
1

Insufficiency of Linear-Feedback Schemes in
Gaussian Broadcast Channels with Common

Message
Youlong Wu, Paolo Minero, and Michèle Wigger

Abstract—We consider the K ≥ 2-user memoryless Gaussian
broadcast channel (BC) with feedback and common message
only. We show that linear-feedback schemes with a message
point, in the spirit of Schalkwijk&Kailath’s scheme for point-to-
point channels or Ozarow&Leung’s scheme for BCs with private
messages, are strictly suboptimal for this setup. Even with perfect
feedback, the largest rate achieved by these schemes is strictly
smaller than capacity C (which is the same with and without
feedback). In the extreme case where the number of receivers
K → ∞, the largest rate achieved by linear-feedback schemes
with a message point tends to 0.

To contrast this negative result, we describe a scheme for rate-
limited feedback that uses the feedback in an intermittent way,
i.e., the receivers send feedback signals only in few channel uses.
This scheme achieves all rates R up to capacity C with an L-th
order exponential decay of the probability of error if the feedback
rate Rfb is at least (L− 1)R for some positive integer L.

Index Terms—Broadcast channel, channel capacity, feedback,
reliability.

I. INTRODUCTION

We consider the K ≥ 2-user Gaussian broadcast channel
(BC) where the transmitter sends a single common message
to all receivers. This setup arises in, for instance, in wireless
networks where a base station broadcasts control information
to a set of users or in multicast applications. For this setup,
even perfect feedback cannot increase capacity. Feedback can
however reduce the minimum probability of error for a given
blocklength.

It has been shown that perfect feedback allows to have a
double-exponential decay of the probability of error in the
blocklength in Gaussian point-to-point channels [1], [2] or
other memoryless Gaussian networks such as the multiple-
access channel (MAC) [3] and the BC with private mes-
sages [4]. These super-exponential decays of the probability
of error are achieved by Schalkwijk&Kailath type schemes
that first map the message(s) into real message point(s) and
then send as their channel inputs linear combinations of
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the message point(s) and the past feedback signals. We call
such schemes linear-feedback schemes with message points or
linear-feedback schemes for short. Such schemes are known
to achieve the capacity of Gaussian point-to-point channels
(memoryless or with memory) [1], [2] and the sum-capacity
of the two-user memoryless Gaussian MAC [3]. For K ≥ 3-
user Gaussian MACs they are optimal among a large class of
schemes [5], [6], and for Gaussian BCs with private messages,
they achieve the largest sum-rates known to date [7], [8], [9],
[10].

In this paper we show that linear-feedback schemes with a
message point are strictly suboptimal for the K-user memory-
less Gaussian BC with common message and fail to achieve
capacity. As a consequence, for this setup, linear-feedback
schemes also fail to achieve double-exponential decay of
the probability of error for rates close to capacity. To our
knowledge, this is the first example of a memoryless Gaussian
network with perfect feedback, where linear-feedback schemes
with message points are shown to be strictly suboptimal.
In all previously studied networks with perfect feedback,
they attained the optimal performance or the best so far
performance. (In case of noisy feedback, they are known to
perform badly even in the memoryless Gaussian point-to-point
channel [11].)

In the asymptotic scenario of infinitely many receivers
K → ∞, the performance of linear-feedback schemes with
a message point completely collapses: the largest rate that is
achievable with these schemes tends to 0 as K → ∞. This
latter result holds under some mild assumptions regarding the
variances of the noises experienced at the receivers, which
are for example met when all the noise variances are equal.
Notice that, in contrast, the capacity of the K-user Gaussian
BC with common message does not tend to 0 as K → ∞
when e.g., all the noise variances are equal. In this case, the
capacity does not depend on K, because it is simply given
by the point-to-point capacity to the receiver with the largest
noise variance.

That the performance of linear-feedback schemes with a
common message point degenerates with increasing number
of users K is intuitively explained as follows. At each time in-
stant, the transmitter sends a linear combination of the message
point and past noise symbols. Resending the noise symbols
previously experienced at some Receiver k can be beneficial
for this Receiver k because it allows it to mitigate the noise
corrupting previous outputs. However, resending these noise
symbols is of no benefit for all other Receivers k′ 6= k and
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only harms them. Therefore, the more receivers there are, the
more noise symbols the transmitter sends in each channel use
that are useless for a given Receiver k. Our result hinges upon
the independence of the noises at difference receivers. In the
case of correlated noises a noise symbol can be beneficial
to multiple receivers. In the extreme case where all noises
are identical, for instance, the BC degenerates to a point-to-
point channel and Schalkwijk&Kailath’s scheme is capacity
achieving.

For the memoryless Gaussian point-to-point channel [1]
and MAC [4], the (sum-)capacity achieving linear-feedback
schemes with message points transmit in each channel use
a scaled version of the linear minimum mean square esti-
mation (LMMSE) errors of the message points given the
previous channel outputs. The same strategy is however strictly
suboptimal—even among the class of linear-feedback schemes
with message points—when sending private messages over a
Gaussian BC [7]. It is unknown whether LMMSE estimates
are optimal among linear-feedback schemes when sending a
common message over the Gaussian BC.

In our proof that any linear-feedback scheme with a message
point cannot achieve the capacity of the Gaussian BC with
common message, the following proposition is key: For any
sequence of linear-feedback schemes with a common message
point that achieves rate R > 0, one can construct a sequence
of linear-feedback schemes that achieves the rate tuple R1 =
. . . = RK = R when sending K private message points with a
linear-feedback scheme. This proposition shows that the class
of linear-feedback schemes with message points cannot take
advantage of the fact that all the K ≥ 2 receivers are interested
in the same message.

To contrast the bad performance of linear-feedback schemes,
we present a coding scheme that uses the feedback in a
intermittent way (only in few time slots the receivers send
feedback signals) and that achieves double-exponential decay
of the probability of error for all rates up to capacity. In our
scheme it suffices to have rate-limited feedback with feedback
rate Rfb no smaller than the forward rate R. If the feedback
rate Rfb < R then, even for the setup with only one receiver,
the probability of error can decay only exponentially in the
blocklength [12]. This implies immediately that also for the
K ≥ 2 receivers BC with common message no double-
exponential decay in the probability of error is achievable
when Rfb < R. When the feedback rate Rfb > (L − 1)R,
for some positive integer L, then our intermittent-feedback
scheme can achieve an L-th order exponential decay in the
probability of error. That means, it achieves a probability of
error of the form P

(n)
e = exp(− exp(exp(. . . exp(Ω(n))))),

where there are L exponential terms and where Ω(n) denotes
a function that satisfies limn→∞

Ω(n)
n > 0.

Our intermittent-feedback scheme is inspired by the scheme
in [12] for the memoryless Gaussian point-to-point channel
with rate-limited feedback. Also the schemes in [13] and
[14] for the memoryless Gaussian point-to-point channel with
perfect feedback are related. In fact, in our scheme com-
munication takes place in L phases. In the first phase, the
transmitter uses a Gaussian code of power P to send the
common message to the K Receivers. The transmission in

phase l ∈ {2, . . . , L} depends on the feedback signals. After
each phases l ∈ {1, . . . , L − 1} each Receiver k feeds back
a temporary guess of the message. Now, if one receiver’s
temporary guesses after phase (l−1) is wrong, then in phase l
the transmitter resends the common message using a new code.
If all receivers’ temporary guesses after phase (l − 1) were
correct, in phase l the transmitter sends the all-zero sequence.
In this latter case, no power is consumed in phase l. The
receivers’ final guess is their temporary guess after phase L.

The fact that the described scheme can achieve an L-th
order decay of the probability of error, roughly follows from
the following inductive argument. Assume that the probability
of the event “one of the receivers’ guesses is wrong after phase
l”, for l ∈ {1, . . . , L−1}, has an l-th order exponential decay
in the blocklength. Then, when sending the common message
in phase l+ 1, the transmitter can use power that is l-th order
exponentially large in the blocklength without violating the
expected average blockpower constraint. With such a code, in
turn, the probability that after phase l+ 1 one of the receivers
has a wrong guess can have an (l + 1)-th order exponential
decay in the blocklength.

The rest of the paper is organized as follows. This section
is concluded with some remarks on notation. Section II de-
scribes the Gaussian BC with common message and defines
the class of linear-feedback schemes with a message point.
Section III introduces the Gaussian BC with private messages
and defines the class of linear-feedback schemes with private
message points. Section IV presents our main results. Finally,
Sections V and VI contain the proofs of our Theorems 1 and
2.

Notation: Let R denote the set of reals and Z+ the set
of positive integers. Also, let K denote the discrete set
K := {1, . . . ,K}, for some K ∈ Z+. For a finite set A,
we denote by |A| its cardinality and by Aj , for j ∈ Z+, its
j-fold Cartesian product, Aj := A1 × . . .×Aj .

We use capital letters to denote random variables and small
letters for their realizations, e.g. X and x. For j ∈ Z+, we
use the short hand notations Xj and xj for the tuples Xj :=
(X1, . . . , Xj) and xj := (x1, . . . , xj). Vectors are displayed in
boldface, e.g., X and x for a random and deterministic vector.
Further, | · | denotes the modulus operation for scalars and ‖ ·‖
the norm operation for vectors. For matrices we use the font
A, and we use ‖A‖F to denote its Frobenius norm.

The abbreviation i.i.d. stands for independent and identi-
cally distributed. All logarithms are taken with base e, i.e.,
log(·) denotes the natural logarithm. We denote byQ(·) the tail
probability of the standard normal distribution. The operator
◦ is used to denote function composition.

We use the Landau symbols: o(1) denotes any function that
tends to 0 as n→∞.

II. SETUP

A. System Model and Capacity

We consider the K ≥ 2-receiver Gaussian BC with common
message and feedback depicted in Figure 1. Specifically, if Xi

denotes the transmitter’s channel input at time-i, the time-i
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Fig. 1. K-receiver Gaussian Broadcast channel with feedback and common
message only.

channel output at Receiver k ∈ K is

Yk,i = Xi + Zk,i (1)

where {Zk,i}ni=1 models the additive noise at Receiver k. The
sequence of noises {(Z1,i, . . . , ZK,i)}ni=1 is a sequence of i.i.d.
centered Gaussian vectors, each of diagonal covariance matrix

Kz =

σ
2
1 · · · 0
...

. . .
...

0 · · · σ2
K

 . (2)

Without loss of generality, we assume that

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
K . (3)

The transmitter wishes to convey a common message
M to all receivers, where M is uniformly distributed over
the message set M := {1, ..., benRc} independent of the
noise sequences {Z1,i}ni=1, . . . , {ZK,i}ni=1. Here, n denotes
the blocklength and R > 0 the rate of transmission. It is
assumed that the transmitter has either rate-limited or perfect
feedback from all receivers. That means, after each channel
use i ∈ {1, . . . , n}, each Receiver k ∈ K feeds back a signal
Vk,i ∈ Vk,i to the transmitter. The feedback alphabet Vk,i is
a design parameter of the scheme. In the case of rate-limited
feedback, the signals from Receiver k have to satisfy:

n∑
i=1

H(Vk,i) ≤ nRfb, k ∈ K (4)

where Rfb denotes the symmetric feedback rate. In the case
of perfect feedback, we have no constraint on the feedback
signals {Vk,i}ni=1, and it is thus optimal to choose Vk,i = R
and

Vk,i = Yk,i, (5)

because in this way any processing that can be done at the
receivers can also be done at the transmitter.

An encoding strategy is comprised of a sequence of encod-
ing functions {f (n)

i }ni=1 of the form

f
(n)
i : M×Vi−1

1 × . . .× Vi−1
K → R (6)

that is used to produce the channel inputs as

Xi = f
(n)
i (M,V i−1

1 , . . . , V i−1
K ), i ∈ {1, . . . , n}. (7)

We impose an expected average block-power constraint P on
the channel input sequence:

1

n
E

[
n∑
i=1

X2
i

]
≤ P. (8)

Each Receiver k ∈ K decodes the message M by means of
a decoding function g(n)

k of the form

g
(n)
k : Rn →M. (9)

That means, Receiver k produces as its guess

M̂ (k) = g
(n)
k (Y nk ). (10)

An error occurs in the communication if

(M̂ (k) 6= M), (11)

for some k ∈ K. Thus, the average probability of error is

P (n)
e := Pr

[⋃
k∈K

(
M̂ (k) 6= M

)]
. (12)

We say that a rate R > 0 is achievable for the described
setup if for every ε > 0 there exists a sequence of encoding
and decoding functions

{
{f (n)
i }ni=1, {g

(n)
k }Kk=1

}∞
n=1

as in (6)
and (9) and satisfying the power constraint (8) such that
for sufficiently large blocklengths n the probability of error
P

(n)
e < ε. The supremum of all achievable rates is called

the capacity. The capacity is the same in the case of perfect
feedback, of rate-limited feedback (irrespective of the feedback
rate Rfb), and without feedback. We denote it by C and by
assumption (3) it is given by

C =
1

2
log

(
1 +

P

σ2
1

)
. (13)

Our main interest in this paper is in the speed of decay of
the probability of error at rates R < C.

Definition 1. Given a positive integer L, we say that the
L-th order exponential decay in the probability of error is
achievable at a given rate R < C, if there exists a sequence
of schemes of rate R such that their probabilities of error
{P (n)

e }∞n=1 satisfy

lim
n→∞

1

n
log log . . . log(− logP (n)

e ) > 0, (14)

where the number of logarithms in (14) is L.

B. Linear-Feedback Schemes with a Message Point

When considering perfect feedback, we will be interested in
the class of coding schemes where the feedback is only used
in a linear fashion. Specifically, we say that a scheme is a
linear-feedback scheme with a message point, if the sequence
of encoding functions {f (n)

i }ni=1 is of the form

f
(n)
i = Φ(n) ◦ L(n)

i (15)

with

Φ(n) : M 7→ Θ(n) ∈ R (16a)

L
(n)
i : (Θ(n), Y i−1

1 , . . . , Y i−1
K ) 7→ Xi (16b)
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where Φ(n) is an arbitrary function on the respective domains
and L(n)

i is a linear mapping on the respective domains. There
is no constraint on the decoding functions g(n)

1 , . . . , g
(n)
K .

By the definition of a linear-feedback coding scheme in (16),
for each blocklength n, if we define X = (X1, . . . , Xn)T,
Yk = (Yk,1, . . . , Yk,n)T, and Zk = (Zk,1, . . . , Zk,n)T, for k ∈
K, the channel inputs can be written as:

X = Θ(n) · d(n) +

K∑
k=1

A
(n)
k Zk, (17)

for some n-dimensional vector d(n) and n-by-n strictly lower-
triangular matrices A

(n)
1 , . . . ,A

(n)
K . (The lower-triangularity of

A
(n)
1 , . . . ,A

(n)
K ensures that the feedback is used in a strictly

causal fashion.) Thus, for a given blocklength n, a linear-
feedback scheme is described by the tuple

Φ(n),d(n),A
(n)
1 , . . . ,A

(n)
K , g

(n)
1 , . . . , g

(n)
K . (18)

It satisfies the average block-power constraint (8) whenever
K∑
k=1

‖A(n)
k ‖

2
Fσ

2
k + ‖d(n)‖2E

[
|Θ(n)|2

]
≤ nP. (19)

The supremum of all rates that are achievable with a
sequence of linear-feedback schemes with a message point
is denoted by C (Lin).

III. FOR COMPARISON: SETUP WITH PRIVATE MESSAGES
AND PERFECT FEEDBACK

A. System Model and Capacity Region

For comparison, we also discuss the scenario where the
transmitter wishes to communicate a private message Mk to
each Receiver k ∈ K over the Gaussian BC in Figure 1.
The messages M1, . . . ,MK are assumed independent of each
other and of the noise sequences {Z1,i}ni=1, . . . , {ZK,i}ni=1

and each Mk is uniformly distributed over the set Mk :=
{1, . . . , benRkc}. For this setup we restrict attention to perfect
feedback. Thus, here the channel inputs are produced as

Xi = f
(n)
priv,i(M1, . . . ,MK , Y

i−1
1 , . . . , Y i−1

K ), i ∈ {1, . . . , n}.
(20)

Receiver k produces the guess

M̂k = g
(n)
priv,k(Y nk ) (21)

where the sequence of decoding function {g(n)
priv,k}Kk=1 is of the

form

g
(n)
priv,k : Rn → {1, . . . , benRkc}, (22)

A rate tuple (R1, . . . , RK) is said to be achievable if for
every blocklength n there exists a set of n encoding functions
as in (20) satisfying the power constraint (8) and a set of
K decoding functions as in (22) such that the probability of
decoding error tends to 0 as the blocklength n tends to infinity,
i.e.,

lim
n→∞

Pr
[
(M1, . . . ,MK) 6= (M̂1, . . . , M̂K)

]
= 0.

The closure of the set of all achievable rate tuples
(R1, . . . , RK) is called the capacity region. We denote it

Cprivate. This capacity region is unknown to date. (The sum-
capacity in the high-SNR asymptotic regime is derived in [8].)
Achievable regions were presented in [7], [8], [9]; the tighest
known outer bound on capacity for K = 2 users was presented
in [4] based on the idea of revealing one of the output
sequences to the other receiver. This idea generalizes to K ≥ 2
users, and leads to the following outer bound [5], [15]:

Lemma 1. If the rate tuple (R1, . . . , RK) lies in Cprivate, then
there exist coefficients α1, . . . , αK in the closed interval [0, 1]
such that for each k ∈ K,

Rk ≤
1

2
log

(
1 +

αkP

(1− α1 − . . .− αk)P +Nk

)
(23)

where

Nk =

(
k∑

k′=1

1

σ2
k′

)−1

, k ∈ K. (24)

Proof: Let a genie reveal each output sequence Y nk to Re-
ceivers k+1, . . . ,K. The resulting BC is physically degraded,
and thus its capacity is the same as without feedback [16] and
known. Evaluating this capacity region readily gives the outer
bound in the lemma.

B. Linear-Feedback Schemes with Message Points

A linear-feedback scheme with message points for this
setup with independent messages consists of a sequence of K
decoding functions as in (22) and of a sequence of encoding
functions {f (n)

priv,i}ni=1 of the form

f
(n)
priv,i = Φ

(n)
priv ◦ L

(n)
priv,i (25)

with

Φ
(n)
priv :

M1

...
MK

 7→ Θ :=

Θ1

...
ΘK

 ∈ RK (26a)

L
(n)
priv,i : (Θ, Y i−1

1 , . . . , Y i−1
K ) 7→ Xi (26b)

where Φ
(n)
priv is an arbitrary function on the respective domains

and L(n)
priv,i is a linear mapping on the respective domains.

We denote the closure of the set of rate tuples (R1, . . . , RK)
that are achievable with a linear-feedback scheme with mes-
sage points by C(Lin)

private. This region is unknown to date.

IV. MAIN RESULTS

The main question we wish to answer is whether for the
Gaussian BC with common message a super-exponential decay
in the probability of error is achievable for all rates R < C.
We first show that the class of linear-feedback schemes with
message point fails in achieving this goal even with perfect
feedback, because it does not achieve capacity (Theorem 1
and Corollary 1). As the number of receivers K increases, the
largest rate that is achievable with linear-feedback schemes
with a message point vanishes (Proposition 2). However, as
we show then, a super-exponential decay in the probability
of error is still possible by means of an intermittent feedback
scheme similar to [12] (Theorem 2).
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Proposition 1. If a sequence of linear-feedback schemes with
a message point achieves a common rate R > 0, then there
exists a sequence of linear-feedback schemes with message
points that achieves the private rates (R, . . . , R) ∈ RK:

0 < R ≤ C(Lin) =⇒ (R, . . . , R) ∈ C(Lin)
private. (27)

Proof: See Section V.
Proposition 1 and the upper bound in Lemma 1 yield the

following result:

Theorem 1. We have:

C (Lin) ≤ 1

2
log

(
1 +

α?1P

(1− α?1)P + σ2
1

)
(28)

where α?1 lies in the open interval (0, 1) and is such that there
exist α?2, . . . , α

?
K ∈ (0, 1) that satisfy

α?1 + α?2 + . . .+ α?K = 1 (29a)

and for k ∈ {2, . . . ,K}:

1

2
log

(
1 +

α?kP

(1− α?1 − α?2 − . . .− α?k)P +Nk

)
=

1

2
log

(
1 +

α?1P

(1− α?1)P + σ2
1

)
(29b)

where the noise variances {Nk}Kk=1 are defined in (24).

Since α?1 is strictly smaller than 1, irrespective of K and the
noise variances σ2

1 , . . . , σ
2
K , we obtain the following corollary.

Corollary 1. Linear-feedback schemes with a message point
cannot achieve the capacity of the Gaussian BC with common
message:

C (Lin) < C (30)

where the inequality is strict.

Proposition 2. If the noise variances {σ2
k}Kk=1 are such that

∞∑
k=1

Nk =∞, (31)

then
lim
K→∞

C (Lin) = 0. (32)

Proof: See Appendix A.
In Figure 2 we plot the upper bond on C(Lin) shown in (28),

Theorem 1, as a function of the number of receivers K, which
have all the same noise variance σ2

1 = . . . = σ2
K = 1. As we

observe, this upper bound, and thus also C(Lin), tends to 0 as
K tends to infinity

Theorem 2. For any positive rate R < C, if the feedback rate

Rfb ≥ (L− 1)R, (33)

for some positive integer L, then it is possible to achieve an
L-th order exponential decay of the probability of error in the
blocklength.

Proof: See Section VI.
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Fig. 2. Upper bound (28) on the rates achievable with linear-feedback
schemes with a message point in function of the number of receivers K.

V. PROOF OF PROPOSITION 1

Let δ > 0 be a small real number. Fix a sequence of rate-
R > 0, power-(P − δ) linear-feedback schemes that sends a
common message point over the Gaussian BC with probability
of error P (n)

e tending to 0 as n→∞. For each n ∈ Z+, let

Φ(n),d(n),A
(n)
1 , . . . ,A

(n)
K , g

(n)
1 , . . . , g

(n)
K (34)

denote the parameters of the blocklength-n scheme, which
satisfy the power constraint

E
[
|Θ(n)|2

]
· ‖d(n)‖2 +

K∑
k=1

∥∥A(n)
k

∥∥2

F
≤ n(P − δ) (35)

where Θ(n) = Φ(n)(M).
We have the following lemma.

Lemma 2. For each blocklength n, there exist n-dimensional
row-vectors v

(n)
1 , . . . ,v

(n)
K of unit norms,

‖v(n)
1 ‖2 = · · · = ‖v(n)

K ‖
2 = 1, (36)

and K indices j(n)
1 , . . . , j

(n)
K ∈ {1, . . . , n} such that for each

k ∈ K the following three limits holds:
1)

R ≤ lim
n→∞

− 1

2n
log c

(n)
k (37)

where

c
(n)
k := σ2

k

∥∥v(n)
k

(
I + A

(n)
k

)∥∥2
+
∑

k′∈K\{k}

σ2
k′

∥∥v(n)
k′ A

(n)
k′

∥∥2
;

(38)

2)

lim
n→∞

1

n
E

[(
X

(n)

j
(n)
k

)2
]

= 0 (39)

where for i ∈ {1, . . . , n}, X(n)
i denotes the i-th channel

input of the blocklength-n scheme; and
3)

lim
n→∞

1

2n
log
(
|v(n)

k,j
(n)
k

|
)

= 0 (40)
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where for i ∈ {1, . . . , n}, v(n)
k,i denotes the i-th compo-

nent of the vector v
(n)
k .

Proof: See Appendix B.

Remark 1. In the statement of the above lemma, the vector
v

(n)
k is a scaled version of the LMMSE filter of the the

input given observations Yk,1, . . . , Yk,n, and c
(n)
k represents

the volume of uncertainty about the message point at receiver
k (hence R is bounded by its rate of decay). The last two
claims of Lemma 2 hinge upon the fact that the channel input
is power limited and therefore there must exists channel inputs
that use less or equal than average power.

In the following, let for each n ∈ Z+, v
(n)
1 , . . . ,v

(n)
K be

n-dimensional unit-norm row-vectors and j
(n)
1 , . . . , j

(n)
K be

positive integers satisfying the limits (37), (39), and (40).
We now construct a sequence of linear-feedback schemes

with message points that can send K independent messages
M1, . . . ,MK to Receivers 1, . . . ,K at rates

Rk ≥
(

lim
n→∞

− 1

2n
log c

(n)
k

)
− ε, k ∈ K, (41)

for an arbitrary small ε > 0 with: 1) a probability of error
that tends to 0 as the blocklength tends to infinity and 2)
with an average blockpower that is no larger than P when the
blocklength is sufficiently large. By (37), since δ, ε > 0 can
be chosen arbitrary small, and since C (Lin) is continuous in the
power P (Remark 2 ahead) and is defined as a supremum, the
result in Proposition 1 will follow.

We describe our scheme for blocklength-(n + 2K), for
some fixed n ∈ Z+. Our scheme is based on the parameters
A

(n)
1 , . . . ,A

(n)
K in (34), on the vectors v

(n)
1 , . . . ,v

(n)
K , and on

the indices j(n)
1 , . . . , j

(n)
K where v

(n)
k and j

(n)
k , k ∈ K are

defined in Lemma 2. For ease of notation, when describing
our scheme in the following, we drop the superscript (n), i.e.,
we write

A1, . . . ,AK , v1, . . . ,vK , and j1, . . . , jK .

We also assume that

j1 ≤ j2 ≤ . . . ≤ jK . (42)

(If this is not the case, we simply relabel the receivers.)
Also, to further simplify the description of the linear-feedback
coding and the decoding, we rename the n+2K transmission
slots as depicted in Figure 3. Transmission starts at slot 1−K
and ends at slot n; also, after each slot jk, for k ∈ K, we
introduce an additional slot j̃k. We call the slots 1−K, . . . , 0
the initialization slots, the slots j̃1, . . . , j̃K the extra slots, and
the remaining slots 1, 2, 3, . . . , n the regular slots.

In our scheme, the message points {Θk}Kk=1 are constructed
as in the Ozarow-Leung scheme [4]:

Θk := 1/2− Mk − 1

be(n+2K)Rkc
, k ∈ K. (43)

These messages are sent during the initialization phase. Specif-
ically, in the initialization slots i = 1 − K, . . . , 0, the trans-

mitter sends the K message points Θ1, . . . ,ΘK :

X1−k =

√
P

Var(Θk)
Θk, k ∈ K. (44)

In the regular slots i = 1, . . . , n, the transmitter sends the same
inputs as in the scheme with common message described by
the parameters in (34), but without the component from the
message point and where for each k ∈ K the noise sample
Zk,jk is replaced by Zk,j̃k . Thus, defining the n-length vector
of regular inputs X , (X1, X2, X3, . . . , Xn)T, we have

X =

K∑
k=1

AkZ̃k (45)

where for k ∈ K,

Z̃k := (Zk,1, Zk,2, . . . , Zk,jk−1, Zk,j̃k , Zk,jk+1, . . . , Zk,n)T

(46)
denotes the n-length noise vector experienced at Receiver k
during the regular slots 1, . . . , jk − 1, the extra slot j̃k, and
the regular slots jk + 1, . . . , n.

Since for each k ∈ K, the extra slot j̃k preceds all regular
slots jk+1, . . . , n, the strict lower-triangularity of the matrices
A1, . . . ,AK ensures that in (45) the feedback is used in a
strictly causal way.

In each extra slot j̃k, for k ∈ K, the transmitter sends the
regular input Xjk , but now with the noise sample Zk,1−k,

Xj̃k
= Xjk + Zk,1−k. (47)

The noise sample Zk,1−k is of interest to Receiver k (and only
to Receiver k) because from this noise sample and Yk,1−k one
can recover Θk, see (44). Therefore—as described shortly—
in the decoding, Receiver k considers the extra output Yk,j̃k
which contains Zk,1−k whereas all other receivers k′ 6= k
instead consider the regular outputs Yk′,jk which do not have
the Zk,1−k-component.

The decoding is similar as in the Ozarow-Leung scheme.
However, here, each Receiver k ∈ K only consid-
ers the initialization output Yk,1−k, the regular outputs
Yk,1, . . . , Yk,jk−1, Yk,jk+1, . . . , Yk,K and the extra output
Yk,j̃k , see also Figure 4. Specifically, Receiver k forms the
n-length vector

Ỹk :=
(
Yk,1, . . . , Yk,jk−1, Yk,j̃k , Yk,jk+1, . . . , Yk,n

)T
, (48)

and produces the LMMSE estimate Ẑk,1−k of the noise Zk,1−k
based on the vector Ỹk. It then forms

Θ̂k =

√
Var(Θk)

P

(
Yk,1−k − Ẑk,1−k

)
. (49)

and performs nearest neighbor decoding to decode its desired
Message Mk based on Θ̂k.

We now analyze the described scheme. The expected block-
power of our scheme is:

0∑
i=1−K

E
[
|Xi|2

]
+

n∑
i=1

E
[
|Xi|2

]
+

K∑
k=1

E
[∣∣Xj̃k

∣∣]
≤ KP + n(P − δ) +

K∑
k=1

E
[
|Xjk |2

]
+

K∑
k=1

σ2
k (50)
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 0 1  1j 1
j1 K 2j 2j  nKjkj 

Kj
kj1 1j  2 1j  1Kj  

 

Initialization slots 1j ,     ,…,      : extra slots2j Kj: regular slots

1 k 1kj 

Fig. 3. Labeling of the transmission slots for our blocklength-(n+ 2K) scheme.

kj1 ,k: slots considered at Receiver k : slots dedicated exclusively to Receiver k

 0 1  1j 1
j1 K 2j 2j  nKjkj 

Kj
kj1 1j  2 1j  1Kj  1 k 1kj 

Fig. 4. Transmissions considered at Receiver k and transmissions dedicated exclusively to Receiver k.

where the inequality follows from (44), (45), and (47), and
from (35), which assures that the regular inputs X1, . . . , Xn

are block-power constrained to n(P − δ). Further, since the
indices j1, . . . , jK satisfy Assumption (39),

lim
n→∞

1

n

K∑
k=1

E
[
|Xjk |2

]
= 0, (51)

and thus for sufficiently large n the proposed scheme for
independent messages is average blockpower constrained to
P .

We analyze the probability of error. Notice that

Θ̂k = Θk + Ek (52)

where

Ek :=

√
Var(Θk)

P

(
Zk,1−k − Ẑk,1−k

)
(53)

is zero-mean Gaussian of variance

Var(Ek) =
Var(Θk)

P
σ2
ke
−2I(Zk,1−k;Ỹk). (54)

Equation (54) is justified by

I
(
Zk,1−k ; Ỹk

)
= h(Zk,1−k)− h

(
Zk,1−k

∣∣Ỹk

)
=

1

2
log

 σ2
k

Var
(
Zk,1−k − Ẑk,1−k

)
 (55)

where the last equality follows because Zk,1−k and Ỹk

are jointly Gaussian, and thus the LMMSE estimation error
Zk,1−k − Ẑk,1−k is independent of the observations Ỹk.

The nearest neighbor decoding rule is successful if |Ek| is
smaller than half the distance between any two message points.
Since Ek is Gaussian and independent of the message point,
the probability of this happening is

Pr
[
M̂k 6= Mk

]
≤ Pr

[
|Ek| ≥

1

2 · be(n+2K)Rkc

]
= 2Q

(
eI(Zk,1−k;Ỹk)

2 · be(n+2K)Rkc
· P

Var(Θk)σ2
k

)
.

We conclude that the probability of error tends to 0, double-
exponentially, whenever

Rk < lim
n→∞

1

n
I(Zk,1−k; Ỹk). (56)

Notice that the vector Ỹk as defined in (48), satisfies

Ỹk =
∑

k′∈K\{k}

Ak′Z̃k′ + (I + Ak)Z̃k + ejkZk,1−k (57)

where for each i ∈ {1, . . . , n} the vector ei is the n-length
unit-norm vector with all zero entries except at position i
where the entry is 1. Thus, by the data processing inequality,

I(Zk,1−k; Ỹk)

≥ I(Zk,1−k; vT
kỸk)

=
1

2
log

1+
|vk,jk |2

σ2
k‖vk(I + Ak)‖2 +

∑
k′∈K\{k}

σ2
k′‖vk′Ak′‖2


=

1

2
log

(
1 +
|vk,jk |2

ck

)
(58)

where the first equality follows by (57) and the joint Gaussian-
ity of all involved random variables and the second equality
follows by the definition of ck in (38).

Combining (56) and (58), we obtain that the probability
Pr
[
M̂k 6= Mk

]
tends to 0 as n→∞ whenever

Rk < lim
n→∞

1

2n
log

(
1 +
|vk,jk |2

ck

)
. (59)

(Recall that the quantities jk, ck, and vk,jk depend on n, but
here we do not show this dependence for readability.)

Further, by the converse in (37),

0 < R ≤ lim
n→∞

−1

2n
log ck

= lim
n→∞

1

2n
log
|vk,jk |2

ck
(60)

= lim
n→∞

1

2n
log

(
1 +
|vk,jk |2

ck

)
(61)

where the first equality holds by Condition (40) and the second
equality holds because (60) implies that the ratio |vk,jk |

2

ck
tends

to infinity with n.
Combining (59) with (61) establishes that for arbitrary ε > 0

there exists a rate tuple (R1, . . . , RK) satisfying (41) such
that the described scheme with independent messages achieves
probability of error that tends to 0 as the blocklength tends to
infinity.

Remark 2. In the spirit of the scheme for private messages
described above, one can construct a linear-feedback scheme
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with a common message point that has arbitrary small prob-
ability of error whenever

R < lim
n→∞

− 1

2n
log ck, k ∈ K.

Combined with the converse in (37), this gives a (multi-
letter) characterization of C (Lin). Based on this multi-letter
characterization one can show the continuity of C (Lin) in the
transmit-power constraint P .

VI. PROOF OF THEOREM 2: CODING SCHEME ACHIEVING
L-TH ORDER EXPONENTIAL DECAY

The scheme is based on the scheme in [12], see also [13],
[14]. Fix a positive rate R < C and a positive integer L.
Assume that

Rfb ≥ R(L− 1). (62)

Also, fix a large blocklength n and small numbers ε, δ > 0
such that

R < C(1− δ) (63)

and

(1− ε)−1 < 1 + δ. (64)

Define
n1 := (1− ε)n (65)

and for l ∈ {2, . . . , L}

nl := n1 +
εn

L− 1
(l − 1). (66)

Notice that by (64) and (65),
n

n1
< 1 + δ. (67)

The coding scheme takes place in L phases. After each phase
l ∈ {1, . . . , L}, each Receiver k ∈ K makes a temporary
guess M̂ (k)

l of message M . The final guess is the guess after
phase L:

M̂ (k) = M̂
(k)
L , (68)

Define the probability of error after phase l ∈ {1, . . . , L}:

P
(n)
e,l := Pr

[⋃
k∈K

M̂
(k)
l 6= M

]
(69)

and thus
P (n)
e = P

(n)
e,L . (70)

A. Code Construction

We construct a codebook C1 that
• is of blocklength n1,
• is of rate Rphase,1 = n

n1
R,

• satisfies an expected average block-power constraint P ,
and

• when used to send a common message over the Gaussian
BC in (1) and combined with an optimal decoding rule,
it achieves probability of error ρ1 not exceeding

ρ1 ≤ e−n(ζ−o(1)) (71)

for some ζ > 0.
Notice that such a code exists because, by (63) and (67), the
rate of the code n

n1
R < C(1 − δ2), and because the error

exponent of the BC with common message without feedback
is positive for all rates below capacity.1

Let
γ1 := ρ1. (72)

For l from 2 to L, do the following.
Construct a codebook Cl that:
• is of blocklength εn

L−1 − 1,
• is of rate Rphase,l := R(L−1)

ε−(L−1)/n ,
• satisfies an expected average block-power constraint
P/γl−1,

• when used to send a common message over the Gaussian
BC in (1) and combined with an optimal decoding rule,
it achieves probability of error ρl not exceeding

ρl ≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−1 times

(Ω(n))). (73)

Define

γl := ρl + 2
∑
k∈K

Q

(√
P/γl−1

2σk

)
. (74)

(As shown in Section VI-C ahead, γl upper bounds P
(n)
e,l

defined in (69).) By (73) and (74), inductively one can show
that

γl ≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−1 times

(Ω(n))). (75)

In Appendix C, we prove that such codes C2, . . . , CL exist.

B. Transmission

Transmission takes place in L phases.
1) First phase with channel uses i = 1, . . . , n1: During the

first n1 channel uses, the transmitter sends the codeword in
C1 corresponding to message M .

After observing the channel outputs Y n1

k , Receiver k ∈ K
makes a temporary decision M̂ (k)

1 about M . It then sends this
temporary decision M̂ (k)

1 to the transmitter over the feedback
channel:

Vk,n1
= M̂

(k)
1 . (76)

All previous feedback signals from Receiver k are determin-
istically 0.

2) Phase l ∈ {2, . . . , L} with channel uses i ∈ {nl−1 +
1, . . . , nl}: The communication in phase l depends on the
receivers’ temporary decisions M̂ (1)

l−1, . . . , M̂
(K)
l−1 after the pre-

vious phase (l−1). These decisions have been communicated
to the transmitter over the respective feedback links.

If in phase (l − 1) at least one of the receivers made an
incorrect decision,

(M̂
(k)
l−1 6= M), for some k ∈ K, (77)

1The positiveness of the error exponent for the Gaussian BC with common
message and without feedback follows from the fact that without feedback
the probability of error for the Gaussian BC with common messages is at
most K times the probability of error to the weakest receiver.
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then in channel use nl−1 + 1 the transmitter sends an error
signal to indicate an error:

Xnl+1 =
√
P/γl−1. (78)

During the remaining channel uses i = nl−1+2, . . . , nl it then
retransmits the message M by sending the codeword from Cl
that corresponds to M .

On the other hand, if all receivers’ temporary decisions to
the phase (l − 1) were correct,

M̂
(1)
l−1 = M̂

(2)
l−1 = . . . = M̂

(K)
l−1 = M, (79)

then the transmitter sends 0 during the entire phase l:

Xi = 0, i = nl−1 + 1, . . . , nl. (80)

In this case, no power is consumed in phase l.
The receivers first detect whether the transmitter sent an

error signal in channel use nl−1 + 1. Depending on the
output of this detection, they either stick to their temporary
decision in phase (l−1) or make a new decision based on the
transmissions in phase l. Specifically, if

Yk,nl−1+1 < Tl−1 (81)

where

Tl−1 :=

√
P/γl−1

2
, (82)

then Receiver k ∈ K decides that its decision M̂ (k)
l−1 in phase

(l− 1) was correct and keeps it as its temporary guess of the
message M :

M̂
(k)
l = M̂

(k)
l−1. (83)

If instead,

Yk,nl−1+1 ≥ Tl−1, (84)

Receiver k decides that its temporary decision M̂
(k)
l−1 was

wrong and discards it. It then produces a new guess
M̂

(k)
l by decoding the code Cl based on the outputs

Yk,nl−1+2, . . . , Yk,nl .
After each phase l ∈ {2, . . . , L− 1}, each Receiver k ∈ K

feeds back to the transmitter its temporary guess M̂ (k)
l :

Vk,nl = M̂
(k)
l . (85)

All other feedback signals Vk,nl−1+1, . . . ,Vk,nl−1 in phase l are
deterministically 0.

After L transmission phases, Receiver k’s final guess is

M̂ (k) = M̂
(k)
L . (86)

Thus, an error occurs in the communication if

(M̂
(k)
L 6= M), for some k ∈ K. (87)

C. Analysis

In view of (62), by (76) and (85), and because all other
feedback signals are deterministically 0, our scheme satisfies
the feedback rate constraint in (4).

We next analyze the probability of error and we bound the
consumed power. These analysis rely on the following events.
For each k ∈ K and l ∈ {1, . . . , L} define the events:

• E(k)
l : Receiver k’s decision in phase l is wrong:

M̂
(k)
l 6= M ; (88)

• E(k)
T,l : Receiver k observes

Yk,nl+1 < Tl; (89)

• E(k)
ρ,l : Decoding Message M based on Receiver k’s phase-
l outputs Yk,nl−1+2, . . . , Yk,nl using codebook Cl results
in an error.

Define also the events:

E1,l: All receivers’ decisions in phase (l− 1) are correct, and
at least one Receiver k ∈ K obtains an error signal in
channel use nl−1 + 1 :( ⋂

k∈K

(
E(k)
l−1

)c) ∩ ( ⋃
k∈K

(
E(k)
T,l−1

)c)
. (90)

E2,l: At least one Receiver k ∈ K makes an incorrect decision
in phase (l − 1) but obtains no error signal in channel
use nl−1 + 1:

⋃
k∈K

(
E(k)
l−1 ∩ E

(k)
T,l−1

)
. (91)

E3,l: At least one Receiver k ∈ K makes an incorrect
temporary decision in phase (l − 1), and at least one
Receiver k′ ∈ K observes Yk′,nl−1+1 ≥ Tl−1 and
errs when decoding M based on its phase-l outputs
Yk′,nl−1+2, . . . , Yk′,nl :( ⋃

k∈K

E(k)
l−1

)
∩
( ⋃
k′∈K

((
E(k′)
T,l

)c ∩ E(k′)
ρ,l

))
. (92)

For each l ∈ {1, . . . , L}, the probability P
(n)
e,l is included

in the union of the events (E1,l ∪ E2,l ∪ E3,l), and thus, by the
union bound,

P
(n)
e,l ≤ Pr[E1,l] + Pr[E2,l] + Pr[E3,l] . (93)

In particular, by (70) and (93), the probability of error of our
scheme

P (n)
e ≤ Pr[E1,L] + Pr[E2,L] + Pr[E3,L] . (94)

We bound each summand in (94) individually, starting with
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Pr[E1,L]. By (90), we have

Pr[E1,L] = Pr

[( ⋂
k∈K

(
E(k)
L−1

)c) ∩ ( ⋃
k∈K

(
E(k)
T,L−1

)c)]

≤ Pr

[⋃
k∈K

(
E(k)
T,L−1

)c∣∣∣ ⋂
k∈K

(
E(k)
L−1

)c]

≤
K∑
k=1

Pr

[(
E(k)
T,L−1

)c∣∣ ⋂
k∈K

(
E(k)
L−1

)c]

=

K∑
k=1

Q
(
TL−1

σk

)
(95)

where the first inequality follows by Bayes’ rule and be-
cause a probability cannot exceed 1; the second inequality
by the union bound; and the last equality because in the
event

(⋂
k∈K(E(k)

L−1)c
)
, we have XnL−1+1 = 0 and thus

Yk,nL−1+1 ∼ N (0, σ2
k).

Next, by (91) and similar arguments as before, we obtain,

Pr[E2,L] = Pr

[ ⋃
k=∈K

(
E(k)
L−1 ∩ E

(k)
T,L−1

)]

≤
K∑
k=1

Pr
[
E(k)
L−1 ∩ E

(k)
T,L−1

]
≤

K∑
k=1

Pr
[
E(k)
T,L−1

∣∣E(k)
L−1

]
=

K∑
k=1

Q
(
TL−1

σk

)
. (96)

Finally, by (92) and similar arguments as before,

Pr[E3,L] = Pr

[( ⋃
k∈K

E(k)
L−1

)
∩
( ⋃
k′∈K

((
E(k′)
T,L

)c ∩ E(k′)
ρ,L

))]

≤ Pr

[ ⋃
k′∈K

((
E(k′)
T,L

)c ∩ E(k′)
ρ,L

)∣∣∣ ⋃
k∈K

E(k)
L−1

]

≤ Pr

[ ⋃
k′∈K

E(k′)
ρ,L

∣∣∣ ⋃
k∈K

E(k)
L−1

]
≤ ρL (97)

where the last inequality follows by the definition of ρL.
In view of (82) and (94)–(97),

P (n)
e ≤ Pr[E1,L] + Pr[E2,L] + Pr[E3,L]

≤ ρL + 2
∑
k∈K

Q

(√
P/γL−1

2σk

)
= γL (98)

where the equality follows by the definition of γL in (74).
Combining this with the L-th order exponential decay of γL,
see (75), we obtain

lim
n→∞

− 1

n
log log . . . log︸ ︷︷ ︸

L−1 times

(− logP (n)
e ) > 0, (99)

Now consider the consumed expected average block-power.
Similarly to (98), we can show that for l ∈ {1, . . . , L− 1},

P
(n)
e,l ≤ γl. (100)

Since in each phase l ∈ {2, . . . , L} we consume power P/γl−1

in the event (77) and power 0 in the event (79), by the
definition in (69),

1

n
E

[
n∑
i=1

X2
i

]
≤ 1

n

(
P (1−ε)n+

L∑
l=2

P
(n)
e,l−1

P

γl−1

εn

L−1

)
≤ P

(101)
where the second inequality follows from (100).

This completes the proof of Theorem 2.

APPENDIX A
PROOF OF PROPOSITION 2

We show that under assumption (31),

lim
K→∞

α?1 = 0, (102)

which implies (32).
Notice that (29b) implies for k ∈ {1, . . . ,K−1}:

α∗KP

NK
=

α∗kP

(1− α?1 − α∗2....− α∗k)P +Nk
. (103)

Since for each k, the term (1 − α?1 − α∗2 − . . . − α∗k) is
nonnegative,

α∗k ≥ Nk
NK

α∗K , k ∈ {1, . . . ,K − 1}. (104)

Thus, by (29a),

1 =

K∑
k=1

α∗k ≥
K∑
k=1

Nk
NK

α∗K

and
α∗K ≤

NK∑K
k=1Nk

.

We conclude that, for every finite positive integer K,

RK ≤ 1

2
log

(
1 +

P∑K
k=1Nk

)
,

and under Assumption (31), in the limit as K →∞,

lim
K→∞

RK = 0.

APPENDIX B
PROOF OF LEMMA 2

We first prove the converse (37). Fix a blocklength n. By
Fano’s inequality, for each k ∈ K,

nR = H(M (n))

≤ I
(
M (n);Y

(n)
k,1 , . . . , Y

(n)
k,n

)
+ ε(n)

≤ I
(

Θ(n);Y
(n)
k,1 , . . . , Y

(n)
k,n

)
+ ε(n)

(a)

≤ I
(

Θ̄(n); Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n

)
+ ε(n) (105)
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where ε(n)
n → 0 as n → ∞ and where we defined the

tuple (Θ̄(n), Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n ) to be jointly Gaussian with the

same covariance matrix as the tuple (Θ(n);Y
(n)
k,1 , . . . , Y

(n)
k,n ).

Inequality (a) holds because the Gaussian distribution maxi-
mizes differential entropy under a covariance constraint.

Now, since Θ̄(n), Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n are jointly Gaussian, there

exists a linear combination
∑n
i=1 v

(n)
k,i Ȳ

(n)
k,i such that

I
(

Θ̄(n); Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n

)
= I

(
Θ̄(n);

n∑
i=1

v
(n)
k,i Ȳ

(n)
k,i

)
. (106)

(In fact, the linear combination is simply the LMMSE-estimate
of Θ̄(n) based on Ȳ (n)

k,1 , . . . , Ȳ
(n)
k,n .) Defining the n-dimensional

row-vector v
(n)
k =

(
v

(n)
k,1 , . . . , v

(n)
k,n

)
, in view of (106), we have

I
(

Θ̄(n); Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n

)
=

1

2
log

(
1 +

(
v

(n)
k d(n)

)2Var
(
Θ(n)

)
c
(n)
k

)
(107)

where c(n)
k is as defined in (38).

Notice that the right-hand side of (107) does not depend on
the norm of v

(n)
k (as long as it is non-zero) but only on the

direction. Therefore, without loss of generality, we can assume
that

‖v(n)
k ‖

2 = 1. (108)

By (105) and (107), we conclude that for each k ∈ K, there
exists a unit-norm vector v

(n)
k such that

R ≤ lim
n→∞

1

2n
log

(
1+

(
v

(n)
k d(n)

)2Var
(
Θ(n)

)
c
(n)
k

)
. (109)

Since by assumption R > 0, (109) implies that the ratio
(v

(n)
k d(n))2Var

(
Θ(n)

)
/c

(n)
k tends to infinity and thus

R ≤ lim
n→∞

1

2n
log

((
v

(n)
k d(n)

)2Var
(
Θ(n)

)
c
(n)
k

)
. (110)

Now, consider the average block-power constraint (35). Since
the trace of a positive semidefinite matrix is non-negative and
Var
(
Θ(n)

)
≤ E

[
|Θ(n)|2

]
, by (35), for each n ∈ Z+:

‖d(n)‖2E
[
|Θ(n)|2

]
≤ n(P − δ). (111)

Since ‖v(n)
k ‖ = 1, (108), by the Cauchy-Schwarz Inequality,(

v
(n)
k d(n)

)2Var
(

Θ(n)
)
≤ n(P − δ) (112)

and as a consequence

lim
n→∞

1

2n
log
((

v
(n)
k d(n)

)2Var
(

Θ(n)
))
≤ 0. (113)

Combining this with (110), proves the desired inequality (37).
The proof of Inequalities (39) and (40) relies on Lemmas 3

and 4 at the end of this appendix. Notice that the monotonicity
of the log-function and the nonnegativity of the norm com-
bined with (37) imply that for each k ∈ K,

R ≤ lim
n→∞

− 1

2n
log
∥∥v(n)

k

(
I + A

(n)
k

)∥∥2
, (114)

where recall that we assumed R > 0.
Define for each k ∈ K and positive integer n the set

S(n)
k :=

{
i ∈ {1, . . . , n} : v

(n)
k,i > n−2 logn

}
. (115)

By Lemma 3 and Inequality (114), the cardinality of each set
S(n)
k is unbounded,

|S(n)
k | → ∞ as n→∞, k ∈ K. (116)

Applying now Lemma 4 to p = P − δ, to

π
(n)
i = E

[(
X

(n)
i

)2
]
, (117)

and to T (n) = S(n)
k implies that for each k ∈ K there

exists a sequences of indices {j(n)
k ∈ S(n)

k }∞n=1 that satisfies
(39). Since every sequence of indices {i(n) ∈ S(n)

k }∞n=1 also
satisfies (40), this concludes the proof of the lemma.

Lemma 3. For each n ∈ Z+, let A(n) be a strictly lower-
triangular n-by-n matrix and v(n) an n-dimensional row-
vector. Let a(n)

i,j denote the row-i, column-j entry of A(n) and
v

(n)
i denote the i-th entry of v(n). Assume that the elements
a

(n)
i,j are bounded as

|a(n)
i,j |

2 ≤ np (118)

for some real number p > 0, and that the inequality

lim
n→∞

− 1

2n
log ‖v(n)(I + A(n))‖2 ≥ Γ (119)

holds for some real number Γ > 0. Then, for each ε ∈ (0,Γ)
and for all sufficiently large n the following implication holds:
If

|v(n)
j | > e−n(Γ−ε) (120a)

for some index j ∈ {1, . . . , n}, then there must exist an index
i ∈ {j + 1, . . . , n} such that

|v(n)
i | ≥

|v(n)
j | − e−n(Γ−ε)

n
3
2
√
p

. (120b)

If moreover, the vectors {v(n)}∞n=1 are of unit norm, then
the cardinality of the set

S(n) :=
{
j ∈ {1, . . . , n} : |v(n)

j | > n−2 log(n)
}

(121)

is unbounded in n.

Proof: Fix ε ∈ (0,Γ) and let n be sufficiently large so
that

− 1

2n
log
∥∥v(n)(I + A(n))

∥∥2 ≥ Γ− ε. (122)

This is possible by (119).
Since A(n) is strictly lower-triangular,

‖v(n)(I + A(n))‖2 =
n∑
j=1

(v
(n)
j +

n∑
i=j+1

v
(n)
i a

(n)
i,j )2

≥
n∑
j=1

(
|v(n)
j | −

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣)2
≥
(
|v(n)
j | −

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣)2
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and by (122) and the monotonicity of the log-function, for all
j ∈ {1, . . . , n}:

− 1

2n
log

(
|v(n)
j | −

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣)2

≥ Γ− ε.

Thus,

|v(n)
j | ≤

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣+ e−n(Γ−ε)

and by (118):

|v(n)
j | − e

−n(Γ−ε) ≤
∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣
≤

n∑
i=j+1

|v(n)
i |
√
np. (123)

If |v(n)
j | ≤ e−n(Γ−ε), then the sum on the right-hand side

of (123) can be empty, i.e., j = n. However, if

|v(n)
j | > e−n(Γ−ε), (124)

then the sum needs to have at least one term. Indeed, if (124)
holds and i < n, there must exist an index i ∈ {j + 1, ..., n}
such that

1

n

(
|v(n)
j | − e

−n(Γ−ε)
)
≤ |v(n)

i |
√
np, (125)

which is equivalent to the desired bound (120b).
We now prove the second part of the lemma, i.e., the

unboundedness of the cardinalities of the sets S(n), where
we assume that the vectors {v(n)} are of unit norm. In the
following, let n be sufficiently large so that the first part of
the lemma, Implication (120), holds and so that

1√
n
>

1

n2 log(n)
> e−n(Γ−ε) (126)

and for every ` ∈ {1, . . . , log(n)}

1

n(3`+1)/2p`/2
− e−n(Γ−ε)n−3/2p−1/2 1− n−3`/2p−`/2

1− n−3/2p−1/2

>
1

n2 log(n)
(127)

Since ‖v(n)‖2 = 1, for each n, there must exist an index
i
(n)
0 ∈ {1, . . . , n} such that

|v(n)

i
(n)
0

| ≥ 1√
n
, (128)

and by (126)

|v(n)

i
(n)
0

| > n2 log(n) > e−n(Γ−ε). (129)

We conclude by (120) that there exists an index i(n)
1 ∈ {i(n)

0 +
1, . . . , n} satisfying

|v(n)

i
(n)
1

| ≥
|v(n)

i
(n)
0

| − e−n(Γ−ε)

n
3
2
√
p

≥ 1

n2√p
− e−n(Γ−ε)

n
3
2
√
p

(130)

where the inequality follows from (128). By (126) and (127),
(applied for ` = 1), Inequality (130) implies that

|v(n)

i
(n)
1

| > e−n(Γ−ε), (131)

and consequently, by (120), there exists an index i(n)
2 ∈ {i(n)

1 +
1, . . . , n} satisfying

|v(n)

i
(n)
2

| ≥
|v(n)

i
(n)
1

| − e−n(Γ−ε)

n
3
2
√
p

(132)

≥ 1

n7/2p
− e−n(Γ−ε)

n3p
− e−n(Γ−ε)

n
3
2
√
p

(133)

> e−n(Γ−ε), (134)

where the last inequality follows by (126) and (127) (applied
for ` = 2).

Repeating these arguments iteratively, we conclude that it
is possible to find indices 1 ≤ i(n)

0 < i
(n)
1 < . . . < i

(n)
log(n) < n

such that for each ` ∈ {1, . . . , log(n)}:

|v(n)

i
(n)
`

| ≥ 1

n3(`+1)/2p`/2
− e−n(Γ−ε)

∑̀
j=1

(
n−3/2p−1/2

)j
=

1

n3(`+1)/2p`/2

−e−n(Γ−ε)n−3/2p−1/2 1− n−3`/2p−`/2

1− n−3/2p−1/2
(135)

>
1

n2 log(n)
(136)

> e−(Γ−ε) (137)

where the last two inequalities follow from (126) and (127).
This proves that for sufficiently large n the cardinality of
the set S(n) as defined in (121) is at least log(n) and thus
unbounded in n.

Lemma 4. For each positive integer n, let (π
(n)
1 , . . . , π

(n)
n )

be a tuple of nonnegative real numbers that satisfy

1

n

n∑
i=1

π
(n)
i ≤ p (138)

for some real number p > 0, and let T (n) be a subset of the
indices from 1 to n,

T (n) ⊆ {1, . . . , n}, (139)

that satisfies

|T (n)| → ∞ as n→∞. (140)

Then, there exists a sequence of indices
{
i(n) ∈ T (n)

}∞
n=1

such that
lim
n→∞

1

n
π

(n)

i(n) = 0. (141)

Proof: Since all numbers π(n)
i are nonnegative, for every

sequence of indices {i(n) ∈ T (n)}∞n=1,

lim
n→∞

1

n
π

(n)

i(n) ≥ 0. (142)
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We thus have to prove that there exists at least one sequence
of indices {i(n) ∈ T (n)}∞n=1 that satisfies

lim
n→∞

1

n
π

(n)

i(n) ≤ 0. (143)

We prove this by contradiction. Assume that for each sequence
of indices {i(n) ∈ T (n)}∞n=1

lim
n→∞

1

n
π

(n)

i(n) > 0. (144)

Define for each n ∈ Z+

π
(n)
min := min

i∈T (n)
π

(n)
i , (145)

and define the limit

δmin := lim
n→∞

1

n
π

(n)
min, (146)

which by Assumption (144) is strictly positive,

δmin > 0. (147)

Now, since all the terms π(n)
i are nonnegative:

1

n

n∑
i=1

π
(n)
i ≥ 1

n

∑
i∈T (n)

π
(n)
i ≥ 1

n
π

(n)
min|T

(n)|, (148)

where the second inequality follows by the definition in (145).
By (146) and (147) and by the undboundedness of the cardi-
nality of the sets T (n), we conclude that the sum in (148) is
unbounded in n, which contradicts Assumption (138) and thus
concludes our proof.

APPENDIX C
EXISTENCE OF CODE C2, . . . , CL WITH THE DESIRED

PROPERTIES

The proof is by induction: for each ` ∈ {2, . . . , L}, when
proving the existence of the desired C`, we assume that

γl−1 ≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−2 times

(Ω(n))). (149)

For l = 2, Inequality (149) follows from (71).
By [17], for all rates

R̃ <
1

2
log

2 +
√
P̃ 2/σ4 + 4

4
,

and for sufficiently large n there exists a blocklength-ñ, rate-
R̃ non-feedback coding scheme for the memoryless Gaussian
point-to-point channel with noise variance σ2, with expected
average block-power no larger than P̃ and with probability of
error Pe satisfying

Pe ≤ e−ñ(E(R̃,P̃ /σ2)−ε′) (150)

for some fixed ε′ > 0 and

E(R̃, P̃ ) =
P̃

4σ2

(
1−

√
1− e−2R̃

)
. (151)

Since the probability of error of a non-feedback code over the
Gaussian BC with common message is at most K times the

probability of error to the weakest receiver, we conclude that
for all P̃ > 0 and

0 < R̃ <
1

2
log

2 +
√
P̃ 2/σ4

1 + 4

4
, (152a)

there exists a rate-R̃ code with power P̃ and blocklength ñ
that for the Gaussian BC with common message achieves
probability of error

P (BC)
e ≤ Ke

−ñ
(

P

4σ21

(
1−
√

1−e−2R̃
)
−ε′
)
. (152b)

Now apply this statement to R̃ = Rphase,l, P̃ = P/γl−1 and
ñ = εn

L−1 − 1. Since for sufficiently large n, by (149),

Rphase,l <
1

2
log

2 +
√

P 2

γ2
l−1σ

4
1

+ 4

4
, (153)

we conclude by (152) that there exists a code Cl of rate-
Rphase,l, block-power P/γl−1, blocklength εn

L−1 − 1 and prob-
ability of error ρl satisfying

ρl ≤ Ke
−
(
εn
L−1−1

) P

4γl−1σ
2
1

(
1−

√
1−e
−2

R(L−1)
ε−(L−1)/n

)
−ε′


≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−1 times

(Ω(n))) (154)

where the inequality follows again by (149).
By the definition of γl in (74), Inequalities (154) and (149)

also yield:

γl ≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−1 times

(Ω(n))). (155)
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