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Motivation

•Two-User broadcast packet
erasure channels (BPECs)

•Low cost (Ack/Nack) feedback
•Bursty nature of erasures in
satellite communications
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•W1 message of rate R1, W2 message of rate R2

•Received signals: Y1,t, Y2,t.
Yj,t is either Xt, or completely erased

•Ack/Nack feedback after each transmission.
•St evolves according to a finite state machine with
states s ∈ S (memory)

1 Channel state is known causally at the encoder
(visible state).

2 Channel state is NOT known at the encoder
(hidden state).

Memoryless BPEC with Feedback [4]

•A Probabilistic Framework
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•A max-flow (equiv. min-cut) analysis

Capacity Region: Visible State [1][2]

The capacity region Cmem
fb+s of the two-user BPEC with

feedback and visible state is the closure of rate pairs
(R1, R2) for which there exist xs, ys, s ∈ S s.t.

0 ≤ xs ≤ 1 ∀s ∈ S
0 ≤ ys ≤ 1 ∀s ∈ S
R1 ≤

∑
s∈S

πs(1− ε1(s))xs

R1 ≤
∑
s∈S

πs(1− ε12(s))(1− ys)

R2 ≤
∑
s∈S

πs(1− ε2(s))ys

R2 ≤
∑
s∈S

πs(1− ε12(s))(1− xs).

where ε1(s), ε2(s), and ε12(s) are computed via distri-
bution PZt|St−1

•For a four-state channel example:
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Rate region w/o coding

Proactive Coding [2]

•poison p1 + p2 is sent.
• remedy p1→ Q

(1)
3 , Q

(2)
3 .

•Remedy packets are useful to
both receivers.
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An Optimal Probabilistic Scheme

1 Use feedback to update the queues
2 • w.p. p(1|s) send an original packet for Rx1 from Q

(1)
1

• w.p. p(2|s) send an original packet for Rx2 from Q
(2)
1

• w.p. p(3|s) send a coded packet from Q
(1)
2 and Q(2)

2
• w.p. p(4|s) send a poison packet from Q

(1)
1 and Q(2)

1
• w.p p(5|s) send a remedy packet from Q

(1)
3 or Q(2)
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Achievable Rates
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•Max-Flow Min-Cut analysis

Converse

• In previous works on BPEC with feedback:
• Physically degrade the channels using a genie.
• Feedback does not increase the capacity over physically
degraded BCs [5].

• The capacity region is known for degraded BPECs without
feedback [6], [7].

•This technique is not directly applicable here.

Converse Proof from scratch:
nR1 ≤ I(W1;Y n

1 )
≤
∑
s
πs(1− ε1(s)) I(U1,T ;XT |T, ST−1 =s)︸ ︷︷ ︸

xs

nR2 ≤ I(W2;Y n
1 Y

n
2 |W1)

≤
∑
s
πs(1− ε12(s))I(U2,T ;XT |U1,TVTT, ST−1 =s)

where U1,t= (W1Y
t−1

1 St−1), U2,t= (W2Y
t−1

2 St−1), and
Vt=(Y t−1

1 Y t−1
2 St−1).

Capacity Region: Hidden State [1]

The capacity region Cmem
fb of the two-user BPEC

with feedback and hidden state is approximated by
the closure of rate pairs (R1, R2) for which there
exist variables x(zL), y(zL), zL ∈ ZL s.t.

0 ≤ x(zL), y(zL) ≤ 1, ∀ zL ∈ ZL

R1 ≤
∑

zL∈ZL
PZL(zL)(1− ε1(zL))x(zL) + CL

R1 ≤
∑

zL∈ZL
PZL(zL)(1− ε12(zL))(1− y(zL)) + CL

R2 ≤
∑

zL∈ZL
PZL(zL)(1− ε2(zL))y(zL) + CL

R2 ≤
∑

zL∈ZL
PZL(zL)(1− ε12(zL))(1− x(zL)) + CL,

where −2|S|(1 − σ)L ≤ CL ≤ 2|S|(1 − σ)L and
εj(zL), ε12(zL) are computed via PZt|Zt−1

t−L
.

An Optimal Deterministic Scheme

At time t, the action with largest weight is chosen:
At Weight depending on Qt and Zt−1 = zt−1

1 [1− ε1(zt−1)]Q(1)
1,t + ε12̄(zt−1)(Q(1)

1,t −Q
(1)
2,t)

2 [1− ε2(zt−1)]Q(2)
1,t + ε1̄2(zt−1)(Q(2)

1,t −Q
(2)
2,t)

3 [1− ε1(zt−1)]Q(1)
2,t + [1− ε2(zt−1)]Q(2)

2,t

4 [1− ε12(zt−1)]
(
Q

(1)
1,t −Q

(1)
3,t + Q

(2)
1,t −Q

(2)
3,t

)
5 ε12̄(zt−1)(Q(1)

3,t −Q
(1)
2,t) + [1− ε1(zt−1)]Q(1)

3,t

+ε1̄2(zt−1)(Q(2)
3,t −Q

(2)
2,t) + [1− ε2(zt−1)]Q(2)

3,t

•Scheme is shown to strongly stabilize all rates inside
the capacity region (Lyapunov stability).

In a Picture...
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