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Abstract

l. Abstract

Background: The ligand-activated transcription factor aryl rgchrbon receptor (AHR) induces
xenobiotic-metabolising enzymes such as cytochrBd®01 (CYP1) enzymes. CYP enzymes control
degradation and metabolism of environmental andg®aadous molecules. Besides this function, the
AHR is now increasingly recognised as an immunewtaithg factor. The activation of the AHR
impacts cytokine expression and differentiationnofmune cells. Several studies have indicated that
AHR regulates the dichotomous development of eitsappressive T regulatory T cells or
pro-inflammatory T helper (Th) 17 cells. It was ditahally demonstrated that AHR interacts with the
signal transducer and activator of transcriptiofBTAT1). STAT1 is a negative regulator of Th17
response. Autosomal dominant gain-of-function (G@#jtations in theSTAT1gene result in an
overactive STATL1 protein and are also reportedtese the chronic mucocutaneous candidiasis disease
(CMCD). CMCD patients are characterised by isolatéed recurrent infections with the fungus
Candida mostlyCandida albicansat mucosal tissues. To a large extent, theserathave an impaired
Th17 pathway with a reduced production of interlayK.)-17 and IL-22. One common feature among
various AHR ligands is the induction of IL-22. Pimys studies emphasised that the stem cell factor
receptor geneK(T) is also an AHR target in mice. Although AHR inmmanity is intensively studied,

to date the role of CYP1 metabolism in immunityuisclear. However, inhibition of CYP1 activity
provides a mechanism for AHR activation.

Objectives: The aim of this study was to investigate the éffet a CYP1-induced AHR activation in
human immune cells. Besides other target gene®ddia the AHR pathway, the Th17 cytokines IL-22
and IL-17, and the stem cell factor receptor (g-Kiere selected as immunological targets. In aoialjti
the immunological importance of this pharmacologiapproach of the AHR feedback loop was
confirmed using splenocytes froBypla2knockout mice. Furthermore, studies with periphblaod
mononuclear cells (PBMCs) from CMCD patients canéd the relevance of the AHR feedback loop
for IL-22 induction in these patients. A human immalcell screen for xenobiotic-metabolising enzymes
was performed to identify possible susceptible imenaell populations.

Methods: Activated human PBMCs from healthy donors werated with 1-(1-propynyl)-pyrene
(1-PP), a suicide inhibitor for CYP1 in the preseraf a low concentration of the AHR agonist
6-formylindolo[3,2b]carbazole (FICZ) alone or in combination with thiR antagonist CH-223191.
PBMCs from CMCD patients were additionally treatdth a high FICZ concentration. Cytokin€YP
and c-Kit expression levels were analysed by qtaive real time-polymerase chain reaction
(QRT-PCR), enzyme-linked immunosorbent assay (ENLI&#d flow cytometry (FACS). Viability and
proliferation were analysed by flow cytometry, Etetdehydrogenase (LDH) activity atttithymidine
assay. The presence of xenobiotic-metabolising raagyin different human immune cells was

determined by qRT-PCR arrays.
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Results: Inhibition of CYP1 activity elevated c-Kit, IL-22nd CYP expression levels in activated
PBMCs from healthy subjects. The addition of theRABhtagonist CH-223191 reversed these effects.
Contrary to this, IL-17 was down-regulated by CYRYibition and induced by the AHR antagonist. In
particular, human T cells responded to CYPL1 inkibitvith an up-regulation of c-Kit. IL-22 and c-Kit
were simultaneously induced in Th cells. Additidpatorrelation analyses demonstrated DEP1AL
transcription was negatively, an@YP1B1 transcription was positively correlated witAHR
transcription in PBMCs from healthy individuals. ®Bs from CMCD patients additionally increased
c-Kit and IL-22 after co-treatment with 1-PP an€@Elcompared with single treatments. Both Th and
cytotoxic T cells (Tc) from CMCD patients showesteonger c-Kiinduction than T cells from healthy
subjects during CYPL1 inhibition and in the treatisewith a high FICZ concentration. Moreover,
activated splenocytes fro@ypla2knockout mice had a higher percentage of IE-2&lls than wild
type mice upon AHR activation and in control treants. Furthermore, gene transcription analyses of
various human immune cells demonstrated that majorune cell subpopulations can be clustered
according to their CYP expression. Genes encodenpbiotic-metabolising enzymes fingerprinted
human monocytes, Th cells, memory Th cells, Tis@eid B cells, human primary foreskin mast cells
and basophils. However, 17 of the studied genes wanscribed in nearly all investigated immune
cells.

Conclusion: The classical role of the AHR is to control CYPI1dasther xenobiotic-metabolising
enzymes. The function of AHR in the immune systea® Ibeen recently discovered. This thesis focused
on AHR-regulated CYP1 enzymes in human immune .cEéN¥$1-mediated AHR activation is active in
a range of cultured human immune cells as detdotedtivated PBMCs from healthy subjects and
CMCD patients. These findings provide mechanisms fb-22 and c-Kit induction by
xenobiotic-metabolising enzymes. Although c-Kit dbe22 were induced by CYP1 inhibition both are
probably differently regulated by the AHR. ExperimtgewithCypla2knockout mice support the results
of a CYP1-dependent IL-22 regulation and a functb€YP in immunity. Although human immune
cell subtypes are equipped with a basic profil@robiotic-metabolising enzymes, each subpopulatio
possesses an additional specific CYP pattern. gleetsve CYP expression in various populationsshint

at cell type-specific functions of these enzymes.
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Introduction

1 Introduction

1.1. Aryl hydrocarbon receptor (AHR)
1.1.1. AHR activation

The aryl hydrocarbon receptor (AHR) is a ligandaated transcription factor mostly investigated in
the context of environmentally induced xenobiotietabolism (Nebert et al., 1993). The AHR is
sequestered prior to ligand activation in a cytiogafotein complex formed by the heat shock protein
90, p23 and by the AHR-interacting protein (AIPa(@er and Bradfield, 1997; Kazlauskas et al., 1999;
Meyer et al., 1998; Perdew, 1988; Soshilov and &mni2011). AHR can be activated by various
ligands, however, ligand-independent pathways e described (Denison and Nagy, 2003; Denison
et al., 2011; Hu et al., 2007). Ligand-binding esqg®the nuclear localisation sequence and triggers
translocation of the AHR into the nucleus, wherdiiids to its partner AHR nuclear translocator
(ARNT) in the canonical AHR pathway (Reyes et 8992; Soshilov and Denison, 2011; Whitelaw et
al., 1993). Both AHR and ARNT belong to the bastixiloop-helix (bHLH)/Per-ARNT-Sim (PAS)
transcription factors. PAS proteins contain chanastic domains for sensing environmental stressors
such as light, toxicants or oxygen (Burbach et1&92; Ema et al., 1994; Ema et al., 1992; Gu.¢t al
2000; Kewley et al., 2004; Mcintosh et al., 2010).

FICZ

cell membrane

metabolites
O 0-
&

cytosol

ucleus !" — e
XRE

cytochrome P450

Figure 1. Induction and components of the canonic@dHR pathway

AHR: Aryl hydrocarbon receptor, HSP90: Heat shocktgn 90, p23: co-chaperone, AIP: AHR-interactingten,
(chaperone), ARNT: Aryl hydrocarbon receptor nuclganslocator, CYP: Cytochrome P450, XRE: Xenobiotisponse
element. FICZ: AHR agonist. Adapted from Stockingesle 2014.
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As a heterodimer AHR and ARNT directly activate abiotic response elements (XRESs)
(Bacsi et al., 1995; Whitelaw et al., 1993) witle ttonsensus sequence 5-TnGCGTG-3" upstream of
diverse genes (Fujisawa-Sehara et al., 1987). Tdeses include the commonly accepted AHR gene
battery with cytochrome P450 (CYP) family 1 subfgnfi member 1 CYP1A), CYP1A2 CYP1B1

and NAD(P)H dehydrogenase quinondNQO1) (Favreau and Pickett, 1991; Jaiswal, 1991; Koshiya

et al., 1996; Ma, 2001; Nebert et al., 2004; Nebed Jones, 1989; Whitelaw et al., 1993).

1.1.2. Exogenous and endogenous AHR ligands

Over many decades environmental toxins have beenntbst studied AHR ligands, because of
AHR-mediated toxic effects (Dragan and Schrenk(020Bersistent environmentally and ubiquitously
occurring planar contaminants such as polycyclmmatic hydrocarbons (PAHSs), polychlorinated
biphenyls (PCBs) and halogenated aromatic hydrocarfHAHS) contain high affinity AHR agonists
(Jones and Anderson, 1999; Kafafi et al., 1993#afkat al., 1993b; Kafafi et al., 1993c; Mason949
Nebert and Dalton, 2006; Nebert et al., 2004; &tllal.,, 1999). Moreover, plant-derived dietary
chemicals such as flavonoids and indoles, or emdigbi including heme metabolites, bilirubin,
eicosanoids or tryptophan metabolites such as réylandolo[3,2-b]carbazole (FICZ) potentially
trigger AHR (Chiaro et al., 2008; Denison and Na2903; DiNatale et al., 2010; Nebert and Karp,
2008; Nguyen and Bradfield, 2008; Opitz et al., PAchaldach et al., 1999; Song, 2002). Additignall
certain pharmaceuticals are also described as Ag#iRds (O'Donnell et al., 2010; Prud’homme et al.,

2010).

O
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) | O ) “ O O O
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H

2,3,7,8-Tetrachlorodibenzpara- BenzoR]pyrene, PAH, 6-Formylindolo[3,2-b]carbazole,
dioxin (TCDD), HAH, exogenous exogenous (FICZ), endogenous
OH OH NH, 0O
X COOH O. OH OCH;
| "
7 Y ~ OCH; o
OH o HaN
OH
Lipoxin A4, endogenous Tranilast, drug, exogenous Kynurenine, endogenous

Figure 2. Exogenous and endogenous AHR agonists
Denison and Nagy, 2003; Prud'homme et al., 2010



Introduction

1.2. Cellular and physiological functions of the AHR

AHR was initially considered to regulate the breakd of lipophilic, exogenous molecules
(xenobiotics) and was studied to a large extenhénfield of toxicology (Nebert, 1989; Nebert et al
1993; Poland and Knutson, 1982). The receptor gblfiiexpressed in the liver and barrier organs
(Dolwick et al., 1993; Li et al., 1994). Toxicity texogenous compounds is partially mediated by
oxidative stress, genotoxic and proteinotoxic @éffeand is manifested in diverse organs and maltipl
cancers (Nebert, 1989; Nebert and Dalton, 2006eNedi al., 2004). The toxicity of AHR ligands in
humans is involuntary well documented and humadiatuexist (Baccarelli et al., 2002; Consonni et
al., 2008; Landi et al., 2003; Saurat et al., 2@tk and Suskind, 1980). Various AHR-deficient s®u
strains have been generated to study the physialbfiinctions of the AHR. The three mostly used
AHR knockout strains are resistant against 2,3gy&chlorodibenzpara-dioxin (TCDD)-induced
toxicity. Abnormal phenotypes of these strains @raracterised by different as well as by common
physiological changes such as increased infertilédgguced induction of xenobiotic genes and growth
retardation (Esser, 2009; Gonzalez and Fernandge3a, 1998; Mimura et al., 1997; Schmidt et al.,
1996). That AHR has important physiological funndbesides mediating adverse effects, is further
supported by the conserved expression of this drgpt®n factor among various species (Gasiewicz
and Rucci, 1984; Hahn, 2002). AHR is involved iwedlse cellular pathways by influencing cell cycle
regulation, proliferation and chromatin structuaed by interacting with various other transcription
factors (Ahmed et al., 2009; Beischlag and Per@®@5; Kalmes et al., 2011; Kim et al., 2000; Kallur
et al., 1999; Marlowe and Puga, 2005; Ohtake £2@03; Pang et al., 2008; Puga et al., 2009; Rdy a
Swanson, 2003; Schnekenburger et al., 2007; Ti@A9;2Tian et al., 1999; Vogel et al., 2007).
Biochemical pathways are modified by integratiomlAdfR in second messenger signalling cascades,
and by controlling of the oxidative status of al ¢ktough the expression of genes involved in the
xenobiotic metabolism (Kung et al., 2009; Matsum@@09; Miao et al., 2005; N'Diaye et al., 2006;
Nebert et al., 1993; Sciullo et al., 2009; Sentilet2002; Zhou et al., 2013).

1.3. AHR in immunity

The main goals of immunity are to limit expansiomdo succeed in eliminating potentially harmful
substances such as viruses, bacteria, fungi, pesasi transformed cells. Extremely specialised and
complex mechanisms that supplement primitive defeadready found in plants, have emerged in
higher vertebrates. In humans, two mechanismsresfdo as innate and aquired/adaptive immunity
mirror adaption to environmental complexities. Tdwoperation between both systems enables the
optimal protection of the organism against the plaifical environment (Flajnik and Du Pasquier,
2004; Fritig et al., 1998; Janeway and Medzhit®02 Litman et al., 2010; Medzhitov and Janeway,
1998; Pancer and Cooper, 2006; Yuan et al., 2014)
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In recent years, the focus in AHR research has beeting from the toxicological to the endogenous
functions, and an increasing number of studies examAHR effects on the immune system (Apetoh
et al., 2010; Quintana et al., 2008; Quintana.e28l0; Veldhoen et al., 2008). Initial studiesgicted
that AHR over-activation by TCDD leads to immungstgssive effects. These findings are encouraged
by thymic involution, atrophy of lymphoid organsdaty reduced numbers of thymocytes and
lymphocytes upon TCDD exposure (Funatake et alg52Molsapple et al., 1991; Marshall and
Kerkvliet, 2010; Staples et al., 1998). AHR-bindisites are detected in many immunological genes
such as cytokines, lineage-defining transcripti@ttdrs, signal transducers and activators of
transcription (STATS) and innate receptors (Freyriekal., 2007; Sun et al., 2004). Hematopoietimst
cells, leukemic cells and most cells of the inretd adaptive immunity express AHR. Naive T cells
are described with a low AHR expression but thepear is induced at various intensities in distinct
immune cell subtypes (Esser and Rannug, 2015; Mattal., 2009; Pabst et al., 2014; Platzer et al.,
2009; Singh et al., 2009; Singh et al., 2011; Vekihet al., 2008).

1.3.1. AHR in hematopoietic progenitor cells

Hematopoietic stem cells (HSCs) are the precursérblood cells and the bone marrow forms
microenvironmental niches for initiating quiescersaf-renewal, survival and differentiation in skee
cells (lvanovic et al., 2004; Metcalf, 2007; Parraaal., 2007; Scadden, 2006; Yahata et al., 2008).
hypoxic niches, HSCs display a high expressionhef dxygen sensor hypoxia-inducible facter 1
(HIF1a) (Simsek et al., 2010b.ow oxygen levels stabilise HIland together with the AHR-binding
partner ARNT, also referred to HIB1HIF1a induces genes containing hypoxia responsive elsmen
(HRES) (Bacsi et al., 1995; Salceda and Caro, 1898hger et al., 2005). HIlkLARNT and AHR all
belong to the PAS protein family that are cellidansors for environmental stressors including oxyge
(Burbach et al., 1992; Ema et al., 1994; Ema 18D2; Gu et al., 2000; Kewley et al., 2004; Mosit

et al., 2010; Wang et al., 1995¢veral studies investigated the interaction of Ad#d HIFx and the
function of ARNT (Gassmann et al., 1997; Tomitalet2000; Vorrink and Domann, 2014).

Recent studies also emphasised that the stemac#dr freceptor gen&(T) is an AHR target in mice
(Kadow et al., 2011; Kiss et al., 2011). The recepgrosine kinase, cellular (c)-Kit, is importeot
driving survival and division of bone marrow-deriveematopoietic stem cells (HSC). While c-Kit
expression on progenitor cells is necessary fanstamed immune cell progression, the receptor is
down-regulated in most immune cell populations miyirlineage commitment. c-Kit provides the
response to the stem cell factor (SCF) and itdsatly related to other growth factor receptors aagh
platelet-derived growth factor receptor or the moefor the macrophage colony-stimulating factor 1
(Ashman et al., 1991; Blechman et al., 1993; Hwetral., 1990; Nocka et al., 1990; Ogawa et al. 1199
Qiu et al., 1988; Williams et al., 1990; Yarderakt 1987; Zsebo et al., 1990).
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Certain differentiated cells have kept or retaicdgit expression. Thus, c-Kit is expressed on mast
cells,yd T cells, eosinophils, on subpopulations of inatephoid cells (ILCs) (including natural killer
(NK) cells) and on non-hematopoietic cells (sucmatanocytes) (Kadow et al., 2011; Kirshenbaum et
al., 1999; Kiss et al., 2011; Matos et al., 199BitsSand Di Santo, 2011; Yoshida et al., 2001).
Furthermore, HSCs from AHR knockout mice displajoss of quiescence that is accompanied by
premature aging and exhaustion. In accordance thigse results, inhibition of AHR by AHR
antagonists favours hematopoietic stem cell expanéBoitano et al., 2010; Casado et al., 2010;
Gasiewicz et al., 2014 ; Gasiewicz et al., 201@Ga8at al., 2003; Singh et al., 2014; Singh et20Q9;
Singh et al., 2011).

‘ Innate Lymphoid Cells;y— Naive Th Cells,
AHR I Th1/Th2 Cells |
Ci Ly hoid
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/ T Plasma Cells —— Th17 Cellst
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AHR %00
Granulocyte-Macrophage o)
— Progenitor 0/ (0]
Hematopoietic Stem Cells Hematopoietic Stem Cells Hemat‘opoietic \ AH R Mast Cells
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(HPC)
S
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Figure 3. Overview of AHR, c-Kit and HIF1a expressions in the hematopoietic system

AHR: Aryl hydrocarbon receptor, HSC: Hematopoietienstcells, HPC: Hematopoietic progenitor cells, Llimeage, Sca:
Stem cell antigen, Kit: Receptor tyrosine kinasl=IA\: Hypoxia-inducible factor d. Red arrows indicate AHR expression.
Adapted from Esser and Rannug, 2015; Lindsey andRsgkis, 2012; Singh et al., 2009.
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1.3.2. AHR in innate immunity

The innate immunity starts within minutes afternoatens penetrate body’s surface tissues and sets th
first line of defence by controlling spreading bétpathogen. Besides epithelial or endotheliabgcell
which also facilitate the first defence, tissuadest sentinel cells such as macrophages, dendelis
(DCs) or mast cells establish a surface tissuesnyidg immune cell network. Granulocytes are fast
acting innate cell types supporting DCs and maagph at infected tissues by activating scavanger
functions and exudation of granules. Accordinghi® ¢ontent of their granules, granulocytes could be
discriminated in basophilic, eosinophilic and nephilic granulocytes. Neutrophilic granulocytes are
an essential cell type of the acute inflammatidmeyi curtail infections and spreading of pathoggns b
diverse mechanisms controlling innate and adativeunity (Abraham and Arock, 1998; Geering et
al., 2013; Mantovani et al., 2011; Nowarski et2013). A further innate mechanism, which drives th
assembling of pore forming proteins in the pathGgemembrane, is the complement system that results
in the lysis and killing of the pathogen (Medzhitvd Janeway, 2000; Tomlinson, 1993; Wang et al.,
2000). While most innate cell populations such @sglocytes, monocytes and macrophages emerge
from myeloid progenitor cells (Akashi et al., 20@Eissmann et al., 2010), the recently describeate
lymphoid cells (ILCs) lack adaptive properties asdist epithelial and sentinel cells at body” sem@s.
ILCs emerge as a heterogeneous group of lymphadgiesng myeloid surface markers and specific
recombined antigen receptors. On the basis of oytobxpression and presumed master transcription
factors, ILCs are attempted to be classified inftegknt groups similar to the adaptive immunity’s
lymphocytes (Spits and Cupedo, 2012; Spits andabDics 2011). In parallel with the effective boraderi

and elimination of the pathogen at local siteqrimfation about non-host invaders is transportetd¢o
proximate lymph nodes by antigen-presenting DCss B@@lge innate and adaptive immunity by direct
cell-cell interactions with T cells. They permargnéncounter extracellular molecules that are
processed for optimal presentation on major histyratibility complexes (MHC) during DCs’
migration to the lymph node. In these organs, Dsract with lymphocytes, the effector cells of the
adaptive immunity. DCs process and present molsaulest efficient and are the principal antigen-
presenting cells (APCs), although additional ogies such as monocytes/macrophages and B cells are
also referred to as APCs (Banchereau and Steinb¥®8; Guermonprez et al., 2002; Medzhitov and
Janeway, 2000).
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1.3.2.1. AHR in skin epithelial cells

Epithelial boundary tissues are exposed to variemgronmental stressors including xenobiotics.
Simultaneously, these tissues form body’s firsteé lines. AHR is highly expressed in barrier osga
and it is well studied in skin, gut and lung epilithlecells (Dolwick et al., 1993; Li et al., 1998wanson,
2004). Ultraviolet (UV) light is supposed to triggbe formation of the endogenous AHR ligand FICZ
in the skin and FICZ could act as photosensitizemidiating UV response (Fritsche et al., 2007; Jux
et al., 2011; Park et al., 2015; Schallreuter e8l12; Syed and Mukhtar, 2015). Several obsemsti
demonstrated that AHR is an important factor fon &larrier formation by regulating the expressién o
structural proteins important for keratinocyte éiéntiation (Esser et al., 2013; Jones and Reih@€3,,;
Ray and Swanson, 2003; van den Bogaard et al.,)20h& most prominent example supporting a
function of the AHR pathway in the skin is the istlan of chloracne by constitutive AHR activation
with TCDD (Saurat et al., 2012).

1.3.2.2. AHR in antigen-presenting cells

AHR appears to have anti-inflammatory and immurgedaory functions in antigen-presenting cells.
The production of pro-inflammatory cytokines upanate receptor activation and the initiation of the
adaptive immune response make these cells to iamtdrhmunological translators for environmental
information. Following innate receptor activatioRHR is up-regulated and AHR knockout mice
produce higher levels of pro-inflammatory cytokiriean wild type mice (Kimura et al., 2009; Nguyen
et al., 2010). Additionally, AHR activation by TCDiacilitates the formation of tolerogenic DCs and
thereby the generation of T regulatory (Treg) Ts;elvhereas it suppresses the differentiation of
inflammatory T helper (Th) 17. By AHR activation(CB induce indoleamine 2,3-dioxygenase (IDO)
that metabolises tryptophan to the endogenous AgRdl kynurenine (DiNatale et al., 2010; Mezrich
et al., 2010; Nguyen et al., 2010; Vogel et alQ&0However, kynurenine and FICZ, which are both
tryptophan derivatives and AHR ligands, differeratffect Treg generation. For this reason, diffeesnc
in the metabolism of both ligands have been hymitee (Mezrich et al., 2010; Opitz et al., 2011,
Rannug et al., 1987; Wei et al., 1998).
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1.3.2.3. AHR in granulocytes and mast cells

Granulocytes and mast cells are important effecetlis in innate immunity. Although murine and
human mast cells highly express AHR (Sibilano et a012), AHR is down-regulated during
granulocyte differentiation or detected as rapidibgraded upon ligand bindintn single exposure
experiments, AHR ligation aggravates allergic rieastwith production of pro-inflammatory mediators
in mast cells (Platzer et al., 2009; Sibilano et 2012; Zhou et al., 2013). However, exposure to
cigarette smoke, a source of highy concentrated Aigahds, reduces c-Kit and the high affinity
immunoglobulin E (IgE) receptor (ER1) on mast cells and attenuates the productigratllergic
cytokines (Givi et al., 2013). As the c-Kit recepan essential mast cell survival factor andabied

by the AHR, AHR knockout mice display a reduced bemof mast cells and an impaired c-Kit
expression. These results imply an important fematif AHR for mast cell homeostasis (Kadow et al.,
2011; Kiss et al., 2011; Zhou et al., 2013).

1.3.3. AHR in adaptive immunity

The adaptive immunity forms the second line of deéewith a time-delayed response to pathogens.
Adaptive immune system’s cell types originate fdgmphoid progenitor cells, which mature in the
bone marrow or the thymus. In the secondary lymplogans, migrated DCs from the body’s surface
trigger the differentiation of naive lymphocytedhigh have not yet been in contact with an antigen,
into mature lymphocytes with effector functionsnéing of antigen loaded MHC molecules to highly
variable and specific T cell receptors (TCRs) aivaal cells provides the first signal for activatin

T cells (Itano and Jenkins, 2003; Pancer and Cod@06). The specificity of adaptive antigen
receptors is also found for native, soluble andowmid antigens recognised by B lymphocytes with the
membrane-bound B cell receptor (BCR) or the segrietenunoglobulins (Igs). Simultaneously, CD28,
a co-stimulating receptor on T cells binds to BD80/CD86) molecules on APCs and further activate
T cells (Banchereau and Steinman, 1998; Lenschaal.,e1996; Linsley and Ledbetter, 1998he
specific antigen recognition by the highly variabled randomly generated domains of BCR and TCR
is one important difference between innate and tagapnmunity. Additionally, the generation of an
immunological memory at both T cell and B cell Ieigeconsidered to be one prominent achievement
of the adaptive immune system. Memory lymphocytesdirectly activated by lower antigen doses.
They retain effector functions and provide an imragd adaptive immune response to previously
available antigens (Gellert, 2002; Gourley et2004; Lanzavecchia and Sallusto, 2009; Rogers,et al
2000; Venturi et al., 2013).
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According to the route of infection and the effedtonctions, T cells could be roughly grouped itvio
distinct subpopulations; CD4T helper (Th) cells or CD&ytotoxic T cells (Tc). Th cells mostly
recognise extracellular, phagocytosed antigenepted on MHC class Il (MHC-II) whereas Tc cells
are restricted to antigens derived from intracaliyproteins presented on MHC class | (MHC-I)
molecules. MHC-I molecules are ubiquitously expeessn nucleated cells whereas APCs express
MHC-1 and MHC-II for optimal antigen presentation €D4" and CD8 T cells (Germain, 1994;
Guermonprez et al., 2002; Villadangos, 2001). Tiscsonstantly screen host cells for altered or
infected phenotypes and they provide killing medéras that eliminate transformed or viral infected
cells. Compared with Tc cells, Th cells suppod an-ordinate innate and adaptive immune cells and
are important facilitators for the immunoglobulilags switch in B cells. Diverse subpopulations of
effector Th cells are raising from unprimed, nalVecells after antigen recognition in the secondary
lymphoid organs and are classified based on thi#@rentiation factors, signature cytokines, eftect

functions and the expression of associated line@f@ing transcription factors (Abbas et al., 2012;

Murphy et al., 2009; Zhou et al., 2009).
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Figure 4. Classification of effector CD4 T helper (Th) cells

T helper (Th) subpopulations are mapped accordiriggir cytokine profile and transcription factopeession. Adapted
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Introduction

1.3.3.1. AHR and CD4 effector T cells: AHR in Thl and Th2 immunity

An imbalance of Thl and Th2 cells is classicallggidered as the general mechanism underlying atopic
diseases such as atopic dermatitis and allergyZdtalta et al., 2000). The dichotomous classiftrati

of Th cell populations in Thl and Th2 cells wastfir introduced by Mosmann and Coffman in 1989
(Mosmann and Coffman, 1989). Differentiation oftbstibtypes is characterised by a cross-regulated
inverse relationship. Thus, Th1 cytokines can sespiTh2 whereas the Th2 cytokines attenuate Thl
response (Mazzarella et al., 2000).

Traffic-related particulate matters (PM) from urlzeas are a source of PAHSs that are potent inslucer
of the AHR pathway. AHR is considered with a negigexpression in Thl and Th2 cells, however,
diesel exhaust particles (DEPs) and several PAHEI@xt as adjuvant factors in allergy by promoting
IgE production and Th2 response to supplied allesdeleo et al., 2001; Huang et al., 2015; Lubitz et
al., 2009; Miller et al., 2010; Miller and Pede®12; Schober et al., 2007; Xia et al., 2015). Recen
findings imply that a DEP-dependent AHR activatioantigen-presenting cells up-regulates promoters
of Th cell differentiation and augments allergioay inflammation (Xia et al., 2015). However, diang
AHR agonists seem to have anti-allergic functionsurine allergy models (Schulz et al., 2012; Szhul
et al.,, 2011). The activation of the AHR by a swtith AHR agonist suppresses Th2 immunity by
skewing Th1/Th2 balance towards Th1l differentiatibtorales et al., 2008; Negishi et al., 2005). In
agreement with thisAHR-deficient mice showed elevated levels of th Thtokine IL-5 and of IgE
(Lawrence et al., 2008; Negishi et al., 2005). Wienendogenous AHR ligand FICZ is presdunting
ovalbumine sensitisation in mice, it reduces th2 fiésponse at both cellular and cytokine levelr{d@eo

et al., 2012). The function of AHR activation, dgiallergy particularly in humans and in conceitwi
PM or DEPs has not yet been studied in detail.

1.3.3.2. AHR and CD4 effector T cells: AHR in T regulatory T cells, Thaid Th22 cells

Several studies have reported that AHR regulates dithotomous development of either
pro-inflammatory Th17 cells or suppressive Tredsd@petoh et al., 2010; Bettelli et al., 2006; @hn

et al., 2010; Quintana et al., 2008; Quintana et28l10; Veldhoen et al., 2008). Th17 cells provide
benefits against extracellular pathogens mainiLby7-dependent recruitment of neutrophils and the
induction of antimicrobial peptidgsaan et al., 1999; Liang et al., 2006). Despitehig, Th17 cells
are implicated in a variety of autoimmune diseaggsh as collagen-induced arthritis, experimental
autoimmune encephalomyelitis (EAE) and inflammatmowel diseases (Lubberts et al., 2004; Reboldi
et al., 2009; Stumhofer et al., 2006). On the @wirTreg cells control innate and adaptive immunit
by attenuating effector T cell response and inflatiom (Sakaguchi, 2004). The largest subset of Treg
cells are natural Treg (nTreg) cells that maturd gain their suppressive function in the thymus

(Baecher-Allan et al., 2001). nTreg cells are suigub by peripherally induced Trdglreg) that
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originate from naive T cells by the transformingwth factor (TGF{3) in extra-thymic organs.
Common features among these cell types are theigtiod of IL-10 and TG and the expression of
the transcription factor forkhead box P3 (FoXp38Bettelli et al., 2007; Chen et al., 2003; Saldd,
2004). Currently, other diverse cell types shaauiees with nTreg and iTreg cells. Here, Foxp3
IL-10-producing type 1 Treg cells (Trl), CD&reg and IL-17-producing Treg could be noted
(Cvetanovich and Hafler, 2010; Jager and Kuchr6@02 Sakaguchi et al., 2010; Zhang et al., 2014).
In mice, the metabolically instable AHR ligand FlQateferentially induces IL-17-producing
pro-inflammatory Th17 cells and exacerbation of EAE murine model for T cell-dependent
autoimmune inflammation (Veldhoen et al., 2008)ntCary, the metabolically inert TCDD tends to
favour FoxP3 Treg cells and thereby represses EAE. Here, mitadiabilities and specific affinities

of AHR agonists are supposed to be responsibldif@rse ligand-dependent outcomes in Th17 and
Treg differentiation (Apetoh et al., 2010; Gandhak, 2010; Quintana et al., 2008). However, t@ivh
extent FICZ or TCDD shifts the critical developmaiteither Treg subtypes or Th17 cells is still
controversial. Recent studies considering the rofitexposure and the absolute numbers of Th17 or
Treg cells do not entirely agree with these reseaesults (Chmill et al., 2010; Duarte et al., 2013
Furthermore, Gagliani et al. showed that activatibthe AHR by FICZ could transdifferentiate Th17
cells into Trl cells (Gagliani et al., 2015).

Previously, Kimura et al. supposed an underlyingtmaaism for AHR-driven Th17 differentiation in
mice (Kimura et al.,, 2009; Kimura et al., 2008).eThctivation of the AHR facilitates Th17
differentiation by suppressing the negative regulaignal transducer and activator of transcription
(STAT1). The authors hypothesised that AHR interadth STAT1 during murine Th17 differentiation
and thus AHR-dependent STAT1 inhibition favours Thgvelopment (Harrington et al., 2005; Kimura
et al., 2008; Stumhofer et al., 2006; Wei et ab0?). One human disease that is associated with
mutations in th&TAT1gene, and with an impaired Th17 cytokine produdsansubtype of the chronic
mucocutaneous candidiasis (CMC) (Liu et al., 20R@gl et al., 2011; Puel et al., 2012). CMC
determines a rare, heterogeneous group of syndratiesliverse underlying immune defects. CMC
patients suffer from an impaired mucosal host dedegigainst the in healthy individuals commensal
fungusCandidg mostlyCandida albicansand they are characterised by recurrent or chiofections

of skin, nails and mucosal tissues (Eyerich et24110; Kirkpatrick, 2001). CMC could occur as an
associated disease to primary or secondary immdicteies or accompanies infectious diseases.
However, it can also occur without any other deficies as an isolated disea&khough the common
underlying mechanisms of CMC are unclear in deitaékeasing numbers of studies demonstrated that
an impaired Th17 pathway is partly predisposing@MC (Eyerich et al., 2008; Kisand et al., 2011;
Marddi et al., 2012; Ng et al., 2010; Puel et2011; Puel et al., 2012; Puel et al., 2010). Varioborn
errors in theSTAT1gene result in an overactive STAT1 protein andreperted as one cause for the
isolated form of CMC that is referred to as CMCedise (CMCD). STAT1 is an important negative
regulator of the Th17 pathway and several laboiegdrave analysed the coding regiorS@AT 1for

sequence variations in CMCD patients. Autosomalidant heterozygous mutations, predominantly
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located in the coiled-coil domain of tiS8AT1gene, could result in an overactive STAT1 protkie

to an impaired nuclear dephosphorylation (Boissopis et al., 2012; Harrington et al., 2005; Liu et
al., 2011; Soltész et al., 2013; van de Veerdord.e2011; Wei et al., 2007; Yamazaki et al., 2014
At present, 22 amino acid changes in the coilet@minain and 10 in the DNA-binding domain of
STATlare described for leading to gain-of-function (GQ@kutations (Yamazaki et al., 2014). To a
large extent CMCD patients display a decreased Elidkine production. Therefore, CMCD patients
with STAT1GOF mutations provide a human model for an impalitel 7 cytokine regulation including
IL-22 (Liu et al., 2011; Puel et al., 2011; Puehkt 2012).

One common feature of various AHR ligands is thlduation of IL-22 in T cells (Trifari et al., 2009;
Veldhoen et al., 2009; Veldhoen et al., 2008). at#vation of the AHR in humans, contrary to mice,
facilitates the exclusive up-regulation of IL-22Réut induction of IL-17A and IFN-(Brembilla et al.,
2011; Trifari et al., 2009). These results implgttAHR could be one transcription factor importzmt
human Th22 cells and for the regulation of IL-2B27Z cells are a newly described Th cell subtype tha
specifically express IL-22 (Duhen et al., 2009; gfe et al., 2009; Trifari et al., 2009). Accorditm
the microenvironmental cytokines, IL-22 has proawoti-inflammatory properties (Besnard et al., 2011
Liang et al., 2006; Sonnenberg et al., 2010). &égkin, IL-22 and Th22 cells are essential factors
skin homeostasis and regulate epithelial barriections and host defence. The cytokine supports the
innate defence mechanisms by induction of antinmialgeptides in epithelial cells (Duhen et al.020
Eyerich et al., 2009; Liang et al., 2006; Wolk let2004; Wolk et al., 2006). IL-22 is producedrbgny
innate and adaptive lymphocytes such as Th22, Tya17,cells and ILCs (Colonna, 2009; Martin et
al., 2009; Spits and Di Santo, 2011; Trifari ef 2009; Witte et al., 2010). THe22 gene is clustered
within a conserved genomic region together with th26 and thelFNy genes on the human
chromosome 12g14-15 (Dumoutier et al., 2000a; Garad., 2002). The cytokine belongs to the family
of IL-10-related cytokines and its biological fuiset is mediated through binding to the
IL-10R2/IL-22R1 receptor chains mainly expressedissue cells (Dumoutier et al., 2000b; Kotenko
et al., 2001; Wolk et al., 2004; Xie et al., 2008though it has been shown that IL-22 suppleméonat
restores epithelial defence agai@sindidainfections in synergy with the tumor necrosis faeitpha
(TNF-a) in human keratinocytes (Eyerich et al., 2011¢, uhderstanding of AHR-STAT1 interactions
in regulating IL-22 and other Thl7-associated ciyte& in CMCD is rudimentary at present.
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1.3.3.3. AHR in B cells

B cells are the exclusive cell type that producemimoglobulins (Igs) in the immune system. Igs are
key components of the humoral adaptive immunitynideane located Igs form the highly variable
antigen receptors on B cells that are specifisfduble and unbound antigens. As APCs, B cellsgmtes
antigens on MHC-II molecules and are activated hyc@lls. Interaction with Th cells initates B cell
differentiation into Ig-producing plasma cells. Gkines that are present during B cell activatioit@dw

Ig gene expression from initially or 6 gene expression @ y or . This changes the constant region
of Igs and the accompanied effector functions (Abbiaal., 2012; Litman et al., 2010; Murphy et al.,
2009; Singer and Hodes, 1983; Wall and Kuehl, 1983)

Several studies demonstrated an immunosuppressietidn of AHR activation in B cells. The
synthetic AHR agonist TCDD suppresses B cell déiftiation, IgM and IgA syntheses and a natural
occuringAHR agonist represses IgM, 1gG and IgE producti@eAbrew et al., 2010; Kinoshita et al.,
2006; Lu et al., 2010; Sulentic et al., 1998; Ydshét al., 2012; Zhang et al., 2013). Noteworthg, t
Th2 cytokine IL-4 induces AHR expression in B céllanaka et al., 2005).

1.4. AHR and the xenobiotic-metabolising system

1.4.1. The xenobiotic-metabolising enzyme (XME) system

Xenobiotic-metabolising enzymes (XMESs) facilitategdadation and excretion of lipohilic exogenous
(xenobiotics) and endogenous (endobiotics) molecutestly by the induction of ligand-activated
transcription factors (Kéhle and Bock, 2009; Omieki et al., 2011; Tompkins and Wallace, 2007).
The purpose of the xenobiotic metabolism is to gedipophilic molecules into more polar, hydroptili
compounds that can be eliminated by the kidney €B,t2008). The metabolism of lipophilic
xenobiotics was initially considered as a biphasaction, however, today it is roughly separated in
three phases (Ishikawa, 1992; Williams, 1971). 8ates oxygenation by CYP enzymes increases
xenobiotic’s reactivity in the first phase (phaseClYP enzymes create a reactive site in an otlserwi
chemically indifferent molecule, to which very hgghilic moieties can be attached in the secondghas
(phase 11). During CYP-dependent phase | reactieastive or toxic intermediates can lead to callula
dysfunctions and carcinogenic effects (Buters, 2@8ngerich, 1992, 2005, 2006; Nebert and Dalton,
2006; Williams, 1971). For detoxification of thaagermediates, phase | metabolism is tightly codple
to phase Il pathways (Kohle and Bock, 2007; Ramosi€x et al., 2001). Phase Il enzymes modify the
metabolite and prepare it for excretion throughjegation to hydrophilic groups such as glutathione,
glucuronide or sulfate (Alexandrov et al., 2002n@age et al., 2006; Glatt and Oesch, 1977; Nebert
and Vasiliou, 2004; Rowland et al., 2013; Wincdrdlg 2009). In order to avoid intracellular traugp

of the more hydrophilic, metabolised molecules, aiihtannot pass the lipophilic cell membane,
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phase Il efflux transporter proteins mediate ttamsmembrane transport into the extracellular space

(Déring and Petzinger, 2014; Omiecinski et al.,20dasiliou et al., 2009).

[ Xenobiotics
d lipophilic polar hydrophilic
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metabolically inert
J
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( '
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~ polar

A 4
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Figure 5. Overview of the xenobiotic-metabolising system
Different reactions of phase | (CYP) and phase #yemes modify lipophilic or hydrophilic moleculeshd@se molecules are

prepared for cellular and for physiological exavat{phase IIl) (Buters, 2008).
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1.4.2. Phase | metabolism and cytochrome P450 (CYP) eegym

Majority of phase | enzymes are CYP enzymes. CY&m@Rs are heme-containing mono-oxygenases.
They metabolise exogenous and endogenous lipoptiiemicals including drugs by oxidative
hydroxylations. The enzymes are ubiquitously exg@dsand use molecular oxygen and reducing
equivalents for substrate oxidation. During the GéRalytic cycle, reactive oxygen intermediates and
mutagenic molecules can be generated (Bondy an@rNa®94; Guengerich, 1992, 2006; Nebert,
1991; Nebert and Dalton, 2006; Nebert and Karp8208&bert and Russell, 2002; Nelson et al., 1996;
Puntarulo and Cederbaum, 1998).

CYP enzymes are structured into families and sultitssnaccording to their amino acid sequence
identities. Enzymes of the same family share aascpihomology of more than 40%, and enzymes of
the same subfamily of at least 55% (Nelson etl896). The human genome presumably encodes for
57 functional CYP proteins that are structured etdiog to their sequence identities in 18 families
(Lewis, 2004; Nelson, 2002; Nelson et al., 20049skbf them are polymorphic and display a complex
organ-, development- and sex-specific expressidi? Enzymes are most abundantly expressed in the
liver and in tissues with close proximity to theveanment such as lung, skin and the gastrointattin
tract. Mapping CYP in these organs has been intelysistudied in organ-specific toxicity to
environmental compounds (Ding and Kaminsky, 200&)dhi et al., 2004; Gundert-Remy et al., 2014,
Macé et al., 1998; Nebert, 2000; Swanson, 2004;féaxand Holloway, 2009; Zanger et al., 2014;
Zanger and Schwab, 2013). Preferentially membetBeofirst three CYP families (CYP1, CYP2 and
CYP3) bioactivate and detoxify foreign moleculestsas drugs, carcinogens and industrial compounds
such as HAHs, PCBs and PAHSs, and they display appithg substrate specificities (Guengerich, 2006;
Hodgson, 2001; Nebert and Dalton, 2006; Nebert.e2@04). CYP1 family enzymes metabolically
activate PAHs. They contribute to the formatiorredictive intermediates and are therefore the most
investigated downstream targets of the AHR in tolkigy (Gonzalez et al., 1984; Ma, 2001; Nebert et
al., 2004; Nebert and Jones, 1989; Nebert et@91INebert et al., 1993; Shimada and Fujii-Kurigam
2004). Additionally, CYP synthesise and catabolm@dogenous compounds including steroid
hormones, vitamins and fatty acids (Nebert andddaR006; Nebert and Karp, 2008; Yang et al., 2013)
The expression of CYP can be greatly increased naudtion. Besides AHR, various other
ligand-dependent transcription factors regulate Cé¥pression as a response to the chemical
environment (Maglich et al., 2002; Pascussi e8l01; Waxman, 1999; Wei et al., 2000a).
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Table 1. Classification of human CYP enzymes accoairty to their substrate specificities
Guengerich, 2006; Lewis, 2004; Nelson, 2002 andifiead

Sterols XenobioticsFatty acids| Eicosanoi@¥itamins Unknowns
1B1 1A1 2J2 4F2 5R1 2A7
7A1 1A2 4A11 4F3 24A1 2U1
7B1 1B1 4B1 4F8 26A1 2W1
8B1 2A6 4F12 5A1 26B1 3A43
11A1 2A13 2S1 8A1 26C1 4A22
11B1 2B6 2S1 27B1 4F11
11B2 2C8 4F22
17A1 2C9 4Vv2
19A1 2C18 4X1
21A2 2C19 471
27A1 2D6 20A1
39A1 2E1 27C1
46A1 2F1
51A1 3A4

3A5

3A7

The AHR downstream targets CYP1Al, CYP1B1 and C\YP2® typically expressed in extrahepatic
tissues. They are found in environmentally expobedrier tissues such as skin, lung or the
gastrointestinal tract (Baron et al., 2001; Bermaateal., 2006; Ding and Kaminsky, 2003; Du et al.,
2006; Gundert-Remy et al., 2014; Karlgren et a003 Leclerc et al., 2010; Rivera et al., 2002;
Rylander et al., 2001; Saarikoski et al., 2005; i&soa, 2004). Whereas the expression of AHR and
CYP in these tissues is well characterised, thetiom of CYP metabolism in immunity has been lirdite
investigated (Baron et al., 1998; Siest et al. 80lhe effects of inflammation on XME and transporter
protein expression in the liver have been eluctlateseveral studies. Here, pro-inflammatory immune
responses triggered by cytokines, bacterial, vimralparasitic infection models down-regulate the
majority of hepatic CYP enzymes and xenobiotic scaiption factorsA reduced CYP expression
during inflammation depresses hepatic clearancecanttl result in adverse effects with an altered
bioavailability of chemicals including drugs (Aitkest al., 2008; Aitken et al., 2006; Li-Masters and
Morgan, 2001; Monshouwer and Witkamp, 2000; Mor@g&)1, 2009; Morgan et al., 1998; Sewer and
Morgan, 1998; Theken et al., 2011; Vrzal et alQB0Several studies characterised CYP expression i
peripheral blood mononuclear cells (PBMCs) or ismldmmune cell populations after incubation with
CYP-inducing agents (summarised in (Siest et @D8Y). A comprehensive analysis of CYP expression

in non-cultured, various immune cell subtypes, hasvehas not been investigated in detail.
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1.4.3. Phase Il metabolism and antioxidative response

The AHR pathway is closely linked to the antioxidatphase |l response. Phase Il enzymes eliminate
reactive intermediates that particularly occur dgriCYP-mediated phase | reactions. Here, AHR
co-operates with the ubiquitously expressed cytegtive key factor nuclear factor erythroid 2-retht
factor 2 (NRF2) that is an important inducer of gh#l enzymes (Chanas et al., 2002; Kéhle and Bock,
2007; Miao et al., 2005; Ramos-Gomez et al., 208RF-2 is a basic leucin zipper transcription factor
and sequestered in the cytoplasm by Kelch-like-EGBiaciating-protein 1 (Keapl). Keapl senses
oxidative and electrophilic stress and is an adgptatein of an E3 ubiquitin ligase. When intraaklt
oxidative burden is low, interaction of Keapl WNRF2 induces a permanent NRF2 degration. Rising
concentrations of reactive oxygen species or alphtles stabilise and release NRF2 from Keapl
allowing the translocation of NRF2 into the nucl€lish et al., 2003; Kang et al., 2004; Kobayaghi e
al., 2004; McMahon et al., 2003; Nguyen et al., Z00Nguyen et al., 2003b). NRF2 binds onto
antioxidant response elements (ARES) upstream pé dmtteries coding for phase | and phase lI
enzymes. NQO1, aldo-keto reductases (AKRs) anathioine-s-transferases (GSTs) are NRF2 targets
and act downstream of CYP enzymes (Chanas et(02;2Jaiswal, 2004; McMahon et al., 2001,
Nguyen et al., 2003b; Radjendirane and Jaiswal9199RF2 co-operates with AHR for inducing
detoxification of potentially harmful intermediatasd for regulating oxidative defence. Expressibn o
both transcription factors is regulated mutuallg activation of both factors control partly overpapy
signalling pathways and XME batteries (Kéhle ana&lB®007; Ma et al., 2004; Miao et al., 2005;
Wang et al., 2013).
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Figure 6. Interactions of CYP with transcription factors involved in the xenobiotic and oxygen respomrs
AHR, ARNT, NRF2 and HIFd are involved in celluar xenobiotic and oxygen mesge. AHR can directly regulate NRF2 and
an interation between AHR and Hifls given by the dimerisation partner ARNT. AHR: Ahgldrocarbon receptor, ARNT:
AHR nuclear translocator, NRF2: NF erythroid 2-rethtfactor 2, NQO1: NAD(P)H dehydrogenase quinoneCYP:
Cytochrome P450, PGK: Phosphogylcerate kinase O: EHrythropoietin, VEGF: Vascular endothelial groviaactor, XRE:
Xenobiotic response element, ARE: Antioxidant resgomlement, HRE: Hypoxia response element, GLUT.céae
transporter.

1.4.4. CYP1l-dependent AHR regulation

The AHR negatively regulates its own activation dgweral feedback loops such as breakdown of
potential ligands through induced CYP1 expressioby an up-regulation of the AHR repressor protein
(Evans et al., 2008; Hahn et al., 2009; Mimurd.efl899; Morel and Barouki, 1998; Morel et al.(020
Morel et al., 1999; Wincent et al., 2012). Sevetaervations demonstrated an auto-regulated fekdbac
loop for AHR activation by a reduced CYP1 activitycell lines and epithelial cells. However, eviden

of this mechanism in primary human immune celliilslacking (Chang and Puga, 1998; Chiaro et al.,
2007; Hankinson et al., 1985; Wei et al., 2000bnt&nt et al., 2012).
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Figure 7. CYPL1 activity modifies AHR by feedback rgulation
Adapted from Wincent et al., 2012.

The endogenous and natural occuring AHR agonisZ k$Ca planar derivative of the UV-absorbing
amino acid tryptophan (Bergander et al., 2003; ételh and Denison, 1991, Oberg et al., 2005). FICZ
can be endogenously formed by UV light in the gKintsche et al., 2007; Rannug et al., 1987; Wei et
al., 1999; Wincent et al., 2009). In several stadidHR ligands including FICZ induce IL-22 and
down-regulate IL-17 in human immune cells (Brengbgk al., 2011, Trifari et al., 2009; Veldhoen et
al., 2008). FICZ binds to the AHR with a higherimty (Kp 0.07 nM) than the most potent
environmental ligand TCDD (i 0.48 nM) (Bergander et al., 2003; Rannug et &87). Whereas
TCDD is very slowly metabolised with a half life @pproximately 7 to 19ears in humans (Miniero et
al., 2001), FICZ is degraded by CYP1 enzymes amtides its own phase | metabolism into
hydroxylated metabolites. This is likely leadingatoestricted AHR activation (Bergander et al.,200
Bergander et al., 2004; Wei et al., 2000b; Winedral., 2012).
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(CYPL1 inhibitor) (CYP inhibitor) (AHR antagonist)

Figure 8. Structures of the CYP inhibitors 1-PP andL-ABT, and of the AHR antagonist CH-223191

The PAH 1-(1-propynyl)-pyrene (1-PP) is a highlesific substrate for the CYP1 enzyme family and
acts as a mechanism-based (suicide) inhibitor. prB&ominantly abrogates CYP1Al enzyme activity
with probably little AHR agonistic effects (Shimaea al., 2007; Shimada et al., 1998; Zhu et al.,
2011b). 1-PP and 1-aminobenzotriazole (1-ABT), @osuicide inhibitor for CYP, were used in this
study to investigate CYP1 inhibition. The synthétldR antagonist CH-223191 competitively prevents
against TCDD-induced AHR translocation (Kim et 2006; Zhao et al., 2010-a). The molecules FICZ,
1-PP and CH-223191 were used in this study to tigege the CYP1-induced AHR activation
pharmacologically in human immune cells (see Figire
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1.5. Aim of the Study

For many decades the ligand-activated transcrigotor aryl hydrocarbon receptor (AHR) has been
studied for its role in environmentally induced itbxeactions. The AHR induces cytochrome P450
(CYP) and other xenobiotic-metabolising enzymespbése | (oxidative hydroxylation), phase I
(conjungation) or phase lll (excretion) reaction®wever, AHR is also a mediator of immune cell
differentiation.

The aim of this thesis was to investigate whethé@P Chave an impact on AHR-driven targets in human
immune cells, mainly the Th17 cytokines IL-22, IZ-and the stem cell factor receptor c-Kit. This was
studied by using the AHR agonist 6-formylindolof®j2arbazole (FICZ) and the CYP1 suicide
inhibitor 1-(1-propynyl)-pyrene (1-PP) in a pharmbgical approach in human and murine immune
cells. In this context, stress-related factors wierestigated additionally. Based on the proposed
negative interaction of the AHR with the signalnsducer and activator of transcription 1 (STAT1),
this study also investigated the AHR activatioPBMCs from patients suffering from an isolated form
of the chronic mucocutaneouSandida (CMC) infection. These patients have gain-of-fumtt
mutations (GOF) in th8 TAT1gene and a reduced production of the Th17 cytskibhel7 and IL-22.
Furthermore, the study aimed to analyse the caoitist expression of genes coding for

xenobiotic-metabolising enzymes in various humamime cell subtypes.
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2 Materials and Methods

2.1. Material

2.1.1. Cell Culture Reagents and Buffers

Table 2. Cell Culture Reagents

Cell Culture Feagent Cat.nc Supplie/Sourc/Manufacture

Dimethyl Sulfoxide Cell Culture Grac A3672.025! | AppliChen Gmbk Darmstadt, Germai

Dulbecco’s Modified Eagle Mediu(DMEM) 4196¢-02¢ Life Technologie Corporatiol Carlsbad, US.

DMEM/F12 1132(-074 Life Technologie Corporatiol Carlsbad, US.

Fetal Calf Serum (FC¢ CNHO000: Perbic Science Gmb Bonn, German

Human ‘erun H4522-100m | Sigme-Aldrich Chemie Gmbl Munich, German

L-Glutamine (20 mM) 2503(-024 Life Technologie Corporatior Carlsbad, US.

MEM Non-Essential Amino Acids 10( 1114(-03¢ Life Technologies Corporatit Carlsbad, US.

Penicillin-Streptomycin

10 000 units/ml Penicillin, 10 000 units/ml

Streptomycit 1134403 Life Technologie Corporatiol Carlsbad, US.

Phosphate

Buffered Saline C-PBS (w/o C*/Mg*") 1419(-094 Life Technologies Corporatit Carlsbad, US.

Roswell Park Memorial Institute (RPMI)-1640 Medium

+ L-Glutamine 1525(-061 Life Technologie Corporatiol Carlsbad, US.

STEMPRO-34 Serum Free Medium (SFM) With

STEMPRC(-34 Nutrient Suppleme 1069011 Life Technologie Corporatiol Carlsbad, US.

Sodium lyruvat (10(mM) 1136(-03¢ Life Technologie Corporatiol Carlsbad, US.

Trypan Blue tain (0.4%) 1525(.061 Life Technologie Corporatiol Carlsbad, US.
Table 3. Cell Lines

Cell Lines Sourct

V79 Chinese hamster lung fibroblasts Pro_f Arand, Johannes Gutenberg-Universitgt

Mainz, German

hCYP1A] V79 cell line with recombinant expression of hun@vP1A1 Prof JeroerButers, TUN, Munich, German'

hCYP1AZ V79 cell line with recombinant expressionhuman CYP1A Prof JeroerButers, TUN, Munich, German

hCYP1B: V79 cell line with recombinant expression of hun@YiP1B1 Prof JeroerButers, TUN, Munich, German

Table 4. Animals

Mice

Sourct

CYP1aZknockout mice

Were a gift from Dr Daniel Nebert, Department ol/Eanment
and Center for Environmental Genetics, Universft€mcinnati
Medical Center, Cincinng, OH, USA (Liang et al., 199¢

C57BL/€

Charles River Laboratories, Wilmington, Massachsset
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Table 5. Freezing Medium

Freezing Nediun

FCS 20m
DMSQO 5ml
DMEM/F12 25 ml

Table 6. Medium for CYP1-expressing V79 Cell Lines

Mediurr for CYP Cell Lines

DMEM 20Cml
Fetal Calf ‘erum (FCS 22ml
L-Glutamine 4.6 ml
Fenicillin Streptomycit 22ml
Sodium Fyruvai 22ml

Table 7. Proliferation Medium for Human PBMCs

Proliferation Mediun for Human PBMCsand T cells

RPMI 22E ml
Human {erum 125 ml
L-Glutamine 25ml
Non-Essential Amino .cids 28 ml
Sodium Fyruvai 28ml
Penicillin Streptomycit 25ml
B-Mercaptoethanol 50m 25C ul

Table 8. Medium for Murine Splenocytes

Proliferation ediun for Murine Splenocyte

RPMI 22Eml
FCs< 125 ml
L-Glutamine 25ml
Non-Essential Amino .cids 28 ml
Sodium Fyruvai 28ml
Penicillin Streptomycit 25ml
B-Mercaptoethanol 50m 25Cul

Table 9. Lysis Buffer for Murine Erythrocytes
10x Lysis Buffer

NH4Cl (Ammonium Chloride 1.EM
NaHCQ; (Sodiumhydrogencarbonat) 100 mM
Di-sodium EDTA (NaEDTA) 10 mM

Adjust pH to 7,4, sterile filtered

Table 10. Sodium Phosphate Buffer for Ethoxyresoruh Assay
50 mM Sodium Phosphate Buf

NaHPO, x 12H0 50 mM

Adjust pH to 8 with phosphoric ac
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Table 11. Thermolysin Buffer

Thermolysin Protease X Bufi

HEPES 10 mM
NaCl 142 mV
KCI 6.7 mV
NaOF 0.43 mv
CaC; 1mM

2.1.2. FACS Reagents; Antibodies and Buffers

Table 12. Antibodies for FACS Stainings and Cell Ativation

Antibodie: Clone Cat.No Supplier/Sourcd/Manufacture

Anti -Human Antibodies

Mouse Ant-Human CD:-FITC OKT3 11-0037-42 | eBioscienc Gmblk Frankfurt, Germar

Mouse Ant-HumanCD4-APC-Cy7 RPA-T4 | 55787 Becton Dickinson (BD) Gmb | Heidelberg, Germar

Mouse Ant-HumanCDA4-FITC RPA-T4 55534t Becton Dickinson (BD) Gmb | Heidelberg, Germat

Mouse Ant-HumanCD&8-Pacific Blue RPA-T8 | 55820 BectonDickinson (BD) Gmbl | Heidelberg, Germar

Mouse Ant-HumanCD8-PE HIT8a 55563! Becton Dickinson (BD) Gmb | Heidelberg, Germar

Mouse Ant-HumanCD14-FITC 61D3 11-014<-73 | eBioscienc Gmblk Frankfurt, Germar

Mouse Ant-HumanCD1¢-PE HIB19 55541 BectonDickinson (BD) Gmbl | Heidelberg, Germat

Mouse Ant-HumanCDA4(-FITC 5C: 55558t Becton Dickinson (BD) Gmb | Heidelberg, Germar

Mouse Ant-HumanCD45RC-FITC UCHL1 55549:; Becton Dickinson (BD) Gmb | Heidelberg, Germar

Mouse Ant-HumanCD45RC-PE UCHL1 55549: Becton Dickinson (BD) Gmb | Heidelberg, Germat

Mouse Ant-HumanCD45RA-PE HI10C 55548¢ Becton Dickinson (BD) Gmb | Heidelberg, Germat

Mouse Ant-HumanCD5€-PE-Vio77C AF12-7H3 | 13C-09¢-13Z | Miltenyi Biotec Gmbt Bergiscl-Gladbach, Germai

Mouse Ant-HumanCD11%-PE A3C6EZ | 13C-091-734 | Miltenyi Biotec Gmbt Bergiscl-Gladbach, Germai

Mouse Ant-HumanCD12:-PE AC14t 13C-09C-89¢ | Miltenyi Biotec Gmb}t Bergiscl-Gladbach, Germai

Mouse Ant-HumanCD30:-FITC AC144 13C-09C¢-51C | Miltenyi Biotec Gmb} Bergiscl-Gladback German

Mouse Ant-Human/mouse 1-22 Genentech In San Francisco, US

Mouse Ant-HumanNA/LE CD3 UCHT1 55532¢ Becton Dickinson (BD) Gmb | Heidelberg, Germar

Mouse Ant-HumanNA/LE CD2¢ CD28.2 55572! Becton Dickinson (BD) Gmb | Heidelberg, Germat

Anti -Mouse Antibodies

Anti-Mouse CD-PE RM4-5 55304 Becton Dickinson (BD) Gmb | Heidelberg, Germar

Anti-MouseCD&-PE VIO770 53-6.7 13C-097-99¢ | Miltenyi Biotec GmbF Bergiscl-Gladbach, Germai

Anti-MouselFNy AF-48¢ XMG1.2 | 55772 Becton Dickinsor(BD) Gmbt | Heidelberg, Germar

Hamster Ant-Mouse NA/LE CD: 14£-2C11 | 55305° Becton Dickinson (BD) Gmb | Heidelberg, Germar

Hamster Ant-Mouse NA/LE CD2 37.5] 55329 Becton Dickinson (BD) Gmb | Heidelberg, Germar

Purified Rat Anti-Mouse CD16/CD32

(MouseFc Block™) 2.4G: 55314 Becton Dickinson (BD) Gmb | Heidelberg, Germat
Table 13. FACS Buffer

FACS Euffer

PBS w/o C#/Mg?*

Sodium Azide 2% (w/v) 0.02%

FC< 5%
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2.1.3. qRT-PCR Primer Sequences

Table 14. Primer Sequences for qPCR

Gene forward 5'—> 3' reverse 5— 3' RefSeq (NCBI
ABCG: TGG CTT AGA CTC AAG CAC AG( TCGTCC CTG CTT AGA CAT C NM_00482°
AHR TCAGTT CTT AGG CTC AGC GTC AGT TAT CCT GGC CTCCGT TT NM_001621
ARNT CTACCC GCT CAG GCTTTT CAC CAA ACT GGG AAG TAC GAC NM_00166¢
PTGS: GGC GCT CAG CCA TAC A( CCG GGT ACAATC GCACTTA NM_000963
CYP1A: GGAACCTTC CCTGATCCT T! GGA GAT TGG GAA AAG CAT G#A NM 000499
CYP1A! ACA ACC CTG CCA ATC TCA AC GGG AAC AGA CTG GGA CAA TC NM_00076:
CYP1B: GCT GCA GTG GCT GCT CC CCC ACG ACCTGA TCC AAT TCT NM 00010«
CYP2S GGT CAG GCT GAG GAG TTC Al CTC CCC GTT GGA GAA GAA / NM_03062:
EEF1/ CTG AAC CAT CCAGGC CAA AT GCC GTG TGG CAATCC AA NM_00140:
HIF1A GCG CGA ACG ACA AGA AA GAA GTG GCA ACT GAT GAG C# NM_00153(
IFNy CGA GAT GAC TTCGAA AAG CTG TCA GCC ATC ACT TGG ATG AC NM_00061¢
IL17A CCATCC CCAGTT GAT TGG AA CTC AGC AGC AGT AGC AGT GAC A NM_002190
IL22 TCC AGA GGA ATG TGC AAA AG ACA GCA AAT CCA GTT CTC CAA NM_02052¢
IL26 TGC AAG GCT GCA AGA AAATA CTC TAG CTG ATG AAG CAC AGCA NM_01840:
KIT ATG GCATGC TCC AAT GTG GGC AGT ACA GAA GCA GAG C/ NM_00022:
NQOI1 ATG TAT GAC AAAGGA CCCTTC TCC CTT GCA GAG AGT ACA TG( NM_00090:
NRFZ CTT GGC CTC AGT GAT TCT GAA GT! CCT GAG ATG GTG ACA AGG GTT GT, | NM_00616-
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2.1.4.

Table 15. TagMan Low Density Arrays: Gene Names andssay IDs

Assays and Reference Sequences for TagMan Lowitpéusays (TLDAS)

Assay ID Gene Symbol Genename Chromosome NCBI Gene Reference
Hs00156558_m1 CMA1 Chymase 1, mast cell 14 NM_001836.2
. . . NM_001093772.1
Hs00174029_m1 KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogéiomolog 4 NM_000222.2
Hs00175232_ml1  FCER1A Fc fragment of IgE, high &fihy receptor for; alpha polypeptide 1 NM_0020D1.
. NM_024164.5
Hs02576518_gH TPSB2, TPSAB1 Tryptase beta 2 (gene/pseudogene);tryptase alghalbe 16 NM_003294.3
Hs00153120_m1  CYP1Al Cytochrome P450, family 1famidy A, polypeptide 1 15 NM_000499.3
Hs00167927_m1 CYP1A2 Cytochrome P450, family 1, subfamily A, polypeptiie 15 NM_000761.3
Hs00164383_m1  CYP1B1 Cytochrome P450, family 1fasully B, polypeptide 1 2 NM_000104.3
Hs00258076_m1 CYP2S1 Cytochrome P450, family 2, subfamily S, polypeptide 19 NM_030622.6
Hs00426372_m1  CYP2A13 Cytochrome P450, family Bfamily A, polypeptide 13 19 NM_000766.3
Hs00868409_s1 CYP2A6 Cytochrome P450, family 2, subfamily A, polypeptiie 19 NM_000762.5
Hs00167937_g1 CYP2B6 Cytochrome P450, family 2fasully B, polypeptide 6 19 NM_000767.4
Hs00426380_m1 CYP2C19 Cytochrome P450, family 2, subfamily C, polypeptice 10 NM_000769.1
Hs00426403_m1  CYP2C18 Cytochrome P450, family Bfasuily C, polypeptide 18 10 NM_000772.2
Hs00426397_m1 CYP2C9 Cytochrome P450, family 2, subfamily C, polypept@le 10 NM_000771.3
Hs00164385_m1  CYP2D6 Cytochrome P450, family 2fesually D, polypeptide 6 22 NM_000106.4
Hs00559368_m1 CYP2E1l Cytochrome P450, family 2, subfamily E, polypeptide 10 NM_000773.3
Hs00167949_m1  CYP2F1 Cytochrome P450, family 2fssully F, polypeptide 1 19 NM_000774.3
Hs00356035_m1 CYP2J2 Cytochrome P450, family 2, subfamily J, polypeptide 1 NM_000775.2
. . NM_001202855.2
Hs00430021_m1 CYP3A4 Cytochrome P450, family 3family A, polypeptide 4 7 NM_017460.5
Hs00241417_m1 CYP3A5 Cytochrome P450, family 3, subfamily A, polypeptisie 7 NM_001190484.1
Hs00426361_m1 CYP3A7 Cytochrome P450, family 3famidy A, polypeptide 7 7 NM_000765.3
Hs00426608 m1 CYP4F2 Cytochrome P450, family 4, subfamily F, polypeptitie 19 NM_001082.3
Hs00403446_m1 CYP4F22 Cytochrome P450, family Bfesuily F, polypeptide 22 19 NM_173483.3
Hs00168521_m1 CYP4F3 Cytochrome P450, family 4, subfamily F, polypept&le 19 NM_000896.2
’ ] - NM_031226.2
Hs00240671_m1 CYP19A1 Cytochrome P450, family LiBfamily A, polypeptide 1 15 NM_000103.3
NM_153326.2
. NM_001202413.1
Hs00195992_m1 AKR1A1l Aldo-keto reductase family 1, member Al (aldehyeltuctase) 1 NM_001202414.1
NM_006066.3
. . . NM_001136018.2
Hs00164458 m1  EPHX1 Epoxide hydrolase 1, microsgreaiobiotic) 1 NM_000120.3
Hs00157403_m1 EPHX2 Epoxide hydrolase 2, cytoplasmic 8 NM_001979.4
) NM_01142368.1
Hs00265266_g1 GSTM2 Glutathione S-transferase fmugcle) 1 NM_000848.3
Hs00356079_m1 GSTM3 Glutathione S-transferase mu 3 (brain) 1 NM_000849.4
Hs02512067_s1 GSTP1 Glutathione S-transferase pi 1 11 NM_000852.3
Hs00184475 m1 GSTT1 Glutathione S-transferase theta 1 22 NM_000853.2
. NM_145870.2
Hs00155313_m1 GSTZ1 Glutathione transferase zeta 1 14 NM_145871.2
NM_145791.1
. . NM_145764.1
Hs00220393_m1 MGST1 Microsomal glutathione S-transferase 1 12 NM_145792.1
NM_020300.3
. ; NM_001204366.1
Hs00182064_m1 MGST2 Microsomal glutathione S-trenasfe 2 4 NM_002413.4
Hs00165162_m1 MPO Myeloperoxidase 17 NM_000250.1
NM_001025434.1
Hs00168547_m1 NQO1 NAD(P)H dehydrogenase, quinone 1 16 NM_000903.2
NM_001025433.1
Hs00287016_m1 POR P450 (cytochrome) oxidoreductase 7 NM_000941.2
. . . NM_080591.1
Hs00924803_ml1  PTGS1 Prostaglandin-endoperoxidéagetl (prostaglandin G/H synthase and cyclooxyggna 9 NM_000962.2
Hs00153133_m1 PTGS2 Prostaglandin-endoperoxide synthase 2 (prostagla®dil synthase and cyclooxygenase) 1 NM_000963.2
Hs00184500_m1  ABCB1 ATP-binding cassette, sub-faBi(MDR/TAP), member 1 7 NM_000927.4
Hs00166123_m1 ABCC2 ATP-binding cassette, sub-family C (CFTR/MRP), memb 10 NM_000392.3
Hs00184979_ml1  ABCG2 ATP-binding cassette, sub-fa@i(WHITE), member 2 4 NM_004827.2
Hs99999905_m1 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 12 NM_002046.3
Hs99999909_m1  HPRT1 Hypoxanthine phosphoribosyfeaase 1 X NM_000194.2
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2.1.5. Chemicals

Table 16. Chemicals

Chemical Cat.No. Supplie/Sourc/Manufacture

Ampuwa Water 00041499 Fresenius Kabi AG Bad HombBsgmany
Ammonium Chloride, NHKCI A5666 Sigma-Aldrich Chemie GmbH Munich, Germany
1-Aminobenzotriazole, 1-ABT A3940 Sigma-Adrich ChiersmbH Munich, Germany
Calcium chloride, CaGl C-7902 Sigma-Aldrich Chemie GmbH Munich, Germany
Citric Acid Monohydrat C-1909 Sigma-Aldrich ChentzenbH Munich, Germany
Dimethyl Sulfoxide, DMSO A3672.0100 AppliChem GmbH Darmstadt, Germany

Di-Sodium Hydrogen Phosphate
Dodecahydrate bNHPC, x 12H,0

106579.1000

Merk KGaA

Darmstadt, Germany

Di-Sodium EDTA, NaEDTA

D2900000

Sigma-Aldrich Chemie GmbH

Munich, @any

Di-Sodium Hydrogen Phosphate,
Na,HPC,

1065860-500

Merck KGaA

Darmstadt, Germany

FICZ

EDTA Ultrapure, pH 8, 0.5 M 15575-038 Life Techngiles Corporation Carlsbad, USA
Ethanol, >99.9% 1.00983.1000 Merk KGaA Darmstadtn@ny
7-Ethoxyresorufin E-3763 Sigma-Aldrich Chemie GmbH Munich, Germany
6-Formylindolo[3,2-blcarbazole, | g\ _5Ro06 Enzo Life Sciences GmbH Lérrach, Germany

Heparin-Sodium 250 000

PZN 03874684

Ratiopharm GmbH

Ulm, Germany

2-(4-(2-Hydroxyethyl)- 1-

PMA

Piperazinyl)-Ethansulfonszure 11344-033 Life Technologies Corporation CarlsbaAU
(HEPES

Hydrogen Peroxide, 4D, 216763 Sigma-Aldricichemie GmbH Munich, Germany
lonomycin 1-0634 Sigma-Aldrich Chemie GmbH Muni€ermany
Lymphoprep, Density 1.077 g/ml 1114547 AXIS-SHIEPBC AS Oslo, Norway
2-Mercaptoethanol 4227.1 Carl Roth GmbH & Co. KG rig@he, Germany
2-Methyl-2H-pyrazole-3-carboxylic

acid (2-methyl-4-o-tolylazo-phenyl) . Al . .

amide, CH-223191 C8124 Sigma-Aldrich Chemie GmbH Munich, Germany
[Methyl-*H] Thymidine, 5 mCi MT6035/163955 Hartmann Analytic Braunschweig, Germany
Methanol 34966 Sigma-Aldrich Chemie GmbH MunichriGany
Monensin Solution 1000x 004505-51 eBioscience GmbH Frankfurt, Germany
Phorbol 12-Myristate 13-Acetate, | p g1 39 Sigma-Aldrich Chemie GmbH Munich, Germany

Potassium Chloride, KCI

1049360.500

Merk KGaA

Daads Germany

Potassium Dihydrogen Phosphate,
KH,PC,4

1.048.73.1000

Merk KGaA

Darmstadt, Germany

Potassium Hydroxide, KOH 6751.3 Carl Roth GmbH & Co. KG Karlsruhe, Germany
Biochemical Institute for Environmental

1-(1-Propynyl)-pyrene, 1-PP Carcinogen GroRBhansdorf, Germany

2-Propanol, >99,5% 9866.6 Carl Roth GmbH & Co. KG arlgruhe, Germany

Phosphoric Acid, 5PO, 79606 Sigma-Aldrich Chemie GmbH Munich, Germany

Sodium Azide, Nal

106688.1100

Merk KGaA

Darmstadt, Germany

Sodium Chloride, NaCl 9265.2 Carl Roth GmbH & C& K Karlsruhe, Germany
Sodium Hydroxide, NaOH Pellets 1064950.250 MerckakG Darmstadt, Germany
Sodium Hydroxide, NaOH, 1 M 38214 Sigma-Aldrich @tie GmbH Munich, Germany

Sodiumhydrogencarbonat, NaHgQ 1.06329.0500 Merk KGaA Darmstadt, Germany
Sulfuric Acid (HSQy), 25% 1.00716.100 Merck KGaA Darmstadt, Germany
Tween® 20 Detergent 655204 Merk KGaA Darmstadtn@ery
3,3,5,5-Tetramethylbenzidine, TMB 87748 Sigma-Aldrich Chemie GmbH Munich, Germany
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2.1.6. Enzymes and Proteins

Table 17. Enzymes and Proteins

Enzymes And roteins Cat.No. Supplier/Sowce/Manufacture

Bovine Serum Albumin (BS/ A2137 SigmeAldrich Chemie Gmbl Munick, German
Collagenas C792¢-1G | SigmeAldrich Chemie Gmbl Munich, German
DNase DN-25-1G | Sigme-Aldrich Chemie Gmbl Munich, German
Hyaluronidas H3884-1G | Sigme-Aldrich Chemie Gmbl Munich, German

RNas«-free DNese Se

7925¢ Qiager Gmbk

Hilden, German

Recombinant Human Stem Ceactol (SCF

30C-07-10C | Prepro’ect Gmbk

Hamburg, Germar

Thermolysin Type X rotease

P-1512-1G

SigmeAldrich Chemie Gmbl

Munich, German

Trypsin 005% EDTA

2530(-054

SigmeAldrich Chemie Gmbl

Munich, German'

2.1.7. Kit Reagents

Table 18. Kit Reagents

Master

04 913 850 0OC

Roch¢ DiagnosticsGmbk

Kit Reagent Cat.No. SupplieV/Sourc/Manufacture

Agilent RNA Nano 6000

LabChip Kit 50671511 Agilent Techologies Gmb Waldbronn, Germar

Alexa Fluor 647 Microscale F | A3000¢ Life TechnologiesCorpcratior Carlsbad, US.

AlQshredde 7965¢ Qiager Gmbk Hilden, German

B Cell Isolation Kit Il 13C-091-151 Miltenyi Biotec Gmbt Bergiscl-Gladbach, Germai
Basophil Isolation Kit | 13C-092-662 Miltenyi Biotec Gmb} Bergiscl-Gladbach, Germai
Brefeldin A (GolgiPlug™)

Solutior 55502¢ Becton Dickinson (BD) Gmb Heidelberg, Germat
CD117 MicroBead K 13C-091-332 Miltenyi Biotec Gmbt Bergiscl-Gladbach, Germai
CD14 MicroBead 13C-05C-201 Miltenyi Biotec Gmb}t Bergiscl-Gladbach, Germai
CD4" T cell Isolation Ki 13C-091-15¢ Miltenyi Biotec Gmb} Bergiscl-Gladbach, Germai
CD45RA MicroBead 13C-04£-901 Miltenyi Biotec Gmb} Bergiscl-Gladbach, Germai
CDg' T Cell Isolation Ki 13C-094-15¢€ Miltenyi Biotec Gmb}t Bergiscl-Gladbach, Germai
FastStart Universal SYBR Green

Mannheim, Germar

FcR Blocking Reage 13C-05¢-901 Miltenyi Biotec Gmbt Bergiscl-Gladbach, Germai
Fixable Aqua Live/Dead Cell

Stain Ki 134957 Life Technologies Corratior Carlsbad, US.
Fixation/Permeabilization

Solutior Kit with BD Golgi Plug | 55502¢ Becton Dickinson (BD) Gmb Heidelberg, Germat

High Capacity cDNA RT Ki 436881« Life Technologies Corratior Carlsbad, US.

LDH Cytotoxcitiy Detection Ki | 1164479300 | Roch¢ Diagnostics Gmb Mannheim, Germar
Memory CD4 T Cell Isolation

Kit 13C-091-89: Miltenyi Biotec Gmb} Bergiscl-GladbachGerman
Rneasy Mini Ki 7410¢ Qiager Gmbk Hilden, German

Rneasy Micro Ki 7400¢ Qiager Gmbk Hilden, German

TagMan Low Density Arrays

(TLDASs) Custon-made¢ | Life Technologie Corporatiol Carlsbad, US.

2xTagMan Universal PCR

Master Mix 430443 Life TechnologiesCorpcratior Carlsbad, US.
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2.1.8. ELISA Reagents

Table 19. ELISA Kit Reagents

ELISA Kit Reagent Cat.No. Supplie/Sourc/Manufacture

DuoSet ELISA tuman IL-22 DY782 R&D Systems Gmb Wiesbade-Nordenstadt, Germa
DuoSet ELISA tuman IFMy DY285 R&D System«Gmbhk Wiesbade-Nordenstadt, Germa
DuoSet ELISA tuman IL-17 DY317 R&D System«Gmbhk Wiesbade-Nordenstadt, Germa
DuoSet ELISA tuman TNI-a DY21C R&D System«GmbF Wiesbade-Nordenstadt, Germa
BD OptEIA™ Set Human I-10 55092¢ Becton Dickinson (BD) Gmb | Heidelberg, Germatr

Table 20. 20x PBS for ELISA Washing Buffer

20x PBS for ELIS/
KH.PC, 49
Na,HPC,;x 12H,0 58¢g
KCI 49
NaCl 16Cg
Adjusito 1l ancpH to 70
Washing buffe
1x PBSadd0.05% tween 2I
Table 21. ELISA Stop-Solution
ELISA Stop-Solution
H,0 266 ml
H,S0;, (25%) 133 ml
Table 22. TMB Solution
TMB Solutior
T™MB 24 m¢
ETOH 500 pl
DMSQO 50C pl
Table 23. ELISA Citrate Buffer
Citrate 8.41¢g
H,0 200 ml
Adjust pH to 3.95
Table 24. ELISA Substrate Solution
ELISA Substrate Solution
Citrate Buffer 5500 pl
H.0, 2.55 pl
T™MB 55 ul
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2.1.9. Expendable Material

Table 25. Expendable Materials

Expendable laterial: Cat.No. Supplie/Sourc/Manufacture

Plates

96-well U-bottom Plates 83.1837.500 Sarstedt AG& C Nimbrecht, Germany
96-well F-bottom Plates 831835.500 Sarstedt AG & Co Numbrecht, Germany
Z%ﬁggggé%rgg lates 167008 Thermo Fisher Scientific GmbH Dreieich, Gansn
?&Z;/(?;Llr\lbL)JNC-Immuno Plate 439454 Thermo Fisher Scientific GmbH Dreieich, Gansn
48-well Plate 353078 Becton Dickinson (BD) GmbH idédberg, Germany
384-well PCR Plates 4ti-0384/C Atitflietd Wotton, Surrey, UK
Tips

TipOne Tips 1 pl- 10 pl S1121-3810 STARLAB GmbH nitaurg, Germany
TipOne Tips 1 pl— 200 pl S1120-8810 STARLAB GmbH Hamburg, Germany
TipOne Tips 101 pl— 1000 pl S1126-7810 STARLAB Ginb Hamburg, Germany
Tips 50 pl-1000 pl 0030000919 Eppendorf AG HampGgrmany
Tips 2 pl -200 pl 0030000870 Eppendorf AG Hamb@grmany
Tips 0.5 pl - 10 pl 0030000854 Eppendorf AG Hamb@egrmany
Tips 2-200 pl REFF161930 Gilson Internation BDeéutschland Limburg, Germany
Serological pipettes

25 ml 760 180 Greiner Bio-One GmbH Frickenhau@ermany
10 ml 6071 180 Greiner Bio-One GmbH Frickenhau@srmany
5mil 356543 Becton Dickinson (BD) GmbH Heidelberg, Gemna
2ml 710 180 Greiner Bio-One GmbH Frickenhausen, Germany/
Tubes

2.0 ml Micro Tubes 72.706.400 Sarstedt AG & Co Nicht, Germany
1.5 ml Micro Tubes 72.695.406 Sarstedt AG & Co Niecht, Germany
0.2 ml PCR Tubes 951010006 Eppendorf AG Hamburgn@ey

15 ml Centrifuge Tubes 352096 Becton Dickinson (EbH Heidelberg, Germany
50 ml Centrifuge Tubes 62.547.254 Sarstedt AG & Co Numbrecht, Germany
Cell strainer

Nylon Mesh Cell Strainer 100 (Yellow) 352360 BecMickinson (BD) GmbH Heidelberg, Germany
Nylon Mesh Cell Strainer 40 pm (Blue) 352340 Bedbickinson (BD) GmbH Heidelberg, Germany
Nylon Mesh Cell Strainer 70 pm (White) 352350 Becickinson (BD) GmbH Heidelberg, Germany
AutoMacs and FACS solutions

AutoMACs Washing Solution 130-092-987 Miltenyi Bée GmbH Bergisch-Gladbach, Germany
AutoMACS Runnig Buffer 130-091-221 Miltenyi Biot€&&mbH Bergisch-Gladbach, Germany
Facs Flow 342003 Becton Dickinson (BD) GmbH Hedidel), Germany
Facs Clean 340345 Becton Dickinson (BD) GmbH Héiele), Germany
FACS Rinse 340346 Becton Dickinson (BD) GmbH Hdided), Germany
Additional Material

Cryotypes, Sterile, 1.8 ml 72379 Sarstedt AG & Co Numbrecht, Germany
Cluster Tubes AB-0672 Life Technologies Corporation Carlsbad, USA

Cell Culture Flask 250 ml 75 cm (T75) 658170 GreB®-One GmbH Frickenhausen, Germany
Filtropur 250 ml, 0.2 pm 83.1822.001 Sarstedt AG& Numbrecht, Germany
Filtropur 500 ml, 0.2 um 83.1823.001 Sarstedt AG& Nimbrecht, Germany
IsoPlate 96-well Microplate 1450-514 PerkinElmer LAS GmbH Rodgau, Germany
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MeltiLex A 1450-441 PerkinElmer LAS GmbH Rodgau r@eany
Millex-GP, Sterile Filter, 0.22 um SLGPO33RS Merlc&A Darmstadt, Germany
'\DAII\T/:(;QEZI’;N%F;LC; L(Adhesive Film, 4311971 Life Technologies Corporation Carlsbad, USA
Original -Perfusor® Syringes, 50 ml 872 8810 Bradeisungen AG Melsungen, Germany
Printed Filtermates 1450-421 PerkinElmer LAS GmbH Rodgau, Germany
Polystyrene Round Bottom Tube 352052 Becton Dickin®D) GmbH Heidelberg, Germany

Round Bottom Polystyrene Test Tubes/ 3862052

Becton Dickinson (BD) GmbH

Heidelberg, Gemgna

RNAse ZAP R2020-250 Sigma-Aldrich Chemie GmbH MierchGermany
Sealing Tape ELISA/NUNC 236269 Thermo Fisher SdiertmbH Dreieich, Germany
Silicone Paper Envelope 1450-467 PerkinElmer LASY&m Rodgau, Germany

2.1.10.

Table 26. Instruments

Instruments and Software

Instrument Supplie/Sourc/Manufacture
Agilent Bioanalyzer Agilent Technologies GmbH Waidibn, Germany
AutoMACS Miltenyi Biotec GmbH Bergisch-Gladbach, i@&ny

Centrifuge 5417R

Eppendorf AG

Hamburg, Germany

Centrifuge Megafuge 1.0R

Thermo Fisher Scientifick®

Dreieich, Germany

Centrifuge MC 6

Sarstedt AG & Co

NUmbrecht, Germany

Elisa Washer, TECAN, Hydrospeed

Tecan Deutschlantd b

Crailsheim, Germany

EPOCH Microplate UV-Vis Spectrophotomet

er  BioTektlmments GmbH

Bad Friedrichshall, Germany

FACSCalibur Flow Cytometer

Becton Dickinson (BDn@GH

Heidelberg, Germany

FluoStar Optima

BMG Labtech GmbH

Ortenberg, Germany

Harvester

PerkinElmer LAS GmbH

Rodgau, Germany

Incubator

Thermo Fisher Scientific GmbH

Dreieicler@any

LSRFortess#' Flow Cytometer

Becton Dickinson (BD) GmbH

Heid=lp, Germany

MeltiLexTMA (solid scintillant)

PerkinElmer LAS Gnih

Rodgau, Germany

Microscope, Axiovert 25

Carl Zeiss AG

Oberkoch&eymany

Multichannel pipettes, (2.5 — 25 pl, 20 -200 Y
30-300 pl)

I’Brand GmbH & Co. KG

Wertheim, Germany

Nanodrop Spectrophotometer ND-1000

PegLab BiotdogieoGmbH

Erlangen, Germany

PCR cycler, TC-412 Techne

Tecan Deutschland GmbH

ailsBeim, Germany

Reference Pipettes (0.1 pl -2.5 pl, 1 pl-10 pl

10pI— 10C pl, 10C pl — 100 pf Eppendorf AG Hamburg, Germany
Research Pipettes (1 pl-10 pl, 10pul — 100 pl,

10C 1l - 100 1) Eppendorf AG Hamburg, Germany
Thermomixer 5437 Eppendorf AG Hamburg, Germany
Viaa7 PCR cycler Life Technologies Corporation Glaald, USA
HT7900 PCR Cycler Applied Biosystems Waltham, USA

Water bath, Julabo SW22,

Julabo Labortechnik GmbH

Seelbach, Germany
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Table 27. Software and Databases

Software And Database

Supplie/Sourc/Manufacture

BD FACSDiva™ Software,
Version 7 and

Becton Dickinson (BD) GmbH

Heidelberg, Germany

CellQuest Pro Software

Becton Dickinson (BD) GmbH

eid¢lberg, Germany

EndNote Version X2

Thompson Reuters

New York, USA

GraphPad PRISM 6 GraphPad Software Inc. La JoBA
HT7900 Software Life Technologies Corporation Czats, USA
Microsoft Office Microsoft Corporations Redmond, NS

NCBI PubMed Database

National Center for
Biotechnology Information
(NCBI)

http://www.ncbi.nim.nih.gov/pubmed

NCBI Gene Database

National Center for
Biotechnology Information
(NCBI)

http://www.ncbi.nlm.nih.gov/gene

NCBI Nucleotide Database

National Center for
Biotechnology Information
(NCBI)

http://www.ncbi.nlm.nih.gov/nuccore

gPrimerDepot

National Cancer Institute (NCI)

htgrimerdepot.nci.nih.gov/

R version 3.0.0

The R foundation for statistical
computing

http://www.R-project.org/

TagMan Gene Expression
Databas

Life Technologies Corporation

http://www.lifetechnologies.com/de/de/homel/lifeesuie/pcr/real-
time-pcr/rea-time-pcr-assays/tagmi-gen«-expression.htr

Universal ProbelLibrary
Assay Design Cent

Roche Diagnostics GmbH

http://lifescience.roche.com

Viia7 Software

Life Technologies Corporation

CaedbUSA
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2.2. Methods

2.2.1. General conditions for cell culture experiments

All cell culture experiments were carried out unsglierile conditions with disposable pipettes.

Human serum was added to the cell culture meditien sterile filtration. Different adherent cell és
were cultured until they reached a confluence A-8Cells in DMEM were cultured at 37 °C with
6.5% CQ. Cells cultured in RPMI medium were cultured at@Awith 5% CQ. For long-term storage,
cells were resuspended in freezing medium, stoved might at -80 °C and they were frozen in liquid

nitrogen (N).

2.2.2. Stock concentrations and storage of chemicals

6-Formylindolo[3,2b]carbazole (FICZ) [10 mM], 1-(1-propynyl)-pyrene -PP) [100 mM],
CH-223191 [60 mM] were solved in dimethyl sulfoxi@MSO) and stored at -20 °C. 1-PP was
synthesised by Prof Dr Albrecht Seidel (Biocheminatitue for Environmental Carcinogens (BIU)).
1-Aminobenzotriazole (1-ABT) [186.4 mM] was solvedaqua injectabila (Ampuwa) and stored at
-20 °C. 7-Ethoxyresorufin [4 mM] was solved in rmeatbl and stored at -20 °C.

2.2.3. Characteristics of healthy subjects and CMCD pédie

Non-atopic, healthy volonteers with total IgE lesvel100 kU/l and specific IgE levels < 0.34 kU/Ireve
included in this study. Specific IgE against asteaine common antigens and total IgE were detechi

in donor’s serum with ELISA-based Immuno-CAP tedbgy at the Allergy Department of the Clinic
for Dermatology and Allergology at the Technicalimsity of Munich. Characteristics of donors used
for TagMan Low Density arrays are summarised inld8h to Table 36. Human primary forskin mast
cells were obtained after circumcision from boysddpetween 1-15 years. PBMCs from CMCD
patients withSTAT1GOF mutations were kindly provided by Prof Dr Glau Traidl-Hoffmann
(Institute of Environmental Medicine (UNIKA-T), Tkaical University of Munich). All experiments
with PBMCs from CMCD patients were done in co-opera with Dr Julia Hiller (Institute of
Environmental Medicine (UNIKA-T)). These experimemiclude one female patient with the amino
acid exchange on position R274Q (CCD, coiled-coihdin) and one male subject with P329L (DBD,
DNA-binding domain) exchange in the STAT1 protdihe genetic background of the other test persons

was unknown.
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2.2.4. CYP1 inhibition in V79 Chinese hamster cell lingslbPP or 1-ABT

Human CYP1 cell lines were generated as describedqusly (Schober et al., 2006; Schober et al.,
2010). Briefly, V79 Chinese hamster cell lines wstable transfected with pIRES vectors containing
human CYP1Al-, CYP1A2- or CYP1B1-coding cDNAs fecombinant expression. CYPL1 cell lines
were cultured with a density of 1>@6ells/ml in 200 pl V79 growth medium in a steffilat-bottom
96-well (Nuna&Surface) plate for 2 days. For treatment, the $gkecCYP1 inhibitor
1-(1-propynyl)-pyrene (1-PP) was serially dilutedai stock dilution in DMSO and further diluted in
culture medium to final concentrations of °L0M to 10! M. The second CYP inhibitor
1-aminobenzotriazole (1-ABT) was diluted in meditmfinal concentrations of f0M to 107 M.

On the second day, medium was removed and V79wetks incubated with 200 ul 1-PP or 1-ABT for
30 min with the indicated concentrations. Thereaftells were washed twice with D-PBS w/o
Ca*/Mg?* and the activity of recombinant human CYP1A1, CXP1CYP1B1 enzymes was analysed
by addition of 100 ul 7-ethoxyresorufin [£01] (EROD assay) in sodium phosphate buffer, pioB,

15 min at 37 °C as described before (Wincent et28l12). Methanol in sodium phospate buffer was
used as control. Formation of resorufin was meassur&0 pl supernatant stopped with 50 pl ice-cold
methanol in a 96-well NUNC-Immuno plate. Resoruitas quantified by the FluoStar Optima
Multiplate Reader with excitiation/emission wavegérs of 544/590 nm. The percentage of inhibition
was calculated relative to medium-only control a@, was determined in four independent

experiments of each human CYP1 cell line.

2.2.5. lIsolation of human peripheral blood mononuclealsq&BMCs)

Human peripheral blood mononuclear cells (PBMGCainfihealthy subjects and CMCD patients were
isolated by density gradient centrifugation. 25whble blood was diluted 1:2 in D-PBS w/0%Gig?".
Whole blood was stratified on 15 ml lymphoprep watliensity of 1.077 g/ml in a 50 ml tube. Cells
were centrifuged at 1011 x g for 15 min on roomgenature (RT) without brake. Cells were collected
and transferred into a new 50 ml collection tubBMEs were washed three times with D-PBS w/o
Ca*/Mg?" supplemented with 5 mM EDTA. Isolated PBMCs weithez used for immune cell
purifications or stored in cryotubes with a densify27.7 x 16 cells/ml in freezing media in liquid

nitrogen.

34



Materials and Methods

2.2.6. Cell culture of PBMCs

Previously frozen PBMCs were washed with prolifieratmedium by centrifugation at 300 x g for
10 min at RT. Cells were cultured in 96-well flaittom plate for suspension cells (Sarstedt). Pladels
been pre-coated with 1 pg/ml mouse anti-human G3fh at 37 °C. Proliferation medium was
supplemented with anti-CD28 to a final concentratidl pg/ml in all experiments. Cells were cultlire
with a density of 1.5 x Gcells/mlin a final volume of 200 pl. Anti-CD3 and anti-CD2&atment

mimics T cell receptor activation and expands Tscel

2.2.7. Definition of appropriate FICZ and 1-PP concentnasi for PBMCs

Appropriate concentrations of the CYP1 inhibitoPR-and the AHR agonist FICZ for IL-22 and c-Kit
induction in PBMCs were determined. The chemicalrewserially diluted and used in final
concentrations of 10M to 10 M. Activated PBMCs were treated for 48 h. IL-22esse was

determined by enzyme-linked immunosorbent assayS&) and c-Kit expression was analysed by

flow cytometry (fluorescence-activated cell sortammalysis (FACS)).

2.2.8. Titration of CYP1 inhibitor 1-PP with low-dose FAGn PBMCs

PBMCs from eight healthy subjects were treated witiheasing concentrations of the CYPL1 inhibitor
1-PP (1@ M to 10%° M) alone or in presence of a low concentrationttef AHR agonist FICZ
(5 x 10%° M, low-dose) for 48 h. The CYP1 inhibitor 1-PP vsasially diluted in a DMSO stock dilution
and further diluted with the same dilution factorgroliferation medium. Control treatments include
medium, DMSO, FICZ alone and FICZ with additionaBO. Cytokine secretion, c-Kit expression,
viability and proliferation were determined afte8 B with flow cytometry, ELISA, lactat

dehydrogenase activity (LDH) afd-thymidine assay.

2.2.9. Treatment of PMBCs with FICZ, 1-PP and the AHRagohist CH-223191

For studying CYP1 inhibition and AHR-dependent effe human anti-CD3/CD28 activated PBMCs
from seven different healthy subjects were treati¢hd the CYP1 inhibitor 1-PP in final concentratson
of 10"M or 10° M for 5 days. The AHR agonist FICZ was diluted tdiral concentration of

5 x 10*° M and the AHR inhibitor CH-223191 was used witlinal concentration of 3 x 1OM. Cells
were treated with FICZ alone, 1-PP alone, 1-PPhim presence of FICZ and 1-PP, FICZ and
CH-223191. Controls include medium and DMSO. DMS#haentration was adjusted to the same
concentration in each treatment. In control experits, a high FICZ concentration (101) was
included. PBMCs were treated with FICZ alone oretbgr with AHR inhibitor CH-223191. After

5 days, cells and supernatants were harvestedki@gt@oncentrations, c-Kit expression and the
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transcription of genes involved in the AHR pathwegre analysed by flow cytometry, ELISA and
ribonucleic acid (RNA) measurements. Viability apobliferation were determined by LDH and

H-thymidine assay.

CYP1-dependent AHR activation in human PBMCs

PBMCs

| Treated with anti-CD3, anti-CD28, AHR agonist (FICZ), CYP1 inhibitor (1-PP) and AHR antagonist (CH-223191) |

| Supernantants Cells |

ELISA Viability Proliferation FACS RNA

Figure 9. Experimental overview of PBMC treatment br 5 days

2.2.10. Surface receptor staining for FACS analysis ah 48

PBMCs were treated for 48 h and stained with maastehuman CD3-FITC (Okt3) and mouse
anti-human CD117-PE to discriminate c-Kit expressim T cells (CD3 and non-T cells (CDR
Fixable Agqua Live/Dead Cell Stain Kit was useddtaining defect cells with permable cell membranes.
This staining dye binds to free amine groups amdidcloe used with fixed cells in intracellular siags.
Cells were collected and transferred to a 96-wdbdttom plate (Sarstedt). Cells were washed twice i
D-PBS w/o C&/Mg?*. Dead cells were stained with 100 pl Aqua Live/®salution diluted 1:1000 in
D-PBS w/o C&/Mg?*". After incubation for 30 min at 4 °C cells wereshad twice with D-PBS w/o
Ca*/Mg?*. Surface staining reagent with mouse anti-humaB-€ED0C, mouse anti-human CD117-PE
and FcBlock was prepared in FACS buffer. PBMC wategned for 30 min at 4 °C in 20 ul surface

staining solutions.

2.2.11. Surface repector and intracellular cytokine stagrfor FACS analysis at day five

After 5 days, PBMCs were collected and activateth wihorbol 12-myristate-13-acetate (PMA)
(50 ng/ul) and ionomycin (1 ug/ml) in the preseat&x monensin. GolgiPlug solution was added after
2 h at concentrations recommended by the manutac®MA mimics intracellular signalling pathways
and ionomycin additionally increases intracell(@@af* levels. Both molecules boost activation of cells

and the production of intracellular cytokines. GBlgg solution contains brefeldin A that inhibits

36



Materials and Methods

together with monensin the vesicular transport ftbenendoplasmatic reticulum to the cell membrane.
Treatment of cells with these inhibitors stops $eeretion of cytokines. After 5 h activation, Aqua
Live/Dead Cell staining, and surface receptor stginwere performed as described previously. For
surface receptor staining, 40 pl staining solutidth mouse anti-human CD3-FITC (Okt3), mouse
anti-human CD4-APC-Cy7 (RPA-T4), mouse anti-humab8@acific Blue (RPA-T8), mouse
anti-human CD117-PE, mouse anti-human CD56-PE-VUqAF12-7H3) and FcR Blocking Reagent
were used. After surface staining, cells were washeice with 100 ul FACS buffer and
Cytofix/Cytopermi™ Plus was used for intracellular staining with n®asti-human IL-22. Anti-human
IL-22 had been labelled with Alexa Fluor (AF) 647using the Microscale Pro Kit. Anti-IL-22-AF 647
in 40 pl permeabilization buffer was used for ing#ular staining. c-Kit and IL-22 in different imme

cell populations were examined by flow cytometrythvthe LSR Fortes$d Flow Cytometer at

appropriate wavelengths. Data were analysed witB $iva software.

PBMCs

Non T cells CD3- T cells CD3*

CD56 other innate CD56" natural CD4* T helper cells || CD8* cytotoxic T cells
cell populations killer (NK) cells

Figure 10. Selection of CD3and CD3 cells by FACS gating

2.2.12. RNA isolation and cDNA synthesis from human PBMCs

For RNA extraction after 5 days, PBMCs were washé&t D-PBS w/o C&/Mg?* and collected by

centrifugation at 153 x g for 7 min on RT. Cellsrevédysed in 350 pl RLT buffer supplemented with
1% 2-mercaptoethanol. Lysats were fast frozen qoidi nitrogen and stored at -80 °C until RNA
isolation. RNA from treated PBMCs was isolated viilagen RNeasy Mini Kit with on-column DNase
digestion according to the manufacturer’s protoBftNA was stored at -80 °C previous to cDNA
synthesis. RNA concentrations were determined byNhnodrop UV/Vis spectrophotometer. Up to
1 pug RNA was reverse transcribed into cDNA with High Capacity cDNA Reverse Transcription

(RT) Kit according to the manufacturer’s protocol.
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2.2.13. Quantitative real-time PCR (gqRT-PCR) of AHR-redeth transcripts in human
PBMCs

Relative transcription of target genes relatedh® AHR pathway (Cytochrome P45CYP1A1,
CYP1B1 CYP2S1 NAD(P)H dehydrogenase quinone NOJ, protaglandin-endoperoxide
synthase 2RTGS2, ATP-binding cassette subfamily G membeABCG2), of transcription factors
(aryl hydrocarbon receptor AHR), AHR nuclear translocator ARNT), Nuclear Factor
erythroid 2-related factor 2NRF2, hypoxia-inducible factor d (HIF1A)), of cytokines (interleukin
(IL)22, IL17A, 1L26, interferon-gammalfENy)), of the stem cell factor receptdKI{T), and of the
elongation factor 1 alph&F1A) was analysed after 5 days with FastStart Unives¥8BR Green
Master (ROX). gPCR primers were dissolved u®OHat a 100 mM stock concentration and diluted to a
4 mM primer mix. cDNA was analysed in 10 pl reaesiogPCR reactions were run in 384-well plates

at the Viaa7 PCR cycler with the standard cyclegpamme.

Table 28. Master mix for gPCR

Primer master mix
3.4 ul RNA [2.3 ng/ul]
5 ul FastStart Universal SYBR Green Master

1.6 pl Primer mix (4 mM)

Relative target gene transcription was calculatethie AAC: method(Livak and Schmittgen, 2001).
Ct-values were normalised to the housekeeping &1 (AC:) and relative expressionAC:) was
calculated to the medium-only control. Data werettpd by PrismGraph software and trends in

regulation were analysed by Wilcoxon signed-ramsk teold changes were calculated as indicated.

2.2.14. Analysis of viability by lactate dehydrogenase (LDd$say

To measure cytotoxic reactions in immune cellsesogtants of cultured PBMCs were tested for lactate
dehydrogenase (LDH) activity. LDH is a cytosolizgme that is released into the supernatant when
cells are dead or their membrane integrity is dadd®ecker and Lohmann-Matthes, 1988). LDH was
quantified in the supernatants by colorimetric ne@asents with the EPOCH reader. To calculate

viability/toxicity, medium control was set to 100%.
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2.2.15. Cell proliferation with®H-thymidine assay

Proliferation of treated PBMCs was tested by addighymidine to a final concentration of 1 nCi/ml
into the supernatants. Cells were pulsed for 6 B7afC with 5% CQ@ Radiolabelled thymidine
incorporates into the deoxyribonucleic acid (DNA)doviding cells. Cells were harvested on printed
filters. Filters were sealed with a scintillatioinT and radiolabelled DNA was measured with a
scintillation beta-counter. Detected signals (ceyodr minute (cpm)) were directly proportionalhe t
DNA synthesis.

2.2.16. Determination of cytokine concentrations by Enzyomgked Immunosorbent Assay
(ELISA)

Commercially available sandwich ELISA Kits were dier determining IL-22, IL-17, IFN5 IP-10
and TNFe concentrations in the supernantants of treatechthdPBMCs. Cytokine concentrations were

determined with EPOCH microplate spectrophotomateprding to the supplied protocol.
2.2.17. Treatment of PBMCs from CMCD patients

Isolated PBMCs from CMCD patients were treated r@vipusly described in 2.2.9.. PBMCs were
treated with a high FICZ concentration (high-dds&] M) or with 1-PP (16 M) in the presence of a
low FICZ concentration (low-dose, 5 x10M). The expriments with a high FICZ concentratioere
included as a positive control for AHR activatidine AHR antagonist CH-223191 (3 x4®) was
used to inhibit AHR activity. Cells and supernasawere collected for analysing CYP, cytokine and
c-Kit expression levels by flow cytometry, ELISAAARNA measurements. Proliferation was measured

by *H-thymidine assay as described previously.
2.2.18. Isolation of splenocytes fro@ypla2knockout or C57BL/6 mice

Male Cypla2knockout or C57BL/6 wild type mice were killed bgrvical fracture at the age of 12-14
weeks. Isolated spleens were disrupted througlOaub®cell strainer with the pistil of a 3 ml syring
and washed three times with medium. Cell suspessi@ne centrifuged at 300 x g for 10 min at 4 °C.
Erythrocytes were lysed in 10 ml 1x lysis bufferltkd in aqua injectabila) for 6 min and 20 ml
medium were added for stopping the reaction. Taiobd single cell suspension, splenocytes were
washed with culture medium, centrifuged with 30@ »at 4 °C for 10 min, resuspended in culture

medium and again filtered through a 40 um celliséra
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2.2.19. Treatment of murine splenocytes fr@ypla2knockout or C57BL/6 mice

Collected single cell suspensions of splenocytas fCypla2knockout and C57BL/6 wild type mice
were cultured with a density of 1.5 x®dlls/ml in a final volume of 200 ul in flat-botto86-well
plates (NUNQsurface) in murine proliferation medium. Plates evgre-coated with hamster
anti-mouse CD3 (1 pg/ml) for 3 h at 37 °C. Murin@liferation medium was supplemented with
hamster anti-mouse CD28 (2 pg/ml). The AHR agoRi€iZ was diluted to a final concentration of
5 x 10 M and the AHR inhibitor CH-223191 was used inraficoncentration of 3 x 10M. Cells
were treated with FICZ alone or FICZ and CH-2231®172 h at 37 °C and 5% GQntracellular and
surface receptor staining of IL-22 in CDdnd CD8 splenocytes was performed as described in 2.2.11
with following antibodies; anti-mouse CD4-PE, amiuse CD8-PE-Vio770, anti-mouse
IFN-y-AF 488 and anti-IL-22-AF 647. Dead cells were disnated by Fixable Aqua Live/Dead Cell
Stain Kit.

2.2.20. Purification of immune cell subtypes from PBMCs

Various immune cell subtypes were isolated froratihg purified PBMCs from at least seven different,
healthy subjects with Miltenyi’s MicroBead technpfoHuman primary basophils were purified with
the Basophil Isolation Kit Il as described previgudffner, 2008). CD14 cells (monocytes) were
isolated using CDI4MicroBeads. Human CDED45ROCD45RA T cells (memory T helper cells)
were isolated using the Memory CDZ Cell Isolation Kit and CD45RA MicroBeads. B celivere
purified using the B Cell Isolation Kit Il, CD8I cells (cytotoxic T cells (Tc)) were isolated wihe
CD8" T Cell Isolation Kit and CD4T cells (T helper (Th)) with CD4T Cell Isolation Kit Il. For
purification the automated procedure with autoMA&perator was used. RNA was immediately

extracted from isolated cells to prevent RNA degtimah.

2.2.21. Purification of human primary foreskin mast cells

Mast cells from human foreskins were isolated asideed previously (Chen et al., 2010; Effner, 2008

Briefly, forskins were cut in 3 mm square piecegshwa scalpel. Dermis and epidermis were
enzymatically separated over night with 0.05% (wih@rmolysin type X protease in thermolysin buffer
at 4 °C. Next day, epidermis was removed and thmidewas digested and cut in RPMI containing
10% FCS, 0.1% (w/v) collagenase, 0.1% (w/v) hyalidase and 0.05% (w/v) DNase at 25 °C in a
water bath shaker for 3-4 h. Cell suspensions \iikeeed through 100 nm and 40 nm cell strainer.
Human primary CD117(c-Kit*) foreskin mast cells were enriched with anti-CD1MicroBeads.

RNA was purified immediately after cell isolation.
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Xenobiotic-metabolising enzymes (XMEs) in human immune cells

Basophils Primary forskin CD14* B cells Th cells, | Tc cells, CD8* |
mast cells cells

CD4* and CD4*CD45RO*

| RNA Isolation, cDNA |

TagMan Low Density Array,
Phase | CYP, Phase Il and
Phase Il

Figure 11. Experimental procedure for characterisig xenobiotic-metabolising enzymes in human
immune cells

2.2.22. Characterisation of immune cell purity by surfageeptor FACS staining

Purity of different immune cell subpopulations vektermined by flow cytometry as follows: CD14
monocytes, B cells, CD4'h cells, CDACD45ROCD45RA memory Th cells and CD8c cells were
characterised with mouse anti-human CD14-FITC (§1D8ouse anti-human CD45RO-FITC
(UCHL1), mouse anti-human CD45RA-PE (HI100), moasei-human CD40-FITC (5C3), mouse
anti-human CD19-PE (HIB19), mouse anti-human CD8PE8a) and mouse anti-human CD4-FITC
(RPA-T4), respectively. Human primary foreskin mastls were analysed by mousati-human
CD117-PE (c-Kit, A3C6E?2), and basophils with moasei-human CD123-PE (AC145) and mouse
anti-human CD303-FITC (AC144). FITC and PE labeiatypes were used as controls. Data were
analysed by FACS Calibur and Cell Quest Pro softwar

2.2.23. RNA isolation and quality control with Agilent Lain a Chip Technology

RNeasy Kits with on-column DNase digestion wereduseisolate RNA from immune cell subtypes.
RNA was immediately isolated after cell purificatidRNA concentration and quality were determined
by UV/Vis spectrophotometer and by Agilent Lab-oGHaip technology. For gene expression analysis,
a sufficient high RNA quality is necessary. RNA lifya as for TagMan Low Density Arrays, was
determined with micro-capillary gel electrophordsjsthe RNA 6000 nano assay and by the Agilent
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Bioanalyzer 2100 according to the manufacturer@aeol. In only 1 pul RNA, this miniaturised
laboratory measures RNA degradation and concemrain gel-loaded microchannels, RNA is
separated according its molecular weight and adkment dye bound to RNA is laser excited. The
detected fluorescent intensity is converted to aARBbncentration. RNA degradations and
contaminations with genomic DNA were additionalhalysed. RNA integrity was calculated as RNA
Integrity Number (RIN). Data were plotted in anattepherogramm with the peaks of the 18S and the
28S ribosomal RNA. Low RIN values determine a higlyradation whereas and a 28S/18S ratio of 2:1
and RIN values >8 depict RNA with a high integri§chroeder et al., 2006). Data were analysed by
Agilent Technologies 2100 Expert Bioanalyzer Vens02.03.S1307.

2.2.24. TagMan Low Density Arrays (TLDAS)

The High Capacity cDNA RT Kit was used for revetsascription of all RNA samples according to
the manufacturer’s protocol. cDNAs from differenintan immune cells were screened in TagMan
Universal PCR Master Mix according to the manufeafis protocol on custom-made microfluidic
TagMan Low Density Arrays (TLDAS). TLDAs were run ¥iaa7 or on HT7900 PCR cycler. TagMan
assays for custom-made TLDAs were selected bydsaygplatform of Life Technologies Corp and are
summarised in Table 1&t-values were normalised 3APDH and related ttiPRT1asAAC; value

for each donor and cell type. Legansformed relative expression values were pldtiethe heatmap?2

function of the R programming environment (RCorafea013).

2.2.25. Statistical analyses

The Wilcoxon signed-rank test for paired samples uged to compare different treatments. Spearman’s
rank correlation coefficients were used to anahgdations in target gene expression. P-values § 0.0
were considered as significant (*), **: P < 0.0datr*: P < 0.001. Statistical analysis was perfeun
using Graph Pad Prism 6, San Diego. Heatmaps oflation coefficients and p-values were blotted
with the R programming environment. Leagansformed relative transcription of genes codiog
xenobiotic-metabolising enzymes in different huntamune cell subpopulations was plotted by the

heatmap?2 function of the statistical software R gR&Team, 2013).
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3 Results

3.1. Inhibition of CYPL1 activity

Before using CYP inactivators in primary human eelltures, two CYP inhibitors were tested in a
stable cDNA-directed CYP expression system. The€de hamster fibroblast cell line V79 was used
for recombinant expression of various human CYPAyews as described previously (Schober et al.,
2006; Schober et al., 2010). 1-PP is a selectiitor of CYP1 family enzymes and particularly
inhibits CYP1A1 (Shimada et al., 1998; Zhu et2011b) whereas 1-ABT is a general and non-selective
CYP inactivator (Emoto et al., 2003; Linder et 2aD09).

3.1.1. Human CYP1 enzymes were selectively inhibited #B3PL-

A B

120; 120 -o- hCYP1A1
< 1004 100 - hCYP1B1
S -+ hCYP1A2
g 80 801
'tg 601 _ 601
Q40 40+ -

201 201
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Figure 12. Inhibition of human CYP1 activity in V79 Chinese hamster cells

V79 Chinese hamster fibroblast CYP1 cell lines stabipress human CYP1Al, CYP1A2 or CYP1B1 enzymes. C¥R1 c
lines were pre-treated with. 1-PP (16°M — 10°M) or B. 1-ABT (10" M — 103M) for 30 min at 37°C. CYP1 activity was
measured by incubation with the CYP substrate etfemoyufin (EROD) for 15 min at 37 °C. Formation bé tfluorescent
product resorufin was measured in triplicates ur fodependent experiments (n=4). Line shows 50%Y?1 activity (IGo)
relative to vehicle control (100%). Means and staddleviations (s.d.) are shown.

1-PP decreased the activity of human CYP1 enzymssyad as ethoxyresorufin deethylase (EROD)
activity in a concentration-dependent manner. CYP1&ctivity was inhibited by low 1-PP
concentrations (I§=5 nM), whereas CYP1A2 and CYP1B1 activities wenty aeduced at higher
concentrations (16=650 nM and 16;=218 nM), respectivelyl-PP acts as a suicide inhibitor of
CYP1A1l, as a competitive inhibitor of CYP1A2 andsitconsidered to be metabolised by CYP1B1
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(Shimada et al., 2007; Shimada et al., 1998). CYPibhibition with 1-PP was 129-fold and 43-fold
more efficient compared with CYP1A2 and CYP1B1pesgively.Neither a selective nor a complete
CYP1 inhibition could be detected in 1-ABT-treatszlls. Therefore, 1-PP was used for abrogating
CYP1 activity in human PBMCs.

3.2. CYP1-induced AHR activation in human PBMCs

3.2.1. Effects of 1-PP and FICZ on c-Kit and IL-22 expriess in PBMCs

In order to define appropiate FICZ and 1-PP comatinhs for IL-22 and c-Kit inductions, increasing

concentrations of FICZ and 1-PP £ to 10°M) were tested in human activated PBMCs for 48 h.
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Figure 13. Induction of IL-22 and c-Kit with FICZ and 1-PP in human PBMCs

PBMCs (3 x 18 cells/well) were activated with anti-CD3/CD28, arebted with increasing concentrations of the AHRégjo
FICZ or the CYP1 inhibitor 1-PP for 48 A. IL-22 induction by 1-PP or FICZ was determinedH\SA (n=3). DMSO
controls were subtracted from treated cd@IsThe percentage of c-KiPBMCs after treatment with increasing FICZ or 1-PP
concentrations was determined by flow cytometry2)n€. IL-22 release normalised to proliferation. Meatss.e.m are
shown.
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Both the AHR agonist FICZ and the CYP1 inhibitoPR-up-regulated the cytokine IL-22 and the
surface receptor c-Kit in human PBMCs (Figure 13,aAd B). IL-22 was also induced by
anti-CD3/CD28 activation alone in the vehicle cohtifo emphasise the induction by either FICZ or
1-PP, the values in the DMSO control were subtchfrtem values in FICZ or 1-PP treatments. IL-22
was induced in a range from 1M to 108 M FICZ. IL-22 was down-regulated at higher FICZ
concentrations ranged from-4aM to 10° M (Figure 13 A and C). IL-22 was induced by athga
very low concentration of FICZ (0 M). Normalisation to proliferation was still shavg a decreasing
IL-22 release from 1®M to 10° M FICZ (Figure 13, C). In comparison to that, B¥P1 inhibitor
1-PP continuously increased IL-22. Similar to IL-2Zpression, FICZ linearly increased c-Kit
expression in the range from™M to 108 M. The concentration of 8 M FICZ did not induce c-Kit
expression, and concentrations higher thahN@lid not result in an up-regulation of c-Kit. TG P1
inhibitor 1-PP alone showed a weak concentratigreddent induction of c-Kit. The effects of 1-PP
could be due to amplification of FICZ-like substas@resent in normal medium. Culture medium
contains tryptophan that polymerises by light. Thn@rmal culture media could contain a FICZ-like
activity (for details see discussion). As IL-22 aneKit expression peaked at 4M FICZ, a
concentration of 5 x M FICZ was choosen for further experiments in orte analyse a

1-PP-dependent up-regulation of IL-22 and c-Kithe presence of FICZ.
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3.2.2. Combination of 1-PP and FICZ induced c-#id IL-22 in PBMCs

Th22 cells produce the cytokines IL-22 and TélFand TNFe in combination with IL-6 additionally
induce Th22 differentiation (Duhen et al., 2009gkgh et al., 2009; Trifari et al., 2009). IL-22dan
c-Kit are known immunological targets of the AHRipsay (Kadow et al., 2011; Kiss et al., 2011;
Veldhoen et al., 2008). It was tested whether @mB/CD28-activated PBMCs regulated 1L-22,
TNF-a and c-Kit after CYP1 inhibition in the presenceadibw FICZ concentration. CYP1-mediated
effects were investigated with increasing conceioina of 1-PP (1¢° M to 10° M) in the presence of

5 x 10 M FICZ. To set the same baseline raw data wenmalised by subtraction of the FICZ/DMSO
control from FICZ/1-PP co-treatments, and DMSO frofRP measurements. Treatment of activated
PBMCs with FICZ alone significantly induced IL-2Bch TNFo expression levels (Figure 14, A and
B, controls). In the single treatments with a IoMZE concentration, c-Kit was significantly induced
CD3 PBMCs (Figure 14, controls C) but not on CIPBMCs (Figure 14, controls D). Increasing 1-PP
concentrations combined with a low dose of FICZitet IL-22 (Figure 144, normalised data) and
c-Kit (Figure 14, C and D, normalised data) conitn-dependently, but not TNk{Figure 14, B).

As indicated in preliminary experiments, singleubations with 1-PP alone showed a linear and
significant induction of IL-22 and c-Kit (Figure 1A,C,D, normalised data). Representative dot plots
are shown in Figure 14, E.

In conclusion, an augmented CYP1 inhibition by @a&sing concentrations of 1-PP in the presence of a
low FICZ concentration induced IL-22 and c-Kit, bodt TNFea expression in 48 h treatments.
However, treatment with FICZ alone (5 x M) increased IL-22 and TNE-expression levels and
weakly induced c-Kit expression on CDBBMCs but not on CD3PBMCs. For analysing the
AHR-dependent regulation of IL-22 and c-Kit, M and 1¢ M 1-PP were used in the following

experiments.
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Figure 14. CYP1-dependent induction of IL-22 and dit in human PBMCs
Human PBMCs (3 x XOcells/well) activated with anti-CD3/CD28 were tiedh with the AHR agonist FICZ (5 x 20 M), increasing concentrations of the CYP1 inhibitbiPP
(10%°M — 10°M) alone or in combination for 48 h. DMSO was usadvehicle control. Cells were stained with anti3ZB®TC, anti-CD117(c-Kit)-PE and viable cells wesglected by flow
cytometry.A. IL-22 was up-regulated with increasing 1-PP cotregions when a low dose of FICZ was presBntincreasing concentrations of 1-PP did not inaé&sF-a production (n=7).
C andD. Inhibition of CYP1 activity by increasing 1-PPno@ntrations induced c-Kit expression on CB3d CD3 PBMCs. Values of IL-22 and c-Kit measurements vegtjisted to the same
baseline by substraction of DMSO or DMSO/FICZ tneatit for normalisatiorE. Representative dot plotd-D Raw and normalised data: Means +/- s.e.m. of elifferent subjects are shown

(n=8), controls: Boxplots show medians, interqueautinges (box) and ranges of seven different stj&Vilcoxon signed-rank test was used to comg#ferences between treatments (*:p <
0.05, **:p < 0.01).
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Results

3.2.3. Viability during 1-PP and FICZ treatments

To analyse concentration-dependent cytotoxic effeftFICZ and 1-PP in PBMCs, viability was
determined by flow cytometry with Aqua Live/Deaddiimination and by the LDH assay at 48 h.
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Figure 15. Viability of human PBMCs after combinedtreatment with 1-PP and FICZ at 48 h

Human PBMCs (3 x Tcells/well) were activated with anti-CD3/CD28 antlis in the presence of the AHR agonist FICZ
(5 x 10'° M) and increasing concentrations of the CYP1 irthilil-PP (16° M — 10° M) for 48 h. Viability was analysed by
flow cytometry and LDH assay-C. Viability in 1-PP- and in 1-PP + FICZ-treated seNas determined by flow cytometry.
A. The percentage of viable cells in 1-PP- and PP1l+ FICZ-treated PBMCS&. The percentage of viable cells in control
treatments.C. Normalised viability determined by flow cytomet®-F. Viability in 1-PP-, 1-PP + FICZ-treated cells
determined with LDH assay. The percentage of viable cells in 1-PP and irP1-P FICZ-treated PBMCs. Medium-only
control was set to 100%E. Viability in control treatments related to mediutontrol. F. Normalised viability. For
normalisation data were adjusted to the same loask)i substraction of DMSO or DMSO + FICZ treatméntD and C, F.
Raw and normalised data: Means +/- s.e.m. of eigferent subjects are shown (n=8,and E controls: Boxplots show

medians, interquartile ranges (box) and rangewérs different subjects. Wilcoxon signed-rank teas used to compare
differences between treatments (*:p < 0.05).

Neither increasing concentrations of 1-PP nor 1ddfnbined with FICZ decreased viability
significantly. Analyses of flow cytometry and LDH@wved a small decrease in viability when PBMCs
were treated with IOM 1-PP (Figure 15, A, D and C and F). A higher ande in LDH activity was
determined in the positive control samples (FICA &iCZ with DMSO) than in the DMSO control.
This effect was not detected by FACS analysis (feiglb B and E). To study the AHR-dependent
regulation of IL-22 and c-Kit induction, YoM and 1¢ M 1-PP were used in further experiments.
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3.2.4. 1-PP-induced effects were dependent on AHR actinatiRNA analyses

The CYPL1 inhibitor 1-PP induced immunological AHEgulated proteins such as c-Kit and IL-22,
when FICZ was present with a low concentrationhia tulture medium. The addition of the AHR
antagonist CH-223191 to 1-PP and FICZ co-treatdld oas used to analyse the AHR-dependent
effects. Relative mRNA levels were analysed inte@é@BMCs to evaluate whether CYP1 inhibition
up-regulatecCYP, IL22 andKIT after 5 days. Additionally, the expression of ottagget genes related
to the AHR pathway (ATP-binding cassette subfam@®/ member 2 (ABCG2), NAD(P)H
dehydrogenase, quinone NQO1) cytochrome P450 family 2 subfamily S membelC¥P2S) and
protaglandin-endoperoxide synthaséZGS2)coding forCOX-2)), of transcription factors associated
with the xenobiotic pathwayNRF2 ARNT, HIF1A) and of cytokineslENy, IL17, IL26) was analysed
by gRT-PCR.
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Figure 16. CYP1-induced and AHR-dependent expresgioof target genes related to the AHR pathway

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodigsre treated with the AHR agonist FICZx301° M),

the CYPL1 inhibitor 1-PP (1dM) and the AHR antagonist CH-223191x(80° M) for 5 daysA-C. Relative mRNA levels of
AHR-regulated cytochrome P4508YP1A1, CYP1B1, CYP2SD-G. other AHR pathway-related targetsIT, ABCG2,
NQO1, PTGSR H-K. transcription factorsAHR, ARNT, NRF2, HIFD)Aand(L-O) cytokines [L22, IL17, IFN), IL26) were
determined with gRT-PCR. Target gene expression wasaiised toEF1A as a housekeeping gene and relative expression
was calculated to medium-only control. Boxplots shoedians, interquartile ranges (box) and rangesewén different
subjects. Wilcoxon rank test for paired samples ussl to compare treatments (*p < 0.05).
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Combined treatment of the CYP1 inhibitor 1-PP drelAHR agonist FICZ strongly up-regulated the
genes coding for CYP1Al, CYP1B1, IL22 and c-Kitn@e treatments with FICZ or 1-PP alone
induced the AHR-downstream gen@¥P1AlandCYP1Blcompared with DMSO control. THEIT
gene was significantly induced with 1-PP alone, [&2@ with FICZ alone (Figure 16, A, B, D and L).
The other target genes related to the AHR pathA8CG2 PTGS2NQOl1andCYP2S]) (Figure 16,

C, E, F, G) were slightly regulated by CYP1 inHiit in the presence of FICZ. Heit@YP2Sland
NQO1were up-regulated araBCG2andPTGS2inclinded to be down-regulated. The co-stimulation
but not the single treatments, significantly dowgulated thédHR gene, wherea8BRNTandHIF1A
(Figure 16, J, K) were not regulatddRF2 a transcription factor sensitive for oxidativeess, tended
to be increased in the co-treatment compared W&z And the vehicle control, but differences toR.-P
were not detected. 1-PP and FICZ co-treated dgjisficantly up-regulatedL26, this was similar to
IL22. IL17 transcription was significantly decreased (Figl#eN, O). Congruent to the hypothesis that
inhibition of CYP1 activity leads to an enhancedRctivation, the addition of the AHR antagonist
CH-223191 significantly inverted the up-regulataithe CYP1A1CYP1B1KIT, IL22 andIL26 genes
but increasedL17 transcription. Fold changes of compared conditiares summarised in Table 37
(supplemental material).

Conclusively, these data indicated that inhibitadCYP1 activity by 1-PP in the presence of a low
FICZ concentration increasdelYP, KIT andIL22 transcription levels, however, decreased It/
RNA level. Moreover, the results demonstrated tihese effects were dependent on AHR activation as
addition of CH-223191 inverted the effects.

3.2.5. 1-PP-induced effects were dependent on AHR aatimatiprotein analyses

Results from RNA analyses indicated an AHR-dependagulation of the Th17 cytokines andikdfiT
during CYP1 inhibition. To confirm the AHR-feedbagplathway on protein level, human activated
PBMCs were identically treated with the AHR agomkEZ, CYPL1 inhibitor 1-PP, FICZ and 1-PP or
FICZ, 1-PP and the AHR antagonist CH-223191 foasd Cytokine concentrations were determined
by ELISA. In addition, IL-22 and c-Kit in differemtnmune cells were determined by flow cytometry.
Cytokine concentrations were normalised to prdiifien and fold regulations were calculated to
medium-only control. In the supernatants, IL-22 waseased with FICZ alone and in 1-PP and FICZ
co-treated cells. Addition of the AHR antagonist-2EB191 decreased IL-22. IP-10 and lirMwere
significantly down-regulated by FICZ alone compameith medium-only control and IL-17 was
significantly up-regulated by the addition of thelR antagonist to co-treated cells. Additionallyp -
and FICZ co-treatment increased ThExpression compared with control treatments (Edut, A-E).
Fold changes are summarised’able 38 A-E.

An AHR-dependent regulation of c-Kit protein in A@nd 1-PP co-treated PBMCs was investigated

by flow cytometry, and the frequency of c-Hit-22* cells in human PBMCs was examined. c-Kit
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expression was determined on CDB4" Th lymphocytes, on CD&D8" Tc cells and on CD3
(non-T cells) cells. In CD3cells, FICZ and 1-PP co-treatment significantly-ragulated c-Kit
expression on CD4and on CD8 T cells, but single stimulations did not. Additiafi the AHR
antagonist to co-treated cells significantly desegbthe percentage of c-Kitells among CD3T cells
(Figure 17, F-H andlrable 38F-H). In order to characterise the AHR-dependemtu@tion of
c-Kit*IL-22* cells, PBMCs were intracellularly stained withidht22. c-Kit*IL-22* cells were detected
with the highest frequency in the CI@D4" Th cell compartment, whereas CIC®8" Tc cells had in
general a low percentage of IL-22ells (data not shown). In agreement with the ipreslty shown
results, addition of the AHR antagonist CH-2231€duced the frequency of c-Kit-22* cells (Figure
17, G and I).

Compared with control stimulations, the percentaige-Kit" cells increased among CD&lls when
PBMCs were co-treated with 1-PP and FICZ, and & reagluced by the AHR antagonist. To distinguish
potential natural killer (NK) cells from other ndn-cell populations, CD3PBMCs were further
discriminated into CD5%6(potential NK cells) and CD56ells. Both CD3D56 and CD3CD56" cells
induced c-Kit expression during co-treatment, lnitin control treatments. The addition of the AHR
inhibitor reduced this up-regulation (Figure 1MJand Table 38-L).

Conclusively,protein data indicated that CYPL1 inhibition by 1-Bfregulated IL-22, TN+ and
c-Kit expression levels in an AHR-dependent marasethe addition of the AHR antagonist inverted
the effects of the co-treatment. This confirmed RMA results on protein level. Additionally, c-Kit
was induced in various immune cells with lymphaigjim, and c-KitIL-22* were part of CD4Th cells

showing that AHR activity affects many human immueés.
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Figure 17. CYP1-dependent AHR activation regulatea-Kit protein and cytokine expression

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibosliwere treated with the AHR agonist FICZ (5 x*4®), the CYP1 inhibitor 1-PP (1OM or 107 M for IL-22 staining) and
the AHR antagonist CH-223191 (3 x4M) for 5 daysA-E, Fold expression of cytokines (relative to medicontrol). F-M, c-Kit expression on CDED4* and CD3CD8' lymphocytes was
measured by flow cytometr$ and |, c-Kit*/IL-22* cells were detected among CD/h lymphocytes with 70M 1-PP.J-M. c-Kit induction in CD3cell populations. Boxplots show medians,
interquartile ranges (box) and ranges of seveemifft subjects. Wilcoxon rank test for paired samplas used to compare significant differences<(ép05).
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3.2.6. Viability during 1-PP and FICZ co-treatment at diag

The activation of the AHR regulates several celloéactions and CYP enzymes are involved in toxic
responses. Therefore, viability and cell prolifamatwere determined by LDH, by flow cytometry and

by *H-thymidine assay after treatment of PBMCs for $isda
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Figure 18. Viability and proliferation in 1-PP and FICZ treatments at day five

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),
the CYP1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191x(B0% M) for 5 daysA. Viability was determined by
LDH assay and byB. flow cytometry.C. Proliferation was analysed B¥i-thymidine assay. Boxplots show medians,
interquartile ranges (box) and ranges of sevemmifft subjects. Wilcoxon rank test for paired sasplas used to compare
significant differences (*p < 0.05).

Combined treatment of FICZ and 1-PP significandgmased viability (17.25% 15.16%) measured
by LDH assay. FICZ or 1-PP alone did not. FACS wsialshowed a decrease of only 1.18%.98%

in co-treated cells compared with FICZ control. Aida of the AHR antagonist (CH-223191) increased
viability in both LDH assay (26.19%12.27%) and FACS analysis (1.13%.82%) (Figure 18, A and
B). Results of proliferation did not show any trery treatments with FICZ or 1-PP.
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3.2.7. Overview of 1-PP and FICZ treatments in human PBMTsnds in regulation

Common regulations of investigated targets werensamnsed in Figure 19. The co-treatment of FICZ

with 1-PP had various effects on the expressiohHiR pathway associated targets.

Regulation in 1-PP + FICZ treatment

No regulation Up-regulation Down-regulation

Phase | CYP1A1

CYP CYP1B1
CYP2S1

Phase | + Il NQO1 PTGS2
NRF2

Phase IlI ABCG?2

Cytokines IL-22 IL-17
IL-26 IFN-y
TNF-a IP-10

Others ARNT KIT AHR

HIFla

Figure 19. Trends in target gene regulation by 1-PEnd FICZ co-treatment in human PBMCs

Among the compounds, which were regulated downstfahe AHR pathway, the phas€YPgenes,
other phase I- and phase ll-related getd@@1 andNRF2, the cytokines IL-22|L26, TNF-, and
c-Kit were up-regulated during CYP1 inhibitidhiTGS2ABCG2 IL-17, IFN+y, IP-10 andAHRtendend
to be down-regulated. No regulation was detectethiogenes coding fé&kRNTandHIF1A.
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3.3. Correlations between AHR and NRF2 pathway targetsid CYPL1 inhibition in
human PBMCs

3.3.1. Correlations betweeAAHRand the transcription of genes involved in the Apdghway

The AHR pathway closely acts together with the NRBfthway for anti-oxidative and cytoprotective
responses. Correlation analyses were used to shadgelations betweeAHR transcription and the
transcription of genes related to the AHR pathwéguyre 20) in seven healthy individuals. To analyse
correlations between various targets, spearmamis carrelation coefficients were calculated and
significant p-values were marked in red.

The transcription of thAHRgene was strongly and positively correlated withttanscription oNRF2
HIF1A andNQO1lin most treatments including vehicle control. Tansoextent AHR transcription
correlated withARNT, CYP1A1l, CYP1B1, CYP2ahd PTGS2transcription levelsCYPlgenes are
directly controlled by the AHRCYP1Altranscription tended to correlate negatively, wasCYP1B1
inclined to be positively regulated with tAéiR transcription. These effects were particularlyiobs
during 1-PP and FICZ co-treatment but not in the SiMcontrol.CYP2S1showed similar trends as
CYP1B1 TheKIT andABCG2genes did not show any correlations witiR transcription in PBMCs.

Correlation coefficients and p-values are summersé able 39.
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Figure 20. Correlations betweemAHR and genes coding for transcription factors, XMEs ad c-Kit

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),

the CYP1 inhibitor 1-PP (1OM) and the AHR antagonist CH-22319k18° M) for 5 days. Gene transcription was analysed
with gRT-PCR, target gene expression was normalisefFid\ as a housekeeping gene, relative expression wadatad to
the medium-only control and correlations betweeatous targets were calculated with spearman’s canielation coefficient.
Dot plots with significant p-values are indicatedéd.
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3.3.2. Correlations betweeAHR and cytokine expression

Correlation analyses were used to study the relsitibetweenAHR transcriptionand cytokine
expression. Cytokine expression was analysed byR®BR (Figure 21) and ELISA (Figure 28ene
transcription was normalised E-1Aas a housekeeping gene and relative expressionaM@asated to
medium-only control. Cytokine concentrations wemgedmined in the cell culture supernatants,
normalised to the proliferation and related to thedium-only control as fold regulation. Fold
expressions on RNA and protein level were corrdlateh the AHR fold expression. To analyse
correlations between various targets, spearmamils carrelation coefficients were calculated and

significant p-values were marked in red.
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Figure 21. Correlations betweemAHR and cytokine transcription

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),

the CYP1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191x(80® M) for 5 days. Gene transcription was analysed
by qRT-PCR, target gene expression was normalis&fFid\ as a housekeeping gene, relative expression iadatad to
medium-only control and correlations between vasitargets were calculated with spearman’s ranlkeledion coefficient.
Dot plots with significant p-values are indicatedéd.
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Figure 22. Correlations betweemHR transcription and cytokine expression

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),
the CYPL1 inhibitor 1-PP (10M) and the AHR antagonist CH-223191X30° M) for 5 days. Cytokine expression was
determined by ELISA and correlations between variaugets were calculated with spearman’s ranleledion coefficient.

The transcription of the cytokinéBsNy, IL17 andIL26 correlated positively with thaHRtranscription

in most treatments when FICZ and/or 1-PP were ptasdhe culture medium, but not in the vehicle
control. IL17, IFNy and IL26 showed significant and positive correlations, lh#? did not correlate
significantly. Whereas cytokine transcription imeld to be positively correlated witAHR
transcription, cytokine expression on protein legiel not correlate withAHR transcription in any

treatments. Correlation coefficients and p-valuessammarised in Table 39.
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3.3.3. Correlations betweeAHR and c-Kit expression

Correlation analyses were used to study dependeheisveen the transcription of tA&IR gene and
the c-Kit protein on gated PBMCs. The c-Kit expressvas analysed by flow cytometry. To analyse
correlations between various targets spearman’s carrelation coefficients were calculated and

significant p-values were marked in red.
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Figure 23. Correlations betweemAHR and c-Kit expression on CD3 and CD3 PBMCs

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),

the CYPL1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191x(30°¢ M) for 5 days. c-Kit expression was analysed
by flow cytometry and correlations between varitargets were calculated with spearman’s rank aiioel coefficient. Dot
plots with significant p-values are indicated id.re

The transcription of th&HR gene was negatively correlated with the c-Kit esgion on CD3and
CD3 cell populations. Results indicated negative tsethating FICZ and 1-PP single treatments and in
co-treated cells, but not in treatments with DMS@nificant changes in single treatments with FICZ
were detected on CDBD4", on CD3 and on CDXD56 cell populations. In 1-PP and FICZ
co-treated cells, significant correlations wereedtgtd in CD3CD4*, CD3'CD8", CD3 and CD3CD56

cell populations (Figure 23).
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In conclusionAHR transcription was strongly and positively correthtvith the transcription of genes
involved in the anti-oxidative response downstredr@YP (NRF2 NQOJ1) and withHIF1A in most
treatments including DMSO control. Cytokine tramsiion was positively correlated witAHR
transcription, whereas a correlation on proteimlevas not found. The transcription@¥Pgenes and
of cytokines clearly changed in human immune ocghen FICZ was present in the culture medium.
Additionally, AHR transcription was negativelyorrelated withCYP1Altranscription. In contrast to
this, cells with a highAHR transcription showed a hig8YP1B1transcription. Significant negative
correlations were detected betwefHR and c-Kit expression levels. Correlation coefintge and
p-values are summarised in Table 39. The correlataf CYP1A]1 IL17, IFNy andc-Kit with the
transcription ofAHR were unexpected and inconsistent with the experisnef AHR activation by
FICZ.

3.3.4. Correlations betweeNRF2 and the transcription of genes involved in the AHR

pathway

The AHR pathway closely acts together with the NRBEthway for anti-oxidative and cytoprotective
responses. Correlation analyses were used to 8tedglations between the transcriptiolNétF2and

the transcription of genes related to the AHR pathWRelative gene expression was calculated to the
medium-only control and correlated wilRF2transcription. To analyse correlations betweelouar

targets, spearman’s rank correlation coefficiemiewsed and significant p-values were markeddn re

6C



Results

1-PP+FICZ+
DMSO FICZ 1-PP 1-PP+FICZ
CH-223191
2.0; 2.0, 2.0, 2.0; 2.0,
— 1.5] 1.5] 1.5] 1.5] . ° 15|
*
(@] ° o L
o 1.0f , o . 1.0 *, 1.0 a® . 1.0f . e 1.0f o e
= 0.5] 0.5 L 0.5 i 0.5] * 0.5] e
0.0l 0.0l 0.0 0.0l 0.0
2.0, 2.0, 2.0, 2.0, 2.0,
E 15 1.5 . 1.5 ° 15 o 1.5] °
. [P oo
e [ ]
o 1.0] o 1.0] . o 1.0] Se o 1.0] e 8 10| co®
L]
< 0.5] ® 0.5 . 0.5 . 0.5] ° 0.5
0.0 0.0 0.0 0.0 0.0
2.0, 2.0, 2.0, R 2.0, 201
L]
5 1.5] 1.5] . 1.5] 1.5] ° ®
o . . . 1.5] .
] [ ]
= 1.0f . o 1.0 o 1.0 «® 1.0f & 10| oe®
T o® . e U
0.5] 0.5 0.5 0.5 0.l °
0.0l 0.0l 0.0 0.0l ool
0.0 05 1.0 15 20
2.0, 2.0, 2.0, 6.0, N 2.0,
L ] L]
L]
— 1.5] 1.5] 1.5] . . ol . 15| )
< L}
< 1.0f .’ 1.0 e % 1.0 e . N . 1.0f .
o5 ® o 0.5] oo 0.5] LI : 0.5] *
0.0l 0.0 0.0l 0.0l 0.0
2.0, 15 15 15 L5
N
0) 15 1.0 1.0 1.0f 10|
1.0{ ° L] *
8 “. 0.5 ® o 0.5 oo 0.5] o 0.5] o o
< 0.5{ . . o oo . «* O . o« °% o
0.0 0.0 0.0 0.0 0.0
2 2.0, . 80; 404 . 1500, 200y .
L]
< 1.5] . . 60] 30] 1000 o 150|
o 1.0{ o ® 40 20f . 100] .
> o * . 500] o
.. L ]
O 0.5 20] 10] . e » 50] < .
'Y e - e ® 'Y
0.0 o o 0 o
! 0 0 o, 5.0,
- 2.0, 2 2 - 2 R
‘cﬂ 15| 1.5] . 1.5] . 154 P 4.0 .
o 1.0 1.0 °* 1.0 b . . 10{ zg
> e 0@ ° - °
. ) % o L4
O 0.5] . : 0.5] L4 0.5] . 51 . 10| e ®o
0.0l 0.0l 0.0l 0 0.0
2.0y 2.0 2.0y 2.0 2.0
H 3
L]
& 1.5] 1.5] s 1.5] 1.5] ., 1.5
1Y . . .
o 1.0{ . 1.0 F 1.0 . 1.0 L0
> ) . . *
0.5 . f 0.5 0.5 * 0.5 0.5
O (Y] e o e o ®
0.0l 0.0l 0.0l 0.0l 0.0
4.0, 4.0, 4.0, 40, 4.0,
L]
y) 3.0f 3.0f . 3.0f . 3.0f 3.0 *.
[ X ]
O 2.0| 2.0| S 2.0] * . 2.0] . o 2.0 o
e
E 1.0f . 10| * 10| 10| . 10| °
® e o e o [ L] o o
00 00 00 o 00 d 0.0 °
00 05 10 15 20 00 05 10 15 20 00 05 10 15 20 00 05 10 15 20 00 05 10 15 20

NRF2

Figure 24. Correlations betweeNRF2 and genes coding for transcription factors, XMEs ad c-Kit

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),

the CYP1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191x(80® M) for 5 days. Gene transcription was analysed
by qRT-PCR, target gene expression was normalis&fFid\ as a housekeeping gene, relative expression iadatad to
medium-only control and correlations between vagitargets were calculated with spearman’s ranlelation coefficient.
Dot plots with significant p-values are indicatedéd.
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Similar to the correlations with thAHR transcription, an increasedRF2 transcription showed
significant and positive correlations withlF1A transcription in most treatments including vehicle
control, and positive correlations witlQO1andARNT The transcription of thKIT and theABCG2
genes did not correlate withRF2 transcription. The transcription of ti&YP1lgenes showed only a
weak correlation wittNRF2gene expression, however, the transcriptic@\oP1AlandCYP1Blgenes
showed inverse trends. Although transcription @YP2S1and PTGS2 were not significantly
co-regulated withNRF2 transcription, both showed trends for positiverelations. Correlation

coefficients and p-values are summarised in Ta®le 3
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3.3.5. Correlations betweeNRF2and cytokine expression

Correlation analyses were used to study relatietaden the transcription of tHéRF2 gene and

cytokine expression. Cytokine expression was détethby gRT-PCR (Figure 25) and ELISA

(Figure 26). Gene transcription was normaliself@Aas a housekeeping gene and relative expression

was calculated to medium-only control. Cytokine aamtrations were determined in the cell culture

supernatants, normalised to the proliferation atated to the medium-only control as fold regulatio

Fold expressions on RNA and protein level wereetated with theNRF2fold expression. To analyse

correlations between various targets spearman’s carrelation coefficients were calculated and

significant p-values were marked in red.
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Figure 25. Correlations betweerNRF2 and cytokine transcription
PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),

the CYP1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191430°% M) for 5 days. Cytokine transcription was
analysed by qRT-PCR, target gene expression was liseohdo EF1A as a housekeeping gene, relative expression was
calculated to medium-only control and correlatibeswveen various targets were calculated with spaaimrank correlation
coefficient. Dot plots with significant p-valuesandicated in red.
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Figure 26. Correlations betweeNRF2 and cytokine expression

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),

the CYPL1 inhibitor 1-PP (1OM) and the AHR antagonist CH-223191x(30% M) for 5 days. Cytokine release was analysed
by ELISA, normalised to proliferation and fold rdgion was calculated to medium-only control. Ctatiens between
various targets were calculated with spearman’s carrelation coefficient. Dot plots with significep-values are indicated
in red.

The transcription of théNy and thelL26 genes tended to be positively correlated with N2
transcription when FICZ or 1-PP were present indhkure medium, but not in the vehicle control.
Although IFNy andIL26 showed significant and positive correlations, s@iption ofIL17 andIL22
was not significantly co-regulated wihRF2 expressior(Figure 25). Whereas cytokine transcription
inclined to be positively correlated withRF2 transcription, cytokine expression on protein ladid
not show any correlation witiRF2transcription (Figure 26). Correlation coefficigmind p-values are

summarised in Table 39.
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3.3.6. Correlations betweeNRF2and c-Kit expression

Correlation analyses were used to study relatipsshétween the transcription of tNRF2gene and
of c-Kit expression on gated PBMCs. The c-Kit egien on various target cells was analysed by flow
cytometry. To analyse correlations between varitangets spearman’s rank correlation coefficients

were calculated and significant p-values were n@rkeed.
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Figure 27. Correlations betweerNRF2 and c-Kit expression on CD3 and CD3 PBMCs

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 10° M),

the CYP1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191x(20® M) for 5 days. c-Kit expression was analysed
by flow cytometry and correlations between varitargets were calculated with spearman’s rank aiioel coefficient. Dot
plots with significant p-values are indicated id.re

The transcription of th&lRF2gene tended to be negatively correlated with ceiiression on CD3
and CD3PBMCs. Significant negative correlations of c-Expression witiNRF2transcription were
only calculated in the CDXell compartment, however, trends were detectabl€D3*CD4* and

CD3'CD8' T cells (Figure 27). Correlation coefficients gntélalues are summarised in Table 39.
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In conclusion NRF2transcription was positively correlated with theniscription oNQOL ARNTand
HIF1A. Correlations ofNRF2 transcription withCYP and cytokine transcription levels changed in
individuals when FICZ was present in the culturedimm. Cytokine transcription inclined to be
positively correlated wittNRF2transcription whereas a correlation was not foomgrotein level. The
KIT andABCG2transcription levels did not correlate witiRF2 Additionally, CYP1B1transcription
was positively correlated, where&YP1Al transcription was negatively correlated wiNRF2
transcription. Significant negative correlationsrevéound betweeNRF2and c-Kit expression in the

CD3 compartment.

3.3.7. Correlations between viability and the transcriptiof genes involved in the AHR

pathway

The AHR pathway closely acts together with the NRBthway for anti-oxidative and cytoprotective
responses. To examine whether viability and taggeie expressions were co-regulated, correlations
between viability and gene or protein expressiaeliewere analysed. Viability was measured with
LDH assay and medium control was set to 100%. Talyae correlations between various targets

spearman’s rank correlation coefficients were daled and significant p-values were marked in red.
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Figure 28. Correlations between viability and genesoding for transcription factors, XMEs and c-Kit
PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),

the CYP1 inhibitor 1-PP (10M) and the AHR antagonist CH-223191x(B0® M) for 5 days. Gene transcription was analysed

with gRT-PCR, target gene expression was normalsEfFi Aas a housekeeping gene and relative expressionaiagated

to medium-only control. Viability was measured bpH. assay. Correlations between viability and taggete transcription

levels were calculated with spearman’s rank cdiogl@oefficient. Dot plots with significant p-vaa are indicated in red.
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Whereas significant correlations between viabgihd target gene transcription were only detected in
the correlations with the transcriptionQO1andCYP2S]1negative trends could be also detected in
the correlations between viability addHR NRF2 NQO1, ARNTandHIF1A gene expression. The
transcription levels o€YP1BlandCYP2Slwere slightly and negatively correlated with thability,
whereas the transcription &YP1Alindicated positive trends. No trends were detetaedIT and
ABCG2 transcription levels with viability (Figure 28).o@elation coefficients are summarised in
Table 39.

3.3.8. Correlations between viability and cytokine express

Cytokine expression was determined by gRT-PCR dri®A& Gene transcription was normalised to
EF1Aas a housekeeping gene and relative expressiooaMagated to medium-only control. Cytokine
concentrations in the supernatants were normalisprbliferation, related to medium-only controban
fold regulations were correlated with viability nse@ed by LDH. To calculate correlations between

various targets spearman’s rank correlation coeffis were used and significant p-values were ntarke

in red.
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Figure 29. Correlations between viability and cytokne transcription

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),

the CYP1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191 30 M) for 5 days. Cytokine transcription was
determined by gRT-PCR, target gene expression wasatised toEF1Aas a housekeeping gene and relative expression was
calculated to medium-only control. Viability wastelenined by LDH assay. Correlations between vigb#ihd various
cytokines were calculated with spearman’s ranketation coefficient. Dot plots with significant @ues are indicated in red.
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Figure 30. Correlations between viability and cytokne expression
PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),
the CYP1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191x30°% M) for 5 days. Cytokine expression was

determined by ELISA and viability by LDH assay. Gxations between viability and cytokines were chdtad with
spearman’s rank correlation coefficient. Dot pleith significant p-values are indicated in red.

On RNA level the cytokine$L22, IL17, IFNy andIL26 inclined to be negatively correlated with
viability (Figure 29). By trends, IL-22, IL-17, IFMand IP-10 proteins were negatively correlated with
viability (Figure 30) in co-treated cells. Corretat coefficients and p-values are summarised in
Table 39.
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3.3.9. Correlations between viability and c-Kit expression

Correlation analyses were used to study dependeheigveen viability and c-Kit expression on gated
PBMCs. The c-Kit expression was analysed by flotometry. Viability was measured by LDH assay
and medium control was set to 100%. Spearman’s carklation coefficients were calculated and

significant p-values were marked in red.
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Figure 31. Correlations between viability and c-Kitexpression on CD3and CD3 PBMCs

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),

the CYPL1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191x(30°¢ M) for 5 days. c-Kit expression was analysed
by flow cytometry and viability by LDH assay. Comibns between viability and c-Kit expression weedculated with
spearman’s rank correlation coefficient. Dot pleith significant p-values are indicated in red.

Although positive trends were determined, neithBd@-Kit* nor CD8c-Kit* cells showed significant

correlations with viability (Figure 31). But vialtit was significantly and positively correlated kit

c-Kit on CD3 cell populations during 1-PP treatment.

In conclusion, less significant correlations weoerfd for viability with XME, cytokine and c-Kit
expression levels. By trends, viability correlatesbative withAHR, NRF2 NQOJ1, HIF1A, ARNT,
IL22, IL17, IFNy, IL26 andCYP1B1 transcription levels, particularly during AHR ibition. Similar

trends were detected when viability was correlatil the cytokine protein expression. A significant

negative correlation with IL-22 was not detectedRiWA level but on protein level, and trends were
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shown for IL-17, IFNy and less for TNkt and IP-10. The transcription of tKéT gene did not show
a correlation on RNA level, however, positive trendere detected with c-Kit expression on protein

level.

3.3.10. Correlations betwee@YP1AlandCYP1Blduring 1-PP and FICZ treatments

The AHR agonist FICZ is a potent substrate for @1 enzymes. Both CYP1Al1 and CYP1B1
enzymes are preferentially expressed in extrahepssiues. Previous data examined @éP1Aland
CYP1B1lgene transcriptions correlated differently wAKR and NRF2 expression levels and with
viability. Following these results, correlationstweenCYP1AlandCYP1Blgene expression levels
were analysed in seven healthy subjects during FIQZ 1-PP treatments. It was also invesigated in
detail whether the ratio d€YP1Aland CYP1B1correlated with the expression of AHR pathway
compounds during CYP1 inhibition.
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Figure 32. Correlations betweerCYP1A1 and CYP1B1 transcription

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),

the CYP1 inhibitor 1-PP (10M) and the AHR antagonist CH-223191x(30° M) for 5 days. Gene transcription 6¥P1A1l
andCYP1B1lwas analysed by qRT-PCR. Target gene expressionavamlised t&EF1Aas a housekeeping gene and relative
expression was calculated to medium-only contfol.Correlations ofCYP1Aland CYP1B1with AHR transcription in
co-treated (1-PP + FICZ) PBM(B. Correlations betwee@YP1AlandCYP1B1in all treatments. Dot plots with significant
p-values are indicated in red. Summarised figure of B. Ratios betwee@YP1AlandCYP1B1during treatment. Boxplots
show medians, interquartile ranges (box) and ranfiseven different subjects. Wilcoxon rank testgaired samples was
used to compare treatments (*p < 0.05).
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Table 29.CYP1 ratios

Test subjecy DMSO FICZ 1-PP 1-PP + FICZ 1-PP + FICZ + CH-223191

1 2.60 103.89 44.77 408.53 140.84

2 1.52 10.34 6.99 74.71 39.05

3 261 4.70 9.75 2481 27.99

4 2.65 11.46 24.04 23.34 35.47

5 1.54 4.33 8.97 41.34 17.12

6 141 2.35 4.07 7.42 6.21

7 2.85 18.16 15.22 195.63 85.34

The transcription of théHR gene was down-regulated during FICZ and 1-PP eatirent. In all
individuals theCYP1AlandCYP1Blgenes were induced during FICZ and 1-PP co-tredtr8eibjects
with an unregulatedHR gene (Figure 32, A, x=1) showed a stronger inductif theCYP1Blgene
than individuals with a down-regulat&fHR (Figure 32, A, x<1). TheCYP1Algene indicated the
opposite. When cells were co-treated with 1-PP BI€EZ, a significant negative correlation was
detected betweeDYP1AlandCYP1Bliranscripts (Figure 32, B). Non-significant trengere analysed

in the FICZ and 1-PP single treatments, and iltR®, FICZ and CH-223191 co-treatment (Figure 32,
B). Addition of the CYPL1 inhibitor 1-PP to a low®Z concentration significantly increased the
CYP1AICYP1Blratio (Figure 32, D). This means a stronger inidumcdf theCYP1Algene than of the
CYP1Blgene. Figure 32 and Table 29 summariS¥®1A1/CYP1Biatios of all treatments.
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3.3.11. Correlations betwee@YP1ratio and viability

Inverse correlations between the transcriptionhefGYP1Aland CYP1Blgenes were examined in

previous experimentsThe transcription of theCYP1Algene was negatively correlated with the
CYP1Bltranscription and differences in the regulationtlué CYP1ratio were analysed. As CYP

produce reactive intermediates, which could havetoyic effects, viability was correlated wiGyP1

ratio.
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Figure 33. Correlations betweerCYP1 ratio and viability

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),

the CYP1 inhibitor 1-PP (10M) and the AHR antagonist CH-223191X30% M) for 5 days.CYP1AlandCYP1Blgene
transcriptions were analysed by qRT-PCR, target ggpeession was normalisedE61A as a housekeeping gene. Relative
expression was calculated to medium-only contrdl ratios between both were calculated. Viabilityswlatected with LDH
assay. Correlations betwe€YP1A1/CYP1Bifatio and viability were calculated with spearngargnk correlation coefficient.
Line indicate 100%.

The correlations between tl@YP1A1/CYP1BRNA ratio and viability showed positive but not
significant trends in 1-PP and FICZ single and reatied cells. An increased ratio with a high
transcription of th&€€YP1Algene correlated with an increased viability patéidy in co-treated cells,

and when the AHR antagonist CH-223191 was presehei culture medium Figure 33.
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3.3.12. Correlations betwee@YP1ratio and the transcription of genes involvedha AHR

pathway

Inverse correlations between the transcriptionhefGYP1Aland CYP1Blgenes were examined in
previous analysesCYP1Altranscription was negatively correlated wiltYP1B1transcription. To
study the relationship between CYP1 #&idR NRF2 ARNT, HIF1A, XMEnd cytokine transcription

levels,CYP1ratio was correlated with the transcription ofstagarget genes.
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Figure 34. Correlations betweerCYP1 ratio and genes coding for transcription factors XMEs and c-Kit
PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 10° M),

the CYP1 inhibitor 1-PP (19M) and the AHR antagonist CH-223191 X310® M) for 5 days.CYP1Aland CYP1B1
transcriptions were analysed by gRT-PCR, target gepeession was normalisedE&1Aas a housekeeping gene and relative
expression was calculated to the medium-only céntRatios between both were calculated. Correlatibrveen
CYP1A1l/CYP1BHtatio and target gene transcription levels weleutated with spearman’s rank correlation coeffiti®ot
plots with significant p-values are indicated id.re
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3.3.13. Correlations betwee@YP1ratio and cytokine expression
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Figure 35. Correlations betweerCYP1 ratio and cytokine transcription

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),
the CYP1 inhibitor 1-PP (10M) and the AHR antagonist CH-223191X30° M) for 5 days. Transcription c€YP1A1l
CYP1B1land cytokines was analysed by gRT-PCR, target ggmession was normalised E-1Aas a housekeeping gene,
relative expression was calculated to medium-oolytol and ratios between both were calculatedrelations between
CYP1A1/CYP1Biatio and cytokine transcription were calculatéthwpearman’s rank correlation coefficient. Dattphith
significant p-values are indicated in red.
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Figure 36. Correlations betweerCYP1 ratio and cytokine expression

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),

the CYP1 inhibitor 1-PP (1®M) and the AHR antagonist CH-223191x30% M) for 5 days.CYP1AlandCYP1Blgene
transcriptions were analysed by qRT-PCR, target gepeession was normalised EF-1A as a housekeeping gene, relative
expression was calculated to the medium-only coaind ratios between both were calculated. Expoessi cytokines was
determined by ELISA. Correlations betwe€lYP1A1l/CYP1B1latio and cytokine protein expression was caledlatith
spearman’s rank correlation coefficient. Dot pleith significant p-values are indicated in red.

The correlations between ti@YP1ratio and the transcription of genes related ® AR pathway
indicated negative decays with almost all targdimyure 34). The correlations with cytokine
transcription indicated negative decays when FIG¥ ypresent in the culture medium, but not in
treatments with the vehicle control (Figure 35 &iglire 36). These effects were less present oriprot
level. On RNA level but not on protein level, addit of the CYP inhibitor 1-PP alone reorganised
correlations compared with DMSO control (FigureaB®l Figure 36). ThEYP1ratio was significantly
correlated with the transcription of thEN )y andIL26 genes (Figure 35). The protein expression of

cytokines did not show any significant correlations
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3.3.14. Correlations betwee@YP1ratio and c-Kit expression
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Figure 37. Correlations betweerCYP1 ratio and c-Kit protein expression

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),

the CYP1 inhibitor 1-PP (10M) and the AHR antagonist CH-223191x30° M) for 5 days.CYP1AlandCYP1Blgene
transcriptions were analysed by qRT-PCR, target ggpeession was normalised E-1A as a housekeeping gene, relative
expression was calculated to medium-only controll aatios between both were calculated. Correlatibesnveen
CYP1A1/CYP1Btatio and c-Kit protein expression were calculatéith spearman’s rank correlation coefficients. plots
with significant p-values are indicated in red.

Wherea<KIT transcription did not correlate withYP1ratio on RNA level, positive trends &fYP1
ratio with c-Kit protein were detected during traants. Significant correlations betwe€P1lratio
and c-Kit on CD3 and CD3 cell populations were detected when FICZ was mtesethe culture

medium (Figure 37).
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3.3.15. CYP1ratio correlated with the expression of AHR targetes and cytokines

Correlation coefficients and p-values were sumredriss heatmaps.
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Figure 38. Correlation coefficients and p-values bheveen CYP1A1L/CYP1B1 ratio and target gene

expression

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),
the CYPL1 inhibitor 1-PP (10M) and the AHR antagonist CH-223191 X310°% M) for 5 days. Correlations between
CYP1A1l/CYP1Btatio and target gene expression on RNA and prtgeal were calculated with spearman’s rank caiicaia
coefficient. Coefficients and p-value were plottacheatmaps. Shown are correlations betw2¥éR1ratio andAHR, NRF2
NQO1, ARNT, HIF1A CYP2S1, PTGS2L22, IL17, IFNy, IL26, ABCG2andKIT genes, betwee@YP1ratio and IL-22,
IL-17, IFN-y, IP-10 and TNFa cytokines, viability, and c-Kit receptor expressiun CD3 and CD3PBMCs.

The correlations o€ YP1ratio with target gene transcription were blosctheatmaps and summarised
previous findings. Subgroups of investigated taggetes correlated either stronger with a I@ytP1B1

and a highAHR transcription (green), or with a higgYP1Aland a lowAHR transcription (red).
Negative trends were detected WARR NRF2 NQO1, ARNT, HIF1A, CYP2Shd PTGS2in all
treatments and vehicle control. Correlations ofaytekineslL22, IL17, IFNy andIL26 with theCYP1
ratio changed to a negative correlation when FI@2 present in the culture medium. This was less in
single treatments with 1-PP. Significant p-valuesMeenCYP1lratio andAHR NRF2 NQO1, HIF1A,
ARNT, CYP2S1PTGS2, IFN andIL26 reflected these correlations. c-Kit expressiommdjechanged

to a positive correlation when FICZ was added &dilture medium. These effects were also detected
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in co-treated cells and when the AHR antagonist228191 was added. c-Kit on both CC#hd CD3
cells significantly correlated with th@YP1ratio. Correlation coefficients and p-values amamarised
in Table 39. Conclusively, correlations of targehg expression with tH@YP1ratio indicated that the
selected compounds were differently correlated withCYP1ratio and as shown previously with a

high or lowAHR transcription.

3.4. Analyses of 1-PP-dependent effects on the regulatidAHR pathway targets in human
PBMCs

To investigate differences between 1-PP conceatratihat either inhibited CYP1AL activity alone
(107 M) or the activities of CYP1A1 and CYP1B1 (4®) in the experiments with CYP1 cell lines
(Figure 12), human activated PBMCs were treated thizse two different 1-PP concentrations. PBMCs
were treated with 1-PP alone, 1-PP in the presefi€ECZ (5x 101° M) or 1-PP, FICZ and CH-223191
(3x10° M) for 5 days.

3.4.1. 1-PP-dependent transcription of genes relatede@®HR pathway

The transcription of genes related to the AHR pathand of cytokines were analysed by gRT-PCR.
Ci-values were normalised EF1Atranscription and relative expression levels toinmagonly control
were calculated. Among the transcription factox®ived in the AHR pathway and in oxidative stress
responseAHR, NRF2and ARNT were slightly but significantly up-regulated wit©4@ M 1-PP in
PBMCs treated with 1-PP alone. An increased 1-Riearttration did not chandd¢RF2 AHR, ARNT
andHIF1A transcription levels in co-treated PBMCs (Figugy. Mean fold changes are summarised
in Table 40. Among target genes related to the AtdBway KIT transcription was induced with a
1-PP concentration of POM. Significant effects were detected in FICZ ccatel cells and when
PBMCs were treated with 1-PP alone. Neit®BCG2 NQOL nor PTGS2 were significantly
up-regulated in a concentration-dependent mannecorcentration of I1®M 1-PP significantly
decreased\BCG2transcription in 1-PP, FICZ and CH-223191 co-trde®8MCs (Figure 39). Mean
fold changes are summarised in Table 40. BOitP1AlandCYP1Blgenes were significantly induced
in FICZ and 1-PP co-treated cells wher€x¥92Swas unaffected by higher 1-PP concentrations. 1-PP
with a concentration of 10V additionally induced the transcription 6 P1LAlwhen CH-223191 was

added into the culture medium. Mean fold changesammarised in Table 40.
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Figure 39. 1-PP-dependent regulation of genes inw@d in the xenobiotic response— RNA level

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),
the CYP1 inhibitor 1-PP (1®M or 107 M) and the AHR antagonist CH-223191x30°¢ M) for 5 days. RNA expression
levels of target genes related to the AHR pathvidiK2 AHR NQO1, ARNTHIF1A, KIT, ABCG2, CYP1Al, CYP1B1,
CYP2S1andPTGS2 were analysed by gqRT-PCR. Target gene expressiasmarmalised t&F1Aas a housekeeping gene
and relative expression was calculated to mediulyp-ocontrol. Significant differences between 1-PRaentrations were
calculated with Wilcoxon rank test for paired saesp{*p < 0.05).
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3.4.2. 1-PP-dependent transcriptionla2, IFNy, IL17 andIL26
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Figure 40. 1-PP-dependent cytokine transcription

PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),
the CYP1 inhibitor 1-PP (1OM or 107 M) and the AHR antagonist CH-223191x(30° M) for 5 days. Transcription levels
of genes coding for cytokines were analysed by g RRarget gene expression was normalisdeRbA as a housekeeping
gene and relative expression was calculated tourredinly control. Significant differences betweeRR-concentrations were
calculated with Wilcoxon rank test for paired saesp{*p < 0.05).

Regarding the 1-PP-dependent regulation of diftecgtokines, transcription di.22 andIL26 was
significantly induced by 1M compared with 10M 1-PP in PBMCs treated with 1-PP alone. Positive
trends for the transcription of the22 gene were also detected in co-treated PBMCs. Csinely,
induction of theCYP1A1CYP1B1KIT, IL22 andIL26 genes by a higher 1-PP concentration underlined
previous results that an augmented CYP1 inhibiticreased AHR-regulated targets in human immune

cells (Figure 40 and Figure 39). Mean fold charayessummarised in Table 40.
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3.4.3. 1-PP-dependent expression of IL-22, IL-17, IsNFNF-o. and IP-10

Human activated PBMCs were treated with FICZ, 1fRBZ and 1-PP or FICZ, 1-PP and CH-223191
for 5 days. Cytokines in the supernatants wereyapdl by ELISA, data were normalised by

proliferation and fold expressions related to madnly control are shown.
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Figure 41 1-PP-dependent cytokine production
PBMCs (3 x 10 cells/well) activated with anti-CD3/CD28 antibodies were treatéti the AHR agonist FICZ (& 101° M),
the CYP1 inhibitor 1-PP (1OM or 107 M) and the AHR antagonist CH-223191x(B0® M) for 5 days. Significant differences

between 10 M 1-PP and 18 M 1-PP were calculated with Wilcoxon signed-randt fer paired samples (*p < 0.05).

Compared with 10 M 1-PP, a concentration of #® 1-PP slightly decreased the expression of IL-17
in 1-PP and FICZ co-treated cells and of IP-1thim1-PP, FICZ and CH-223191 co-treatment. Other
investigated cytokines were not significantly regatl by 1-PP on protein level. However, IL-22 and
TNF-a were down-regulated by trends with a concentratioh0® M 1-PP in the 1-PP and FICZ, and
in the 1-PP, FICZ and CH-223191 co-treatments (f€iglL). Mean fold changes are summarised in
Table 41.
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3.4.4. 1-PP-dependent expression of c-Kit and IL-22 on C&igl CD3PBMCs

Activated PBMCs were treated with 1-PP, 1-PP ar@iZl-br FICZ, 1-PP and CH-223191 for 5 days.
The 1-PP-dependent regulation of c-Kit and IL-22datermined by flow cytometry.
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Figure 42. 1-PP-dependent regulation of c-Kit in CB3*and CD3 PBMCs

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 100 M),
the CYP1 inhibitor 1-PP (1OM or 107 M) and the AHR antagonist CH-223191x(B0¢ M) for 5 days. Frequencies of c-Kit
and IL-22 cells were analysed by flow cytometry. Significdifferences between 1-PP concentrations were ledgmliwith
Wilcoxon signed-rank test for paired samples (n2@)< 0.05).
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A significant concentration-dependent regulationtte c-Kit protein on CDZD4" or CD3CD8"

T cells was not detected. The frequency of ¢iKiR2* cells was significantly reduced with a
concentration of 1® M 1-PP in the 1-PP and FICZ, and in the 1-PP, Fidwl CH-223191
co-treatments. In single treated cells, a highPPleoncentration significantly reduced c-Kit on CD3
and on CD3CD56 PBMCs. In the other treatments, c-Kit on C2&lls showed similar but not

significant tendencies (Figure 42). Mean fold clemgre summarised in Table 41.
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3.4.5. 1-PP-dependent viability and proliferation

To analyse toxic or proliferative effects of FICZdal-PP treatments, viability was determined by LDH

assay and flow cytometry. For LDH assay, mediuntrobmvas set to 100%. Proliferation of cells was
analysed byH-thymidine assay.
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Figure 43. Concentration-dependent regulation of \bility and proliferation

PBMCs (3 x 18 cells/well) activated with anti-CD3/CD28 antibodies were treatitti the AHR agonist FICZ (% 10° M),
the CYP1 inhibitor 1-PP (1OM or 107 M) and the AHR antagonist CH-223191x18% M) for 5 days. Viability was
determined by LDH or with flow cytometry (FACS). 8ificant differences between 1-PP concentrationrewalculated with
Wilcoxon signed-rank test for paired samples (n2@)< 0.05).

The LDH experiments indicated an increased viahilith a higher 1-PP concentration. No changes in
viability were detected by flow cytometry. Proliégion was slightly increased with a concentratibn o
10°M 1-PP in 1-PP, FICZ and CH-223191 co-treatedscdlhese data indicated that a higher 1-PP
concentration was less toxic in the conducted exymats.
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3.5. Characterisation of splenocytes fr@gypla2knockout mice and C57BL/6 mice

The data indicated that CYP1 inhibition in humarMREs increased AHR target gene expression. Thus,
CYP1-mediated AHR activation takes place in humBMEs treated with 1-PP in the presence of a
low FICZ concentration. To test whether genomicetieh of CYP expression also affects IL-22
expression in mice, splenocytes fr@ypla2knockout mice were treated with FICZ alone orhia t
presence of CH-223191.

3.5.1. CYP-dependent IL-22 regulation @yplazknockout mice and C57BL/6 mice

To investigate the mechanism of CYP1-mediated AlfRvation in murine immune cells, splenocytes
of eitherCypla2knockout or C57BL/6 (wt) mice were investigated lo-22 expression. Splenocytes
were activated with anti-CD3/CD28 and treated WHEZ (5 x 10'°M) or FICZ and CH-223191
(3 x 10°® M) for 3 days. IL-22 and IFN-were determined in CD4nd CD8 splenocytes by flow

cytometry.
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Murine splenocytes were activated with anti-CD3/@R2tibodies. The AHR agonist FICZX3.0'° M) was used alone or together with the AHR antigddH-223191 (X 10° M) for 72 h.

Figure 44. IL-22 and IFN-y expression in CD4 and CD8 splenocytes isolated fronCypla2 knockout mice
Percentages of IL-22and IFN/* cells in CD4 and CD8 splenocytes were analysed by flow cytometry (n#%8)ans + s.e.m are shown.
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Splenacytes fronl€yplazknockout mice had a higher percentage of IL.-@3Is than splenocytes from
C57BL/6 mice. InCypla2knockout mice, treatment with FICZ increased tlegiiency of IL-22 and

of IL-22°IFN-y* cells in both the CD4and the CD8compartment. CD4splenocytes fronCypla2
knockout mice showed a higher frequency of singMyf cells than splenocytes from C57BL/6 mice.
This effect was not detected in the C®mpartment. However, the percentage ofyiFbells was
higher in CD8 splenocytes than in CD4plenocytes. Treatment of murine splenocytes ®iGY did
not affect the frequency of IFN cells, and IL-22cells were only marginally reduced by the addition
of the AHR antagonist CH-223191 (Figure 44).
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3.6. AHR and CYP1-induced feedback pathways were aagtiRBMCs from CMCD
patients

3.6.1. High-dose FICZ induce@YP1A1KIT andIL22 in CMCD

IL-22 and IL-17 levels deviate in patients suffgrimom aSTAT1dependent CMC disease (CMCD)
compared with healthy donors. In the following expents, FICZ in a high concentration was tested
for the possibility to induce the AHR pathway ahd tytokine IL-22 in PBMCs from CMCD patients.
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Figure 45. FICZ regulated CYP1AL, KIT and cytokine transcription in PBMCs from CMCD patients
PBMCs (3 x 18 cells/well) were activated with anti-CD3/CD28 antilis with the AHR agonist FICZ (¥0M) or with FICZ
in the presence of the AHR antagonist CH-223191 18'%M) for 5 days. Transcription levels were analysgdjRT-PCR.
Means + s.e.m. are shown (n=2).
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Human activated PBMCs from healthy subjects and OMgatients were treated with a high
concentration of FICZ (XOM) or with FICZ in the presence of the AHR antagbor@H-223191 for

5 days. DMSO in all treatments was adjusted tstme concentration and transcription of genes was
analysed with gRT-PCR. On mRNA lev€lYP1A1KIT andIL22 were induced in healthy subjects and
in CMCD patients by FICZ, but not by the vehiclenttol (DMSO) (Figure 45A-C). Compared with
healthy subject®€CYP1A1KIT, IL22 andIL17 transcription levels inclined to be differenthgreated

in CMCD patientsCYP1AlandIL22 were lower, wheredsIT transcription showed a higher induction
in CMCD patients than in healthy dondisl7 was strongly down-regulated by FICZ in CMCD patsen
and to a lesser extent in healthy subjects. Theesgwn oAHRwas marginally reduced by the addition
of FICZ in both healthy subjects and CMCD patiesusl differences between healthy subjects and
CMCD patients were not detected. The addition efAlHR antagonist CH-223191 to FICZ changed
the FICZ effects only marginally (Figure 45 A-Epl& changes are summarised in Table 42.

3.6.2. High-dose FICZ induced IL-22 but not IL-17 and 18ih CMCD

The induction of AHR-regulated genes with a higBZIconcentration showed that the AHR pathway
could be activated in PBMCs from CMCD patients.efAf6 days, supernatants of activated PBMCs
were analysed for IL-22, IL-17 and IP-10 expresdiwels by ELISA. Raw data of cytokine release

were normalised by proliferation.
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Figure 46. FICZ regulated IL-22, IL-17 and IP-10 inPBMCs from CMCD patients

PBMCs (3 x 10 cells/well) were activated with anti-CD3/CD28 antiies in presence of the AHR agonist FICZ (10)
alone or together with the AHR antagonist CH-2231®% {08 M) for 5 days. Cytokine expression was determimgd
ELISA. Means * s.e.m. are shown (n=2).
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In all treatments, IL-17 and IL-22 were determireith lower concentrations in CMCD patients than
in healthy donors. This was shown in both raw aadmalised data. The addition of FICZ induced
IL-22 expression in CMCD patients and in healthgtoals. The normalised data showed that IP-10, a
cytokine downstream of STAT1, was detected witthhiglevels in CMCD patients than in healthy
individuals. Similar to the RNA data, the additiohCH-223191 has less effects on PBMCs treated
with a high dose of FICZ. Fold changes are sumrediiis Table 43.

3.6.3. High-dose FICZ induced c-Kit in CMCD

Following the results oKIT induction on mRNA level, FICZ-dependent regulataire-Kit protein in
PBMCs from CMCD patients and healthy donors wasréxad. Activated PBMCs were treated with
the AHR agonist FICZ and the AHR antagonist CH-Z2Bfior 5 days. c-Kit expression was analysed
by flow cytometry.
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Figure 47. FICZ induced c-Kit expression in PBMCsfom CMCD patients

PBMCs (3 x 18 cells/well) were activated with anti-CD3/CD28 antilis in presence of the AHR agonist FICZ ({10)
alone or together with the AHR antagonist CH-22310¢ 106 M) for 5 days. c-Kit expression was analysed byvfl
cytometry inA. CD4" andB. CD8' lymphocytes. Means + s.e.m. are shown (n=2).

The AHR agonist FICZ up-regulated c-Kit in PBMCarfr healthy and from CMCD subjects. However,
in the CD4 and the CD8compartments c-Kit was more strongly induced in@Mpatients than in
healthy donors. The AHR antagonist CH-223191 inbibithe FICZ effects only marginally
(Figure 47).
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3.6.4. CYPL1 inhibition up-regulate@YP1A1KIT andIL22 in CMCD

The AHR target€CYP1A1 IL-22 and c-Kitwere induced with a high FICZ concentration in PBMC
from CMCD patients, indicating that the AHR pathweas inducible in these subjects. Therefore, the
AHR feedback regulation by inhibition of CYP1 adiyvin PBMCs from CMCD patients and in
comparison to healthy donors was tested in follgverperiments. RNA expression in human activated
PBMCs treated with a low dose of FICZ {801°M), with 1-PP (16 M), FICZ and 1-PP or FICZ,
1-PP and the AHR antagonist CH-22319% {8°M) was analysed with qRT-PCR.
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Figure 48. CYP1 inhibition regulated CYP1AL, KIT and cytokine transcription in PBMCs from CMCD

patients

PBMCs (3 x 10 cells/well) were activated with anti-CD3/CD28 anties in the presence of the AHR agonist FICZ
(5 x 10° M) alone, together with the CYP1 inhibitor 1-PP-¢1) or with 1-PP, FICZ and the AHR antagonist CH-22B19
(3 x 108 M) for 5 days. Means * s.e.m. are shown (n=2).
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Inhibition of CYP1 activity up-regulated the traription of CYP1A11L22 andKIT. In co-treatments,
KIT was higher an€YP1Alwas lower transcribed in PBMCs from CMCD patiethian in PBMCs
from healthy donors. This was similar to the stiatigins with a high FICZ concentration. In the 1-PP
and FICZ co-treatment, the transcriptionldf7 confirmed the results with the high FICZ concetidra
The cytokinelL17 was more strongly down-regulated in CMCD patigaihign in healthy donors.
Antagonising AHR with CH-223191 inverted all 1-RRttiuced effects in both CMCD and healthy

PBMCs. Fold changes are summarised in Table 44.

3.6.5. CYP1 inhibition up-regulated IL-22 but repressedlil.and IP-10 in CMCD

The RNA data indicated that inhibition of CYP1 &ityi by 1-PP up-regulated AHR pathway genes in
PBMCs from CMCD patients. To study the effects ofFRQ-induced AHR activation on cytokine

expression, supernatants of treated PBMCs wergsathby ELISA. Determined concentrations were

normalised to proliferation.
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Figure 49. CYP1 inhibition regulated cytokine exprasion in PBMCs from CMCD patients

PBMCs (3 x 10 cells/well) were activated with anti-CD3/CD28 antiis in presence of the AHR agonist FICZ (5 *AK1)
alone, together with the CYP1 inhibitor 1-PP-¢1M), or 1-PP, FICZ and the AHR antagonist CH-22319% (®°% M) for
5 days. Means + s.e.m. are shown (n=2).

93



Results

In all treatments, diseased PBMCs had lower IL1821&-17 levels and a higher concentration of IP-10
than PBMCs from healthy subjects. As describediptsly, a low dose of the AHR agonist FICZ
induced IL-22 in PBMCs from healthy controls andnfr CMCD patients. CYP1 inhibition by 1-PP
enhanced FICZ-induced IL-22 expression. In headthiyjects, IL-17 and IP-10 were decreased with
FICZ alone and in co-treated cells compared wighmbhicle control. IL-17 in CMCD patients was low
expressed and marginally regulated. IP-10 showaidhaexpression level in CMCD patients and was
reduced with FICZ alone and in co-treated cellsdifn of the AHR antagonist CH-223191 decreased

the IL-22 expression and tended to induce IL-17 I@xl0. Fold changes are summarised in Table 45.

3.6.6. CYP1 inhibition up-regulated c-Kit in CMCD

A high concentration of FICZ up-regulated c-Kit IRBMCs from CMCD patients, ané
1-PP-dependent AHR activation was present in tbeke Therefore, CYP1-dependent c-Kit regulation
in PBMCs from CMCD patients and healthy volunteges investigated. PBMCs were activated and
treated with a low concentration of FICZ{&0°M), with 1-PP (16 M), a combination of both, or
with FICZ, 1-PP and CH-223191 (3.0°M) for 5 days. c-Kit expression was analysed on Caad
CD8" PBMCs by flow cytometry.
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Figure 50. CYP1 inhibition induced c-Kit expressionron PBMCs from CMCD patients

PBMCs (3 x 18 cells/well) were activated with anti-CD3/CD28 antilbes in presence of the AHR agonist FICA (810 M)
alone, together with the CYPL1 inhibitor 1-PP-¢1@) or with 1-PP, FICZ and the AHR antagonist CH-22B{3 x 16° M)
for 5 days, n=2. Means * s.e.m. are shown (n=2).
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c-Kit was induced on PBMCs from CMCD patients ingte treatments with a low dose of FICZ or
1-PP. These effects were lower in cells from hgadthbjects. Additionally, FICZ and 1-PP co-treated
cells clearly up-regulated c-Kit compared with $inigicubations. Similar to the incubations withighh
FICZ concentration, c-Kit was more strongly induged®BMCs from CMCD patients than in PBMCs
from healthy subjects in both the CDahd the CD8PBMCs. Contrary to the high FICZ concentration,
the addition of the AHR inhibitor CH-223191 clearbduced CYP1-induced c-Kit expression.

In conclusion of the combined experiments in 3.622 and IL-17 were only marginally expressed in
PBMCs from CMCD patients with an overactive STATtpin. The AHR agonist FICZ promoted the
AHR pathway as shown by the elevated transcripifdhe AHR targeCYP1A1The resultsndicated

an active AHR pathway in patients witt538 ATtdependent CMCD. FICZ treatment increased IL-22
and c-Kit and reduced IL-17 and IP-10 levels. IPahd c-Kit were higher expressed in PBMCs from
CMCD patients than in PBMCs from healthy subjeletisibition of CYP1 activity by 1-PP presumably
led to an accumulation of FICZ and an enhanced AldRendenCYP1A1KIT andIL22 up-regulation.
Although IL-22 expression did not reach the samellas detected in healthy subjects after treatment
with a high FICZ concentration or with FICZ and B;moth treatments induced IL-22 expression in
CMCD. The AHR pathway was only partially inhibitbgy CH-223191 and this inhibition was less
efficient in PBMCs treated with a high dose of FI@#&n in PBMCs treated with a low FICZ
concentration. Noteably, for all experiments oniygited numbers of CMCD patients with different
disease phenotypes aB@TAT1lmutations were available. However, the resultsineebe interpreted

with caution. Higher numbers of patients are neddaxbnfirm these findings.

3.7. Differential expression of xenobiotic-metabolisimagzyme (XME) genes in human

immune cell subpopulations

An AHR-dependent and CYP1-mediated mechanism mamf human immune cells was elaborated in
this thesis. IL-22 and c-Kit, immunological targdts AHR activation, were induced by CYP1
inhibition in human immune cells when a low dosé¢haf AHR agonist FICZ was present. This implies
a modulating function of CYP enzymes in human imengalls. To map this environmentally driven
pathway and because evidence of CYP transcriptidruman primary immune cells is rare, different
immune cells were screened for their expressiageoks encoding xenobiotic-metabolising enzymes.
These are involved in the metabolism of exogenausnmaogenous small molecules. Constitutive
expression of these genes was studied in lymplwidayeloid-derived immune cell subpopulations.
That the level was constitutive was guranteed eyRNA isolation immediately upon finishing cell
isolations. RNA was transcribed into cDNA and aeaty by TagMan Low Density Arrays (TLDAS)
spotted with custom-made primer and probes for @haphase Il and phase Ill genes. Data were

normalised by the housekeeping g&%®PDH and log2-transformed relative expressioiPRT1as
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a second housekeeping gene in each cell type wtegl As human primary mast cells and basophils
were in a special focus of this project in the begig (Effner, 2008), different mast cell markengs

were additionally used as a transcriptional control

3.7.1. Proband characteristics, cell purities and RNA ijealfor TLDAS

Tables are summarised in supplemental materiall§Thto Table 52).

3.7.2. XME transcription profile in various human and pairy immune cells

To analyse the xenobiotic-metabolising capacitydiffierent primary immune cell subpopulations,
RNAs were immediately isolated after cell purificats, transcribed into cDNA and analysed by

TLDAs. In the shown heatmaps, rows represent stdbped colums represent distinct genes. Black

squares indicated not-detected transcripts.
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Figure 51. CYP and XME transcription profile in dif ferent human immune cell subtypes

cDNA isolated from different human immune cell sapplations was screened with TLDAs for the preseaide, mast cell
marker genesB, phase | (cytochrome P45@, phase | and Il anB, phase Il transcripts. Ct-values were normalisé&t w
the housekeeping ge@APDH Log2-transformed data relative HiPRT1expression in each cell type are shown. Each row
represents an individual donor, each column ardisiene and black squares represent not deteatesttipts. Abbreviations
are summarised in Table 15.
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Due to their close functional and phenotypic pragmhuman primary mast cells and primary basophils
express the mast cell marker ge@dAl KIT and tryptase. However, mast cells showed a higher
relative transcription level of these control getteen basophils. The alpha chain of the high dffini
IgE receptor ECER1A was most abundantly detected in basophils, btécted with a very low
transcriptional level and frequency in primary nmaedts. Besides the high transcription of Ki& gene

in mast cells and basophilsKIT transcription was also detected in CD4h cells,
CD4'CD45ROCD45RA memory Th cells and CD8c cells, but not in B lymphocytes. The mast cell
marker gene coding for tryptase was also deteateahg T lymphocytes, especially with a higher
frequency in the CD4compartment.

Each immune cell subpopulation showed a typical egetranscription pattern for
xenobiotic-metabolising enzymes. Genes encoding &Y4Aymes were more variable transcribed than
genes coding for phase Il or phase Il proteinsgctvivere homogeneously and abundantly expressed
in human immune cell subpopulations. The transonpdf CYPgenes was only basal and less frequent
than the transcription of phase Il and phase Itlicg genes. Differently express€y Pgenes include
enzymes involved in the metabolism of exogenous emibgenousQYP1Al CYP1B1 CYP4F2,
CYP4F3, CYP2J)2and of unknown QYP4F22 substrates. Th€YP2D6, CYP2A&nd CYP2E1
transcripts were detected with the highest fregeancThe RNA for the phase Il enzyme GSTP1
indicated the highest transcription level amongcall populations. The phase Il transporter progei
were ubiquitously expressed excepBCG2 which lacks a transcription in CD14nonocytes.
Simultaneous transcription of the three investigatelR-regulated CYP enzymeSYP1A1CYP1B1
andCYP2S1lwas only detected in human primary foreskin maks$.ceYP1Blwas well transcribed in
myeloid cells with the highest transcription lewelCD14" monocytes. It was also found in human
primary foreskin mast cells and showed a basastrption in basophils and in CDfmemory Th cells.
Noteworthy, the frequency @@YP1Blwas higher in CD4memoryTh cells than in complete CD4
Th cells. As a hepatic and lung expressed O3PP1A2vas not detected in immune cells. The AHR
targetCYP1Alwas detected with a very low frequency among Tscelere, CD4 memoryTh cells
tended to have a higher frequency than complete*C¥cells. Mast cells and all investigated
lymphocytes including B cells transcrib&€d P2J2 which was not detected in CD1dhonocytes and
basophils. T lymphocytes and myeloid-derived célimscribedCYP4F2. CD4 Th cells, CD14
monocytes and basophils were positive for @¥P4F3RNA. CD4 memory Th cells and basophils
showed the highest frequency @¥P4F2transcription. In conclusion, various immune celbtypes
were characterised by a specific CYP transcrippattern while 17 genes coding for XMEs were
transcribed in all investigated immune cell popoled. Among these, only three CYP1-coding phase |
genes CYP2A6, CYP2D@GndCYP2E) were transcribed in nearly all cell types and nhegority of
transcribed genes belong to the phase Il and theephl metabolismAKAR1AL, EPHX1, EPHX2,
GSTM2, GSTM3, GSTP1, GSTT1, GSTZ1, MGST2, NQO1,PIE51, ABCG1, ABCERelative

transcription values are summarised in Table 53Tatile 54.
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4 Discussion

Evidence is increasing that the ligand-activatedidcription factor AHR impacts cell differentiation
and mediates diverse cellular reactions in the imensystem (Di Meglio et al., 2014; Duarte et al.,
2013; Stockinger et al., 2014; Quintana et al.,0204eldhoen et al., 2008). Previous studies also
indicated that the degradation of AHR ligands byR2¥enzymes limits AHR activation andce versa

that CYP1 inhibition prolongs receptor inductiorhé@g and Puga, 1998; Chiaro et al., 2007; Puga et
al., 1990; RayChaudhuri et al., 1990; Wincent et2012). This study sheds light on the function of
CYP1 enzymes acting downstream of the AHR in hurmamune cells. Thus, it extends the
observations of a CYP1-dependent AHR feedback atignl to human immune cells.
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Figure 52. Induction of immunological AHR targets ty feedback regulation

Due to the induction of the cytokine IL-22 and gredominant regulation of the surface receptortc-Ki
the intracellular AHR feedback activation by intin of CYP1l enzymes can gain increasing
physiological relevance. The expression of thelagis IL-22, IL-17, IFNy, TNF-u, IL26 and of other
targets related to the AHR pathway (c-KM3CG2 NRF2 NQO1) was regulated by CYP1 activity
through the metabolism of the endogenous AHR aganid CYP1 substrate FICZ in human immune
cells. Additional studies witiCypla2deficient mice showed a higher percentage of Itp&#iucing

splenocytes after FICZ treatment and underlinesidlodservations. Correlation analyses demonstrated
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that the transcription of th€YP1Algene and the expression of the c-Kit protein wergatively
correlated with theAHR transcription. The correlations with tl@&YP1B1transcription showed the
opposite effects. Thus, the ratio of therP1Aland CYP1Bltranscripts also correlated with the
expression of target compounds related to the AldBwvpay. These results imply that the AHR
expression level and presumably the balance of Casptession impact the regulation of cytokines
and/or of c-Kit in human immune cells. Followinge#e observations, a transcription profile of sdvera
drug-metabolising enzymes finally deciphered a-gpdicific transcription pattern in various immune
cell subpopulations.

This study additionally observed increased levéld €2 and c-Kit in PBMCs from CMCD patients
after AHR activation by FICZ treatment or by CYmRhibition. CMCD patients suffer from an isolated,
chronic and recurrent infection with the ye@stndida mostly Candida albicansTo a large extent,
these patients have a lack in the production of7/Tdytokines including IL-22. The study demonstrated
that the AHR pathway was active in CMCD patientd aould provide a way for IL-22 production.
IL-22 controls barrier functions and induces inndefence mechanisms. Following these results,
inhibition of CYP1 activity in these patients migérthance innate immunity at epithelial tissues. The
study also observed the surface receptor c-Kit agsaeptible target for a reduced CYP1 activity

especially in human T cells.

4.1. Inhibition of CYP1 activity in V79 Chinese hamstalls

Before investigating the CYP1-dependent AHR acidratn human immune cells, specificity of two
CYP inhibitors had been tested in V79 Chinese hantsll lines that express human CYP1 enzymes.
The PAH 1-PP is a strong mechanism-based (suigid@d)itor for the CYP1Al enzyme (Shimada et
al., 2007; Shimada et al., 1998; Zhu et al., 201Cbhsistent with this, 1-PP strongly and compietel
inhibited CYP1A1, but CYP1A2 and CYP1B1 activittedesser extents. 1-PP acts as a suicide inhibitor
for CYP1Al, is considered as a competitive inhibitd CYP1A2 and it is likely metabolised by
CYP1B1 (Shimada et al., 2007; Shimada et al., 1998gse effects might explain the different
outcomes of 1-PP on various CYP1 enzymes. Howémeg-term CYPL1 inhibition with testing and
monitoring a regained CYP1 activity during 1-PPatmeent was not analysed here. Whereas 1-PP
inhibits CYP1 family enzymes selectively (Shimadale, 1998), a selective inhibition of CYP1ALl,
CYP1B1 and CYP1A2 by 1-ABT was not detected. Thidarlines the non-specific inhibitory character
of 1-ABT. Contrary to 1-PP, which inhibited all iestigated human CYP1 activities completely at
indicated concentrations, residual CYP1 activitvese still measurable in cells treated with highBT
concentrations. This is in line with a previousdstwhere 1-ABT is effective in eliminating CYP2A6
and CYP3A4 activities but lacking a complete intidn of other CYP enzymes (Linder et al., 2009).
According to these results, 1-PP was considereoh appropriate inhibitor of CYP1 activity in human
immune cells and used to study CYP1-induced AHR/aitbn.
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4.2. Effects of CYP1 inhibition in human PBMCs

4.2.1. Effects of CYP1 inhibition on the expression@{P1, cytokines and c-Kit

The study’s results imply an intracellular accurtiataof FICZ and a prolonged AHR activation by a
reduced CYP1 metabolism in human immune cells. &lsis supports the existence of an endogenous
way for a sustained AHR activation. In preliminayperiments with PBMCs, inhibition of CYP1
activity by 1-PP alone slightly increased IL-22 an#{it when 1-PP was used at high concentrations.
Previous studies demonstrated that tryptophan-e@rMHR ligands are formed in cell culture media
by UV light (Oberg et al., 2005; Veldhoen et aD02; Wincent et al., 2012). Therefore, background
levels of AHR ligands in the culture medium thaé aiso CYP1 substrates probably explain the
IL-22- and c-Kitinducing effects with the CYPL1 inhibitor 1-PP alome order to examine whether
tryptophan-derived molecules are factors for aganésd intrinsic AHR effects and responsible foe t
induction of IL-22 and c-Kit in single 1-PP treatm& medium devoid of tryptophan but supplemented
with freshly reconstituted tryptophan should beeistigated.

The 1-PP concentrations 1M and 16° M potently inhibited CYP1A1 or CYP1A1l and CYP1B1
activities in CYPL1 cell lines, increased IL-22 anit in 1-PP and FICZ co-treated PBMCs and did
not have any cytotoxic effect in 48 h treatmentbergfore, these concentrations were used in
combination with a low FICZ concentration in comeiat RPMI for studying CYP1-induced AHR
activation.

In the 5 day experiments, the transcription of AiR-regulated geneSYP1A1 CYP1B1KIT, IL22,

the expression of the cytokine IL-22, and of theiicsurface receptor were induced in FICZ and 1-PP
co-treatments compared with single treatments. A1lahd IFNy were only slightly regulated and
confirmed the AHR response in co-treated human PBM@Ge AHR-dependent regulation was proven
by the addition of the AHR antagonist CH-22319tdetreated cells. c-Kis an AHR-regulated surface
receptor (Kadow et al., 2011; Kiss et al., 20119 anthis study CYP1 inhibition induced c-Kit on
human lymphocytes. Human T cells responded withustatned c-Kit expression indicating that
lymphoid-derived immune cells are susceptible tmrgéor CYP1l-induced AHR activation.
Up-regulation of c-Kit was present on both C#d CD3cells, and c-KitlL-22* lymphocytes were

most frequent among Th cells.
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Besides IL-22, TNFe: is a cytokine produced by Th22 cells but as welhmotes Th22 differentiation
(Duhen et al., 2009; Eyerich et al., 2009; Trifetrial., 2009). Similar to IL-22, a low concentratiof
FICZ alone increased TNé-production. At 48 h, however, TNk-was not regulated by CYP1
inhibition indicating that the induction of c-Kihd of IL-22 is independent of TNé&-On the contrary,
co-treated cells showed an increased productionNK-o after 5 days. The time-delayed effects in
TNF-o release may indicate that TNFis induced in naive T cells whereas IL-22 alonalisady
up-regulated in memory T cells when CYP1 actistyaduced. Whether IL-22 and TNFare produced
by enriched Th22 cells has not been determinekisnstudy.

The gene encoding the Th17 cytoklb26 is located nearby tHe22 gene locus in humans (Dumoutier
et al., 2000a; Goris et al., 2002). In this studg6 was regulated similar to IL-22 but differently tha
IL-17 and IFNy. The origin of IL-26 production in treated PBMCaswnot determined here, however,
the IL26 gene could be considered as a new AHR-regulatgeéttan human PBMCs. The detected
down-regulation of IL-17 and the increase of IL-ZR|F-o. andIL26 imply that a reduced CYP1 activity
could promote c-KitlL-22*IL-26" TNF-a* IL-17" T cells via AHR activation in humans. Whether thes
cells are related to Th22 cells, or whethie26 and TNFe are produced by various innate cell
populations should be investigted in future. Umaav, it is still elusive whether AHR activation or
CYP1 inhibition facilitates the formation of humdm22 cells, which express c-Kit or have stem
cell-like features, and whether c-Kit could switClell plasticity in local chemical microenvironnien
Furthermore, c-Kit-dependent mechanisms for IL-@@utation in T cells contributing to immune and
tissue cell interactions remain to be determinduk €-Kit ligand is produced by diverse cell types
including epithelial cells and may affect intradpiial localised T cell populations. Similar to A2,
c-Kit induction was already detected after 48 hisTaiso suggests that memory T cells are susceptibl
for responding to CYP1 inhibition. However, whetl@¥P indeed could shift the T cell pool towards
Th22 cells or changes T cell plasticity and memamong diverse subpopulations is still ambiguous.
In the present study, CYP1-dependent AHR activatias studied in human PBMCs. In future studies,
a detailed characterisation of CYP metabolism atated immune cell subpopulations might reveal

triggers for metabolism-dependent c-Kit and cytekiagulations.
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4.2.2. Effects of CYP1 inhibition on the expression of gemelated to the AHR pathway

To get a more detailed insight into the regulatiéryenes that are related to the AHR pathway, the
transcription oMNRF2 HIF1A andARNT, of PTGS2(coding for COX-2),CYP2S1and the phase llI
transporteABCG2during CYP1 inhibition was studied.

The gene€YP2S1PTGS2, NQOBRndABCG2were selected because they are XMEs regulatelgeby t
AHR pathway (Deb and Bandiera, 2010; Fritsche.e28D7; Prud’homme et al., 2010; Tan et al., 2010;
Tijet et al., 2006). Similar to CYP1A1 and CYP1B1YP2S1 has functions in the extrahepatic
metabolism (Ding and Kaminsky, 2003; Rylander et 2001; Saarikoski et al., 2005). However,
whereas CYP1 family enzymes are typical membetiseoAHR gene battery and metabolise lipophilic
environmental compounds most effectively, polyunssed fatty acids derived from arachidonic acid
are the preferred substrates for CYP2S1 (Bui e28f11). In the current study, the transcription of
CYP2S1was higher in the FICZ and 1-PP co-treatment thamgle stimulations.

Contrary toCYP but similar toAHR transcription, thd®TGS2gene (coding for COX-2) tended to be
down-regulated by combinatorial treatment. Thisc@ntrary to a previous study with human
keratinocytes where COX-2 was induced (Fritschealet 2007). Products of COX-2, such as
prostaglandinsare described as CYP2S1 substrates (Madanayake2&t1l® ). Following these results,
AHR activation or CYPL1 inhibition could interferdtivprostaglandin turnover in human immune cells.
Furthermore, the COX-2 enzyme is up-regulated duhniypoxia and th€YP2S1gene contains HRE
binding sites(Rivera et al., 2007; Xing et al., 201%jowever, whether oxidative stress or hypoxia
occurs during CYPL1 inhibition and FICZ treatmenttlire conducted experiments, and whether this
impactsCYP2S1landPTGS2expression levels in human immune cells is stilsile.

Conversly toAHR, the genes encoding the transcription factor NBRR@ the phase | enzyme NQO1
were slightly up-regulated during FICZ and 1-PPtreatment. This hints at a FICZ-dependent
regulation oNRF2andNQO1lor at the formation of reactive intermediates. fraascription oHIF1A
and ARNTwas neither regulated by FICZ nor by CYP1-induéétR activation indicating that the
genes coding for hypoxic transcription factorsrawedirectly controlled by the AHR in the conducted
experiments. However, downstream targets of thelWIRRNT dimer were not investigated here.
The phase Il membrane transporter ABCG2 is redptm®r multidrug resistance in cell lines and it
was investigated because it is considered to defisiee-population of bone marrow cells containing
immature hematopoietic stem ce(Scharenberg et al., 2002; Zhou et al., 2001). @ontto KIT
transcription ABCG2transcription was attenuated in human PBMCs &MeZ and 1-PP co-treatment.
These results are contrary to previous findingsreeBCG2 was up-regulated by AHR ligands in
diverse cell types (Tan et al., 2010). LikeIR, ABCG2ranscription was slightly down-regulated by
the 1-PP and FICZ co-treatment. In these connegtiboould be expected that FICZ treatment or AHR

activation differently affect the regulation of AHBathway genes and the expression of stem cell
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markers in human PBMCs. However, a detailed phencay characterisation of the ABCG2 protein
on c-Kit-expressing immune cell subtypes was ne¢stigated in this study.

The study’s results imply an importance of AHR\&ttbn and CYP1 inhibition for clinical drug
resistance in hematopoietic cell types by reguiathre efflux transporter ABCG2 on immune cells.
Interestingly, imatinib, a c-Kit tyrosine kinasehihitor used in anti-cancer therapies, is considi¢oe
change ABCG2 activity and several studies havecatdd that this therapeutic molecule is transported
by ABCG2 (Brendel et al., 2007; Burger et al., 2004; Koszgtual., 2014; Robey et al., 2009).
Following the assumption of endogenous pathwaysABCG2-dependent c-Kit signallindABCG2
down-regulation may retain small chemicals intriadaily, which then could interfere with c-Kit
signalling.

FICZ is a substrate for CYP1 enzymes and it iscéiffely metabolised by CYP1Al. The metabolic
breakdown of FICZ results in various mono- or ddioxylated phase | products. Phase Il enzymes for
increasing water solubility of FICZ intermediates aulfotransferases, and FICZ metabolites found in
the urine of humans are conjugated sulfates (Beleyaet al., 2004; Wincent et al., 2009). ABCG2 is
characterised by a wide substrate specificity iticlg sulfate conjugates (Imai et al., 2003; Miz@ho
al., 2004). Although phase lll metabolism of FIGZIéss investigated, a recent study indicated that
ABCG?2 transports the tryptophan metabolite kynwewid (Dankers et al., 2013). It is still elusike
detail to what extent FICZ metabolites or otheptophan derivatives are substrates for, or inhibito
of ABCG2. Analyses of overlapping substrate speitifis of the CYP1 family enzymes with the
ABCG?2 transporter protein are lacking so far to knpwledge. Although this study pointed out that
the stem cell receptors c-Kit aAdBCG2were AHR- and CYP1-regulated targets on humarpperal
blood cells from healthy subjects, a detailed phgring of additional stem cell markers and

transcription factors in human immune cells on girotevel is lacking.
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4.2.3. Correlations between AHR pathway targets

The AHR is a transcription factor interacting wéthvide range of partner proteins and small chemical
One important stress-related pathway regulating AldRnstream anti-oxidative responses is the NRF2
pathway (Kohle and Bock, 2007). AnalysedN&F2regulation were included in this study as FICZ and
CYP enzymes contain the capacity to produce reaatiermediates that likely regulate NRF2 activity
(Costa et al., 2010; Marchand et al., 2004; Maral.e 1999; Radjendirane and Jaiswal, 1999; Sibila
et al., 2012)NRF2was up-regulated in 1-PP and FICZ co-treated PBM@syeasAHR transcription
tended to be down-regulated. Following these dadeelations in the investigated individuals were
analysed in detail. The strong positive correlaiohtheAHR transcription with the transcription of
NRF2 HIF1A andNQO1in most treatments, including vehicle control, nmirthe intimately related
regulation of these genes. In all investigatedtineats, the transcription 0AHR was positively
correlated with the transcription BfiFLA andNQOL Interestingly, the transcription of the cytokines
IL17, IFNyandIL26 was positively correlated with tidHR gene transcription in this study. In previous
studies, HIF& is highly expressed in Th17 cells (Dang et al}D0This is similar to AHR expression
(Veldhoen et al., 2008). Contrary, low levels of-itt are detected during Treg differentiation (Shi et
al., 2011). It was also observed that HifiInds FOXP3 and mark it for proteasomal degraddmng

et al.,, 2011). Additionally, an interaction of AH&d HIFIx was demonstrated during Trl cell
differentiation (Mascanfroni et al., 2015). Both Rrnd HIF 1 act as heterodimers and share the same
partner ARNT that is also referred to as HIFIThus, AHR activation during hypoxia and
HIF1la-mediated limitations of AHR-induced toxic effeei® well investigated (Gassmann et al., 1997,
Schults et al., 2010). The ligand-dependent impa&HR activation on Th17 and Trelfferentiation

is still under investigation. AHR may affect thisliotomy via regulating immune cells” oxidativetsta

by the regulation of XMEs, ARNT, HIFlor NRF2. Noteworthy, reactive oxygen species (REfb)d
regulate HIF1 expression (Chandel et al., 2000)theamore, HIFt expression is tightly coupled to
glycolytic metabolism and regulates energy balai@lgeng et al., 2014; Semenza, 2007; Shi et al.,
2011). Therefore, the significant and strong pesiticorrelations betweemdIF1A and NRF2
transcriptions, found in all treatments includirghicle control, probably indicated that these refet

are partly independent of FICZ treatment and reflenore basal regulation of the oxygen homeostasis
to the supplied cell culture conditions. As HtFis activated by low oxygen levels and could be
stabilised by ROS, it has to be elaborated in &utuhether the formation of certain CYP1-derived
reactive intermediates could interfere with enenggtabolism, and whether this CYP1 metabolites

could switch the balance between Treg, Th17 celisTh22 cells.
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The AHR transcription was positively correlated with thajarity of analysed transcripts, except for
CYP1AL1 Individuals with an unregulate8HR had a lowelCYP1Alinduction than individuals with a
down-regulateddHR The inverse effect was demonstrated for@&1Blgene in human PBMCs.
Additionally, negative correlations were also degdcwhenAHR transcription was correlated with
c-Kit expression. These results indicated a negativ-regulation ofCYP1Aland c-Kit with AHR
expression. Likely due to time-dependent effe&BlR did not correlate withKIT and ABCG2
transcription levels but with the expression of thiit protein. Recent studies showed that a lack o
AHR favours stem cell and leukemic cell expansiand that AHR-deficieninice have a higher
frequency of LS'K™ cells (Boitano et al., 2010; Pabst et al., 201idgl% et al., 2009) than wild type
mice.L"S'/K* cells lack lineage defining receptors, are posifor c-Kit and possess a high capacity to
self-renewal. Additionally, a low AHR activity iseciprocally related to Oct-4 expression, a
transcription factor important for maintaining steell differentiation and pluripotency (Kim et al.,
2009). Tranilast and 2-(1'H-indole-3'-carbonyl)attole-4-carboxylic acid methyl ester (ITE), two
tryptophan derivatives and AHR agonists, suppresis4Gexpression and regulate differentiation of
stem cells and stem-like cancer cells (Cheng ef@l5; Kang and Wang, 2015; Prud’homme et al.,
2010). In the current studggHR transcription tended to be down-regulated in F&@d 1-PP co-treated
cells. The results obviously showed that geneseléo the AHR pathway were reorganised in
individuals by adding a low FICZ concentration dnBP. As the expression 6I¥P1Aland c-Kit was
negatively correlated with the transcription AHR an AHR down-regulation may favour the
expression of c-Kit an@YP1A1

Collective results of these studies imply that élpression of AHR pathway compounds depends on
various factors such as AHR activatidtR expression and probably also on the oxygen tenkiere,
additional studies for analysing factors that eittempete with, or that regulate AHR in defined cel

types would be required.

4.2.4. Correlations betwee@YP1lratio and AHR targets

An inverse correlation o€YP1Algene transcription withHR transcription was determined in this
study. Individuals with an unregulatadiR showed a lowe€YP1Alinduction than individuals with a
down-regulatedAHR CYP1lratios for all treatments and correlations with trenscription of target
genes in all individuals were analysed. In all vidluals, FICZ and 1-PP co-treatment increased the
CYP1ratio by a stronge€YP1AlthanCYP1Blinduction.

The transcription of th&HR gene did not correlate with the expression of 2, 2.-17, IFNy, IP-10

and TNFe proteins, however, trends in decline were deteittede correlations with th€YP1lratio.

A high CYP1ratio correlated with a low Th17 cytokine transtiop includinglL22, IL17 andIL26 and
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a high c-Kit protein expression. Therefore, the imaiogical outcomes of AHR could either depend

on AHR activation by ligands such as FICZ orAR expression itself.

Am 4 3 4 Hl CYP1A1 induced
% S| = A CYP1B1 induced
‘8 Wz [ CYP1A1 notinduced
. :6 A CYP1B1 notinduced
E Al
A
A A
> [_T| I:|] AHR
Time? .
Intermediates? Low ngh
Viability?

Cell-dependent effects?
Interference with other metabolic pathways?
Interaction of transcriptional regulators?

Figure 53. Hypothetical schemes for CYP1 ratio depelent on AHR expression

A. During CYP1 inhibitioPAHR expression was slightly decreasing. The variafoledown-regulatindAHR are not claryfied

so far.B. A low/reducedAHR transcription correlated with a higbYP1ratio, whereas a high/unregulated transcription of
AHR correlated with a lovCYP1ratio.

The correlations of th€YP1ratio with the viability and with the transcriptioof NRF2andNQO1
imply less cytotoxic effects with a higblY P1ratio, whereas a reduced ratio tended to favols sekss.
Both NRF2andNQO1 are sensitive to oxidative stress and were slightiuced by FICZ and 1-PP
co-treatment. Although significant correlationstioé viability with theCYP1ratio were not detected,
positive trends with a high ratio imply that an eomment with a stron@€YP1Alinductionincreases
viability through a reduced formation of cytotoxdod/or reactive FICZ intermediates. In accordance
with these result®yRF2andNQO1ltranscription levels were low in individuals wihighCYP1ratio.
This was similar to cytokine transcriptions. Thdselings are contrary to a previous study where
CYP1AL1 overexpression increases NQOL1 expressioncfMad et al., 2004).

The current data imply that the AHR expression llerd the balance of CYP1 expression could
contribute to the formation of CYP1-specific FIGZarmediates with adverse effects in human immune
cells. These putative intermediates may regulalex-sensitive transcription factors or induce cytek
expression, and seem to be higher in donors wilwvaCYP1lratio.
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CYP1ratio high

CYP1lratio low

NRF2| NRF21
HIF-1A | HIF-1A 1
AHR| AHR 1
ARNT] ARNT?
CYP2S]] CYP2S1
PTGS2| PTGS2t
viability 1 viability |
c-Kit 1 c-Kit |
cytokines| cytokinest

Figure 54. Overview of CYP1 ratio and expression cAHR pathway compounds

Ligand-independent CYP gene regulation by CYP1Afivilg or by an oxygen imbalance was
described previously (Morel and Barouki, 1998; Matal., 2000; Morel et al., 1999; Schults et al.,
2010). But whether CYP1A1 enzyme activity coulcedity regulateCY P1Bltranscription owice versa
e.g by certain FICZ or reactive intermediates ia fiystem has to be elaborated in future. Additlgna

it remains to be seen whether AHR acts differentiyCYP1Aland CYP1Blexpression in human
immune cells during FICZ treatment e.g. by intaragtvith additional partner proteins.

The formation of FICZ metabolites by using rat liveicrosomes was analysed in previous studies.
Here, CYP1B1 further metabolises CYP1A1/1A2-deriviel€Z metabolites. Although the major
metabolites of FICZ could be detected in studieth Wwuman and rat liver microsomes, both display
different metabolic profiles (Bergander et al., 20Bergander et al., 2004). These results imply tha
FICZ is a CYP1 substrate with a species-specifiecigity. Human urine contains several sulfated
FICZ metabolites. This may hint at an individuatpense to FICZ, propably by CYP1-metabolism
(Wincent et al., 2009). In the current stu@¥P1A2was not detected in human immune cells and it
was nheither induced by FICZ nor by FICZ and 1-PRreatment (data not shown). Following these
findings, the major FICZ metabolites in human immuwells would be derived from CYP1Al and
CYP1B1 metabolism and the metabolic profile of Flidzuman immune cells might be different to
that detected with human liver microsomes. It watsmvestigated here what FICZ metabolites occured
in human immune cells, however, differential CYRlidty may shifts the concentration of FICZ

intermediates to more or less toxic molecules.
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Although the endogenous function of CYP1 familyyanes in human hematopoietic diseases has not
yet been fully identified (Zhuo et al., 2012a; Zheioal., 2012b), the presence of Cyplbl in mice
enhances the generation of lymphon@gylbXnull mice are resistant to treatments with a PAlddi

for cancer induction. The authors asserted a lesdribution of the CYP1Al enzyme to the
chemical-induced carcinogenesis (Buters et al.,91%himada and Fujii-Kuriyama, 2004). In
accordance with this, the current study implies @#aP1A1 activity is less cytotoxic than CYP1B1
activity in human immune cells. This is probablypdeded on the nature of the CYP substrate, however,
the positive correlations of an increased viabilith a highCYP1ratio support these findings.
Conclusively, in the current study tkYP1ratio changed with the AHR level, and both may actp
diverse processes in human immune cells such afatwe status, viability, cytokine and c-Kit
expression levels. These regulations occured alredten a low concentration of the amino acid
derivative FICZ was present in the culture medilmthis context, tissue-specific CYP1Al, CYP1A2
and CYP1B1 expression levels and functional outeofeCYP activities in various immune cell
subtypes would be additional factors to study. INgitDNA- or RNA-sequencing, determination of
copy number and genetic variants nor epigeneticificatdons in CYPXencoding genes were
conducted. The questions remain, whether the régalaf immunological marker proteins such as
cytokines and c-Kit depends on CYP1 activity vivo, and whether CYP could contribute to
reprogramming differentiated immune cells. Additty, collective effects of FICZ and 1-PP treatment
indicate that several and probably overlapping raeidms in the AHR pathway take part for regulating

AHR-dowstream gene expression in human immune.cells

4.3. Concentration-dependent 1-PP effects in human PBMCs

The inhibition of CYP1 activity in the presenceadbw FICZ concentration induc&l¥P1A1CYP1B1
IL-22 and c-Kit and enhanced th@YP1 ratio. These results extend previous findings lod t
CYP1-dependent AHR activation to human immune calsl imply that the balance of CYP1Al and
CYP1B1 could shift immunological processes. Toiglissh between 1-PP concentrations, which either
inhibited CYP1AL1 activity alone or the activitie§ @YP1B1 and CYP1A1l in the experiments with
CYP1 cell lines, human activated PBMCs were treatitl two different 1-PP concentrations €181

or 107 M) alone or in the presence of FICZ. In accordandh thie preferential regulation GYP1
family genes by the AHR, a higher 1-PP f1@) concentration up-regulatedYP1AlandCYP1B1
transcription levels but did not induce CYP2S1hAligh evidence of the enzymatic CYP1 activity in
human PBMCs is lacking in this study, the resutidarline the existence of a CYP1-dependent AHR

regulation in human immune cells.
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The results of th&IT gene transcription, of c-Kit protein expressiond af the cytokine expressions
are unexpected. c-Kit expression on CBdls and the frequency of CIB4KIt*IL-22* cells decreased
with 108 M 1-PP in co-treated cells compared with’1d. It was supposed that the higher 1-PP
concentration inhibits both CYP1A1 and CYP1B1 &atitg in PBMCs. The decline of IL-2Z'h cells

by the treatment with a high 1-PP concentratiorpetis the previously postulated opinion that the
CYP1ratio could impact IL-22 production. According tteese results CYP1B1 activity seems to be
more responsible for IL-22 production than CYP1Abteworthy, similar to c-Kit, IL-22 expression
was inverse regulated on RNA and protein level. sEhelivergent results may occur due to
time-dependent effects on RNA and on protein ledig, to cell type-specific effects or due to meligbo
processing of FICZ. Additionally, viability and piferation slightly increased with a higher 1-PP
concentration. May this distrubs the CYP1 balaned aupports the view that CYP1B1 activity
enhances cytotoxic effects.

However, further observations are needed to stwgylapping effects of CYP1 activities in human
lymphatic cells by a targeted down-regulation @afic CYP1 enzymes. In the current study, PBMCs

were used and it should be examined whether pdrifirenune cells react similar to CYP1 inhibition.

4.4. 1L-22 regulation inCypla2knockout and C57BL/6 mice

The inhibition of CYP1 activity changed the expressof immunological target proteins such as
IL-22 and c-Kit in human PBMCs. Therefore, IL-22peassion inCypla2 knockout mice was
investigated. CYP1A2 is constitutively expressedyan the human liver and to a limited extent
detected in the lun@/Nei et al., 2001). A transcription @YP1A2was not detected in human immune
cells. The treatment of murine splenocytes fronh@ypla2knockout mice and C57BL/6 mice with a
low dose of FICZ increased the percentage of IL-8@ls in the CD#4 as well as in the CD8
compartment showing that FICZ treatment is intadhiese miceCypla2knockout mice had a higher
frequency of IL-22 and of IFNy* cells in the CD4 compartment than wild type mice, however,
significant differences betwe&ypla2knockout and C57BL/6 mice were not detected. Ty give

a hint to an endogenous cytokine regulatdyplazknockout mice.

In comparison to human PBMCs treated with a low Zl€ncentration, the AHR antagonist
CH-223191 decreased FICZ-induced IL-22 expressiomice only marginally. CH-223191 is a
selective AHR antagonist and the data indicatet! @4223191 probably exhibits species-specific
properties on AHR activity (Zhao et al., 2010 Although the data are not significant, the findirgs

a higher frequency of IL-ZXplenocytes i€yplazknockout mice during FICZ treatment are consistent
with the human results. Although the results amexpected concerninQypla2expression in immune
cells, they imply that an attenuated degradatiopoténtial AHR ligands by a reduced CYP1 activity,
in this case Cypla2, could facilitate IL-22 prodioct
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4.5. AHR and CYP1-induced feedback pathway in CMCD

As a cytokine acting on surface tissues, IL-22ihgsortant functions in the epithelial homeostasis.
the skin, IL-22 enhances wound healing, epith&@atier formation and the induction of antimicrdbia
peptides (Eyerich et al., 2011; Liang et al., 208&lk et al., 2006). Patients suffering from chioni
infections with the yeas€Candidg mostly Candida albicanshave impaired innate and adaptive
mechanisms for defending against this pathogenl (Btual., 2012). A subpopulation of patients is
recurrently infected wittCandidapredominantly at mucosal sites without having othemary or
secondary immunodeficiencies. An impaired Th17oasp is recognised as one cause for this isolated
form of candidiasis that is also referred to a®nlrmucocutaneous candidiasis disease (CMCD). Most
of these patients carry GOF mutations in 8iBAT1gene, a negative regulator of Th1l7 response.
Therefore, CMCD patients are considered to havienpaired or a failed production of Th17 cytokines
such as IL-17 and IL-22 (Liu et al., 2011). It wasgestigated in this study whether AHR activatign b
FICZ treatment or by CYP1 inhibition could induted2, c-Kit and other genes regulated by the AHR
in CMCD patients” PBMCs. AHR activation with a higiCZ concentration increas@¥YP1A1 IL-22

and c-Kit expression levels similar to the expenisewith the CYP1 inhibitor 1-PP and a low FICZ
concentration. Addition of the AHR antagonist CH3291 inverted the FICZ-induced effects in the
experiments with a low FICZ concentration more &ffeely than in experiments with a high FICZ
concentration. These results are consistent wigvipus reporter gene studies using various AHR
ligands. Here, CH-223191 has ligand-selective pteg®e (Zhao et al., 2010 -a). Thus, the AHR
antagonist CH-223191 might be not sufficient enoagthe used concentration to counteract the high
affinity FICZ competitively, when FICZ is used withhigh concentration.

IL-22 and c-Kit were up-regulated by a high FICZAcentration and by inhibition of CYP1 activity in
the presence of a pharmacological low FICZ conegintr. These results demonstrated an intact AHR
pathway and a CYP1-induced feedback regulatioMCD patients with an overactive STAT1 protein.
The activation of the AHR is a potential way tonggrulate I1L-22 in patients with a STAT1-dependent
defect in producing this cytokine. Contrary to thKit induction, which was more strongly induced in
PBMCs from CMCD patients than in PBMCs from healtigividuals, the IL-22 concentration reached
only a level that was detected in healthy PBMCth@non-treated controls. These observations imply
that several AHR pathways for IL-22 regulation &=isd that one of these is blocked in PBMCs from
CMCD patients but active in healthy individualsrthRermore, it could be expected that c-Kit and B_.-2
are differently regulated by AHR activation in humf2BMCs.

Nevertheless, the results of the study indicateeh@anism for inducing IL-22 in CMCD patients either
by AHR activation or by CYP1 inhibition. Activatioaf the AHR favours Th17 differentiation by
blocking STAT1 protein in mice (Kimura et al., 2Q08lowever, as expected and shown in healthy
subjects, IL-17 was down-regulated whereas IL-28 imduced in PBMCs from CMCD patients after

FICZ treatment. Although the IFNregulated cytokine IP-1@as down-regulated in cells treated with
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FICZ alone and in 1-PP and FICZ co-treated callprove a direct interaction of STAT1 and AHR was
not the aim of this study.

A role of AHR in the differentiation of Th22 cella humans and of Th17 cells in mice is under
discussion (Trifari et al., 2009; Veldhoen et 2008).To date and my knowledge it is unknown to what
extent STAT1 is involved in human Th22 cell diffetiation. Th22 cells are located in close proximity
to barrier tissues, the sites where endogenous Kg¢dRds have been proposed to be produced (Esser
et al., 2013; Eyerich et al., 2009; Fritsche et2l07; Jux et al., 2011). Thus, the question smdether
Th22 could originate in the tissues under the erke of a tissue-specific chemical and cytokine
microenvironment.

Supposing that AHR induces Th22 cells with stentlded features, CYP-dependent IL-22 and c-Kit
induction could provide a way for drug-induced immatcell regulation in CMCD. Noteworthy, FICZ
and AHR activation lead to an increased genomiability (Aitken et al., 2008; Okudaira et al., 201
Okudaira et al., 2012; Rannug, 2010). Therefor@etailed characterisation of epigenetic phenomena
likely leading to pre-cancerogenic effects showddryvestigated when AHR ligands are considered as
therapeutics. A huge amount of drugs and plantrddrimolecules have AHR agonistic or CYP
inhibitory potential and could be considered asraltives for AHR activation in CMCD patients
(Denison and Nagy, 2003; Wincent et al., 2012).

In the current study, PBMCs from CMCD patients mgjed more strongly with c-Kéixpression than
healthy subjects. This implies that CMCD patiemtsraore susceptible for inducing c-Kit in response
to environmental stimuli than healthy individual®ompared with healthy subjec&HR was similar
transcribed wherea8YP1AlandIL17 were lower expressed in CMCD patients. Upon novs, dnly
rudimentary investigated to what extent STAT1 siigmginterferes with CYP expression or activity in
human immune cells. Interestingly, STAT1 is a dawaen target of the c-Kit signalling cascade and
is activated by the c-Kit ligand (Deberry et aB97¥). Recent studies reported that the c-Kit irthibi
imatinib dampens the STAT1 pathway in human prastail lines and that IFMinduced STAT1
activity favours expansion of HPCs (Imura et a012 ; Zhao et al., 2010 -b). However, whether
STAT1-regulated c-Kit expression takes place inrdoeirrent infections witandidaor whether c-Kit
inhibitor imatinib could have beneficial or adveeféects in CMCD patients has to be investigated in
future. A comparison of c-Kit expression in nontautd PBMCs would provide an insight into whether
CMCD patients have a higher frequency of c-Kit-pusicells than healthy individuals. Unfortunately,
due to a limited number of patients and difficudti@ obtaining cell material, this study could only

provide preliminary results.
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4.6. Transcription profile of genes coding for xenolgatetabolising enzymes

The study’s results strongly indicated a mechanistiction for CYP enzymes in human immune cells
of healthy subjects and of CMCD patients and enmipldgshe need to screen different immune cells for
the expression of genes coding for xenobiotic-naising enzymes. Following this idea a specific

transcription pattern of xenobiotic-metabolisingapé |, Il and Il enzymes was assigned to seven
immune cell subtypes. Although the AHR expressioimmune cell subtypes is well characterised
(Esser and Rannug, 2015; Frericks et al., 2007dhs&en et al., 2008), a comprehensive overview of

the xenaobiotic-metabolising enzymes in differentiome cells has been lacking so far.

4.6.1. Differential expression of XMEs in various humammome cell subpopulations

This study showed that immune cell subtypes weaeattterised by a specific, constitutive transaoipti
pattern of genes coding for phase I, phase Il &ad@Ill metabolising enzymes in non-cultured Hhes
isolated and untreated human immune cell subtypes fiealthy donors. Several studies characterised
CYP expression in PBMCs or isolated immune cellytafions after incubation with CYP-inducing
agents (summarised in (Siest et al., 2008)). Th&Aepulated geneSYP1A1 CYP1BlandNQO1
were all clearly detected in human mast cells ialg) a potential sensitivity of mast cells for AHR
activation. According to their transcription prefilhuman mast cells seem to be active in metabglisi
AHR ligands, asCYP1Al and CYP1B1were transcribed. CYP1Al and CYP1B1 are typically
extrahepatic expressed enzymes and as describeidysly it was found thaCYP1Blwas highly
transcribed in myeloid-derived cells (Baron et 41998). The highest frequency of constitutive
expression of AHR-regulated genes was determinadaist cells, basophils, CD1#/onocytes and
among lymphocytes in CD4memory Th cells. Wherea8YP1Altranscription was only clearly
detected in human primary forskin mast cellYP1B1expression showed a more frequent and
constitutive expression in myeloid-derived cellarttin lymphoid-derived cells.

Basophils are functional closely related to ma#is @nd the data here shown indicated that makt cel
marker proteins were also transcribed in basophite unexpected finding that the gene coding for
FceR1o (FCER1A was transcribed in basophils and not in mass éellikely hinting at an alternative
promoter usage in these both cell types (Hasegaah, 003; Nishiyama et al., 2002; Nishiyama et
al., 2001). c-Kit is a survival receptor for mastlls, however, the current study indicated a basal
transcription of th&<IT gene also in T cells. This finding additionallydenlines the previous results
that lymphocytic T cells are susceptible for a dapiKit induction.

Regarding the expression@E5TP1, CYP2J2, CYP2D6, CYP2A6, CYP3A5, CYRBA4lata confirm
previous studies of metabolising enzymes in hurpanphocytes from healthy donors, however, a clear
transcription ofCYP1A1 CYP2C9, CYP2C18ndCYP2C19%ould not be found (Krovat et al., 2000;
Siest et al., 2008). These effects might be expthiby different cell isolation methods. Here,
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bead-based methods were used to avoid culturifedpofl cells and, as characterised by reproducible
data among different donors, very clean cell pdpria were reached.

As described previous; YP1Blis transcribed in human lymphocytes (Hakkola gt1897) but the
current study indicated an exculsive transcripib@8YP1Blin memory Th cells. The CYP1B1 enzyme
is constitutively expressed in extrahepatic tissigeverexpressed in human tumors and activates a
variety of pre-cancerogens (Murray et al., 2001yidy et al., 1997). However, its function in adagti
immunity is rudimentary known at present. Additittyhathe unexpected results that complete Th cells
and memory Th cells could be cleary distinguishambeding to the transcription GYP1B1, CYP2B6
andCYP4F2hint at a different phase | metabolism in thedktgpes.

In the conducted experiments with the CYP1 inhibitd®P and the AHR agonist FICZYP1Alwas
more strongly induced tha@YP1B1lin each healthy subject. However, whether the gmes of
CYP1B1 alone could affect the cytokine expressianigularly IL-22 expression in human memory Th
cells remains to be clarified in future. Th cell® dhe major producers of IL-22 in the adaptive
immunity. These lymphocytes also up-regulated ILa?@ c-Kit after FICZ treatment in the current
study. On CYP level Th cells could be discriminafedm other lymphocytes according to the
transcription ofCYP2S1andCYP4F3 As arachidonic acid metabolites are proposedndsgenous
AHR inducers, metabolism of eicosanoids by CYP2% montribute to pro- or anti-inflammatory
immune reactions in T cells (Bui et al., 2011; Maalgake et al., 2012). As tlRIGS2gene was also
transcribed, the data imply that Th cells are acitivthe metabolism of polyunsaturated fatty acids.
Additionally, transcription of tryptase genes, etiog solublex- andp-tryptases (Pallaoro et al., 1999),
was detected in Th cells. Tryptases are major eagyim mast cells and elevated levels are found in
patients with allergies or mast cell diseases €tial., 2000; Schwartz et al., 200B)yptases enhance
proliferation of fibroblasts and epithelial cell:ica are stimulating factors for the synthesis of
type | collagen in fibroblasts (Cairns and Wall@9&, 1997; Gruber et al., 1997). Functions of tgpt

in T cells are less investigated, but the curremtifigs underline an involvement of Th cells irstie
homeostasis.

The liver is the major organ of drug- and xenolsiohietabolism. It modulates systemic levels of
potential ligands on xeno-sensing receptors, apatiemetabolism maintains plasma levels of small
chemicals (Buters, 2008). However, lipophilic malles acting as ligands on xeno-sensing receptors
could accumulate in specific tissues (Mullerova Engecky, 2007). The CYP1-dependent regulations,
shown in this study, imply that a cell type-spax@iYP expression may impact organ-specific immunity
in a context of a certain chemical microenvironmérdriants of CYP genes could be up-coming
modulators of immunological disorders such as maicdisorders, allergies, autoimmune diseases or
hematopoietic malignancies.

Although the study provides only data on transwipl level and biological functions have to be
proven, the study indicated that each immune cddpspulation is equipped with a unique metabolic

response to chemicals.

11¢



Discussion

4.7. CYP and AHR in allergy

The current study pointed out that c-Kit, IL-22 dhel 7 were susceptible targets for CYP1-dependent
AHR activation particularly in lymphoid-derived telWith the effects on IL-17, IL-22, c-Kit, and on
Ig production (Kadow et al., 2011; Kiss et al., 20Trifari et al., 2009; Yoshida et al., 2012), AHR
probably a critical modifier of allergic diseasds2?2 is considered to modulate allergic inflamroati
(Besnard et al., 2011; Pennino et al., 2013). ILA2R together with the c-Kit ligand SCF are degelct
with elevated levels in patients with allergic as¢h(Lei et al., 2008; Makowska et al., 2009; Oligei

et al., 2002; Zhu et al., 2011a). More studies kholarify whether CYP1 activity could aggravate or
attenuate immune responses during sensitisation clwronification of allergic diseases.
A microenvironment with elevated levels of IL-22ngeated by a reduced CYP1 activity possibly
reduces the release of pro-allergic cytokines fepithelial cells that contribute to allergy by enbiag
group 2 ILC (ILC2). IL-22 reduces differentiatiof 1bC2 and allergic inflammation (Klein Wolterink

et al., 2012; Mjosberg et al., 2011; Takahashl.e@11). Additionally, it was shown that expostwe
AHR ligands during pregnancy increases postnatatiions and reduces the prevalence of allergies
(Weisglas-Kuperus et al., 2000). A possible anérglc effect by shifting Th2 cell differentiationto

Th1 direction by AHR activation was already suppsecell culture experiments (Negishi et al., 2005
The function of CYP in allergy has been rudimentamestigated, however, polymorphisms in genes
encoding XMEs are found to be associated with lafos bronchial asthma (Polonikov et al., 2014;
Polonikov et al., 2009; Polonikov et al.,, 2007). Aescribed previously, AHR also induces
immune-regulatory mechanisms, however, neither lagign of IL-10 nor of FOXP3 by CYP1
inhibition was considered in this study. A detaitedl phenotyping o€yplknockout mice especially
during sensitisation and environmental exposuogiiszntly ongoing.

During the last decades prevalence and incidena#lesfjic diseases have been progressively rising i
industrialised societies where 20 - 30 percenhefifopulation is affected (Zheng et al., 2011).

Typical environmental pollutants such as cigarstt@ke or anthropogenic combustion particles are a
source of PAHs, many being AHR ligands and CYP sates at the same time. DEPs or smoking are
generally accepted as adjuvant factors for alldngwever, divergent studies with protective effaxts
AHR activation are emerging (Givi et al., 2013; dgcet al., 2012; Negishi et al., 2005). These
inconsistent results might be explained by diffe@il-specific and ligand-dependent AHR pathways
or by various chemical features among AHR ligarftlt tould also result in immunosuppressive
effects. Several toxicological studies indicatedttRAH mixtures such as coal tar or urban dust
particulate matter decrease toxic effects of sifgf\els and could inhibit CYP1 activity (Courter &t a
2007a; Courter et al., 2007b; Mahadevan et al.7200 the context of the current study, a crudédiPA
mixture, prolonged applicated in low doses, mayudiscytokine production and cell differentiation b
CYP1 inhibition and amplified AHR activation. Thuppssibly other immune cells at epithelial
interfaces, which express AHR, c-Kit and IL-22 sastmast cellgp T cells, ILCs or T cells, may shift

the immune response according to the chemical misticonment. These collective findings suggest
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that polymorphisms in CYP genes might offer explemms why some individuals are more susceptible
to the immunological effects of environmental cheasts than others. Ubiquitous polymorphisms in
CYPgenes could result in reduced or absent catadyfiiwities and give a good opportunity to study

their role in immunology including allergic disease
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5 Summary

5.1. Summary

The ligand-activated transcription factor aryl hychrbon receptor (AHR) mainly responds to
environmental toxins. AHR induces cytochrome P4%CY¥P1) enzymes that degrade lipophilic
xenobiotics and control the metabolism of endogerghemicals. By modifying cytokine expression
and differentiation of immune cells, AHR is incrigagy recognised as an immune-modulating factor.
Several studies have reported that AHR regulateslithotomous development of either suppressive
T regulatory T cells (Treg) or pro-inflammatory €lper (Th) 17 cells. The production of the Th17
cytokines interleukin (IL)-22 and IL-17 is impairéd patients suffering from an isolated form of
chronic mucocutaneous candidiasis (CMCD). CMCDgpdsi are characterised by recurrent infections
with the yeas€andida mostlyCandida albicansTo a large extent, these patients have gain+uétfan
mutations in the signal transducer and activatotrafscription 1(STAT1)gene that lead to an
overactive STATL protein. STATL1 is a negative regpi of the Th17 response. An interaction of AHR
with STAT1 has been recently indicated and varidd® ligands induce the exclusive up-regulation
of IL-22 but not of IL-17A and IFNrin humans. Additionally, recent studies emphasibatithe stem
cell factor receptor gen&IT) is an AHR target in mice. The receptor tyrosiimake cellular (c)-Kit is
important for driving survival and division of born&arrow-derived hematopoietic stem cells. Although
AHR in immunity has been intensively studied, tdedthe role of CYP metabolism in immunity is
unclear. However, inhibition of CYP1 activity prags a mechanism for AHR activation. The present
study hypothesised that CYP could navigate immuesponse by degradation of ligands on
Xxeno-sensing transcription factors and thus caugilas metabolic keys to immunological reactions.
The aim of this thesis was to investigate the inmp&cYP1 activity on the AHR pathway in human
immune cells. Besides other toxicologically relenggnes and target genes related to the AHR pathway
the Th17 cytokines and c-Kit were in the focusto$ tstudy. The importance of the AHR feedback
activation was also investigated usgpla2knockout mice. In addition, CMCD patients weredgta

to confirm the relevance of the AHR pathway foraR-induction in a human immunlogical disease.
Furthermore, the study investigated the expregsadiern of toxicologically important genes in human
immune cell subtypes.

Activated peripheral blood mononuclear cells (PBMftsm healthy donors and CMCD patients were
treated with 1-(1-propynyl)-pyrene (1-PP), a sugcidhibitor for CYPL in the presence of a low dose
of the AHR ligand 6-formylindolo[3,®]carbazole (FICZ) alone or in combination with tA&IR
antagonist CH-223191. As control, PBMCs from CMCilignts and healthy subjects were additionally
treated with a high concentration of FICZ. CytokiG&'Pland c-Kit expression levels were analysed

by quantitative real time-polymerase chain reac(@RT-PCR), enzyme-linked immunosorbent assay
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(ELISA) and flow cytometry (FACS). Viability and gliferation were analysed by flow cytometry,
lactate dehydrogenase (LDH) activity afd-thymidine assays. Expression of genes encoding
xenobiotic-metabolising enzymes in different huni@mune cells was examined by TagMan Low
Density Arrays (TLDAS).

Inhibition of CYP1 activity by 1-PP in the preserufea low concentration of the AHR agonist FICZ
increasedCYP1 c-Kit and IL-22 expression levels but dampened MLproduction in activated PBMCs
from healthy subjects as well from CMCD patientshibition of the AHR inverted these effects. In
particular, human T cells responded highly sersito/CYP1 inhibition with an up-regulation of c-Kit
and Th cells that co-express c-Hitd IL-22 were selected in healthy subjects. Funtbee, c-Kit and
IL-22 were up-regulated in activated PBMCs from CM@atients after AHR activation or inhibition
of CYP1 activity. However, both Th and cytotoxic@lls (Tc) from CMCD patients responded with a
stronger induction of c-Kit than cells from healtybjects. Unexpectedly, data of correlation arsys
in healthy subjects indicated that 8¢ P1Algene transcription was negatively correlated, eaer
CYP1Bltranscription correlated positively with t@édR transcription. Following these observations,
the ratio ofCYP1AlandCYP1B1ltranscription levels correlated differently witltetexpression of AHR
pathway compounds. Additionally, splenocytes frégpla2knockout mice had a higher percentage
of IL-22* cells than wild type mice after AHR activation aimdcontrol treatments. This further
confirmed a function of CYP1 in immune cells. Flgamajor immune cell subtypes could be grouped
according to thei€YPexpression. Although 17 of the studied genes warestribed in all investigated
immune cells, genes encoding XMEs fingerprinted &ammonocytes, Th cells, memory Th cells,
Tc cells, B cells, human primary foreskin mastsathd basophils.

Conclusively, the present study demonstrates aneaCtyP1-dependent AHR activation in a range of
human immune cells and depicts a mechanism fort @#d IL-22 induction in both PBMCs from
healthy subjects and CMCD patients. The surfaceptec c-Kit was used as a susceptible target for a
CYP1-dependent AHR activation especially in humarcells. In addition, the results highlight
peripheral Th cells that co-express IL-22 and c-Kithough IL-22 and c-Kit are induced by inhibitio

of CYP1 activity, both are probably differently tdgted. The selective expression of CYP-coding
genes in human immune cells hints at cell typeifipdanctions of these enzymes and suggests that
similar mechanisms are present in multiple immuglscTherefore, this model could be used to study

the environmentally induced etiologies of immunatad diseases such as CMCD or allergic diseases.



Zusammenfassung

5.2. Zusammenfassung

In  seiner klassischen Rolle erfullt der liganderdgige  Transkriptionsfaktor
Arylhydrokarbon-Rezeptor (AhR) wichtige FunktionemFremdstoffmetabolismus. Der AhR reguliert
Fremdstoff-metabolisierende Enzyme wie CytochroaPEYP). CYP Enzyme sind notwendig, um
lipophile Fremdstoffe effektiv aus dem Kérper awsheiden. CYP Enzyme der Familie 1 (CYP1)
unterliegen der direkten Regulation des AhRs. Neu&tudien zeigen zudem, dass AhR
immun-modulierende und immun-regulierende Funktiohesitzt, und sowohl die Entwicklung von
T-Helferzellen vom Subtyp 17 (Th17), Th22 und auch regulatorischen T-Zellen (Treg) beeinflusst.
Als ein Mechanismus, der die Bildung von Th17 Zellm murinen System férdert, wird die Interaktion
des AhRs mitSignal Transducer and Activator of TranscriptionSTAT1) vermutet. Das STAT1
Protein hemmt den Th17 Signalweg und ist in Patiendie an einer isolierten und chronischen Form
der Candidainfektion (Chronic Mucocutaneous Candidiasis Disea@@MCD)) leiden, haufig
Uberaktiv. Diese Patienten sind gekennzeichnethdardosomal-dominant vererbte Mutationen im
STAT1Gen und einer meist verringerten Bildung der TEY#okine Interleukin (IL)-22 und IL-17.
Sowohl im humanen als auch im murinen System kaaifPcbduktion von IL-22 durch verschiedene
AhR Liganden erhdht werden. Neben der Induktion N6B2 sind die weitreichenden Funktionen des
AhRs im Immunsystem durch die Regulation des Staglifaktor-Rezeptors (c-Kit) gegeben. c-Kit ist
eine Rezeptor-Tyrosinkinase und an der Entwickkargchiedener hAmatopoetischer Zellpopulationen
beteiligt. Aufgrund der vielfaltigen und meist liggenabhangigen Funktionen des AhRs wurde in dieser
Studie angenommen, dass AhR-regulierte Fremdstef&olisierende Enzyme ebenfalls eine Aufgabe
im Immunsystem haben kdnnen. Die Hemmung der CYRtivi#at kann den Abbau eines potentiellen
AhR Liganden verringern und AhR dadurch aktivier&ie Aktivierung von AhR durch diesen
Ruckkopplungsmechanismus in humanen Immunzellerbigher nicht untersucht.

Ziel der vorliegenden Arbeit war es, eine CYPl-algige Aktivierung des AhRs in humanen
Immunzellen zu untersuchen. Zur Uberpriifung didseshanismus dienten als wichtigste Endpunkte,
neben anderen mit dem AhR-Signalweg assoziertereiGatie Regulation der CYP1-kodierenden
Gene und die Expression von c-Kit, IL-22 und IL-Weitere Schwerpunkte lagen in der Analyse des
AhR-Signalweges in CMCD Patienten, dem Nachweis Uo22 in Splenozyten aufypla2
knock-out Mausen und in der Charakterisierung degmistoff-metabolisierenden Kapazitat in
unterschiedlichen humanen Immunzellpopulationen.

Zum Nachweis wurden humane periphere mononuklelireddlen Peripheral Blood Mononuclear
Cells(PBMCs)) aus nicht-atopischen Spendern und CMCigiitan mit anti-CD3/CD28 aktiviert und
mit einem spezifischen CYP1 Inhibitor 1-(1-PropyAgyren (1-PP) alleine oder in Kombination mit
dem hoch-affinen AhR Agonisten 6-Formylindolo[3,Rdrbazol (FICZ) in niedrigen Konzentrationen
behandelt. PBMCs isoliert aus CMCD Patienten urstigden Probanden wurden zusétzlich mit FICZ
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in hoher Konzentration stimuliefDie AhR-abhangige Regulation wurde durch die Zugdée AhR
Antagonisten CH-223191 getestet. Die Zytokinexpogssnmittels ELISA, FACS und gRT-PCR
gemessen. c-Kit un€YPtkodierende Gene wurden durch FACS und gRT-PCRysieal. Die
Expression von IL-2th Cypla2knock-outMausen konnte nach Stimulation mit FICZ mittels FAC
analysiert werdenTagMan Low Density Arraydienten dem Nachweis der konstitutiven Expression
von Genen, die fur Fremdstoff-metabolisierende Brein CD4 T-Helferzellen, CD4 Gedachtnis-T-
Helferzellen, CD8 zytotoxischen T-Zellen, basophilen Granulozyteizédlen, CD14 Monozyten und
humanen primaren Vorhautmastzellen kodieren.

Die Hemmung der CYP1 Enzyme in PBMCs von gesundebdnden verstérkte sowohl die Expression
von CYP1AlundCYP1Blals auch die des Oberflachenrezeptors c-Kit undZgteskins I1L-22. 1L-17,
welches durch die AhR-Aktivierung im humanen Systemeerdriickt wird, wurde entsprechend zu
IL-22 entgegengesetzt reguliert. Sowohl Clads auch CD8T-Zellen zeigten eine héhere Frequenz
von c-Kit" Zellen nach CYP1 Hemmung. PBMCs, die gleichzebigitiv fur c-Kit und IL-22 waren
und CYP1- bzw. AhR-abh&ngig induziert wurden, kennin gesunden Spendern den T-Helferzellen
zugewiesen werden. Die Zugabe des AhR Antagonigieimgerte diese Effekte. Ein weiteres Ergebnis
dieser Studie war die negative Korrelation von t#id CYP1Almit der AHR Transkription. Im
Gegensatz dazu korrelie®P1B1positiv. In PBMCs von CMCD Patienten wurden sowah22 als
auch c-Kit durch die Hemmung der CYP1-Aktivitat baturch die Aktivierung des AhRs verstarkt
gebildet. Im Gegensatz zu gesunden Spendern wiedech eine starkere Induktion von c-Kit und
eine geringere Konzentration von IL-22 gemesseler®gyten vorCyplazknock-out Mausen zeigten
im Vergleich zu Wildtyp Mausen ebenfalls eine h@&Erequenz von IL-22Zellen sowohl im CD%4

als auch im CD8Zellkompartment und bestatigten zudem eine Funktmn CYP1 in Immunzellen.

In unterschiedlichen humanen Immunzelltypen komite basale Expression von 17 verschiedenen
Genen gemessen werden, die fir Fremdstoff-metadralisle Enzyme kodieren. Diese liel3en sich
jedoch aufgrund spezifischer CYP Muster untersaheid

Zusammenfassend zeigt diese Arbeit, dass immursadbgiProteine wie c-Kit und IL-22 in humanen
PBMCs von gesunden Probanden und von CMCD PatiéienFremdstoff-metabolisierende Enzyme
reguliert werden konnen. Obwohl beide gewéahltenumofogischen Zielproteine durch eine verstarkte
AhR- bzw. eine reduzierte CYP1-Aktivitdt induziesurden, werden c-Kit und Zytokine
moglicherweise Uber unterschiedliche AhR-abhéanditgehanismen reguliert. Mit dem Nachweis
spezifischer Transkriptionsprofile in unterschiedén Immunzellen konnte zudem ein Hinweis auf
eine zellspezifische Funktion von CYP erarbeitetdea. Ob die CYP1-induzierte AhR-Aktivierung
physiologisch relevant ist und CMCD oder allerges&rkrankungen beeinflusst, wird in zuktinftigen

Studien weiter untersucht.
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IX. Dictionary of Molecules

AHR: Aryl hydrocarbon receptor

AHR is a cytosolic, ligand-activated transcriptiéactor mostly investigated in the context of
environmentally induced xenobiotic metabolism amxdology (Nebert et al., 1993). AHR-mediated
toxicity to exogenous compounds is partially depamndn oxidative stress, genotoxic and proteinatoxi
effects and manifested in diverse organs and nheltipncers (Nebert, 1989; Nebert and Dalton, 2006;
Nebert et al., 2004). AHR belongs to the basic xHelbp-helix (bHLH)/Per-ARNT-Sim (PAS)
transcription factor family and was initially codsred as a regulator of lipophilic, exogenous madksc
(xenobiotics) (Burbach et al., 1992; Ema et al94tEma et al., 1992; Gu et al., 2000; Kewley et al
2004; Mclintosh et al., 2010, Nebert, 1989; Nebieat.e1993; Poland and Knutson, 1982). The recepto
is highly expressed in the liver, in barrier organsl diverse immune cell subpopulations (Dolwick et
al., 1993; Esser and Rannug, 2015; Li et al., 1994)

ARNT: AHR nuclear translocator

ARNT is the nuclear dimerisation partner of AHRtlwe canonical AHR pathway (Reyes et al., 1992;
Soshilov and Denison, 2011; Whitelaw et al., 199&e AHR, ARNT belongs to the basic helix-loop-
helix (bHLH)/Per-ARNT-Sim (PAS) transcription facttamily (Gu et al., 2000; Kewley et al., 2004;
Mcintosh et al., 2010). AHR and ARNT bind to xeraili response elements (Bacsi et al., 1995;
Whitelaw et al., 1993).

ABCG2/BCRP: ATP-binding casette subfamily G memb/@reast cancer resistant protein

ABCG2 is a transmembrane transporter using adeadsiphosphate (ATP) as energy donor for

transporting substrates against a concentratiatiggrethrough the membrane. ABCG2 is one important
multidrug resistant (MDR) protein expressed on steffs and malignant cells. Efflux of therapeutics

through ABCG2 promotes drug resistance (Kosztyal.e2014; Tan et al., 2010; Zhou et al., 2001)

CYP: Cytochrome Pigment-450

CYP proteins are heme-containing and mixed-funetiomono-oxygenases. The enzymes are involved
in the oxidative hydroxylation and metabolism obg&nous and endogenous lipophilic chemicals
including drugs. The enzymes are ubiquitously esggd and embedded in the endoplasmatic
reticulum, where they use molecular oxygen andciaduequivalents for substrate oxidation. During
the CYP catalytic cycle mutagenic molecules andtremoxygen metabolites can be generated (Bondy
and Naderi, 1994; Guengerich, 1992, 2006; Neb8a11Nebert and Dalton, 2006; Nebert and Karp,
2008; Nebert and Russell, 2002; Puntarulo and ®aden, 1998). The name cytochrome P-450
originates from the observation that in the presesfca reducing environment carbon monoxide (CO)
forms a complex with CYP. This complex display arettteristic absorption maximum at 450 nm. This

behaviour was crucial for the name cytochrome pigrd&0 (CYP)(Klingenberg, 1958; Omura and
li
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Sato, 1964). CYP enzymes, according to their anaicid sequence identities, are structured into
families and subfamilies, whereas a sequence hawyalb more than 40% determines for the same
family (e.g. CYP1) and enzymes of a same subfadifglay a sequence identity of at least 55% (e.g.
CYP1A) (Nelson et al., 1996). The human genomeymnebly encodes for 57 functional CYP proteins.
These are structured according to their sequererdiiigs in 18 families (Lewis, 2004; Nelson, 2002;
Nelson et al., 2004). Most of them are polymorgnd display a complex organ-, development- and
sex-specific expression. CYP enzymes are most amilydexpressed in the liver, the intestine and in
tissues with close proximity to the environmentrsas lung, skin and gastrointestinal trdiging and
Kaminsky, 2003; Gandhi et al., 2004; Gundert-Rermgle 2014; Maceé et al., 1998; Nebert, 2000;
Swanson, 2004; Waxman and Holloway, 2009; Zangal.g2014; Zanger and Schwab, 2013). CYP1
family enzymes are the most important downstreageta of the AHR (Ma, 2001; Nebert et al., 2004;
Nebert and Jones, 1989).

HIF1A/ HIF1a: Hypoxia-inducible factor 1 alpha

Together with ARNT and AHR, HIFlbelongs to the PAS protein family of transcriptfantors that
are cellular sensors for environmental stressaisidng oxygen (Gu et al., 2000; Kewley et al., 200
Mclintosh et al., 2010; Wang et al., 1999)F1a is activated during hypoxia, and Hi~tegulated
genes such as erythropoietin (EPO) and vasculasteelthl growth factor (VEGF) contain hypoxia
responsive elements (HRE) (Salceda and Caro, A®@#npger et al., 2005). Both AHR and HiFact
as heterodimers and share the same partner ARNsthkso referred to as HIB1Thus, interference
between AHR activation during hypoxia and HiFhediated limitations of AHR-induced toxic effects
are well investigated (Bacsi et al., 1995; Gassnsrah., 1997; Schults et al., 2010).

IL22/IL-22 : Interleukin-22

IL-22 is a tissue-regulatory cytokine produced bgny innate and adaptive lymphocytes including
Th17,yd T cells and ILCs. IL-22 is the signature cytokofelh22 cells (Colonna, 2009; Martin et al.,
2009; Spits and Di Santo, 2011, Trifari et al., 200/itte et al., 2010). Thik22 gene is clustered within

a conserved genomic region together with Itt#6 and thelFNG genes on the human chromosome
12q14-15 (Dumoutier et al., 2000a; Goris et al.020 The cytokine belongs to the family of
IL-10-related cytokines and its biological functismmediated through binding to the IL-10R2/IL-22R1
receptor chains, mainly expressed on tissue delisnputier et al., 2000b; Kotenko et al., 2001; Wolk
et al., 2004; Xie et al., 2000). IL-22 has both-pand anti-inflammatory properties depending on the
microenvironmental settings (Besnard et al., 2Q1dng et al., 2006; Sonnenberg et al., 2010). & th
skin, IL-22 is an essential factor for skin homes# and regulates epithelial barrier functions aost
defence. The cytokine supports the innate deferexhamisms by inducing antimicrobial peptides in
epithelial cells (Duhen et al., 2009; Eyerich et 2009; Liang et al., 2006; Wolk et al., 2004; Wet
al., 2006).
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KIT/c-Kit:

Normal cellular (c)-Kit protein, is a receptor tgine kinase important for survival and divisiorbohe
marrow-derived hematopoietic stem cells (HSC) aheroc-Kit-expressing cells. It was discovered as
a homolog of the feline retroviral oncogen v-Kituddtions in theKIT gene result in various forms of
cancers and mark it as a protooncogene. While @ijiression on progenitor cells is necessary for
sustained immune cell progression, the receptdoven-regulated in most immune cell populations
during lineage commitment (Ashman et al., 1991;nB&set al., 1986; Chabot et al., 1988; Ogawa et
al., 1991). c-Kit provides response to the cytolatean cell factor (SCF) (Blechman et al., 1993; tpa
et al., 1990; Nocka et al., 1990; Williams et 4P90; Yarden et al., 1987; Zsebo et al., 1990 It
closely related to other growth factor receptoke Iplatelet-derived growth factor receptor or the
receptor for the macrophage colony-stimulatingdatt(Qiu et al., 1988; Yarden et al., 1987). Qarta
differentiated cells have kept or retained c-Kipession and c-Kit is expressed on mast cells,
yo T cells, eosinophils, on subpopulations of indwatephoid cells (ILCs) (including natural killer (NK
cells) and on non-hematopoietic cells (such as moelgtes) (Kadow et al., 2011; Kirshenbaum et al.,
1999; Kiss et al., 2011; Matos et al., 1993; Spitd Di Santo, 2011; Yoshida et al., 2001).

NRF2NRF2: Nuclear factor erythroid 2 like 2

NRF2 is a basic leucin zipper transcription faetod sequestered in the cytoplasm by Kelch-like-ECH-
associating-protein 1 (Keapl). Keapl senses oxiglatid electrophilic stress and is an adapter iprote
of an E3 ubiquitin ligase. When intracellular oxigda burden is low, interaction of Keapl with NRF2
induces a permanent NRF2 degradation. Rising cdratems of reactive oxygen species or
electrophiles stabilise and release NRF2 from Keafziving the translocation into the nucleus (ltoh
et al., 2003; Kang et al., 2004; Kobayashi et2004; McMahon et al., 2003; Nguyen et al., 2003b).
NRF2 binds onto antioxidant response elements (AREgene batteries coding for phase | and for
phase Il enzymes. NQO1, aldo-keto reductases (AldRg gluthation-s-transferases (GSTs) are NRF2
targets acting downstream of CYP enzymes (Charals @002; Jaiswal, 2004; McMahon et al., 2001;
Nguyen et al., 2003b; Radjendirane and Jaiswal9;138nugopal and Jaiswal, 1996). NRF2
co-operates with AHR for inducing detoxification pbtentially harmful intermediates and for
regulating oxidative defence. Expression of bo#mngcription factors is regulated mutually and
activation of both factors control partly overlapgisignalling pathways and XME batteries (Kéhle and
Bock, 2007; Ma et al., 2004; Miao et al., 2005; \Yanal., 2013).
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NQOINQOZI NAD(P)H dehydrogenase quinone 1

NQO1 is an oxidoreductase that protects againsfotimeation of reactive quinone intermediates. The
enzyme reduces quinones by a two-electron trabtsfeydroquinones and thus prevents generation of
very reactive oxygen species. Reactive semiquiimieamediates occur during phase | metabolism and
contain unpaired electrons resulting in variousrni®of toxic cell damage. THe¢QO1gene contains
both AREs and XREs and could be regulated by AHIRMIRF2 (Nioi and Hayes, 2004).

PTGS2/COX-2: Prostaglandin-endoperoxide synthas®y/@lboxygenase-2

Cyclooxygenase-2 (COX-2) is an inducible membrawaded enzyme encoded by the
prostaglandin-endoperoxide synthasP2&S2 gene. COX-2 converts arachidonic acid into prects

of prostaglandins such as prostaglandin (EGE). These mediators are important for diverse
intracellular and intercellular pathways and preessincluding cell proliferation, inflammation and
pain (Brock et al., 1999).

liv
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Table 30. Characteristics of PBMC donors

PBMCs gender age IgE/KU/I
1 F 28 10.4(
2 M 33 7.5C
3 F 48 9.11
4 F 53 9.2¢€
5 F 3t 9.1%
6 F 23 19.9(
7 F 2¢ 3.€
Mean 35.77 9.8¢
Standard deviatior 10.0d 4.58
Table 31. Characteristics of CD14 cell donors
CD14* cells gender age total IgE (kKU/I)
CD14.1 F 28 3.90
CD14.2 F 28 6.10
CD14.3 M 25 22.90
CD14.4 F 28 10.40
CD14.5 M 32 7.50
CD14.6 F 32 14.50
CD14.7 F 28 8.02
Mean 28.71 10.47
Standard deviation 2.312 5.57
Table 32. Characteristics of CDACD45RO'CD45RA" T cell donors
CDACD45RO'CD45RA T cells gender age total IgE (kU/I)
CD4CD45R0.1 F 28 3.90
CD4CD45R0.2 F 28 6.10
CD4CD45R0.3 F 23 18.40
CD4CD45R0.4 M 25 22.90
CD4CD45R0.5 M 32 7.50
CD4CD45R0.6 F 32 14.50
CD4CD45R0O.7 F 28 8.02
Mean 28.83 11.62
Standard deviation 2.48 6.14
Table 33. Characteristics of B cell donors
B cells gender age total IgE (kU/I)
Beell.1 M 32 7.50
Beell.2 F 28 10.40
Beell.2 F 28 43.30
Bcell.4 F 29 2.53
Beell.5 F 28 3.90
Beell.€ M 25 22.90
Beell.7 F 25 25.50
Mean 27.86 16.58
Standard deviatior 2231 12.81
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Table 34. Characteristics of CD8 T cell donors

CD8+ T cells gender age total IgE (KU/I)
CD8.1 F 28 10.40
CD8.2 M 30 58.60
CD8.3 F 28 43.30
CD8.4 F 30 5.19
CD8.5 F 29 2.53
CD8.6 F 28 3.90
CD8.7 F 25 25.50
Mean 28.28 21.35
Standard deviation 1.57 20.45
Table 35. Characteristics of CD4 T cell donors
CDA4+ T cells gender age total IgE (kKU/I)
CD4.1 F 28 10.40
CD4.2 M 30 58.60
CcD4.: F 28 43.30
CD4.. F 30 5.19
CD4.t F 29 2.53
CD4.€ F 28 3.90
CD4.7 M 25 22.90
Mean 28.29 20.97
Standard deviatior 1578 19.07
Table 36. Characteristics of basophil donors
Basophils gender age total IgE (KU/I)
Bas.’ M 21 22.90
Bas.2 F 30 34.1
Bas. F 28 14.50
Bas.c F 25 56.6
Bas.i F 36 78.40
Bas.( F 25 42.10
Bas. M 26 58.60
Mean 28.14 43.89
Standard deviatior 4.196 19.28
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Table 37. Mean fold changes of AHR target gene tracription
PBMCs activated with anti-CD3 and anti-CD28 were &dawith the AHR agonist FICZ (5x20 M), CYP1 inhibitor 1-PP

(10%M) and the AHR antagonist CH-223191 (3¥€1M) for 5 days.A-C, Relative RNA expression of AHR-regulated

cytochrome P450s0YP1Al, CYP1B1, CYP2SD-G, other AHR-regulated geneKI, ABCG2 NQOJ, PTGS2, H-K,

transcription factorsAHR, ARNT, NRF2 HIF1A) andL-O, cytokines [L22, IL17, IFNy, IL26) was analysed with gRT-PCR.

Mean fold changes of compared conditions are sh8etd values indicate significant changes.

Comparison of conditions FICZvs. |1-PPvs. | 1-PP+ FICZ vs.| 1-PP FICZ vs. | 1-PP FICZ iZEE N E:g% vs-
Fold changes DMSO DMSO DMSO FICZ vs. 1-PP CH-223191

A CYPIAL 12.42 12.01 365.45 44.47 36.04 5.97
B CYPIB: 1.61 1.84 14.02 8.60 8.33 3.68
c CYP2S 1.29 117 1.69 1.24 1.37 1.04
b KT 1.24 1.30 5.42 4.46 4.09 3.22
E ABCG: 0.58 0.67 0.47 0.82 071 0.99
r NQO1 1.00 0.97 1.19 1.20 1.22 1.26
G PTGS: 0.98 1.00 0.67 0.76 0.77 0.75
H NRE2 1.05 1.12 1.19 1.13 1.08 1.04
| AHR 0.88 0.94 0.74 0.85 0.81 0.88
3 ARNT 0.88 0.94 0.74 0.85 0.81 0.88
K HIFIA 1.00 1.04 1.02 1.02 1.00 0.97
L L22 432 2.94 9.45 2.41 3.59 2.66
M IENy 0.84 117 0.98 1.19 0.89 0.83
N L17 0.71 0.91 0.50 0.77 0.54 0.61
o L26 1.25 1.02 1.96 171 2.06 2.14

Table 38. Mean fold changes of protein expression
PBMCs activated with anti-CD3 and anti-CD28 were irated for 5 days with the AHR agonist FICZ (5X2QV),

CYP1 inhibitor 1-PP (18 M or 107 M) and the AHR antagonist CH-223191 (3:1M). A-E, Cytokine release (IL-22, IL-17,
IFN-y , TNF-o and IP-10) was determined with ELISA:H, c-Kit" expression on CDED4", on CD3CD8" lymphocytes
and onJ-L, complete CD3 CD3CD56" and CD3CD56 PBMCs was measures by FACS analysis. Bold valuesatedi

significant changes.

Comparison of conditions FICZ vs. 1-PPvs. | 1-PP+FICZ vs.| 1-PP FICZ vs.| 1-PP FICZ vs. 115;:';%22 V+S'
Fold changes DMSO DMSO DMSO FICZ 1-PP CH-223191
A |IL-22 2.39 1.2¢ 4.64 2.00 3.80 1.94
B [IL-17 0.81 0.8¢ 0.7¢ 0.8¢ 0.71 0.64
C | IFNy 0.68 0.8t 0.7¢ 1.0¢ 0.8¢ 0.71
D | TNF-a 1.1¢ 0.9¢ 1.55 1.28 1.45 1.2¢
E | IP-10 0.57 0.7¢ 0.61 0.9¢ 0.6¢ 0.82
F | CD3'CD4'c-Kit* 1.47 1.52 9.62 8.80 7.57 4.66
G | CD3'CD4'c-Kit* IL-22* 0.7¢ 11¢ 3.27 4.47 2.54 3.0¢
H | CD3'CDg'c-Kit* 2.8t 2.57 38.57 16.56 16.52 6.17
J | CDZc-Kit* 1.0¢ 0.9C 2.19 2.22 2.65 2.01
K | CDZCD5€ c-Kit* 1.3C 1.0¢ 2.39 1.97 2.46 1.92
L | CD3CD5€c-Kit* 0.71 0.8¢ 1.9¢ 277 2.90 2.03
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Table 39. Spearman’s correlation coefficients and-palues

AHR vs DMSO FICZ 1-PP 1-PP + FICZ 1-PP + FICZ + CH-223191
r p-value r p-value r p-value r p-value r p-value
NRFz 0.8€ | 0.0238* | 0.857: | 0.0238* | 0.95¢ | 0.0032* | 0.846¢ | 0.0238* 0.892¢ 0.0123*
NQO1 0.774¢ | 0.0492* | 0.821¢ | 0.0341* | 0.810¢ | 0.0349* | 0.738¢ 0.066: 0.927: 0.0079**
ARNT 0.821¢ | 0.0341* | 0.464: 0.302 0.630: | 0.142¢ | 0.774¢ | 0.0492* 0.7¢ 0.066:
HIFLA 0.95¢ | 0.0032* | 0.857: | 0.0238* | 0.882¢ | 0.0151* | 0.846¢ | 0.0238* 0.857: 0.0238*
IL22 0.321¢< | 0.497¢ | 0.428¢ 0.353¢ 0.522¢ | 0.234¢ | 0.630% 0.141: 0.678¢ 0.109:
IL17 -0.162: | 0.698: | 0.828¢ | 0.0302* | 0.857: | 0.0238* | 0.666: 0.116 0.857: 0.0238*
IFNy 0.522¢ | 0.234¢ | 0.964: | 0.0028* | 0.846¢ | 0.0246* | 0.836¢ 0.027* 0.964: 0.0028**
IL26 -0.07207| 0.8587 0.75 0.0663 0.846D 0.0246* | 0.8469 | 0.0238* 0.9286 0.0067**
ABCG: 0.464: | 0.302¢ | 0.0714: | 0.906: 0.281¢ | 05317 | -0.0272° | 0.931 0.464: 0.302:
KIT 0.636¢ | 0.134¢ | -0.0357: | 0.963 0.108: | 0.81¢ | -0.324: | 0.458: 0.642¢ 0.138¢
CYPIA -0.642¢ | 0.138 | -0.678¢ | 0.109¢ | -0.180: | 0.669¢ | -0.810¢ | 0.0278* -0.357: 0.444:
CYP1B: 0.396: | 0.381 | 0.607: 0.166: 0.378: | 0.400¢ | 0.828¢ | 0.0278* 0.928¢ 0.0067**
CYP2S 0.0357: | 0963t | 0.857: | 0.0238* | 0.756¢ | 0.057¢ | 0.540¢ 0.220¢ 0.815¢ 0.0381*
PTGS: 0.428¢ | 0.353¢ | 0.464: 0.302¢ 0.414« | 0.357: | 0.792¢ | 0.0397* 0.535 0.235]
IL-22 proteit 0.144; | 0.757: | 0.107: 0.839: 0.414« | 0.357: | -0.126: | 0.757: 0.607: 0.166
IL-17 proteit 0.702: | 0.089: | 0.234: 0.62: 0.285. | 0.55¢ | 0.108: 0.820¢ 0.414: 0.359¢
IFN-y proteir 0.2t 0.594¢ | -0.0714: | 0.906% 0.342: | 0.457¢ | -0.168: | 0.638: 0.414: 0.355¢
IP-10 proteit 0.357: | 0.444: | 0.0714: | 0.906: 0.612¢ | 0.157¢ | 0.108: 0.820¢ 0.428¢ 0.353¢
TNF-o -0.198; | 0.637: | -0.178¢ | 0.713 0.180: | 0.703: | -0.126: | 0.757: 0.321¢ 0.497¢
CD4* cKit* -0.259. | 0531 | -0.927: | 0.0048* | -0.828¢ | 0.0246* | -0.810¢ | 0.0278* -0.756¢ 0.053:
CDg* cKit* 0.509: | 0.249: | -0.745¢ | 0.055¢ | -0.688: | 0.0851 | -0.756¢ | 0.0492* -0.555¢ 0.178¢
CDZ cKit* -0.142¢ | 0.782t | -0.928¢ | 0.0067** | -0.774t | 0.0397* | -0.882¢ | 0.0095** -1 0.0004**
CDZ CD5€* c-Kit* | -0.324: | 0.456: | -0.928¢ | 0.0067** | -0.774¢ | 0.0397* | -0.792¢ | 0.0349* -1 0.0004**
CD2 CD5€ c-Kit* -0.142¢ | 0.782t | -0.678¢ | 0.109¢ | -0.774¢ | 0.0397* | -0.181¢ | 0.658: -0.714% 0.088:
NRF2vs DMSO FICZ 1-PP 1-PP + FICZ 1-PP + FICZ + CH-223191
r p-value r p-value r p-value r p-value r p-value
NQO1 0.828¢ | 0.0278* | 0.607: 0.166; 0.714: | 0.088: 0. 0.266 0.872¢ 0.019*
ARNT 0.964: | 0.0028* | 0.714: 0.088: 0.642¢ | 0.138¢ | 0.928¢ | 0.0067* 0.857: 0.0238*
HIF1A 0.95¢ | 0.0032** 1 0.0004*** | 0.928¢ | 0.0067* 1 0.0004*+* 0.964: 0.0028**
IL22 0.178¢ | 0.713: | 0.392¢ 0.395¢ 0.5 0.2667 | 0.357: 0.444: 0.571¢ 0.2
IL17 -0.468: | 0.277¢ | 0.571 0.2 0.678¢ | 0.109t | 0.392¢ 0.395¢ 0.607: 0.166
IFNy 0.3784 | 0.400¢ | 0.821¢ | 0.0341* | 0.785. | 0.048* | 0.648: 0.126: 0.964: 0.0028**
IL26 -0.162: | 0.698: | 0.428 0.353¢ 0.785. | 0.048* | 0.571¢ 0.2 0.7¢ 0.066:
ABCG: 0.2851 | 055¢ | -0.107: | 0.839 0.126: 0.8 -0.270: | 0.537: 0.214: 0.661t
KIT 0.6541 | 0.125¢ | 0.125: 0.661t 0.321¢ | 0.497¢ | -0.214: | 0.661¢ 0.714: 0.088:
CYP1Al -0.6071 | 0.1667 | -0.6429  0.1389] -0.1071  0.8397 -B714 0.0881 -0.4643 0.3024
CYP1B: 0.576¢ | 0.185. | 0.571 0.2 0.321 | 0.497¢ | 0.535; 0.235; 0.821: 0.0341*
CYP2S 0.214: | 0.661f | 0.571 0.2 0.642¢ | 0.138¢ | 0.285% 0.55¢ 0.59: 0.178¢
PTGS: 0.678¢ | 0.109t | 0.535; 0.235; 0.428¢ | 0.353¢ | 0.535: 0.235; 0.428¢ 0.353¢
IL-22 proteit 0.288: | 0.528¢ | 0.0714: | 0.906: 0.535. | 0.2357 | 0.142¢ 0.782: 0.714: 0.088:
IL-17 proteit 0.6841 | 0.101¢ | 0.428¢ 0.353¢ 0.321¢ | 0.497¢ | 0.464: 0.302: 0.594¢ 0.169¢
IFNg proteir 0.464: | 0.302¢ | 0.142¢ 0.782¢ 0.464: | 0.302¢ | 0.259: 0.590: 0.594¢ 0.17:
IP-10 proteit 05357 | 0.2357 | 0.214: 0.661t 0.642¢ | 0.138¢ | 0.464: 0.302: 0.607: 0.166
TNF- 0.180: | 0.703: -0.28 0.594¢ 0.321¢ | 0.497¢ | 0.142¢ 0.782: 0.428¢ 0.353¢
CD4* cKit* -0.185: | 0.623t | -0.745¢ | 0.055¢ -0.7¢ 0.066: | -0.714: | 0.088: -0.594¢ 0.157¢
CDg" cKit* 0.291 0.536! | -0.563 0.181 -0.6547 | 0.107¢ | -0.642¢ | 0.138¢ -0.407; 0.314:
CDZ c-Kit* 0 >0999¢ | -0.857: | 0.0238* | -0.678¢ | 0.109¢ | -0.571¢ 0.2 -0.892¢ 0.0123*
CD3 CD56 c-Kit* | -0.07207| 0.8571| -0.8571 0.0238* | -0.6786 | 0.1095 | -0.4643  0.3024 -0.8929]  0.0123*
CD2 CD5€ c-Kit* -0.1071 | 0.839; | -0.535. | 0.235. | -0.678¢ | 0.109¢ | 0.270: 0.550¢ -0.607: 0.166
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viability vs DMSO FICZ 1-PP 1-PP + FICZ 1-PP + FICZ + CH-223191
r p-value r p-value r p-value r p-value r p-value
AHR 0.464: 0.302¢ -0.678¢ 0.109¢ -0.684" 0.086¢ -0.522¢ 0.220¢ -0.75 0.066:
NRFZz 0.642¢ 0.138¢ -0.642¢ 0.138¢ -0.642¢ 0.138¢ -0.428¢ 0.353¢ -0.642¢ 0.138¢
NQOI1 0.756¢ 0.057: -0.7¢ 0.066! -0.7¢ 0.066! -0.7¢ 0.066! -0.763¢ 0.0476*
ARNT 0.714: 0.088: -0.0714{ 0.906! -0.0714¢ 0.906! -0.285% 0.55¢ -0.357: 0.444«
HIF1A 0.522¢ 0.234¢ -0.642¢ 0.138¢ -0.5357 0.235] -0.428¢ 0.353¢ -0.678¢ 0.109¢
1L22 0.464: 0.302¢ -0.0357: 0.963¢ -0.0714: 0.906: 0.107: 0.839° -0.214: 0.661¢
IL17 -0.630% 0.12¢ -0.678¢ 0.109¢ -0.7¢ 0.066! -0.642¢ 0.138¢ -0.785% 0.048*
IFNy -0.360¢ 0.400¢ -0.642¢ 0.138¢ -0.7¢ 0.066! -0.216: 0.613¢ -0.678¢ 0.109¢
1L26 -0.576¢ 0.169¢ -0.285% 0.55¢ -0.7¢ 0.066! -0.392¢ 0.395¢ -0.821+« 0.0341*
ABCG: -0.28 0.594¢ -0.428¢ 0.353¢ -0.450¢ 0.289: -0.306: 0.47: -0.428¢ 0.353¢
KIT 0.145¢ 0.761¢ -0.392¢ 0.395¢ -0.357: 0.444« 0.2857 0.55¢ -0.464: 0.302¢
CYP1A! -0.464: 0.302¢ 0.357: 0.444¢ 0.0357: 0.963¢ 0.678¢ 0.109¢ 0.428¢ 0.353¢
CYP1B: 0.378¢ 0.400¢ -0.214: 0.661¢ -0.107: 0.8391 -0.678¢ 0.109¢ -0.7¢ 0.066!
CYP2S 0.178¢ 0.713: -0.678¢ 0.109¢ -0.714% 0.088: -0.642¢ 0.138¢ -0.926¢ 0.0024**
PTGS! 0.714: 0.088: -0.0714: 0.906: 0.178¢ 0.713: -0.571¢ 0.2 -0.28 0.594¢
IL-22 proteit -0.180: 0.666° -0.214: 0.661¢ -0.5 0.266" -0.357! 0.444: -0.857: 0.0238*
IL-17 proteir 0.180: 0.700¢ -0.392¢ 0.395¢ -0.392¢ 0.395¢ -0.107] 0.839" -0.702% 0.077
IFN-y proteir 0 >0999¢ | -0.142¢ 0.782¢ -0.678¢ 0.109¢ -0.0741. 0.840¢ -0.666 0.101¢
IP-10 proteit -0.0357: 0.963¢ -0.178¢ 0.713: -0.714% 0.088: -0.107! 0.839° -0.678¢ 0.109¢
TNF-a 0.1261 0.8 0.357: 0.444¢ | -0.0714: | 0.906: | -0.3571 | 0.444 -0.607: 0.166:
CD4* c-Kit* 0.370¢ | 0.442¢ | 0.454¢ 0.304¢ 0.607: | 0.1667 | 0.714: 0.088: 0.540¢ 0.213¢
CDEg" c-Kit* 0.527: 0.236¢ 0.0909: 0.84¢ 0.491 0.269¢ 0.607: 0.166° 0.0741. 0.892¢
CD3 c-Kit* 0.142¢ 0.782¢ 0.714! 0.088: 0.857: 0.0238* 0.5 0.266° 0.7¢ 0.066!
CD3 CD5¢€" c-Kit* 0.234: 0.613¢ 0.714: 0.088: 0.857: 0.0238* 0.642¢ 0.138¢ 0.7¢ 0.066:
CD3 CD5€ c-Kit* -0.214: 0.661¢ 0.142¢ 0.782¢ 0.857: 0.0238* | 0.0540¢ 0.91¢ 0.214! 0.661¢
CYP1 ratio vs DMSO FICZ 1-PP 1-PP + FICZ 1-PP + FICZ + CH-223191
r p-value r p-value r p-value r p-value r p-value
AHR -0.428¢ 0.353¢ -0.928¢ 0.0067** -0.342¢ 0.426: -0.774¢ 0.0397* -0.857: 0.0238*
NRFZ -0.785% 0.048* -0.892¢ 0.0123* -0.285% 0.55¢ -0.571¢ 0.2 -0.857: 0.0238*
NQOI1 -0.666' 0.1 -0.642¢ 0.138¢ -0.5 0.2667 -0.821¢ 0.0341* -0.982 < 0.0001*++*
ARNT -0.7¢ 0.066: -0.714% 0.088: -0.142¢ 0.782¢ -0.392¢ 0.395¢ -0.785 0.048*
HIF1A -0.630: 0.122: -0.892¢ 0.0123* -0.571¢ 0.2 -0.571¢ 0.2 -0.928¢ 0.0067**
1L22 0.0357: 0.963¢ -0.357: 0.444¢ -0.214: 0.661¢ -0.428¢ 0.353¢ -0.607: 0.166°
IL17 0.342¢ 0.458° -0.678¢ 0.109¢ -0.464: 0.302¢ -0.7¢ 0.066! -0.714:% 0.088:
IFNy -0.1622 0.7032 -0.8571] 0.0238* -0.2857 0.556 -0.7027 0.0778 -0.8214 0.0341*
1L26 -0.0360¢ 0.91¢ -0.607: 0.166" -0.285% 0.55¢ -0.714: 0.088: -0.821¢ 0.0341*
ABCG: 0.0357: 0.963¢ 0.214: 0.661¢ 0.270: 0.558" 0.0720° 0.888¢ Q > 0.999¢
KIT -0.236¢ 0.581 0.178¢ 0.713: 0.178¢ 0.713: 0 > 0.999¢ -0.392¢ 0.395¢
CYP2S -0.607! 0.166° -0.678¢ 0.109¢ -0.571¢« 0.2 -0.821¢ 0.0341* -0.667: 0.104¢
PTGS! -0.714: 0.088: -0.678¢ 0.109¢ -0.928¢ | 0.0067** | -0.642¢ 0.138¢ -0.464: 0.302¢
IL-22 proteit -0.252:¢ 0.557¢ -0.0714: 0.906: -0.28 0.594¢ -0.321¢ 0.497¢ -0.7&5 0.066:
IL-17 proteir -0.378¢ 0.377¢ -0.357: 0.444« -0.321¢ 0.497¢ -0.321¢ 0.497¢ -0.468¢ 0.277¢
IFN-y protein -0.5357 0.235° -0.0357: 0.963¢ 0.0357: 0.963¢ -0.0741. 0.840¢ -0.450¢ 0.287¢
IP-10 proteit -0.5 0.266° -0.107: 0.8391 -0.285% 0.55¢ -0.321¢ 0.497¢ -0.428¢ 0.353¢
TNF-a -0.342¢ 0.426: 0.0357: 0.963¢ -0.5357 0.235] -0.321¢ 0.497¢ -0.357: 0.444:«
CD4* c-Kit* 0.259¢ 0.602¢ 0.909: 0.0079** 0.678¢ 0.109¢ 0.642¢ 0.138¢ 0.792¢ 0.0397*
CD8' c-Kit* -0.07274 0.8524 0.8001] 0.0413* 0.3637 0.4222 0.4643 0.3024 0.5189 0.2452
CDZ c-Kit* 0 > 0.999¢ 0.821« 0.0341* 0.178¢ 0.713: 0.7857 0.048* 0.857: 0.0238*
CD3 CD5€* c-Kit* 0 0.988: 0.821« 0.0341* 0.178¢ 0.713: 0.857: 0.0238* 0.857: 0.0238*
CDZ CD5€ c-Kit* 0.023¢ 0.661¢ 0.678¢ 0.109¢ 0.178¢ 0.713: 0.108: 0.822: 0.642¢ 0.138¢
Viability -0.5357 0.2357 0.4643 0.3024 -0.1429 0.7825 0.75 0663 0.7143 0.0881
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Figure 55. Correlation of CYP1 ratio with age and IgE level

Table 40. Mean fold changes of 1-PP-dependent target genmamnscription

With anti-CD3 and anti-28 activated PBMCs were trédte 5 days with the AHR agonist FICZ (5xI0QV), CYP1 inhibitor
1-PP (16 M or 107 M) and the AHR antagonist CH-223191 (3:1®1). 1-PP-dependent transcription of AHR-regulated
cytochrome P450C(YP1Al, CYP1B1, CYP2Sdther AHR-regulated geneKI, ABCG2 NQOJ1, PTGS2, transcription
factors AHR, ARNT, NRF2 HIF1A) and cytokinesl(22, IL17, IFN, IL26) was analysed with gRT-PCR. Bold values showed
1.5-fold up- or down-regulation. * marked signifitavalues.

Comparison of conditions 10°M 1-PP vs. 16 M 1-PP
Fold changes 1-PP 1-PP + FICZ 1-PP + FICZ + CH-2231
CYP1A! 2.06 2.03* 5.05*
CYP1B: 1.66 1.81* 1.69
CYP2S 1.15 1.06 1.26
C-KIT 1.46* 2.06* 1.2¢
ABCG: 1.24 1.28 0.69*
NQOI1 1.11 1.00 0.94
PTGS! 1.01 0.99 1.20
NRFZ 1.1 1.0Z 1.0¢
AHR 1.14* 0.97 0.9C
ARNT 1.1 1.0% 1.0z
HIF1A 1.10C 0.97: 0.945
1L22 1.661* 1.15] 1.42%
IENy 0.871 0.95¢ 1.07¢
IL17 0.97 0.9% 1.2¢
1L26 1.4C* 1.3¢ 0.87
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Table 41. Mean fold changes in 1-PP-dependent cytioke and c-Kit regulation
PBMCs activated with anti-CD3- and anti-CD28 were bated for 5 days with the AHR agonist FICZ (5%4M1), CYP1
inhibitor 1-PP (1 M or 107 M) and the AHR antagonist CH-223191 (3¥1M1). Cytokine release (IL-22, IL-17, IRN
TNF-0. and IP-10) were determined with ELISA. c-Kigxpression on CDED4* and CD3CD8" lymphocytes and on
complete CD3 CD3CD56" and CD3CD56 PBMCs was analysed by flow cytometry. Wilcoxon réest for paired samples
was used to compare significant differences (*p.@50 Bold values showed 1.5-fold up- or down-ratjoh. * marked

significant values.

Comparison of conditions

105M 1-PP vs. 16 M 1-PP

Fold changes/ protein 1-PP 1-PP + FICZ 1-PP + RQZH-223191
1L-22 1.10 0.87 0.80
IL-17 0.95 0.81* 1.09
IFNy 0.93 0.92 0.90
TNF-o 1.06 0.87 0.91
IP-10 0.86 0.80 0.79*
CD3'CD4c-KIT* 0.85 1.01 0.93
CD3'CD4c-KIT* IL-22* 0.65 0.47* 0.19*
CD3'CD8CKIT 1.01 1.31 173
CD3cKIT” 0.64* 0.8¢ 0.77
CD3CD56' c-KIT* 0.72 0.81 0.7€
CD3CD56¢-KIT* 0.60%* 1.07% 0.86¢

Table 42. Mean fold changes of RNA expression in EZ-treated PBMCs from CMCD patients
Bold values showed 1.5-fold up- or down-regulation

Fold changes RNA Healthy
Comparison of conditions FICZ vs. DMSO FICZ + CH3221 vs. DMSO FICZ + CH-223191 vs. FICZ

CYP1A! 53.953 30.871 0.572

KIT 4.61 6.25 1.3€

1L22 8.20 5.63 0.69

IL17 0.7z 0.67 0.9t

AHR 0.8¢ 1.2¢ 1.4

CMCD
Comparison of conditions FICZ vs. DMSO FICZ + CH3221 vs. DMSO FICZ + CH-223191 vs. FICZ

CYP1A: 13.24 9.06 0.68

KIT 8.98 8.25 0.92

IL22 3.56 4.93 1.38

IL17 0.12 0.45 3.77

AHR 0.74 1.04 1.41

CMCD vs Healthy
DMSO FICZ FICZ + CH-223191

CYP1A: 0.77 0.19 0.22

KIT 1.37 2.66 1.80

1-22 1.27 0.55 111

IL17 1.32 0.22 0.8¢

AHR 1.13 0.94 0.95
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Table 43. Mean fold changes of cytokine expressiam FICZ-treated PBMCs from CMCD patients
Bold values showed 1.5-fold up- or down-regulation.

Comparison of conditions Flealthy Comparison of conditions Flealthy
/raw data /normalised to proliferation
. FICZ + FICZ + N FICZ + FICZ +
Fold changes/protein | pyic s | Ficzvs | CH-223191| CH-223101| ol changesfprotein | ey oo | Biczvs | cH-223101 | CH-223101
Mediunm DMSC vs DMSC vs FICZ Mediunm DMSC vs DMSC vs FICZ
A 1L-22 0.73 4.90 4.43 0.90 1L-22 0.89 3.91 4.17 1.07
B IL-17 1.08 0.7C 0.67 0.9¢ B IL-17 1.12 0.60 0.7¢ 1.2¢
C IP-10 1.46 0.41 0.49 1.20 C IP-10 1.61 0.37 0.57 1.56
CMCD CMCD
Fold changes/protein FICZ + FICZ + Fold changes/protein FICZ + FICZ +
DMSO vs FICZ vs CH-223191| CH-223191 DMSO vs FICZ vs CH-223191| CH-223191
Mediunm DMSC vs DMSC vs FICZ Medium DMSC vs DMSC vs FICZ
A 1L-22 0.65 5.35 5.10 0.95 1L-22 0.76 4.78 3.12 0.65
B IL-17 0.87 0.7¢ 1.1 1.4¢ B IL-17 1.0% 0.7¢ 0.71 0.9¢
C IP-10 1.28 0.47 0.54 1.14 C IP-10 1.54 0.45 0.33 0.74
CMCD vs Healthy CMCD vs Healthy
f FICZ + : FICZ +
Fold changes/protein | o jiyy DMSG FICZ CH2z131¢ | Foldchangeslprotein | oy, DMSG FICZ CH-2231¢1
A 1L-22 0.21 0.19 0.21 0.22 1L-22 0.46 0.40 0.48 0.30
B |IL-17 0.05 0.05 0.05 008 |B |IL-17 0.11 0.11 0.14 0.11
C IP-10 1.67 1.46 1.68 1.59 C IP-10 2.98 2.84 3.46 1.63

Table 44. Mean fold changes in 1-PP and FICZ-treatePBMCs from CMCD patients
Bold values showed 1.5-fold up- or down-regulation.

Healthy
Comparison of conditions
Fold changes/RNA
1-PP + FICZ vs. 1-PP FICZ vs. 1-PP + FICZ vs. 1-PP + FICZ +
FICZ vs. DMSO 1-PP vs. DMSO | DMSO 1-PP FICZ vs. FICZ | 1-PP CH-223191
A CYP1A1 1.57 3.83 80.75 51.52 21.06 2.73
B KIT 1.52 1.57 4.60 3.03 2.94 1.85
C 1L22 4.39 2.69 8.39 1.91 3.12 2.13
D 1L17 1.09 1.19 0.63 0.57 0.53 0.66
E AHR 0.92 1.25 0.82 0.89 0.65 0.83
CMCD
Fold changes/RNA 1-PP + FICZ vs. 1-PP FICZvs. | 1-PP +FICZ vs. 1-PP + FICZ +
FICZ vs. DMSC 1-PP vs DMSO DMSO 1-PP FICZ vs. FIC 1-PF CH-22319:
A CYP1A: 1.25 4.83 56.28 44.88 11.66 2.15
B KIT 1.87 2.12 6.98 3.73 3.29 2.50
c IL22 1.21 1.34 17.00 14.07 12.72 2.82
D 17 0.27 0.79 0.16 0.57 0.20 0.55
E AHR 0.84 1.07 0.95 1.13 0.89 0.90
CMCD vs Healthy
Fold changes/RNA
DMSO FICZ 1-PP 1-PP + FICZ 1-PP + FICZ + CH-22B19

A CYP1AL 0.77 0.61 0.96 0.53 0.68
B KIT 1.37 1.68 1.85 2.07 154
c IL22 1.27 0.35 0.63 2.57 1.95
D L7 1.32 0.33 0.88 0.33 0.40
E AHR 1.13 1.03 0.96 1.31 1.22
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Table 45. Fold changes of cytokine expression in EZ- and 1-PP-treated PBMCs from CMCD patients
Bold values showed 1.5-fold up- or down-regulation.

Comparison of Comparison of
conditions/ raw heatly conditions/normalisec heatly
data to proliferation
1-PP | 1-PP 1-PP + FICZ FIcz 1-PP + | 1-PP 1-PP + FICZ
Fold 1-PP 1-PP + FICZ | FICZ vs. 1-PP + . vs. 1-PP FICZ FICZ | 1-PP vs. 1-PP +
changes/protei) FICZ vs. | vs. FICZ vs. | vs. vs. FICZ + Fold changes/proteir DMS | vs. vs. vs. FICZvs. | FICZ +
DMSO DMSO | DMSO FICZ | 1-PP CH-223191 [e] DMSO | DMSO | FICZ | 1-PP CH-223191
A IL-22 2.70 1.63 4.44 1.65 2.72 153 [A IL-22 2.24 1.49 3.65 1.63 2.44 1.37
B IL-17 0.71 0.9¢ 0.60 0.8t 0.64 0.74 B IL-17 0.60 0.8 0.51 0.8¢ 0.60 0.67
C IP-1C 0.45 0.6€ 0.41 0.91 0.62 0.8C C IP-1C 0.39 0.60 0.35 | 0.91 0.59 0.72
CMCD CMCD
Fold 1-PP + | 1-PP | 1-PP | 1-PP + FICZ 1-PP +| 1-PP 1-PP + FICZ
changes/protei 1-PP FICZ FICZ | FICZ | vs. 1-PP + Fold changes/proteir] FICZ 1-PP FICZ FICZ | 1-PP vs. 1-PP +
gesip FICZ vs. vs. vs. Vs. Vs. FICZ + VS. VS. VS. Vs. FICZvs. | FICZ +
DMSO DMSO | DMSO | FICZ | 1-PP_| CH-223191 DMSO | DMSO | DMSO | FICZ | 1-PP CH-223191
A 1L-22 3.19 1.43 4.32| 1.35 3.02 132 A 1L-22 2.70 1.78 3.1 1.15 1.74 0.84
B IL-17 0.8¢ 0.92 0.77| 0.8¢ 0.82 0.52| B IL-17 0.74 1.1¢ 0.54| 0.7 0.47 0.32
C 1P-1C 0.53 0.84 0.46| 0.87 0.54 0.67| C IP-1C 0.48 0.9t 0.39]| 0.82 0.41 0.62
CMCD vs Healthy CMCD vs Healthy
Fold 1-PP i 1-PP + FICZ
changes/protein + 1-PP + FICZ + Fold changes/protein 1-PP + | + CH-
DMSO | FICZ 1-PP | FICZ | CH-223191 DMSO FICZ | 1-PP| FICZ 223191
A 1L-22 0.18 0.21 0.1§ 0.1 0.20 A IL-22 0.40 0.48| 0.47 0.34 0.54
B IL-17 0.05 0.06| 0.09 0.0 0.08 B IL-17 0.11 0.13] 0.1 0.1 0.24
C 1P-1C 2.31 2.71 2.96 2.5 3.12 C IP-1C 4.95 6.18| 7.89 5.5 6.44
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Table 46. Cell purity and RIN - CD14 cells

CD14" cells CD14'/CD8 cells Isotype control Purity RIN value
CD14.1 95.68 0.41 95.27 9.60
CD14.. 97.71 1.24 96.47 10.00
CD14.: 97.85 1.39 96.46 9.90
CD14.. 95.80 0.86 94.94 9.40
CD14.t 98.28 2.83 95.45 9.70
CD14.¢ 95.06 0.89 94.17 8.80
CD14.7 98.27 0.33 97.94 9.90
Mean 95.81 9.61
Standard deviatior 1.15 0.36
Table 47. Cell purity and RIN — CD4CD45RO*CD45RA T cells
CD4CD45RC' CD45RA T cells CD45RC'/CD45RA cells | Isotype control | Cell purity | RIN value
CD4CD45RC.1 94.31 0.40 93.91 10.00
CDACD45RC.2 96.63 0.49 96.14 9.90
CD4CD45RC.3 97.15 1.47 95.68 10.00
CDACD45RC.4 85.43 1.07 84.36 9.50
CD4CD45RC.5 94.41 0.55 93.86 9.90
CDACD45RC.6 94.58 2.38 92.20 9.80
CDACD45RC.7 92.59 2.05 90.54 10.00
Mean 92.38 9.87
Standard deviatior 3.73 0.16
Table 48. Cell purity and RIN - B-cells
B cells CD4/CD1g" cells Isotype control | Cell purity | RIN value
Beell.1 89.06 0.33 88.73 9.50
Bcell.2 96.58 0.13 96.45 9.70
Bcell.2 96.26 0.09 96.17 9.20
Beell.4 98.13 0.17 97.96 N/A
Beell.5 98.72 0.12 98.60 9.00
Bcell.€ 96.75 0.19 96.56 8.70
Beell.7 96.54 0.24 96.30 8.50
Mean 95.82 9.10
Standard deviatior 3.02 0.39
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Table 49. Cell purity and RIN - CD8" T cells

CD8' T cells CD4/CD8" cells Isotype control | Cell purity | RIN value
CcD8.1 95.56 0.58 94.98 9.60
CD8.2 92.11 0.28 91.83 9.90
CcD8.z 92.35 0.33 92.02 9.80
CD8.2 94.96 0.83 94.13 9.50
CD8.E 96.61 0.44 96.17 9.90
cD8.€ 95.89 0.08 95.81 9.80
CD8.7 92.35 0.16 92.19 9.7
Mean 93.88 9.74
Standard deviatior 1.72 0.13
Table 50. Cell purity and RIN - CD4" T cells
CD4'T cells CD8CD4" cells Isotype control Cell purity | RIN value
CD4.1 95.79 0.12 95.67 9.50
CD4.: 97.35 0.00 97.35 9.50
CD4.x 96.74 0.12 96.62 9.40
CD4. 97.89 0.21 97.68 9.20
CDAE 98.13 0.17 97.96 9.60
CDA4.€ 98.86 0.01 98.85 9.50
CDA4.7 97.37 0.02 97.35 9.60
Mean 97.35 9.47
Standard deviatior 0.93 0.12
Table 51. Cell purity and RIN - Basophils
Basophils CD12%'/CD30% Isotype control Cell purity | RIN value
Bas. 98.0¢ 0.40 97.64 2.40
Bas.: 96.97 0.56 96.35 N/A
Bas.: 97.9¢ 0.57 97.42 8.20
Bas.c 95.7¢ 1.36 94.42 N/A
Bas.t 96.2: 0.24 95.98 N/A
Bas.¢ 94.5¢ 0.95 93.59 N/A
Bas.’ 97.€0 0.43 97.37 8.60
Mean 96.11 6.40
Standard deviatior 1.46 2.45
Table 52. Cell purity and RIN - human primary forskin mast cells
Human primary forskin mast cells CD117 cells Isotype control | Cell purity | RIN value
hPMC | 95.24 1.46 93.78 N/A
hPMC Il 97.75 0.98 96.77 8.70
hPMC V 97.75 0.37 97.38 8.90
hPMC VI 97.89 0.52 97.37 9.30
hPMC VI 97.24 3.15 94.09 9.10
hPMC XI 95.82 2.15 93.67 8.70
hPMC Xl 95.17 2.08 93.09 9.00
Mean 95.16 8.95
Standard deviatior 1.77 0.21
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Table 53. Target gene fold expression in primary t&ophils, PMCs and CD14cells relative to HPRT

NA: not available

Relative fold

expression related t basophils PMCs CD14 cells

HPRTI1

housekeeping gene Mear SD Mear SD Mear SD

GAPDH 68.00742 13.43541 | 717 28.63046 7.08689 | 7/7 33.60008 2.42672 | 717
HPRT1 1.00000 0.00000 | 7/7 1.00000 0.00000 | 7/7 1.00000 0.00000 | 7/7
control genes

KIT 2.39707 0.36401 | 7/7 122.81383 61.25353 | 7/7 0.00048 NA 17
CMA1 0.01157 0.00809 | 7/7 189.08330 66.58531 | 7/7 NA NA o/7
FCER1/ 0.89528 0.31362 | 7/7 0.00144 0.00045 | 9/2 0.00063 0.00027 | 4/7
TPSAB1TPSB: 19.16383 27.41442 | 717 2542.20381 677.21057| 7/7 NA NA 0/7
Phasel

CYP1A1 NA NA o/7 0.01146 0.01555 | 7/7 0.00009 NA 17
CYP1AZ NA NA o/7 NA NA 017 0.00043 NA 17
CYP1BI 0.03853 0.02701 |57 0.50175 0.36715 | 7;7 2.53602 0.96017 | 7/7
CYP2S: 0.01846 0.02299 | 7/7 0.00577 0.00948 | 7/7 0.09765 0.02321 | 7/7
CYP2A1: NA NA 0/7 NA NA 0/7 NA NA 0/7
CYP2A€ 0.08849 0.11602 | g/7 0.01335 0.00995 | 7/7 0.00334 0.00509 | 7/7
CYP2B¢ NA NA 017 0.00012 0.00009 | 2/7 NA NA 717
CYP2C1¢ NA NA 0/7 0.00071 0.00034 | 3/7 NA NA 7/7
CYP2C1¢ NA NA 0/7 0.00117 NA 17 NA NA 7/7
CYP2C¢ 0.01103 NA 17 0.00148 NA 17 NA NA 717
CYP2D¢ 0.01892 0.01764 | 7/7 0.00329 0.00176 | 7/7 0.00106 0.00030 |57
CYP2E: 0.01049 0.00209 | 4/7 0.03271 0.01169 | 7/7 0.00069 0.00024 | 4/7
CYP2F: NA NA o NA NA o NA NA 0n
CYP2J. NA NA 0/7 0.00471 0.00494 | 7/7 NA NA 0/7
CYP3A4 NA NA 07 NA NA 07 NA NA 07
CYP3AE NA NA 07 NA NA 07 NA NA 07
CYP3A7 NA NA 07 NA NA 07 NA NA 07
CYP4F: 0.11809 0.14738 | 7/7 0.00718 0.00333 | 3/7 NA NA 0/7
CYP4F2; 0.08413 0.02125 | 717 0.23953 0.07593 | 7/7 0.01321 0.00619 | 7/7
CYPA4F: 0.20647 0.13277 | 717 0.00173 NA 17 0.02653 0.01734 | 777
CYP19A1 NA NA 017 0.00185 0.00096 | 2/7 NA NA 017
Phasel|

AKR1A1 2.75901 0.33626 | 7/7 5.44286 1.02939 | 7/7 1.82786 0.22969 | 7/7
EPHX1 0.03053 0.01414 | 7.7 0.37512 0.18508 | 7/7 0.30761 0.09222 | 7/7
EPHXZ 0.04157 0.02338 | g/7 0.06633 0.06934 | 7/7 0.00193 0.00125 | g7
GSTM:= 0.03079 0.00692 | 7/7 0.79242 0.22879 | 717 0.00186 0.00134 | 7/7
GSTP: 6.78866 1.56577 | 777 10.33044 2.54310 | 777 29.76137 3.24525 | 777
GSTT1 0.76358 0.36542 | 7/7 0.35290 0.12723 | 7/7 0.05102 0.01809 |¢g/7
GSTZ1 0.14185 0.04667 | 7/7 0.24494 0.07937 | 7/7 0.15198 0.02538 | 7/7
MGST1 1.02029 0.17666 | 7/7 0.01602 0.01383 | 7/7 0.77401 0.16011 | 7/7
MGSTZ 0.76444 0.15269 | 7/7 0.50055 0.22211 | 717 0.61222 0.06141 | 7,7
MPC 1.82260 2.12796 | 7/7 0.00280 0.00181 | 3/7 0.10963 0.01950 | 7/7
NQO1 0.00767 0.00408 | 4/7 0.11367 0.03819 | 7/7 0.00404 0.00146 | 7/7
POF 3.80535 0.90758 | 7/7 0.89370 0.32733 | 7/7 1.49809 0.11452 | 7/7
PTGS: 2.11581 0.60472 | 7/7 9.88015 1.77273 | 717 0.24111 0.02620 | 7/7
PTGS: 0.36557 0.20872 | 7/7 7.62997 4.88036 | 7/7 0.19526 0.10564 | 7/7
Phaselll

ABCB1 0.12122 0.04351 | 7/7 0.16601 0.11079 | 7/7 0.00060 0.00023 | 4/4
ABCC?2 0.15704 0.06074 | 7/7 0.01669 0.00796 | 7/7 0.00707 0.00211 | 7/7
ABCG2 0.02426 0.01794 | 4/7 0.02709 0.03985 | 7/7 0.00083 NA 17
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Table 54. Target gene fold expression in primary Bells CD4CD45R0O'CD45RA;, CD4* and CD8' T cells

Relative fold expression B cells CD4'CD45R0O CD45RA CD4 CD8'

related to HPRT

housekeeping gene meai SD mear SD mear SD meai SD

GAPDH 7.64330| 2.00594| 7/7 | 14.59289| 2.23419 7/7 | 10.69655| 0.96475| 7/7 | 8.93241| 1.35958| 7/7
HPRTI 1.00000( 0.00000| 7/7 | 1.00000 | 0.0000¢ 1.00000| 0.000007/7 | 1.00000| 0.00000| 7/7
control genes

KIT 0.00234| 0.00116| 3/7| 0.03637 | 0.01035% 7/7 | 0.02434| 0.007007/7 | 0.01809| 0.01157| 7/7
CMAL NA NA o/7| 0.00627 NA |17 NA NA o/7] NA NA o/7
ECER12 NA NA o/7| 0.00111 NA |17 NA NA o/7] NA NA o/7
TPSB2TPSAB1 NA NA o/7| 0.15957 | 0.13644 g7 | 0.09167 | 0.0805Y7/7 | 0.00608| 0.00536| 3/7
Phase |

CYP1A1 NA NA o/7| 0.00199 | 0.00097 3/7 | 0.00090 NA | 1/7| 0.00035( 0.00008| 2/7
CYP1AZ NA NA |om| NA NA |om| NA NA |o7| NA NA o7
CYP1B1 0.00179| 0.00040| 27| 0.01384 | 0.01761 g/7 | 0.00200 NA | 17| NA NA 017
CYP2S’ 0.00046| NA 1/7| 0.00707 | 0.00289 7/7 | 0.00343| 0.002217/7 | 0.00093| 0.00048| 2/7
CYP2A1: NA NA o/7 NA NA o/7 | 0.00923 NA | 17 NA NA 017
CYP2AE€ 0.00847| 0.00418| 7/7| 0.00604 | 0.00496 7/7 | 0.00494| 0.000857/7 | 0.00803| 0.00512| 7/7
CYP2B¢ NA NA o/7| 0.00060 | 0.00041 3/7 | 0.00098| 0.00115g/7 | 0.00029| 0.00018| 4/7
CYP2C1¢ NA NA o/7 NA NA 717 NA NA o/7 | 0.00139] NA 17
CYP2CL1¢ 0.00152| 0.00027| 377 | 0.00155 NA |17 | 0.00471 NA | 1/7]0.00077| 0.00030| 2/7
CYP2C¢ NA NA 017 NA NA o/7 NA NA o/7 | 0.08344| 0.01477| 2/7
CYP2D¢ 0.01772| 0.01007| 7/7| 0.00603 | 0.00498% 7/7 | 0.02006 | 0.009087/7 | 0.00769| 0.00467| 7/7
CYP2E! 0.00670| 0.00318| 7/7| 0.03251 | 0.00752 7/7 | 0.01574| 0.009017/7 | 0.01880| 0.01037| 7/7
CYP2F! 2.28299| 2.25169| 2/7 NA NA o/7 | 0.00247| 0.001989/7 NA NA 0/7
CYP2J: 0.00994| 0.00287| 777 | 0.00304 | 0.00149 g/7 | 0.01563 | 0.008517/7 | 0.01699| 0.00495| 7/7
CYP3A4 NA NA o/7| 0.00253 | 0.00044 o7 | 0.00406 NA | 17 NA NA 017
CYP3AE NA NA o/7| 0.15336 NA |17 NA NA o/7 NA NA 017
CYP3A7 NA NA |om| NA NA |om| NA NA |o7| NA NA o7
CYP4F: 0.00873] NA 1/7| 0.00450 | 0.00212 /7 | 0.00632| 0.004909/7 | 0.00133| 0.00114| 2/7
CYP4F2: NA NA 0/7| 0.01097 | 0.00469 7/7 | 0.00867| 0.003727/7 | 0.02580| 0.00725| 7/7
CYP4F: NA NA o/7| 0.11413| 0.06160 7/7 | 0.07207| 0.1057f7/7 | 0.00178| 0.00052 2/7
CYP19A1 NA NA o/7| 0.00010 NA |17 NA NA o/7 NA NA 017
Phasell

AKR1A1 1.78452( 0.41857| 7/7 | 0.80493 | 0.08567 7/7 | 0.80338| 0.056297/7 | 0.87536| 0.15686| 7/7
EPHX1 0.02769| 0.00920| 7/7| 0.02271| 0.00774 7/7 | 0.02185| 0.008297/7 | 0.06869| 0.02758| 7/7
EPHXZ 0.03221] 0.01242| 7/7 | 0.39976 | 0.09905 7/7 | 1.18403| 0.263127/7 | 0.74463| 0.13955| 7/7
GSTMZ 0.15077| 0.06317| 777 | 0.14045| 0.03586 7/7 | 0.41974| 0.078007/7 | 0.34339| 0.04818| 7/7
GSTM:= 0.00776| 0.00464| 5/7| 0.03590 | 0.03554 7/7 | 0.10237| 0.06997 7,7 | 0.07780| 0.04140| 7/7
GSTP: 7.06289| 0.95155| 7/7| 4.38841 | 0.81269 7/7 | 4.61844 | 0.895547/7 | 5.69392| 1.34676| 7/7
GSTT1 0.07945| 0.01627| /7| 0.03197 | 0.01210 /7 | 0.06621| 0.02438¢/7 | 0.05930| 0.01568| g/7
GSTZ] 0.16393| 0.03121| 777 | 0.05547 | 0.00642 7/7 | 0.06477| 0.0188Y 7/7 | 0.06634| 0.02029| 7/7
MGST1 0.00101] NA 1/7| 0.02203 | 0.01173 7/7 | 0.02367| 0.031017/7 | 0.00302| 0.00203| 3/7
MGST? 0.01278| 0.00605| 77| 0.09837 | 0.01586 7/7 | 0.04661| 0.013067/7 | 0.01778| 0.00597| 7/7
MPQO NA NA o/7| 0.25592 | 0.15811 7;7 | 0.51283| 0.761087/7 | 0.01763| 0.03042| /7
NQO1 0.00276| 0.00164| 7/7 | 0.00578 | 0.0025Q 7/7 | 0.00404 | 0.002087/7 | 0.00268| 0.00153| 7/7
POF 0.84278| 0.19496| 7/7 | 0.69479 | 0.13439 7/7 | 0.76750| 0.1551%7/7 | 1.02215| 0.37257| 7/7
PTGS: 0.21231] 0.03114| 7/7| 0.02814 | 0.0158% 7/7 | 0.01295| 0.012587/7 | 0.00470| 0.00460| 4/7
PTGS: 0.00119] NA 1/7| 0.00469 | 0.0038Q 7/7 | 0.00322| 0.0012B8¢/7 | 0.00135| 0.00032| 9/7
Phaselll

ABCC?2 0.02379| 0.00540| 7/7| 0.01464 | 0.00413 7/7 | 0.02353| 0.005777/7 | 0.02180| 0.00518| 7/7
ABCG?2 0.00171| 0.00078| 577 | 0.01703 | 0.01057 7/7 | 0.01331| 0.008147/7 | 0.01891| 0.01474| 7/7
ABCB1 0.14239| 0.02446| 7/7 | 0.14026 | 0.03067 7/7 | 0.08128| 0.026067/7 | 0.34866| 0.09160| 7/7
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Figure 56. Gating strategy for 5 day FACS analysis
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