Broadcast Packet Erasure Channels with Feedback and Memory

Motivation

- Two-User broadcast packet erasure channels (BPECs)
- Low cost (Ack/Nack) feedback
- Bursty nature of erasures in satellite communications

System Model

- W_1 message of rate R_1 , W_2 message of rate R_2
- Received signals: $Y_{1,t}, Y_{2,t}$. $Y_{i,t}$ is either X_t , or completely erased
- Ack/Nack feedback after each transmission.
- S_t evolves according to a finite state machine with states $s \in \mathcal{S}$ (memory)
- Channel state is known causally at the encoder (visible state).
- 2 Channel state is NOT known at the encoder (hidden state).

Memoryless BPEC with Feedback [4]

Tx

• A max-flow (equiv. min-cut) analysis

Michael Heindlmaier and Shirin Saeedi Bidokhti Technical University of Munich, Stanford University

Capacity Region: Visible State [1][2]

The capacity region $\mathcal{C}_{\text{fb+s}}^{\text{mem}}$ of the two-user BPEC with feedback and visible state is the closure of rate pairs (R_1, R_2) for which there exist $x_s, y_s, s \in \mathcal{S}$ s.t.

$$0 \le x_s \le 1 \quad \forall s \in \mathcal{S}$$

$$0 \le y_s \le 1 \quad \forall s \in \mathcal{S}$$

$$R_1 \le \sum_{s \in \mathcal{S}} \pi_s (1 - \epsilon_1(s)) x_s$$

$$R_1 \le \sum_{s \in \mathcal{S}} \pi_s (1 - \epsilon_{12}(s)) (1 - y_s)$$

$$R_2 \le \sum_{s \in \mathcal{S}} \pi_s (1 - \epsilon_2(s)) y_s$$

$$R_2 \le \sum_{s \in \mathcal{S}} \pi_s (1 - \epsilon_{12}(s)) (1 - x_s).$$

where $\epsilon_1(s)$, $\epsilon_2(s)$, and $\epsilon_{12}(s)$ are computed via distribution $P_{Z_t|S_{t-1}}$

• For a four-state channel example:

Proactive Coding [2]

Tx $p_1 + p_2$ • poison $p_1 + p_2$ is sent. • remedy $p_1 \to Q_3^{(1)}, Q_3^{(2)}$. • Remedy packets are useful to • Rx_2 both receivers. $p_1 + p_2$

An Optimal Probabilistic Scheme

Converse

• In previous works on BPEC with feedback:

- Physically degrade the channels using a genie.
- Feedback does not increase the capacity over physically degraded BCs [5].
- The capacity region is known for degraded BPECs without feedback [6], [7].
- This technique is not directly applicable here.

Converse Proof from scratch:

$$nR_{1} \leq I(W_{1}; Y_{1}^{n}) \leq \sum_{s} \pi_{s}(1 - \epsilon_{1}(s)) \underbrace{I(U_{1,T}; X_{T} | T, S_{T-1} = s)}_{\mathbf{x}_{s}}$$

$$nR_{2} \leq I(W_{2}; Y_{1}^{n} Y_{2}^{n} | W_{1}) \leq \sum_{s} \pi_{s}(1 - \epsilon_{12}(s)) I(U_{2,T}; X_{T} | U_{1,T} V_{T} T, S_{T-1} = s)$$
where $U_{1,t} = (W_{1}Y_{1}^{t-1}S^{t-1}), U_{2,t} = (W_{2}Y_{2}^{t-1}S^{t-1}), \text{ and } V_{t} = (Y_{1}^{t-1}Y_{2}^{t-1}S^{t-1}).$

Capacity Region: Hidden State [1]

The capacity region $\mathcal{C}_{\text{fb}}^{\text{mem}}$ of the two-user BPEC with feedback and hidden state is approximated by the closure of rate pairs (R_1, R_2) for which there exist variables $x(\underline{z}^L), y(\underline{z}^L), \underline{z}^L \in \mathcal{Z}^L$ s.t.

$$0 \le x(\underline{z}^{L}), y(\underline{z}^{L}) \le 1, \quad \forall \, \underline{z}^{L} \in \mathcal{Z}^{L}$$
$$R_{1} \le \sum_{z^{L} \in \mathcal{Z}^{L}} P_{\underline{Z}^{L}}(\underline{z}^{L})(1 - \epsilon_{1}(\underline{z}^{L}))x(\underline{z}^{L}) + C_{L}$$

$$R_1 \leq \sum_{\underline{z}^L \in \mathcal{Z}^L} P_{\underline{Z}^L}(\underline{z}^L)(1 - \epsilon_{12}(\underline{z}^L))(1 - y(\underline{z}^L)) + C_L$$

$$R_2 \leq \sum_{z^L \in \mathcal{Z}^L} P_{\underline{Z}^L}(\underline{z}^L)(1 - \epsilon_2(\underline{z}^L))y(\underline{z}^L) + C_L$$

$$R_2 \leq \sum_{\underline{z}^L \in \mathcal{Z}^L} P_{\underline{Z}^L}(\underline{z}^L)(1 - \epsilon_{12}(\underline{z}^L))(1 - x(\underline{z}^L)) + C_L,$$

where $-2|\mathcal{S}|(1-\sigma)^L \leq C_L \leq 2|\mathcal{S}|(1-\sigma)^L$ and $\epsilon_j(\underline{z}^L), \epsilon_{12}(\underline{z}^L)$ are computed via $P_{Z_1|Z_1^{t-1}}$.

- 2009.

• Scheme is shown to strongly stabilize all rates inside the capacity region (Lyapunov stability).

In a Picture...

[1] M. Heindlmaier and S. Saeedi Bidokhti, "Capacity regions of two-receiver broadcast packet erasure channels with feedback and hidden memory," in Int. Symp. Inf. Theory, June 2015.

[2] M. Heindlmaier, N. Reyhanian, and S. Saeedi Bidokhti, "On capacity regions" of two-receiver broadcast packet erasure channels with feedback and memory," in Allerton Conf. Commun., Control, and Computing, Oct. 2014.

[3] W.-C. Kuo and C.-C. Wang, "Robust and optimal opportunistic scheduling" for downlink 2-flow inter-session network coding with varying channel quality, "in IEEE INFOCOM, Apr. 2014.

[4] L. Georgiadis and L. Tassiulas, "Broadcast erasure channel with feedback-capacity and algorithms", in IEEE Int. Symp. Network Coding, June

[5] A. El Gamal, "The feedback capacity of degraded broadcast channels," IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 379ÃćÂĂ-381, 1978.

[6] P. Bergmans, "Random coding theorem for broadcast channels with degraded components," IEEE Trans. Inf. Theory, vol. 19, no. 2, pp. 197-207, 1973.

[7] A. Dana and B. Hassibi, "The capacity region of multiple input erasure broadcast channels," in IEEE Int. Symp. Inf. Theory, 2005.

