Fm(⋅,M) is a convex function.

3. Fm(ρ, ⋅) is a linear function.

Next, we give precise definitions of achievable rate pairs and cost regions for one-way quan-
tum state merging in case of compound and arbitrarily varying bipartite quantum sources.
For the next subsections, we will always assume X to be any set of bipartite quantum states
X ∶= {ρs}s∈S ⊂ S(HAB). The expressions “compound source X” and “AVQS X” are shortcuts
to the respective compound and arbitrarily varying sources generated by X.

3.1.1 Compound memoryless quantum sources

In this section, we define achievable rate pairs for one-way quantum state merging of the com-
pound source X. A compound quantum source models a situation, where A and B receive for
each blocklength n outputs with density matrix ρ⊗ns where s can be any index from the index set
S. Consequently, they have to apply protocols which are universal in the sense, that the merg-
ing fidelity is suitably lower-bounded for each of the possible statistics generated by the density
matrices from X.

Definition 4. A pair (Rq,Rc) ∈ R ×R+ is called an achievable rate pair for A → B merging
of the compound source X, if there exists a sequence {Ml}l∈N of (l, kl,Dl) A → B mergings,
such that the conditions

1. lim
l→∞

inf
ρ∈X

Fm(ρ⊗l,Ml) = 1

2. lim sup
l→∞

1
l log kl ≤ Rq

3. lim sup
l→∞

1
l logDl ≤ Rc

are satisfied.

In [Jan10], a principal formula for the optimal possible entanglement cost of quantum state
merging for compound quantum sources was derived for a situation, where the communication
parties are provided with classical forward communication of arbitrary rate. If we denote the
merging cost of the compound source X, i.e. optimal achievable entanglement rate with free
choice of the classical forward communication rate by Cm,→(X), the result can be stated as
follows.
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Theorem 5 ([Jan10], cf. [BBJ13]).

Cm,→(X) = sup
ρ∈X

S(A∣B,ρ). (3.5)

However, the protocol class which was introduced in [Jan10] to prove achievability in the above
theorem is suboptimal regarding its classical communication demands in general. In this chapter,
we give a description of the full resource tradeoff region for quantum state merging of compound
memoryless bipartite quantum sources. We define

Definition 6. Let X ⊂ S(HAB) be a set of density matrices. The resource cost region forA→ B
quantum state merging of X is defined by

M→(X) ∶= {(Rq,Rc) ∈R ×R+ ∶ (Rq,Rc) achievable rate pair for A→ B −merging of X}

Theorem 7.

M→(X) = {(Rq,Rc) ∶ Rq ≥ sup
ρ∈X

S(A∣B,ρ) ∧ Rc ≥ sup
ρ∈X

I(A;E,ψ)} . (3.6)

The quantum mutual information in (3.6) is evaluated on any purification ψ ∈ HABE of ρ for
each ρ ∈ X.

It follows immediately from Theorem 7, that the resource cost region of one-way quantum state
merging for compound quantum sources is stable under perturbations of the set of density ma-
trices generating the source.

3.1.2 Arbitrarily varying quantum sources

Regarding the task of quantum state merging for arbitrarily varying quantum sources, our
cosiderations lead to an interesting negative result.It turns out, that the famous robustification
and elimination technique developed by Ahlswede [Ahl78] for deriving the coding theorem for
message transmission over an arbitrarily varying classical channel produces protocols being sub-
optimal in general. We give an example for this fact. Therefore in the following definitions, we
concentrate on the entanglement cost of quantum state merging protocols while allowing free
classical forward communication.

Definition 8. A number Rq ∈ R is called an achievable entanglement rate for A → B merging
of the AVQS X if there exists a finite number Rc and a sequence {Ml}l∈N of (l, kl,Dl) A → B
mergings satisfying

1. lim
l→∞

inf
sl∈Sl

Fm(ρsl ,Ml) = 1,

2. lim sup
l→∞

1
l log kl ≤ Rq, and
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3. lim sup
l→∞

1
l logDl ≤ Rc.

Definition 9. The A→ B merging cost CAVm,→(X) of the AVQS X is defined by

CAVm,→(X) ∶= inf {Rq ∈R ∶ Rq is an achievable entanglement rate for A→ B merging
of the AVQS X with some classical communication rate Rc

}

(3.7)

We will, by giving a suitable example, prove the following claim.

Example 10. There exists a set X̃ of bipartite density matrices, such that

CAVm,→(X̃) < sup
ρ∈conv(X̃)

S(A∣B,ρ) (3.8)

holds.

3.2 Resource cost region for state merging of compound
quantum sources - Proofs

In this section, we prove Theorem 7. We first show achievability in Section 3.2.1. The converse
statement is shown in the subsequent Section 3.2.2. Before we present the proofs, we introduce
an important class of protocols for performing quantum state merging which where initially
introduced in [HOW07] and also considered in [Jan10].
Let dA be the dimension of a Hilbert space HA. For an integer 0 < L ≤ dA we use the term
L-merging if we speak of a channel

M ∶ L(HAB) → L(KAB) ⊗ L(HB′B)

which is of the form

M(ρ) =
D

∑
k=0

ak ⊗ uk(ρ)a∗k ⊗ u∗k, (3.9)

for every ρ ∈ S(HAB). and has the following properties. D is defined D ∶= ⌊dAL ⌋ and KA and
KB are Hilbert spaces with dimKA = dimKB = L and KA ⊆ HA is a subspace ofHA, where

• {ak}Dk=0 ⊂ L(HA,KA) is a set of rank L partial isometries (except a0 which has rank
dA −L ⋅D < L) with pairwise orthogonal initial subspaces (in the following, we call such
channels L-instrument for short).

• {uk}Dk=0 ⊂ L(HB,KB ⊗HB′B) is a family of isometries.
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Remark 11. Note, that we introducedL-mergings as protocols which do not consume additional
shared maximal entanglement. If a shared maximal entangled state ∣φ⟩ ⟨φ∣ has to be consumed
by a protocol for merging a state ρAB , an L-merging can be applied on the state

ρAB ⊗ ∣φ⟩ ⟨φ∣ (3.10)

instead.

The following proposition states a universal one-shot result for the above introduced class of
merging schemes and finite set of possible source density matrices. It will serve as a starting
point for our considerations. For a complete proof the reader may confer [BBJ13].

Theorem 12 ([BBJ13],Corollary 2). Let N ∈ N, and {ρAB,i}Ni=1 ⊂ S(HAB) be a set of density
matrices. For each L ∈N, there exists an L-mergingM such that

Fm(ρAB,M) ≥ 1 − 2( L
dA

+ 2
N

∑
i=1

√
L ⋅ rank(ρAB,i)∥ρB,i∥2

2) , (3.11)

with ρAB ∶= 1
N ∑

N
n=1 ρAB,i. Since Fm(⋅,M) is a convex function, it also holds

min
i∈[N]

Fm(ρAB,i,M) ≥ 1 − 2N ( L
dA

+ 2
N

∑
i=1

√
L ⋅ rank(ρAB,i)∥ρB,i∥2

2) .

3.2.1 Coding theorem

In this section we prove the achievability part of Theorem 7, which is the following statement.

Theorem 13. Let X ⊂ S(HAB) be a set of density matrices. It holds

{Rq ≥ sup
ρ∈X

S(A∣B,ρ) ∧Rc ≥ sup
ρ∈X

I(A;E,ψ)} ⊂M(X) (3.12)

where I(A;E,ψ) is the quantum mutual information between the A and E systems in a purifi-
cation ψ of ρ for each ρ ∈ X.

The preliminary Proposition 14 below is a slight generalization of Theorem 6 in [BBJ13]. For
further application in the next chapter on entanglement distillation, we have to ascertain exis-
tence of protocols with merging fidelity going to one asymptotically with exponentially decreas-
ing tradeoffs, which was not explicit in [BBJ13]. Proposition 14 states existence of protocols
achieving the optimal entanglement rate with the mentioned performance, but with generally
suboptimal classical communication demands. These protocols in turn, will be utilized to derive
protocols suitable for the proof of Proposition 17.
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Proposition 14. Let X ⊂ S(HAB) be a set of states on HAB . For each R > supρ∈X S(A∣B,ρ),
there is a number l0(X,R, δ), such that for each l > l0 we find an (l, kl,Dl)-A→ B merging

M(⋅) ∶=
Dl

∑
k=1

Ak ⊗Uk(⋅) (3.13)

Ak ∶= Ak(⋅)A∗
k, and Uk ∶= Uk(⋅)U∗

k (k ∈ [Dl]) (3.14)

with {A∗
kAk}

Dl
k=1 being a projection valued measure and {Uk}Dlk=1 being isometries, such that

inf
ρ∈X

Fm(ρ⊗l,M) ≥ 1 − 2−lc1 (3.15)

holds with a constant c1(X,R, δ) > 0,

kl = ⌊exp(nR)⌋, (3.16)

and

Dl = ⌈exp(sup
ρ∈X

I(A;E,ψ)⌉, (3.17)

where the quantum mutual information in (3.17) is evaluated on the AE marginal state of any
purification ψ of ρ, where E labels the additional systems for purification.

Proof. The assertion to prove includes both, a strengthening of the fidelity convergence rates in
Ref. [Jan10], Theorem 4 to exponentially decreasing trade-offs, and a generalization of Theorem
6 in Ref. [BBJ13] to arbitrary (not necessary finite or countable) sets of states.
Write R = supρ∈X S(A∣B,ρ) + δ. Approximating X by a τl-net Xτl ∶= {ρi}

Nτl
i=1 ⊂ S(HA ⊗HB)

for each blocklength l (see Ref. [BBJ13] for details) and using the result for finite sets, we infer
by careful observation of the merging fidelities in Ref. [BBJ13] (see eqns. (36), (37), and (58)
therein), that for given δ > 0 and large enough blocklength l, there exists a (l, kl,Dl) A → B
mergingMl with the properties stated in (3.13) and (3.14) , where

inf
ρ∈X

Fm(ρ⊗l,Ml) ≥ 1 −N2
τl
⋅ 2−lθ − 4

√
l ⋅ τl (3.18)

is valid for the merging fidelities with a constant θ = θ(δ) > 0, and

1

l
log kl ≤ sup

ρ∈X
S(A∣B,ρ) + δ

2
. (3.19)

(see (57) in Ref. [BBJ13]). Moreover, we can bound the number of messages for the classical
A→ B-communication (see (101) in Ref. [BBJ13]) by,

1

l
logDl ≤ max

1≤i≤Nτl
S(ρA,i) + max

1≤i≤Nτl
S(A∣B,ρi) +

δ

2
+ 1

l
logNτl (3.20)

≤ sup
ρ∈X

S(ρA) + sup
ρ∈X

S(A∣B,ρ) + ν(τl) +
δ

2
+ 1

l
logNτl , (3.21)
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where the summand ν(τl) ∶= 3τl log dimHAB
τl

follows from threefold application of Fannes’
inequality [Fan73], i.e.

∣ max
1≤i≤Nτl

S(ρA,i) + max
1≤i≤Nτl

S(A∣B,ρi) − sup
ρ∈X

S(ρA) + sup
ρ∈X

S(A∣B,ρ)∣ ≤ ν(τl). (3.22)

Due to the bound given in Ref. [BBJ13], Lemma 9, it is known, that the nets can be chosen with
cardinality bounded by

Nτl ≤ ( 3

τl
)

2(dimHAB)2
(3.23)

for each l ∈ N. Choosing net parameter τl = 2−lθ
′

with θ′ ∶= min{θ/8(dimHAB)2, δ/4} for
each l, we infer

inf
ρ∈X

Fm(ρ⊗l,Ml) ≥ 1 − 2−l
θ
2 − 2−l

θ′
4 ≥ 1 − 2−lc1 (3.24)

with a constant c1 = c1(δ) > 0, and

1

l
logDl ≤ sup

ρ∈X
S(ρA) + sup

ρ∈X
S(A∣B,ρ) + δ (3.25)

from (3.21) if l is large enough, to satisfy ν(τl) ≤ δ
4 . Collecting the bounds in (3.19), (3.24), and

(3.25), we are done.

The assertion of Proposition 17 below states existence of protocols for each large enough block-
length, which are aproximately optimal regarding their entanglement as well as classical com-
munication demands. The proof utilizes the protocols derived to prove Propostion 14 above
together with a suitable estimation of the von Neumann entropy of the source state on the A
systems. As a prerequisite, we collect some results from representation theory of the symmet-
ric groups, where we recommend [Sim96] as reference. We denote by Y Fd,l the set of young
frames with at most d rows and l boxes for d, l ∈ N. A young frame λ ∈ Y Fd,l is determined
by a tuple (λ1, ..., λd) of nonnegative integers summing to l. The box-lengths λ1, ..., λd of λ
define a probability distribution λ on [d] in a natural way via the definition λ(i) ∶= 1

l λi for each
1 ≤ i ≤ d. To each Young frame λ ∈ Y Fd,l, there is an invariant subspace of (Cd)⊗l, and we
denote by Pλ,l the projector onto the subspace belonging to λ.
Theorem 15 below allows, to asymptotically estimate the spectrum of a density operator ρ by
projection valued measurements on i.i.d. sequences of the form ρ⊗l, and is an important ingre-
dient of our proof of Proposition 17. A variant of the first statement of the theorem was first
proven in by Keyl and Werner[KW01]. The bounds stated below are from Ref. [CM06], while
the remaining statements of the theorem are well-known facts in group representation theory
(Ref. [CM06] and references therein are recommended for further information).

Theorem 15 (cf. Refs. [KW01] and [CM06]). The following assertions are valid for each
d, l ∈N.
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Chapter 3. Quantum state merging under source uncertainties

1. For λ ∈ Y Fd,l and ρ ∈ S(Cd), it holds

tr(Pλ,lρ⊗l) ≤ (l + 1)d(d−1)/2 exp(−lD(λ∣∣r)) (3.26)

where λ ∈P([d]) is the probability distribution given by the normalized box-lengths of λ,
and r is the probability distribution on [d] induced by the decreasingly ordered spectrum
of ρ (with multiplicities of eigenvalues counted), andD(λ∣∣r) denotes the Kullback-Leibler
divergence of (λ, r).

2. ∣Y Fd,l∣ ≤ (l + 1)d.

3. For λ,λ′ ∈ Y Fd,l, it holds Pλ,lPλ′,l = 0 if λ ≠ λ′.

Lemma 16 (Refs. [Win99], [ON07]). Let τ ,X be matrices with τ ≥ 0, tr(τ) ≤ 1, and 0 ≤X ≤ 1,
ε ∈ (0,1). If tr(ρX) ≥ 1 − ε, it holds

∥
√
Xρ

√
X − ρ∥1 ≤ 2

√
ε. (3.27)

The following proposition is the main result of this section.

Proposition 17. Let X ⊂ S(HAB) be a set of states on HAB . For each δ > 0, there exists a
number l0 = l0(δ), such that for each l > l0 there is an (l, kl,Dl) A→ B mergingMl with

inf
ρ∈X

Fm(ρ⊗l,Ml) ≥ 1 − 2−lc2 (3.28)

with a constant c2 = c2(X, δ) > 0,

1

l
log kl ≤ sup

ρ∈X
S(A∣B,ρ) + δ, (3.29)

and

1

l
logDl ≤ sup

ρ∈X
I(A;E,ψ) + δ, (3.30)

where the quantum mutual information in (3.30) is evaluated on the AE marginal state of any
purification ψ of ρ.

Proof of Proposition 17. The strategy of proof will be as follows. We decompose X into a finite
number of disjoint subsets X1, ...,XN , each containing only states with approximately equal
entropy on the A-marginal system and combine an entropy estimating instrument on the A-
system with a suitable merging scheme for each set Xi according to Proposition 14. We fix
δ > 0, and assume, to simplify the argument, that

s̃ ∶= sup
ρ∈X

S(A∣B,ρ) < 0 (3.31)
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3.2. Resource cost region for state merging of compound quantum sources - Proofs

holds (i.e. merging is possible without input entanglement resources for large enough block-
lengths). Otherwise the argument below can be carried out using further input entanglement
and wasting it before action of the protocol. We define d ∶= dimHA and fix η ∈ (0,1] to be
determined later. Consider the sequence

s0 ∶= 0 < s1 < ... < sN ∶= log d, si ∶= si−1 + η for each 1 ≤ i < N.

Define Intervals I1 ∶= [s0, s1] and Ii ∶= (si−1, si] for i = 2, ...,N , which generate a decomposi-
tion of X into disjoint sets X1, ...,XN by definitions

Xi ∶= {ρ ∈ X ∶ S(ρA) ∈ Ii} (i ∈ [N]), (3.32)

and set

X̃i ∶= ⋃
j∈n(i)

Xi(i ∈ [N])

where n(i) is defined n(i) ∶= {j ∈ [N] ∶ ∣j − i∣ ≤ 1} for all i. In order to construct an entropy
estimating instrument in the A marginal systems, we define an operation P(i)

l ∈ C↓(H⊗l
AB,H⊗l

AB)
by

P(i)
l (⋅) ∶= pi,l ⊗ 1H⊗l

B
(⋅)p∗i,l ⊗ 1H⊗l

B
with pi,l ∶= ∑

λ∈Y Fd,l∶
H(λ)∈Ii

Pλ,l

for each i ∈ [N] using the notation from Theorem 15. Notice, that p1, ..., pN form a projection
valued measure on H⊗l

A due to Theorem 15.3. By construction, we have for each state i ∈ [N],
ρ ∈ Xi,

∑
j∈[N]∖n(i)

tr(P(j)
l (ρ⊗l)) = ∑

j∈[N]∖n(i)
tr(pi,lρ⊗lA ) (3.33)

= ∑
λ∈Y Fd,l∶

∣H(λ)−S(ρA)∣≥η

tr(Pλ,lρ⊗lA ) (3.34)

≤ ∣Y Fd,l∣ ⋅ (l + 1)d(d−1)/2

× exp

⎛
⎜⎜⎜
⎝
−l

⎛
⎜⎜⎜
⎝

min
r∶H(r)∈Ii

min
λ∈Y Fd,l∶

∣H(λ)−H(r)∣≥η

D(λ∣∣r)
⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
, (3.35)

where (3.33) and (3.34) are valid due to construction and (3.35) follows from Theorem 15.1.
Since the relative entropy term in the exponent on the r.h.s. of (3.35) is bounded away from zero
for each fixed number η > 0 (a proof of this fact can be found in Appendix B), i.e.

min
r∶H(r)∈Ii

min
λ∈Y Fd,l∶

∣H(λ)−H(r)∣≥η

D(λ∣∣r) ≥ 2c3 (i ∈ [N]) (3.36)
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Chapter 3. Quantum state merging under source uncertainties

with a constant c3 = c3(η) > 0, and the functions outside the exponential term are growing
polynomially for l →∞ (see Theorem 15.2) , we infer

∑
j∈[N]∖n(i)

tr(P(j)
l (ρ⊗l)) ≥ 2−lc3 (i ∈ [N]) (3.37)

provided that l is large enough.
Define index sets J ∶= {i ∶ Xi ≠ ∅} and J̃ ∶= {i ∶ X̃i ≠ ∅}. We know from Proposition 14, that
for each sufficiently large l, we find an (l, kl,D(i)

l ) A → B merging M̃(i)
l for each i ∈ J̃ such

that

inf
ρ∈X̃i

Fm(ρ⊗l,M̃(i)
l ) ≥ 1 − 2−lc̃i (3.38)

holds with a constant c̃i > 0,

−1

l
log kl ≤ sup

ρ∈X̃i
S(A∣B,ρ) + δ

2
(3.39)

and

1

l
logD

(i)
l ≤ sup

ρ∈X̃i
S(ρA) + sup

ρ∈X̃i
S(A∣B,ρ) + δ

2
(3.40)

for the classical A→ B communication rate. By construction of the sets X̃i, i ∈ J̃ , it also holds

I(A;E,ψ) = S(ρA) + S(A∣B,ρ) ≥ sup
ρ∈X̃i

S(ρA) − 3η + S(A∣B,ρ) (3.41)

for each ρ ∈ X̃i. Taking suprema over the set X̃i on both sides of the above inequality in
combination with (3.40) leads us to the estimate

1

l
logD

(i)
l ≤ sup

ρ∈X̃i
I(A;E,ρ) + δ

2
+ 3η ≤ sup

ρ∈X
I(A;E,ρ) + δ

2
+ 3η (3.42)

for each i ∈ [J̃]. Combining the entropy estimating instrument {P(j)
l }Nj=1 with the corresponding

merging protocols, we define

Ml(⋅) ∶=
N

∑
i=1

M̃(i)
l ○ P(i)

l (⋅). (3.43)

The maps M̃(i)
l are yet undefined for all numbers i ∈ [N]∖ J̃ . Since they will not be relevant for

the fidelity, they may be defined by any trivial local operations, with D(i)
l = 1 for i ∈ [N] ∖ J̃ .

Moreover, we assume, that the merging rate of M(i)
l for each i is stuck to the the worst and

eachM(i)
l outputs approximately the same maximally entangled resource output state φl. We

can always achieve this by partial tracing and local unitaries, which do not further affect the
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3.2. Resource cost region for state merging of compound quantum sources - Proofs

classical communication rates.
By inspection of the definition in (3.43) one readily verifies, that Ml is, in fact, an (l, kl,Dl)
A→ B merging, with

Dl = ∑
i∈J̃
D

(i)
l + ∣N − J̃ ∣, (3.44)

and therefore, classical communication rate bounded by

1

l
logDl =

1

l
log

⎛
⎝∑
i∈J̃
D

(i)
l + ∣N − J̃ ∣

⎞
⎠

(3.45)

≤ 1

l
log(N ⋅max

i∈[N]
D

(i)
l ) (3.46)

≤ sup
ρ∈X

I(A;E,ψ) + δ
2
+ 3η + logN

l
. (3.47)

It remains to show, that we achieve achieve merging fidelity one with {Ml}l∈N for each ρ ∈ X
with exponentially decreasing trade-offs for large enough blocklengths. Assume ρ is a member
of Xi for any index i ∈ J . Then, it holds

Fm(ρ⊗l,Ml) ≥ ∑
j∈n(i)

Fm(ρ⊗l,M̃(j)
l ○ P(j)

l ) (3.48)

= ∑
j∈n(i)

Fm(ρ⊗l,M̃(j)
l ○ P̃(i)

l ) − ∑
j∈n(i)

∑
k∈n(i)
k≠j

Fm(ρ⊗l,M̃(j)
l ○ P(k)

l ). (3.49)

The inequality above holds, because the merging fidelity is linear in the operation and all sum-
mands are nonnegative together with the definition ofMl. The equality is by some zero-adding
of terms an using the definition P̃(i)

l ∶= ∑j∈n(i)P
(j)
l together with linearity of the merging fi-

delity in the operation again. We bound the terms in (3.49) separately. Beginning with the
second term, we notice, that the fidelity is homogeneous in its inputs and bounded by one for
states, it holds

F (M̃(j)
l ○ P(k)

l ⊗ idH⊗n
E

(ψl), φl ⊗ ψ′l) ≤ tr(P(k)
l (ρ⊗nA )). (3.50)

Summing up the bounds in (3.50), rearranging the summands and using the definition of P̃(i)
l ,

we obtain the bound

∑
j∈n(i)

∑
k∈n(i)
k≠j

Fm(ρ⊗l,M̃(j)
l ○ P(k)

l ) ≤ ∑
j∈n(i)

∑
k∈n(i)
k≠j

tr(P(k)
l (ρ⊗n)) (3.51)

= (∣n(i)∣ − 1) tr(P̃(i)
l (ρ⊗l)) (3.52)

≤ ∣n(i)∣ − 1. (3.53)

To bound the first terms in (3.49), we use the well-known relation

F (a, b) ≥ tr(a) − ∥a − b∥1 (3.54)
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between fidelity and trace norm holding for any two matrices a, b ≥ 0, tr(b) = 1 on a Hilbert
space. It then holds, for each j ∈ n(i),

Fm(ρ⊗l,M̃(j)
l ○ P̃(i)

l ) ≥ tr(P̃(i)
l (ρ⊗l)) − ∥M̃(j)

l ○ P̃(i)
l ⊗ idH⊗l

E
(ψl) − φl ⊗ ψ′l∥1. (3.55)

For the second term in (3.55) it holds by zero adding, triangle inequality and monotonicity of
the trace norm under action of partial traces

∥M̃(j)
l ○ P̃(i)

l ⊗ idH⊗l
E
(ψl) − φl ⊗ ψ′l∥1 ≤ ∥M̃(j)

l ⊗ idH⊗l
E
(ψl), φl ⊗ (ψ′)⊗l∥1

+ ∥P̃(i)
l (ρ⊗l) − ρ⊗l∥1. (3.56)

We further yield the bound

∥M̃(j)
l ⊗ idH⊗l

E
(ψl) − φl ⊗ ψ′l∥1 ≤ 2 (1 − F (M̃(j)

l ⊗ idH⊗l
E
(ψl), φl ⊗ ψ′l))

1
2 (3.57)

≤ 2 ⋅ 2−l
c̃i
2 (3.58)

by (1.1) together with (3.38), and

∥P̃(i)
l (ρ⊗l) − ρ⊗l∥1 ≤ 2

√
1 − tr(P̃(i)

l (ρ⊗l)) ≤ 2 ⋅ 2−l
c3
2 , (3.59)

where the first inequality is by Lemma 16, and the second inequality is valid due to the bound in
(3.37) along with the fact, that (because p1,l, ...., pN,l is a resolution of the identity into pairwise
orthogonal projections)

1 − tr(P̃ (i)(ρ⊗l)) = tr ((idH⊗l
AB

− P̃(i)
l ) (ρ⊗l)) = ∑

j∈[N]∖n(i)
tr(P(j)

l (ρ⊗l))

holds. We define the constant c4 by c4 ∶= min{c̃1, ..., c̃N , c3}. Combining (3.55) with (3.56)-
(3.59) leads us to the estimate

Fm(ρ⊗lM̃(j)
l ○ P̃(i)

l ) ≥ tr(P̃(i)
l (ρ⊗l)) − 4 ⋅ 2−l

c4
2 (3.60)

≥ 1 − 5 ⋅ 2−l
c4
2 (3.61)

for each j ∈ n(i), where the last of the above inequalities, again is by the bound in (3.37). By
inserting the bounds given in (3.53) and (3.61) into (3.49), we yield

Fm(ρ⊗l,Ml) ≥ ∣n(i)∣(1 − 5 ⋅ 2−l
c4
2 ) − (∣n(i)∣ − 1) (3.62)

≥ 1 − 5∣n(i)∣ ⋅ 2−l
c4
2 (3.63)

≥ 1 − 15 ⋅ 2−l
c4
2 . (3.64)

If we now choose η small enough and assume l0 large enough, to suffice

3η + logN

l0
≤ δ, (3.65)

(3.39), (3.47), and (3.64) show, thatMl has the desired properties for each l > l0.
The assertion can be proven for the remaining case s̃ ≥ 0 by considering a compound set {ρ ⊗
φ0 ∶ ρ ∈ X} with a maximally entangled state φ0 having Schmidt rank large enough to ensure
supρ∈X S(A∣B,ρ ⊗ φ0) < 0 and repeat the argument given above for the first case (note, that
I(A;E,ρ⊗ φ0) = I(A;E,ρ) holds for each state ρ ∈ X).
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3.2. Resource cost region for state merging of compound quantum sources - Proofs

3.2.2 Converse theorem

To complete the proof of Theorem 7, the following inclusion relation has to be shown.

Theorem 18. Let X ⊂ S(HAB) be a set of density matrices. It holds

M(X) ⊂ {Rq ≥ sup
ρ∈X

S(A∣B,ρ) ∧Rc ≥ sup
ρ∈X

I(A;E,ψ)} (3.66)

where I(A;E,ψ) is the quantum mutual information between the A and E systems in a purifi-
cation of ρ for each ρ ∈ X.

Notice, that the inclusion

M→(X) ⊂ ⋂
ρ∈X

M→({ρ}) (3.67)

is obvious from the definition of M→. In [HOW07] was given a full characterization of the
set M→({ρ}) in each case. Taking the proof for the converse regarding the entanglement con-
sumption given therein for granted, we provide a new upper bound for the classical forward
communication cost of quantum state merging in case of a memoryless quantum source with
perfectly known generating state. The proof given in [HOW07] to lower-bound the demanded
classical communication rate for sucessful quantum state merging was formulated using asser-
tions formulated on the meta-level of the so-called resource framework for quantum Shannon
theory, which was introduced in [DHW08].
In Proposition 19 below, we provide a more elementary proof of this result with a bound which
seems somewhat stronger as the one given in [HOW07].

Proposition 19 (cf. Ref. [HOW07], Theorem 8). Let ρAB ∈ S(HAB) be a bipartite state with
purification ψABE on a space HABE and ε ∈ (0,1). IfM(⋅) ∶= ∑Dk=1Ak ⊗ Bk(⋅) is an A → B
one-way LOCC such that

F (M⊗ idH⊗l
E
(φK ⊗ ψ⊗lABE), φL ⊗ ψ⊗lB′BE) ≥ 1 − ε (3.68)

holds with maximally entangled states φK , φL of Schmidt rank K resp. L, then

1

l
log(D) ≥ I(A;E,ρAE) − 6

√
ε(1

l
log(KL) + log dimHAB) − 3η(2

√
ε) (3.69)

holds, where the function η is defined on [0,1] by

η(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

−x logx 0 < x ≤ 1
e

log e
e

1
e < x ≤ 1

(3.70)

and η(0) ∶= 0.
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Proof. The proof is inspired by ideas from Ref. [GPW05]. Fix ε ∈ (0,1) and l ∈ N. Let
φK ∈ K0

AB and φL ∈ K1
AB maximally entangled input resp. output states of the protocol such

that with notations

ψ0 ∶= φK ⊗ ψ⊗lABE , and ψ1 ∶= φL ⊗ ψ⊗lB′BE

eq. (3.68) reads

F (M⊗ idH⊗l
E
(ψ0), ψ1) ≥ 1 − ε. (3.71)

We use the abbreviations H0
BE ∶= K0

B ⊗ H⊗l
BE , pk ∶= tr(Ak ⊗ idH0

BE
(ψ0)) for k ∈ [D], and

T = {k ∈ [D] ∶ pk ≠ 0}. It is well known, that the von Neumann entropy is an almost convex
function, i.e. for a state ρ defined as a mixture ρ ∶= ∑Ni=1 piρi of quantum states,

S(ρ) ≤H(p1, ..., pN) +
N

∑
i=1

piS(ρi)

holds, where H(p1, ..., pN) is the Shannon entropy of the probability distribution on [N] given
by p1, ..., pN (for a proof, see [NC00], Theorem 11.10). Using this fact, we obtain the lower
bound

logD ≥H(p1, ..., pD)

≥ S (∑
k∈T
Ak ⊗ idH0

BE
(ψ0)) − ∑

k∈T
pkS ( 1

pk
Ak ⊗ idH0

BE
(ψ0)) (3.72)

on logD. We separately bound the terms on the r.h.s. of eq. (3.72). With definitions πK,A ∶=
trK0

B
(φK), πK,B ∶= trK0

A
(φK) and πL,A ∶= trK1

B
(φL) (these are maximally mixed states of rank

K resp. L) and A(⋅) ∶= ∑k∈T Ak(⋅), we obtain

S (∑
k∈T
Ak ⊗ idH0

BE
(ψ0)) ≥ S(πK,B ⊗ ρ⊗lBE) − S(A(πK,A ⊗ ρ⊗lA )) (3.73)

≥ logK + lS(ρBE) − logL −∆1(ε) (3.74)

= log
K

L
− lS(ρA) −∆1(ε) (3.75)

where ∆1(⋅) ∶= 2
√⋅ log(L) + η(2√⋅). Here eq. (3.73) is by the Araki-Lieb inequality [AL70],

and eq. (3.75) is due to the fact that S(ρA) = S(ρBE) holds. Eq. (3.74) is justified as follows.
Using (1.1) together with monotonicity of the fidelity under partial traces, (3.71) implies

∥A(πK,A ⊗ ρ⊗lA ) − πL,A∥1 ≤ 2
√
ε. (3.76)

This, via application of Fannes’ inequality leads us to

S(A(πK,A ⊗ ρ⊗lA )) ≤ S(πL,A) − 2
√
ε logL − η(2

√
ε), (3.77)
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where η is the function defined in (3.70). To bound the second term on the r.h.s. of (3.72), we
use Stinespring extensions of the individual trace decreasing c.p. maps which constituteM. Let
for each k ∈ [D],

vk ∶ K0
A ⊗H⊗l

A → K1
A ⊗HC′

be a Stinespring extension of Ak and

uk ∶ K0
B ⊗H⊗l

B → K1
B ⊗H⊗l

B′B ⊗HC′′ (3.78)

be a Stinespring extension of Bk. HereHC′ is a Hilbert space associated to A andHC′′ belongs
to B. We fix notations Vk(⋅) ∶= vk(⋅)v∗k and Uk ∶= uk(⋅)u∗k and denote the normalized outputs of
these extensions by

γk ∶=
1

pk
Vk ⊗Uk ⊗ idH⊗l

E
(ψ0) (3.79)

for every k ∈ T . Note that V1, ...,VD are trace decreasing, while U1, ...,UD are channels. For
every k ∈ T , we have

S ( 1
pk
Ak ⊗ idH0

BE
(ψ0)) = S ( 1

pk
trHC′Vk ⊗ idH0

BE
(ψ0))

= S ( 1
pk

trHC′Vk ⊗Uk ⊗ idH⊗l
E
(ψ0))

= S(trHC′γk), (3.80)

where the second equality is by the fact that uk is an isometry and consequently the action of Uk
does does not change the entropy. Note, that (3.71) implies, because fidelity is linear in the first
input here, existence of a positive number ck for every k ∈ T , such that

F ( 1

pk
Ak ⊗Bk ⊗ idH⊗l

E
(ψ0), ψ1) = 1 − ck (3.81)

and ∑k∈T pkck ≤ ε hold. Because γk is a purification of 1
pk
Ak ⊗ Bk ⊗ idH⊗l

E
(ψ0) and ψ1 is

already pure, Uhlmann’s theorem [Uhl76] (cf. [Joz94] for a finite dimensional version) ensures
existence of a pure state ϕk onHC′ ⊗HC′′ with

F (γk, ψ1 ⊗ ϕk) = max{∣ ⟨γk, σ⟩ ∣2 ∶ σ purification of ψ0 on K1
AB ⊗H⊗l

B′BE ⊗HC′ ⊗HC′′}

= F ( 1

pk
Ak ⊗Bk ⊗ idH⊗l

E
(ψ0), ψ1) (3.82)

for every k ∈ T . From eqns. (3.81) and (3.82) we conclude, using (1.1),

∥γk − ψ1 ⊗ ϕk∥1 ≤ 2
√
ck, (3.83)

which implies, again via Fannes’ inequality and monotonicity of the trace distance under partial
tracing

S(trHC′γk) ≤ S(ψ1 ⊗ trHC′ϕk) +∆2(ck)
≤ S(trHC′ϕk) +∆2(ck) (3.84)
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where ∆2(⋅) = 2
√⋅ log(dimH2

AB dimHC′′) + η(2√⋅). Consequently, we have

∑
k∈T

pkS ( 1

pk
Ak ⊗ idH0

BE
(ψ0)) = ∑

k∈T
pkS(trHC′γk)

≤ ∑
k∈T

pkS(trHC′ϕk) +∆2(ε). (3.85)

The above equality is by (3.80), the inequality follows by (3.84) together with the fact, that
that ∆2 is monotone and concave (see the definition of η in (3.70)). It remains to bound
∑k∈T pkS(trHC′ϕk). Abbreviating H1

AE ∶= K1
A ⊗ H⊗l

E ⊗ HC′ , an argument very similar to
the one above gives (again via (3.83) and an application of Fannes’ inequality) the bound

S(trH1
AE

(γk)) ≥ S(trH1
AE

(ψ1 ⊗ ϕk)) −∆3(ck)

= S(πL,B ⊗ ρ⊗lB′B ⊗ trHC′ϕk) −∆3(ck) (3.86)

with the function ∆3(⋅) ∶= 2
√⋅(log(K) + l log(dimHAB ⋅ dimHC′′)) + 2η(√⋅). Using mono-

tonicity and concavity of ∆3 together with (3.86), we obtain

∑
k∈T

pkS(trH1
AE

(γk)) ≥ log(L) + lS(ρAB) + ∑
k∈T

pkS(trHC′ϕk) −∆3(ε). (3.87)

If we now look at ∑Dk=1 Vk ⊗Uk ⊗ idH⊗l
E
(⋅) as an one-way LOCC-channel with local operations

on systems belonging to A and E on one side and B on the other side which 3 the pure input
state ψ0 to the state described by the pure state mixture ∑k∈T pkγk, we have

S(πK ⊗ ρ⊗lB ) = S(trK0
A⊗H⊗l

AE
ψ0)

= S (trH1
AE

(
D

∑
k=1

Vk ⊗ idH0
BE

(ψ0)))

≥ ∑
k∈T

pk S ( 1

pk
trH1

AE
Vk ⊗ idH0

BE
(ψ0))

= ∑
k∈T

pk S ( 1

pk
trH1

AE
Vk ⊗Uk ⊗ idH⊗l

E
(ψ0)) (3.88)

= ∑
k∈T

pk S (trH1
AE
γk) . (3.89)

The second of the above equalities is due to the fact, that ∑Dk=1 Vk(⋅) is trace preserving, the
inequality is by concavity of the von Neumann entropy. Eq. (3.88) is because the von Neumann
entropy is not changed by application of unitary channels in the input. The last equality is by
the definitions introduced in (3.79). With (3.87), (3.89) and the equality S(ρAB) = S(ρE), we
obtain

S(πK ⊗ ρ⊗lB ) ≥ log(L) + lS(ρE) + ∑
k∈T

pkS(trHC′ϕk) −∆3(ε). (3.90)
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Rearranging the terms in inequality (3.90) and using (3.85) leads to the bound

∑
k∈T

pkS ( 1
pk
Ak ⊗ idH0

BE
(ψ0)) ≤ log

K

L
+ l(S(ρAE) − S(ρE)) +∆2(ε) +∆3(ε). (3.91)

Here, we additionally used the fact, that S(ρB) = S(ρAE) holds. Combining the bounds from
(3.74) and (3.91) with (3.72), we arrive at

1

l
logD ≥ I(A;E,ρAE) −

1

l
(∆1(ε) +∆2(ε) +∆3(ε)). (3.92)

In fact, we find Stinespring extensions on spacesHC′ andHC′′ with

dimHC′ =K ⋅L ⋅ dimHlA (3.93)

dimHC′′ =K ⋅L ⋅ dimH2l
B dimHlA. (3.94)

Using the definition of ∆1,∆2 and ∆3 with the above dimensions, we conclude

1

l
logD ≥ I(A;E,ρAE) − 6

√
ε( logKL

l
+ log dimHAB) − 3η(2

√
ε), (3.95)

which we aimed to prove.

It is worth noticing, that the above proposition gives evidence to the claim, that maximal en-
tanglement and forward classical communication are orthogonal communication resources for
quantum state merging. The above lower bound on the classical forward communication rate
is only weakly dependent on the entanglement rate. Therefore the quantum mutual information
between the A and purifying E systems is the optimal classical communication rate for asymp-
totically perfect state merging procedures regardless, even when protocols with any suboptimal
entanglement rates are applied.

Proof of Theorem 18. We define for each state ρ ∈ X the sets

M̃→,q(ρ) ∶= {(Rq,Rc) ∈R ×R+ ∶ Rq ≥ S(A∣B,ρ)}, and (3.96)

M̃→,c(ρ) ∶= {(Rq,Rc) ∈R ×R+ ∶ Rc ≥ I(A;E,ρ)}, (3.97)

we infer from the converse to the entanglement rate of state merging for a perfectly known
memoryless quantum source from [HOW07], that

M→({ρ}) ⊂ M̃→,q(ρ) (3.98)

holds. Applying the bound from Proposition 19 above, for each sequence {Ml} of (l, kl,Dl)
mergings for ρ with

lim
l→∞

Fm(ρ⊗l,Ml) = 1 (3.99)
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Chapter 3. Quantum state merging under source uncertainties

the bound

lim inf
l→∞

1

l
logDl ≥ I(A;E,ψ) (3.100)

is valid. Consequently, we have

M→({ρ}) ⊂ M̃→,c(ρ), (3.101)

which implies

M→(X) ⊂ ⋂
ρ∈X

M→({ρ}) ⊂ ⋂
ρ∈X

(M̃→,q(ρ) ∩ M̃→,c(ρ)) (3.102)

3.3 On quantum state merging for arbitrarily varying
quantum sources

In this Section, we consider quantum state merging in case that the bipartite source A and B
have to merge is an arbitrarily varying quantum source (AVQS). In the preceding section, we
have determined the optimal entanglement as well as classical communication cost in case of a
compound quantum source, and achieved these rates by protocols with merging fidelity going
to one exponentially. One would expect, that applying Ahlswede’s [Ahl+12] ingeniuous robus-
tification technique, to state merging protocols for the compound source generated by conv(X)
eventually leads to optimal protocols for merging the AVQS generated by a set X, to prove

CAVm,→(X) = Cm,→(conv(X)) = sup
ρ∈conv(X)

S(A∣B,ρ). (3.103)

Indeed, it seems possible, to prove the relation

CAVm,→(X) ≤ Cm,→(conv(X)) (3.104)

using Ahlswede’s elimination and derandomization techniques (at least if the AVQS is generated
by a finite set of states). We do not carry out the argument here. Instead, we provide a simple
counterexample to the relation in (3.103).
Consider a finite set X̂ ∶= {ρs}Ns=1 of bipartite states on a Hilbert space HA ⊗ HB , which is
generated by unitaries in the following sense. Let ρ1 ∈ S(HA ⊗ HB), where we assume
S(A∣B,ρ1) < 0 and dimHA ≥ N ⋅ dim supp(ρA,1), U1 = 1HA and U2, ..., UN unitaries on
HA such that with the definitions

ρs ∶= Us ⊗ 1HB(ρ1)U∗
s ⊗ 1HB (s ∈ [N]) (3.105)

the supports of the A-marginals are pairwise orthogonal, i.e.

supp(ρA,s) ⊥ supp(ρA,s′) (s, s′ ∈ [N], s′ ≠ s). (3.106)
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3.3. On quantum state merging for arbitrarily varying quantum sources

Note, that our definitions also imply the relations ρB,s = ρB,1 (s ∈ [N]) and

supp(ρs) ⊥ supp(ρs′) (s, s′ ∈ [N], s ≠ s′). (3.107)

In the following we show, that sets constructed in the above described manner are counterexam-
ples to (3.103) if N > 1.

Example 20. For the AVQS generated by X̂ ∶= {ρs}Ns=1, it holds

CAVm,→(X̂) = Cm→ (conv(X̂)) − logN. (3.108)

The classical A→ B communication cost for merging of the AVQS X̂ is upper bounded by

sup
σ∈conv(X̂)

I(A;E,σ) − logN, (3.109)

where ρp ∶= ∑Ns=1 p(s)ρs for each p ∈P([N]).

Proof of Example 20. Before we prove the claims made in the example, we briefly sketch the
argument. Since the A marginals are supported on pairwise orthogonal subspaces, A can per-
fectly detect, given a block of l outputs of the AVQS, which of the sl ∈ Sl is actually realized. In
this way, A obtains state knowledge which helps to achieve the desired rates.
We introduce unitary channels VA,1, ...,VA,N and VB′,1, ...,VB′,N where we define VA,s(⋅) ∶=
Us(⋅)U∗

s with the unitaries from (3.105) and consider VB′,s to be the corresponding unitary
channel on the spaceHB′ for each s ∈ [N]. For given blocklength l, we define unitary channels

VA,sl(⋅) ∶= VA,s1 ⊗ ...⊗ VA,sl and VB′,sl(⋅) ∶= VB′,s1 ⊗ ...⊗ VB′,sl (3.110)

for each sl = (s1, ..., sl) ∈ Sl accordingly. Thus, the definitions in (3.105) imply

ρsl = VA,sl ⊗ idH⊗l
B
(ρ⊗l1 ). (sl ∈ [N]l)

Using the projection Ps onto the support of ρA,s for each s ∈ [N], we define a quantum instru-
ment

Â ∶= {Âs}Ns=1

with Âs(⋅) ∶= UA,s ○ Ps(⋅)P ∗
s for each s ∈ [N], which implies

Âs′ ⊗ idHB(ρs) = δss′ρ1 (s ∈ [N]). (3.111)

It is known from Ref. [HOW07], that for each δ > 0 and sufficiently large blocklength l, there
exists an (l, kl, D̃l) A→ B merging M̃l such that

F (M̃l ⊗ idH⊗n
E

(ψ⊗l1 ), φl ⊗ ψ′⊗l1 ) ≥ 1 − 2−lc (3.112)

31



Chapter 3. Quantum state merging under source uncertainties

holds with a constant c > 0, where ψ1 is a purification of ρ1 and φl a maximally entangled state
shared by A and B with

−1

l
log sr(φl) ≤ S(A∣B,ρ1) + δ (3.113)

and where for the classical communication rate

1

l
log D̃l ≤ I(A;E,ρ1) + δ (3.114)

holds. We combine the instrument Â and the unitary channels from (3.110) with M̃l to build a
merging LOCCMl suitable for merging the AVQS generated by X̂ and define

Ml ∶= ∑
sl∈[N]l

(VB′,sl ⊗ idH⊗l
B
) ○ M̃ ○ (Âsl ⊗ idH⊗l

B
).

Clearly,Ml is an A → B LOCC channel. Explicitly, inspection of the above definition shows,
thatMl is an (l, kl,Dl) A→ B merging where one of

Dl = D̃l ⋅N l (3.115)

different classical messages has to be communicated within action ofMl. Moreover, for each
sl ∈ [N]l, it holds

F (Ml ⊗ idH⊗l
E
(ψsl), φl ⊗ ψ′sl)

(a)= ∑
ml∈[N]l

F ((VB′,ml ⊗ idH⊗l
B
) ○ M̃l ○ (Âml ⊗ idH⊗l

B
) ⊗ idH⊗l

E
(ψsl), φl ⊗ ψ′sl)

(b)= F (M̃l ⊗ idH⊗l
E
(ψ⊗l1 ), φl ⊗ (V∗B′,sl ⊗ idH⊗l

BE
)(ψ′sl))

(c)= F (M̃l ⊗ idH⊗l
E
(ψ⊗l1 ), φl ⊗ (ψ′1)⊗l)

(d)
≥ 1 − 2−lc, (3.116)

where (a) is the definition ofMl plus linearity of the fidelity in the first argument in the present
situation, (b) is because

Âml ⊗ idH⊗l
BE

(ψsl) = δmlslψ⊗l1 (3.117)

holds implied by (3.111) together with the fact, that the fidelity is invariant under action of
unitary channels applied simultaneously on both arguments. Equality (c) follows from (3.105),
and (d) is by (3.112). It remains to evaluate the rates. It is well known, that for each ensemble
{q(x), ρx}x∈X of quantum states having pairwise orthogonal supports, it holds

S (∑
x∈X

q(x)ρx) = ∑
s∈X

q(x)S(ρx) +H(q).
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3.3. On quantum state merging for arbitrarily varying quantum sources

Thus, for each p ∈P([N]), ρp ∶= ∑s∈[N] p(s)ρs we yield

S(A∣B,ρp) = S(A∣B,ρ1) +H(p)

and

I(A;E,ρp) = I(A;E,ρ1) + 2H(p).

Taking maxima over all p ∈P([N]) and rearranging equations, we arrive at

S(A∣B,ρ1) = max
p∈P([N])

S(A∣B,ρp) − logN (3.118)

and

I(A;E,ρ1) = max
p∈P([N])

I(A;E,ρp) − 2 logN. (3.119)

Note, that

Cm,→(conv(X̂)) = max
p∈P([N])

S(A∣B,ρp) (3.120)

by Proposition 17. Combining (3.118) with (3.113) and (3.120) together with (3.116) shows,
that

CAVm (X) ≤ Cm(conv(X̂)) − logN + δ (3.121)

holds. The converse is valid by the merging cost converse for single states [HOW07]. Moreover,
by (3.119), our protocols have classical A→ B classical communication rates with

lim sup
l→∞

1

l
logDl = lim sup

l→∞
1

l
log(D̃l ⋅N l) (3.122)

≤ I(A;E,ρ1) + δ + logN (3.123)

= max
p∈P([N])

I(A;E,ρp) − logN + δ (3.124)

where (3.122) follows from (3.115), (3.123) is by (3.114), and (3.124) is by (3.119). Since δ > 0
was an arbitrary positive number, we are done.

We will see in the next section, that applying a version of the robustification technique leads to
optimal protocols, if entanglement distillation is considered.
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4 One-way entanglement distillation
under source uncertainties

4.1 Definitions and results

In this section, we set up the definitions used in this chapter. Since we are mainly interested
in the optimal entanglement rates of one-way LOCC distillation protocols, we allow the users
free but rate-bounded choice of the classical forward communication. For the definitions in
this chapter, we consider X to be an arbitrary set X ∶= {ρs}s∈S ⊂ S(HAB) of bipartite density
matrices.

4.1.1 Compound quantum sources

Definition 21. A non-negative number R is an achievable A→ B entanglement distillation rate
for the compound quantum source X with classical rate Rc, if there exists a sequence {Dl}l∈N
of A→ B LOCC channels,

Dl =
Ml

∑
m=1

Am,l ⊗Bm,l (l ∈N) (4.1)

such that the conditions

1. lim
l→∞

inf
s∈S
F (Dl(ρ⊗ls ), φl) = 1

2. lim inf
l→∞

1
l log sr(φl) ≥ R

3. lim sup
l→∞

1
l logMl ≤ Rc

are fulfilled, where φl is a maximally entangled state shared byA andB and sr(φl) is its Schmidt
rank for each l ∈N.

Definition 22. The A → B entanglement distillation capacity for the compound source X is
defined

D→(X) ∶= sup{R ∶ R achievable A→ B entanglement distillation rate forthe compound
source X with some classical communication rate Rc

} .
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Chapter 4. One-way entanglement distillation under source uncertainties

To introduce some notation we use in this chapter, we state a theorem from Ref. [DW05], where
the A→ B entanglement distillation capacity D→(ρ) of a memoryless bipartite quantum source
with perfectly known density matrix ρ was considered.

Theorem 23 ([DW05], Theorem 3.4). Let ρ be a state onHAB . It holds

D→(ρ) = lim
k→∞

1

k
sup
T ∈Θk

D(1)(ρ⊗k,T ) (4.2)

with

D(1)
→ (σ,T ) ∶= ∑

j∈[J]∶
λj(σ)≠0

λj(σ) Ic(A⟩B,σj), (4.3)

where Θk is the set of finite-valued quantum instruments on A’s site, i.e.

Θk ∶=
⎧⎪⎪⎨⎪⎪⎩
{Tj}Jj=1 ⊂ C↓(H⊗k

A ,KA) ∶
J

∑
j=1

Tj ∈ C(H⊗k
A ,KA), J < ∞, dimKA < ∞

⎫⎪⎪⎬⎪⎪⎭
. (4.4)

For each state σ and quantum instrument T ∶= {Tj}Jj=1 on A’s site and definitions

λj(σ) ∶= tr(Tj(σA)), and σj ∶=
1

λj
(σ)(Tj ⊗ idHB)(σ)

for each j with λj(σ) ≠ 0.

Remark 24. It is known from [DW05], that the limit in (4.2) exists for each state, and maxi-
mization over instruments in this formula is always realized by an instrument T = {Tj}Jj=1 with
J ≤ dimH2k

A and the operation Tj described by a single Kraus operator for 1 ≤ j ≤ J .

In order to obtain a compact notation for the capacity functions arising in the entanglement
distillation scenarios we consider in this paper, we introduce a one-way LOCC T̂ ∶= ∑Jj=1 Tj ⊗
∣ej⟩ ⟨ej ∣ for each instrument {Tj}Jj=1 with domain HA and an orthonormal system {ej}Jj=1 in a
suitable spaceH′

B ≃CJ assigned to B, it holds

D(1)(σ,T ) = Ic(A⟩BB′, T̂ (σ)) (4.5)

in (4.3) for each given state σ.

Theorem 25. Let Y ⊂ S(HA ⊗HB).

1. It holds

D→(Y) = lim
k→∞

1

k
sup
T ∈Θk

inf
ρ∈Y

D(1)
→ (ρ⊗k,T ), (4.6)

where the set Θk is defined as in (4.4) for each k ∈N.

2. The function in (4.6) behaves regular for compound sources in the following sense. If
Y,Y′ ⊂ S(HAB) are two nonempty sets of bipartite states with dH(Y,Y′) < δ ≤ 1

2 , it
holds

∣D→(Y) −D→(Y′)∣ ≤ ν(δ) (4.7)
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4.1.2 Arbitrarily varying quantum sources

Definition 26. A non-negative number R is an achievable A→ B entanglement distillation rate
for the AVQS generated by a set X with classical rate Rc, if there exists a sequence {Dl}l∈N of
A→ B LOCC channels,

Dl =
Ml

∑
m=1

Am,l ⊗Bm,l (l ∈N) (4.8)

such that the conditions

1. lim
l→∞

inf
sl∈Sl

F (Dl(ρsl), φl) = 1

2. lim inf
l→∞

1
l log sr(φl) ≥ R

3. lim sup
l→∞

1
l logMl ≤ Rc

are fulfilled, where φl is a maximally entangled state shared by A and B for each l ∈N.

Definition 27. The A → B entanglement distillation capacity for the AVQS generated by X is
defined

DAV
→ (X) ∶= sup{R ∶ R is an achievable A→ B entanglement distillation rate for

the AVQS X with some classical communication rate Rc
} .

Theorem 28. Let X be a set of states onHA ⊗HB . For the AVQS generated by X, it holds

DAV
→ (X) =D→(conv(X)) = lim

l→∞
1

k
sup
T ∈Θk

inf
τ∈conv(X)

D(1)
→ (τ⊗k,T ) (4.9)

withD(1)
→ being the function defined in (4.3), and maximization over instruments onA’s systems.

4.2 Entanglement distillation from compound quantum
sources - Proofs

The main purpose of this section is, to give a full proof to Theorem 28, which is done in Sub-
section 4.2.2. As a prerequisite, we demonstrate in Subsection 4.2.1, that the capacity function
appearing in Theorem 28 is continuous. We close the section by applying the results obtained
to give a new proof for achievability of the entanglement generating capacity for compound
quantum channels first proven in [BBN09].
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Chapter 4. One-way entanglement distillation under source uncertainties

4.2.1 Continuity of entanglement distillation capacities

Continuity was shown for the capacity functions appearing in coding theorems of several quan-
tum channel coding scenarios[LS08], here we state and prove uniform continuity for the entan-
glement distillation capacity functions.

Lemma 29. Let Y,Y′ ⊂ S(HX ⊗HY ) be two nonempty sets of bipartite states with Hausdorff
distance 0 ≤ dH(Y,Y′) < ε ≤ 1

2 . It holds for each k ∈ N and c.p.t.p map N with domain
L(H⊗k

XY )

∣inf
τ∈Y

Ic(X⟩Y,N(τ⊗k)) − inf
σ∈Y′

Ic(X⟩Y,N(σ⊗k))∣ ≤ kν(ε), (4.10)

where the function ν is defined by ν(x) ∶= 4x log dimHX + 2h(x) for x ∈ (01
2) and h being the

binary entropy h(x) ∶= −x logx − (1 − x) log(1 − x).

Proof. We show this assertion with sets containing only one state defined Y ∶= {τ},Y′ ∶= {σ}.
The general assertion in (4.10) follows directly by definition of the Hausdorff distance. The
argument parallels the one given in Ref. [LS08], Theorem 6 for continuity of the the entropy
exchange for channels. Introduce a state γk,n ∶= τ⊗n ⊗ σ⊗(k−n) for each 0 ≤ n ≤ k. By
assumption, it holds

∥γk,n−1 − γk,n∥1 ≤ ε (4.11)

for each 0 < n ≤ k, which implies, via the Alicki-Fannes inequality [AF04] for the conditional
von Neumann entropy

∣Ic(X⟩Y,N(γk,n−1)) − Ic(X⟩Y,N(γk,n))∣ ≤ ν(ε) (4.12)

for each 0 < n ≤ k by (4.11) and monotonicity of the trace distance under action of N . Further,
it holds

∣Ic(X⟩Y,N(τ⊗k)) − Ic(X⟩Y,N(σ⊗k))∣ (4.13)

= ∣Ic(X⟩Y,N(γk,k)) − Ic(X⟩Y,N(γk,0))∣ (4.14)

= ∣
k

∑
n=1

(Ic(X⟩Y,N(γk,n−1)) − Ic(X⟩Y,N(γk,n)))∣ (4.15)

≤
k

∑
n=1

∣Ic(X⟩Y,N(γk,n−1)) − Ic(X⟩Y,N(γk,n))∣ , (4.16)

where the first equality above is by definition, and the second by adding some zeros. Estimating
each summand in (4.16) by (4.12) concludes the proof.

Corollary 30. The one-way entanglement distillation capacityD→ for memoryless sources with
perfectly known source state in (4.2) is a uniformly continuous function (considering the trace
distance). Explicitly, it holds for ρ, σ ∈ S(HA ⊗HB) with ∥ρ − σ∥1 < ε ≤ 1

2 , it holds

∣D→(ρ) −D→(σ)∣ ≤ ν(ε). (4.17)
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4.2.2 Proof of the coding theorem for compound quantum sources

Lemma 31. Let X ∶= {ρs}s∈S ⊂ S(HAB) be a set of bipartite states onHAB . Then

D→(X) ≥ −sup
s∈S

S(A∣B,ρs) (4.18)

Proof. It suffices to consider the case of a set with sups∈S S(A∣B,ρs) < 0, since rate 0 can
always be achieved by using a trivial protocol which distills no entanglement at all. LetM ∶=
∑Dk=1Ak ⊗Uk be an L-merging for X satisfying

min
1≤i≤N

F (M⊗ idH⊗l
E
(ψ⊗lABE,i), φl ⊗ ψ⊗lB′BE,i) ≥ 1 − ε. (4.19)

Then T (⋅) ∶= ∑Dk=1Ak ⊗ Rk(⋅) with Rk ∶= trH⊗l
B′BE

○ (Uk ⊗ idH⊗l
E
) for every k is a one-way

entanglement distillation protocol for X satisfying

F (T (ρ⊗li ), φl) ≥ Fm(ρs,M) ≥ 1 − ε. (4.20)

for every s ∈ S where the first of the above inequalities is justified by the fact that taking partial
traces cannot increase fidelity. From Proposition 14 we know, that we find for ε > 0 and l ∈ N
large enough an Ll-mergingMl for X such that

Ll ≥ ⌊exp(−l(sup
s∈S

S(A∣B,ρs) + ε))⌋ (4.21)

and

inf
s∈S

F (Ml ⊗ idH⊗l
E
(ψ⊗lABE,s), φl ⊗ ψ⊗lB′BE,s) ≥ 1 − 2−nc4 . (4.22)

holds with a constant c4 > 0. Eqns. (4.20) and (4.23) give

inf
s∈S

F (Tl(ρ⊗ls ), φl) ≥ 1 − 2−nc4 . (4.23)

The achievability of − sups∈S S(A∣B,ρs) follows from (4.21) and (4.23).

The above lemma provides the main building block for determining the one-way entanglement
capacity for sets of states, which is done in the following theorem.

Proposition 32. Let Y ⊂ S(HA ⊗HB) be a set of bipartite states. For each k ∈N, δ > 0, there
exists a number l0 = l0(k, δ) and a constant c5 = c5(k, δ,X) > 0, such for each l > l0, there
exists an A→ B LOCC Dl fulfilling

inf
ρ∈X

F (Dl(ρ⊗l), φl) ≥ 1 − 2−lc5 , (4.24)

where φl is a maximally entangled state shared by A and B with

1

l
log sr(φl) ≥ lim

k→∞
1

k
sup
T ∈Θk

inf
ρ∈X

D(1)
→ (ρ⊗k,T ) − δ. (4.25)

The function D(1)
→ is defined in (4.3), and Θk is defined as in (4.4) for each k ∈N.
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Proof. Our proof parallels the one given in Ref. [DW05] for the single state case. However, for
the direct part, we use Lemma 31 instead of the single state hashing bound. To prove achievabil-
ity, let T ∶= {Tj}Jj=1 be any instrument onHA, P ∶= {Pj}Jj=1 a set of channels of the form

Pj(χ) ∶= χ⊗ ∣ej⟩ ⟨ej ∣ (4.26)

for every χ ∈ S(HB) and 1 ≤ j ≤ J , where e1, ..., eJ are members of an orthonormal basis of a
Hilbert spaceHB′ located at B’s site. Define states

ρ̃s ∶=
J

∑
j=1

Tj ⊗Pj(ρs) = ∑
j,λ
(s)
j ≠0

λ
(s)
j ρ

(s)
j ⊗ ∣ej⟩ ⟨ej ∣

for each s ∈ S. These preprocessed states have conditional von Neumann entropy

S(A∣BB′, ρ̃s) = ∑
j∶λ(s)j ≠0

λ
(s)
j S(A∣B,ρ(s)j ).

Direct application of Lemma 31 proves the claim of the proposition.

Proof of Theorem 25. Achievability follows directly from Proposition 32. The converse state-
ment can be proven just by the same arguments as given in Ref. [DW05], we give the proof for
convenience. We consider an arbitrary (l, kl) one-way distillation protocol with rate R, given
by a LOCC channel with A→ B classical communication

T (⋅) ∶=
J

∑
j=1

Tj ⊗Rj(⋅)

with Tj ∈ C↓(H⊗l
A ,K) andRj ∈ C(H⊗l

B ,K) , 1 ≤ j ≤ J , such that for a given τ ∈ (0, 1
2)

F (T (ρ⊗ls ), φ) ≥ 1 − τ (4.27)

holds for all s ∈ S, where φ is a maximally entangled state on K⊗K and dimK = ⌊2lR⌋. We fix
notations

λ
(s)
j ∶= tr(Tj ⊗Rj(ρ⊗ls )), and ω

(s)
j ∶= 1

λ
(s)
j

Tj ⊗Rj(ρ⊗ls ),

ρ
(s)
j ∶= 1

λ
(s)
j

Tj ⊗ idH⊗l
B
(ρ⊗ls )

for each s ∈ S, j ∈ [J] with λ(s)
j ≠ 0. Application of T on ρs results in the state

Ω(s) ∶= ∑
j∶λ(s)j ≠0

λ
(s)
j ω

(s)
j .
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Using the relation from (1.1), (4.27) implies, that

∥Ω(i) − φ∥1 ≤ 2
√
τ

holds for all i ∈ [N], which leads us to

∣S(A∣B,Ω(i)) − S(A∣B,φ)∣ ≤ ε (4.28)

with ε ∶= 2(2√τ log(dimK2) + η(2√τ)) via twofold application of Fannes’ inequality. Eq.
(4.28) along with S(A∣B,φ) = −l ⋅R implies

lR ≤ −S(A∣B,Ω(s)) + 4
√
τ ⋅ lR + 2η(2

√
τ). (4.29)

Moreover, we have

S(A∣B,Ω(s)) ≥ ∑
j∶λ(s)j ≠0

λ
(s)
j S(A∣B,ω(s)

j )

≥ ∑
j∶λ(s)j ≠0

λ
(s)
j S(A∣B,ρ(s)j ), (4.30)

where the first inequality is by concavity of the map ρ ↦ S(A∣B,ρ) for quantum states, the
second is by application of the quantum data processing inequality. Combining (4.29) and (4.30),
we obtain

lR ≤ − sup
s∈S

∑
j∶λ(s)j ≠0

λ
(s)
j S(A∣B,ρ(s)j ) + 4

√
τ l ⋅R + 2η(2

√
τ)

≤ −min
T

sup
s∈S

∑
j∶λ(s)j ≠0

λ
(s)
j S(A∣B,ρ(s)j ) + 4

√
τ l ⋅R + 2η(2

√
τ)

≤D(1)(X⊗l) + 4
√
τ l ⋅R + 2η(2

√
τ)

It remains to show validity of the inequality in (4.7). Assume dH(Y,Y′) < δ ≤ 1
2 . Let τ > 0 be

an arbitrary but fixed number, and Q be an instrument with domain L(H⊗l
A ), such that

inf
ρ∈Y

Ic(A⟩BB′, Q̂(ρ⊗l)) ≥ sup
T ∈Θk

inf
ρ∈Y

Ic(A⟩BB′, T̂ (ρ⊗l)) − τ (4.31)

holds, where we used our notation from (4.5). Lemma 29 implies

inf
ρ∈Y

Ic(A⟩BB′, Q̂(ρ⊗l)) ≥ inf
ρ∈Y′

Ic(A⟩BB′, Q̂(ρ⊗l)) − kν(δ), (4.32)

which, together with (4.31) implies

sup
T ∈Θk

inf
ρ∈Y′

Ic(A⟩BB′, T̂ (ρ⊗l)) ≥ sup
T

inf
ρ∈Y

Ic(A⟩BB′, T̂ (ρ⊗l)) − τ − kν(δ). (4.33)

Since the above line of reasoning also holds with Y,Y′ interchanged and τ can be chosen
arbitrarily small, we obtain

∣ sup
T ∈Θk

inf
ρ∈Y

D(1)(ρ⊗k,T ) − sup
T ∈θk

inf
ρ∈Y′

D(1)(ρ⊗k,T )∣ ≤ kν(δ). (4.34)

The above inequality together with the first assertion of the corollary proves the second one.
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Chapter 4. One-way entanglement distillation under source uncertainties

4.2.3 An application: Universal entanglement generation codes for
compound quantum channels

In this section, we apply the results obtained so far to give another proof for the direct part of
the coding theorem for entanglement generation over compound channels, which was originally
given in Ref. [BBN09], Theorem 13. We first recall some definitions from Ref. [BBN09]. Let I
be a compound quantum channel generated by a set I ⊂ C(HA,HB) of channels. We consider
the uninformed user scenario, where precise knowledge about the identity of the channel is
available neither to encoder nor decoder. An entanglement generating (l, kl)-code for I is a
pair (Rl, ϕl) where Rl ∈ C(H⊗l

B ,Kl) is a channel with kl = dimKl and ϕl a pure state on
Kl ⊗ H⊗l

A . A positive number R is an achievable rate for entanglement generation over I if
there is a sequence of (l, kl)-entanglement generating codes satisfying

1. lim inf
l→∞

1
l log kl ≥ R, and

2. lim
l→∞

inf
N∈I

F (φl, (idKl ⊗Rl ○N⊗l)(ϕl)) = 1, where φl denotes a maximally entangled state

on Kl ⊗Kl.

The number

E(I) ∶= sup{R ∶ R is an achievable rate for entanglement generation over I}.

is called the entanglement generating capacity of I. In the following, we show in a case of
compound quantum channel generated by a finite set I of c.p.t.p. maps, that our results from
the last section imply a coding theorem for entanglement generation. The transition to the case,
where the set I is arbitrary follows just by applying standard approximation techniques in the
same way as it was done in [BBN09]

Theorem 33 (cf. Ref. [BBN09], Th. 13). Let I ∶= {Ni}Ni=1 be a finite compound quantum
channel, I ⊂ C(HA,HB). Then

E(I) ≥ lim
l→∞

1

l
max

ρ∈S(H⊗l
A )

min
1≤i≤N

Ic(ρ,N⊗l
i ) (4.35)

holds

Proof. First note that the limit on the r.h.s of (4.35) exists by standard arguments (see Ref.
[BBN09], Remark 2). We just have to prove that the number

min
1≤i≤N

Ic(ρ,Ni) − ε

is an achievable rate for every state ρ on HA and every ε > 0, the rest is by standard blocking
arguments. There is nothing to prove for states with min

1≤i≤N
Ic(ρ,Ni) ≤ 0. Therefore let ρ be a
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4.2. Entanglement distillation from compound quantum sources - Proofs

state on HA with min1≤i≤N Ic(ρ,Ni) > 0. Consider the set X ∶= {ρi}Ni=1 of bipartite states in
HAB , where ρi is defined

ρi ∶= (idHA ⊗Ni)(χ) (4.36)

for 1 ≤ i ≤ N . Here χ is the pure state onHA⊗HA such that the partial trace over any of the two
subsystems results in the state ρ. We show that a good entanglement distillation protocol for the
set X of bipartite states generated by I implies the existence of a good entanglement generation
code for I. Following the proof of Lemma 31, there exists an (l, kl)-distillation protocol T =
∑Dk=0Ak ⊗ Rk for X with Ak ∈ C↓(H⊗l

A ,Kl) and Rk ∈ C(H⊗l
B ,Kl) for k ∈ {1, ...,D} with D

determined by dimHA and dimKl such that

dimKl ≥ ⌊exp(l ( min
1≤i≤N

Ic(ρ,Ni) − ε))⌋ (4.37)

and

min
1≤i≤N

F (T (ρi), φl) ≥ 1 − 2−nĉ (4.38)

with φl being the maximally entangled state on Kl and ĉ > 0 a constant . Notice, that in eq.
(4.37), we used the identity

Ic(ρ,Ni) = −S(A∣B,ρi)

for every i ∈ {1, ...,N}. The definitions given in eq. (4.36) imply

Ak ⊗Rk(ρ) = (idKl ⊗Rk ○ Ni)(Ak ⊗ idH⊗l
A
(χ))

for every 0 ≤ k ≤D and 1 ≤ i ≤ N . Therefore,

F (T (ρi), φl) =
D

∑
k=0

F (idKl ⊗Rk ○ N⊗l
i (Ak ⊗ idH⊗l

A
(χ)), φl)

= ∑
k∶pk≠0

pkF (idKl ⊗Rk ○ N⊗l
i (ϕk), φl) (4.39)

holds for every i, where we used the definitions

pk ∶= tr(Ak(ρ)), and ϕk ∶=
1

pk
(Ak ⊗ idH⊗l

A
)(χ)

for pk ≠ 0, 0 ≤ k ≤D. Notice, that ϕ0, ..., ϕD are pure states, because the operationsAk are pure
since they arise from an L-merging (see the proof of Lemma 31). Again because the fidelities
are affine functions of the first input, (4.38) and (4.39) imply

∑
k∶pk≠0

pkF (idKl ⊗Rk ○
1

N

N

∑
i=1

N⊗l
i (ϕk), φl) ≥ 1 − 2−nĉ. (4.40)
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Chapter 4. One-way entanglement distillation under source uncertainties

The r.h.s. of equation (4.39) is, in fact, an average of fidelities of entanglement generating codes
(R1, ϕ1), ..., (RD, ϕD) with probabilities p1, ..., pD. This implies the existence of a number
k′ ∈ {1, ...,D} such that with ϕ ∶= ϕk′ andR ∶= Rk′

min
1≤i≤N

F (idKl ⊗R ○N⊗l
i (ϕ), φl) ≥ 1 − 2−nĉ (4.41)

holds. Eqns. (4.41) and (4.37) show that

min
1≤i≤N

Ic(ρ,Ni) − ε

is an achievable rate.

To conclude this section we compare the proof of Theorem 33 given above with the one given in
Ref. [BBN09]. The original achievability proof relies on the fact that good entanglement gener-
ation codes can be deduced from entanglement transmission codes working good on maximally
mixed states on certain subspaces of the input space of the channels. The passage to arbitrary
states is done by a compound version of the so-called BSST-Lemma [Ben+02]. Indeed, one of
the results from Ref. [BBN09] is that the entanglement transmission capacityQ(I) equalsE(I)
for every compound channel I.
The proof given above follows a more direct route by taking advantage of a direct correspon-
dence between entanglement distillation from bipartite states and entanglement generation over
quantum channels, which is very close even in the compound setting. In this way, we have
demonstrated, that quantum state merging provides a genuine approach to problems of entan-
glement generation over quantum channels even in the compound setting.

4.3 Entanglement distillation from arbitrarily varying
quantum sources

In this section, we prove a regularized formula for the one-way entanglement distillation capac-
ity where the source is an AVQS generated by a set X ⊂ S(HA ⊗HB).
We first prove the achievability part in case that X is finite, where we derive suitable one-way
entanglement distillation protocols for the AVQS X from entanglement distillation protocols
which are universal for the compound source conv(X) with fidelity approaching one exponen-
tially fast. In a second step, we generalize this result allowing X to be any (not necessarily
finite or countable) set on HA ⊗ HB . To this end, we approximate X by a polytope (which is
known to be the convex hull of a finite set of states), where we utilize methods we borrow from
Ref. [Ahl+12]. First we state some facts concerning the continuity of the one-way entanglement
distillation capacity functions.
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4.3. Entanglement distillation from arbitrarily varying quantum sources

4.3.1 AVQS generated by finite sets

In this section, we assume X to be a finite set of bipartite states. We show, that sequences of
one-way entanglement distillation protocols for the compound source generated by the convex
hull of X with fidelity going to one exponentially fast can be modified to faithful entanglement
distillation schemes for the AVQS X. We apply Ahlswede’s robustification [Ahl86] and elimi-
nation [Ahl78] techniques. This method of proof is well-known in classical information theory,
and found application also in the quantum setting where it was shown to be a useful approach
to determine the entanglement transmission capacity of arbitrarily varying quantum channels
(AVQC)[Ahl+12]. The following theorem is the core of the robustification technique. It was
first proven in Ref. [Ahl80]. The version below (with a better constant) is from Ref. [Ahl86].

Theorem 34 (Robustification technique, cf. Theorem 6 in Ref. [Ahl86]).
Let S be a set with ∣S∣ < ∞ and l ∈N. If a function f ∶ Sl → [0,1] satisfies

∑
sl∈Sl

f(sl)q(s1) ⋅ . . . ⋅ q(sl) ≥ 1 − γ (4.42)

for each type q of sequences in Sl for some γ ∈ [0,1], then

1

l!
∑
σ∈Sl

f(σ(sl)) ≥ 1 − (l + 1)∣S∣ ⋅ γ ∀sl ∈ Sl. (4.43)

The following theorem is the main result of this section.

Theorem 35. Let X ∶= {ρs}s∈S ⊂ S(HA⊗HB), ∣S∣ ≤ ∞. For the AVQS generated by X, it holds

DAV
→ (X) ≥D→ (conv(X)) = lim

k→∞
sup
T ∈Θk

inf
p∈P(S)

D(1)(T , ρ⊗kp ), (4.44)

where we use the definition

ρp ∶= ∑
s∈S

pl(sl) ρsl (4.45)

for each p ∈P(S).

Remark 36. The above statement actually holds with equality in (4.44) which we show in the
proof of Corollary 28 below.

Proof. We show, that each rate R, which is achievable for A → B entanglement distillation for
the compound source generated by conv(X), is also an achievable rate for A→ B entanglement
distillation for the AVQS generated by X. We indicate the elements of conv(X) by probability
distributions on S, since

conv(X) = {ρp ∶ ρp = ∑
s∈S

p(s)ρs, p ∈P(S)} (4.46)
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Chapter 4. One-way entanglement distillation under source uncertainties

holds. We know from Proposition 32, that for an achievable A → B entanglement distillation
rate R for the compound source generated by conv(X), δ > 0 and each sufficiently large block-
length l, there exists a one-way LOCC channel D̃l, such that the condition

min
p∈P(S)

F (D̃l(ρ⊗lp ), φl) ≥ 1 − 2−lc5 (4.47)

is fulfilled with a maximally entangled state φl shared by A and B, such that

1

l
log sr(φl) ≥ R − δ (4.48)

holds. Note that the minimization in (4.47) is because of (4.46). We define a function f ∶ Sl →
[0,1] by f(sl) ∶= F (D̃l(ρsl), φl) for each sl ∈ Sl, and infer from (4.47), that

∑
sl∈Sl

p(s1) ⋅ ... ⋅ p(sl) f(sl) ≥ 1 − 2−lc5 (4.49)

holds for each p ∈P(S) with a constant c5 > 0. Let

Uσ(⋅) ∶= UA,σ ⊗UB,σ(⋅)U∗
A,σ ⊗U∗

B,σ, (4.50)

for each permutation σ ∈ Sl, be the unitary channel, which permutes the tensor factors in H⊗l
AB

according to σ, (with unitary matrices UA,σ, UB,σ permuting the tensor bases onH⊗l
A resp. H⊗l

B ).
It holds

ρσ(sl) = Uσ(ρsl), (4.51)

and consequently

f(σ(sl)) = F (D̃l ○ Uσ(ρsl), φl) (4.52)

for each sl ∈ Sl, σ ∈ Sl. The functions in (4.52) fulfill the conditions of Theorem 34, which in
turn implies, that

(1 − (l + 1)∣S∣) ⋅ 2−lc5 ≤ 1

l!
∑
σ∈Sl

F (D̃l ○ Uσ(ρsl), φl) (4.53)

= F (D̂l(ρsl), φl) (4.54)

is valid with the definition D̂l ∶= 1
l! ∑σ∈Sl D̃l ○ Uσ. Notice, that D̂l is an A → B LOCC channel

either. However, D̂l is not a reasonable protocol for entanglement distillation regarding the
classical communication cost. Implementation of D̂l demands A → B communication of a
number of classical messages increased by a factor l! compared to the requirements of D̃l, which
leads to super-exponential growth of required classical messages and consequently unbounded
classical communication rates. We remark here, that for a coordination of the permutations
in D̂l, common randomness accessible to A and B, which is known to be a weaker resource
than A → B communication, would suffice. Nonetheless, the asymptotic common randomness
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consumption of the protocol would be above any rate either. We will a apply the well-known
derandomization technique which first appeared in Ref. [Ahl78] to construct A → B LOCC
channel with reasonable classical communication requirements (actually, we will show, that we
can approximate the classical cost of A→ B distillation of the compound source conv(X).
Let X1, ...,XKl be a sequence of i.i.d. random variables, each distributed uniformly on Sl. We
define a function g ∶Sl × Sl → [0,1] by

g(σ, sl) = 1 − F (D̃l ○ Uσ(ρsl), φl) (σ ∈Sl, s
l ∈ Sl). (4.55)

One readily verifies, that

E [g(X1, s
l)] = 1 − F (D̂l(ρsl), φl) ≤ (l + 1)∣S∣ 2−lc5 ∶= εl (4.56)

holds for each sl ∈ Sl. Thus, for each sl ∈ Sl, and νl ∈ (0,1), we yield

Pr
⎛
⎝

Kl

∑
k=1

g(Xk, s
l) >Klνl

⎞
⎠
= Pr

⎛
⎝

Kl

∏
k=1

exp(g(Xk, s
l)) > 2Klνl

⎞
⎠

(4.57)

≤ 2−Klνl ⋅E [exp(g(Xk, s
l)]Kl (4.58)

≤ 2−Klνl ⋅ (1 +E [exp(g(Xk, s
l)])Kl (4.59)

≤ 2−Klνl ⋅ 2Kl log(1+εl) (4.60)

≤ 2−Kl(νl−2εl). (4.61)

Eq. (4.58) above is by Markov’s inequality, (4.59) follows from the fact, that exp(x) ≤ 1 + x
holds for x ∈ [0,1], (4.60) is by (4.56), and (4.61) follows from the inequality log(1 + x) ≤ 2x
being valid for x ∈ (0,1). From (4.57)-(4.61) and application of de Morgan’s laws, it follows

Pr
⎛
⎝
∀sl ∈ Sl ∶ 1

Kl

Kl

∑
k=1

g(Xk, s
l) ≤ νl

⎞
⎠
≥ 1 − ∣S∣l ⋅ 2−Kl(νl−2εl) (4.62)

≥ 1 − 2−l
(θ−κ)

2 , (4.63)

for large enough l,where the last line results from the choosing νl = 2−lκ and Kl = 2lθ with
θ, κ > 0. If we choose κ and θ in a way, that they fulfill 0 < κ < θ < c, the r.h.s. of (4.63) is
strictly positive and we find a realization σ1, ..., σKl of X1, ...,XKl , such that for each sl ∈ Sl

2−lκ ≥ 1

Kl

Kl

∑
k=1

g(σk, sl) (4.64)

= 1 − 1

Kl

Kl

∑
k=1

F (D̃l ○ Uσk(ρsl), φl) (4.65)

= 1 − F (Dl(ρsl), φl), (4.66)

where we defined Dl ∶= 1
Kl
∑Klk=1 D̃ ○ Uσk . With (4.48) and (4.66), it is shown, that for each

sufficiently large blocklength l, we find a one-way entanglement distillation protocol with

min
sl∈Sl

F (Dl(ρsl), φl) ≥ 1 − 2−lκ, and
1

l
log sr(φl) ≥ R − δ. (4.67)
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Notice, that the number of different classical messages to be communicated by A within appli-
cation ofDl is increased by a factor 2lθ compared to the message transmission demanded by D̃l,
i.e. the communication rate is increased by θ (which we can choose to be an arbitrarily small
fixed number).

4.3.2 General AVQS

In this section, we generalize the results of the preceding section, admitting the AVQS to be
generated by any not necessarily finite or countable set X of states onHA⊗HB . We approximate
the closed convex hull of X by a polytope, which is known as the convex hull of a finite set of
points and apply Theorem 35, together with continuity properties of the capacity function. The
proof strategy has some similarities with the argument given in Ref. [Ahl+12] for entanglement
transmission over general arbitrarily varying quantum channels. To prepare ourselves for the
approximation, we need some notation and results from convex geometry which we state first.
For a subset A of a normed space (V, ∥ ⋅ ∥), A is the closure and affA is the affine hull of A. If
A is a convex set, the relative interior riA is the interior and the relative boundary rebdA of A
are the interior and boundary of A regarding the topology on affA induced by ∥ ⋅ ∥.

Lemma 37 (Ref. [Ahl+12], Lemma 34). Let A, B be compact sets in Cn with A ⊂ B and

dH(rebdB,A) = t > 0, (4.68)

where ∥ ⋅ ∥ denotes any norm on Cn. Let P a polytope with A ⊂ P and dH(A,P ) ≤ δ, where
δ ∈ (0, t] and dH is the Hausdorff distance induced by ∥ ⋅ ∥. Then P ′ ∶= P ∩ affA is also a
polytope and P ⊂ B.

With the above statement and the assertions of the preceding section, we are prepared to prove
the following theorem which is the main result of this section.

Theorem 38. Let X ∶= {ρs}s∈S be a set of states onHA ⊗HB . For each δ > 0 and k ∈N, there
exists a number l0 ∈N, such that for each l > l0, there is an A→ B LOCC channel Dl fulfilling

inf
s∈Sl

F (Dl(ρsl), φl) ≥ 1 − 2−lc6 (4.69)

with a maximally entangled state φl shared by A and B and a constant c6 > 0, such that

1

l
log sr(φl) ≥

1

k
sup
T ∈Θk

inf
τ∈conv(X)

D(1)
→ (τ⊗k,T ) − δ (4.70)

holds, where the function D(1)
→ is defined in (4.3).

Proof. Let T ∶= {Tj}Jj=1 be any instrument with domain L(H⊗k
A ), δ > 0. Dealing only with the

nontrivial case, we show, that

inf
ρ∈conv(X)

1

k
Ic(A⟩BB′, T̂ (ρ⊗k)) − δ > 0 (4.71)
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is an achievable rate (remember our notation from (4.5)). Since the Hausdorff distance between
conv(X) and conv(X) is zero, it makes no difference if we consider the set conv(X) instead.
We briefly describe the strategy of our proof. We approximate the set conv(X) from the outside
by a polytope Pη. Since Pη, as a polytope, is the convex hull of a finite set of points, Theorem
35 can be applied. A technical issue (cf. Ref. [Ahl+12]) is, to ensure, that the approximating
polytope completely consists of density matrices, i.e. Pη ⊂ S(HAB). We achieve this by a slight
depolarization of the states in conv(X), such that the resulting set does not touch the boundary
of S(HAB). Define, for γ ∈ [0,1] the channelNγ ∈ C(HA⊗HB) byNγ ∶= NA,γ⊗NB,γ , where
NX,γ is the γ-depolarizing channel on the subsystem X , X = A,B , i.e

Nγ(τ) = (1 − γ)2τ + γ(1 − γ)(τA ⊗ πB + πA ⊗ τB) + γ2(πA ⊗ πB) (4.72)

for each τ ∈ S(HA⊗HB), were πA, πB are maximally mixed states and τA, τB are the marginals
of τ on HA, HB . Notice, that Nγ is defined in terms of local depolarizing channels on the
subsystems. This is required, since we are restricted to one-way LOCC channels. It holds

∥Nη(τ) − τ∥1 ≤ ∥(1 − η)2τ − τ∥1 + η(1 − η)∥τA ⊗ πB + πA ⊗ τB∥1 (4.73)

+ η∥πA ⊗ πB∥1 (4.74)

≤ 6η (4.75)

for each state τ on HA ⊗HB . Moreover, it holds Nη(conv(X)) = Nη(conv(X)) ⊂ riS(HA ⊗
HB), which implies

inf {∥ρ − ρ′∥1 ∶ ρ ∈ Nη(conv(X)), ρ′ ∈ rebd(S(HA ⊗HB))} > 0. (4.76)

Therefore, due to of Lemma 37 and Theorem 3.1.6 in Ref. [Web94], there exists, for each
small enough number η > 0, a polytope Pη ∶= conv({τe}e∈Eη) ⊂ S(HA ⊗ HB) such that
Nη(conv(X)) ⊂ Pη and

dH(Nη(conv(X)), Pη) ≤ η. (4.77)

Applying Theorem 35 to the finite AVQS generated by the extremal set {τe}e∈E of the polytope
Pη, we know, that for each sufficiently large blocklength l, there exists anA→ B LOCC channel
D̂l such that

F (D̂l(τel), φl) ≥ 1 − 2−lc6 (4.78)

holds with a maximally entangled state φl shared by A and B for each el ∈ El with Schmidt
rank fulfilling

1

l
log sr(φl) ≥

1

k
inf
τ∈Pη

Ic(A⟩BB′, T̂ (τ⊗k)) − δ
2
. (4.79)

Since Nη(conv(X)) ⊂ Pη holds, the depolarized version Nη(ρs) of each state ρs, s ∈ S can be
written as a convex combination of elements from {τe}e∈Eη , i.e.

Nη(ρs) = ∑
e∈Eη

q(e∣s) τe (4.80)
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Chapter 4. One-way entanglement distillation under source uncertainties

with a probability distribution q(⋅∣s) on Eη for each s ∈ S. We define a one-way LOCC channel
Dl by Dl ∶= D̂l ○ N⊗l

η and deduce

F (Dl(ρsl), φl) = F (D̂l(N⊗l
η (ρsl)), φl) (4.81)

= F (D̂l (
l

⊗
i=1

Nη(ρsi)) , φl) (4.82)

= F
⎛
⎝
D̂l

⎛
⎝

l

⊗
i=1

∑
ei∈E

q(ei∣si)τei
⎞
⎠
, φl

⎞
⎠

(4.83)

= ∑
e1∈E

⋯ ∑
el∈E

l

∏
i=1

p(ei∣si)F (D̂l(τei), φl) (4.84)

= ∑
el∈Elη

ql(el∣sl) F (D̂l(τel), φl) (4.85)

≥ 1 − 2−lc6 (4.86)

for each sl = (s1, ..., sl) ∈ Sl where we used (4.80) in (4.83) and (4.86) is by (4.78). To complete
the proof, we show, that for small enough η,

inf
ρ∈conv(X)

Ic(A⟩BB′, T̂ (ρ⊗k)) ≥ inf
τ∈Pη

Ic(A⟩BB′, T̂ (τ⊗k)) − kδ
2

(4.87)

holds. For each ρ ∈ conv(X), τ ∈ Pη, we have

∥ρ − τ∥1 ≤ ∥ρ −Nη(ρ)∥1 + ∥Nη(ρ) − τ∥1 (4.88)

≤ 6η + ∥Nη(ρ) − τ∥1 (4.89)

where the last estimation is by (4.75). From (4.89), we can conclude, that

dH(conv(X), Pη) ≤ dH(Nη(conv(X), Pη) + 6η ≤ 7η (4.90)

holds, which implies, via Lemma 29,

∣ inf
ρ∈conv(X)

Ic(A⟩BB′, T̂ (ρ⊗k)) − inf
τ∈Pη

Ic(A⟩BB′, T̂ (τ⊗k))∣ ≤ kν(7η). (4.91)

If now η is chosen small enough to ensure ν(7η) < δ
2 , (4.87), and we conclude, collecting

inequalities, that the entanglement rate of Dl is

1

l
log sr(φl) ≥

1

k
inf
τ∈Pη

Ic(A⟩BB′, T̂ (τ⊗k)) − δ
2

(4.92)

≥ 1

k
inf

ρ∈conv(X)
Ic(A⟩BB′, T̂ (ρ⊗k)) − δ (4.93)

where (4.92) is (4.79), (4.93) is by (4.87).
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Proof of Theorem 28. The rightmost equality in (4.9) is Corollary 25.1. We prove the first
equality. Achievability directly follows from Theorem 38. For the converse statement, let
X ∶= {ρs}s∈S and σ ∈ conv(X). By Carathéordory’s Theorem (see e.g. Ref. [Web94], The-
orem 2.2.4.), σ can be written as a finite convex combination of elements of X, say

σ = ∑
s∈S′

p(s)ρs. (4.94)

with ∣S′∣ < ∞. Thus, for an A→ B LOCC channel Dl for blocklength l with suitable maximally
entangled state φl, it holds

inf
sl∈Sl

F (Dl(ρsl), φl) ≤ min
sl∈S′l

F (Dl(ρsl), φl) (4.95)

≤ ∑
sl∈S′l

pl(sl)F (Dl(ρsl), φl) (4.96)

= F (Dl(σ⊗l), φl). (4.97)

Since (4.97) holds for each element of conv(X), each rate R which is an A → B achievable
entanglement distillation rate for the AVQS generated by X is also achievable for the compound
quantum source generated by conv(X), thus the converse statement in Corollary 25.1 applies.

Having determined the one-way entanglement distillation capacity DAV→ , the continuity proper-
ties of the capacity function on the r.h.s. of (4.91) imply the following corollary.

Corollary 39. Identifying each set of states with its closure, DAV→ is uniformly continuous in
the metric defined by the Hausdorff distance on compact sets of density matrices. If X,X ′ ⊂
S(HA ⊗HB) are two compact sets with dH(X′,X) < ε ≤ 1

2 it holds

∣DAV
→ (X′) −DAV

→ (X)∣ ≤ ν(ε). (4.98)

Remark 40. Corollary 39 classifies the AVQS one-way entanglement distillation task as well-
behaved in the following sense. Two different AVQS with generating sets being near in the
Hausdorff sense will have approximately equal capacities.
An example for a situation where “capacity” is a more fragile quantity is transmission of classi-
cal messages over an arbitrarily varying quantum channel. The capacity Crandom for classical
message transmission using correlated random codes is continuous, while it can be shown, that
in some cases, the capacity using deterministic codes, Cdet, is discontinuous on certain points
[BJ14a].
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5 Secret-key distillation for compound
classical-quantum-quantum sources

5.1 Basic definitions and main Result

In this section we give precise definitions of the secret-key distillations task and the correspond-
ing capacities of compound memoryless cqq sources with and without assumption of SMI. We
also state the two main results Theorem 48 and Theorem 49.

5.1.1 Source model

A compound memoryless quantum source generated by a set of density matrices I ⊂ S(K) on a
Hilbert space K is the source described by the set of possible output density matrices

I⊗n ∶= {ρ⊗n ∶ ρ ∈ I}

for each blocklength n ∈N. This source definition models a situation, where the source statistics
is memoryless, but the generating density matrix is not known. The communication parties
processing the source, only can be sure, that the output statistics is governed by memoryless
extensions of a density matrix from I. In this paper, the compound sources considered are
generated by tripartite classical-quantum density matrix of the form

ρ ∶= ∑
x∈X

p(x) ∣x⟩ ⟨x∣ ⊗ ρBE,x ∈ S(HA ⊗HB ⊗HE)

which is the coherified way to represent a statistics where A receives outputs of a classical
source with distribution p ∈ P(X), while B, and E receive quantum systems with joint state
ρBE,x ∈ S(HBE), dependent on the letter x. If a system is classical, we regard the basis used
for coherifying the systems as fixed once and for all (we fix it to be the canonical basis {x}x∈X ).
Note, that ρ can be alternatively described by the pair (p, V ) with p ∈P(X) being a probability
distribution on X and V ∈ CQ(X ,HBE) with

V (x) ∶= ρBE,x,

notations, we will use interchangeably. Note, that

I(X;BE,ρ) = χ(p, V ).
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Chapter 5. Secret-key distillation for compound classical-quantum-quantum sources

We define the class of density matrices in S(HABE) with classical A-system,HA ∶=C∣X ∣ by

Scqq(HABE) ∶= {ρ = ∑
x∈X

p(x) ∣x⟩ ⟨x∣ ⊗ ρx ∶ p ∈P(X) and ρx ∈ S(HBE) (x ∈ X)} .

Since bipartite sources with a classical and a quantum subsystem also occur, we also define

Scq(HAB) ∶= {ρ = ∑
x∈X

p(x) ∣x⟩ ⟨x∣ ⊗ ρx ∶ p ∈P(X) and ρx ∈ S(HB) (x ∈ X)} .

To increase notational flexibility within our considerations, we define for each given set I ⊂
Scqq(HABE)

PI ∶= {p ∈P(X) ∶ ∃ρ ∈ I with ρA = ∑
x∈X

p(x) ∣x⟩ ⟨x∣} , and

Ip ∶= {ρ ∈ I ∶ ρA ∶= ∑
x∈X

p(x) ∣x⟩ ⟨x∣}

for each p ∈ P . With these notations, PI is the set of marginal probability distributions which
can occur at the sender’s site, while Ip collects for each p the set of possible occurring cqq
density matrices under the constraint that p generates the marginal distributions on the sender’s
systems. For a more efficient notation of the capacity formulas appearing below, we also define
the following sets of marginal distributions deriving from states in Ip by

IABp ∶= {ρAB ∶ ρ ∈ Ip}, IAEp = {ρAE ∶ ρ ∈ Ip}

for each p ∈ PI.
In this paper, the systems labeled A, and B belong to the legitimate communication parties,
while E labels the systems of the eavesdropper. The definitions in the next section model a situ-
ation, where the legitimate parties do not know, which density matrix from I governs the source
statistics (except the SMI case, where A knows his/her marginal statistics). The eavesdropper
instead, may know the source statistics and the protocols applied by the legitimate users.

5.1.2 Secret key generation from compound cqq sources: Definitions
and results

For a cqq source with fixed density matrix ρ ∈ Scqq(X ,HABE), a secret key generation protocol
for given blocklength n is performed, informally speaking, as follows. The A-party generates
from his/her source output messages l and m where m is the the key value for A and l is broad-
casted to the remaining parties via a noiseless channel. The legitimate receiver subsequently
determines a key value by applying a quantum measurement, which can be chosen according to
the received l. This results in a tuple (K,K ′,Λ,Xn), where K (K ′) is the key random value of
A (B), Λ the random variable representing the public transmission, andXn the classical random
variable initially received by A. The formal definition for the described type of protocol is as
follows.
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5.1. Basic definitions and main Result

Definition 41. An (n,M,L) (forward) secret-key distillation protocol for states on Scqq(HABE)
is a pair (T,D), with T ∶ X n → P([L] × [M]) being a stochastic matrix, and D =
{Dlm}l∈[L],m∈[M] being a set of matrices, 0 ≤Dlm ≤ 1⊗nHB such that

M

∑
m=1

Dlm = 1⊗nHB

holds for each l ∈ [L].

We will also consider the situation, where the sender has full knowledge of the statistics of
his/her part of the source. If this is assumed, the sender can choose the stochastic matrix of a
protocol according to this knowledge.

Definition 42. An (n,M,L) (forward) secret-key distillation protocol with sender marginal
information (SMI) for a set I ⊂ Scqq(HABE) is a family (Tp,D)p∈PI

, with (Tp,D) being an
(n,M,L) forward secret key distillation protocol for states on Scqq(HABE) for each p ∈PI.

Next, we define the performance of (n,L,M) forward secret-key distillation protocols with and
without SMI performed in a compound source generated by a set I ∶= {ρs}s∈S ⊂ Scqq(HABE).
For a protocol with SMI, (Tp,D) is performed, if the cqq density matrix is from Ip. It is
convenient, to express the aftermath in coherified manner by the state

ρΛKK′En,s ∶=
L

∑
l=1

M

∑
m,m′=1

∑
xn∈Xn

pn(xn) Tp(l,m∣xn) ∣l⟩ ⟨l∣ ⊗ ∣m⟩ ⟨m∣

⊗ ∣m′⟩ ⟨m′∣ ⊗ trH⊗n
B

((Dlm′ ⊗ 1⊗nHE)V
⊗n(xn)). (5.1)

We are especially interested in the marginal state

ρΛKEn,s ∶=
L

∑
l=1

M

∑
m=1

∑
xn∈Xn

pn(xn) Tp(l,m∣xn)tr(Dlm′V ⊗n
B (xn)) ∣l⟩ ⟨l∣ ⊗ ∣m⟩ ⟨m∣ ⊗ ρE,xn ,

and the probability distribution (Ks,K
′
s) belonging to the key given by

PKK′,s(m,m′) = ⟨m⊗m′, ρKK′ m⊗m′⟩ =
L

∑
l=1

∑
xn∈Xn

pn(xn) Tp(l,m∣xn)tr(Dlm′ρB,xn)

for all m,m′ ∈ [M] when the state governing the statistics of the source is

ρs = ∑
x∈X

p(x) ∣x⟩ ⟨x∣ ⊗ ρBE,x.

The case of application of a protocol without SMI can be regarded as the special case, where Tp
does not depend on p. The following definition quantifies the performance of each (n,M,L)
forward secret-key distillation protocol with SMI when performed on a set of cqq density ma-
trices. The corresponding definition for the case without SMI is easily obtained by dropping all
text in brackets from the following definitions.
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Chapter 5. Secret-key distillation for compound classical-quantum-quantum sources

Definition 43. An (n,M,L) forward secret-key distillation protocol (with SMI) for a set I ∶=
{ρs}s∈S ⊂ Scqq(HABE) is an (n,M,L,λ) forward secret-key distribution protocol (with SMI)
for I if the following two assertions are satisfied simultaneously for all s ∈ S.

1. Pr(Ks ≠K ′
s) ≤ λ.

2. logM −H(Ks) + I(K;EnΛ, ρΛKEn,s) ≤ λ.

The first condition above is a bound on the probability, that key values mismatch. The second
one guarantees for small λ, that the key is approximately equidistributed and secure. The left
hand side of the inequality in 2. of the above definition can be regarded as a quantum version of
the so-called security index introduced in classical information theory [CN04]. For a pair (K,Z)
of classical random variables, the security index of K against Z is given by the expression

SSID(K ∣Z) ∶= log supp(PK) −H(K) + I(K;Z).

The security index is well-known as a useful criterion for quantifying equidistribution and the
degree of decoupling from the eavesdropper (see e.g. [CK11] for more information). From
the classical security index, also the above introduced quantum version stems its operational
significance. If (K,Λ, Z)s is a tuple of random variables withKs being the key random variable,
Λs belonging to the public message of the protocol andZs the classical random variable obtained
by measurement on the eavesdropper’s system, the second condition in Definition 43 implies
SSID(KsΛs∣Zs) ≤ λ, because

SSID(Ks∣Λs, Zs) = logM −H(Ks) + I(Ks;Zs,Λs)
≤ logM −H(Ks) + I(K;EnΛ, ρΛKEn,s)
≤ λ (5.2)

holds by the Holevo bound [Hol73].

Remark 44. In their work [DW05], Devetak and Winter proposed a slightly stronger security
criterion to be satisfied instead of the one used in Definition 43. The authors of the present paper
feel, that in general the security criterion therein will hardly be satisfied by universal secret-key
distillation protocols in general. However, the results in the subsequent sections applied to
the case of a compound source I with ∣I∣ = 1 show, that imposing the weaker criterion from
Definition 43 does not lead to higher capacities than in [DW05] in case of perfectly known
source statistics.

Definition 45. A nonnegative number R is called an achievable secret-key distillation rate for
I (with SMI), if for each ε > 0, δ > 0 exist numbers n0 and 0 < Rc < ∞ such for each possible
marginal state ρA there is an (n,M,L, ε) secret-key distillation protocol for I (with SMI), such
that

M ≥ exp(n(R − δ)), and L ≤ exp(nRc) (5.3)
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for each n > n0. We define the forward secret-key capacity of I with SMI by

K→,SMI(I) ∶= sup{R ≥ 0 ∶ R is an achievable secret key distillation rate for I with SMI}.
(5.4)

and the forward secret-key capacity of I without SMI by

K→(I) ∶= sup{R ≥ 0 ∶ R is an achievable secret key distillation rate for I without SMI}.

What we define next, is a regularity condition on generating sets for compound cqq sources.

Definition 46 (Regularity Condition). We call a set I ⊂ Scqq(HABE)

• ε-regular, if there is a δ > 0 such that the implication

∥p − q∥1 < δ ⇒ dH(IABp ,IABq ) + dH(IAEp ,IAEq ) < ε

holds for each pair p, q ∈ PI, where dH denotes the Hausdorff distance generated by the
trace norm distance on the underlying matrix spaces.

• regular, if I is ε-regular for each ε > 0.

Remark 47. The regularity condition given above aims to cover an as large as possible class of
reasonable sets of cqq density matrix under the condition that general protocol constructions are
successful. The reader interested in detailed discussion of this condition is referred to section
5.4. In Section 5.4.2 we show using results from the theory of set-valued functions, that the
above condition of regularity can be weakened somewhat to include even a larger class of cqq
sources.

The following two theorems state the main results proven in this paper.

Theorem 48. Let I be a regular set of cqq density matrices onHABE . It holds

K→(I) = lim
k→∞

1

k
K(1)
→ (I⊗k), (5.5)

where for a set A ∶= {∑y∈Y p(y) ∣y⟩ ⟨y∣ ⊗ σy} on some space,

K(1)
→ (A) ∶= inf

p∈PA

sup
Γ∶=T←U←Yp

⎛
⎝

inf
σ∈Ap

I(U ;B∣T,σΓ) − sup
σ∈Ap

I(U ;E∣T,σΓ)
⎞
⎠
.

The supremum above is over all Markov chains T ← U ← Yp resulting from application of
Markov transition matrices PT ∣U , PU ∣Y on p for each p ∈ p, and

σTU ∶= ∑
y∈Y

∑
t∈T

∑
u∈U

PT ∣U(t∣u)PU ∣Y (u∣y)p(y) ∣t⟩ ⟨t∣ ⊗ ∣u⟩ ⟨u∣ ⊗ σy

for given transition matrices PT ∣U , PU ∣Y when

σ = ∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ σy.
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Chapter 5. Secret-key distillation for compound classical-quantum-quantum sources

Theorem 49. Let I be a set of cqq density matrices onHABE . It holds

K→,SMI(I) = lim
k→∞

1

k
K(1)
→ (I⊗k), (5.6)

where the function K(1) is defined in the preceding theorem.

Notice, that the inequality

K→(I) ≤K→,SMI(I) (5.7)

holds for each I. This can be directly observed from the definitions of achievable rates given
above. The next section is devoted to giving a full argument which justifies the claim of Theorem
48. We now give short outline of the proof. In a sequence of propositions with increasing level
of approximation we prepare ourselves for proving the assertion

K→(I) ≥K(1)
→ (I) (5.8)

in Proposition 55. For this reason, we first design suitable protocols of suboptimal rate for the
special case of a source parameterized by a full Cartesian product of probability distributions
and cq channels. We improve the bounds in Proposition 54, where we derive protocols suitable
for the same type of source, but including sender preprocessing of the source by a fixed Markov
chain for optimization. Finally, this result is combined with a fine-grained approximation of an
arbitrary regular source by a number of sources of type subject to the mentioned propositions.
The proof of achievability (i.e. the lower bound in (5.6)) follows almost immediately from (5.8),
since we show, that regularity of I implies, for each k ∈N, regularity of the set I⊗k of all k-fold
tensor extensions for states from I.
In Section 5.3 we give a full proof of Theorem 49. The achievability part therein is derived also
from the results gathered in Section 5.2. The protocol construction used for proving achievability
in Theorem 48 can be employed in case of SMI. To do so we use a certain type of finite covering
in Hausdorff space to decompose a general set I into a finite family of regular sets. Moreover,
we provide a proof to the converse assertion.
The reader may ask, whether Theorem 48 may hold also without assumption of regularity. We
give a negative answer to this question in Section 5.4, where an example of a cqq set of density
matrices with

K→(I) <K→,SMI(I)

is established.

5.2 Secret-key distillation without state knowledge

In this chapter, we give a detailed argument to prove Theorem 48. The first assertion, we prove
is on a restricted type of cqq density matrices. Assume Q ⊂ P(Y) be a set of probability
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5.2. Secret-key distillation without state knowledge

distributions and V ⊂ CQ(Y,KBE) be a set of cq-channels. We define

ρ(p,V ) ∶= ∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V (y) (p ∈ Q, V ∈ V),

and the set

J ∶= {ρ(p,V )}(p,V )∈Q×V . (5.9)

We set for each V ∈ V , VB = trKB ○ V , and VE = trKE ○ V .

Proposition 50. Let J be the source defined in (5.9), and δ > 0. There is a constant c1 > 0 and
a number n0 such that for each n > n0 there is an (n,M,L,µ) forward secret-key distillation
protocol with

1

n
logM ≥ inf

q∈Q
( inf
V ∈V

χ(q, VB) − sup
V ∈V

χ(q, VE)) − δ

1

n
logL ≤ sup

p∈PJ

(H(p) − inf
V ∈V

χ(p, VB)) + δ

µ ≤ 2−
16√nc1 .

Within the proof of Proposition 50 we will use some auxiliary results, we introduce first. The
following lemma states, for given compound memoryless classical-quantum channel (DMcqC)
existence of random codes being of constant composition (i.e. all codewords having the very
same type) and equidistributed over the typical sets. The assertion is a direct consequence of
coding results stated in Appendix A, where also the basic definitions regarding codes for mes-
sage transmission over compound DMcq channels can be found.

Lemma 51. Let V ⊂ CQ(X ,K) be a set of cq channels. For each γ > 0, there is a number
n1(γ,V) such that for each n > n1(γ) and each type λ ∈ T(n,X) the following assertion is
true.
It exists a random (n,Mλ)-code

C(U) ∶= (Um,Dm(U))Mλ
m=1

fulfilling the following three properties

1. U = (U1, . . . , UMλ
) is an i.i.d. sequence of random variables, such that Um is equidis-

tributed on Tnλ for each m ∈ [Mλ],

2. Mλ ≥ exp(n( inf
V ∈V

χ(λ,V ) − γ))

3. E [sup
V ∈V

e(C(U), V ⊗n)] ≤ 2−
16√nĉ.

with a constant ĉ(γ,V) > 0 (independent of λ).
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Chapter 5. Secret-key distillation for compound classical-quantum-quantum sources

Proof. We need only consider types with

inf
V ∈V

χ(λ,V ) − γ > 0, (5.10)

since for all other types, the bounds in the assertion of the lemma can be satisfied by trivial
coding. Setting δ ∶= γ

2 in Proposition 70 in Appendix A, ensures us, that for each large enough
blocklength n and each type λ ∈ T(n,X) the hypothesis of Proposition 71 is fulfilled with an
M ′
λ which fulfills

M ′
λ ≥ exp(n( inf

V ∈V
χ(λ,V ) − γ

2
)) > 2n

γ
2 (5.11)

and µ ≤ 2−
16√nc( γ

2
). Note, that the rightmost inequality in (5.11) is satisfied because we only

consider types, which fulfill the condition in (5.10). Setting ϑ ∶= 1
2 , we conclude with Proposi-

tion 71, that we find, for large enough n ∈ N and random (n,Mλ) message transmission code
fulfilling the properties demanded.

The following matrix-concentration inequality results from the powerful matrix Chernov bound
[AW02] and was proven in [DW05].

Proposition 52 ([DW05], Prop. 2.4). Let n ∈ N, W ∈ CQ(X ,K), λ ∈ T(k,X), U ∶=
(U1, . . . , UM) an i.i.d. sequence of random variables generically equidistributed on Tnλ , and

σn,λ(W ) ∶= 1

∣Tnλ ∣
∑

xn∈Tn
λ

W⊗n(xn).

For each ε, δ > 0, there is a number k ∶= k(ε, δ), such that if n > k, then

Pr(∥ 1

M

M

∑
m=1

W⊗n(Um) − σn,λ(W )∥ ≥ ε) ≤ 2 ⋅ dimKn ⋅ exp(−M∆n ⋅ ε)

holds with

∆n ∶= −
1

288 ln 2
⋅ exp(−n(χ(λ,W ) − δ))

The next assertion will help us to approximate the set V assumed in Proposition 50 by a finite
subset in a suitable way.

Lemma 53. Let V ⊂ CQ(X ,K) be a set of classical quantum channels. For each α ∈ (0, 1
e)

exists a subset Vα ⊂ V , which fulfills the following three conditions.

1. ∣Vα∣ ≤ ( 6
α
)2∣X ∣dimK2

2. Given any n ∈N, to each V ∈ V exists a W ∈ Vα, such that

∥V ⊗n(xn) −W⊗n(xn)∥1 ≤ 2nα

holds for each xn ∈ X n.

60



5.2. Secret-key distillation without state knowledge

3. For each p ∈P(X), it holds

∣ min
W ∈Vα

χ(p,W ) − inf
V ∈V

χ(p, V )∣ ≤ 2α log
dimK

2α
.

Proof of Proposition 50. Set

R ∶= inf
q∈Q

( inf
V ∈V

χ(q, VB) − sup
V ∈V

χ(q, VE)) ,

and let δ > 0 be a number small enough for fulfilling R − δ > 0, otherwise, there is nothing left
to prove. Let 1

2 > η > 0, be fixed and small enough such that the inequality

12η + log dimKBE + 4h(2η) ≤ δ

16
. (5.12)

is valid. Let n ∈N be large enough to simultaneously satisfy

1

n
≤ 1

16
δ and

1

n
≤ 2η. (5.13)

Define

Tn ∶= T(n,Y) ∩Qη,

where Qη ∶= {q ∈ P(Y) ∶ ∃p ∈ Q ∶ ∥p − q∥1 ≤ η} is the η-blowup of Q regarding the variational
distance. We set for each probability distribution q ∈P(Y)

χB,q ∶= inf
V ∈V

χ(q, VB),

χE,q ∶= sup
V ∈V

χ(q, VE),

χq ∶= χB,q − χE,q,

and

χn ∶= min
λ∈Tn

χλ.

Our choice of η and n implies

dH(Tn,Q) ≤ dH(Tn,Qη) + dH(Qη,Q) ≤ 1

2n
+ η ≤ 2η, (5.14)

where the first inequality above is the triangle inequality for the Hausdorff distance, and the
second is by (5.13). From (5.14), and (5.12) together with twofold application of Lemma 75, we
infer

∣χn −R∣ ≤ δ

16
. (5.15)
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Set, for each λ ∈ Tn

Lλ ∶= ⌊exp (n(H(λ) − χB,λ + 3
4δ))⌋ ,

Sλ ∶= ⌈exp (n(χE,λ + χλ − χn + 3
4δ))⌉ , and

M ∶= ⌊exp (n(R − δ))⌋ .

The above definitions, together with (5.15) and the second inequality of (5.13) the bounds

M ⋅ Sλ ≤ exp (n(χB,λ − 7
8δ)) , (5.16)

M ⋅Lλ ≤ exp (n(H(λ) − χE,λ − 7
8δ)) , and (5.17)

Γλ ∶=
Lλ ⋅ Sλ ⋅M

∣Tnλ ∣
≥ 2n

11
8 δ. (5.18)

are valid. The strategy for the rest of the proof is the following. We will in a first step, generate
a class of one-way-secret key distribution protocols for J, and then show, that with high proba-
bility, the protocols meet the properties demanded.
Define for each λ ∈ Tn a random matrix

U (λ) ∶= (Uλlms)(l,m,s)∈[Lλ]×[M]×[Sλ]

with all entries being independent and generically equidistributed on Tnλ . We collect the matrices
defined above in an independent family

U ∶= {U (λ)}λ∈Tn .

Define, for each yn ∈ Yn, λ ∈ Tn a random set

Aλ(yn,U) ∶= {(λ, l,m, s) ∶ Uλlms = yn} .

Obviously, the sets defined above fulfill for each outcome u of U, λ ∈ Tn the following relations

Aλ(yn,u) = ∅ (yn ∉ Tnλ ),
Aλ(yn,u) ∩Aλ(zn,u) = ∅ (yn ≠ zn),
and ⋃

yn∈Tn
λ

Aλ(yn,u) = {λ} × [Lλ] × [M] × [Sλ]. (5.19)

We regard, for each λ ∈ Tn and l ∈ [Lλ],

Uλ,l ∶= (Uλlms)(m,s)∈[M]×[Sλ]

as a random i.i.d. constant composition codebook of size M ⋅Sλ with codewords equidistributed
over Tnλ . Since we have the bound in (5.16), we know from Lemma 51 , that there is a random
(n,M ⋅ Sλ) constant composition code

Cλ,l(Uλ,l) ∶= (Uλlms,Dλ
lms)(m,s)∈[M]×[Sλ]
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5.2. Secret-key distillation without state knowledge

for the compound DMcqC generated by VB ∶= {VB ∶ V ∈ V} which has expected average error
bounded

E [ sup
V ∈Vλ

e(Cλ,l(Uλ,l), V ⊗n
B )] ≤ 2−

16√nĉ =∶ β0 (5.20)

with a strictly positive constant ĉ independent of λ. Define, for β3 > 0, λ ∈ Tn a random set

Bλ(U, β3) ∶= {l ∈ [Lλ] ∶ max
V ∈V

e (Cλ,l(Uλ,l), V ⊗n
B ) < β3} ,

which collects all indices l ∈ [Lλ], such that Cλ,l is β3-good regarding the average error criterion.
Define a random stochastic matrix

TU ∶ X →P (T(n,Y) × [Lλ] × [M] × [Sλ])

with entries

TU(λ, l,m, s∣yn) ∶=
⎧⎪⎪⎨⎪⎪⎩

∣Aλ(yn,U)∣−1 if (λ, l,m, s) ∈ Aλ(yn,U)
0 otherwise

for each λ ∈ Tn. The values of TU(λ, l,m, s∣yn) with λ being not in Tn will be of no special
interest for us, so they may be defined in any consistent way. Let, for each λ ∈ Tn, V ∈ V

σλ(V ) ∶= 1

∣Tnλ ∣
∑

yn∈Tn
λ

V ⊗n
E (yn).

Note, that

σλ(V ) = E [V ⊗n
E (Uλlms)] (5.21)

holds for all (l,m, s) ∈ [Lλ] × [M] × [Sλ]. Define, for λ ∈ Tn, β1, β2, β3 > 0 and each outcome
u of U, the following sets.

C
(1)
λ (β1) ∶= {u ∶ ∀yn ∈ Tnλ ∶ (1 − β1)Γλ ≤ ∣Aλ(yn,u)∣ ≤ (1 + β1Γλ)}

C
(2)
λ (β2) ∶=

⎧⎪⎪⎨⎪⎪⎩
u ∶ ∀(l,m) ∈ [Lλ] × [M], V ∈ V ∶ ∥ 1

Sλ

Sλ

∑
s=1

V ⊗n
E (uλlms) − σλ(V )∥1 ≤ β2

⎫⎪⎪⎬⎪⎪⎭
C

(3)
λ (β3) ∶= {u ∶ ∣Bλ(u, β3)∣ ≥ (1 − 2β3)Lλ} , and

A ∶= ⋂
λ∈Tn

3

⋂
i=1

C
(i)
λ (βi).

Eventually, we will show, that if an outcome u of U is an element of A, it generates a suitable
protocol for our needs. First we make sure, that for the right choice of parameters and each large
enough blocklength, A is actually nonempty, which we do by actually bounding the r.h.s. of

Pr(Ac) ≤
3

∑
i=1

∑
λ∈Tn

Pr (C(i)
λ (βi)c) (5.22)
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away from one. In the following we separately deriva bound on each of the summands on the
right hand side of (5.22). Let λ be a type from Tn. Note, that

∣Aλ(yn,u)∣ =
Lλ

∑
l=1

M

∑
m=1

Sλ

∑
s=1

1yn(uλlms)

holds, where 1 is the indicator function, therefore,

E[∣Aλ(yn,u)∣] =
LλMSλ
∣Tnλ ∣

= Γλ ≥ 2−n
11
8 δ

where the rightmost inequality above results from (5.18). We infer

Pr (C(1)
λ (β1)c) = ∑

yn∈Yn
Pr ({u ∶ ∣Aλ(yn,u)∣ ∉ ((1 − β1)Γλ, (1 + β1)Γλ)})

≤ 2∣Y∣n ⋅ exp (−Γλβ
2
1/(2 ln 2))

≤ 2 ⋅ exp(−2n
9
8
δ)

for large enough blocklength n, where the first inequality above is by Chernov-bounding with
Proposition 72, and the second is by (5.18) together with the choice

β1 = 2−n
δ
8 . (5.23)

To bound the summands with i = 2, we choose an approximating set V̂n for V according to
Lemma 53 with parameter

α ∶= 2−
16√nĉ/(16∣Y∣dimK2

BE).

which is possible with cardinality

∣V̂n∣ ≤ 2−
16√n ĉ4

as long as n is large enough. Let for given V ∈ V , W ∈ V̂n be a channel, such that ∥V (x) −
W (x)∥ ≤ 2α. It holds for each λ ∈ Tn, l ∈ [Lλ], m ∈ [M]

∥ 1

Sλ

Sλ

∑
s=1

V ⊗n
E (yn) − σλ(V )∥1 ≤ ∥ 1

Sλ

Sλ

∑
s=1

W⊗n
E (yn) − σλ(W )∥1 (5.24)

+ ∥ 1

Sλ

Sλ

∑
s=1

V ⊗n
E (yn) − 1

Sλ

Sλ

∑
s=1

W⊗n
E (yn)∥1

+ ∥σλ(V ) − σλ(W )∥1

≤ ∥ 1

Sλ

Sλ

∑
s=1

W⊗n
E (yn) − σλ(W )∥1 + 2nα. (5.25)
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If we now choose

β2 = 4nα (5.26)

We can bound

Pr (C(2)
λ (β2)c)

= Pr
⎛
⎝
∃(l,m), V ∈ V ∶

XXXXXXXXXXX

1

Sλ

Sλ

∑
s=1

V ⊗n
E (uλlms) − σλ(V )

XXXXXXXXXXX1

> β2
⎞
⎠

≤ Pr
⎛
⎝
∃(l,m), V ∈ V̂n ∶

XXXXXXXXXXX

1

Sλ

Sλ

∑
s=1

V ⊗n
E (uλlms) − σλ(V )

XXXXXXXXXXX1

> β2

2

⎞
⎠

≤ 4 ⋅LλM ∣V̂n∣ ⋅ (dimKE)n exp(−Sλ ⋅ 2−n(χE,λ−
δ
4
) β2

576 ln 2
)

≤ exp (2−n
δ
4 )

where the first inequality is by (5.25), the second by application of Proposition 52, and the last
inequality holds for each large enough blocklength. At last,

Pr (C(3)
λ (β3)c) = Pr

⎛
⎝

1

Lλ
∑
l∈Lλ

1Bλ(β3,U)c(l) ≥ 2β3
⎞
⎠

<
E [1Bλ(β3,U)c(l)]

2β3

< β0

2β2
3

. (5.27)

The first inequality above is Markov’s inequality applied, the second can be justified as follows.
It holds

E [1Bλ(β3,U)c(l)] = Pr (Bλ(U, β3)(l)c))

= Pr(max
V ∈V

e(Cλ,l, V ⊗n
B ) ≥ β3)

≤
E [max

V ∈V
e(Cλ,l, V ⊗n

B )]

β3

≤ β0

β3
. (5.28)

The first inequality above is again by Markov-bounding. The second is by (5.20). By combina-
tion of the estimate in (5.27), and the choice

β3 = 2−
16√nĉ/4 (5.29)
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we yield, for large enough blocklength

Pr (C(3)
λ (β3)c) ≤ 2−

16√nĉ. (5.30)

Combining all the bounds derived above with (5.22), choosing the blocklength large enough, we
arrive with our choice of the parameters βi, 1 ≤ i ≤ 3 at

Pr (Ac) ≤ ∣Tn∣2−
16√nc̃

with a strictly positive constant c̃ if n is large enough. Since ∣Tn∣ ≤ ∣T(n,Y)∣ ≤ (n + 1)∣Y∣, we
have for each large enough blocklength

Pr (Ac) ≤ 1

2
,

which implies, that A is nonempty. Define

L ∶= max
λ∈Tn

Lλ, and S ∶= max
λ∈Tn

Sλ.

We choose any u ∈ A and define a stochastic map

T ∶ Yn → T(n,Y) × [L] × [M]

yn ↦ T (λ, l,m∣yn) ∶=
S

∑
s=1

Tu(λ, l,m, s∣yn).

and

D ∶= (Dλ
lm)λ∈T(n,Y),l∈[L],m∈[M],

where

Dλ
lm ∶=

S

∑
s=1

Dλ
lms (λ, l,m) ∈ T(n,Y) × [L] × [M]

with Dλ
lms being the decoding set with index (m,s) from the code Cλ,l(u). Note that some

entries of Tu as well as some of the decoding matrices are have been not defined yet (e.g.
L > Lλ may occur for some λ)), we populate the undefined entries of Tu with zeros, and add
zero matrices, and add arbitrary but consistently, where decoding matrices are undefined.
To fit the above objects to the definition of a one-way secret key distillation protocol, we consider
each public message as a tuple l = (λ, l). With the above definitions,D ∶= (T,D) is an (n,M,L)
secret key distillation protocol with

1

n
logM ≥ R − δ (5.31)

by definition of M . It remains, to show, that actually the bound on the performance µ stated is
fulfilled. We fix an arbitrary member

ρt = ∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V (y)
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from J. We first show, that

Pr(Kt ≠K ′
t) ≤ µ. (5.32)

holds. By construction, we have T(n,Y)∖ ⊂ Qcη, which together with well known type-bounds
implies

pn
⎛
⎝ ⋃
λ∈T(n,Y)∖Tn

Tnλ
⎞
⎠
≤ 2−ncη

2

with a universal constant c > 0. It holds

Pr(Kt ≠K ′
t) = ∑

yn∈Yn
pn(yn) ⋅Pr (Kt ≠K ′

t ∣Y n
t = yn)

≤ ∑
λ∈Tn

∑
yn∈Tn

λ

pn(yn) ⋅Pr (Kt ≠K ′
t ∣Y n

t = yn) + 2−ncη
2

. (5.33)

We upper-bound for each λ ∈ Tn the corresponding summand on the r.h.s. of (5.33). For each
yn ∈ Tnλ , we have

pn(yn) ⋅Pr (Kt ≠K ′
t ∣Y n

t = yn)

=
M

∑
m=1

∑
m′≠m

pn(yn) ⋅Pr (Kt =m,K ′
t =m′∣Y n

t = yn)

=
M

∑
m=1

∑
m′≠m

L

∑
l=1

pn(yn) ⋅Pr (Kt =m,K ′
t =m′,Λt = (λ, l)∣Y n

s = yn)

=
M

∑
m=1

∑
m′≠m

Lλ

∑
l=1

tr (Dλ
lm′V ⊗n

B (yn)) ⋅ pn(yn) ⋅ T (λ, l,m∣yn)

=
M

∑
m=1

∑
m′≠m

Lλ

∑
l=1

S

∑
s,s′=1

tr (Dλ
lm′s′V

⊗n
B (yn)) ⋅ pn(yn) ⋅ Tu(λ, l,m, s∣yn). (5.34)

On the r.h.s. of (5.34), only the summands survive, where (λ, l,m, s) is in Aλ(yn,u) by defini-
tion of Tu. For the nonzero summands, we can estimate

Tu(λ, l,m, s∣yn) =
1

∣Aλ(yn,u)∣
≤ ((1 − β3)Γλ)−1 ≤ 2( ∣Tnλ ∣

Lλ ⋅M ⋅ Sλ
) . (5.35)

The left of the above inequalities is because u ∈ A, the right holds, if n is large enough. We
define the abbreviation Aλ(yn) ∶= Aλ(yn,u). Counting only the nonzero summands, and using
the estimate in (5.35), we yield

pn(yn) ⋅Pr (Kt ≠K ′
t ∣Y n

t = yn)

≤ ∑
(l,m,s)∶

(λ,l,m,s)∈Aλ(yn)

∑
m′≠m

S

∑
s′=1

tr (D(λ)
lm′s′V

⊗n
B (uλlms))

2∣Tnλ ∣ ⋅ pn(uλlms)
LλSλM

≤ 2

LλMλSλ
∑

(l,m,s)∶
(λ,l,m,s)∈Aλ(yn)

∑
m′≠m

S

∑
s′=1

tr (D(λ)
lm′s′V

⊗n
B (uλlms)) ,
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where in the last inequality, we noted, since uλlms is of type λ, ∣Tnλ ∣ ⋅ pn(uλlms) = pn(Tnλ ) ≤ 1
holds. Since, for each type λ ∈ Tn

⋃
yn∈Tn

λ

Aλ(yn) = {λ} × [Lλ] × [M] × [Sλ]

holds by construction (see (5.19)), we have (with some rearrangements of terms)

∑
yn∈Tn

λ

pn(yn) ⋅Pr (Kt ≠K ′
t ∣Y n

t = yn) = 2

Lλ

Lλ

∑
l=1

1

SλMλ

M

∑
m=1

∑
m′≠m

S

∑
s,s′=1

tr (D(λ)
lm′s′V

⊗n
B (uλlms))

= 2

Lλ

Lλ

∑
l=1

e(Cλ,l(uλ,l), V ⊗n
B )

≤ 2

Lλ
(Lλ ⋅ β3 +Lλ ⋅ 2β3) = 6β3. (5.36)

The last inequality holds, because we have chosen our protocol in a way, that for at least a
fraction of 1 − 2β3, the code Cλ,l(uλ,l) is β3-good regarding the average error criterion (i.e. u
is in A ⊂ C(3)

λ (β3)).
Collecting inequalities, we arrive at

Pr(Kt ≠K ′
t) ≤ (n + 1)∣Y∣ ⋅ 6β3 + 2−ncη

2 ≤ 2−
16√nĉ/8 (5.37)

for large enough n by (5.29). Next, we show, that the key is almost equidistributed. For each
λ ∈ T(n,Y), we consider the probability distribution PKt,λ on [M], given by

PKt,λ(m) ∶= ∑
yn∈Tn

λ

Pr(Kt =m∣Y n
t = yn)

∣Tnλ ∣

= ∑
yn∈Tn

λ

Lλ

∑
l=1

Sλ

∑
s=1

Tu(λ, l,m, s∣yn)
∣Tnλ ∣

=
Lλ

∑
l=1

Sλ

∑
s=1

Tu(λ, l,m, s∣uλlms)
∣Tnλ ∣

(5.38)

Using the properties of the protocol constructed together with (5.38), we arrive at

1

1 + β1

1

M
≤ PKt,λ(m) ≤ 1

1 − β1

1

M
,

for each λ ∈ Tn, from which we infer, that

∥PK,λ − π[M]∥1 ≤ 2β1.

is true for all λ ∈ Tn. We conclude

∥PKt − π[M]∥1 ≤ ∑
λ∈Tn

pn(Tnλ ) ∥PKt,λ − π[M]∥1 ≤ 2β1 + 2 ⋅ 2−ncη2 ≤ 3β1,
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where the last inequality holds if n is large enough. This implies

H(Kt) ≥ logM − 3β1 log
M

3β1
≥ logM − µ

2

if n is large enough. It remains to bound I(K;En,Λ, ρΛKEn,t). We will actually show, that
ρΛKEn,t is close to a state γt whith I(K;En,Λ, γt) = 0. Define

γt ∶= ∑
λ∈T(n,Y)

pn(Tnλ ) ∣λ⟩ ⟨λ∣ ⊗ γt,λ

where set for each λ ∈ T(n,Y)

γt,λ ∶=
1

Lλ ⋅M
Lλ

∑
l=1

M

∑
m=1

∣l ⊗m⟩ ⟨l ⊗m∣ ⊗ σλ(V ).

We write ρΛKEn,t in the form

ρΛKEn,t = ∑
λ∈T(n,Y)

pn(Tnλ ) ∣λ⟩ ⟨λ∣ ⊗ ρ̃t,λ,

where we defined

ρ̃t,λ ∶= ∑
yn∈Tn

λ

Lλ

∑
l=1

M

∑
m=1

Sλ

∑
s=1

Tu(λ, l,m, s∣yn)
∣Tnλ ∣

∣l ⊗m⟩ ⟨l ⊗m∣ ⊗ V ⊗n
E (yn).

We first consider λ ∈ Tn. Note, that if (λ, l,m, s) is a member of Aλ(u, yn),

1

1 + β1
Γ−1
λ ≤ Tu(λ, l,m, s∣yn) ≤

1

1 − β1
Γ−1
λ ,

while being zero otherwise, which implies

∑
yn∈tn

λ

Lλ

∑
l=1

M

∑
m=1

Sλ

∑
s=1

∣Tu(λ, l,m, s∣y
n)

∣Tnλ ∣
− 1

LλM ∣Tnλ ∣Sλ
∣ ≤ 2β1.

Also, we know, that for each l ∈ Lλ, s ∈ Sλ
XXXXXXXXXXX

1

Sλ

Sλ

∑
s=1

V ⊗n
E (yn)

XXXXXXXXXXX1

≤ 2β2.

We define

τ ∶= ∑
yn∈Tn

λ

Lλ

∑
l=1

M

∑
m=1

Sλ

∑
s=1

1

Lλ ⋅M ⋅ Sλ ⋅ ∣Tnλ ∣
∣l ⊗m⟩ ⟨l ⊗m∣ ⊗ V ⊗n

E (yn),
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and obtain

∥ρ̃t,λ − γt,λ∥1 ≤ ∥ρ̃t,λ − τ∥1 + ∥τ − γt,λ∥1

≤ ∑
yn∈Tn

λ

Lλ

∑
l=1

M

∑
m=1

Sλ

∑
s=1

∣Tu(λ, l,m, s∣y
n)

∣Tnλ ∣
− 1

LλM ∣Tnλ ∣Sλ
∣ +

XXXXXXXXXXXX
∑

yn∈Tn
λ

V ⊗n
E (yn) − σλ(V )

XXXXXXXXXXXX1

≤ 2(β1 + β2).

Therefore,

∥ρKΛEn,t − γt∥1 ≤ ∑
λ∈T(n,Y)

pn(Tnλ ) ∥ρ̃t,λ − γt,λ∥1

≤ 2(β1 + β2) + 2−ncη
2

≤ µ

12

By using the well-known Alicki-Fannes type bound for the quantum mutual information, we
infer

I(K; Λ,En, ρKΛEn,t) ≤ I(K; Λ,En, γt) +
1

2
µ log(L ⋅ dimK⊗nE ) + h( µ

12
) ≤ µ,

where the last inequality is by the fact, that γt is an uncorrelated state, together with a large
enough choice of n.

Next, we prove an achievability result for the same simple kind of compound source as in the
previous proposition, but the lower bound on the key rate derived including possible prepro-
cessing of the source outputs for the sender by Markov chains. For each set A of probability
distributions on Y , we denote its diameter (regarding the variational distance) by

diam(A) ∶= sup{∥q − q′∥1 ∶ q, q′ ∈ A}

Proposition 54. Let P ⊂ P(Y) be a set of probability distributions, diam(P) ≤ ∆, V ⊂
CQ(Y,KBE), and U ,T finite alphabets. Define

I ∶=
⎧⎪⎪⎨⎪⎪⎩
ρ(p,V ) ∶= ∑

y∈Y
p(y) ∣y⟩ ⟨y∣ ⊗ V (y)

⎫⎪⎪⎬⎪⎪⎭(p,V )∈P×V
.

For each PT ∣U ∶ U → P(T ), PU ∣Y ∶ Y → P(U) stochastic matrices, and δ > 0, there is a
number n0, such that for each n > n0 we find an (n,M,L,µ)-secret-key distillation protocol for
I which fulfills

µ ≤ 2−
16√nc2

1

n
logL ≤ sup

p∈P
inf
ρ∈Ip

S(U ∣BT, ρ̃) + log ∣T ∣

1

n
logM ≥ inf

p∈P
⎛
⎝

inf
ρ∈Ip

I(U ;B∣T, ρ̃) − sup
ρ∈Ip

I(U ;E∣T, ρ̃)
⎞
⎠
− δ − 12∆ log ∣U ∣ − 4h(∆), (5.39)
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where h(x) = −x logx−(1−x) log(1−x), (x ∈ (0,1)) is the binary entropy, and c2 is a strictly
positive constant. We used the definition

ρ̃ ∶= ∑
t∈T

∑
u∈U

∑
y∈Y

PT ∣U(t∣u)PU ∣Y (u∣y)p(y) ∣u⟩ ⟨u∣ ⊗ ∣t⟩ ⟨t∣ ⊗ V (y)

for each state

ρ = ∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V (y) (p ∈ P, V ∈ V).

Proof. For the proof, we define a set of effective cqq density matrices Î on which we apply
Proposition 50 from which we derive existence of a certain forward secret-key distillation pro-
tocol for Î. Afterwards, we show, that this protocol can be modified to a forward secret-key
distillation protocol for I which has the stated properties. Define, for each p ∈ P a probability
distribution qp ∈P(U) by

qp(u) ∶= ∑
y∈Y

PU ∣Y (u∣y)p(y) (u ∈ U),

a stochastic matrix Wp ∶ U →P(Y) by

Wp(y∣u) ∶=
⎧⎪⎪⎨⎪⎪⎩

p(y)PU ∣Y (u∣y)
qp(u) if qp(u) > 0

1
∣Y∣ otherwise,

and a classical-quantum channel V̂p ∶ U → S(KBE) by

V̂p(u) ∶= ∑
y∈Y

Wp(u∣y)V (y) (V ∈ V).

Moreover, we define, introducing spaces KB′ = KE′ = C∣T ∣ a classical-quantum channel Ṽ ∶
U → S(KB′ ⊗KE′) by

Ṽ (u) ∶= ∑
t∈T

PT ∣U(t∣u) ∣t⟩ ⟨t∣ ⊗ ∣t⟩ ⟨t∣ (u ∈ U). (5.40)

Define for each (p, p′, V ) ∈ P × P × V a state

ρ̂(p,p′,V ) ∶= ∑
u∈U

qp(u) ∣u⟩ ⟨u∣ ⊗ V̂p′(u) ⊗ Ṽ (u).

We define a set of classical-quantum channels V̂ ∶= {V̂p′ ⊗ Ṽ ∶ p′ ∈ P, V ∈ V} and a set

Î ∶= {ρ(p,p′,V ) ∶ p, p′ ∈ P, V ∈ V} ⊂ Scqq(C∣U∣ ⊗KBE ⊗KB′E′)

of cqq density matrices. Note, that Î meets the specifications of Proposition 50 (the states in Î
are parameterized by P×V̂). We apply Proposition 50 on Î and infer in case of sufficiently large
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blocklength existence of an (n,M, L̂, µ) secret key distillation protocol D̂ = (T̂, D̂) for Î with
a stochastic matrix

T̂ ∶ U → [M] × [L̂]

and

D̂ ∶= {D̂lm}(l,m)∈[L̂]×[M] ⊂ L(K
⊗n
BB′)

being a POVM such that the key rate is lower-bounded by

1

n
logM ≥ inf

p∈P
⎛
⎝

inf
(p,p′,V )∈{p}×P×V

χ(qp, V̂B,p′ ⊗ ṼB′) − sup
(p,p′,V )∈{p}×P×V

χ(qp, V̂E,p′ ⊗ ṼE′)
⎞
⎠
− δ

≥ inf
(p,p′,V )∈P2×V

χ(qp, V̂B,p′ ⊗ ṼB′) − sup
(p,p′,V )∈P2×V

χ(qp, V̂E,p′ ⊗ ṼE′) − δ (5.41)

holds, and for each s ∶= (p, p′, V ) the inequalities

Pr(K̂s ≠ K̂ ′
s) ≤ µ, and

logM −H(K̂s) + I(K̂;EnE′nΛ̂, ρ̂K̂Λ̂EnE′n,s) ≤ µ (5.42)

being satisfied with µ = 2−
16√nc2 with a constant c2 > 0. Notice, that the cq-channel ṼB defined

in (5.40) has classical structure in the sense, that all its output quantum states are diagonal in
the orthogonal basis {t}. Consequently, we can assume, that for each l ∈ [L̂], m ∈ [M] the
corresponding effect D̂lm has the form

D̂lm = ∑
tn∈T n

Dltnm ⊗ ∣tn⟩ ⟨tn∣ .

We define the POVM

D ∶= {Dltnm}(l,tn,m)∈[L̂]×T n×[M]

and the stochastic matrix T ∶ Y → [L̂] × T n × [M] by

T (l, tn,m∣yn) ∶= ∑
u∈Un

PnT ∣U(t
n∣un)T̂ (l,m∣un)PnU ∣Y (un∣yn) ((l, tn,m, yn) ∈ [L] × T n × [M] × Yn).

(5.43)

With these definitions, D ∶= (T,D) is an (n,M, L̂ ⋅ ∣T ∣n) secret-key distillation protocol for I.
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5.2. Secret-key distillation without state knowledge

It holds for each s ∶= (p, V ) ∈ P × V , m,m′ ∈ [M]

PKK′,s(m,m′)

=
L̂

∑
l=1

∑
tn∈T n

∑
yn∈Yn

pn(yn)T (l, tn,m∣yn)tr(Dltnm′V ⊗n
B (yn)) (5.44)

= ∑
un∈Un

L̂

∑
l=1

∑
tn∈T n

∑
yn∈Yn

pn(yn)PnT ∣U(t
n∣un)T̂ (l,m∣un)PnU ∣Y (un∣yn)tr(Dltnm′V ⊗n

B (yn))

(5.45)

= ∑
un∈Un

L̂

∑
l=1

∑
tn∈T n

∑
yn∈Yn

qnp (un)Wn
p (yn∣un)

× T̂ (l,m∣un) ⋅ tr((Dltnm′) ⊗ ∣tn⟩ ⟨tn∣)(V ⊗n
B (yn) ⊗ Ṽ ⊗n

B′ (un))) (5.46)

= ∑
un∈Un

L̂

∑
l=1

qnp (un)T̂ (l,m∣un)tr(D̂lm(V̂ ⊗n
p (un) ⊗ Ṽ ⊗n

B′ (un))) (5.47)

= PK̂K̂′,(p,p,V )(m,m
′). (5.48)

The equality in (5.44) is holds by definition, (5.45) is valid by (5.43). The equality in (5.46) is
justified by definition of qp, Wp, and the fact, that

tr(∣t⟩ ⟨t∣ ṼB(u)) = PT ∣U(t∣u) (t ∈ T , u ∈ U)

holds by definition of Ṽ . From (5.48), we directly infer

Pr(Ks ≠K ′
s) = Pr(K̂(p,p,V ) ≠ K̂ ′

(p,p,V )) ≤ µ, and (5.49)

H(Ks) =H(K̂(p,p′,V )) (5.50)

Notice, that by definition of ρ̂(p,p,V ) is (up to unitaries permuting tensor factors) equal to ρ̃(p,V ),
i.e.

ρ̂(p,p,V ) = ∑
u∈U

qp(u) ∣u⟩ ⟨u∣ ⊗ V̂p(u) ⊗ Ṽ (u)

= ∑
t∈T

∑
u∈U

∑
y∈Y

PT ∣U(t∣u)PU ∣Y (u∣y)p(y) ∣u⟩ ⟨u∣ ⊗ V (y) ⊗ ∣t⟩ ⟨t∣ ⊗ ∣t⟩ ⟨t∣

holds for each (p, V ) ∈ P × V . Consequently, it follows

I(K; Λ̂TE, ρ̂KΛ̂TEn,s) = I(K̂;EEnΛ̂, ρ̂K̂Λ̂EnE′n,(p,p,V )). (5.51)

The inequalities contained in (5.50) and (5.51) together with the one in (5.42) yield

logM −H(Ks) + I(K; Λ̂TE, ρ̂KΛ̂TEn,s) ≤ µ

for each s = (p, V ), which, together with (5.49) makes (T,D) an (n, L̂ ⋅ ∣T ∣n,M,µ) forward
secret-key distillation protocol for I. At last, we have to show, that M indeed satisfies the
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Chapter 5. Secret-key distillation for compound classical-quantum-quantum sources

bound stated in (5.39). We will therefore, lower-bound the right-hand side of (5.41). Because
Markov-processing does never increase the variational distance, it holds

∥qp − qp′∥1 ≤ ∥p − p′∥1 ≤ diam(P) ≤ ∆ (5.52)

for each p, p′ ∈ P , where the rightmost inequality is by assumption. We obtain for each V ∈ V

∣χ (qp, V̂B,p ⊗ ṼB) − χ (qp′ , V̂B,p ⊗ ṼB′)∣ ≤ 6∥qp − qp′∥1 log ∣U ∣ + 2h(∥qp − qp′∥1)
≤ 6∆ log ∣U ∣ + 2h(∆). (5.53)

The first equality above is by application of Lemma 74 which can be found in Appendix A.2,
the second by (5.52). The bound in (5.53) directly implies

inf
(p′,V )

χ (qp, V̂B,p′ ⊗ ṼB′) ≥ inf
V
χ (qp, V̂B,p ⊗ ṼB′) −∆ log ∣U ∣ − 2h(∆)

= inf
ρ∈Ip

I(U,BB′, ρ̂) −∆ log ∣U ∣ − 2h(∆). (5.54)

for each p ∈ P . The equality in (5.54) holds by the identity

χ (qp, V̂B,p ⊗ ṼB′) = I(U,BB′, ρ̂(p,p,V )).

By similar reasoning, we also yield the bound

sup
(p,p′,V )

χ (qp, V̂E,p′ ⊗ ṼE′) ≤ sup
ρ∈Ip

I(U,EE′, ρ̂) + 6∆ log ∣U ∣ + 2h(∆). (5.55)

Combination of (5.54) and (5.55) for each p ∈ P ensures us, that

inf
(p,p′,V )∈P2×V

χ(qp, V̂B,p′ ⊗ ṼB′) − sup
(p,p′,V )∈P2×V

χ(qp, V̂E,p′ ⊗ ṼE′)

≥ inf
p∈P

⎛
⎝

inf
ρ∈Ip

I(U,BB′, ρ̂) − sup
ρ∈Ip

I(U,EE′, ρ̂)
⎞
⎠
− 12∆ log ∣U ∣ − 4h(∆)

holds. Note, that the identities

S(ρ̃BT ) = S(ρ̂BB′), and S(ρ̃ET ) = S(ρ̂EE′),

are valid. Moreover, for each ρ ∈ I the equalities

I(U ;B∣T, ρ̃) =H(PUT ) + S(ρ̃BT ) − S(ρ̃UBT ) −H(PT ), and (5.56)

I(U ;E∣T, ρ̃) =H(PUT ) + S(ρ̃ET ) − S(ρ̃UET ) −H(PT ), (5.57)

hold by definition, where PT , PTU are the distributions for the random variables T and TU . It
is important, to notice here, that the distributions PU and PTU depend only on the Markov chain
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5.2. Secret-key distillation without state knowledge

on the sender’s systems. Therefore, we have for each p ∈ P

inf
ρ∈Ip

I(U ;B∣T, ρ̃) − sup
ρ∈Ip

I(U ;E∣T, ρ̃)

= inf
ρ∈Ip

(S(ρ̃BT ) − S(ρ̃UBT )) − sup
ρ∈Ip

(S(ρ̃ET ) − S(ρ̃UET ))

= inf
ρ∈Ip

(S(ρ̃BB′) − S(ρ̃UBB′)) − sup
ρ∈Ip

(S(ρ̃EE′) − S(ρ̃UEE′))

= inf
ρ∈Ip

(H(qp) + S(ρ̂BB′) − S(ρ̂UBB′)) − sup
ρ∈Ip

(H(qp) + S(ρ̂EE′) − S(ρ̂UEE′))

= inf
ρ∈Ip

I(U ;BB′, ρ̂) − sup
ρ∈Ip

I(U ;EE′, ρ̂). (5.58)

Collecting the bounds obtained, we can prove the desired lower bound on the key rate. It holds

1

n
logM ≥ inf

(p,p′,V )∈P2×V
χ(qp, V̂Bp′ ⊗ ṼB′) − sup

(p,p′,V )∈P2×V
χ(qp, V̂E,p′ ⊗ ṼE′) − δ

= inf
p∈P

⎛
⎝

inf
ρ∈Ip

I(U ;BB′, ρ̂) − sup
ρ∈Ip

I(U ;EE′, ρ̂)
⎞
⎠
− δ − 12∆ log ∣U ∣ − 4h(∆)

= inf
p∈P

⎛
⎝

inf
ρ∈Ip

I(U ;B∣T, ρ̃) − sup
ρ∈Ip

I(U ;E∣T, ρ̃)
⎞
⎠
− δ − 12∆ log ∣U ∣ − 4h(∆).

The first inequality above is by (5.41), the first inequality is the one from (5.54), while the last
inequality is by (5.58). We are done.

Proposition 55. Let ∆ > 0, and J ⊂ Scqq(Y,KBE) be a ∆-regular set of cqq density matrices
onHABE . For all z, z′ ∈N, it holds

K→(J) ≥ K̃(1)
→ (J, z, z) − δ − freg(z,∆),

with a function freg ∶ N × R+ → R+ such that f(r,∆) → 0 (∆ → 0). For a set A ∶=
{∑y∈Y p(y) ∣y⟩ ⟨y∣ ⊗ σy} on some space, and z, z′ ∈N, the function K̃(1)

→ (A, z, z′) is defined

K̃(1)
→ (A) ∶= inf

p∈PA

sup
Γ∶=T←U←Yp

⎛
⎝

inf
σ∈Ap

I(U ;B∣T,σΓ) − sup
σ∈Ap

I(U ;E∣T,σΓ)
⎞
⎠
.

The supremum above is over all Markov chains T ← U ← Yp resulting from application of
Markov transition matrices PT ∣U ∶ U → T , PU ∣Y ∶ Y → U on p for each p ∈ p with ∣U ∣ = z, ∣T ∣ =
z′, and

σTU ∶= ∑
y∈Y

∑
t∈T

∑
u∈U

PT ∣U(t∣u)PU ∣Y (u∣y)p(y) ∣t⟩ ⟨t∣ ⊗ ∣u⟩ ⟨u∣ ⊗ σy

for given transition matrices PT ∣U , PU ∣Y and

σ = ∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ σy. (5.59)
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Proof. Assume the set J is parameterized such that P ⊂ P(Y) is the set of possible marginal
distributions on the sender’s system, while to each p ∈ P a set Vp ⊂ CQ(Y,KBE) is associated,
i.e.

J =
⎧⎪⎪⎨⎪⎪⎩
ρ ∶= ∑

y∈Y
q(y) ∣y⟩ ⟨y∣ ⊗ V (y) ∶ q ∈ P, V ∈ Vp

⎫⎪⎪⎬⎪⎪⎭
Let δ > 0, z, z′ ∈N be arbitrary but fixed numbers. We show, that

K̃(1)(J, z, z′) − δ − freg(z,∆)

with freg(z,∆) being defined

freg(z,∆) ∶= 32∆ log(z ⋅ dimKBE) + 24h(∆)

is an achievable forward secret-key distillation rate for J. Note that the function defined above
indeed has the properties claimed above. The strategy of proof will be as follows. We will
equip P with a regular non-intersecting covering, where we utilize the set of types for large
enough blocklength to define such. With the right choice of parameters, we obtain a finite family
of sources which approximate J and have the addition property for fulfilling the hypotheses
of Proposition 54. Combining the protocols obtained for each member of the family with an
estimation on the first

√
n letters for blocklength n leads us to a universal protocol for I.

We begin setting up the covering of P . Define for each k, l ∈N, λ ∈ T(k,Y) a set

Tλ,l ∶= {q ∈P(Y) ∶ ∀y ∈ Y ∶ λ(y) − l
2k < q(y) ≤ λ(y) +

l
2k

} .

Notice, that the diameter of Tλ,l is bounded by

diam(Tλ,l) ≤
l ⋅ ∣Y∣
k

,

and the sets in the family being pairwise non-intersecting for l = 1. We fix k to be specified later,
define Pλ ∶= Tλ,3∩P for each λ ∈ T(k,Y), and denote by T̂ the collection of all λwith Pλ being
nonempty. We construct sets of cqq density matrices, which fit the specifications demanded in
Proposition 54, we define

V̂λ ∶= ⋃
q∈Pλ

Vq, and Ĵp,λ ∶=
⎧⎪⎪⎨⎪⎪⎩
∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V (y)
⎫⎪⎪⎬⎪⎪⎭V ∈Ṽλ

for each λ ∈ T̂. Fix the number k large enough, to ensure us, that for each λ ∈ T̃, p, p′ are in Pλ
implies

dH(JABp ,JABp′ ) + dH(JAEp ,JAEp′ ) ≤ ∆,

and, in addition diam(Pλ) ≤ ∆. Notice, that this choice of k is indeed possible because we
assumed J to be ∆-regular. We consider the family {Ĵλ}λ∈T̂, where for each λ, Ĵλ is the set of
density matrices defined by

Ĵλ ∶= ⋃
p∈Pλ

Jp,λ =
⎧⎪⎪⎨⎪⎪⎩
∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V (y) ∶ p ∈ Pλ, V ∈ V̂λ
⎫⎪⎪⎬⎪⎪⎭
.
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The rightmost of the above equalities holds by construction. Notice, that since Pλ has diameter
bounded, and Jλ is parameterized by the full Cartesian product Pλ × V̂λ, Proposition 54 can
be applied in each case. Choose for each λ ∈ T̂, stochastic matrices PT ∣U,λ ∶ U → P(T ) and
PU ∣Y,λ ∶ Y →P(U) such that

inf
ρ∈Jp

I(Uλ;B∣Tλ, ρ̃) − sup
ρ∈Jp

I(Uλ;E∣Tλ, ρ̃)

≥ sup
T←U←Y

⎛
⎝

inf
ρ∈Jp

I(U ;B∣T, ρ̃) − sup
ρ∈Jp

I(U ;E∣T, ρ̃)
⎞
⎠
− δ

2
(5.60)

is fulfilled. Resulting from the choices made, it also holds

inf
ρ∈Ĵp,λ

I(Uλ;B∣Tλ, ρ̃) − sup
ρ∈Ĵp,λ

I(Uλ;E∣Tλ, ρ̃)

≥ inf
ρ∈Jp

I(Uλ;B∣Tλ, ρ̃) − sup
ρ∈Jp

I(Uλ;E∣Tλ, ρ̃) − freg(∆, z, z′) (5.61)

for each λ ∈ T̃, p ∈ Pλ. The inequality above is by continuity together with properties of our
construction and definition of freg. The full argument for justification can be found in Appendix
A.3. Combining the above estimates, we have for each λ ∈ T̂

inf
p∈Pλ

⎛
⎝

inf
ρ∈Jp,λ

I(Uλ;B∣Tλ, ρ̃) − sup
ρ∈Jp,λ

I(Uλ;E∣Tλ, ρ̃)
⎞
⎠

≥ inf
p∈Pλ

⎛
⎝

inf
ρ∈Jp

I(Uλ;B∣Tλ, ρ̃) − sup
ρ∈Jp

I(Uλ;E∣Tλ, ρ̃)
⎞
⎠
− freg(∆, z, z′)

≥ inf
p∈Pλ

sup
T←U←Y

⎛
⎝

inf
ρ∈Jp

I(U ;B∣T, ρ̃) − sup
ρ∈Jp

I(U ;E∣T, ρ̃)
⎞
⎠
− δ

2
− 1

2
freg(∆, z, z′)

≥ inf
p∈P

sup
T←U←Y

⎛
⎝

inf
ρ∈Jp

I(U ;B∣T, ρ̃) − sup
ρ∈Jp

I(U ;E∣T, ρ̃)
⎞
⎠
− δ

2
− 1

2
freg(∆, z, z′)

= K̃(1)
→ (J, z, z′) − δ

2
− 1

2
freg(∆, z, z′). (5.62)

fulfilled. The first inequality above holds by (5.61), the second is by (5.60). Let the blocklength
n ∈N be fixed. We set n = an+bn with an ∶= ⌈√n⌉, bn ∶= n−an, and consider the decomposition

Yn = Yan × Ybn .

Applying Proposition 54, to each of the sets Ĵλ, we infer for each large enough n, λ ∈ T̂ existence
of an (bn,M,L, ϑ̂) secret-key distillation protocol (T̂λ, D̂λ) for Ĵλ with

ϑ̂ ≤ 2−
16√bncλ ≤ 2

16√bnc
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with a strictly positive constant cλ and c ∶= min
λ∈T̃

cλ and

M = ⌊exp(bn (K̃(1)
→ (J) − 3δ

4
− freg(∆, z, z′)))⌋ . (5.63)

Note that the combination of M and θ is indeed possible is justified by combining the claim of
Proposition 54 and the bound in (5.62). Next, we define a two-phase protocol, where the first an
letters from the source observed by the sender are used to estimate λ ∈ ˆfT , while the protocol
(D̂λ, T̂λ) for the estimated parameter λ is applied on the remaining bn outputs of the source. Tor
formalize this strategy, we define a stochastic matrix

T ∶ Yn →P([L] ×T(k,Y) × [M])

with entries

T (l, θ,m∣yn) ∶= T̂θ(l,m∣ybn) δθξ(yan) (l,m, θ, yn) ∈ [L] × [M] × T̂ × Yn)

for each µ ∈ T̂, where we defined a function ξ ∶ Yan → T(k,Y) which maps each yan to the
unique member λ = ξ(yan) such that Tλ,1 contains the type of yan . Notice, that some of the
entries may are undefined, if T̂ does not contain all elements of T(k,Y). In this case, entries
can be defined in any consistent way, because they will be of no further relevance. Moreover,
we introduce matrices

Dlmθ ∶= 1⊗anHB ⊗Dθ
lm ∈ L(H⊗n

B ),

where Dθ
lm is the corresponding effect from the POVM Dθ associated to θ. With these defini-

tions, it is clear, that (T,D) is an (n,M,L ⋅ ∣T̂∣, ϑ) forward secret-key distillation protocol for
J, with a number ϑ we will bound below. Let

ρ ∶= ∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V (y)

be any fixed member of J, and λ0 the unique type in T̂ such that p ∈ Tλ0,1. It is important to
notice, that not only for λ0, but also for each θ ∈ T̂ with θ ∈ Tλ0,3, ρ is also a member of Ĵθ.
Assuming application of the protocol to ρ, we suppress indicating the chosen member in the
following formulas. By definition, it holds

PKK′ΛΘ∣Y n(m,m′, l, θ∣yn) = T̂θ(m, l∣ybn) ⋅ δθ,ξ(yan) ⋅ tr(Dθ
lm′V ⊗bn(ybn))

= P θ
K̂K̂′Λ̂∣Y bn (m,m

′, l, θ∣ybn) ⋅ δθ,ξ(yan),

with P θ
K̂K̂′Λ̂∣Y bn (m,m

′, l, θ∣ybn) being the conditional distribution generated by (T̂θ, D̂θ). We
define the sets

ι1 ∶= {yan ∶ ξ(yan) ∈ Tλ,1}, and ι3 ∶= {yan ∶ ξ(yan) ∈ Tλ,3}. (λ ∈ T(k,Y))
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5.2. Secret-key distillation without state knowledge

It holds

PKK′(m,m′) = ∑
θ∈T(k,Y)

∑
yn∈Yn

L

∑
l=1

PKK′ΛΘ∣Yn(m,m′, l, θ∣yn)pn(yn)

= ∑
θ∈T(k,Y)

∑
yan∈Tθ,1

pan(yan) ∑
ybn∈Ybn

L

∑
l=1

P θ
K̂K̂′Λ̂∣Y bn (m,m

′, l∣ybn)pbn(ybn)

= ∑
θ∈T(k,Y)

pan(ι1,θ) P θKK′(m,m′)

for each m,m′ ∈ [M]. We denote the key random variables produced by performing (T̂θ, D̂θ)
on ρ⊗bn by K̂θ and K̂ ′

θ. We directly obtain

Pr(K ≠K ′) = ∑
θ∈T(k,Y)

pan(ιθ,1) ⋅Pr(K̂θ ≠ K̂ ′
θ)

≤ pan(ιλ0,3) ⋅ ϑ̂ + pan(ιcλ0,3)

≤ 2
16√bnc + 2−an

c
k2

≤ 2ϑ̂ (5.64)

The first inequality above is by the fact, that the protocol associated to each θ ∈ T̂ ∩ Tλ0,3 is
ϑ̂-good for ρ by construction. The second inequality is by standard type bounds. Explicitly, we
have by construction yan ∈ ιcλ0,3 implying

∣ 1

an
N(e∣yan) − p(e)∣ > 1

k

for all e ∈ Y , where N(e∣yan) is the number of occurrences of the letter e in yan . Consequently

pan(ιcλ0,3) ≤ p
an ((T an

p, 1
k

)
c

) ≤ 2−an
c
k2 ≤ ϑ̂, (5.65)

where c is a universal, strictly positive constant, and the last inequality holds for large enough
choice of n. Also, it holds

H(K) − I(K; ΛΘEn, ρKΛΘEn)
=H(K) − I(K; Θ) − I(K; ΛEn∣Θ, ρKΛΘEn)
=H(K ∣Θ) − I(K; ΛEn∣Θ, ρKΛΘEn)
= ∑
θ∈T

pan(ιθ,1) (H(K ∣Θ = θ) − I(K; ΛEn∣Θ = θ, ρKΛΘEn))

= ∑
θ∈T

pan(ιθ,1) (H(K̂θ) − I(K̂θ; ΛEbn , ρθ
K̂Λ̂Ebn

)) , (5.66)

where the first equality is the chain rule for the quantum mutual information applied, the second
holds by definition of the classical mutual information. The third equality results from the fact,
that if θ is the estimate obtained in the first an outputs of the source, (T̂θ, D̂θ) is performed on the
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remaining bn outputs, which determines the conditional quantities as generated from application
of the protocol. Therefore, we obtain

logM −H(K) + I(K; ΛΘEn, ρKΛΘEn)
= ∑
θ∈T

pan(ιθ,1) (logM −H(K̂θ) + I(K̂θ; Λ̂θEbn , ρθ
K̂Λ̂Ebn

))

≤ pan(ιλ0,3) ⋅ ϑ̂ + pan(ιλ0,3) ⋅ (2 ⋅ logM + logL + bn ⋅ log dimKBE)
≤ 2ϑ̂ (5.67)

where the equality above follows from (5.66), the first inequality is by the fact, that the protocol
(T̂θ, D̂θ) is ϑ̂-good for ρ whenever θ is a direct grid point neighbour of λ0, i.e. Tθ,1 ⊂ Tλ0,3.
Moreover we applied the ultimate bound I(A;B,ρ) ≤ 2 log dimHA⊗HB which holds for each
state σ on any Hilbert space HA ⊗HB . The last inequality holds with a large enough choice of
n by application of the bound in (5.65). The bounds obtained in (5.67) and (5.64 show us, that
(T,D) is actually an (n,M,L,ϑ) forward secret-key distillation protocol for J, with ϑ ≤ 2ϑ̂,
and, since bn/n→ 1 for n→∞, it holds

1

n
logM ≥ bn

n
K̃(1)
→ (J) − 3δ

4
− freg(∆, z, z′)

≥ K̃(1)
→ (J) − δ − freg(∆, z, z′)

if n is large enough, where the first inequality is from (5.63).

To prove achievability of the multi-letter formula claimed in Theorem 48, we have to ensure
ourselves, that regularity conditions do not break down when considering the set I⊗n ∶= {ρ⊗n ∶
ρ ∈ I} instead of a set I of cqq density matrices. The following two basic lemmas will turn out
to be sufficient for our needs.

Lemma 56. Let I,J ⊂ L(K) be any two sets of density matrices. It holds for each n ∈N

dH(I⊗n,J⊗n) ≤ n ⋅ dH(I,J),

where dH is the Hausdorff distance induced by the trace norm on the underlying space.

Proof. The inequality

∥a⊗n − b⊗n∥1 ≤ n ⋅ ∥a − b∥1

valid for any two matrices a, b ∈ L(K) inherits to the Hausdorff distance. It holds

sup
a∈I

inf
b∈J

∥a⊗n − b⊗n∥1 ≤ n ⋅ sup
a∈I

inf
b∈J

∥a − b∥1.
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5.2. Secret-key distillation without state knowledge

Lemma 57. Let I be a set of cqq density matrices. It holds

I ε − regular ⇒ I⊗k k ⋅ ε − regular.

for each k ∈N.

Proof. Is by direct application of Lemma 56 and the definition of regularity.

We now obtained sufficient preparations to tackle the proof of achievability in Theorem 48.
Before we head to the proof, we ensure ourselves, that the limit in (5.5) indeed exists.

Lemma 58. Let I be a set of cqq density matrices onHABE . It holds

sup
k∈N

1

k
K(1)(I⊗k) = lim

k→
1

k
K(1)(I⊗k).

Proof. The assertion of the lemma follows from application of Fekete’s lemma [Fek23] on the
sequence K(1)(I⊗k). We check that the hypotheses of Fekete’s lemma are fulfilled. Clearly, the
sequence is bounded. We show, that it is also superadditive, i.e. K(1)(I⊗(k+l)) ≥ K(1)(I⊗k) +
K(1)(I⊗l) being valid for all k, l ∈N. We can for each k write K(1)(I⊗k) in the form

K(1)(I⊗k) = inf
p∈PI

sup
z,z′∈N

K̂(1)(I⊗k, p, z, z′)

where we defined

K̂(1)(I⊗k, p, z, z′) ∶= sup
T←U←Xp

⎛
⎝

inf
σ∈Ip

I(U ;B∣T, σ̃) − sup
σ∈Ip

I(U ;E∣T, σ̃)
⎞
⎠
,

with the outer maximization above being over all Markov chains generated by transition matrices
PU ∣X ∶ X →P(X) and PT ∣U ∶ U →P(T ) with alphabets of cardinalities ∣U ∣ = z, ∣T ∣ = z′, and

σ̃ ∶= ∑
t∈T

∑
u∈U

∑
x∈X

PT ∣U(t∣u) PU ∣X(u∣x) p(x) ∣u⟩ ⟨u∣ ∣t⟩ ⟨t∣ ⊗ V (x)

for

σ = ∑
x∈X

p(x) ∣x⟩ ⟨x∣ ⊗ V (x).

Notice, that for each p ∈ PI, z, z′ ∈N

K̂(1)(I⊗(k+l), p, z, z′) ≥ K̂(1)(I⊗k, p, z, z′) + K̂(1)(I⊗l, p, z, z′),

and moreover, for each z1 ≤ z2, z′1 ≤ z′2,

K̂(1)(I⊗k, p, z2, z
′
2) ≥ K̂(1)(I⊗k, p, z1, z

′
1)
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holds for each k ∈N, p ∈ PI. We obtain

K̂(1)(I⊗(k+l), p, z2, z
′
2) ≥ K̂(1)(I⊗k, p, z2, z

′
2) + K̂(1)(I⊗l, p, z2, z

′
2)

≥ K̂(1)(I⊗k, p, z2, z
′
2) + K̂(1)(I⊗l, p, z1, z

′
1)

Consequently, it holds

sup
z,z′∈N

K̂(1)(I⊗(k+l), p, z, z′) ≥ sup
z,z′∈N

K̂(1)(I⊗k, p, z, z′) + sup
z,z′∈N

K̂(1)(I⊗l, p, z, z′)

for each p ∈ PI. We conclude

K(1)(I⊗(k+l)) ≥K(1)(I⊗k) +K(1)(I⊗l)

Proof of Theorem 48. We first prove achievability, i.e. validity of the inequality

K→(I) ≥ lim
k→∞

1

k
K(1)
→ (I⊗k)

Let z.z′, k ∈N and δ > 0 be arbitrary and fixed. We show, that

1

k
K̃(1)
→ (I⊗k) − δ

is an achievable forward secret key distillation rate. We apply Proposition 55 with J = I⊗k,
and conclude, that for each large enough blocklength g ∈ N, we find an (l,M,L,ϑ) forward
secret-key distillation protocol for I⊗k with ϑ ≤ 2− 16

√
gc3 with a constant c3 > 0, and

1

g
logM ≥ K̃(1)(I⊗k, z, z′) − 2

3
δ (5.68)

where we chose ∆ small enough to satisfy freg(z, z′,∆) ≤ δ
3 . Since an (g,K,M,ϑ) protocol

for I⊗k is obviously an (g ⋅ k,M,L,ϑ) protocol for I, we obtained sufficient protocols for all
large enough blocklengths being integer multiples of k. We can achieve sufficient protocols also
for the remaining blocklengths just by wasting resources. To be explicit, let n = k ⋅ g + r with
0 < r < k and assume (T̂gk, D̂gk) being an (g ⋅ k,M,L,µ) protocol for I. Define a protocol
(Tn,Dn) for blocklength n by setting

Tn(l,m∣xn) = T̂gk(l,m∣(x1, . . . , xg⋅k)) (xn = (x1, . . . , xn) ∈ X n)

and effects

Dn,lm ∶= D̂gk,lm ⊗ 1⊗kHB
for each l ∈ [L],m ∈ [M]. It is clear, that (Tn,Dn) is an (n,M,L,µ) forward secret-key
distillation protocol for I with rate

1

n
logM = 1

g ⋅ k + r logM ≥ 1

g ⋅ k logM − δ
3

(5.69)
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5.3. Secret-key distillation with sender marginal information (SMI)

if n is large enough. It follows from (5.68) and (5.69), that we actually achieve

1

k
K̃(1)(I⊗k, z, z′) − δ

Since δ, z, z′ where arbitrary, we are done. We do not give a detailed argument for the converse
inequality here, since the assertion directly follows from (5.7) together with a converse proof for
the case of a source with SMI given in the next section.

5.3 Secret-key distillation with sender marginal information
(SMI)

In this section, we assume that the sender has perfect knowledge of his/her marginal distribution
deriving from the source statistics. We will prove the achievability part of Theorem 49 by de-
composing each compound cqq source into a finite collection of regular compound cqq sources.
To obtain such an approximation, we need the following basic assertion. For a given set X , we
use the notation 2X for the power set.

Lemma 59. Let dH be the Hausdorff distance on 2R
n

generated by the 1-norm distance onRn.
Let A ⊂ Rn be a subset of Rn with diam(A) ≤ a < ∞. For each ∆ > 0, there exists a family
RA ∶= {Ãω}Ω

ω=1 ⊂ 2R
n ∖ {∅} with the following properties.

1. Ω ≤ exp ((n⋅a
∆

)n).

2. For each B ⊂ A there exists ω ∈ [Ω], such that

dH(B, Ãω) ≤ ∆, and B ⊂ Ãk.

Proof. Equip Rn with the regular pairwise-disjoint covering, generated by the n-dimensional
half-open cubes

[(k1
∆

n
, . . . , kn

∆

n
) ,((k1 + 1)∆

n
, . . . , (kn + 1)∆

n
)) ((k1, . . . , kn) ∈ Zn).

Since diam(A) ≤ a is assumed, we do not need more than K ∶= (n⋅a
∆

)n of these cubes to
cover A. Let {Gk}Kk=1 be any parameterization of the family of cubes intersecting with A by
[K] ∶= {1, . . .K}. Define, for each ω ⊂ [K]

Ãω ∶= ⋃
k∈ω
Gk.

We show, that

RA ∶= {Ãω}Ω
ω=1
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indeed has the properties stated in the lemma. The first property is fulfilled by the bound on K
and the fact, that there are not more, than 2K different values for ω. The member

ω ∶= {k ∈ [K] ∶ Gk ∩A ≠ ∅} (5.70)

fulfills the properties demanded for the second property.

Proof of Theorem 49. For proving achievability, we the following strategy is applied. We ap-
proximate I by a finite family {Iω}ω∈Ω and apply Theorem 48 for each degree of regularity.
Let I ∶= {ρs}s∈S be a parameterization of I, and {ρA,t}t∈T be a parameterization of the set of
marginal states onHA which derive from members of I. Fix an arbitrary ∆ > 0 and let {Ãω}ω∈Ω
be an approximation of I with the properties stated in Lemma 59 with parameter λ. Note, that
by identifying C toR2 in the usual way, the approximation satisfies

∣Ω∣ ≤ exp
⎛
⎝
(4 dimH2

ABE

∆
)

4 dimH2
ABE⎞

⎠
< ∞,

where we only use the fact, the cardinality of Ω is finite. Let, for each t ∈ T , ω(t) the element
of Ω as defined in (5.70) for It. It holds

It ⊂ Ãω, and dH(Ãω,It) ≤ ∆. (5.71)

Define

Ĩα ∶= ⋃
t∶ ω(t)=α

It (α ∈ Ω).

The family {Ĩα}α∈Ω is decomposition of I into a family of pairwise disjoint sets of cqq density
matrices with the additional feature, that for each α ∈ Ω, Ĩα is 4∆-regular, which can be justified
as follows. For each t, t′ with ω(t) = ω(t′) ∶= β, it holds

dH(It,It′) ≤ dH(It, Ãβ) + dH(Ãβ,It′) ≤ 2∆. (5.72)

The left of the above inequalities is the triangle inequality for the Hausdorff distance applied,
the right hand inequality is by (5.71). Therefore, we infer, using monotonicity of the Hausdorff
distance under taking partial traces,

dH(IABt ,IABt′ ) + dH(IAEt ,IAEt′ ) ≤ 2 ⋅ dH(It,It′) ≤ 4∆.

From applying Proposition 55 on each of the sets Ĩβ , t ∈ T , we know, that for each given
δ, µ > 0, there is a number k0(β), such that we find for each n > k0(β) an (n,Mβ, Lβ, µβ)
forward secret-key distillation protocol (T (β),D(β)) for Ĩβ , with

logMβ ≥ K̃(1)(Iβ, z, z′) − freg,β(z,∆) − δ
≥ K̃(1)(I, z, z′) − freg,β(z,∆) − δ (5.73)
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5.3. Secret-key distillation with sender marginal information (SMI)

for each z, z′ ∈N with a function freg,β as stated in Proposition 55. Moreover, we have bounds

µβ ≤ 2−
16√ncβ , and Lβ ≤ 2nRc,β

with constants cβ > 0 and Rc,β ∈ R+ for each β > 0. We define c ∶= minβ∈Ω, and cβ , Rc ∶=
minβ∈ΩRc,β , L = 2nRc , M ∶= minβ∈Ω. If we define a stochastic matrix Tt with entries

Tt(β, l,m∣xn) ∶= T (β)(l,m∣xn) ⋅ δβω(t) (β ∈ Ω, l ∈ [L],m ∈ [)

and effects

Dβlm ∶=D(β)
lm (β ∈ Ω, l ∈ [L],m ∈ [M]),

Then ((Tt,D))t∈T with D ∶= {Dβlm}(β,l,m)∈Ω×[L]×[M] is an (n,M, ∣Ω∣ ⋅L,µ) secret-key distil-
lation protocol for I with SMI, such that

logM ≥ K̃(1)(I, z, z′) − freg,β(z,∆) − δ

holds by (5.73). Since ∆ > 0 was arbitrary,

K̃(1)(I, z, z′) − 2δ

is achievable for each z, z′ ∈N. Consequently, it holds

K→,SMI ≥ sup
z,z′∈N

K̃(1)(I, z, z′) − 2δ = K̃(1)(I) − 2δ

The same reasoning can be applied for I⊗k, k ∈N, which implies, that

1

k
K(1)(I⊗k)

is achievable as well. It remains to prove the converse inequality. Assume P ⊂ P(X) to be
the set of marginal probability distributions on the sender’s systems deriving from I. Define
Vp ⊂ CQ(X ,HBE) to be the set of classical-quantum channels associated to each p ∈ P . I.e.
Fix k ∈N, and assume (T,Dp)p∈P to be an (k,M,L,µ) forward secret-key distillation protocol
for the set

Ip ∶= {ρp,V ∶= ∑
x∈X

p(x) ∣x⟩ ⟨x∣ ⊗ V (x) ∶ V ∈ Vp}

of density matrices from I having sender marginal distribution p. Fix any p ∈ P we suppress the
index p for the next lines. Denote by

ρΛKK′En,V

the state resulting from performing (Tp,D) on ρV according to (5.1) for each V ∈ Vp. Note
that the resulting pair (Λ,K) of random variables does not depend on the chosen state ρV
since all state in Ip have same sender marginal distribution. Since logM − H(K) and
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I(K; ΛEn, ρΛKEn,V ) are nonnegative by definition of the protocol and non-negativity of the
quantum mutual information, the inequalities

logM −H(K) ≤ µ, and sup
V ∈V

I(K; ΛEn, ρΛKEn,V ) ≤ µ (5.74)

are simultaneously fulfilled. Moreover, we have

H(K) = I(K;K ′
V ) +H(K ∣K ′

V )
≤ I(K;K ′

V ) + µ logM + h(µ)
≤ I(K;K ′

V Λ) + µ logM + h(µ)
≤ I(K;BnΛ, ρKΛBn,V ) + µ logM + h(µ), (5.75)

where the first inequality is by Fano’s inequality together with the assumption Pr(K ≠K ′
V ) ≤ µ,

while the last two inequalities follow from the data processing inequalities for the classical and
quantum mutual information. We infer

logM ≤H(K) + µ
≤ inf
V ∈V

I(K;BnΛ, ρKΛBn,V ) + µ + µ logM + h(µ)

≤ inf
V ∈V

I(K;BnΛ, ρKΛBn,V ) − sup
V ∈V

I(K;EnΛ, ρKΛEn,V ) + 2µ + µ logM + h(µ)

≤ inf
V ∈V

I(K;Bn∣Λ, ρKΛBn,V ) − sup
V ∈V

I(K;En∣Λ, ρKΛEn,V ) + 2µ + µ logM + h(µ)

≤K(1)(I⊗kp ) + 2µ + µ logM + h(µ). (5.76)

The first and the third of the above inequalities are from (5.74), while the second is from (5.75).
The fourth is by definition of the quantum mutual information together with the fact, that the
distribution (K; Λ) does not depend on the chosen V . The last one results from observing,
that X → (Λ,K) → Λ is a Markov chain. The estimate in (5.76) is valid for each p ∈ P .
Minimization over all p ∈ P leads to

logM ≤ inf
p∈P

K(1)(I⊗kp ) + 2µ + µ logM + h(µ)

=K(1)(I⊗k) + 2µ + µ logM + h(µ),

where the equality above is by definition of the function K(1)
→ .

5.4 Discussion of regularity of compound cqq sources

This section is of twofold purpose. First, we point out that regularity issues have operational
significance for forward secret-key distillation from tripartite compound sources. While for
regular sources, there is no gap between the forward secret-key key distillation capacities with
and without SMI, there may be serious differences in capacities, if the source is not regular.
Second, we introduce a weaker notion of regularity than the one introduced in Definition 46,
where we utilize notions from the theory of set-valued functions.
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5.4.1 Operational significance of regularity conditions

We have seen in the previous section, that there is no difference between the forward secret
key distillation capacities with and without SMI, as long as the source is regular in the sense
of Definition 46. We admit, that there may be weaker notions of regularity which also exhibit
this property (an example of such a condition is introduced in the next section). Regularity
conditions seem somewhat technical on a first view. One can easily imagine large classes of sets
of cqq density matrices, which are notoriously easy to process even in the case without sender
knowledge, while being irregular. This feature is shared in a trivial way by all irregular sources
having zero forward secret key distillation capacity under sender knowledge. The following
example depicts the fact, that also in nontrivial cases irregularities may be of no consequences
for the behaviour of the source regarding forward secret-key distillation.

Example 60. Define for a finite alphabet X , A ∶= {p ∈ P(X) ∶ ∀x ∈ X ∶ p(x) ∈ Q},
V ∈ CQ(X ,HB⊗HE), and letKB =C⊗2 be the Hilbert space of an additional system assigned
to the legitimate receiver. Define states

ρa ∶= ∑
x∈X

a(x) ∣x⟩ ⟨x∣ ⊗ VBE(x) ⊗ ∣ea⟩ ⟨ea∣

with {e1, e2} being an orthonormal basis in KB , ea ∶= e1 if a ∈ A and ea = e2 if a ∈ Ac. The
source defined by I ∶= {ρa}a∈P(X) is not regular, but can be easily converted to a regular one by
just discarding the systems on KB .

Beside the mentioned facts, the question of regularity in principle, bears strong operational sig-
nificance. The next Theorem shows, that for irregular sources, the capacities with and without
sender marginal state knowledge may be substantially different.

Theorem 61. The equality

K→,SMI(I) =K→(I)

does not hold in general.

Proof. We construct an example of a set I with

K→,SMI(I) = 1 and K→(I) = 0. (5.77)

Let X = Y = {0,1}, and HB = HE = C2 ⊗ C2. We introduce classical-quantum channels
W1,W2 ∶ {0,1} → S(C2 ⊗C2) by

W1(x, y) =W1(x) ∶= ∣x⟩ ⟨x∣ ⊗Π,

W2(x, y) =W2(y) ∶= Π⊗ ∣y⟩ ⟨y∣ ((x, y) ∈ X × Y),

where Π ∶= 1

2 is the flat state on C2. We set

V1,B = V2,E =W1, V2,B = V1,E =W2,
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and define states

ρp ∶=
⎧⎪⎪⎨⎪⎪⎩

∑x∈X ∑y∈Y 1
4 ∣x⊗ y⟩ ⟨x⊗ y∣ ⊗ V1,B(x) ⊗ V1,E(y) if p = π

∑x∈X ∑y∈Y 1
2p(y) ∣x⊗ y⟩ ⟨x⊗ y∣ ⊗ V2,B(y) ⊗ V2,E(x) otherwise,

where π denotes the equidistribution on {0,1}, i.e. p(0) = p(1) = 1
2 . Consider the set I ∶=

{ρp ∶ p ∈ P(Y)}. We first show the left equality in (5.77). If we define stochastic matrices
P

(1)
U ∣XY , P

(2)
U ∣XY ∶ X × Y → U ∶= {0,1} with entries

P
(1)
U ∣XY (u∣x, y) ∶= δxu, and P

(2)
U ∣XY (u∣x, y) ∶= δyu (x ∈ X , y ∈ Y, u ∈ U),

and use the sender’s preprocessings P (1)
U ∣XY for ρπ and P (2)

U ∣XY for each p ≠ π, we achieve the
maximum in the capacity formula derived in Theorem 49. The corresponding states are

ρ̂π ∶= ∑
u∈U

∑
x∈X

∑
y∈Y

P
(1)
U ∣XY (u∣x, y)1

4
∣u⟩ ⟨u∣ ⊗ V1,B(x) ⊗ V1,E(y)

= ∑
u∈U

1

2
∣u⟩ ⟨u∣ ⊗ ∣u⟩ ⟨u∣ ⊗Π⊗Π⊗Π

ρ̂p ∶= ∑
u∈U

∑
x∈X

∑
y∈Y

P
(2)
U ∣XY (u∣x, y)p(x)1

2
∣u⟩ ⟨u∣ ⊗ V2,B(y) ⊗ V2,E(x)

= ∑
u∈U

1

2
∣u⟩ ⟨u∣ ⊗Π⊗ ∣u⟩ ⟨u∣ ⊗ σp,E (p ∈P(Y) ∖ {π}),

where σp,E ∶= ∑x∈X p(x)V2,E(x). Note, that both of the above states contain perfect common
randomness between the legitimate users without sharing any correlations to the eavesdropper,
which is the optimum they can achieve, as is easily observed. It therefore holds

K→,SMI(I) = log 2 = 1.

The situation is completely different, if no SMI is present. Let µ > 0 be fixed and (T,D)
an arbitrary (n,M,L,µ) forward secret key distillation protocol for I without SMI. I.e. the
inequalities

Pr(Kp ≠K ′
p) ≤ µ (5.78)

and

logM −H(Kp) + I(K,ΛEn, ρKΛEn,p) ≤ µ (5.79)

are satisfied for each p ∈P(Y). If we define the states

ρ̃p ∶= ∑
x∈X

∑
y∈Y

p(x)1

2
∣x⊗ y⟩ ⟨x⊗ y∣ ⊗ V1,B(x) ⊗ V2,E(x) (p ∈P(Y) ∖ {π}),
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the identity

I(K; ΛEn, ρKΛEn,p) = I(K; ΛBn, ρ̃KΛBn,p) (5.80)

is fulfilled by symmetry. Moreover, it holds

∥ρKΛBn,π − ρ̃KΛBn,p∥1 ≤ ∥trH⊗n
E
ρ⊗nπ − trH⊗n

E
ρ̃⊗np ∥1 = ∥pn − πn∥1 ≤ n∥p − π∥1 (5.81)

where the first inequality is by c.p.t.p. monotonicity of the trace norm distance, and the second
is by construction. Combining (5.80) and (5.81) with Fannes’ inequality for the quantum mutual
information, we yield

I(K; ΛEn, ρKΛEn,p) = I(K; ΛBn, ρ̃KΛBn,p)
≤ I(K; ΛBn, ρKΛBn,π)) + f(n∥p − π∥1) (5.82)

for each p ∈P(Y) ∖ {π}, where f is a function with f(a) > 0 for all a > 0, and f(a) → 0, (a→
0). Therefore, we have for each p ≠ π

logM ≤ H(Kp) − I(K; ΛEn, ρKΛEn,p) + µ
≤ H(Kp) − I(K; ΛBn, ρKΛBn,π) + µ + f(n∥p − π∥1)
≤ H(Kp) − I (Kπ;K ′

π) + µ + f(n∥p − π∥1)
≤ H(Kp) −H(Kπ) +H (Kπ ∣K ′

π) + µ + f(n∥p − π∥1)
≤ H(Kp) −H(Kπ) + µ logM + h(µ) + µ + f(n∥p − π∥1),
≤ µ logM + h(µ) + µ + 2f(n∥p − π∥1), (5.83)

where the first inequality is (5.79), the second is by (5.82), the third is by the quantum data pro-
cessing inequality, the fifth by Fano’s inequality together with (5.78), and the last is by Fannes’
inequality. By taking the infimum over all p in the above inequality arrive at

logM ≤ µ logM + h(µ) + µ. (5.84)

We conclude, that R = 0 is the only achievable forward secret key distillation rate.

Remark 62. The lack of sender knowledge can have worst consequences. A closer look at the
example introduced to prove the preceding theorem shows, how different the situations with and
without sender knowledge can be. With sender knowledge, we achieve capacity with zero error
and security index for each blocklength, while all public forward communication needed is the
information whether π is present or not. On the other hand, the bound (5.84) reveals, that no
nonzero forward secret-key rate can be achieved even if nonzero asymptotically performance µ
is allowed asymptotically!

5.4.2 A weaker notion of regularity

In this section we show that a slightly weaker condition on the set I of cqq density matrices
generating the outputs of the compound source is sufficient for proving a version of Theorem
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48. To formulate the corresponding assertion, we introduce some notions from the theory of
set-valued maps, where we take the corresponding definitions from Chapter 11 in [Bor85]. In
the following we denote for each given set Ω the power set of Ω (i.e. the family of subsets of Ω)
by 2Ω.
Let f ∶ Θ→ 2Ω be a set-valued map. We define for each E ⊂ Ω

f+(E) ∶= {θ ∈ Θ ∶ f(θ) ⊂ E}, and f−(E) ∶= {θ ∈ Θ ∶ f(θ) ∩E ≠ ∅}. (5.85)

Definition 63. We call a set-valued map f ∶ Θ→ 2Ω

1. upper hemi-continuous, if for each θ ∈ Θ the following is true. Whenever θ ∈ f+(E) for
an open set E, there is a neighbourhood U(θ) of θ with U(θ) ⊂ f+(E).

2. lower hemi-continuous, if for each θ ∈ Θ the following is true. Whenever θ ∈ f−(E) for
an open set E, there is a neighbourhood U(θ) of θ with U(θ) ⊂ f−(E).

3. continuous, if f is both upper and lower hemi-continuous.

We will always regard Θ and Ω being finite-dimensional. In this case, we obtain sequential
characterizations of upper and lower hemi-continuity, if we assume the set-valued function to
have only compact values.

Proposition 64. Let f ∶ Θ→ 2Ω be a set-valued map with Θ ⊂Rm, Ω ⊂Rk, and f(θ) compact
for each θ ∈ Θ. It holds

1. f is upper hemi-continuous if and only if for each θ ∈ Θ, every sequence (θn)n∈N
with θn → θ(n → ∞) and ωn ∈ f(θn), n ∈ N there is a subsequence {ωnk}k∈N with
limk→∞ ωk ∈ f(θ).

2. lower hemi-continuous, if for each θ ∈ Θ and sequence {θn}n∈N ⊂ Θ, and ω ∈ f(θ) from
limn→∞ θn = θ it follows, that there is a sequence {ωn}n∈N with ωn ∈ f(θn), n ∈ N and
limn→∞ ωn = ω.

Proof. See [Bor85], Proposition 11.11.

For our considerations the closed-graph characterization of upper hemi-continuity will be of
utility.

Theorem 65. Let Θ ⊂ Rm, Ω ⊂ Rk, f ∶ Θ → 2Ω be a set-valued map with Ω being compact. If
the graph of f , i.e. the set

Grf ∶= {(θ,ω) ∈ Θ ×Ω ∶ ω ∈ f(θ)} (5.86)

is closed, then f is upper hemi-continuous.

Proof. See for example Proposition 11.9 in [Bor85]
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We need the following basic Lemma.

Lemma 66. If a set-valued function is lower hemi-continuous, then its closure f (i.e. the func-
tion defined by closing the graph of f ) is lower hemi-continuous as well.

Proof. Assume, that there is a sequence {θn}n∈N with θn → θ and ω ∈ f(θ), such that no
sequence {ωn}n∈N exists with ωn ∈ f(θn) for all n ∈ N and ωn → ω. If ω is in f(θ), such a
sequence always exists by lower hemi-continuity of f . If ω is in f(θ) ∖ f(θ) the hypothesis is
only true if ω is no point of accumulation of f(θ), which contradicts the definition of f .

Definition 67. We call a set I ⊂ Scqq(HABE) weakly regular, if the set-valued map

fAX ∶ PI → 2Scq(HAX) (5.87)

p↦ IAXp (5.88)

is lower hemi-continuous for X = B,E.

Proposition 68. Let I ⊂ Scqq(HABE) be a weakly regular set of cqq density matrices. It exists
a regular set Î ⊂ Scqq(HABE) with

1. I ⊂ Î

2. K→(I) ≤K→(Î).

3. Î is regular

Proof. Assume I being parameterized as

I ∶= {ρ(p,V ) ∶ ∑
x∈X

p(x) ∣x⟩ ⟨x∣ ⊗ V (x)}
(p,V )∈S

(5.89)

with

S ∶= ⋃
p∈PI

{p} × Vp (5.90)

with sets PI ∈ P(X), Vp ⊂ CQ(X ,HBE), p ∈ PI. We define Î as the closure of I. Obviously,
the first condition I ⊂ Î stated in the proposition is fulfilled. We show that the two remaining
conditions are also fulfilled. Assume, that (T,D) is an (n,M,L,µ) forward secret-key distil-
lation protocol for I. Since the performance and security criteria in Definition 43 are defined
in terms of functions being continuously dependent on the cqq density matrix, it is clear, that
(T,D) is an (n,M,L,µ) forward secret-key distillation protocol also for Î, which directly im-
plies, that also the second claim of the proposition is satisfied.
For validating the third claim we notice, that since Î is closed, the corresponding set-valued
functions fAB and fAE have closed graphs. Therefore both maps are upper hemi-continuous
by Theorem 65. The hypothesis of I being weakly regular, together with Lemma 66 ensures
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us, that fAB and fAE are also lower hemi-continuous. Therefore, they are continuous. Since
the set of sender marginal distributions PÎ deriving from Î is a compact set, we infer, that fAB ,
fAE are uniformly continuous, which implies, that for each ε > 0 we find a δ > 0, such that the
implication

∥p − q∥1 < δ ⇒ dH(fAB(p), fAB(q)) + dH(fAE(p), fAE(q)) < ε (5.91)

for each p, q ∈ PÎ. Since

dH(ÎABp , ÎABq ) + dH(ÎAEp , ÎAEq ) = dH(fAB(p), fAB(q)) + dH(fAE(p), fAE(q)) (5.92)

holds by definition, Î is regular.

Theorem 69. Let I be a weakly regular set of cqq density matrices onHABE . It holds

K→(I) = lim
k→∞

1

k
K(1)
→ (I⊗k), (5.93)

Proof. We approximate I by the set Î as defined in the proof of Proposition 68. The first and
second property of Î in Proposition 68 together imply, that

K→(I) =K→(Î) = lim
k→∞

1

k
K(1)
→ (Î⊗k) (5.94)

holds. The rightmost of the above inequalities is by application of Theorem 48 on Î, which
is possible, because Î is regular by Proposition 68. In fact, dH(I, Î) = 0, and consequently
dH(I⊗k, Î⊗k) = 0 holds for each k ∈N. Therefore

K(1)
→ (I⊗k) =K(1)

→ (Î⊗k) (5.95)

holds for each k ∈N by continuity of K(1). We are done.

5.5 Special case: Forward secret-key distillation capacity of
a classical tripartite compound sources

Our results also cover the case of a completely classical tripartite source. Let (X,Y,Z) be a
triple of classical random variables with distribution PXY Z ∈ P(X × Y × Z). The state of this
classical system coherified to a Hilbert space HX ⊗ HY ⊗ HZ is represented by the density
matrix

ρ ∶= ∑
(x,y,z)∈X×Y×Z

PXY Z(x, y, z) ∣x⟩ ⟨x∣ ⊗ ∣y⟩ ⟨y∣ ⊗ ∣z⟩ ⟨z∣ . (5.96)

Forward secret-key distillation for this kind of classical compound memoryless source was con-
sidered in the previous work [TBS16] done under collaboration of on of the authors of this
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paper. Among other results obtained therein, it was derived a capacity formula for the case
without sender marginal knowledge in case, that the set of sender marginal distributions deriv-
ing from the source is finite. Our results extend the capacity description also to the case of an
arbitrary regular tripartite classical source. By coherifying each set (Xs, Ys, Zs)s∈S of triples
into a mutually commuting set of density matrices as in (5.96), Theorem 48 directly leads to
a version of Theorem 2 in [TBS16] where instead of assuming finite cardinality of the set of
marginal states the assumption is that the compound source is regular. Theorem 49 in the same
way provides a capacity formula for the case where the sender party perfectly knows the distri-
bution of his/her part of the source. The reader may reply, that the definition of a (deterministic)
classical decoding procedure is more restricting than that of a POVM in quantum theory, since
the decoding sets are demanded to be pairwise non-intersecting. Our reasoning is not affected by
this fact, because in case of pairwise commuting density operators, optimal decoding can always
be achieved by using projection valued measures. Alternatively, on could replace Lemma 51 by
a completely classical version.
We point out, that the need for a regularity condition as well as differences between the capac-
ities with and without sender’s knowledge of the marginal state are not effects of the quantum
nature of the sources considered in this paper. The reader may note, that our counterexample
given to prove Theorem 61 is essentially classical, since all density matrices involved pairwise
commute.
Since there are stronger results known in classical information theory (especially regarding error
exponents for coding of classical compound channels), a classical method of proof will lead to
faster decrease of error with a potentially simplified proof.

5.6 Conclusion

We have considered the the task of secret key distillation under free forward classical commu-
nication for compound memoryless sources with classical legitimate sender and quantum legal
receiver and eavesdropper outputs. We derived a capacity formula for all sources of this class
which additionally exhibit a certain regularity condition.
We also discussed the situation, where the legitimate sender has perfect knowledge of the prob-
ability distribution governing his/her outputs. In this case, we were able to derive a capacity
formula which equals the one given for the case without sender marginal information for regular
sources, and moreover does hold for all non-regular sources.
As we have also seen, the capacities with and without sender marginal information differ at least
for some non-regular sources. We admit, that the regularity conditions assumed in this paper
may be somewhat weakened to determine the forward secret-key generation capacity without
sender knowledge for a larger class of sources. We provided a further step in this direction by
applying the general theory of set-valued maps to derive a slightly broader class of compound
cqq sources with a general capacity description.
We leave open the more general case of proving a capacity theorem for forward secret-key
distillation from compound sources where the generating set of density matrices may contain
members being not in the class of cqq density matrices. In [DW05] such a theorem were proven
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in case of a perfectly known source without restriction on the legitimate sender to be classical.
The strategy therein to prove a coding theorem was, to combine an achievability result for cqq
sources with an optimization over instruments dephasing the sender’s system to a classical one.
Notice, that such a strategy in general does not apply to compound sources in a direct way as it
did in [DW05] (at least in case that the sender does not have perfect marginal knowledge). In
general, there is no control whether or not a dephasing operation leads to a non-regular com-
pound cqq source.
However, approximation techniques presented here may lead to a better understanding of the
secret-key distillation task even for tripartite quantum compound sources.
Another astonishing result from Ref.[DW05] is the close correspondence between the forward
secret-key distillation and entanglement distillation tasks. It was demonstrated, that modifying
forward secret-key distillations leads to one-way local operations and classical communications
protocols suitable for proving the so-called hashing bound eventually determining the entangle-
ment distillation capacity of bipartite memoryless quantum sources.
The authors of this paper are of the opinion, that following a similar strategy to derive the en-
tanglement distillation capacity of bipartite compound memoryless quantum sources may be not
successful in the same way as it is with perfect knowledge of the source. A closer look to the
corresponding considerations in [Dev05] may underpin this opinion. Therein, an important part
of the coding strategy was to apply a nondestructive measurement on the sender’s marginal of
the bipartite quantum state subject to entanglement distillation – a strongly state-dependent task,
which can hardly be performed without sender marginal knowledge. For a generalization to the
case of bipartite compound quantum case under assumption of SMI, the strategy may be fea-
sible. We did not pursue this path, because the one-way entanglement distillation capacity of
compound quantum sources is already known from [BBJ13] and [BJ14a].
This parallels a similar observation made for channel coding from [BN13]. Therein, it was ar-
gued, that the ingenuous way to derive entanglement generation codes for quantum channels
from codes for secret message transmission over classical-quantum wiretap channels used in
[DW05] for proving the quantum coding theorem leads to suboptimal results for compound
channels if no sender state knowledge is assumed.
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A Appendix A

A.1 Universal random constant composition codes for
compound DMCQ Channels

In this section, we state and prove some results on compound DMcq channels we need within
the proof of Lemma 51. For convenience of the reader, we first provide definitions, necessary
to understand the subsequent arguments. Let V ⊂ CQ(X ,K) be a set of cq channels mapping
a finite alphabet X to the set of density matrices on a Hilbert space K. The compound discrete
memoryless classical quantum channel generated by V (the DMcqC V for short) is given by the
family {V ⊗n ∶ V ∈ V}n∈N of possible outputs. To catch up with the notation in [BB09], wie
sometimes write V = {Vs}s∈S assuming a suitable parameterization of V by an index set S. For
given blocklength n ∈ N, M ∈ N, an (n,M)-code for transmission of classical messages over
V is a family C ∶= (um,Dm)Mm=1 with um ∈ X n, Dm ∈ L(K⊗n) for each m ∈ [M], with the
additional property, that for all m ∈ [M]

0 ≤Dm ≤ 1⊗nK , and
M

∑
m=1

Dm ≤ 1⊗nK

holds. For given (n,M)-code C, s ∈ S, we define the average error of transmission by

e(C, V ⊗n
s ) ∶= 1

M

M

∑
m=1

tr(D⊥mV ⊗n(um)),

where we allow ourselves to define A⊥ ∶= 1⊗nK −A (even if A is not a projector). The following
two Propositions combined, immediately imply the proof of Lemma 51 stated in the text. The
claim of the first one follows by careful modification of the proof of Theorem 5.10 in [BB09]
and delivers for each large enough blocklength and each type of sequences a suitable random
compound transmission code having superpolynomially decrease of error, universal regarding
the channels in the compound set, as well as the appearing types.

Proposition 70. LetW ⊂ CQ(X ,K) be an arbitrary set of cq channels. For each δ > 0, there
is a number n2 ∶= n2(δ) such that for each n > n2 and each type λ ∈ T(n,X) there exists a
random (n,Mλ)-code Cλ(U) ∶= (Um,Dm(U))Mλ

m=1 forW with the following properties

1. U ∶= (U1, ..., UMλ
) is an i.i.d. sequence of random variables, each with values in X n and

distribution λ⊗n.

2. Mλ ≥ exp{n( inf
W ∈W

χ(λ,W ) − δ)}.
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3. E [ sup
W ∈W

e(Cλ,W⊗n)] ≤ 2−
16√nc(δ)

with a constant c(δ) > 0.

Proof. The assertion is basically contained in the proof of Theorem 5.10 in [BB09] and follows
by minor modifications of the argument given there. We assume the reader’s familiarity with
the arguments presented in [BB09] and restrict ourselves to indicate the steps of modification
necessary to justify our claim.
We writeW ∶= {Wt}t∈T with a suitable index set T . Let n ∈N, and consider a type λ ∈ T(n,X).
Assume, that

inf
t∈T

χ(λ,Wt) − δ > 0, (A.1)

holds, since otherwise the claim is trivially fulfilled for λ. Choose an approximating setWn ∶=
{W ′

t}t∈Tn forW as used in [BB09]. We will execute the suggestions given in Remark 5.11 in
[BB09], and therefore choose the diameter of the partition of output states used to defineWn to
be 2−

16√n instead of 1
n2 . Define

Ωλ,n ∶= {ρ′t,λ ∶= ∑
x∈X

λ(x) ∣x⟩ ⟨x∣ ⊗W ′
t (x) ∶ t ∈ Tn},

λ ∶= ∑
x∈X

λ(x) ∣x⟩ ⟨x∣ , and σ′t,λ ∶= ∑
x∈X

λ(x)σ′t(x) (t ∈ Tn).

Note, that the properties of the set Wn in [BB09] (see Lemma 5.6 therein) together with the
above definitions, implies the bound

λmin(λ⊗ σ′t,λ) ≥ min
x∈supp(λ)

λ(x) ⋅ 1

d
⋅ 2− 16√n

≥ 2−
16√n

n ⋅ d (A.2)

on the minimal eigenvalue λmin(λ⊗ σ′t,λ) of λ⊗ σ′t,λ. The last estimate above follows from the
fact, that λ is a type of sequences in X n. Closely following the argument given in [BB09], we
are ensured, that choosing ln = [√n], we find an, bn ∈N, 0 ≤ bn < ln, with

n = anln + bn,

and a PVMMln,λ ∶= {P1,ln,λ, P2,ln,λ}, such that for all t, s ∈ Tn

SMln,λ
(ρ′⊗lnt,λ ∣∣(λ⊗ σλ,s)⊗ln) ≥ ln(S(Ωλ,n∣∣λ⊗ σ′λ,s) − ξln(λ⊗ σ′λ,s)

≥ ln(min
t∈Tn

χ(λ,W ′
t ) − ξln(λ⊗ σ′λ,s)) (A.3)
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holds. Careful investigation of the function ξln in [BB09] using the type-independent bound in
(A.2) shows that

lim
n→∞ max

λ∈T(n,X)
max
s∈Tn

ξln(λ⊗ σ′λ,s) = 0 (A.4)

holds. Introducing the refinement Qln,λ of the PVM Mln,λ, and the stochastic matrices Vt,λ,
t ∈ Tn generated by Qln,λ as in [BB09] (note, that these, also may depend on the chosen type
λ), it holds

1

ln
min
t∈Tn

I(λ⊗ln , Vt,λ) ≥ inf
t∈T

χ(λ,Wt) − n ⋅ 2−
16√nC(d) − ξln,max,

where we used ξln,max defined by

ξln,max ∶= max
λ∈T(n,X)

max
s∈Tn

ξln(λ⊗ σ′λ,s).

Since (A.4) holds, we find for each 0 < η < δ a number n2(η) ∈N (independent of λ) such that

1

ln
min
t∈Tn

I(λ⊗ln , Vt,λ) ≥ inf
t∈T

χ(λ,Wt) − η > 0 (A.5)

is fulfilled for all n > n2. Note, that the last inequality holds by (A.1). The bound above differs
a bit from the one given in Eq. (30) in [BB09]. However, it will be sufficient for the following
argument. Let

Θ ∶= {θ ∈R ∶ 0 < θ < η
4
} , (A.6)

and

In,λ ∶= min
t∈Tn

I(λ⊗ln , Vt,λ).

Following the lines of [BB09] (always respecting dependencies on λ), we yield the bound

Pr(ianλ ≤ In,λ − 2lnθ) ≤ 1

∣Tn∣
∑
t∈Tn

Pr
t,λ

(iant,λ ≤ In − lnθ) + ∣Tn∣2−anlnθ.

Since iant,λ is a sum of i.i.d. random variables each with values in the interval

[−lnd 16
√
n, lnd

16
√
n],

and

In,λ ≤ Et,λ(iant,λ)

holds for each t ∈ Tn, our counterpart to eq. (34) in [BB09],

Pr(iant,λ ≤ In − lθ) ≤ e
anθ2

16⋅ 16√n
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is valid. By closely following the lines of [BB09] (having in mind our bounds) together with the
choice θ = η

4 , we know, that there is a projection Pn,λ,θ with

tr(ρ(n)λ Pn,λ,θ) ≥ 1 − e
anη2

162 16√n − ∣Tn∣2−anln
η
4

and

tr((λ⊗n ⊗ σ(n)
λ )Pn,λ,θ) ≤ 2−an(In−2lnθ)

≤ 2
−anln(inf

t∈T
χ(λ,Wt)− 3

2
η)
, (A.7)

where the last of the above inequalities above holds by (A.5). Since b < √
n,

tr((λ⊗n ⊗ σ(n)
λ )Pn,λ,θ) ≤ 2

−n(inf
t∈T

χ(λ,Wt)−2η)
(A.8)

holds for each n > n2, if n2 is chosen large enough. Setting η ∶= δ
2 , and using the bounds

in (A.7) and (A.8) together with Theorem 1.1. stated in the Appendix of [BB09] (and leaving
out the derandomization step leading to a deterministic code in the Proof of Theorem 5.10 in
[BB09]), we conclude that there is an (n,M ′

λ) random code Cλ(U) ∶= (Um,Dm(U))M ′
m=1 for

the average channel W⊗n ∶= 1
∣Tn∣ ∑t∈TnW

′⊗n
t with U = (U1, . . . , UM ′) being a sequence of i.i.d.

random variables each with values in X n and generic distribution λ⊗n, such that

1. M ≥ ⌊exp{n(inf
t∈T

χ(λWt) − 3
2δ)}⌋.

2. E [e(Cλ,W⊗n)] ≤ 2−
16√nc̃(δ)

with a positive constant c̃(δ) > 0. From this, we can conclude, that there is a number n0(δ), such
that for each n > n0(δ) (independent of λ) Cλ is an (n,M) random code of the above stated
properties, with 2. above replaced by

E [ sup
W ∈W

e(Cλ,W⊗n)] ≤ 2−
16√nc(η),

where c(δ) ∶= 1
2 c̃(δ).

The following proposition is a compound version of Proposition 2.5 in [Dev05]. It is proven by
exactly the same strategy replacing the Holevo-Schumacher-Westmoreland codes for DMcqC
with perfectly known generic cq channel by the codes constructed in [BB09] together with the
modifications done in Proposition 70 above.

Proposition 71 (cf. [Dev05], Prop. 2.5). LetW ⊂ CQ(X ,K) be an arbitrary set of cq channels,
n ∈ N and λ ∈ T(n,X) a type of sequences in X n. If there exists a random random (n,M ′)-
classical message transmission code

C′(U) = (Um,Dm(U))M ′

m=1

for the DMcqCW which has the properties
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1. U ∶= (U1, . . . , UM ′) is an i.i.d. sequence of random variables with values in X n with
generic distribution λn

2. E [ sup
W ∈W

e(C,W⊗n)] ≤ µ

with µ ∈ (0,1), then there exists for each given ϑ ∈ (0,1) a random (n,M)-message transmis-
sion code

C(V ) ∶= (Vm,Dm(V ))Mm=1

having the properties

1. V ∶= (V1, ..., VM) is an i.i.d. sequence of random variables, each equidistributed on Tnλ ,

2. M = ⌊ϑ ⋅ (n + 1)−∣X ∣ ⋅M ′⌋,

3. and

E [ sup
W ∈W

e(C′,W⊗n)] ≤ 2

ϑ
(n + 1)∣X ∣µ + 2−M

′(1−ϑ)2(n+1)−∣X ∣/ ln 2.

For provint the above assertion, we will make use of the following variant of the Chernov
bound

Proposition 72. Let n ∈ N, δ > 0 and X = (X1, . . . ,Xn) be an i.i.d. sequence of random
variables with 0 ≤X1, . . . ,Xn ≤ 1 and E[Xi] = E, i ∈ [n], then

Pr( 1

n

n

∑
i=1

Xi ≤ (1 − δ)E) ≤ 2−nδ
2E2/ ln 2

Proof of Proposition 71. Define the event, that at least M codewords of a codebook u are λ-
typical sequences by

A(M) ∶= {u = (u1, . . . , uM ′) ∈ X nM ′ ∶ ∣{m ∶ um ∈ Tnλ }∣ ≥M} .

For an i.i.d. sequence U = (U1, . . . , UM ′) as in the hypotheses of the proposition, it holds

Pr (A(M)c) = Pr
⎛
⎝
M ′

∑
i=1

1Tn
λ
(Um) <M

⎞
⎠
.

Notice, that

E[1Tn
λ
(Um)] = λn(Tnλ ) ≥ (n + 1)−∣X ∣
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holds. The rightmost inequality above holds by the fact, that among all typical sets of words in
X n, Tnλ has the largest probability w.r.t. λn.
We fix ϑ ∈ (0,1) and set M ∶= ⌊ϑ(n + 1)−∣X ∣M ′⌋. We obtain

Pr (A(M)c) ≤ Pr
⎛
⎝
M ′

∑
i=1

1Tn
λ
(Um) <M

⎞
⎠

≤ Pr
⎛
⎝

1

M ′
M ′

∑
i=1

1Tn
λ
(Um) < ϑ(n + 1)−∣X ∣⎞

⎠

≤ Pr
⎛
⎝

1

M ′
M ′

∑
i=1

1Tn
λ
(Um) < ϑE[U1]

⎞
⎠

≤ exp{−M ′(1 − ϑ)2E[U1]/ ln 2)} (A.9)

≤ exp{−M ′(1 − ϑ)2(n + 1)−∣X ∣)/ ln 2} =∶ τ.

Except the one in Eq. (A.9), which is by application of the bound in Proposition 72, all of the
above estimates are by the preceding definitions and bounds.
Next, define a function ϕ ∶ X nM ′ → (Tnλ )M by

ϕ(u) ∶=
⎧⎪⎪⎨⎪⎪⎩

(v1, . . . , vM) = v if u ∈ A(M)
(ṽ, . . . ṽ) otherwise,

where ṽ is any word from Tnλ . By symmetry, it holds

λnM
′(ϕ−1(v)) = λ

nM ′(A(M ′))
∣Tnλ ∣

,

i.e. the push forward measure λnM
′ ○ϕ−1 of λnM

′
under ϕ is nearly equidistributed. Explicitely,

∥π⊗MTn
λ
− λnM ′ ○ ϕ−1∥

1
= ∣1 − λnM ′(A(M))∣ = λnM ′(A(M)c) < τ.

For each outcome v = (v1, . . . , vM) ∈ TnMλ , we define an (n,M)-message transmission code
C(v) ∶= (vm′ ,Dm′)Mm′=1 as follows. Let

uv ∶= argmin
u∈ϕ−1(v)

sup
t∈T

e(C′(u),W⊗n
t ), (A.10)

and Dm′ ∶= Dm(uv) for the respective m (i.e. (uv,m,Dm(uv)) is a pair of codeword and
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decoding set in C′(uv).) Then

sup
t∈T

e(C(v),W⊗n
t ) = sup

t∈T
1

M

M

∑
m=1

tr (Dm(v)⊥W⊗n
t (vm))

≤ sup
t∈T

1

M

M ′

∑
m=1

tr (D⊥m(uv)W⊗n
t (uv,m))

≤ M
′

M
sup
t∈T

e(C′(uv),W⊗n
t )

= M ′

M
min

u∈ϕ−1(v)
sup
t∈T

e(C′(uv),W⊗n
t ).

The last equality above is by our code definition from Eq. (A.10). To each u ∈ A(M)c, we assign
some valid (n,M)-code C(ϕ(u)) ∶= (v0,m,Dm)Mm=1 being of no further interest. Let V̂ = ϕ(U)
(which is not i.i.d. so far!), then C(V̂m,Dm(V̂ ))Mm=1 is a random constant composition (n,M)-
code with

E [sup
t∈T

e(C(V̂ ),W⊗n
t )] = ∑

v∈ϕ(A(M))
λnM

′(ϕ−1(v)) sup
t∈T

e(C(v),W⊗n
t )

+ ∑
v∈ϕ(A(M)c)

λnM
′(ϕ−1(v)) sup

t∈T
e(C(v),W⊗n

t )

< ∑
v∈ϕ(A(M))

λnM
′(ϕ−1(v)) sup

t∈T
e(C(v),W⊗n

t ) + τ

≤ M ′

M
∑

u∈A(M)
λnM

′(u) sup
t∈T

e(C′(u),W⊗n
t ) + τ

≤ M ′

M
E [sup

t∈T
e(C′(u),W⊗n

t )] + τ

≤ M
′

M
µ + τ.

Now, let V = (V1, . . . , VM) be a sequence of i.i.d. random variables each equidistributed on Tnλ .
And C(V ) ∶= (Vm,Dm(V ))Mm=1. It holds

M ′

M
E [sup

t∈T
e(C′(u),W⊗n

t )] ≤ M
′

M
E [sup

t∈T
e(C′(u),W⊗n

t )]

+ ∥π⊗MTn
λ
− λnM ′ ○ ϕ−1∥

1

< M ′

M
µ + 2τ.

Since

M ′

M
≤ 2

ϑ
(n + 1)∣X ∣,

we are done.
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A.2 Continuity bounds

For convenience of the reader, we state and prove several continuity properties of entropic quan-
tities. Most of them follow straightforwardly from the Alicki-Fannes bound [AF04] for von
Neumann entropies.

Theorem 73 ([AF04]). Let ρ, σ ∈ S(KA⊗KB) be states on KA⊗KB with ∥ρ−σ∥ ≤ ε. It holds

∣S(A∣B,ρ) − S(A∣B,σ)∣ ≤ 4ε log dimKA + 2h(ε),

where h(x) ∶= −x logx − (1 − x) log(1 − x) is the binary Shannon entropy of (x,1 − x).

The following bound is easily derived from Theorem 73.

Lemma 74. Let p, q ∈P(Y) be probability distributions with ∥p− q∥1 ≤ ε. For each cq-channel
V ∈ CQ(Y,K), it holds

∣χ(p, V ) − χ(q, V )∣ ≤ 6ε log dimK + 2h(ε).

Lemma 75. Let Q,Q′ ⊂ P(Y) be probability distributions with dH(Q,Q′) ≤ ε. For each set
V ⊂ CQ(Y,KB ⊗KE)

∣inf
q∈Q

( inf
V ∈V

χ(p, VB) − sup
V ∈V

χ(q, VE)) − inf
q∈Q′

( inf
V ∈V

χ(p, VB) − sup
V ∈V

χ(q, VE))∣

≤ 6ε log dimKBE + 4h(ε).

Lemma 76. Let I,J ⊂ Scqq(Y,KX) of cqq density matrices and dH(I,J) ≤ Γ, and with
stochastic matrices PU ∣Y ∶ Y →P(U) and PT ∣U ∶ U →P(T )

ρ̃ ∶= ∑
t∈T

∑
u∈U

∑
y∈Y

PT ∣U(t∣u)PU ∣Y (u∣y)p(y) ∣u⟩ ⟨u∣ ⊗ ∣t⟩ ⟨t∣ ⊗ V (y)

if

ρ ∶= ∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V (y).

Then, the inequalities

inf
ρ∈I

I(U ;X ∣T, ρ̃) ≥ inf
ρ∈J

I(U ;X ∣T, ρ̃) − 8∆ log(∣U∣ ⋅ dimK) − 6h(∆)

sup
ρ∈I

I(U ;X ∣T, ρ̃) ≤ sup
ρ∈J

I(U ;X ∣T, ρ̃) + 8∆ log(∣U∣ ⋅ dimK) + 6h(∆)

are valid.
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Proof. It holds for any two states ρ, σ ∈ Scqq(Y,KX)

∥ρ̃ − σ̃∥1 ≤ ∥ρ − σ∥1. (A.11)

Note, that for each cqq density matrix ρ, it holds

I(U ;X ∣T, ρ̃) = S(U ∣T, ρ̃) + S(X ∣T, ρ̃) − S(UX ∣ρ̃).

by definition of the quantum mutual information. If ρ, σ fulfill ∥ρ − σ∥1 ≤ δ, then

∣I(U ;X ∣T, ρ̃) − I(U ;X ∣T, σ̃)∣ ≤ 8δ log(∣U∣ ⋅ dimK) + 6h(δ) (A.12)

holds by (A.11) and application of Lemma 73. From (A.12) and the assumptions, we directly
infer the claims.

A.3 Proof of Eq. (5.61)

Let λ ∈ T̂ and p ∈ Pλ. We define for each q ∈ Pλ the set

IB(p,q) ∶=
⎧⎪⎪⎨⎪⎪⎩
∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ VB ∶ V ∈ Vq
⎫⎪⎪⎬⎪⎪⎭
.

Observe the relations

ÎBp,λ = ⋃
q∈Pλ

IB(p,q), and IBp = IB(p,p).

assume V ∈ Vp, V ′ ∈ Vq. It holds

XXXXXXXXXXX
∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V (y) − ∑
y∈Y

p(y) ∣y⟩ ⟨y∣ ⊗ V ′(y)
XXXXXXXXXXX1

= ∑
y∈Y

∥p(y)V (y) − p(y)V ′(y)∥1

≤ ∑
y∈Y

∥p(y)V (y) − q(y)V ′(y)∥1 + ∥p − q∥1,

from which we directly infer

dH(IBp ,I(p,q)) ≤ dH(IBp ,IBq ) + ∥p − q∥1.

Using these facts together with the first claim of Lemma 76, we obtain

inf
ρ∈Îp,λ

I(Uλ;B∣Tλ, ρ̃) = inf
σ∈ÎB

p,λ

I(Uλ;B∣Tλ, σ̃)

= inf
q∈Pλ

inf
σ∈IB(p,q)

I(Uλ;B∣Tλ, σ̃)

≥ inf
σ∈IBp

I(Uλ;B∣Tλ, σ̃) − 8∆ log(∣U∣ ⋅ dimKB) − 6h(∆)

= inf
ρ∈Ip

I(Uλ;B∣Tλ, ρ̃) − 8∆ log(∣U∣ ⋅ dimKB) − 6h(∆) (A.13)
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Applying a similar reasoning leads us to

sup
ρ∈Îp,λ

I(Uλ;E∣Tλ, ρ̃) ≤ sup
ρ∈Ip

I(Uλ;E∣Tλ, ρ̃) − 8∆ log(∣U∣ ⋅ dimKE) − 6h(∆). (A.14)

Combination of (A.13) and (A.14) for all p ∈ Pλ yields the desired bound

inf
ρ∈Îp,λ

I(Uλ;B∣Tλ, ρ̃) − sup
ρ∈Îp,λ

I(Uλ;E∣Tλ, ρ̃)

≥ inf
ρ∈Ip

I(Uλ;B∣Tλ, ρ̃) − sup
ρ∈Ip

I(Uλ;E∣Tλ, ρ̃) − 16∆ log(∣U∣ ⋅ dimKBE) − 12h(∆).

104



B Appendix B

B.1 Proof of the bound in Eq. (3.36)

Let η > 0 be fixed and p, q probability distributions on [d], such that

∣H(p) −H(q)∣ ≥ η (B.1)

holds. It is well known, that the Shannon entropy is uniformly continuous in the variation
distance (see e.g. [CK11]), it holds

∣H(p) −H(q)∣ ≤ f(∥p − q∥1) (B.2)

with a strictly monotonically increasing function f . Therefore, (B.1) and (B.2) lead to

0 < 2c3 ∶=
1

2 ln 2
f−1(η)2 ≤ 1

2 ln 2
∥p − q∥2

1 ≤D(p∣∣q), (B.3)

where the rightmost inequality is Pinsker’s inequality D(p∣∣q) ≥ 1
2 ln 2∥p − q∥

2
1. Since p and q

where arbitrary probability distributions on [d] with entropy distance bounded below by η, for
each i ∈ [N], the bound in (3.36) is valid for each i ∈ [N].
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