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“The	 sciences	 do	 not	 try	 to	 explain,	 they	 hardly	 even	 try	 to	 interpret,	 they	mainly	 make	
models.	By	a	model	 is	meant	a	mathematical	construct	which,	with	the	addition	of	certain	
verbal	 interpretations,	 describes	 observed	 phenomena.	 The	 justification	 of	 such	 a	
mathematical	construct	is	solely	and	precisely	that	it	is	expected	to	work.”	

Johann	Von	Neumann	US	(Hungarian-born)	computer	scientist,	mathematician	(1903	-	1957)		

	

“Prediction	is	very	difficult,	especially	about	the	future.”	

Niels	Henrik	David	Bohr	Danish	physicist	(1885	–	1962)		
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Zusammenfassung	 
	
REACH	und	prädiktive	Risikobewertung:	

Quantitative	 Struktur-Wirkungs-Beziehungen	 (QSAR:	 Quantitative	 Structure-Activity	
Relationships)	haben	in	der	prädiktiven	Toxikologie	in	den	letzten	Jahren	deutlich	an	Relevanz	
und	an	Popularität	 gewonnen.	 Insbesondere	der	 Fortschritt	 bei	Algorithmen	des	 ‚Machine	
Learning’	und	die	abnehmenden	Kosten	bei	Rechenressourcen	ermöglichen	die	Analyse	von	
großen	 Datenmengen,	 wie	 sie	 z.B.	 beim	 High-Throughput-Screening	 (HTS;	 i.e.,	 in	 vitro-
Testmethoden	mit	angemessenem	prädiktivem	Wert	für	in	vivo)	anfallen.	Inzwischen	fordert	
die	REACH-Verordnung	(im	Jahr	2007	in	der	EU	eingeführt)	eine	gestaffelte	Registrierung	aller	
auf	dem	Markt	befindlichen	Chemikalien	und	eine	Behebung	von	Informationslücken.	Da	die	
Übergangsfristen	im	Jahre	2018	ablaufen	und	dann	auch	in	geringerem	Ausmaß	produzierte	
chemische	 Verbindungen	 betroffen	 sind,	 auf	 der	 anderen	 Seite	 aus	 ethischen,	
wirtschaftlichen	 und	 praktischen	 Gründen	 für	 betroffene	 Chemikalien	 flächendeckende	
Tierversuche	 nicht	 angemessen	 sind,	 wurden	 multizentrisch	 prädiktive	 QSAR-Modelle	 auf	
Basis	von	standardisierten	Daten	aus	HTS-Toxizitätsscreenings	evaluiert.	

Entwicklung	von	QSAR-Modellen	auf	der	Basis	von	HTS-Toxizitätsdaten:	

Die	vorliegende	Arbeit	beinhaltet	eine	Verarbeitung	von	Daten	aus	HTS-Assays	im	prädiktiven	
QSAR-Kontext,	 d.h.	 die	 Verwendung	 von	 großen	HTS-Datenmengen	 als	 biologisch	 basierte	
Deskriptoren	für	die	QSAR-Modellierung	und	Prädiktion	von	 in	vivo-Toxizität.	Heute	stehen	
HTS-Toxizitätsassays	 zur	 Verfügung,	 mit	 denen	 es	 möglich	 ist,	 Toxizitätsmechanismen	
(basierend	auf	biochemischen	Stoffwechselwegen,	der	Interaktion	mit	nuklearen	Rezeptoren	
oder	der	Bindung	an	Proteine)	 für	eine	große	Anzahl	von	Verbindungen	zu	evaluieren	und	
demzufolge	große	Datenmengen	verarbeiten	bzw.	generieren	zu	können,	um	Erkenntnisse	zu	
Toxizitätsmechanismen	von	chemischen	Verbindungen	zu	erhalten	und	somit	die	zugrunde	
liegenden,	 gestörten	 biochemischen	 Prozesse	 [‚Adverse	 Outcome	 Pathways	 (AOP)]	 zu	
verstehen.	Die	entsprechenden	verfügbaren	HTS-Datenreihen	wurden	als	„Training	sets“	für	
in	 silico-basierte	 QSAR-Modelle	 verwendet,	 die	 nach	 den	 OECD-Grundsätzen	 für	 QSAR-
Modellerstellung	 konzipiert	 und	 optimiert	 wurden.	 Die	 resultierenden	 (priorisierenden)	
Modelle	 haben	 einen	 hohen	 und	 validen	 prädiktiven	 Wert	 und	 ermöglichen	 daher	 eine	
erhebliche	 Aufwands-	 und	 Kostenminimierung	 in	 Zusammenhang	 mit	 erforderlichen	
Toxizitätscharakterisierungen	von	chemischen	Verbindungen.		

Prädiktiver	Wert	für	das	biologische	System:	

Eine	Prädiktion	von	präklinischen	 in	vivo-Toxizitäten	auf	Basis	von	 in	silico-Deskriptoren	für	
komplexe	 Endpunkte	 erscheint	 nur	 sinnvoll,	 wenn	 es	 sich	 um	 Substanzbibliotheken	 mit	
einheitlichen	 biochemischen,	 biologischen	 bzw.	 Wirkparametern	 handelt.	 Beispielsweise	
ergab	 sich	 in	 Bezug	 auf	 die	 Acetylcholinesterase-Hemmung	 durch	 Organophosphor-
Verbindungen	 eine	 Vorhersage-Genauigkeit	 von	 über	 90	 %.	 Für	 andere	 Endpunkte	 (z.B.	
Reproduktions-	 und	 Entwicklungstoxizität	 bei	 der	 Ratte)	 ergaben	 sich	 ca.	 70	 %.	 Die	
Kombination	 einer	 in	 vitro-HTS-Profilierung	 von	 chemischen	 Verbindungen	 mit	 den	
entsprechenden	in	silico-Deskriptoren	führte	bei	einigen	Endpunkten	(z.B.	Embryotoxizität	bei	
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Ratten)	 zu	einer	 -	 gegenüber	der	Toxizitätsprädiktion	ausschliesslich	auf	Basis	der	 in	 silico-
Deskriptoren	-	signifikanten	Verbesserung	der	Vorhersagegenauigkeit	von	QSAR-Modellen	(p-
Werte	<0,05).	 	Durch	die	mechanistische	Klassifizierung	und	Neukategorisierung	von	Daten	
aus	 in	 vitro-HTS-Assays	 entsprechend	 ihrem	 molekularen	 Toxizitätsmechanismus	 konnte	
zudem	die	Vorhersage	 für	einige	 in	vivo-Toxizitätsendpunkte	 (z.B.	Bildung	von	chronischen	
neoplastischen	 hepatischen	 Läsionen	 und	 generationsübergreifende	 Lebensfähigkeit	 bei	
Ratten	in	vivo)	zusätzlich	deutlich	verbessert	werden	(p	<	0,05).		Die	Analyse	von	in	vitro-HTS-
Daten	erwies	sich	somit	als	sinnvoll	beim	Nachweis	der	Relevanz	molekularer	Mechanismen,	
die	mit	 der	 in	 vivo-Toxizität	 korrelieren.	 Toxizitätsdeterminierende	 biochemische	 Prozesse	
können	dadurch	identifiziert	werden	können.	

Eine	Vorhersage	des	Toxizitätspotentials	über	 in	silico-Deskriptoren	auf	Basis	der	Daten	aus	
den	 in	 vitro-Assays	 zu	 Substanzinteraktionen	 mit	 multiplen	 nuklearen	 Rezeptoren	 	 sowie	
biochemischen	 (Toxizitäts-)Mechanismen	 aufgrund	 von	 im	 entsprechenden	 System	
hervorgerufenen	Stressreaktionen	(Daten	aus	den	ToxCast-	und	Tox21-Projekten)	zeigten	für	
eine	 Reihe	 von	 inkludierten,	 als	 relevant	 erachteten	 HTS-Endpunkten	 und	 Surrogat-
Parametern	exzellente	Ergebnisse	mit	Vorhersagegenauigkeiten	(‚balanced	accuracies’)	von	
über	80	%.	Hierbei	sind	insbesondere	die	AHR-Aktivierung	(mit	86	%),	die	Beeinträchtigung	
der	Funktion	der	Mitochondrien	Membran	(mit	88	%)	und	die	Androgen-Rezeptor-Aktivierung	
(mit	82	%)	 zu	nennen.	 	Bei	der	Validierung	des	 „bagging“	 	 	 zeichnet	 sich	deutlich	die	gute	
Anwendbarkeit	 der	 entwickelten	 Modelle	 auf	 externe	 Validierungsdatensätze	 ab.	 Zudem	
ergab	 sich	 im	 Consensus-Modeling-Prozess	 eine	 zusätzliche	 Verbesserung	 der	
Prädiktionsgenauigkeit,	die	 sowohl	bei	Validierungs-	als	auch	bei	Test-Datensätzen	evident	
war.		

Anwendungen	und	Testpriorisierung	(‚ToPS):	

Um	Einsetzbarkeit	und	Relevanz	der	entwickelten	Verfahren	zu	prüfen,	wurde	in	zwei	Fällen	
in	silico	eine	Umwelt-Risiko-Abschätzung	durchgeführt	und	die	Ergebnisse	diskutiert.	

(1)	 Im	 ersten	 Projekt	 wurde	 der	 umfangreiche	 Datensatz	 der	 im	 EINECS-Verzeichnis	
(=Altstoffverzeichnis)	 enthaltenen	 Verbindungen	 im	 entwickelten	 Ansatz	 auf	 mögliche	
biochemische	 Störeffekte	 untersucht.	 Die	 Evaluierungen	 zeigen,	 dass	 mit	 hoher	
Wahrscheinlichkeit	ein	bestimmter	Prozentsatz	der	chemischen	Verbindungen	(zwischen	4,6	
und	12,6	%,	 je	nach	biologischem	Endpunkt)	molekulare	Signalwege	negativ	beeinflusst.	 In	
diesem	 Zusammenhang	 wurde	 zudem	 ein	 vereinfachendes	 bzw.	 zusammenfassendes	
priorisierendes	 Punktesystem	 vorgeschlagen	 [„toxicity-testing	 priority	 score	 (ToPS)“],	 auf	
Basis	 dessen	 unter	 Miteinbeziehung	 aller	 unter	 Verwendung	 des	 HTS-Daten	 für	 die	
verschiedenen	 Toxizitätsmechanismen	 etablierten	 Modelle	 eine	 Beurteilung	 des	 Gesamt-
Risikoprofils	einer	chemischen	Verbindung	möglich	ist.						

	(2)	Die	zweite	Anwendung	untersucht	eine	Reihe	von	halogenierten	Carbazolen,	die	sich	in	
Europa	 und	 den	 Vereinigten	 Staaten	 als	 ökotoxikologisch	 relevant	 erwiesen	 haben,	
interessanterweise	 (für	 den	 Fall	 Europa)	 ohne	 dort	 produziert	 oder	 dorthin	 importiert	 zu	
werden.	 Bei	 der	 Analyse	 von	 HTS-Daten,	 im	 Rahmen	 derer	 die	 Aktivierung	 des	 Aryl-
Hydrocarbon-Rezeptors	(AHR)	evaluiert	worden	war,	wurde	eine	sehr	hohe	Korrelation	des	
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Vorkommens	des	Carbazolyl-Strukturelements	mit	einer	AHR-Aktivierung	gefunden	(p-Wert:	
3	 x	 10-25),	 zudem	 ergab	 sich	 bei	 den	 experimentellen	 Untersuchungen	 ein	 hoher	
Anreicherungsfaktor	(>	6-fach).	Allgemein	führt	das	Vorkommen	bestimmter	Substituenten	
am	 Carbazol-Gerüst	 (wie	 z.B.	 das	 Vorkommen	 von	 aromatischen	 Aminen)	 -	 mit	 hoher	
Wahrscheinlichkeit	 -	 zu	 einer	 AHR-Aktivierung	 (p-Wert:	 im	 Bereich	 von	 10-5	 bis	 10-7).	 Für	
alkoholische	 und	 phenolische	 Substituenten	 wurde	 eine	 Tendenz	 zu	 AHR-Inaktivität	 bzw.	
geringer	AHR-Aktivität	gefunden	(p-Wert:	im	Bereich	von	10-5	bis	10-6).	Die	Ergebnisse,	die	zu	
den	halogenierten	Carbazolen	erhalten	wurden,	zeigen	–	bei	hoher	Vorhersage-Präzision	–	ein	
hohes	 Toxizitätspotential	 in	 Bezug	 auf	 alle	 im	 Rahmen	 der	 in	 vitro-HTS-Toxizitätsassays	
untersuchten	und	in	die	vorliegende	Arbeit	miteinbezogenen	Endpunkte.						

Mögliche	Nutzung	der	Modelle:	

Die	in	dieser	Arbeit	entwickelten	QSAR-Modelle	wurden	im	Rahmen	von	Wettbewerben,	die	
von	den	National	Institutes	of	Health	(NIH)	sowie	der	Environmental	Protection	Agency	(EPA)	
organisiert	waren,	mehrfach	ausgezeichnet.	Alle	verwendeten	Datensätze	und	entwickelten	
QSAR-Modelle	 sind	 öffentlich	 zugänglich	 und	 im	 wissenschaftlichen	 und	 regulatorischen	
Bereich	allgemein	nutzbar.	Es	wurde	für	die	Modellbildung	die	Plattform	iPrior	eingesetzt,	in	
der	Daten	aus	den	ToxCast-,	den	Tox21-	und	den	e1K-Projekten	zu	finden	sind.	Auch	die	im	
Rahmen	 der	 vorliegenden	 Arbeit	 auf	 Basis	 der	 Tox21-Daten	 entwickelten	 Modelle	 sind	
öffentlich	 zugänglich	 unter	 http://amaziz.com/article/tox21.	 Dadurch	 sind	 sie	 für	 andere	
Wissenschaftler	 im	 Rahmen	 von	 prospektiven	 und	 retrospektiven	 Untersuchungen	
uneingeschränkt	 nutzbar.	 Zudem	 sind	 die	 Ergebnisse	 der	 verschiedenen	 Analysen	 und	
Applikationen	 in	 einem	 GitHub-Verzeichnis	 zugänglich	
(https://amaziz.com/dissertation/supplementary).		

Es	kann	davon	ausgegangen	werden,	dass	die	 in	der	vorliegenden	Arbeit	entwickelten	und	
von	 Regulierungs-/Zulassungsbehörden	 und	 der	 Wissenschaft	 akzeptierten	 Modelle	 für	
Toxizitätsvorhersagen	und	 für	eine	Reduktion	der	Anzahl	von	erforderlichen	Tierversuchen	
eine	wichtige	Rolle	spielen	können.	
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Abstract	
Quantitative	 structure	 activity	 relationships	 (QSARs)	 have	 been	 gaining	 popularity	 in	
predictive	toxicology.	The	advancement	in	machine	learning	algorithms	and	the	diminishing	
costs	 of	 computational	 resources	 allow	 the	 analysis	 of	 large	 datasets	 resulting	 from	 high	
throughput	 screening	 (HTS).	 On	 the	 other	 hand,	 the	 REACH	 regulations	 introduced	 in	 the	
European	Union	calls	for	a	phased	registration	of	all	compounds	used	and	filling	information	
gaps	 related	 to	 such	 chemicals.	 Ethical,	 economic	 and	 practical	 reasons	 edicts	 that	 such	
information	gaps	must	not	be	filled	by	animal	experiments	except	as	a	last	resort.	Alternative	
testing	approaches,	including	QSAR,	are	therefore	called	to	action.	

This	 thesis	 focuses	 on	 the	 utilization	 of	 HTS	 assays	 in	 the	QSAR	 context.	 The	 use	 of	 large	
collection	 of	 HTS	 assays	 as	 biologically	 derived	 descriptors	 for	 modeling	 in	 vivo	 toxicity	
outcomes	 was	 investigated.	 Furthermore,	 HTS	 assays	 focusing	 on	 a	 specific	 biochemical	
pathway,	nuclear	receptor	or	protein	binding	and	applied	on	a	large	dataset	of	compounds	
can	 give	 insights	 on	 the	 mode	 of	 adverse	 action	 of	 chemicals	 and	 contribute	 to	 the	
understanding	of	adverse	outcome	pathways	 related	 to	chemicals.	These	HTS	assays	were	
used	to	train	in	silico–based	QSAR	models	according	to	the	OECD	principles	for	QSAR	model	
building.	 The	 current	 approach	 and	 the	 models	 showed	 high	 prediction	 accuracy	 and,	
therefore,	 can	 reduce	 the	 cost,	 analysis	 time	 and	 allow	 the	 in	 silico	 screening	 of	 larger	
compound	datasets.		

Prediction	of	preclinical	in	vivo	animal	toxicity	using	in	silico	descriptors	for	complex	end	points	
was	 only	 feasible	 for	 restricted	 compound	 libraries	 with	 the	 same	 mode	 of	 action.	 For	
instance,	 predictive	 balanced	 accuracy	 for	 organophosphorus	 compounds’	 inhibition	 of	
acetylcholine	esterase	exceeded	90%.	Other	endpoints	such	as	developmental	rat	maternal	
toxicity	reached	70%.	Combining	data	derived	from	HTS	in	vitro	profiling	of	chemicals,	with	in	
silico	descriptors	showed	a	significant	improvement	in	the	predictive	ability	of	QSAR	models	
for	 some	 endpoints	 (p-values <0.05) (such	 as	 rat	 fetal	 pathology).	 Furthermore,	 the	
mechanistic	classification	and	regrouping	of	the	HTS	 in	vitro	assay	responses	in	the	form	of	
pathway	perturbations	significantly	improved	(with p <0.05)	the	predictivity	for	other	in	vivo	
toxicity	 endpoints	 such	 as	 chronic	 rat	 liver	 neoplastic	 lesions	 development	 and	
multigenerational	 rat	 viability	 among	 others.	 Furthermore,	 analysis	 of	 in	 vitro	 HTS	 proved	
useful	in	detecting	molecular	pathways	that	are	most	correlated	to	in	vivo	toxicity	outcomes	
and	 therefore	 could	 assist	 in	 understanding	 the	underlying	mechanism	of	 toxicity	 and	 the	
essential	biochemical	pathways	involved.		

Prediction	 of	 in	 vitro	 assays	 outcomes	 of	 multiple	 nuclear	 receptors	 and	 stress	 response	
pathways	relevant	to	toxicological	responses	(from	ToxCast	and	Tox21	projects)	using	in	silico	
descriptors	showed	high	success	with	balanced	accuracies	reaching	up	to	more	than	80%	for	
several	endpoints.	This	includes	endpoints	such	as	aryl	hydrocarbon	receptor	activation	(86%),	
mitochondrial	membrane	disruption	(88%)	and	androgen	receptor	activation	(82%).	Bagging	
validation	provided	a	good	indication	for	the	models’	predictive	ability	on	external	validation	
sets.	Furthermore,	Consensus	modeling	 improved	the	predictive	ability	of	QSAR	models	as	
signified	by	both	validation	and	evaluation	set	accuracies.		
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Finally,	 two	 specific	 applications	 for	 environmental	 risk	 assessment	 were	 computed	 and	
discussed.	The	first	application	screens	the	large	dataset	of	EINECS	compounds	for	potential	
pathway	perturbations.	The	predictions	show,	with	high	confidence,	that	a	certain	percentage	
of	 chemicals	 (between	 4.6%	 and	 12.6%	 depending	 on	 the	 target)	 are	 likely	 to	 disrupt	
molecular	 pathways.	 Furthermore,	 a	 point-based	 system	 was	 suggested:	 toxicity-testing	
priority	 score	 (ToPS)	 to	provide	a	universal	overview	of	a	compound’s	molecular	pathways	
perturbation	 considering	models’	 applicability	 domain	 and	 assesses	 chemicals’	 overall	 risk	
profile.		

The	second	application	investigates	a	set	of	halogenated	carbazole	compounds	emerging	in	
the	European	and	US	ecology	without	being	actively	produced	or	 imported.	Analyzing	HTS	
data	showed	that	the	presence	of	carbazolyl	moiety	highly	correlates	with	Aryl	Hydrocarbon	
Receptor	(AHR)	activation	(p-value:	3	x	10-25).	The	carbazolyl	moiety	provides	high	enrichment	
factor	(>	6-fold)	for	AHR	activation.	Certain	carbazolyl	substitutions	(such	as	aromatic	amines)	
are	more	 likely	 to	 lead	to	AHR	activation	 (p-value:	10-5	 to	10-7)	while	alcohols	and	phenols	
were	 more	 likely	 to	 be	 associated	 with	 AHR	 inactive	 compounds	 (p-value:	 10-5	 to	 10-6).	
Prediction	 of	 halogenated	 carbazoles’	 pathways	 perturbation	 shows,	 with	 high	 prediction	
accuracy,	an	activity	against	most	pathways.	

QSAR	 models	 developed	 in	 this	 thesis	 were	 recognized	 by	 winning	 multiple	 awards	 in	
challenges	organized	by	the	National	Institute	of	Health	(NIH)	as	well	as	the	environmental	
protection	agency	(EPA).	The	outcomes	of	the	dissertation	are	made	available	to	regulators	
and	 the	 scientific	 community.	The	public	platform	 iPrior	was	deployed	and	 is	hosting	data	
from	ToxCast,	Tox21,	and	e1K	projects.	Moreover,	the	developed	models	based	on	the	Tox21	
study	 are	made	 publicly	 available	 at	 http://amaziz.com/article/tox21,	 thus	 allowing	 other	
researchers	 to	 use	 them	 for	 prospective	 and	 retrospective	 analyses.	 Finally,	 the	 results	 of	
different	 analyses	 and	 applications	 are	 made	 available	 in	 an	 open	 GitHub	 repository	
(https://amaziz.com/dissertation/supplementary).	 It	 is	 hypothesized	 that	 those	 developed	
and	 freely	 accessible	 models	 may	 become	 accepted	 by	 the	 regulators	 and	 the	 scientific	
community	and	therefore	play	a	significant	role	in	predicting	in	vivo	toxicity	and	reduce	animal	
toxicity	testing.	 	
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Preface	-	Chemicals	and	biological	systems	
Systems	biology	involves	the	mathematical	and	computational	modeling	of	complex	biological	
systems	such	as	molecules,	cells,	or	organisms	and	up	to	entire	species.	As	such	living	systems	
are	dynamic,	it	may	be	hard	to	predict	their	behavior	from	the	properties	of	their	individual	
parts.	Therefore,	systems	biology	brings	interdisciplinary	methodologies	from	fields	such	as	
engineering	 and	mathematics	 to	 study	 the	 complex	 interactions	within	 biological	 systems	
using	a	holistic	approach.	

The	continuous	advancement	in	high	throughput	screening	(HTS)	techniques	and	mapping	of	
the	human	genome	has	promoted	the	tracking	of	a	biological	system’s	exposure	to	potential	
stressors	(e.g.	chemicals)	during	its	lifetime.	The	concept	of	“exposome”	–generally–	studies	
how	 such	 exposure	 to	 a	 chemical	 (from	 diet,	 environment,	 occupation,	 or	 lifestyle)	 may	
impact	 a	 biological	 system	 (human,	 animal	 or	 an	 environment).	 The	 overall	 exposure	
integrates	particular	properties	of	a	chemical	that	determine	the	uptake	into	an	organism	as	
well	as	its	disposition	(toxicokinetics)	and	the	toxicity	mechanisms.		

To	better	understand	how	exposures	may	affect	an	organism,	this	current	work	utilizes	HTS	
data	to	investigate	selected	molecular	pathways	of	interest	for	toxicity	estimation.	With	the	
aid	of	machine-learning	 algorithms,	 the	 interaction	between	 small	molecules	 and	genetics	
may	be	revealed	out	of	in	vitro	data	pools.	The	utilization	of	state-of-the-art	machine	learning	
in	 combination	 with	 HTS	 in	 vitro	 assays	 is	 an	 alternative	 approach	 for	 chemicals’	 risk	
assessment,	 it	 includes	 biologically	 relevant	 HTS	 data,	 spares	 animal	 studies,	 and	 may	
prioritize	 -	 yet	 toxicologically	undefined	 -	 chemicals	 for	more	 thorough	 investigations.	This	
approach	is	encouraged	by	the	REACH	(Registration,	Evaluation,	Authorization	and	restriction	
of	CHemicals)	legislations.		
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Outline	
The	dissertation	is	structured	in	four	parts.	In	the	first	part,	a	general	introduction	about	the	
chemical	regulations	in	Europe,	the	interaction	of	xenobiotics	with	biological	systems,	and	the	
steps	of	quantitative	structure	activity	relationship	(QSAR)	are	introduced.	The	development	
of	the	“receptor”	history	is	introduced	and	relevant	targets	for	toxicity	estimations	using	HTS	
are	reviewed.	Moreover,	the	role	of	computational	toxicology	and	in	vitro	assays	in	alternate	
testing	is	discussed.	

In	the	second	part,	different	algorithms,	related	methods	and	software	tools	are	introduced.	
Classical	and	modern	machine	learning	algorithms	and	molecular	descriptors	used	in	building	
QSAR	models	 are	 explained.	 For	 such	models,	 the	 techniques	 used	 for	 variable	 selection,	
assessment	 of	 goodness	 of	 fit	 and	prediction,	model	 comparison	 and	 applicability	 domain	
estimation	are	elucidated.		

The	third	part	of	the	dissertation	shows,	how	the	previously	defined	methods	have	been	used	
to	build	and	validate	QSAR	models,	which	were	constructed	to	directly	predict	in	vivo	toxicity	
endpoints	as	well	as	predict	selected	in	vitro	outcomes	related	to	adverse	outcome	pathways.		

	The	last	part	of	the	dissertation	shows	some	potential	applications	for	using	the	developed	
QSAR	models	in	environmental	risk	assessment,	quantifying	the	potential	hazards	of	EINECS	
chemicals	 and	 prioritizing	 toxicity	 testing.	 The	 potential	 toxicity	 of	 a	 particular	 class	 of	
halogenated	carbazoles	was	also	examined.	
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1. Introduction	

1.1 Chemicals	regulations	in	the	European	Union	

1.1.1 Chemicals	legislations	in	Europe	
The	European	Union	 (EU)	started	controlling	chemicals	use	and	marketing	since	1976.	The	
process	was	slow	with	only	100	substances	restricted	from	use	and	marketing	and	another	
900	 substances	 restricted	 from	 marketing	 to	 the	 general	 public	 due	 to	 Carcinogenicity,	
Mutagenicity	or	toxicity	to	Reproduction	(CMR	substances)1.		

A	distinction	was	made	under	Regulation	 (EEC)	No	793/932,	between	"existing"	and	"new"	
chemicals.	It	was	based	on	a	cut-off	date	of	1981.	Chemicals	already	recorded	in	the	European	
Inventory	of	Existing	Commercial	Chemical	Substances	(EINECS),	between	1st	of	January	1971	
and	 18th	 of	 September	 1981,	 were	 labeled	 as	 “existing”.	 This	 accounted	 for	 an	 excess	 of	
100,000	substances.	“New”	chemicals	are	those	(more	than	3800)	introduced	to	the	European	
Community	market	after	19811.		

Different	regulations	governed	the	two	categories.	“New”	chemicals	must	be	tested	before	
being	introduced	to	the	market;	no	similar	obligation	exists	for	"existing"	chemicals.	“Existing”	
chemicals	were	left	with	insufficient	public	information	on	their	properties	and	uses.	It	was	
therefore	difficult	to	effectively	evaluate	and	regulate	these	substances1.	

Furthermore,	 the	 responsibilities	 allocation	 was	 not	 appropriate.	 Risk	 assessment	 of	
substances	was	the	responsibility	of	public	authorities	and	not	the	enterprises	that	place	them	
into	 the	 market	 through	 manufacturing,	 import,	 or	 use.	 The	 requirements	 for	 such	
assessments	 were	 comprehensive	 rather	 than	 use-specific.	 This	 placed	 huge	 load	 on	 the	
authorities.	Only	141	high-volume	chemicals	have	been	identified	as	priority	substances	for	
risk	 assessment	 from	 the	 period	 1993-2007.	 Risk	 reduction	 recommendations	 were	 only	
issued	 for	 a	 narrow	 subset	 of	 such	 chemicals	 which	 completed	 the	 entire	 evaluation	
procedure	according	to	Regulation	(EEC)	793/93.	This	can	also	be	related	to	the	fact	that	only	
substances’	manufacturers	and	 importers	were	required	to	provide	 information.	While	the	
regulations	ignored	downstream	industrial	users	and	formulators,	unless	the	substance	was	
classified	and	a	safety	data	sheet	had	to	be	supplemented	along	the	supply	chain.	This	lead	to	
a	scarcity	in	information	about	substance	use	and	exposure1.	

On	 the	 contrary,	 “new”	 chemicals,	 per	Regulation	 (EEC)	 793/93,	were	 notified	 and	 tested	
starting	from	very	low	annual	volumes	of	10	kg.	Due	to	the	bureaucratic	process	and	testing	
burden,	the	EU	chemical	industry	was	unenthusiastic	about	research	and	innovation	of	new	
chemicals.	 The	 industry	 heavily	 favored	 the	 development	 of	 “existing”	 substances,	 for	
example,	using	mixtures	which	present	a	challenge	on	its	own	for	regulators.		

From	the	first	of	June	2007,	a	new	European	Community	regulation	on	chemical	substances,	
REACH	(Registration,	Evaluation,	Authorization	and	Restriction	of	Chemicals)	was	introduced	
and	came	into	effect3.	REACH	aims	to	protect	humans,	animals	and	the	environment	while	
enhancing	 the	 competitiveness	 of	 the	 chemical	 industry	 in	 the	 EU.	 The	 most	 hazardous	
chemicals	will	be	progressively	substituted	as	soon	as	suitable	alternatives	are	found.	Through	
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increased	transparency,	the	regulations	aim	to	prevent	 internal	market	fragmentation.	The	
legislation	gradually	assesses	 the	potential	 risks	 caused	by	chemical	 substances	 in	a	 tiered	
process.	REACH	also	aims	to	reduce	animal	testing	through	the	promotion	of	alternative	risk	
assessment	methods3.	

The	Industry,	rather	that	the	authorities,	now	needs	to	ensure	that	chemicals	it	puts	on	the	
EU	market	are	not	harmful	for	human	health	or	the	environment.	For	that,	knowledge	about	
certain	properties	of	 the	 substances	must	be	 known	and	 certain	 risks	 should	be	assessed.	
Authorities	can	now	better	use	available	resources	for	making	sure	those	industry	players	are	
attaining	to	their	responsibilities	and	acting	on	substances	of	very	high	concern.	

REACH	unified	 all	 chemicals,	 “existing”	 and	 “new”.	 Substances	 that	were	not	marketed	or	
produced	 before	 the	 enforcement	 of	 REACH	 regulations	 are	 referred	 to	 as	 ‘non-phase-in’	
substances.	On	the	other	hand,	substances	that	were	listed	in	EINECS	or	were	manufactured	
in	 the	 EC	 but	 were	 not	 located	 on	 the	 Community	 market	 for	 the	 last	 15	 years	 or	 the	
compounds	that	listed	as	‘no	longer	polymers’	of	Directive	67/548	are	referred	to	as	‘phase-
in’	substances1.	

There	are	big	benefits	to	be	expected	from	the	REACH	implementation.	The	occupational	and	
public	 health	 influence	 of	 REACH	 is	 expected	 to	 reduce	 chemical-related	 diseases	 such	 as	
respiratory	 and	 bladder	malignancies,	 mesothelioma,	 as	 well	 as	 skin,	 eye	 and	 respiratory	
disorders,	among	others1.	The	benefits	will	increase	as	more	information	is	being	gathered	to	
better	 implement	 the	 legislations	 and	 controls.	 The	 authorization	 requirements	 for	
substances	of	very	high	concern	and	 the	 faster	 restrictions	will	 also	contribute	 to	a	better	
human	health	and	environment.	

The	extended	impact	assessment	of	the	Commission	calculated	the	public	health	benefits,	for	
implementing	 REACH,	 based	 on	 a	 World	 Bank4	 evaluation	 and	 a	 number	 of	 careful	
assumptions.	With	the	assumption	that	chemically-linked	diseases	are	responsible	for	around	
1%	of	the	total	disease	burden	in	the	European	Union	and	consequently,	that	a	10%	reduction	
in	such	diseases	as	a	result	of	REACH	would	lead	to	a	0.1%	decrease	in	the	total	drain	of	disease	
in	 the	EU.	This	would	be	 corresponding	 to	about	4,500	 cancer-deaths	avoided	every	 year.	
Accounting	for	a	€1	million	value	of	life,	the	potential	health	profits	of	REACH	were	estimated	
to	be	about	€50	billion	over	a	period	of	30	years.	

A	study	contracted	by	EC	Directorate-General	for	the	Environment5	investigated	the	returns	
of	REACH	implementation	due	to	the	decrease	in	release	of	compounds	in	the	environment	
and	 the	 exposure	 of	 humans	 through	 the	 environment.	 The	 study	 inspected	 many	 cases	
utilizing	 different	 appraisal	 methods	 showing	 that	 the	 long-term	 benefits	 of	 REACH	 is	
expected	to	be	significant.		

REACH	 is	expected	 to	 contribute	 to	 reduced	air,	 soil,	 and	water	pollution	and	 to	decrease	
stress	on	biodiversity.	REACH	will	also	assist	in	reducing	endocrine	disrupting	chemicals	effect.	
The	information	required	for	the	safe	handling	of	chemicals	would	be	recorded	in	the	central	
databank	managed	by	the	European	Chemicals	Agency	(ECHA,	Helsinki)6.	 
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1.1.2 The	European	chemical	agency	(ECHA)	
ECHA	 is	 the	 driver	 among	 regulatory	 authorities	 in	 implementing	 the	 EU's	 chemicals	
legislation.	It	helps	companies	to	fulfill	their	responsibilities	in	the	legislation,	encourages	the	
safe	use	of	 chemicals	 and	offers	 information	on	 and	addresses	 concerns	 about	 chemicals.	
ECHA	 also	 coordinates	 with	 the	 European	 Commission	 and	 the	 EU	 member	 states	 for	
safeguarding	the	wellbeing	of	human	health	and	the	environment.	

Through	 its	 role,	 ECHA	 observes	 innovation	 and	 competitiveness.	 The	 organization	 is	
independent	 from	 external	 interests	 and	 is	 impartial	 in	 its	 decision-making.	 This	 builds	
credibility	 among	 all	 stakeholders	 through	 qualified	 handling	 of	 technical,	 scientific	 and	
administrative	 aspects	 of	 the	 regulation.	 In	 its	 capacity,	 ECHA	 also	manages	 the	 chemical	
registration	process,	evaluates	submitted	dossiers,	takes	decisions	about	suspicious	chemicals	
and	runs	the	databases	of	available	hazard	information	thus	linking	consumers	and	experts.	

ECHA	identifies	needs	for	regulatory	risk	management	on	EU-wide	level.	ECHA	can	initiate	the	
identification	 of	 substances	 of	 very	 high	 concern	 and	 restrictions	 and	 manages	 the	
applications	for	authorization	by	the	industry.	ECHA	also	manages	the	process	for	harmonized	
classification	and	labelling	of	substances.	

ECHA	also	facilitates	the	information	exchange	between	companies	that	plan	to	register	the	
same	 phase-in	 chemical.	 Such	 companies	 are	 obliged	 to	 join	 a	 Substance	 Information	
Exchange	Forum	 (SIEF)	 to	 share	data	on	 the	basic	properties	of	 the	chemical	and	 to	avoid	
duplication	of	studies.	Specifically,	companies	are	required	to	share	all	test	data	on	vertebrate	
animals.	SIFE	 leads	to	one	 joint	submission	for	each	substance,	 therefore	 lowers	costs	and	
eliminates	unnecessary	animal	testing.	

1.1.3 The	regulatory	process	for	chemicals	risk	assessment	in	REACH	
The	process	starts	with	a	registration	application	by	manufacturers	and/or	importers	who	are	
required	to	acquire	relevant	 information	on	their	substances	and	to	use	such	data	for	safe	
handling.	All	data	concerning	studies	on	vertebrate	animal	testing	is	mandatorily	shared.	For	
other	tests,	data	sharing	is	required	on	request.	The	downstream	users	and	formulators	are	
brought	along.	They	receive	information	on	hazards	and	risk	management	through	the	supply	
chain.	

For	a	product	to	be	allowed	into	the	EU	market,	a	registration	dossier	should	be	submitted	to	
ECHA	 for	each	substance	manufactured	or	 imported	 in	quantities	of	one	 ton	or	above	per	
year.	Figure	1	shows	the	deadline	for	registration	of	substances	per	their	production	volume.	
The	tonnage-band	also	controls	the	information	that	needs	to	be	reported	for	each	substance.	
Figure	2	shows	the	annexes	that	describe	the	information	needs	relevant	to	each	production	
volume.	Dispersively	used	substances,	in	quantities	ranging	between	one	to	ten	tons,	that	are	
potentially	 hazardous	 to	 the	 human	 health	 or	 the	 environment	 receive	 priority.	 Those	
hazardous	compounds	are	chemicals	 listed	 in	CMR	categories	1	or	2,	as	well	as	persistent,	
bioaccumulative	 and	 toxic	 (PBT)	 and	 very	 persistent	 and	 very	 bioaccumulative	 (vPvB)	
substances.		
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Figure	1.		Registration	deadline	per	substance	production	volume.	The	European	chemical	agency	was	established	
in	 June	 2007	 and	 started	 accepting	 registration	 dossiers	 in	 June	 2008.	 The	 first	 band	 is	 for	 chemicals	 with	
production	volumes	above	one	thousand	tons	per	year,	or	which	may	be	toxic	to	the	aquatic	environment	or	may	
cause	 long	 term	 effects	 (N:	 R50-53)	 with	 production	 volumes	 above	 100	 tons/year	 or	 chemicals	 that	 are	
categorized	as	carcinogenic,	mutagenic,	or	toxic	for	reproduction	(CMR)	with	an	annual	production	volume	above	
one	ton.	Such	chemicals	had	to	be	registered	before	30th	of	November	2010.	Chemicals	with	annual	production	
volumes	between	100	and	1000	tons	had	a	registration	deadline	until	the	31st	of	May	2013	while	those	chemicals	
of	lower	production	volumes	must	be	registered	until	the	31st	of	May	2018.	

	

	

Figure	2.	 	Minimum	data	 requirements	 for	 chemicals	 registration	according	 to	REACH.	The	 legislation	 requires	
information	 on	 the	 intrinsic	 properties	 of	 chemicals	 submitted	 in	 a	 technical	 report.	 If	 the	 chemicals	 are	
manufactured	or	 imported	with	 an	 annual	 volume	above	10	 tons/year,	 a	 chemical	 safety	 report	must	 also	be	
submitted.	 Such	 report	 explains	 the	 potential	 hazards	 of	 the	 substance	 (e.g.,	 PBT	 or	 vPvB)	 and	 explains	 the	
potential	exposure	scenarios	for	the	given	uses.	Information	requirements	vary	based	on	the	tonnage	band	of	the	
chemicals.	These	 information	requirements	are	 listed	 in	annexes	VII	 to	X	of	 the	REACH	 legislation.	 In	all	 cases,	
registrants	are	required	to	collect	all	available	information	available	to	them	on	the	chemicals	they	are	registering	
regardless	 on	 the	 necessity	 of	 the	 information	 based	 on	 the	 production	 volume.	 This	 includes	 any	 relevant	
information	 about	 physicochemical,	 toxicological	 or	 ecotoxicological	 endpoints.	 The	 registrants	 must	 have	
permission	to	use	the	data	in	order	to	utilize	it	for	their	dossiers.	Additional	testing	may	be	needed	to	meet	the	
minimum	information	requirements.	However,	per	Article	13	of	REACH),	 the	use	of	alternative	 testing	and	the	
exhaustion	of	other	options	must	be	considered.		
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For	filling	the	information	gaps	in	dossiers,	REACH	only	allows	new	experimental	testing	if	no	
alternatives	were	available.	The	use	of	existing	information	or	alternative	techniques	such	as	
in	 vitro	 assays,	 quantitative	 structure-property	 relationships	 (QSPRs),	 and	 read-across	 is	
encouraged.	

The	evaluation	process	is	done	by	ECHA.	The	agency	evaluates	proposals	for	testing	by	SIFE	to	
check	 compliance	 with	 the	 registration	 requirements.	 It	 also	 synchronizes	 substance	
assessment	by	authorities	to	inspect	substances	with	perceived	risks.	This	evaluation	can	be	
used	to	plan	restrictions	or	authorization	proposals.	

Substances	showing	properties	of	very	high	concern	requires	authorisation;	ECHA	issues	a	list	
of	these	candidate	substances.	Industry	applicants	should	prove	that	risks	connected	with	the	
intended	uses	of	these	substances	are	being	sufficiently	controlled	or	that	the	socioeconomic	
profits	 of	 their	 use	 would	 overshadow	 such	 risks.	 Applicants	 must	 also	 investigate	 safer	
appropriate	substitute	substances	or	technologies.	In	case	such	substituents	exist,	applicants	
must	 present	 a	 plan	 for	 substitution.	 In	 case	 they	 do	 not	 exist,	 applicants	 should,	 if	
appropriate,	 offer	 evidence	 for	 research	 and	 development	 efforts	 to	 create	 such	
substitutions.	

Finally,	 restriction	 (REACH)	 is	 a	 necessary	 control	 for	 implementing	 a	 framework	 through	
which	manufacturing,	use	or	market	introduction	of	certain	unsafe	chemical	substances	could	
be	prohibited	or	subjected	to	special	provisions.	The	labelling	and	classification	of	hazardous	
substances	encourages	the	industry	to	agree	on	substances	classification.	It	 is	also	possible	
(e.g.,	 in	 case	 of	 substances	 of	 high	 concern)	 that	 a	 community-wide	 classification	
harmonization	is	enforced	by	the	authorities.	

1.2 Interaction	of	xenobiotics	with	biological	systems	–	Quantitative	
Structure	Activity/Property	Relationship	(QSAR/QSPR/QPPR)	

In	 this	section,	 the	history	of	 the	QSAR	field	 is	 introduced,	 the	applications	and	challenges	
facing	QSAR/QSPR	as	well	as	the	opportunities	that	arise	due	to	advances	in	robotics	and	“big	
data”	implementation	in	healthcare	where	the	cost	of	running	large-scale	High	Throughput	
Screening	(HTS)	 in	vitro	experiments	 is	reduced.	Finally,	 the	author	explains	the	motivation	
behind	this	work	and	briefly	highlights	what	was	accomplished	in	the	study.	

1.2.1 History	
Quantitative	 structure–activity	 relationships	 were	 slowly	 developed	 over	 a	 period	 of	 over	
hundred	years.	Multiple	associations	between	the	toxicity	and	narcotic	activities	of	organic	
compounds	 and	 their	 lipophilicity,	 expressed	 in	 oil/water	 partition	 coefficients7,8,	 were	
noticed.	 In	 1868,	 Crum	Brown	 and	 Fraser	 spotted	 a	 significant	 change	 in	 pharmacological	
activities	of	 some	organic	bases	due	 to	 the	quaternation	of	 the	basic	nitrogen	atom.	They	
described	the	dependence	of	“physiological	properties”	Ø	on	chemical	structures	C9	as:	 	
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𝝓 = 𝒇(𝑪)	 Equation	1	

Or	

	𝚫𝝓 = 𝒇(𝚫𝑪)	 Equation	2	

	

While	 the	 first	 equation	 describes	 the	 mathematical	 basis	 of	 the	 QSAR	 field,	 the	 second	
provides	the	practical	base	for	 its	 implementation.	 In	contrast	to	biological	activities	which	
can	be	well-defined	(e.g.,	a	growth	inhibition	concentration	(IGC50),	half	maximal	inhibitory	
concentration	(IC50),	or	median	lethal	dose,	i.e.,	kills	50%	of	test	population,	(LD50))	chemical	
structures	 are	 not	 similarly	 so.	 It	 is	 impossible	 to	 exactly	 describe	 a	 chemical	 structure.	
Therefore,	the	second	equation	is	necessary,	where	only	the	changes	of	biological	activities	
and	chemical	structures	are	being	correlated.	These	chemical	changes	can	be	quantified	either	
on	structural	basis	(such	as	indicator	or	dummy	variables	or	Free-Wilson	parameters	analysis)	
or	through	the	change	in	physicochemical	or	other	properties.	

Many	years	later,	in	1893,	the	inverse	correlation	between	simple	organic	chemicals’	solubility	
and	their	cytotoxicity	was	discovered	by	Richet10.	Meanwhile,	Meyer	and	Overton	developed	
independent	theories	of	narcosis	as	being	related	to	partitioning	between	olive	oil	and	water	
phases.	 Such	 theories	 contributed	 to	 a	 better	 understanding	 of	 the	 relation	 between	
lipophilicity	and	narcotic	and	toxic	activity11.	This	work	is	often	(though	not	correctly)	denoted	
as	 the	 historical	 beginning	 for	 the	 correlation	 between	 physicochemical	 properties	 and	
biological	effects.	Due	to	this	relation,	measured	lipophilicity	may	be	used	directly	to	estimate	
biological	 properties	 of	 compounds12.	 This	 approach	 can	 be	 referred	 to	 as	 quantitative	
property-property	 relationship	 (QPPR)	 because	 the	 chemical	 structures	were	not	 explicitly	
needed	to	construct	the	relationship.	

Ferguson,	in	1939,	delivered	a	thermodynamic	interpretation	for	the	non-specific	lipophilicity-
activity	 relationships.	 He	 offered	 a	 simplification	 for	 the	 relation	 between	 the	 relative	
saturation	 of	 volatile	 compounds,	 in	 their	 administration	 vehicle,	 and	 their	 observed	
depressant	activity.	This	also	rationalized	the	activities’	“cutoff”	after	a	certain	 lipophilicity	
optimum13.		

Hammett,	derived	Equation	3	and	Equation	4	describing	equilibrium	constants	(Ke)	and	rate	
constants	(Kr)	for	various	aromatic	reactions	using	a	reaction-dependent	constant	(ρ)	and	a	
substituent	parameter	 (σ)	which	depends	only	on	 the	nature	of	 the	 substituent	 (X)	of	 the	
corresponding	aromatic	compounds,	using	hydrogen	as	a	reference	substituent;	(ρ)	values	are	
based	 on	 the	 ionization	 constants	 of	 substituted	 benzoic	 acid14.	 Hammett	 published	 his	
breakthrough	 as	 the	 Physical	 Organic	 Chemistry15	 in	 1940	 showing	 that	 the	 effects	 of	
substituents	could	be	quantified	and	giving	rise	to	the	“sigma-rho”	culture.	In	the	subsequent	
years,	 different	 σ	 scales	 were	 needed	 for	 various	 systems	 leading	 to	 the	 proliferation	 of	
substituent	constant	scales.	

𝐥𝐨𝐠𝑲𝑹0𝑿
𝒆 − 	 𝐥𝐨𝐠𝑲𝑹0𝑯

𝒆 = 𝛒𝛔	 Equation	3	
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𝐥𝐨𝐠𝑲𝑹0𝑿
𝒓 − 	 𝐥𝐨𝐠𝑲𝑹0𝑯

𝒓 = 𝛒𝛔	 Equation	4	

	

In	 1962,	 Hansen	 derived	 the	 first	 Hammett-type	 relationship	 between	 the	 toxicities	 of	
substituted	benzoic	acids	and	the	electronic	σ	constants	of	their	substituents,	thus	for	the	first	
time,	applying	the	Hammett	approach	to	a	biological	property16.	It	was	later	discovered	that	
this	relationship	was	only	a	chance-correlation	due	to	the	interrelation	between	Hammett	(σ)	
parameter	and	the	lipophilicity	constant	(π).	

On	parallel,	“Hansch	and	Muir	discovered	the	SAR	of	growth	regulators	 in	plants	and	their	
reliance	 on	 hydrophobicity	 and	 Hammett	 constants17.	 They	 used	 regression	 analysis	 and	
descriptors	for	the	hydrophobic,	electronic	and	steric	properties	of	molecules	to	present	the	
first	nonlinear	multi-parameter	equation	(Equation	5)	describing	biological	activity	values:	

𝐥𝐨𝐠
𝟏
𝑪
= −𝟐. 𝟏𝟒𝛑𝟐 + 𝟒. 𝟎𝟖𝛑 + 𝟐. 𝟕𝟖𝛔 + 𝟑. 𝟑𝟔	

Equation	5	

	

After	such	developments,	the	field	of	QSAR	commenced	to	get	its	modern	shape	through	two	
independent	publications.	Hansch	and	Fujita18	as	well	as	Free	and	Wilson19	described	two	new	
approaches	 for	 quantitative	 structure–activity	 relationships.	 The	 approaches	 were	 later	
referred	to	as	“Hansch	analysis”	(linear	free	energy-related	approach,	extrathermodynamic	
approach)	and	“Free–Wilson	analysis”.	By	combining	different	physicochemical	parameters	in	
a	linear	additive	manner,	both	approaches	presented	a	breakthrough	in	the	QSAR	arena.	

While	Equation	5	represent	typical	Hansch	model,	the	Free–Wilson	model	can	be	expressed	
by	Equation	6,	where	(aij)	is	the	group	contribution	of	a	substituent	(Xi)	in	the	position	(j)	and	
(μ)	is	the	measured	or	calculated	biological	activity	value	of	a	reference	compound	within	the	
series.	All	group	contributions	(aij)	for	different	substituents	(Xi)	refer	to	the	substitution	of	
corresponding	substituents	(usually	hydrogen)	in	the	reference	compound:	

𝐥𝐨𝐠
𝟏
𝑪
= 𝒂𝒊𝒋 + 	𝝁	

Equation	6	

After	a	while,	 linear	equations	became	 insufficient	 for	cases	with	extended	hydrophobicity	
ranges.	This	led	to	the	development	of	the	Hansch	parabolic	equation	for	describing	nonlinear	
lipophilicity–activity	relationships20.	An	example	can	be	seen	in	Equation	7.	

𝐥𝐨𝐠
𝟏
𝑪
= 𝒂(𝒍𝒐𝒈𝑷)𝟐 + 	𝒃	𝒍𝒐𝒈𝑷 + 𝒄	𝝈 + ⋯+ 𝒄𝒐𝒏𝒔𝒕.	

Equation	7	

	

The	definition	of	 these	models	 led	 to	 the	quick	development	 in	QSAR	analysis	and	 related	
methods.	Kubinyi	combined	Hansch	equations	with	indicator	variables21	(Equation	8),	which	
may	be	considered	as	a	mixed	Hansch/Free–Wilson	model	leading	to	further	improvements	.	
He	also	formulated	the	bilinear	model21	as	a	theoretical	non-linear	model	for	describing	the	
transport	 and	 distribution	 of	 drugs	 in	 biological	 systems	 (Equation	 9).	 This	 model	 is	 a	
refinement	of	the	parabolic	model	and	has	been	superior	in	many	cases22.	
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𝐥𝐨𝐠
𝟏
𝑪
= 𝒂(𝒍𝒐𝒈𝑷)𝟐 + 	𝒃	𝒍𝒐𝒈𝑷 + 𝒄	𝝈 + ⋯+ 𝒂𝒊𝒋 + 𝒄𝒐𝒏𝒔𝒕.	

Equation	8	

𝐥𝐨𝐠
𝟏
𝑪
= 𝒂 𝒍𝒐𝒈𝑷 + 	𝒃. 𝐥𝐨𝐠 𝜷𝑷 + 𝟏 + 𝒄	𝝈 + 𝒅.𝑴𝑹 + ⋯+ 𝒄𝒐𝒏𝒔𝒕.	

Equation	9	

	

Both	 Hansch	 and	 Free-Wilson	 approaches	 can	 be	 considered	 two-dimensional	 QSAR	 (2D-
QSAR)	approaches.	They	do	not	depend	of	the	three-dimensional	(3D)	structures	of	chemicals.	
Thus,	all	conformations	of	a	chemical	structure	have	identical	predicted	activity.	In	2D-QSAR,	
the	 hypothesis	 is	 that	 compound	 properties	 are	 totally	 determined	 by	 knowledge	 of	 its	
topology	(2D-structure).	

The	3D-QSAR	emerged	to	extend	these	approaches.	Knowing	that	conformations	of	a	single	
compound	do	not	necessarily	exhibit	equivalent	biological	behavior,	the	basic	hypothesis	of	
3D-QSAR	is	that	macroscopic	properties	(e.g.,	biological	or	physicochemical)	of	substances	are	
determined	by	the	spatial	arrangements	(conformations)	of	a	given	molecular	structure.	3D-
QSAR	 models	 relate	 computed	 atom-based	 properties	 (e.g.,	 steric	 and	 electrostatic	
potentials)	 to	 target	 macroscopic	 properties,	 and	 assuming	 that	 changes	 in	 these	 spatial	
arrangements	(and	structures)	lead	to	altered	properties.		

Many	3D-QSAR	approaches	have	been	described.	In	general,	they	share	many	common	steps:	
starting	with	 the	 determination	 of	 the	 biologically	 active	 conformation	 for	 the	molecules,	
aligning	 such	 molecules,	 computing	 some	 molecular	 properties	 and	 correlating	 these	
properties	 to	 the	 activity	 at	 hand.	 Among	 the	most	 famous	 approaches	 are	 Comparative	
Molecular	 Field	 Analysis	 (CoMFA),	 described	 by	 Cramer	 et	 al.	 in	 198823,	 Comparative	
Molecular	Similarity	Indices	(CoMSIA)	method24,	the	Voronoi	Field	Analysis	(VFA)	developed	
by	 Chuman	et	 al25	 and	Comparative	Molecular	Moment	Analysis	 (CoMMA)26	 among	many	
others27.	Most	3D-QSAR	methods	rely	on	the	linear	free-energy	formalism,	like	traditional	2D-
QSAR	approaches.	

The	 number	 of	 descriptors	 generated	 in	 3D-QSAR	 is	much	 larger	 than	 in	 the	 classical	 2D-
approaches.	 This	may	 result	 in	 collinearities	 developing	 across	 these	 descriptors	 and	 thus	
resulting	 in	 chance	 correlations	 when	 multiple	 linear	 regression	 analysis	 is	 used.	 Such	
collinearities	 may	 be	 dealt	 with	 using	 dimension	 reduction	 approaches	 like	 PLS	 (see	 3.5	
Machine	learning	algorithms).	

In	1997,	Hopfinger	et	al.28,29	described	3D-QSAR	models	with	the	4D-QSAR	analysis	formalism.	
Such	formalism	uses	ensemble	averaging	to	allow	both	conformational	flexibility	and	freedom	
of	alignment.	In	this	setup,	the	sampling	of	conformations	ensemble	is	considered	a	“fourth”	
dimension.	 4D-QSAR	 uses	 a	 grid	 to	 select	 the	 binding	 regions	 in	 3D	 space.	 Then,	 the	
compounds	 are	 partitioned	 into	 atom/region	 types	 based	 on	 seven	 interaction	
pharmacophore	 elements	 (IPEs).	 Conformational	 ensemble	 profiles	 (CEPs)	 are	 then	
constructed	using	molecular	dynamics	simulations.	Next,	the	Grid	Cell	Occupancy	Descriptors	
(GCODs)	are	calculated	based	on	the	selected	IPEs	for	each	conformation	in	the	CEP.	Every	
conformation	of	a	specific	compound	is	aligned	in	the	reference	grid	and	the	frequency	of	a	
specific	IPE	in	a	particular	grid	cell	is	counted.	The	grid	occupancy	data	are	reduced	by	a	Partial	
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Least	Squares	(PLS)	regression	analysis.	Finally,	a	model	is	constructed	between	the	remaining	
GCODs	and	the	target	biological	activity.	

Angelo	 Vedani	 et	 al.	 presented	 the	 concept	 of	 Quasar	 to	 introduce	 the	 proxy	 (atomistic)	
receptor	model	and	hence	the	5D-QSAR30.	This	approach	addresses	the	inherent	flexibility	of	
the	receptor	protein	that	has	often	been	 largely	overlooked	 in	previous	QSAR	approaches.	
When	 ligand	 binds	 to	 the	 receptor	 it	 transforms	 to	 a	 lower	 energy	 conformation	 state	
distorting	 the	 receptor	 structure	 in	 the	 process.	 The	 result	 is	 the	 formation	 of	 a	 binding	
complex	as	the	receptor	engulfs	the	ligand.	Two	receptor	states	are	described,	the	unbound	
(Apo)	and	the	bound	(Holo).	The	receptor	surface	model	gives	an	idea	about	a	hypothetical	
binding	 site.	 The	 multiple	 representations	 of	 ligand	 topology	 to	 study	 conformation,	
isosteriomer,	protonation	and	orientation	are	referred	to	as	the	new	dimensions	of	4D-	QSAR.	
By	representing	multiple	induced	fits,	allowing	multiple	representations	of	the	topology	of	the	
quasi-atomistic	receptor	surrogate,	a	fifth	dimension	is	added	and	hence	the	5D-QSAR30.	

Later,	an	extra	dimension	was	added	to	account	for	a	solvation	function31	as	an	extension	to	
the	Quasar	 technology.	 The	new	dimension	 considers	 simulations	 from	different	 solvation	
models32.	This	was	termed	the	6D-QSAR.	

1.3 Development	of	the	receptor	theory	–	ligand-target	interaction	
The	elucidation	of	the	function	and	structure	of	drug	receptors	has	been	the	basis	 for	SAR	
studies33.	This	has	been	more	prominent	with	 the	unparalleled	advances	 in	genomics.	The	
generally	accepted	theory	is	that	exogenous	as	well	as	endogenous	substances	interact	with	
a	binding	site	on	a	specific	macromolecular	receptor	governed	by	intermolecular	forces.	Such	
interaction	 is	responsible	for	the	pharmacological	or	toxic	responses	that	these	substances	
initiate	depending	on	its	ultimate	site	of	action.	

In	 1878,	 Langely	 pioneered	 the	 idea	 that	 chemicals	 interacted	 with	 specific	 biological	
receptors.	While	studying	the	mutually	antagonistic	action	of	the	alkaloids,	he	realized	that	
they	interacted	with	some	receptive	body	in	the	nerve	endings	of	the	glands34.	Paul	Ehrlich	
stated	that	“Corpora	non	agunt	nisi	 fixata”	suggesting	that	chemicals	 interact	with	specific	
macromolecules	in	the	body	in	order	to	exert	their	biological	action35.	He	defined	the	receptor	
as	the	“binding	group	of	the	protoplasmic	molecule	to	which	a	foreign	newly	introduced	group	
binds”36.	In	1905	Langley’s	studies	on	the	muscular	contraction	effects	of	curare	led	him	to	
describe	 the	 first	 characteristics	 of	 receptors;	 their	 capacity	 for	 certain	 ligands	 and	 an	
amplification	component	that	leads	to	a	pharmacological	response37.	

Enzyme	proteins	act	as	receptors	through	which	chemicals	can	exert	their	action.	They	are	
typically	more	favorable	in	QSAR	studies	due	to	their	ease	of	isolation	and	amplification.	On	
the	 other	 hand,	membrane	 receptors	 are	 whole	 proteins	 entrenched	 in	 the	 phospholipid	
bilayer	 of	 cell	 membranes.	 They	 need	 a	 thorough	 treatment	 with	 detergents	 in	 order	 to	
dissociate	them	for	study.	This	often	 leads	to	 loss	of	structural	 integrity	and	thus	function.	
However,	some	membrane-bound	receptors	have	been	isolated	and	their	three-dimensional	
structures	elucidated.	However,	the	membrane	separation	usually	ensures	loss	of	reactivity	
keeping	the	receptor	chemistry	understanding	a	challenge.	
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	Nucleic	acids	are	also	important	chemical	receptors	(aptamers).	They	interact	with	a	diverse	
set	of	small	organic	molecules.	Aptamers	were	successfully	isolated	and	studied	using	in	vitro	
selection	techniques38.	Also	lexitropsins	have	been	subject	to	QSAR	studies	as	groove-binding	
ligands	for	potential	drug	development39.	

Prior	 to	 the	 revolutionary	 development	 of	 molecular	 graphics	 simulations	 and	 the	 high	
advancements	in	resolving	the	atomic	coordinates	for	enzyme-ligand	complexes	using	X-ray	
crystallography,	the	study	of	ligand-receptor	interactions	using	QSAR	has	focused	on	enzymes.	
These	 recent	advancements	encouraged	 the	elucidation	of	 the	mechanistic	 foundations	of	
ligand-receptor	interactions8.		

Fischer’s	 rigid	 lock-and-key	 concept	 was	 dispelled	 through	 probing	 different	 enzymes	 by	
various	ligands.	The	lock-and-key	concept	suggests	that	the	ligand	acts	as	a	key	that	fits	exactly	
to	 its	 lock	(receptor).	 In	that	sense,	 it	was	thought	that	a	“negative”	 imprint	stands	on	the	
surface	 of	 the	 enzyme	 leading	 to	 the	 geometric	 complementarity	 that	 forms	 the	 ligand-
receptor	complex.	However,	this	theory	does	not	explain	allosteric	ligands.	This	encouraged	
the	 development	 of	 the	 induced-fit	 model.	 Updated	 models	 picturing	 flexible	 keys	 and	
“deformable”	locks	were	suggested	based	on	NMR	and	other	structural	studies40.		

The	ligand	receptor	interactions	are	attributed	to	the	low	energy	state	of	the	ligand-	receptor	
complex.	 This	 is	 necessary,	 because	 the	 low	concentrations	of	 ligand	and	 receptors	 in	 the	
biological	 system	 do	 not	 permit	 the	 law	 of	 mass	 action	 to	 explain	 the	 pronounced	
pharmacological	 effect	 of	 chemicals.	 Therefore,	 the	 biological	 activity	 of	 chemicals	 is	
determined	by	their	receptor	affinity,	which	is	measured	by	its	KD,	the	dissociation	constant	
at	 equilibrium.	A	 small	 KD	 indicates	 a	 high	 affinity	 (larger	 concentration	of	 ligand-receptor	
complex).	This	is	mostly	a	result	of	noncovalent	interactions	sometimes	augmented	by	a	few	
covalent	bonds.	

𝑲𝑫 =
𝑳𝒊𝒈𝒂𝒏𝒅 [𝑹𝒆𝒄𝒆𝒑𝒕𝒐𝒓]

[𝑳𝒊𝒈𝒂𝒏𝒅 − 𝑹𝒆𝒄𝒆𝒑𝒕𝒐𝒓	𝒄𝒐𝒎𝒑𝒍𝒆𝒙]
	

Equation	10	

The	spontaneous	bond-formation	between	atoms	leads	to	a	decrease	in	free	energy	(ΔG	is	
negative).	Equation	11	shows	that	the	change	in	free	energy	ΔG	is	related	to	the	equilibrium	
constant	Keq.	Therefore, a little change in ΔG0 can result in a measurable effect on the 
equilibrium constant. 

𝚫𝐆𝟎 = 𝑹𝑻	𝒍𝒏𝑲𝒆𝒒	 Equation	11	

1.4 Targets	relevant	for	toxicity	estimation	via	HTS	
Chemicals	that	mimic	natural	hormones	can	disrupt	vital	functions	of	the	human	and	wildlife.	
Such	xenobiotics	are	referred	to	as	endocrine	disrupting	chemicals	(EDCs).	They	are	capable	
of	 exerting	 unfavorable	 outcomes	 through	 different	 mechanisms.	 Therefore,	 there	 is	 a	
growing	 interest	 in	 studying	 these	 diverse	 compounds.	 Although	 more	 studies	 are	 being	
conducted	through	in	vitro	and	in	vivo	experiments,	many	SAR	and	QSAR	research	programs	
have	developed	in	the	recent	years41.	Experimental	testing	of	chemicals	is	expensive	and	time-
consuming,	and	in	many	cases,	 impractical	for	application	to	the	large	number	of	synthetic	
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chemicals	in	use.	This	section	deals	with	important	biological	targets	that	are	relevant	for	this	
work.	

1.4.1 The	aryl	hydrocarbon	receptor	
The	 aryl	 hydrocarbon	 receptor	 (AHR)	 is	 a	 member	 of	 the	 basic	 region	 helix–loop–helix–
PER/ARNT/SIM	(bHLH–PAS)	family.	The	ligand-activated	receptor	has	been	shown	to	play	a	
key	 regulatory	 role	 in	 a	 variety	 of	 endogenous	 developmental	 processes42–44.	 A	 consistent	
response	of	activating	the	AHR	is	induction	of	gene	expression.	The	receptor	and	its	ability	to	
specifically	 bind	 to	 2,3,7,8-tetrachlorodibenzo-p-dioxin	 (TCDD,	 dioxin)	were	 discovered	 in	
197645.	Since	then,	identification	of	its	ligands	has	been	of	high	interest.	

Among	 the	most	 characterized	 chemical	 classes	 that	 are	 known	 to	be	 ligands	 for	AHR	are	
environmental	toxins,	such	as	the	Halogenated	Aromatic	Hydrocarbons	(HAHs)	and	Polycyclic	
aromatic	hydrocarbons	(PAHs)46–48.However	recently,	a	large	number	of	natural,	synthetic	as	
well	 as	 endogenous	AHR	agonists	have	also	been	 identified	 that	does	not	 share	 the	 same	
structural	 scaffolds	 or	 physicochemical	 characteristics	 of	HAHs	or	 PAHs46,49,50.	 A	 need	 thus	
aroused	 for	 the	 investigation	of	 the	potential	 for	 compounds	 to	be	AHR	 ligands.	This	 is	of	
special	interest	to	the	molecular	design	process	in	pharmaceutical	companies.	

After	binding	to	its	ligand,	AHR	changes	its	conformation.	This	exposes	a	nuclear	localization	
sequence	(NLS)	as	well	as	the	dimerization	interface	for	the	aryl	hydrocarbon	receptor	nuclear	
translocator	 (ARNT	 protein)51,52.	 The	 ligand-bound-AHR	 complex	 then	 translocates	 to	 the	
nucleus53,54.	The	AHR	is	then	released	from	its	protein	complex	following	its	dimerization	with	
ARNT.	Formation	of	the	ligand-bound	AHR:ARNT	heterodimer	converts	the	AHR	complex	into	
a	high-affinity	DNA	binding	form55,56	and	binding	of	the	complex	to	its	specific	DNA	recognition	
site,	 the	 dioxin-responsive	 element	 (DRE),	 upstream	 of	 AHR-responsive	 genes	 leads	 to	
coactivator	 recruitment,	 chromatin	 rearrangement,	 increased	 promoter	 accessibility	 and	
increased	gene	transcription56–59.	

The	wide	variety	of	adverse	effects	of	dioxins	suggests	how	harmful	AHR	activation	could	be.	
However,	many	AhR	activators	are	present	in	our	daily	diet	(for	example:	compounds	such	as	
indolo-(3,2-b)-carbazole,	 flavonoids,	 and	 sulforaphane).	 Also,	 the	discovery	of	 endogenous	
AHR	activators	such	as	bilirubin,	eicosanoids,	tryptophan,	cAMP,	and	indirubin	suggests	that	
the	receptor	activation	may	be	a	normal	physiological	process.	It	was	proposed	that	high	level	
persistent	activation		of	AHR	(such	as	that	cause	by	Dioxin)	is	the	reason	of	adverse	effects44.	

1.4.2 The	estrogen	receptor	
There	are	two	identified	estrogen	receptors,	alpha	(ERα)	and	beta	(ERβ).	Both	are	members	
of	the	Class	I	of	the	nuclear	hormone	receptor	superfamily	and	are	composed	of	six	functional	
domains.	Separate	genes	located	on	different	chromosomes	control	both	ERα	and	ERβ60.	Both	
subtypes	show	different	tissue	distribution.	Whereas	ERα	mRNA	is	mostly	expressed	in	the	
liver,	heart,	kidney,	testis,	skeletal	muscles,	uterus,	pituitary	and	mammary	gland,	The	ERβ	
mRNA	is	expressed	in	the	ovary	and	prostate.	Other	tissues	show	equal	levels	of	both	mRNA,	
though	with	 different	 cellular	 distribution.	 These	 tissues	 include	 the	 adrenals,	 epididymis,	
gonad,	thyroid,	and	different	brain	regions.	
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Upon	 binding	 to	 a	 ligand,	 the	 ligand-binding	 domain	 (LBD)	 of	 the	 ER	 undergoes	 a	
conformational	change,	which	allows	the	interaction	with	coactivators61–63.	The	ligand-bound	
estrogen	receptor	then	undergoes	dimerization	and	binds	to	the	estrogen	response	element	
(ERE)	 thus	 activating	 the	 transcription	 of	 target	 genes.	 This	 has	 been	 termed	 the	 classical	
mechanism	 for	 ER	 activation.	 However,	 ER	 action	 can	 also	 involve	 ligand-independent	
activation	 (i.e.,	 in	absence	of	estrogen).	 In	 this	case,	 the	activation	can	be	modulated	by	a	
number	of	signaling	pathways	including	growth	factors,	protein	kinase	A,	and	protein	kinase	
C.	ER	might	also	regulate	the	target	genes	in	the	absence	of	EREs.	These	different	mechanisms	
mediate	and	enhance	the	transcription	of	ER	and	allow	its	activation	in	low	hormone	levels64.	

Due	 to	 its	 association	 with	 negative	 reproductive	 effects65,66,	 ER	 is	 among	 the	 most	
comprehensively	 investigated	 receptors	 in	 the	 context	 of	 EDCs67,68.	 Various	 regulations	
necessitate	the	assessment	of	the	estrogenic	activity	of	chemicals69–71.	There	are	several	 in	
vitro	 and	 in	 vivo	 protocols	 to	 identify	 potential	 endocrine	 pathway-mediated	 effects	 of	
chemicals,	including	interactions	with	hormone	receptors68,72–74.	However,	due	to	their	costs	
and	limitations,	toxicological	data	for	estrogenic	activity	is	only	available	for	a	limited	number	
of	chemicals75–78.	

1.4.3 The	androgen	receptor	
The	 androgen	 receptor	 (AR)	 is	 another	 example	 of	 the	 steroid-receptor	 subfamily	 of	 the	
nuclear	 receptors.	 Its	 gene	 consists	 of	 8	 exons	 and	 is	 located	 on	 the	 long	 arm	 of	 the	 X	
chromosome.	

After	ligand	binding,	the	AR	undergoes	a	conformational	change	leading	to	the	dissociation	of	
the	heat	shock	proteins	(HSP).	The	AR	then	undergoes	translocation	from	the	cytoplasm	into	
the	 nucleus.	 It	 uses	 its	 DNA	 binding	 domain	 to	 interact	 as	 a	 homodimer	 to	 specific	 DNA	
sequences	 termed	 androgen	 response	 elements	 (AREs)79.	 By	 dimerizing	 on	 the	 DNA,	 AR	
interacts	with	DNA	regions	in	the	nucleus	leading	to	activation	of	gene	expression.	The	AR	is	
known	to	repress	the	expression	of	a	number	of	genes80,81.		

Testosterone	 and	 its	 metabolite	 dihydrotestosterone	 (DHT)	 exert	 their	 effects	 on	 gene	
expression	via	 the	activation	of	AR.	The	 interaction	of	 these	natural	 ligands	with	the	AR	 in	
various	target	tissues	regulates	the	final	phases	in	the	cellular	cascade	of	normal	male	sexual	
differentiation.	Complete	insensitivity	to	androgens	leads	to	a	female	phenotype82,83.	The	AR	
plays	 an	 important	 role	 fetal	 sexual	 differentiation84,	 puberty	 and	 adulthood.	 The	 cellular	
resistance	to	androgens	causes	the	androgen	insensitivity	syndrome	(AIS)82,85.	

1.4.4 Peroxisome	proliferator-activated	receptor	gamma	
Peroxisome	 proliferator-activated	 receptor	 gamma	 (PPAR-γ)	 is	 a	 member	 of	 the	 nuclear	
receptor	 subfamily	1,	 group	C	and	 is	encoded	by	 the	PPARG	gene86.	The	genes	are	mainly	
expressed	in	white	adipose	tissue	(WAT)	and	brown	adipose	tissue	(BAT).	It	is	considered	the	
major	controller	of	adipogenesis	and	a	potent	modulator	of	whole-body	lipid	metabolism	and	
insulin	sensitivity87.	PPAR-γ,	like	other	members	of	the	PPARs,	forms	heterodimers	with	the	
retinoid	X	receptor	(RXR)86.	
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PPAR-γ	has	been	intensively	studied	as	a	drug	target	because	of	its	link	to	insulin	sensitization	
and	obesity88.	 PPAR-γ	 activated	 genes	 stimulate	 lipid	 uptake	 and	 adipogenesis	 by	 fat	 cells	
while	PPAR-γ	knockout	mice	fed	a	high-fat	diet	fail	to	produce	adipose	tissue.	

Fatty	 acids	 and	 their	 derivatives	 have	 long	 been	 recognized	 to	 bind	 and	 activate	 PPARγ.	
However,	 specific	 endogenous	 ligands	 proved	 difficult	 to	 clearly	 define89,90.	 Synthetic	
thiazolidinediones	(TZDs)	are	known	to	be	potent	activators	of	PPARγ	and	show	robust	insulin-
sensitizing	 activities91.	 They	 were	 thus	 used	 in	 treatment	 of	 resistant	 Type-2	 diabetes.	
However,	 meta-analyses	 of	 clinical	 trials	 have	 associated	 the	 use	 of	 rosiglitazone	
(thiazolidinedione	medication	marketed	 as	Avandia®)	with	 an	 increased	 risk	 of	 developing	
congestive	 heart	 failure,	 myocardial	 infarction,	 cardiovascular	 disease	 and	 all-cause	
mortality92,93	 which	 prompted	 the	 European	 Medicines	 Agency	 (EMA)	 to	 recommend	 its	
suspension94.	

1.4.5 Pregnane	X	receptor	
The	pregnane	X	receptor	(PXR),	also	known	as	steroid	and	xenobiotic	sensing	receptor	(SXR),	
is	a	member	of	the	nuclear	receptor	subfamily	1,	group	I	and	is	encoded	by	the	NR1I2	gene.	
Upon	 activation,	 PXR	 forms	 a	 heterodimer	 with	 the	 retinoid	 X	 receptor.	 It	 then	 binds	 to	
hormone	 response	 elements	 of	 the	 CYP3A4	 promoter	 on	 DNA,	 which	 provokes	 gene	
expression.	

PXR	plays	 a	 role	 in	 the	metabolism	of	many	 xenobiotics	 through	 the	 induction	of	CYP3A4	
oxidative	 enzyme95,96.	 PXR	 also	 plays	 a	 role	 in	 up-regulating	 the	 induction	 of	 conjugating	
enzymes	 and	 glutathione	 S-transferase	 (phase	 II	 metabolism)97	 as	 well	 as	 OATP2	 protein	
responsible	 for	 uptake	 and	 efflux	 (phase	 III)98	 and	MDR199.	 PXR	 activators	 include	 a	 great	
variety	 of	 chemicals,	 both	 endogenous	 and	 exogenous.	 Such	 ligands	 include	 antibiotics,	
antimycotics,	steroids	as	well	as	bile	acids,	dexamethasone	and	rifampicin95,100.	

Because	of	the	great	role	that	CYP3A4	plays	in	drug-metabolism,	in	vitro	assays	studying	the	
transactivation	 of	 human	 PXR	 can	 play	 a	 significant	 role	 in	 investigating	 the	 effect	 of	
compounds	on	CYP3A4.	This	reduces	the	need	for	in	vitro	assays	based	on	human	liver	tissue	
and	 primary	 hepatocytes,	 which	 are	 expensive	 and	 limited	 by	 donor	 availability.	 This	 can	
provide	cost-effective	means	 for	predicting	whether	compounds	would	activate	CYP3A4	 in	
vivo,	a	long-standing	goal	in	pharmacology	and	toxicology	for	studying	drug	interactions96.		

1.4.6 The	aromatase		
Aromatase	 is	 a	member	 of	 the	 cytochrome	 P450	 (CYP450)	 enzyme	 superfamily.	 It	 is	 also	
referred	to	as	estrogen	synthase	due	to	its	key	role	in	estrogen	biosynthesis.	Specifically,	the	
aromatase	enzyme	is	responsible	for	the	aromatization	of	androgens	into	estrogens101.	The	
enzyme	complex	is	localized	and	expressed	in	the	endoplasmic	reticulum.	It	consists	of	two	
components;	a	form	of	the	CYP450	(Cytochrome	P-450AROM)	which	binds	to	the	steroidal	ligand	
and	catalyzes	the	aromatization	reactions	series,	and	a	flavoprotien	(NADPH-Cytochrome	P-
450	reductase)	which	transfers	the	reducing	equivalents	from	NADPH	to	Cytochrome	P-450.	
In	humans,	the	enzyme	is	encoded	by	the	gene	CYP19101	which	has	nine	exons	as	well	as	many	
non-coding	 first	 exons	 that	 regulate	 tissue-specific	 expression.	 In	 addition	 to	 the	 gonads,	
aromatase	is	also	present	in	various	tissues	in	both	genders	including	the	brain,	breast,	skin,	
bone	as	well	as	adipose	tissue102.		
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Mutations	in	CYP19A1	gene	expressions	can	lead	to	abnormal	estrogenic	activity.	Excessive	
expression	can	result	in	gynecomastia	in	boys	and	precocious	puberty	and	gigantomastia	in	
girls.	 It	 has	 also	 been	 related	 to	 short	 stature	 due	 to	 early	 epiphyseal	 closure	 in	 both	
genders103.	On	the	other	hand,	reduced	aromatase	activity	can	result	in	Aromatase	deficiency	
syndrome.	 It	 is	characterized	by	accumulations	of	androgens	during	pregnancy	resulting	 in	
possible	female	virilization.	Girls	will	have	primary	amenorrhea.	Both	genders	can	be	tall,	as	
lack	of	estrogen	does	not	bring	the	epiphyseal	lines	to	closure.	These	effects	have	been	further	
studied	using	 in	vivo	animal	models	on	aromatase	knockout	mice	(ArKO)	or	 (AROM+)	mice	
overexpressing	human	aromatase102.	

1.4.7 HERG	
The	 human	 ether-a-go-go	 channel	 (hERG)	 is	 a	 member	 of	 the	 Kv	 family	 of	 voltage-gated	
potassium	channels.	The	crystal	structure	of	the	channel	is	yet	to	be	solved.	However,	basic	
understanding	exists	about	the	3D	topology	of	 the	protein	structure	being	similar	 to	other	
members	of	the	voltage-gated	K+-channel	family.	The	hERG	related	gene	(Kv11.1)	encodes	for	
a	 voltage	 dependent	 ion	 channel,	 the	 blocking	 of	 which	 has	 been	 associated	 with	 the	
withdrawal	of	several	non-cardiovascular	drugs	due	to	potential	severe	heart	arrhythmia104–
109.	 Three	 types	 of	 conformational	 states	 exist	 for	 the	 hERG	 channel:	 closed,	 open,	 and	
inactivated.	 The	 binding	 affinity	 of	 the	 many	 hERG	 blockers	 can	 be	 correlated	 to	 the	
conformational	states	of	the	channel110,111.	

The	early	assessment	of	hERG-related	cardiotoxicity	has	become	a	common	practice	in	drug	
discovery.	 Specifically,	 the	 drug-induced	 long	 QT	 Syndrome	 (LQTS)	 may	 cause	 avoidable	
sudden	cardiac	arrest.	FDA	thus	mandates	the	testing	for	hERG	safety.	

Many	in	vitro	assays	exist	for	the	pre-clinical	evaluation	of	hERG-related	cardiotoxicity112	such	
as	in	vitro	electrophysiology	measurements,	rubidium-flux	assays,	fluorescence-based	assays,	
and	 radioligand	 binding	 assays113.	 In	 silico	 (i.e.,	 computer-based)	 models	 have	 also	 been	
proposed	 to	 predict	 the	 potential	 hERG	 blockers	 in	 early	 virtual	 screening	 for	 drug	
discovery111,114.	

1.4.8 Antioxidant	responsive	element	(Nrf2/ARE)	
Nrf2	is	a	transcription	factor	is	encoded	by	the	NFE2L2	gene115	in	humans.	The	strong	similarity	
with	 the	 ARE	 consensus	 sequence116,117	 associate	 these	 proteins	 as	 candidate	 factors	 for	
regulating	the	antioxidant	responsive	element	(ARE)	response.	Reactive	oxygen	species	and	
electrophiles	cause	the	activation	of	the	transcription	factor	which	leads	to	the	induction	of	
(ARE)-mediated	genes	responsible	for	oxidative	stress	and	phase	II	detoxification118,119.	

Nrf2	 is	kept	 in	the	cytoplasm	by	a	cluster	of	proteins	that	degrade	 it	quickly	under	normal	
conditions	(i.e.,	in	lack	of	stress	conditions).	In	case	of	oxidative	stress,	Nrf2	does	not	degrade.	
It	 travels	 to	 the	 nucleus	 where	 it	 attaches	 to	 a	 DNA	 promoter.	 Antioxidative	 genes	 are	
therefore	transcribed	and	the	corresponding	proteins	are	expressed.	

Oxidative	stress	has	been	implicated	in	the	pathogenesis	of	a	variety	of	diseases	ranging	from	
cancer	to	neurodegeneration.	Reactive	oxygen	species	(ROS)	and	electrophiles	may	lead	to	
DNA	damage	and	therefore	cause	malignancies	or	develop	other	diseases120–122.	To	defend	
against	 these	 risks,	organisms	use	multiple	defense	mechanisms123,124,	 including	 the	use	of	
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phase	 II	detoxifying	enzymes	and	oxidative	stress-induced	proteins125,126.	Model	studies	for	
carcinogenesis	have	demonstrated	how	such	mechanisms	might	perform	its	role127.	

Tecfidera	is	a	marketed	drug	used	for	multiple	sclerosis	patients	to	reduce	relapse	rates	and	
increased	 time	 to	 disability	 progression.	 Tecfidera	 activates	 the	 Nrf2	 pathway	 and	 was	
recognized	 in	vitro	 as	a	nicotinic	 receptor	agonist128.	The	mechanism	by	which	 it	exerts	 its	
action	 is	 still	 unknown.	Oltipraz	 is	 another	NRF2	 inducer	 that	 inhibits	 cancer	 formation	 in	
rodent	organs129.	However,	 it	 failed	 to	demonstrate	efficacy	 in	human	 trials	 and	has	been	
associated	with	severe	side-effects	including	neurotoxicity	and	gastrointestinal	toxicity130.	

The	activation	of	NRF2	have	been	also	associated	with	the	formation	of	de	novo	cancerous	
tumors131	and	the	raising	of	plasma	and	liver	cholesterol	levels	resulting	in	atherosclerosis132.	
Such	adverse	effects	have	been	suggested	to	overshadow	potential	gains	 from	antioxidant	
induction	by	NRF2	activation132,133.	

1.4.9 ATAD5	
Human	ATAD5	protein	is	encoded	by	the	Genome	Instability	Gene	1	(ELG1;	human	ATAD5).	
Its	levels	increase	in	response	to	different	types	of	DNA	damage.	Thus,	it	has	been	used	as	a	
biomarker	 for	 identifying	 genotoxic	 compounds.	 ATAD5	 is	 involved	 in	 the	 RAD9A-related	
damage	 checkpoint	pathway.	 Such	pathway	 is	 crucial	 in	 checking	whether	DNA	damage	 is	
compatible	with	cell	survival	or	whether	apoptosis	sequence	should	be	induced134.	

The	need	of	cancer	cells	 to	 insistently	grow	has	been	targeted	by	many	chemotherapeutic	
agents.	These	drugs	exploit	the	sensitivity	of	cancer	cells	to	the	inhibition	of	DNA	replication	
through	DNA	damage	by	genotoxic	chemicals.	Exposure	to	such	agents	leads	to	DNA	lesions,	
which	 stops	DNA	 replication,	 collapses	 replication	 forks,	 and	produces	DNA	double-strand	
breaks	(DSBs),	resulting	in	cell	death.	However,	the	genomic	damage	caused	by	these	agents	
can	also	induce	mutations	that	might	make	cells	more	resilient	to	cell-cycle	checkpoints	and	
apoptosis.		

Ligands	that	induce	ATAD5	have	been	studied	with	the	aim	to	identify	genotoxic	compounds	
that	can	kill	rapidly	dividing	cancer	cells	with	minimal	adverse	effects135.	

1.4.10 Heat	shock	factor	response	elements	(HSEs)	
Heat	shock	factor	response	elements	(HSEs)	are	specific	DNA	sequences	located	in	the	heat-
shock	responsive	genes.	They	bind	to	the	Heat	Shock	Factor	(HSF)	in	response	to	an	exposure	
to	stress	conditions	such	as	heat	shock.	HSF	is	a	transcription	factor,	which	regulates	the	heat	
shock	protein	expression136.	In	humans,	three	transcription	factors	exist	(HSF-1,	-2,	and	-4).	
The	heat	shock	response	(HSR)	is	rapid.	The	translocation	of	HSF	from	cytoplasm,	activation	
and	binding	to	HSE	occurs	within	minutes	of	exposure	to	elevated	temperatures137.	The	HSF-
bound	 sequence	 motifs	 represent	 only	 a	 small	 fraction	 of	 the	 total	 HSEs	 present	 in	 the	
genome138.	The	heat	shock	proteins	ensure	that	cells	are	able	to	cope	with	stressful	condition,	
which	would	otherwise	 cause	 irreversible	 cell	 damage	and	 consequently	 cell-death137.	 The	
heat	 shock	 proteins	 (referred	 to	 as	 molecular	 chaperons)	 play	 a	 significant	 role	 in	 the	
synthesis,	transport	and	folding	of	proteins.	
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Numerous	chemicals,	ecological	and	physiological	stress	conditions	can	activate	the	HSR.	In	
addition	to	overcoming	the	impact	of	such	conditions,	proper	HSF	function	was	also	found	to	
be	crucial	for	the	animal	development139	and	the	survival	of	cancer	cells140.	

1.4.11 Mitochondrial	membrane	potential	(MMP;	Δψm)	
Mitochondrial	membrane	potential	 (MMP)	 is	 one	of	 the	 parameters	 used	 to	measure	 the	
integrity	of	mitochondrial	functions.	Mitochondria	generate	ATP	by	making	use	of	the	proton	
electrochemical	gradient	potential	(Δp)	acting	as	the	cellular	power	plant.	The	electrochemical	
proton	 motive	 force	 is	 generated	 by	 a	 series	 of	 reduction	 reactions	 referred	 to	 as	 the	
respiratory	 electron	 transport	 chain	 (ETC).	 The	 inner	 mitochondrial	 membrane	 plays	 an	
essential	 role	 in	 the	 process.	 Its	 ETC	 protein	 complexes	 I	 through	 IV	 reductively	 transfer	
electrons	providing	enough	energy	 to	push	protons	 against	 their	 concentration	across	 the	
membrane	and	out	of	the	mitochondrial	cytoplasm.	The	accumulation	of	protons	outside	the	
membrane	then	flows	back	through	ATP-synthase	(Complex	V)	generating	ATP	in	the	process	
and	closing	the	ETC	cycle.	Δp	provides	the	force	behind	the	ATP	production.	It	is	a	function	of	
both	 the	 MMP	 and	 the	 mitochondrial	 pH	 gradient.	 MMP	 constituent	 of	 Δp	 delivers	 the	
gradient	 charge	 necessary	 for	 Ca2+	 sequestration	 in	 the	 mitochondria,	 and	 controls	 the	
formation	of	reactive	oxygen	species	(ROS).	It	is	thus	considered	a	fundamental	controller	of	
cellular	well-being141,142.		

Under	stress	conditions,	MMP	may	in	turn	be	altered	by	the	dysregulation	of	intracellular	ionic	
charges	[e.g.,	Ca2+	141–143	or	K+	144].	This	would	lead	to	an	alteration	in	Δp	and	consequently	the	
production	of	ATP.	However,	the	mitochondrial	capacity	for	overcoming	such	changes	may	be	
exhausted	 resulting	 in	 ionic	 fluxes	 and	 ultimately	 a	 collapse	 of	 the	 Δp,	 MMP,	 and/or	
mitochondrial	pH	gradient	may	collapse.	This,	 in	turn,	would	result	 into	bioenergetic	stress	
due	to	the	inability	to	produce	ATP143.	

Due	to	is	crucial	role	in	different	cellular	processes;	MMP	is	considered	a	key	marker	of	cell	
health	or	 injury.	 It	was	used	as	a	 tool	 to	monitor	changes	 in	physiological	 functions	of	 the	
mitochondria	 and	 its	 capacity	 to	 generate	ATP	 through	oxidative	phosphorylation.	 In	 vitro	
fluorescence	 assays	 evaluate	 MMP	 to	 assess	 the	 potential	 of	 chemically	 induced	
mitochondrial	toxicity;	Using	lipophilic	cationic	fluorescent	dyes,	a	decrease	in	MMP	following	
exposure	to	chemical	stressors	can	be	detected.	

1.4.12 Tumor	protein	p53	
Tumor	protein	p53	(p53)	 is	encoded,	 in	humans,	by	TP53	gene.	 It	encodes,	at	 least,	twelve	
protein	 isoforms,	which	 are	 collectively	 referred	 to	 as	 P53	 isoforms.	 The	 diverse	 isoforms	
regulates	 the	 cell	 fate	 in	 reaction	 to	 various	 stresses	 though	 differently	 regulating	 gene	
expression145.	 The	 isoforms	 are	 differentially	 expressed	 in	 numerous	 human	 cancer	 types	
where	 they	 are	 found	 to	 modulate	 p53	 transcriptional	 activity	 and	 tumor-suppressor	
functions.	 p53	 is	 a	 transcription	 factor.	 As	 a	 tetramer,	 it	 directly	 binds	 specifically	 to	 p53-
responsive	elements	on	DNA.	This	induces	or	represses	gene	expression146,147.	Studies	show	
that	an	estimated	3,600	target	genes	are	directly	regulated	by	p53148.		

p53	is	also	referred	to	as	tumor	suppressor	p53	or	“the	genome	guardian”.	This	is	due	to	its	
role	 in	 increasing	 genome	 stability,	 reducing	mutation	 and	 suppressing	 cancer	 formation.	
Generally,	P53	performs	its	function	by	preventing	the	proliferation	of	damaged	cells.	Such	
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cells	 are	more	 likely	 to	 have	mutations	 and	 show	 abnormal	 cell	 growth	 leading	 to	 cancer	
formation.	The	TP53	gene	is	considered	the	most	frequently	mutated	gene	in	human	cancer	
(more	than	50%)145.		

Upon	 cellular	 exposure	 to	 stress	 conditions	 or	 DNA	 damage,	 P53	 expression	 is	 activated.	
Based	on	the	kind	of	stress	and	the	degree	of	DNA	damage,	the	activated	p53	would	trigger	
either	 cell-cycle	 arrest,	DNA	 repair	 or	 programmed	 cell-death	 (apoptosis).	 The	mechanism	
behind	such	choice	is	still	not	clearly	understood145.	p53-mediated	apoptosis	is	thought	to	be	
the	principal	source	of	tumor	suppression.	Measuring	the	activation	of	P53	can	thus	provide	
a	good	indication	of	cellular	insult	or	DNA	damage.		

1.5 The	general	QSAR	problem	in	toxicity	
As	discussed	earlier,	the	concept	of	QSAR	is	founded	on	the	hypothesis	that	biological	activity,	
like	any	other	property,	is	a	function	of	molecular	structure,	consequently	it	is	expected	that	
alterations	in	the	molecular	structure	is	reflected	in	a	change	in	the	biological	activity	of	the	
compound.	 However,	 direct	 prediction	 of	 a	 compound’s	 properties	 from	 its	 molecular	
structure	(ab	initio)	is	typically	very	limited.	Therefore,	the	discipline	of	QSARs	uses	an	indirect	
approach	in	order	to	tackle	this	problem	as	illustrated	in	Figure	3.	

 
Figure	3.		The	general	QSAR	problem.	Chemicals	are	represented	in	the	form	of	molecular	structures	which	cannot	
be	directly	correlated	 to	 the	activity.	Therefore,	molecular	descriptors	are	calculated	 from	the	given	structural	
representations	and	correlated	to	the	activity	under	investigation	using	a	model	building	process.	

Numerical	 descriptors	 are	 used	 to	 describe	 the	 chemical	 information	 encoded	 in	 the	
molecular	 structure	 for	 a	 set	 of	 compounds	 (termed	 a	 training	 set).	 Once	 numerical	
descriptors	 are	 available,	 the	 QSAR	 problem	 becomes	 essentially	 a	 problem	 in	 statistical	
model	building,	where	 statistical	methodologies	 can	be	used	 to	 relate	 the	 set	of	numbers	
representing	the	structures	to	those	representing	the	biological	activities.	This	is	an	inductive	
technique	that	depends	on	the	availability	of	a	compound	set	for	which	the	activity	(or	any	
other	property)	is	already	determined	experimentally.	

Figure	4	depicts	the	general	QSAR	model	building	process.	First,	the	molecular	structures	of	
training	 set	 compounds	 are	 entered	 and	 stored.	 At	 minimum,	 these	 structures	 provide	
information	on	 the	molecules’	 topology.	Multiple	approaches,	experimental	or	 theoretical,	
can	be	used	to	determine	a	reasonable	3D	structure	for	the	compounds	and	therefore	allow	
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molecular	descriptors	to	gain	information	related	to	structures’	geometries.	Second,	in	silico	
descriptors	are	calculated.	Then,	statistical	methods	are	applied	to	build	models	that	relate	
the	descriptors	with	the	activity	or	property	of	interest.	Finally,	the	models	are	validated	(e.g.,	
with	an	external	dataset	which	has	not	been	used	for	model	building).	Therefore,	the	steps	of	
a	QSAR	study	are	generalized	as:	(1)	Structure	modeling	and	the	selection	of	a	geometry,	(2)	
Descriptors	calculation,	(3)	Descriptors	selection	(prefiltering),	(4)	Model	building	(fitting),	and	
(5)	Model	validation.	Steps	3-5	can	be	 iterated	upon,	 in	 combination	with	an	optimization	
algorithm	 (e.g.,	with	 cross-validation	or	 bootstrap	 aggregation)	 allowing	 the	 selection	of	 a	
descriptor	 subset	 with	 maximum	 predictivity.	 Furthermore,	 the	 fifth	 step	 can	 also	 be	
performed	on	an	external	set	that	was	not	part	of	any	training.	

1.5.1 Role	of	computational	toxicology	in	environmental	risk	assessment	
ECHA	described	the	role	of	animals	in	ensuring	the	safe	use	of	chemical	substances	as	being	
the	last	resort.	This	is	one	of	the	key	principles	for	the	REACH	legislations.	It	encourages	the	
use	of	so-called	“alternative	approaches”	to	reduce	animal	testing.	QSAR	modeling	is	one	of	
the	promoted	mechanisms	for	alternative	chemical	risk	assessment.	Guiding	documents	exist	
that	 explain	 the	 best-practices	 and	 the	 requirements	 for	 accepting	 QSAR	 models’	
predictions149.	These	guidelines	are	essential	for	directing	the	stakeholders	on	how	to	utilize	
QSAR	methodologies	in	a	manner	that	gets	accepted	by	the	regulators.	Thus,	evaluating	the	
human	 and	 environmental	 toxicity	 risks,	 complying	with	 the	 regulatory	 requirements	 and	
reducing	the	need	for	animal	testing	at	the	same	time.	

1.5.2 The	five	OECD	principles	for	QSAR	model	construction	in	general	
Although	the	alternative	approaches	for	animal	testing	are	highly	encouraged,	their	proper	
use	must	be	established.	For	QSAR	model	building,	five	OECD	principles	were	developed	to	
ascertain	the	validity	of	good	QSAR	models	for	use	in	regulatory	purposes	and	assessment	of	
chemicals’	risks.	In	2004,	the	37th	OECD's	Joint	Meeting	of	the	Chemicals	Committee	and	the	
Working	Party	on	Chemicals,	Pesticides	and	Biotechnology	established	these	principles	for	the	
validation	 of	 QSAR	Models	 for	 regulatory	 purposes150,151.	 As	 this	work	 is	 intended	 for	 the	
consideration	 of	 REACH	 applications,	 the	 OECD	 principles	 were	 taken	 into	 consideration	
during	the	development	of	all	QSAR	models.	This	section	describes	the	five	OECD	principles	
for	QSAR	model	validation.	

Principle	1:	Defined	Endpoint:	To	ensure	the	transparency	in	any	physicochemical,	biological	
or	environmental	effect	that	a	model	is	trying	to	assess,	such	an	endpoint	needs	to	be	well	
defined.	This	includes	the	experimental	conditions	and	measurement	protocols.	Ideally,	data	
used	in	QSAR	model	development	should	belong	to	a	single	protocol.	In	practice,	this	is	seldom	
possible.	It	is	often	sensible	to	combine	data	produced	form	different	protocols151.	

Principle	 2:	 Unambiguous	 algorithm:	 The	 “algorithm”	 refers	 to	 the	 form	 of	 relationship	
between	the	descriptors	of	chemical	structure	and	the	endpoint	in	the	QSAR	model.	This	can	
be	a	mathematical/statistical	methods	or	rule-based	models	defined	by	experts.	Presenting	a	
clear	description	of	the	algorithm	ensures	transparency	and	allows	others	to	reproduce	the	
model	 and	 explain	 how	 predictions	 are	 generated.	 Some	 proprietary	 models	 do	 not	 use	
publicly	available	algorithms;	therefore,	their	results	could	be	reproduced	but	not	explained.	
The	ability	to	reproducibly	select	an	appropriate	QSAR	model	(considering	the	third	principle),	
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calculate	 molecular	 descriptors	 and	 use	 them	 to	 produce	 an	 estimate	 (i.e.,	 prediction)	 is	
crucial	 for	 the	 acceptance	 of	 QSAR	 models	 for	 regulatory	 purposes.	 However,	 it	 is	 not	
necessary	to	delve	into	the	mathematical	and	statistical	details	of	algorithm	development	in	
order	to	offer	a	transparent	description.	A	regression-based	QSAR	can	be	explicitly	defined	
without	particular	discussion	of	the	regression	approach151.	

Principle	3:	Defined	domain	of	applicability	(AD):	QSAR	models	are	expected	to	give	reliable	
predictions	only	for	chemicals	that	are	similar	to	the	ones	used	in	the	model’s	training	process.	
Therefore,	the	scope	and	limitations	of	the	model	must	be	defined	by	the	model	developers.	
This	is	based	on	the	physicochemical,	structural	and/or	response	information	of	the	training	
set	used.	An	extrapolation	outside	the	model’s	applicability	domain	boundary	is	likely	to	give	
unreliable	estimates.	At	bare	minimum,	a	binary	response	should	be	provided	on	whether	a	
certain	 prediction	 falls	 inside	 or	 outside	 the	 applicability	 domain	 of	 the	 QSAR	 model.	
Quantitative	assessment	of	the	model’s	confidence	in	prediction	can	also	be	expressed	in	the	
form	 of	 an	 AD	 confidence	 interval.	 This	 reports	 the	 degree	 of	 similarity	 between	 the	
compound	to	be	predicted	and	the	model’s	training	set152,153.	

Principle	 4:	 Appropriate	 measures	 of	 goodness-of-fit,	 robustness	 and	 predictivity:	 This	
principle	highlights	the	need	for	statistical	validation	of	QSAR	models	in	order	to	judge	models’	
performance.	 Such	 performance	 validation	 can	 be	 either	 internal	 or	 external.	 Internal	
validation	judges	the	ability	of	the	model	to	correlate	the	structures	and	activities	(i.e.,	the	
molecular	descriptors	with	the	property	of	interest)	within	the	training	set.	This	is	referred	to	
as	“fitting”	and	is	measured	through	the	goodness-of-fit	and	robustness.	To	avoid	the	risk	of	
“over-fitting”,	external	validation	is	used	to	check	predictivity.	In	this	case	the	ability	of	the	
QSAR	model	to	provide	reliable	estimates	for	an	external	set	of	compounds	(i.e.,	that	was	not	
used	 in	 its	 training)	 is	 tested	 considering	 the	 model’s	 applicability	 domain.	 Among	 the	
techniques	 discussed	 by	 OECD	 are	 response	 randomization	 test,	 cross-validation,	
bootstrapping,	training/test	splitting	as	well	as	external	validation	test	sets.	

Principle	5:	Mechanistic	 interpretation,	 if	possible:	This	principle	aims	to	encourage	finding	
mechanistic	 basis	 for	 the	 validated	 QSAR	 model	 that	 adds	 to	 the	 understanding	 of	 the	
statistical	validity	and	the	domain	of	applicability.	Describing	the	relation	between	chemical	
structure	 and	 activity	 (or	 any	 property	 thereof)	 using	 statistical	 and	 machine	 learning	
approaches	 is	 supposed	 to	 complement	 (and	 not	 replace)	 the	 existing	 chemical	 and	
toxicological	 knowledge.	 Thus,	 efforts	 should	be	 taken,	 during	QSAR	models	 validation,	 to	
show	 the	 consistency	 of	 such	 models	 to	 the	 related	 known	 chemical	 and	 toxicological	
processes.	 Consistency	 of	 the	model	with	 existing	 theories	 and	 knowledge	 of	 biochemical	
mechanisms	justifies	and	explains	how	predicted	values	from	the	model	are	generated	and	
therefore	increases	the	transparency	of	judging	the	model’s	performance.	

The	“if	possible”	phrase	shows	that	the	mechanistic	interpretation	is	not	mandatory	for	model	
acceptance	 by	 regulators.	 Sometimes,	 the	 iterative	 model	 building	 process	 and	 the	
involvement	 of	 data-mining	 techniques	 increases	 the	 complexity	 of	 the	 developed	 QSAR	
models	 through	multiple	 training	set	 refinements	 rendering	the	mechanistic	 interpretation	
hard	to	establish.		



 20 

	

Figure	4.		Diagram	depicting	the	general	steps	in	QSAR	model	building	process.	The	first	step	is	the	collection	and	
curation	of	high	quality	data	 including	 the	standardization	of	 the	structural	 representation	of	chemicals.	Then,	
descriptors	are	calculated	from	such	representation.	Afterwards,	QSAR	models	are	trained	and	validated	before	
potentially	being	tested	on	external	test	sets.		
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1.6 Role	of	in	vitro	assays	in	alternative	testing	–	databases	generation	and	
growth	(TOXCAST,	TOX21	and	EDSP)	

High-throughput	screening	(HTS)	allows	researchers	to	conduct	millions	of	chemical,	genetic,	
or	 pharmacological	 experiments	 with	 minimal	 intervention.	 Such	 procedure	 can	 quickly	
distinguish	 active	 compounds,	 antibodies,	 or	 genes	 that	 control	 particular	 biochemical	
pathways.	The	results	of	these	assays	can	guide	the	research	process	and	thus	has	become	a	
viable	tool	for	large-scale	chemical	testing154–156.	The	large	amounts	of	data	generated	by	HTS	
can	be	used	to	correlate	chemical	structures	to	their	biological	activity.	QSARs	can	support	
the	 identification	of	key	characteristics	 in	chemical	structures	responsible	 for	such	activity.	
This	knowledge	can	then	be	used	to	provide	predictions	on	the	possible	activity	of	chemicals	
in	virtual	screening	settings	 for	regulatory	purposes.	The	quality	of	QSAR	models	based	on	
large	chemical	libraries	from	HTS	experiments	can	vary.	However,	the	accuracy	is	usually	high	
enough	to	support	prioritizing	chemicals	that	are	worth	subjecting	to	experimental	testing.	
This	 satisfies	 the	 imminent	 need	 to	 prioritize	 chemicals	 for	 accelerating	 the	 chemical	
registration	process	and	lowering	the	experimental	testing	costs157.		

As	 high	 throughput	 technologies	 advance,	 more	 data	 are	 being	 produced	 from	 in	 vitro	
profiling	 of	 chemical	 substances158.	 Numerous	 chemical	 and	 biological	 databanks	 have	
immensely	 developed	 in	 recent	 years	 regarding	 their	 diversity	 and	 size.	 Such	 data	 can	
contribute	as	a	potential	substitute	or	complementation	for	in	vivo	animal	studies.	

The	U.S.	 Environmental	 Protection	Agency	 (EPA)	participated	 in	projects	 to	profile	 in	 vitro	
bioactivity	of	chemical	substances.	ToxCast159,160	program	was	 launched	in	2007	as	a	multi-
phased	project	that	uses	automated	HTS	assays161–163	to	test	the	effect	of	exposing	 in	vitro	
cells	 or	 isolated	 proteins	 to	 chemical	 substances.	 Afterwards,	 the	 treated	 living	 cells	 or	
proteins	are	tested	for	alteration	in	their	biological	activity.	This	could	suggest	a	possibility	for	
toxic	 effects	 that	may	 lead	 to	 potential	 adverse	 effects	 on	 human	 health.	 Such	 advanced	
technologies	can	rapidly	and	efficiently	screen	 large	number	of	substances	and	reduce	the	
need	for	animal	toxicity	studies164. 

Tox21165,166	 is	 another	 example	 of	 a	 multi-agency	 effort	 that	 uses	 HTS	 assays	 for	 toxicity	
modeling	and	prediction.	EPA,	The	National	Institutes	of	Health	(NIH),	The	National	Center	for	
Advancing	Translational	 Sciences	 (NCATS),	The	National	 Institutes	of	Environmental	Health	
Sciences/National	 Toxicology	Program	 (NIEHS/NTP)	 and	 the	 Food	and	Drug	Administration	
(FDA)	 cooperate	 in	 screening	 chemical	 substances	 for	 some	 potential	 toxic	 effects.	 The	
screening	data	can	then	be	used,	with	the	assistance	of	in	silico	techniques,	for	the	prediction	
of	 toxicity.	 This	 has	 the	 potential	 for	 providing	 an	 economical	method	 for	 toxicity	 testing	
prioritization	for	thousands	of	still	untested	compounds167.	

EDSP21	is	another	example	for	the	usage	of	pioneering	screening	techniques	for	prioritization	
of	 toxicity	 assessment	 of	 chemicals;	 in	 2011,	 EPA	 published	 the	 EDSP21	 work	 plan	 as	 a	
successor	of	the	Endocrine	Disruptor	Screening	Program	(EDSP)	established	in	1998.	The	work	
plan	explains	the	foundation	and	basis	upon	which	the	transition	will	materialize.	EPA	shares	
the	 aim	of	 significantly	 reducing	 animal	 testing,	making	 testing	 fast	 and	 less	 costly	 and	of	
providing	 characterizations	of	 chemicals,	 chemical	mixtures,	 and	 toxicity	 endpoints168.	 The	
EPA	 stated	 that	 “Using	 this	 current	 process	 [EDSP]	 to	 continue	 to	 identify	 chemicals	 for	
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screening,	having	them	screened,	and	making	decisions	about	more	definitive	testing,	is	not	
sustainable	 to	evaluate	 the	 tens	of	 thousands	of	 chemicals	 that	 fall	within	 the	purview	of	
EPA”169	.	

Figure	5	shows	the	size	of	the	chemical	libraries	and	number	of	assays	in	these	projects.	Within	
all	mentioned	studies	ToxCast	has	the	most	comprehensive	 in	vitro	assay	panel	with	about	
600	assays.	In	its	first	phase,	the	program	screened	309	chemical	substances	most	of	which	
were	 food	 pesticides.	 As	 such,	 these	 chemicals	 had	 a	 wide-range	 of	 animal	 toxicity	 data	
available.	These	chemicals	come	from	various	sources	(as	shown	in	Figure	6)	resulting	in	wide	
diversity	in	structural	groups,	complexity	and	physicochemical	properties.		

ToxCast	 program	 aims	 to	 construct	 “bioactivity	 signatures”	 that	 are	 intended	 to	 prioritize	
chemicals	 for	 targeted	 testing	 and	 predict	 possible	 adverse	 outcome	 pathways	 for	 such	
chemicals170.	 These	 signatures	 can	 be	 built	 through	 acquiring	 enough	 information	 on	 a	
collection	 of	 chemicals	 and	 using	 them	 to	 define	 distinguishing	 patterns	 of	 toxicities,	 or	
phenotypes,	detected	in	existing	experimental	animal	toxicity	studies.		

Earlier	 studies	 examined	 the	 possibility	 of	 utilizing	 in	 vitro	 assays	 in	 prediction	 of	 in	 vivo	
endpoints171–173	and	investigated	the	biochemical	pathways	behind	toxic	or	adverse	effects.	
While	 many	 studies	 inspected	 particular	 in	 vivo	 toxicity	 endpoints,	 a	 comprehensive	
investigation	 of	 in	 vitro	 –	 to	 –	 in	 vivo	 predictive	 power	 across	multiple	 toxicity	 endpoints	
utilizing	the	ToxCast	HTS	assays	has	been	independently	conducted	by	Thomas	et	al174.	In	their	
analysis,	 the	 authors	 used	 different	 statistical	 classification	methods,	 in	 combination	with	
cross-validation,	 to	 test	 the	ability	of	 in	 vitro	 assays	 to	predict	 the	outcomes	of	60	 in	 vivo	
toxicity	endpoints	from	ToxCast	Phase	I	screening	data.	They	suggested	that	the	assays	and	
chemicals	 used	 in	 ToxCast	 phase	 I	 can	 be	 useful	 for	 prioritization	 of	 chemical	 testing	 but	
otherwise	have	restricted	applicability	in	predicting	in	vivo	chemical	hazards.	
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Figure	5.	Different	screening	programs	managed	by	the	US	EPA	and	its	partners.	The	ToxCast	program	has	the	most	
comprehensive	number	of	in	vitro	assays	while	the	Tox21	project	includes	the	most	diverse	set	of	chemicals	(8300).	
ToxCast	phase	III	will	extend	the	chemical	library	of	ToxCast	by	1000	new	compounds	and	an	additional	200	assays.	

	

	

Figure	6.		Inventory	sources	for	ToxCast	Phase	I	&	II	chemicals.	Phase	I	&	Phase	II	covers	1060	chemical	compounds,	
EDSP21	 (e1k)	 adds	 another	 800	 compounds	 (total:	 1860).	 Total	 2806	 chemicals	 overlap	 across	 16	 diverse	
inventories.	GRAS:	Food	and	Drug	Administration	(FDA)	-	Generally	Recognized	as	Safe.	MPV:	Medium	Production	
Volume,	FDA	CFSAN:	Center	for	Food	Safety	and	Applied	Nutrition,	EDSP:	Endocrine	Disruptor	Screening	Program,	
NTP:	National	Toxicology	Program,	TRI:	Toxics	Release	Inventory,	IRIS:	Integrated	Risk	Information	System,	HPV:	
High	Production	Volume.	
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2 Motivation	and	aims	
Multiple	studies	were	performed	 in	 the	area	of	QSAR	prediction	of	 toxicity.	These	studies,	
however,	were	limited	in	their	scope,	the	number	of	machine	learning	algorithms	used,	and	
the	 diversity	 of	 the	 descriptor	 packages	 or	 the	 integration	 of	 applicability	 domain	 for	
estimation	of	model	confidence	in	predicting	new	compounds.	The	aim	of	the	current	thesis	
was	to	improve	the	situation	and	study	different	aspects	of	the	utilization	of	high	throughput	
screening	in	predictive	toxicology.	

- The	work	was	supposed	to	expand	on	the	analysis	of	the	HTS	in	vitro	assays	ability	to	
build	 a	 bioactivity	 signature	 both	 alone	 and	 in	 combination	with	 different	 in	 silico	
descriptor	packages.	In	particular,	more	in	silico	descriptor	packages	and	classification	
algorithms	 using	 comprehensive	 validation	 protocols	 (bootstrap	 aggregation	 and	
cross-validation)	were	to	be	assessed.		

- Another	objective	of	 this	work	was	 investigating	 the	ability	of	 in	silico	modeling	 to	
predict	 the	 outcome	 of	 HTS	 screening.	 For	 this	 purpose,	 a	 wide	 range	 of	 stress-
response	 elements	 and	 nuclear	 receptors	 that	 are	 associated	 with	 toxicity	 in	
mammals	was	to	be	examined	in	multiple	QSAR	studies.		

All	QSAR	studies	in	this	work	aimed	to	be	complemented	with	applicability	domain	estimation	
to	assess	the	suitability	of	models	for	application	within	the	scope	of	any	given	chemical	space.	
Structural	information	and	in	vitro	pathways	were	also	to	be	used,	when	possible,	to	provide	
mechanistic	interpretation	for	the	witnessed	toxicity.	All	studies	should	be	designed	to	comply	
with	 the	 OECD	 guidelines	 for	 QSAR	model	 building.	Models	 were	 designed	 to	 be	 publicly	
accessible	 to	 assist	 regulators	 and	 toxicologist	 in	 screening	 their	 chemical	 libraries	 for	
potential	toxicity.	

The	overall	 aim	of	 the	work	was	 to	present	an	 in-depth	examination	of	 the	 successes	and	
limitations	of	 the	 current	HTS	 initiatives	 including	 ToxCast,	 Tox21	 and	others	within	QSAR	
studies.	 It	 was	 conceptualized	 to	 include	 construction	 of	 in	 silico	 QSAR	 models	 for	 the	
prediction	 of	 in	 vitro	 assays	 outcomes,	 analysis	 to	 which	 extent	 in	 silico	 descriptors	 can	
capture	 information	 in	 the	 in	 vitro	 assays	 (some	 in	 vitro	 assays,	 such	 as	 the	 activation	 of	
several	 nuclear	 receptors,	 have	 already	 been	 associated	 with	 potential	 toxicities),	 the	
prediction	of	such	outcome	using	computational	modeling	alone	that	could	save	both	time	
and	 cost,	 assessment	 of	 the	 sources	 of	 variability	 in	 the	 datasets,	 and	 finally	 testing	 the	
applicability	of	an	online	tool	deployed	for	the	exploration	of	in	vitro	assay	datasets.		
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3 Tools	and	methods	

3.1 Experimental	data	sources	
As	QSAR	aims	 to	correlate	chemical	 structures	 to	 their	activities,	 the	 first	 step	 is	acquiring	
reliable	 and	 consistent	 experimental	 activity	 data	 for	 such	 compounds.	 The	 principle	 of	
“defined	endpoint”	encourages	using	data	from	a	single	source	to	ensure	the	uniformity	of	
experimental	conditions.	However,	single	experiments	rarely	hold	enough	data	for	a	proper	
QSAR	model	construction.	For	practical	reasons,	data	is	often	collected	from	multiple	sources.	
Therefore,	 data	 curation	 is	 essential	 to	 safeguard	 the	 compatibility	 of	 experimental	
conditions.	Thorough	examination	of	 literature	 is	therefore	necessary	to	acquire	data	from	
reliable	sources.	

Luckily,	reliable	data	collections	exist.	Multiple	public	databases	hold	a	capital	of	experimental	
data	 for	 compounds	 covering	 a	 wide	 range	 of	 properties	 (physicochemical,	 biological,	
toxicological	as	well	as	data	on	environmental	fate).	Among	these	databases	are	PubChem175,	
ChemSpider176	and	ChemExper177.	The	PubChem	BioAssay	database	allows	the	examination	
of	information	in	PubChem	BioAssay	records,	including	experimental	conditions	provided	by	
assay	depositors	as	well	as	chemical	annotations	from	PubChem.	Assay	information	can	be	
retrieved	through	the	assay	ID	(AID)	while	information	about	certain	chemicals	can	generally	
be	accessed	through	the	Chemical	Abstract	Registration	Number	(CASRN)178,179	or	a	structural	
representation	such	as	SMILES	or	a	structure	hash	as	the	INCHI180	key.	The	US	EPA	also	offers	
a	large	set	of	databases	through	its	online	warehouse	ACToR181,182	(Aggregated	Computational	
Toxicology	 Resource).	 Data	 is	 searchable	 online	 though	 a	 web-interface	 and	 can	 also	 be	
downloaded	for	offline	analysis.	

	Another	 potential	 source	 of	 data	 collections	 comes	 from	 QSAR	 modeling	 software	 that	
integrates	experimental	databases.	OECD	QSAR	toolbox	holds	a	large	set	of	referenced	entries	
accessible	 through	 its	 user-interface.	 It	 allows	 searching	 through	 a	 multitude	 of	
physicochemical	 properties	 and	 environmental	 endpoints.	 The	 EPA	 software	 “Estimation	
Program	 Interface	 (EPI)	 Suite”	 also	 publishes	 its	 datasets	 publicly.	 The	 Online	 Chemical	
Modeling	environment	(OCHEM)183	also	publishes	referenced	records	of	experimental	data	
used	 in	 building	 QSAR	 models.	 Other	 related	 projects	 based	 on	 OCHEM,	 such	 as	 QSPR	
Thesaurus184,185	and	iPrior186,187	follow	the	same	strategy.	

While	these	sources	are	generally	reliable,	online	datasets	as	well	as	those	integrated	in	QSAR	
modeling	software	may	still	hold	errors188.	One	of	the	commonly	encountered	errors	is	the	
presence	of	duplicates	of	molecules.		

Curation	 is	 needed	 not	 only	 for	 experimental	 data	 but	 also	 for	 the	 chemical	 structure	
representations.	Some	substances	may	be	excluded	from	a	QSAR	analysis	due	to	the	lack	of	
appropriate	cheminformatics	techniques	for	their	handling.	For	example,	mixtures,	inorganic	
and	organometallic	 compounds	would	 generally	 be	 discarded	 from	 the	 datasets.	 Salts	 are	
generally	handled	by	removal	of	counter-ion	and	neutralization	of	the	charges.	When	data	is	
being	collected	from	multiple	sources,	certain	chemotypes	could	be	represented	differently.	
For	example,	diverse	 chemical	 sketching	 software	could	handle	Nitro-groups	and	aromatic	
rings	differently.	Thus,	a	normalization	of	such	chemotypes	is	important	to	ensure	consistency	
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in	 descriptor	 calculation.	 More	 difficult	 cases	 such	 as	 poly-zwitterions,	 tautomers189,	 or	
anionic	 heterocycles	 need	 more	 effort	 and	 multiple	 normalization	 steps188.	 For	 example,	
choosing	between	keto-enol	forms	could	have	a	significant	effect	on	the	predictivity	of	QSAR	
models	built	with	one	form	or	the	other.	Such	decision	can	be	taken	with	knowledge	of	the	
compound's	mechanism	of	action,	if	it	is	known	for	the	investigated	activity190.	

	

Figure	 7.	 	 Data	 curation	 process	 in	 QSAR	 model	 building	 including	 the	 removal	 of	 structures	 that	 cannot	
represented	by	descriptors	(such	as	mixtures	and	inorganics,	etc.)	and	the	standardization	of	the	representation	
of	different	functional	groups	and	3D	structure	generation	(when	applicable).	Finally,	whenever	possible,	a	manual	
expert	review	may	be	valuable	(e.g.,	for	detecting	abnormalities	and	picking	correct	tautomer	forms).	

Finally,	duplicate	records	should	be	inspected.	These	duplicates	could	be	identical	records	that	
can	be	easily	fixed	by	removing	the	redundant	ones.	More	often,	duplicates	represent	exact	
chemical	 structures	 with	 varying	 activity	 response.	 This	 could	 be	 due	 to	 different	
measurement	 units,	 error	 in	 data-entry	 or	 varying	 experimental	 conditions	 or	 inter-lab	
variations.	 For	 every	 QSAR	 study	 all	 values	 should	 be	 converted	 to	 an	 appropriate	
measurement	 unit	 suitable	 for	 the	 study	 (example:	 molar	 units	 rather	 than	 weights	 to	
describe	activity).	Data-entry	errors	could	be	fixed	by	going	back	to	the	original	references	
and	 experimental	 records.	 That’s	 why	 a	 referenced	 data	 collection	 is	 important	 in	 QSAR	
modeling.	Inter-lab	variations	in	experimental	conditions	should	be	manually	examined	and	if	
needed,	such	data	should	be	modeled	disjointedly.	Figure	7	shows	the	steps	involved	in	the	
data	 curation	 process.	 Figure	 8	 shows	 an	 example	 molecular	 structure	 undergoing	 the	
standardization	process.	

The	manual	inspection	of	the	dataset	is	therefore	important	for	comprehensive	assessment.	
Workflow	tools	exist	that	facilitate	the	curation	and	inspection	process191.	These	tools	allow	

Initial SMILES
list

Removal of mixtures,
inorganic and
organometallic

Structural conversion,
removal of salt
counter-ions, Cleaning
(convert to 2D structures)

Normalization of certain
chemotypes

Treatment of tautomeric
forms

Removal of duplicates

Manual review

CURATED DATASET
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efforts	to	be	focused	on	the	technically	challenging	tasks	in	curation	while	automating	most	
routine	steps.	In	this	work,	the	main	tools	used	are	KNIME	and	OCHEM.		

	

Figure	8.	Examples	of	chemicals’	preprocessing	steps.	

	 	

Chemotype (Nitro group) standardization

Charge neutralization

Salt counter-ion removal

Solvent removal
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3.2 Workflow	tools	

3.2.1 OCHEM	/	iPrior	
OCHEM183	offers	an	 interactive	web	 interface	(http://www.ochem.eu)	that	may	be	used	to	
explore	 the	 data,	 construct	 QSAR	models	 and	 run	 predictions.	 It	 also	 offers	 the	 ability	 to	
interpret	results	using	prediction-driven	matched	molecular	pairs192.	Handling	large	datasets	
and	thousands	of	QSAR	models	is	more	convenient	using	workflow	systems	such	as	KNIME193.	
For	that,	OCHEM	exposes	a	number	of	methods	through	SOAP	web	services194.	These	methods	
allow	 the	 user	 to	 login,	 upload	 data,	 create	 properties,	 create	 or	 delete	 QSAR	 models,	
download	 model	 statistics,	 and	 to	 run	 predictions	 on	 the	 constructed	 models.	 OCHEM	
implements	an	XML	format	that	allows	users	to	configure	the	QSAR	modeling	tasks	regarding	
all	 steps	 including	 descriptors	 calculation,	 descriptors	 pre-filtering,	 and	 configuring	 the	
machine	learning	algorithms.	

iPrior	 was	 developed	 based	 on	 OCHEM183	 and	 QSPR	 Thesaurus184	 platforms.	 It	 offers	 an	
interactive	 web	 interface	 (http://iPrior.ochem.eu)	 (screenshot	 shown	 in	 Figure	 9).	 Like	
OCHEM,	it	can	be	used	to	explore	the	data,	construct	QSAR	models	and	run	predictions.		

All	models	are	associated	with	a	unique	identification	number	(model	id).	That	id	can	be	used	
to	 access	 the	model’s	 profile	 page	 (see	 Figure	 10).	 To	 access	 a	 certain	model,	 users	 visit:	
http://iPrior.ochem.eu/model/[modelID]	 replacing	 [modelID]	with	 the	model	 identification	
number.	The	profile	page	lists,	besides	the	model	name	and	property	predicted,	the	algorithm	
and	descriptors	used,	pre-filtering	parameters	as	well	as	the	model’s	statistics.	From	this	page,	
users	have	also	access	to	the	applicability	domain	graphs	as	shown	in	Figure	11.	These	graphs	
are	 automatically	 calculated	 (whenever	 applicable)	 based	 on	 the	 distance-to-model	 (DM)	
approach195.	 There	 are	multiple	 DMs	 implemented	 on	 the	 platform	 such	 as:	 the	 standard	
deviation	 for	 an	 ensemble	 of	models	 (STDEV)	 such	 as	 in	 the	 case	 of	 bagging	models,	 the	
correlation	in	the	models	space	(CORREL)196	and	the	Mahalanobis	distance	(LEVERAGE).	

Model	quality	can	be	judged	through	the	statistical	parameters	presented	in	the	model	profile	
page.	Whenever	users	are	satisfied	with	the	quality	of	 the	model	 they	can	apply	 it	 to	new	
compounds.	 They	 get	 the	 option	 to	 draw	 a	 chemical	 structure	 directly	 through	 the	 web	
browser,	 select	 from	 a	 previous	 dataset	 or	 upload	 their	 own	 structure	 file	 in	 SDF	 format.	
Modeling	results	and	statistics	can	also	be	queried	using	workflow	systems	such	as	KNIME.	
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Figure	10.		Model	profile	page	for	a	good	performing	model	showing	(1)	model	name	(2)	model	id	(3)the	predicted	
endpoint	(4)	the	machine-learning	algorithm	used	(5)	The	configuration	for	the	learning	algorithm	and	the	pre-
filtering	 parameters	 (6)	 The	model’s	 accuracy,	 balanced	 accuracy,	Matthew’s	 Correlation	 Coefficient	 and	 area	
under	the	receiver	operating	characteristic	curve	(AUROC)	(7)	The	ROC	curve	(8)	model	confusion	matrix	showing	
hit	rate	and	precision	(9)different	tools	allowing	model	statistics	download,	model	replication,	exporting	model	
configuration	or	analyzing	the	data	matched	molecular	pairs.	

	

	

Figure	11.	 	 The	applicability	domain	graph	 for	 the	above	model	 showing	distance-to-model	 (DM)	 in	 respect	of	
standard	deviation	of	the	ASNN	ensemble	(x-axis)	and	model	accuracy	(y-axis)	
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3.2.2 KNIME	
KNIME193,197	 (Konstanz	 Information	Miner)	 is	 a	 data	 analysis	 environment	 with	 a	modular	
design.	It	allows	data	scientists	to	graphically	program	their	data	inspection	routines.	It	also	
allows	an	intuitive	approach	for	analysis.	The	software	platform	was	originally	designed	at	the	
chair	of	Bioinformatics	and	Information	mining	at	the	University	of	Konstanz.	Since	then,	 it	
became	widely	 adopted	by	 data	 scientists	 in	 different	 disciplines198.	 It	 implements	 a	 user-
friendly	graphical	workbench	based	on	the	Eclipse	open-source	platform.	KNIME	workbench	
can	 be	 used	 throughout	 the	 entire	 data	 analysis	 process	 including	 initial	 data	 access,	
download,	transformation,	inspection,	modeling,	prediction	analytics	as	well	as	visualization	
and	report	generation.	

KNIME.com	AG	now	develops	multiple	tools.	The	KNIME	Desktop	is	a	free	and	open-source	
workbench	 platform	 that	was	 extensively	 used	 in	 this	work.	 It	 is	 licensed	 under	 the	GNU	
General	Public	License	(GPL)199	and	includes	more	than	1000	nodes	(modules)	developed	by	
the	Company	or	its	partners	or	contributed	by	the	users’	community.	Many	well-known	third-
party	 tools	 are	 integrated	 with	 KNIME	 and	 extend	 its	 functionalities.	 They	 range	 from	
statistical	 analysis	 and	 data	 mining	 tools	 such	 as	 WEKA200,201,	 R202	 and	 MATLAB203	 to	
Cheminformatics	 tools204	 such	 as	 CDK,	 RDKit,	 Chemaxon,	 EMBL-EBI	 tools	 inter	 alia.	 For	
example,	 through	 Erl	Wood	 Informatics,	 the	 Lilly	 group	 published	 30	 open	 source	 KNIME	
nodes205.	 These	 include	 format	 conversion	nodes,	 viewers	 as	well	 as	 nodes	 for	 fingerprint	
generation,	 docking,	 R-group	 analysis,	 matched	 pairs,	 multi-objective	 optimization	 and	
activity	cliffs	analysis.	

Borrowing	from	its	parent	platform,	Eclipse,	KNIME	is	organized	into	a	set	of	windows.	This	
section	gives	a	brief	description	of	the	important	windows.		

• The	 workflow	 editor	 is	 the	 main	 window,	 in	 which	 the	 visual	 programming	 and	
construction	 of	 the	 workflow	 takes	 place.	 Multiple	 workflows	 can	 be	 opened	
simultaneously	in	different	tabs.	

• The	 “Node	 Repository”	 window	 lists	 all	 installed	 and	 initialized	 nodes	 (modules)	
available	 for	 use.	 Nodes	 are	 sorted	 in	 an	 intuitive	 tree	 structure	 based	 on	 their	
function	(for	the	native	nodes)	or	their	provider	(for	third-party	nodes).	Nodes	can	
be	 searched	 based	 on	 their	 name.	 Every	 node	 performs	 a	 specific	 function	 (for	
example:	 filter	 rows).	 Scripting	 nodes	 are	 available	 that	 allows	 the	 execution	 of	
custom	scripts	in	Perl,	Java,	Python,	R,	MATLAB	among	many	languages.	

• “Favorite	Nodes”	window	is	similar	to	the	“Node	repository”	but	only	listing	the	latest	
and	most	 frequently	 used	 nodes	 as	well	 as	 the	 user’s	 personal	 favorite	 nodes.	 It	
provides	a	useful	shortcut	to	the	user	saving	the	effort	of	searching	among	the	nodes	
tree.	

• The	“Node	Description”	window	displays	a	quick	help	article	describing	the	currently	
selected	node,	its	actions	and	supported	input	and	output	ports.	

• 	“Console”	 window	 displays	 the	 textual	 messages	 concerning	 the	 workflow	
execution.	This	includes	warnings	and	error	messages.	

• “Outline”	window	shows	a	graphical	thumbnail	of	the	entire	workflow	and	highlights	
the	 section	 currently	 viewed	 in	 the	main	window.	 This	window	 is	 useful	 for	 large	
workflows	where	scrolling	through	the	workflow	space	might	be	confusing.	
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For	building	workflows,	nodes	are	dragged	from	the	Node	Repository	into	the	workflow	editor	
to	be	 included	 in	 the	workflow.	Nodes	can	be	connected	 to	each	other	 through	 input	and	
output	ports.	The	compatibility	of	such	connections	is	governed	by	the	corresponding	node	
classes’	metadata.	Branching	of	the	workflow	is	permitted.		

For	executing	workflows,	 the	nodes	are	executed	 in	order	 (left-to-right)	according	 to	 their	
connectivity.	 If	 the	workflow	has	multiple	 left	edges	(possible	starting	points)	or	branching	
points,	they	would	be	executed	in	parallel.	Almost	all	nodes	process	input	data	on	row-by-row	
basis.	KNIME	can	also	interact	with	external	software	tools	(through	the	“External	tool”	node)	
or	with	any	external	web	service	(through	“Generic	Web-service	Client”	node).		

OCHEM	also	offers	several	nodes	for	directly	integrating	into	KNIME206.	These	nodes	aim	to	
rendering	essential	OCHEM	features	accessible	 in	KNIME	workflows.	Among	these	features	
are	 executing	 QSAR	 prediction	 as	 well	 as	 importing	 and	 exporting	 data.	 However,	 more	
features	 can	 be	 directly	 accessed	 directly	 through	 calling	 OCHEM	 SOAP	 web	 services	 via	
KNIME	 “Generic	Web-service	 Client”	 node.	 Throughout	 this	 work,	 this	 node	 was	 used	 to	
bridge	 between	 both	 platforms	 as	 necessary.	 This	 proved	 particularly	 useful	 in	 uploading	
sizable	sets	of	in	vitro	data,	building	a	large	number	of	QSAR	models	and	downloading	their	
statistics.		

3.3 In	silico	representation	of	chemicals	
While	 researchers	 regularly	 use	 the	 International	 Union	 of	 Pure	 and	 Applied	 Chemistry	
(IUPAC)	names	or	2D	sketches	to	refer	to	chemical	structures,	these	forms	are	typically	not	
suitable	for	computation	purposes.	Computer-friendly	molecule	depictions	are	usually	non-
directed	graph	representations	of	the	molecular	structures.	Among	the	most	used	are:	SMILES	
/	Unique	SMILES,	Molfile	/	SDF,	MOL2	and	InChI	/	InChIKey.		

SMILES	(Simplified	molecular	input	line	entry	specification)207	is	an	ASCII	string	representation	
of	the	molecular	structure	that	was	designed	to	be	short,	unambiguous	and	human-readable.	
SMILES	 are	 not	 unique	 (i.e.,	 single	 chemical	 structures	 can	 have	 multiple	 SMILES	
representations).	However,	canonicalization	algorithms	have	been	developed	that	allow	the	
generation	 of	 the	 same	 SMILES	 string	 for	 any	 given	molecule.	 This	 unique	 selection	 of	 a	
specific	representation	forms	the	unique	(canonical)	SMILES208.	Other	set	of	rules	is	used	to	
denote	chirality,	isotopism	and	configuration	about	double	bonds.	Collectively,	these	rules	are	
referred	to	as	isomeric	SMILES180.	The	shortness	of	the	representations	comes	at	the	expense	
of	disposal	of	specific	atomic	coordinates	and	thus	SMILES	is	not	suitable	for	distinguishing	
conformations.	

The	 short	 SMILES	 string	 is	 generated	 following	 a	 graph-based	 approach;	 by	 printing	 the	
symbol	nodes	encountered	 in	a	depth-first	 tree	 traversal	of	 the	chemical	graph.	Hydrogen	
atoms	 are	 removed	 and	 cycles	 are	 broken	 into	 a	 spanning	 tree.	 Numeric	 suffix	 labels	 are	
added	to	designate	connected	nodes	in	places	where	cycles	were	broken.	Branching	points	
on	the	tree	are	marked	by	parentheses.	

InChI	(IUPAC	International	Chemical	Identifier)209	is	another	textual	one-string	representation	
of	 molecular	 structures	 that	 was	 originally	 developed	 by	 the	 IUPAC210	 and	 the	 National	
Institute	 of	 Standards	 and	 Technology	 (NIST)211.	 InChI	 provides	 a	 human-readable	
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representation	suitable	for	electronic	chemical	information	storage212,213.	The	algorithms	are	
non-proprietary	and	were	later	expanded	through	the	InChI	Trust214,215.		

The	InChI	specifications	represent	chemical	structures	 in	the	form	of	 layers.	There	are	four	
important	 layers	 included	in	the	standard	InChI	format.	They	describe	the	atoms	and	bond	
connectivity	 (main	 layer),	 tautomerism,	 stereochemistry,	 isotopism	 as	 well	 as	 electronic	
charge	 information214.	 Some	 layers	 (such	 as	 tautomerism)	 are	 not	mandatory	 and	 can	 be	
omitted.	The	advantage	of	separator-prefix	format	is	the	possibility	to	parse	large	amounts	of	
molecules	in	InChI	representation	by	wildcards	or	regular	expressions	to	filter	molecules	with	
specific	features.	The	layers	and	sub-layers	are	separated	by	a	"/"	delimiter.	Layers	also	begin	
with	a	characteristic	prefix	letter	(except	for	the	chemical	formula	sub-layer	of	the	main	layer).	
The	presence	of	such	delimiter	and	prefixes	facilitate	the	computer	sub-search	of	information	
in	certain	layers	of	information	using	wildcards	and	regular	expressions.		

A	 hashed	 version	 of	 the	 InChI	 representation	 was	 developed	 to	 facilitate	 search	 engine	
indexing	of	chemicals	on	the	web.	The	format	is	called	InChIKey	and	embodies	a	27-character	
string	 generated	 by	 hashing	 the	 standard	 InChI	 representation	 using	 the	 SHA-256.	 The	
InChIKey	 comprises	 4	 parts	 separated	 by	 hyphens.	 The	 first	 14	 characters	 hash	 the	
connectivity	information	layer	in	the	original	InChI,	the	next	9	characters	hash	the	other	layers,	
then	a	single	character	 indicates	the	InChI	algorithm	version.	Finally,	a	checksum	character	
verifies	the	consistency	of	the	key	record.	Due	to	the	nature	of	the	algorithm,	a	minute	chance	
of	hash	collision	exists	(i.e.,	two	different	compounds	having	the	exact	same	hash).	This	was	
estimated	as	1	in	75	billion	unique	structures216.	While	the	hash	cannot	give	information	on	
the	chemical	structures,	it	is	used	mainly	for	indexing	and	searching	large	chemical	databases.	
Figure	12	displays	some	examples	of	SMILES,	InChI,	InChIKey	representations	as	well	as	a	2D	
depiction	of	dioxin.		

Molfile	 (or	 MDL)	 is	 a	 chemical-table	 file	 format217.	 It	 was	 originally	 developed	 by	 MDL	
Information	Systems	(MDL)218,	which	is	now	a	subsidiary	of	Dassault	Systemes219.	It	consists	
of	two	main	sections,	the	header	(which	holds	the	substance	name,	software	used	to	generate	
the	 file	 as	 well	 as	 any	 other	 arbitrary	 information	 or	 comments)	 and	 a	 connection	 table	
section.	The	connection	table	contains,	in	addition	to	the	counts	line,	three	blocks	for	atoms,	
bond	and	properties.	The	counts	line	describes	the	total	number	of	atom	types,	atoms	and	
bonds	as	well	as	the	specifications	version.	The	atoms	block	details	the	Cartesian	coordinates	
(in	 angstroms)	 for	 each	 atom	 (1	 line	 per	 atom)	 as	well	 as	 its	 atom	 type.	 The	 bonds	 block	
describes	the	connection	between	atoms	(referring	to	their	order	in	the	atoms	block)	as	well	
as	 the	 bond	 type.	 Finally,	 the	 properties	 section	 describes	 any	 complex	 information	 or	
properties	available	about	the	substance.	While	this	format	is	not	as	concise	as	the	SMILES	or	
InChI,	it	was	designed	to	support	storing	detailed	information	about	the	chemical	structures.		

SDF	(structure-data	 file)	extended	the	chemical-table	 file	 format	by	adding	the	support	 for	
storing	 additional	 information.	 The	 format	 provides	 the	 flexibility	 in	 representing	 any	
additional	metadata	through	a	key-value	pair	system	(termed	“tags”).	Such	information	can	
vary	 from	 molecule	 synonyms	 to	 measured	 experimental	 data	 (e.g.,	 logP)	 or	 calculated	
molecular	properties	(as	molecular	weight).	The	format	also	supports	the	storage	of	multiple	
structures	in	the	same	file	separated	by	a	four-dollar-sign	$$$$	delimiter.	
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MOL2	is	another	chemical	format	that	was	developed	by	Tripos.	To	avoid	restrictions	of	fixed	
file	formats,	the	format	specifications	are	feely	available220.	Similar	to	MDL	Molfile	format,	the	
Mol2	is	ASCII-based	molecule	representation.	It	can	store	information	on	atom	coordinates,	
atom	connectivity	and	bond	types,	as	well	as	other	additional	information.	It	supports	more	
atom	types	than	SDF.	For	example,	it	distinguishes	aromatic	and	non-	aromatic	carbon	atoms.	
It	 can	 also	 store	 partial	 atom	 charges.	 This	 is	 an	 important	 feature	 for	 calculating	 charge-
sensitive	descriptors	in	QSAR.		

	

IUPAC:	2,3,7,8-tetrachlorodibenzo[b,e][1,4]-dioxin	

SMILES:	Clc2cc1Oc3c(Oc1cc2Cl)cc(Cl)c(Cl)c3	

InChI:	1S/C12H4Cl4O2/c13-5-1-9-10(2-6(5)14)18-12-4-8(16)7(15)3-11(12)17-9/h1-4H	

InChIKey:	HGUFODBRKLSHSI-UHFFFAOYSA-N	

Figure	12.		Molecular	representation	of	Dioxin	in	different	formats	

3.4 Molecular	descriptors	
A	 molecular	 structure	 descriptor	 can	 be	 considered	 a	 mathematical	 representation	 of	 a	
molecule,	 which	 captures	 certain	 structural	 information.	 An	 important	 criterion	 for	 the	
success	 of	 QSAR	 studies	 is	 the	 degree	 to	 which	 these	 descriptors	 capture	 structural	
information	 relevant	 to	 the	biological	 activity	or	 property	being	 studied.	 For	 example,	 if	 a	
property	is	sensitive	to	chirality	while	the	descriptors	used	are	not,	one	should	not	expect	a	
good	performance	of	such	models.		

Descriptors	 may	 represent	 physicochemical	 parameters	 (e.g.,	 hydrophobic,	 steric,	 or	
electronic).	 They	 may	 also	 be	 structural	 descriptors	 (e.g.,	 frequency	 of	 occurrence	 of	 a	
substructure),	 topological	 (e.g.,	 connectivity	 indices),	 electronic	 (from	 a	 molecular	 orbital	
calculation),	 geometric	 (e.g.,	 from	 a	 molecular	 surface	 calculation),	 inter	 alia.	 Many	
descriptors	were	specifically	developed	to	suit	a	particular	problem	or	group	of	problems.	The	
number	of	descriptor	can	now	be	measured	in	thousands.	It	shows	that	there	is	no	end	to	the	
ways	by	which	one	can	represent	a	chemical	structure221,222.	

Chemical	 compounds	are	considered	complex	 systems	with	different	ways	of	 representing	
them222.	Most	 chemical	 properties	 cannot	 be	 directly	 derived	 from	 the	 summation	 of	 the	
contribution	of	its	individual	parts	(atoms	or	fragments).	

In	 silico	 descriptors	 convert	 the	 structural	 representations	 of	 molecules	 into	 a	 matrix	 of	
numbers	allowing	statistical	methods	(e.g.,	machine	learning	algorithms)	to	correlate	them	to	
the	properties	of	interest.	Molecular	descriptors	can	be	generally	classified	according	to	the	
information	used	in	their	calculation:	
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– 0D-descriptors:	These	can	be	calculated	directly	from	the	chemical	formula.	Specific	
atom-type	counts,	constitutional	indices	and	molecular	weight	are	examples	for	these	
descriptors.	

– 1D-descriptors:	Require	only	fractional	knowledge	about	the	chemical	structures	with	
regard	to	fragments	and	functional	groups.	It	is	used	in	substructure	analysis	such	as	
structural	 alerts223,224	 that	 correlate	 the	 presence	 of	 certain	 fragments	 (or	 their	
counts)	with	pharmacological	or	toxicological	activities.	

– 2D-descriptors:	are	calculated	form	the	molecular	topological	graph	representation	
based	on	 graph	 theory.	 Topological	 and	 connectivity	 indices	 are	 examples	 of	 such	
descriptors.	SMILES	representations	(2D)	were	also	used	as	molecular	descriptors	in	
building	QSAR225	models.	

– 3D-descriptors:	They	require	knowledge	about	the	molecular	geometry.	This	can	be	
obtained	 theoretically	 (ab	 initio),	 experimentally	 (e.g.,	 X-ray)	 or	 using	 a	molecular	
mechanics	simulation	among	other	approaches.	These	descriptors	are	derived	from	
the	3D-representations	of	a	certain	conformer	of	the	molecule	under	investigation.	
An	example	of	such	descriptors	is	the	3D-polar	surface	area.	

– 4D-descriptors:	 study	multiple	 conformations	of	 the	molecule	of	 interest	 and	 thus	
account	for	the	flexibility	of	the	molecular	representation.	This	notion	is	used	in	the	
Grid-based	 QSAR	 techniques	 such	 as	 Comparative	 Molecular	 Field	 Analysis	
(CoMFA)226,227	 by	 analyzing	 the	 averages	 and	 standard	 deviations	 of	 the	 3D-
descriptors	 calculated	 from	 an	 ensemble	 of	 conformations	 for	 the	 structures	 of	
interest.	

Other	descriptors	that	depend	not	only	on	the	substance’s	structure	but	also	on	its	interaction	
with	the	target	protein	are	called	chemogenomic	descriptors.	They	are	only	relevant	in	the	
context	of	a	 certain	biological	 inquest	at	hand.	They	describe	 the	 interaction	between	 the	
small	 molecule	 and	 the	 biological	 target	 of	 interest	 (e.g.,	 receptor	 binding).	 They	 may	
characterize	 protein	 atomic	 coordinates,	 the	 relative	 position	 of	 the	 protein	 and	 the	
interacting	small	molecule	or	any	other	features	of	the	binding	site228.	

Descriptors	can	also	be	based	on	experimental	data	(i.e.,	biodescriptors229).	Even	if	the	exact	
small	 moleculeàtarget	 interaction	 is	 unknown,	 these	 descriptors	 can	 capture	 relevant	
information	of	the	interaction	between	the	small	molecules	and	their	biological	targets.	Data	
from	HTS-derived	concentration-response	curves230	is	an	example	of	such	descriptors.		

Another	way	of	descriptor	classification	is	to	consider	those	that	represent	some	substituent	
in	the	molecule,	and	those	that	capture	some	of	the	properties	of	the	molecules	as	a	single	
undivided	entity.		

Multiple	descriptor	packages	from	different	providers	have	been	used	and	their	performance	
was	evaluated	and	compared	 in	the	course	of	this	work.	Below	is	a	brief	summary	of	each	
package:	

ALOGPS	is	a	software	program	that	calculates	lipophilicity	(presented	as	a	log	of	the	octanol-
water	 partition	 coefficient)	 and	 water	 solubility.	 Both	 properties	 are	 important	 in	 QSAR	
modeling,	since	they	implicitly	affect	many	other	physicochemical	and	biological	properties	of	
molecules.	Therefore,	LogP	and	LogS	are	of	particular	interest	as	molecular	descriptors.	Most	
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often,	experimentally	measured	values	for	molecules	used	in	modeling	are	not	available	and	
are	 substituted	 with	 their	 predicted	 values.	 The	 underlying	 algorithm	 utilizes	 the	 ESTATE	
descriptors	and	 the	associative	neural	networks231.	Although	many	other	packages	 include	
algorithms	 for	 calculating	 these	 two	 properties	 (e.g.,	 Chemaxon	 calculators	 package),	 the	
ALOGPS	algorithm	was	specifically	selected	due	to	its	reported	higher	performance	in	many	
studies232,233.	Throughout	this	work,	version	3	of	the	software	was	used234.		

ADRIANA.Code.	This	package	was	developed	by	Molecular	Networks	and	is	now	part	of	the	
CORINA	 Symphony	 package235.	 It	 includes	 a	 collection	 of	 geometric	 and	 physicochemical	
descriptors	 (from	 single	 dimensional	 descriptors	 to	 molecular	 surfaces)	 that	 are	 easy	 to	
interpret236.	When	combined	with	linear	models	or	rule-based	trees,	it	can	be	very	useful	for	
understanding	the	effect	of	numerous	physicochemical	and	structural	factors	on	the	property	
of	 interest.	 ADRIANA.Code	 can	 utilize	 performs	 empirical	 3D	 optimization	 of	 the	 chemical	
structures	or	utilize	a	pre-optimized	representation.		

E-State	 descriptors.	 Electrotopological	 state	 descriptors	 combine	 information	 about	 the	
molecules	electronic	and	topological	properties237.	The	descriptors	are	atoms	centered	and	
divided	according	to	the	atom	/	bond	type.	The	descriptors	include	both	E-state	indices	as	well	
as	counts	(counting	atom	/	bond	type	of	the	respective	index).		

ISIDA	 Fragmentor	 utility	 is	 a	 package	 that	 calculates	 the	 molecular	 fragments	 counts	
(MFC)238,239.	The	algorithm	splits	molecules	 into	substructure	molecular	fragments	(SMF)	of	
particular	size	range.	The	presence	of	each	fragment	 is	then	counted	in	the	entire	dataset.	
Therefore,	the	number	of	descriptors	generated	(i.e.,	the	fragments	counted)	differs	based	on	
the	underlying	dataset	analyzed.	Furthermore,	for	each	fragment,	three	subtypes	are	defined.	
These	are	atom	types	only	(A),	bond	types	only	(B),	or	both	atom	and	bond	types	(AB).	This	
work	uses	fragments	of	size	range	2	-	5	atoms	with	AB	descriptors.		

Dragon	 descriptors.	 Dragon	 is	 a	 famous	 descriptors	 package	 developed	 by	 the	 Milano	
Chemometrics	and	QSAR	research	group	of	Prof.	Todeschini	and	Talete	srl221,222.	The	package	
includes	 a	 large	 collection	 of	 0D-3D	 descriptors	 that	 have	 proven	 successful	 in	 capturing	
chemical	information	relevant	to	many	QSAR	studies240.	The	descriptors	range	in	complexity	
and	therefore	they	interpretability	from	simple	atom	types	and	functional	groups	counts	to	
complicated	indices	that	are	hard	to	interpret.		

Throughout	this	work,	version	6	of	the	Dragon	software241	was	used	as	 integrated	 into	the	
OCHEM	platform.	It	calculates	4885	molecular	descriptors	grouped	into	29	different	blocks	
such	as	 topological	and	constitutional	 indices,	atom-type	E-states,	geometrical	descriptors,	
functional	groups	and	2D	and	3D	atom	pairs	inter	alia.	

GSFrag	 descriptors.	 They	 are	 a	 group	 of	 2D	 descriptors	 that	 count	 the	 number	 of	 certain	
fragments	(of	size	ranging	from	2-10	non-hydrogen	atoms).	Such	fragments	were	shown	to	
provide	 a	unique	 signature	 for	 a	wide	 range	of	 chemicals242.	An	extension	of	 this	 package	
(GSFRAG-L)	 also	 considers	 the	 fragments	 containing	 labeled	 vertex	 and	 thus	 captures	 the	
effect	of	heteroatoms.		
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Inductive	descriptors.	These	descriptors	were	developed	by	Dr.	Cherkasov	resulting	from	the	
Linear	Free	Energy	Relationships(LFER)-based	equations243.	They	are	calculated	according	to	
inductive	 and	 steric	 effect	 models	 as	 well	 as	 inductive	 electronegativity	 and	 molecular	
capacitance.	They	reflect	characteristics	of	inter-	and	intramolecular	interactions.	They	were	
used	in	many	QSAR	studies	to	successfully	model	chemical	and	biological	properties244.	

MERA	 and	MerSy	 descriptors.	MERA	 is	 a	 non-parametric	 algorithm	 that	 covers	many	 3D	
descriptors.	They	can	be	broadly	divided	into	4	categories:	Geometric	descriptors	(covering	
linear	and	quadratic	geometrical	descriptors,	molecular	volumes,	ratios	on	molecular	portions	
as	well	as	symmetry	and	chirality),	energy-related	descriptors	(Coulomb	energy	and	Van	der	
Waals	 forces	 as	 well	 as	 intermolecular	 decomposition	 energies)	 and	 physicochemical	
descriptors	(such	as	entropy,	heat	capacity,	association	probabilities	and	pKa)245–248.	

MerSy	 (MERA	 Symmetry)	 package	 extends	 the	MERA	 algorithm	 by	 providing	 quantitative	
estimations	 of	molecular	 symmetry	with	 respect	 to	 certain	 symmetry	 axes	 and	 inversion-
rotational	axis.	It	also	quantitatively	assesses	the	molecular	chirality	according	to	the	negative	
chirality	criteria	(i.e.,	absence	of	inversion-rotational	axes	in	the	molecular	point	group).	

Spectrophore	descriptors.	These	electrostatic	molecular	descriptors	are	calculated	using	the	
Electronegativity	Equalization	Method	(EEM)249.	The	calculated	descriptors	give	similar	results	
to	those	calculated	using	the	Density	Functional	Theory	(B3LYP/6-31G*)	calculations	with	high	
performance	 in	 calculation.	The	algorithm	provides	a	 fast	method	 for	 calculating	quantum	
mechanical	descriptors250.	The	descriptors	include	atomic	charges,	Fukui	functions,	hardness	
and	softness	among	other	related	descriptors.	

Quantitative	 name-property	 relationship	 (QNPR).	 These	 descriptors	 are	 concerned	 with	
directly	 converting	 chemical	names	 into	descriptors	 that	 can	be	used	 for	predicting	 target	
physicochemical	or	biological	responses.	The	descriptors	use	either	canonical	IUPAC	names	or	
SMILES	representations	as	input	and	dissects	them	into	fragments	of	preconfigured	lengths251.		

In	 this	 work	 SMILES	 representations	 were	 used	 as	 input.	 Only	 fragments	 of	 lengths	 1-3	
characters	were	concerned	with	a	minimum	fragments-count	threshold	of	5.		

Chemistry	 Development	 Kit	 (CDK)	 descriptors.	 CDK	 is	 an	 open-source	 Java	 library	 for	
structural	Cheminformatics	and	Bioinformatics252.	It	is	licensed	under	the	GNU	Lesser	General	
Public	License	(LGPL)	agreement253.	Making	it	friendly	to	integration	into	both	academic	and	
commercial	packages254.	 Therefore,	CDK	packages	gained	wide	acceptance	 in	 the	 scientific	
community255.	 CDK	 includes	 a	descriptors	 engine	 that	 is	 capable	of	 performing	2D	and	3D	
molecular	 descriptor	 calculations.	 It	 supports	 204	 descriptors	 divided	 into	 6	 blocks:	
topological,	 electronic,	 geometrical,	 constitutional,	 and	hybrid	 descriptors.	 Furthermore,	 it	
calculates	 substructure	 keys	 including	 MACCS,	 PubChem,	 and	 E-state	 keys,	 molecular	
fingerprints	of	1024	bits	based	on	the	Daylight	theory180,255.	CDK	also	provides	a	graphical	user	
interface	(GUI)	for	its	descriptors	calculations.	It	is	also	available	as	a	group	of	KNIME	nodes.	

In	this	work,	only	the	structural	descriptors	(not	the	fingerprints)	were	considered.	They	were	
calculated	using	CDK	integrated	within	OCHEM.		
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Chemaxon	 descriptors.	 These	 descriptors	 (also	 referred	 to	 as	 calculator	 plugins)	 are	
developed	 by	 Chemaxon	 Kft256.	 They	 include	 a	 range	 of	 physicochemical	 and	 biological	
properties.	The	descriptors	are	divided	 into	7	different	groups:	elemental	analysis,	 charge,	
geometry,	 partitioning,	 protonation,	 isomers,	 and	 others.	 In	 the	 course	 of	 this	 work,	
Chemaxon	 descriptor	 plugins	 were	 integrated	 into	 OCHEM	 and	 used	 for	 building	 QSAR	
models.	

3.5 Machine	learning	algorithms	

3.5.1 𝑘-nearest	neighbors	(𝑘NN)		
The	 𝑘NN	 approach	 can	 be	 used	 for	 both	 classification	 and	 regression.	 In	 classification,	 it	
functions	 through	 assuming	 that	 class	 probabilities	 are	 approximately	 uniform	 within	 its	
neighborhood.	Therefore,	it	predicts	the	new	sample’s	class	based	on	the	majority	class	of	its	
𝑘	 neighbors.	 Such	 assumption	might	 be	 invalid	 with	 high-dimensional	 datasets.	𝑘NN	was	
found	 to	 perform	 better	 in	 classification	 of	 such	 datasets	 than	 for	 regression257.	 The	
parameters	 to	 configure	 are	 the	 distance	 metric	 (e.g.,	 Euclidean	 or	 Manhattan)	 and	 the	
numbers	of	neighbors	to	consider	(𝑘).	The	distance	metric	is	usually	defined	in	the	descriptor	
space.	𝑘NN	works	well	only	 in	balanced	 training	 sets258,259.	 This	 can	be	optimized	 for	each	
dataset	 by	 iterating	 through	 different	 values	 and	 comparing	 the	 errors	 in	 prediction.	 The	
computational	needs	of	constructing	𝑘NN	models	are	typically	minimal.	This	is	due	to	the	fact	
that	the	model	can	be	fully	described	by	the	descriptors	matrix	of	its	training	set.	Therefore,	
the	majority	of	calculations	are	deferred	to	the	prediction	of	new	instances.		

In	this	work,	the	Euclidean	distance	was	used	based	on	normalized	descriptors	(with	a	0	mean	
and	 a	 standard	 deviation	 of	 1).	 As	 the	 parameter	 k	 influences	 the	 decision	 of	 class	
membership,	a	systematic	search	was	conducted	in	the	range	(1,	100)	to	optimize	the	number	
of	nearest	neighbors	that	provide	the	highest	classification	accuracy.	

3.5.2 Artificial	neural	networks	(ANN)	
ANNs	are	inspired	by	the	way	biological	neurons	work.	Multilayered	perceptrons260	are	among	
the	most	commonly	used	NN	in	which	all	output	from	one	layer	is	fed	into	the	input	of	the	
next	 layer.	 Thus,	 it	 can	be	 represented	by	a	directed	graph	of	multiple	 layers	as	 shown	 in	
Figure	13.	The	final	prediction	is	the	output	of	a	single	neuron	at	the	last	layer	of	the	network.		

𝑦(𝑥a … , 𝑥d) = 𝑓 𝑤g. 𝑥h

d

hia

	

W	=	{wij,	i	=	1..L,	j	=	1..Ni},	

Equation	12	

where	(𝑥a … , 𝑥d) 	represent	 the	 input	 (i.e.,	 descriptors	 or	 output	 of	 the	 previous-layer	
neurons),	wi	represent	the	weights	of	neurons	and	f	is	a	non-linear	response	function,	L	is	
the	total	number	of	layers	and	Ni	is	the	number	of	neurons	in	the	ith	layer.	
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Figure	13.		Graph	representing	a	neural	network,	In	its	simple	form,	a	neural	network	consists	of	3	layers	an	input	
(attaining	descriptors),	hidden	layer	(performing	operations)	and	output	layer	(giving	predictions).	

As	exemplified	in	Equation	30,	the	neural	network	can	be	completely	defined	by	the	set	of	
neural	 weights	 applied	 on	 the	 input.	 Training	 the	 neural	 network	 (i.e.,	 constructing	 the	
predictive	model)	is	the	process	through	which	all	input	weights	to	the	neurons	are	optimized	
in	 order	 to	 minimize	 a	 predefined	 cost	 function.	Many	 training	 methods	 exist	 that	 trade	
between	 the	 quality	 of	 prediction	 and	 computational	 cost	 such	 as	 SuperSAB,	 Levenberg-
Marquardt,	momentum,	RPROP,	QuickProp	and	differential	equation.		

In	this	work,	the	associative	neural	networks	(ASNN)261,262	were	used.	ASNN	uses	𝑘NN	over	
the	space	of	ensemble	predictions.	This	allows	for	a	local	correction	for	the	ensemble	of	neural	
networks.	The	distance	is	based	on	the	correlation	between	the	vectors	of	predicted	samples	
by	 the	 networks	 of	 the	 ensemble.	 The	 configuration	 of	 the	 algorithm	 was	 kept	 to	
OCHEM/iPrior	 defaults	 (i.e.,	 3	 neurons	 in	 the	 hidden	 layer,	 1000	 iterations,	 using	 model	
ensemble	size	of	64,	the	method	for	neural	network	training	was	SuperSAB263).	

3.5.3 C4.5	decision	tree	
C4.5	is	a	decision	tree	classifier	based	on	the	concept	of	entropy	gain264.	The	tree	nodes	are	
optimized	to	split	the	molecule	sets	most	effectively	between	the	binary	classes.	The	criterion	
for	 this	 optimization	 is	 choosing	 the	 descriptor	 that	 results	 into	 maximum	 normalized	
information	gain	(entropy	difference).		

As	most	decision	trees,	C4.5	trees	are	built	in	a	top-down	manner265.	At	each	decision	point	
(node),	an	attribute	is	selected	that	can	maximize	the	separation	between	instance	classes.	
The	tree	continues	to	build	until	a	stop	criterion	is	reached	or	all	instances	fall	into	a	single	
category	and	therefore	creating	a	leaf.	Multiple	branches	can	reutilize	the	same	attribute	at	
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different	levels.	Decision	trees	are	generally	easy	to	interpret	as	they	can	be	translated	into	a	
rule	set.	Decision	trees	can	be	represented	as	a	connection	graph	without	cycles266	as	shown	
in	Figure	14.	The	attributes	are	 represented	as	nodes	while	 the	edges	represent	particular	
values	of	the	parent	attribute.		

	

Figure	14.		Example	of	ID3	decision	tree	on	whether	to	play	baseball.	Nodes	(boxes)	perform	condition	checks	while	
edges	(arrows)	direct	the	logic	based	on	the	results	of	such	checks.	

C4.5	decision	trees	offer	multiple	advantages	over	its	predecessor,	the	ID3	algorithm.	It	can	
support	tree	pruning	where	the	algorithm	revises	the	created	tree	for	unnecessary	branches	
and	 trims	 them	 (i.e.,	 convert	 them	 into	 leaf	 nodes).	 C4.5	 can	 also	 support	 attributes	with	
different	costs.	Furthermore,	the	algorithm	can	ignore	missing	attribute	values	not	including	
them	into	the	entropy	calculations.	C4.5	can	also	handle	continuous	attribute	values	by	setting	
a	threshold	splitting	the	instances	into	sets	based	on	the	value	of	the	attribute	being	higher	
or	lower	than	the	set	threshold	(directed	discretization).	

In	this	work,	a	Java	implementation	of	C4.5	decision	tree	(referred	to	as	J48)	in	the	statistical	
software	WEKA200,201	was	used.	The	default	parameters	provided	by	WEKA	were	used	with	no	
further	optimization.	

3.5.4 Multiple	linear	regression	analysis	(MLRA)	
Regression	methods	 detect	 continuous	 correlation	 between	 the	 descriptor	 space	 and	 the	
property	to	be	predicted.	It	predicts	the	activity	as	a	function	of	an	optimal	linear	combination	
of	independent	variables	(descriptors),	which	is	selected	to	minimize	the	training	set	error	as	
shown	in	Equation	13	

yi		=	b0	+	b1	xi1+	b2	xi2+	…	+bp	xip	+	eI							𝑖	=	1,2,	...,	𝑛	 Equation	13	

where	n	is	the	total	number	of	instances,	p	is	the	number	of	independent	variables,	yi	is	the	
observed	response	of	the	ith	instance,	xi1,		xi2,		…,	xip	are	the	independent	variables	of	the	
ith	instance	and	ei		is	the	error	term.	
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The	purpose	of	the	MLRA	algorithm	is	to	estimate	the	parameters	b0-bp.	MLR	is	based	on	the	
Orthogonal	 Least	 Square	 (OLS)	 algorithm	 that	minimizes	 the	 sum	 of	 squares	 of	 the	 error	
between	the	predicted	ŷi	and	the	observed	values	(yi).	The	underlying	assumption	is	that	the	
errors	are	a	normally	distributed	random	variable	with	constant	variance.	This	can	generate	
optimal	models	when	the	variables	(i.e.,	descriptors)	are	unbiased,	efficient,	and	consistent.	
In	which	case,	according	to	the	law	of	large	numbers267,	the	bias	and	variance	approaches	zero	
as	the	number	of	instances	approach	infinity.	

Equation	13	is	more	often	represented	in	the	matrix	form	as	shown	in	Equation	14,	which	is	
more	convenient	in	software	schemes.	

ŷ	=	bX		

b	=	(X’X)-1	X’y	

Equation	14	

Where:	b	is	the	vector	of	estimated	parameters	
y	is	the	vector	of	observed	responses	
ŷ	is	the	vector	of	predicted	values	
X	is	the	matrix	of	descriptors	
	

However,	studies	reported	that	MLRA	is	prone	to	over-fitting268,269	(misinterpretation	due	to	
the	use	of	large	number	of	intercorrelated	descriptors).	The	method	is	therefore	sensitive	to	
collinearity	between	the	independent	variables.	Thus,	prefiltering	of	correlated	descriptors	is	
necessary	to	remove	insignificant	coefficients	and	reduce	the	risk	of	multi-collinearity.	

In	 this	 work,	 the	 MLRA	 method	 used	 stepwise	 variable	 selection.	 It	 eliminated	 a	 single	
descriptor	on	each	step.	The	descriptor	was	selected	for	elimination	based	on	the	t-test	when	
its	regression	coefficient	insignificantly	differed	from	zero.	The	only	parameter	in	this	method	
is	 the	p-value	 (ALPHA)	according	to	which	variables	would	be	preserved	for	 the	regression	
(p=0.05	was	used).	

3.5.5 Fast	stagewise	multiple	linear	regression	(FSMLR)270	
FSMLR	 constructs	 linear	 regression	 models	 by	 using	 greedy	 descriptor	 selection.	 It	 is	 a	
particular	kind	of	the	regression	boosting	(additive	regression)	procedure	specially	intended	
to	 utilize	 a	 three-set	 approach.	 It	 uses	 three	 different	 subsets	 for	 learning:	 training	 set,	
internal	 tuning/validation	 set	 as	well	 as	 the	 external	 test	 set.	 The	 internal	 set	 is	 used	 for	
determining	the	optimal	number	of	descriptors	considered	in	the	model.	In	this	framework,	
an	 error	 vector	 is	 calculated	 from	 the	 experimental	 measurements	 of	 the	 training	 set-
compounds.	Then,	the	descriptor	with	highest	correlation	to	this	vector	is	added	to	the	set	of	
selected	 descriptors	 its	 corresponding	 regression	model	 is	 used	 for	 recalculating	 an	 error	
vector,	which	will	be	used	in	the	next	cycle	to	select	the	subsequent	descriptor,	and	so	on.	
Such	 iterative	 descriptor	 selection	 process	 and	 the	 corresponding	 model	 formulation	
continues	until	the	minimal	prediction	error	for	an	internal	test	set	can	be	achieved.		

3.5.6 Partial	least	squares	(PLS)	
PLS	is	another	powerful	statistical	approach	that	addresses	the	problem	of	intercorrelation	of	
variables	and	the	singularity	of	X’X	due	to	large	number	of	variables	as	compared	to	instances	
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in	MLRA	(Equation	14).	PLS	is	also	known	as	principal	component	analysis	(PCA)	regression	as	
it	combines	both	PCA	and	linear	regression.	While	PLS	involves	orthogonal	transformation	to	
the	variable	space,	it	differs	from	PCA	in	its	ability	to	rank	the	components	not	only	by	their	
variance	in	the	variable	space	but	also	by	their	correlation	to	the	target	property	vector.	PLS	
decomposes	the	variables	matrix	(X)	into	orthogonal	scores	T	and	loadings	matrix	P	(called	
outer	relationship;	Equation	15)	while	decomposing	the	observations	(Y)	into	the	score	
matrix	(Z)	and	the	loading	matrix	(Q)	as	shown	in	Equation	16.	Finally,	the	two	scoring	
matrices	 (U	 and	 T)	 are	 correlated	 using	 a	 transformation	 matrix	 (B)	 (called	 inner	
relationship;	Equation	17)	which	can	be	thought	of	as	a	regression	model	relating	both	
scoring	matrices.	

X	=	T	.	P’	+	E	

Where	E	is	an	error	term	

Equation	15	

Y	=	U	.	Q’	+	F	

Where	F	is	an	error	term	

Equation	16	

U’	=B.	T’	 Equation	17	

In	PLS,	the	components	are	referred	to	as	latent	variables	(LVs).	They	are	calculated	by	singular	
value	decomposition	(SVD),	decomposing	the	cross	product	of	the	variables	as	shown	in	Figure	
15.	PLS	has	the	advantages	of	being	efficient	in	calculation	and	preserving	the	linearity	and	
therefore	 can	 support	 mechanistic	 interpretations.	 PLS	 can	 also	 be	 used	 to	 predict	
multivariate	 responses271.	PLS	has	been	widely	used	 in	QSAR	studies	and	covered	 in	OECD	
QSAR	validation	guidelines.		

In	this	work,	a	5-fold	cross-validation	protocol	(on	the	training	set)	was	used	to	automatically	
optimize	the	number	of	latent	variables.		
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Figure	15.		The	PLS	analysis	decomposes	the	descriptors	matrix	(X)	as	well	as	the	target	property	(Y).	The	score	
matrices	(T	and	U)	are	related	in	order	to	keep	the	orthogonal	transformation	

3.5.7 Random	trees	/	random	forests	(RF)		
RF272	is	another	example	of	a	decision	tree	algorithm.	The	random	trees	are	constructed	by	
choosing	random	m	variables	at	each	node,	from	the	entire	variables	domain	M,	to	form	the	
decision	at	that	node.	The	tree	is	based	on	a	randomly	selected	subset	of	the	entire	training	
set	of	N	instances.	The	subset	is	selected	through	bootstrap	sampling	(i.e.,	sampling	N	times	
with	replacement)	and	therefore	has	the	same	size	as	the	original	dataset.	

Random	 trees	 are	 often	 used	 in	 combination	 with	 a	 meta-learning	 method	 (bootstrap	
aggregation)266.	Multiple	trees	are	created	and	the	final	class	membership	results	from	the	
consensus	voting	of	individual	trees.	

In	this	work,	the	algorithm	used	was	a	Java	implementation	of	random	forests	in	the	statistical	
software	WEKA200,201.	Each	RF	model	was	constructed	with	ten	trees	As	the	RF	approach	was	
combined	with	bootstrap	aggregation	(64	sets),	each	QSAR	model	consisted	of	640	trees.	The	
default	parameters	provided	by	WEKA	were	used	with	no	further	optimization.	

3.5.8 Support	vector	machines	(SVM)		
SVM273	was	developed	by	Vapnik	 to	 address	 classification	problems274–276.	 It	was	 initially	 a	
linear	 non-probabilistic	 binary	 classification	 method.	 It	 locates	 a	 hyper-plane	 that	 can	
separate	 the	multi-dimentional	 data	 into	 two-classes.	 Placing	 such	a	hyperplane	 considers	
maximizing	the	distance	to	the	adjacent	data	points	for	both	classes	(such	distance	is	referred	
to	as	“functional	margin”)	as	shown	in	Figure	16.	When	such	a	hyperplane	that	can	classify	all	
training	examples	correctly	cannot	be	found,	a	‘soft	margin’	approach	is	proposed.	It	allows	
misclassification	of	some	instances	while	still	tries	to	maximize	the	margin	to	the	examples	
correctly	 classified277.	 This	 introduces	 extra	 parameters	 to	 measure	 and	 penalize	 for	 the	
misclassification	 of	 examples.	 The	 approach	 has	 also	 been	 generalized	 to	 multi-class	
classification	by	employing	multiple	hyperplanes.	

However,	 on	 complex	 problems,	 dependence	 could	 be	 frequently	 non-linear.	 Therefore,	 a	
non-linear	transformation	was	introduced	through	the	means	of	utilizing	a	kernel	function.	
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This	 allows	 the	 transformation	 of	 original	 data	 into	 a	 higher	 dimensional	 space	 that	 can	
separate	the	data.	Many	kernel	functions	were	developed,	among	the	most	widely	used	are	
linear,	sigmoid,	polynomial	as	well	as	radial	basis	functions	(RBF).	The	SVM	technique	was	also	
extended	to	address	regression	problems.	The	linear	model	in	the	high-dimensional	space	can	
be	described	per	Equation	18.	

𝑓 𝑋, 𝑤 = 	 𝑤g𝑔g 𝑋 + 𝑏
�

gia

	

where	𝑔𝑗	(𝐗),	𝑗	=	1,	...	,	𝑝	represent	a	set	of	nonlinear	transformations	
and	𝑏	is	the	bias	term.	

Equation	18	

The	 approach	 is	 intuitive	 and	 well	 established.	 However,	 many	 computational	 challenges	
could	arise.	There	is	also	the	risk	of	over-fitting	the	training	sets.	To	address	these	difficulties,	
SVM	 introduces	 many	 parameters,	 other	 than	 the	 kernel	 type.	 The	 most	 important	
parameters,	namely	the	cost	constant	'C'	and	the	parameter	𝜖,	are	discussed	in	this	section.	

The	parameter	C,	controls	 the	degree	of	data	 fitting	 to	 the	model.	 Its	value	 is	 typically	set	
between	0	and	10.	The	correct	value	is	a	question	that	is	only	answered	relative	to	the	dataset.	
With	a	too-high	value	the	model	runs	into	the	risk	of	over-fitting	the	training	dataset.	On	the	
other	hand,	setting	its	value	too	low	risks	unsatisfactory	fit	and	inability	to	extract	relevant	
information	 during	 model	 training.	 Therefore,	 it	 is	 necessary	 to	 adjust	 the	 C	 parameter	
relative	to	the	degree	of	noise	in	the	dataset	through	implementing	appropriate	fitting	and	
validation	techniques	(e.g.,	using	a	grid	search	with	cross-validation	method).	

The	parameter	𝜖	is	the	trade-off	between	maximizing	the	functional	margin	and	minimizing	
the	error	rate.	It	controls	the	number	of	support	vectors	(SVs)	with	the	value	of	the	epsilon	
parameter	being	inversely	proportional	to	the	number	of	selected	SVs.		

In	 this	 work,	 the	 LibSVM	 implementation	 was	 used.	 Multiple	 configuration	 options	 are	
supported	for	the	SVM	type	(either	epsilon-SVR	or	nu-SVR	or	one-class	SVM)	and	the	kernel	
type	(linear,	polynomial,	radial	basis	function,	and	sigmoid).	The	Classic	epsilon-SVR	and	the	
RBF	kernel	were	used.	A	grid	 search	was	performed	as	 specified	 in	 the	 LibSVM	manual	 to	
optimize	the	cost	“C”	and	width	parameters	of	the	RBF	kernel.	
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Figure	16.		Maximizing	the	functional	margin	in	SVM	hyperplane	selection.	The	hyperspace	with	maximal	margin	
(green)	is	preferred	for	the	separation	between	the	two	classes.	

3.6 Variable	selection	
As	discussed	earlier,	variables	(i.e.,	descriptors)	with	low	variance	can	reduce	the	performance	
of	distance	based	machine-learning	algorithms.	Also,	linear	regression	performance	suffers	as	
the	number	of	descriptors,	when	compared	to	instances,	increase.	Therefore,	in	this	work,	all	
descriptors	were	pre-filtered	prior	to	model	development.	The	following	pre-filtering	criteria	
were	used:	first,	descriptors	that	are	constant	among	all	compounds,	offering	no	information	
gain,	were	 removed.	 Then,	 normalized	 descriptors	 that	 have	 variance	 smaller	 than	 <	 0.01	
were	 removed.	 Finally,	 descriptors	 were	 grouped	 if	 they	 showed	 pair-wise	 Pearson's	
correlation	coefficient	(R)	>	0.95.	The	same	pre-filtering	steps	were	applied	to	all	descriptor	
packages	and	machine-learning	algorithms.		

Some	algorithms	 implemented	automatic	 scaling	as	part	of	 their	 training	protocols,	 i.e.,	 in	
ASNN	 the	 descriptors	 were	 scaled	 to	 [0,1]	 interval,	 in	 MLRA	 and	 𝑘NN	 the	 variables	 are	
normalized	to	zero	mean	and	unit	variance.	For	other	algorithms,	descriptors	were	scaled	to	
the	range	[0-1]	prior	to	the	application	of	the	algorithms.	The	prefiltering	step	was	also	applied	
within	 the	bootstrap	 aggregation	protocol	 for	 any	of	 the	 algorithms	used.	 Thus,	 the	exact	
numbers	of	descriptors	used	could	be	different	for	each	model.	

3.7 Goodness	of	fit	and	prediction	
The	ability	of	QSAR	model	to	derive	predictions	on	new	chemicals	not	previously	measured	is	
very	valuable.	However,	the	quality	of	such	predictions	must	be	rigorously	checked.	This	has	
also	been	highlighted	through	the	fourth	OECD	principle	regarding	the	use	of	QSAR	models	in	
hazard	assessment	of	chemicals278	(see	section	1.5.2).		
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Multiple	statistical	indices	can	be	used	to	assess	the	quality	of	a	QSAR	model222.	When	such	
parameters	are	used	to	examine	the	model’s	training	set,	they	measure	the	goodness	of	fit.	
Alternatively,	 when	 applied	 on	 a	 set	 of	 compounds	 that	 were	 not	 included	 in	 the	model	
construction	 process,	 these	 parameters	 measure	 the	 model	 Predictivity	 (i.e.,	 the	 model’s	
ability	 to	predict	properties	of	new	chemicals).	The	most	 relevant	statistical	 indices	 to	 this	
work	are	discussed	in	this	section	

Classification	parameters	

Multiple	 statistical	 indices	 were	 described	 in	 literature	 to	 measure	 the	 quality	 of	 a	
classification	model222,279.	For	a	2-class	classification	problem,	the	possible	outcome	of	a	QSAR	
model	prediction	can	be	described	using	the	confusion	matrix	as	shown	in	Table	1.	The	output	
of	a	prediction	(Positive	(class	1)	or	Negative	(class	2))	can	either	match	the	observed	class	
(True)	or	not	(False).		

Table	1.		The	confusion	matrix	for	a	2-class	classification	problem.	It	shows	all	possible	outcomes	of	a	classification	
model.	The	table	also	lists	some	statistical	parameters	that	were	used	for	judging	the	quality	of	the	QSAR	models	
throughout	the	work.		

	 Experimental	measurement	

Predicted	outcome	
True	positive	(TP)	 False	positive	(FP)	
False	negative	(FN)	 True	negative	(TN)	

	
Sensitivity	(SN)	=	TP	/	(TP	+	FN)	
Specificity	(SP)	=	TN	/	(TN	+	FP)	
Accuracy	(ACC)	=	(TP	+	TN)	/	(TP	+	FP	+	TN	+	FN)	
Balanced	accuracy	(BA)	=	(sensitivity	+	specificity)	/	2	
Matthews	correlation	coefficient	(MCC)	=	(TP	*	TN	–	FP	*	FN)	/	[(TP	+	FP)	(TN	+	FP)	(TP	+	FN)	
(TN	+	FN)]1/2	

	

3.7.1 Sensitivity	
Sensitivity	measures	 the	model’s	 ability	 to	 correctly	 predict	 a	 positive	 outcome.	 It	 is	 also	
known	as	the	True	Positive	Rate	(TPR)	or	recall	and	can	be	calculated	per	Equation	19.	

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
	 Equation	19	

3.7.2 Specificity	
Specificity	measures	 the	model’s	 ability	 to	 correctly	 predict	 a	 negative	 outcome.	 It	 is	 also	
known	as	the	True	Negative	Rate	(TNR)	or	precision	and	can	be	calculated	per	Equation	20.	A	
complementary	metric	is	called	the	False	Positive	Rate	(FPR)	or	fall-out	and	can	be	calculated	
per	Equation	22.	

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
	 Equation	20	

𝐹𝑃𝑅 = 	1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝐹𝑁

𝑇𝑁 + 𝐹𝑃
	 Equation	21	
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3.7.3 Total	accuracy	(ACC)	
Total	 accuracy	 shows	 the	 portion	 of	 the	 instances	 that	 were	 correctly	 assigned	 to	 their	
respective	class.	(i.e.,	an	accuracy	of	0.7	means	that	the	model	could	assign	70%	of	the	cases	
to	 their	 correct	 classification).	 However,	 ACC	 does	 not	 take	 into	 account	 the	 ratio	 of	 the	
classes’	size.	It	can	be	calculated	per	Equation	22.	

𝐴c𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
	 Equation	22	

3.7.4 Balanced	accuracy	(BACC)	
Total	 accuracy	 can	 be	 misleading	 when	 dealing	 with	 unbalanced	 dataset	 where	 the	
distribution	of	instances	differs	widely	between	both	classes.	Models	with	poor	performance	
can	 be	 disguised	 through	bias	 towards	 the	majority	 class.	 Therefore,	 balanced	 accuracy	 is	
more	relevant	in	assessing	such	datasets.	It	considers	both	sensitivity	and	specificity	equally	
and	can	be	thought	of	as	the	average	of	sensitivity	and	specificity	per	Equation	23.	It	is	also	
known	 as	 the	 non-error	 rate	 (NER)	 and	 is	 often	 expressed	 in	 percentage	 form	 (NER%).	 A	
complementary	metric	is	the	Error	Rate	(ER%),	which	can	be	calculated	as	shown	in	Equation	
24.	

Since	 it	 is	 common	 for	QSAR	 problems	 to	 be	 presented	 in	 unbalanced	 classes	 (e.g.,	 Small	
number	of	active	compounds	against	certain	target),	the	balanced	accuracy	is	often	the	metric	
of	choice	for	optimizing	predictive	models’	performance.	

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
	 Equation	23	

𝐸𝑅% = 	100 − 𝑁𝐸𝑅%	 Equation	24	

3.7.5 Positive	predictive	value	(PPV)	
The	positive	predictive	value	(PPV)	measures	the	proportion	of	positive	results	that	are	truly	
positive	 and	 can	 be	 calculated	 according	 to	 Equation	 25.	 A	 complementary	 metric	 that	
measures	 the	 negative	 instances	 that	 were	 misclassified	 as	 positive	 is	 called	 the	 false	
discovery	rate	(FDR)	and	can	be	calculated	per	Equation	26.	

𝑃𝑃𝑉 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
	 Equation	25	

𝐹𝐷𝑅 = 	1 − 𝑃𝑃𝑉 = 	
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
	 Equation	26	

3.7.6 Negative	predictive	value	(NPV)	
The	negative	predictive	value	(NPV)	measures	the	proportion	of	negative	results	that	are	truly	
negative	 and	 can	 be	 calculated	 according	 to	 Equation	 29.	 A	 complementary	 metric	 that	
measures	the	negative	instances	that	were	misclassified	as	positive	is	called	the	false	omission	
rate	(FOR)	and	can	be	calculated	per	Equation	30.	
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𝑁𝑃𝑉 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
	 Equation	27	

𝐹𝑂𝑅 = 	1 − 𝑁𝑃𝑉 = 	
𝐹𝑁

𝑇𝑁 + 𝐹𝑁
	 Equation	28	

3.7.7 Matthews	correlation	coefficient	(MCC)	
Matthews	correlation	coefficient	(MCC)	can	be	considered	a	correlation	coefficient	between	
the	 observed	 and	 predicted	 outcomes	 of	 the	 classification280.	 Therefore,	 it	 takes	 values	
between	 -1	 and	 +1.	Whereas	 a	 +1	 represents	 a	 perfect	 prediction	 (i.e.,	 all	 instances	were	
correctly	assigned	to	their	classes),	a	value	of	zero	represents	lack	of	correlation	between	the	
observed	and	predicted	values	(i.e.,	equivalent	to	random	predictions).	An	MCC	value	of	-1	
represents	a	perfect	 inverse	correlation	where	all	 instances	were	assigned	to	 the	opposite	
class.	 The	 MCC	 is	 another	 measure	 that	 is	 suitable	 for	 use	 in	 unbalanced	 datasets	 as	 it	
considers	 all	 the	 true	 and	 false	 positive	 and	 negative	 predictions.	 It	 can	 be	 calculated	
according	to	Equation	29:	

𝑀𝐶𝐶 = 	
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 . 𝑇𝑃 + 𝐹𝑁 . 𝑇𝑁 + 𝐹𝑃 . (𝑇𝑁 + 𝐹𝑁)
	 Equation	29	

3.7.8 Area	under	the	receiver	operating	characteristic	curve	
The	receiver-operating	characteristic	(ROC)	is	a	graphical	plot	that	describes	the	variance	in	
the	discrimination	power	of	a	binary	classification	model.	The	curve	is	created	by	plotting	the	
models'	sensitivity	against	its	fallout	(false	positive	rate)	at	various	threshold	levels	Therefore,	
The	ROC	curve	describes	the	sensitivity	as	a	function	of	fall-out	as	shown	in	Figure	17.	

The	area	under	the	ROC	curve	(AUROC)	has	long	been	used	in	model	comparison	in	machine-
learning281.	It	can	be	calculated	by	averaging	multiple	trapezoidal	approximations.	Assuming	
that	an	‘active’	compound	is	ranked	higher	than	a	‘negative’	one,	AUROC	can	be	represented	
as	the	probability	that	a	given	classifier	ranks	randomly	selected	active	compound	higher	than	
a	randomly	selected	inactive	one	when	using	normalized	units.	

AUROC	has	 the	 advantage	 of	 considering	 all	 cases	 of	 false	 and	 true	 positive	 and	 negative	
predictions	and	therefore	can	be	used	with	unbalanced	datasets.	However,	it	is	difficult	to	use	
a	single	number	to	summarize	the	entire	ROC	curve.	Such	a	number	loses	information	on	the	
performance	pattern	of	the	underlying	model	that	can	be	gained	from	the	curve	itself.	Studies	
have	suggested	that	using	AUROC	as	a	classification	metric	can	be	noisy	and	misleading282,283	
especially	in	datasets	with	small	sample	sizes284.	
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Figure	17.		Receiver	Operating	Curve	(ROC)	showing	a	classification's	model	sensitivity	as	a	function	of	the	fallout	
(1-specificity).	The	performance	of	two	hypothetical	datasets	are	shown,	a	training	set	in	blue	and	a	test	set	in	red.	

3.8 Models	comparison	
As	discussed	in	the	previous	sections,	multiple	criteria	exist	for	judging	on	the	quality	of	QSAR	
models.	Two	main	aspects	need	to	be	considered	for	comparing	multiple	models	based	on	
these	statistical	parameters.	First,	which	ones	to	use	(e.g.,	If	Model	A	has	a	higher	balanced	
accuracy	 than	model	B,	 this	does	not	necessarily	guarantee	 that	 it	will	have	a	higher	area	
under	the	ROC)	and	second,	whether	the	difference	in	the	selected	parameter(s)	is	significant	
and	not	due	to	chance	correlation.	In	this	section,	the	multi-criteria	decision	making	and	the	
statistical	significance	are	discussed.	

Multi-criteria	decision	making	(MCDM)	

Certain	 criteria	 of	 the	 dataset	 or	 the	machine-learning	method	 can	 limit	 the	 suitability	 of	
available	 parameters.	 Although	 most	 feature	 selection	 techniques	 optimize	 only	 one	
parameter	 (for	 example:	 balanced	 accuracy),	 many	 parameters	 could	 be	 simultaneously	
considered	to	achieve	a	compromise	between	predictive	ability	and	model	complexity.	Multi-
Criteria	Decision	Making	(MCDM)	methods	were	developed	to	address	this	challenge.	These	
methods	considers	multiple	statistical	parameters	by	utilizing	the	concepts	of	utility	indices	
and	desirability	to	perform	a	multivariate	ranking	to	optimally	compare	multiple	models285,286.		

The	utility	is	calculated	as	the	arithmetic	mean	of	the	parameters	under	consideration	while	
the	desirability	represents	the	geometric	mean	of	such	parameters.	The	utility	(Ui)	for	each	
non-weighted	 alternative	 parameter	 (i)	 can	 be	 calculated	 per	 Equation	 30.	 Where	 some	
parameters	are	 thought	 to	be	more	 important	 than	others,	weights	 can	be	used.	Utility	 is	
calculated	for	weighted	parameters	using	Equation	31	
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𝑈h = 𝑤g𝑡hg
�
gia 															0	 ≤ 𝑈h ≤ 1	

Where:		𝑝	is	the	number	of	criteria	𝑡	

Equation	31	

The	 desirability	 (Di)	 for	 each	 non-weighted	 alternative	 parameter	 (i)	 can	 be	 calculated	
according	to	Equation	32	while	for	the	weighted	parameters	using	Equation	33	

𝐷h = 	 𝑡ha𝑡h¹ … . . 𝑡h�
µ 																						0	 ≤ 𝑈h ≤ 1	 Equation	32	

𝐷h = 𝑡ha
º·𝑡h¹

º» …… 𝑡h�
ºµ 															0	 ≤ 𝑈h ≤ 1	 Equation	33	

The	weight	constraint	is	given	by	Equation	34:	

𝑤¼ = 1
�

gia

	
Equation	34	

The	weights	 are	 calculated	using	 the	method	of	 normalized	weights	 for	 ranked	 criteria	 as	
shown	in	Equation	35287,288:	
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Where:	
rj:	criterion	rank	
k	:	smoothing	parameter	

Equation	35	

Statistical	significance	

When	 comparing	 the	 performance	 of	 two	 models	 (e.g.,	 built	 using	 different	 descriptor	
packages	or	machine	learning	algorithms)	using	the	same	statistical	parameter	(e.g.,	balanced	
accuracy),	the	significance	of	the	difference	in	the	values	of	such	parameter	should	be	checked	
(i.e.,	Whether	81%	is	truly	higher	than	80%	on	the	given	validation	set	or	whether	that	could	
be	due	to	a	random	chance).		

The	 classical	 hypothesis	 testing	 can	 be	 used	 for	 checking	 this	 statistical	 significance	 (the	
difference	in	the	model	performance).	Two	hypotheses	are	defined;	the	null	hypothesis	(H0)	
is	the	case	that	both	QSAR	models	have	similar	performance.	While	the	alternative	hypothesis	
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claims	that	the	models	in	questions	has	a	difference	in	performance	that	cannot	be	attributed	
to	chance.	Then,	the	probability	of	the	null	hypothesis	is	calculated	(referred	to	as	the	p-value)	
given	the	dataset	at	hand.	The	p-value	is	compared	to	pre-defined	levels	(usually	0.05	is	used).	
Whenever	 the	 probability	 is	 lower	 than	 that	 level,	 the	 null-hypothesis	 is	 thought	 to	 be	
improbable	and	thus	is	rejected	in	favor	of	the	alternative	hypothesis.	The	H0	is	accepted	when	
p-value	 is	higher	 than	 the	predefined	 threshold	and	 therefore	 the	QSAR	models	would	be	
thought	to	have	similar	performance.	

Many	tests	can	be	used	to	measure	p-value.	They	are	generally	divided	into	parametric	and	
non-parametric	 tests.	 Parametric	 tests	 (such	 as	 student’s	 t-test)	 assume	 certain	 statistical	
distribution	for	the	data	(usually,	the	normal	distribution)	and	calculate	p-value	as	a	function	
of	the	statistics	distribution	parameters.	The	non-parametric	tests	(such	as	Wilcoxon	test	or	
bootstrap	test)	involve	fewer	assumptions	on	the	data	and	thus	are	more	unanimous.		

Throughout	this	work,	a	p-level	of	0.05	was	used	to	indicate	a	significant	difference.	When	a	
p-value	 of	 0.001	 was	 used,	 it	 was	 referred	 to	 as	 highly	 significant.	 The	 non-parametric	
bootstrap	test	was	used	to	calculate	p-values.	It	involves	resampling	the	original	test	set	with	
replacement	for	N	times	(N	=	1000	was	used).	The	models	in	comparison	were	applied	to	all	
generated	bootstrap	sets	and	the	statistical	parameters	of	choice	(e.g.,	balanced	accuracy	or	
AUROC)	were	calculated	and	compared	for	both	models	in	a	pairwise	fashion.	For	a	model	to	
be	superior	than	the	other	in	a	statistically	significant	manner,	it	needs	to	show	a	better	value	
for	the	metric	in	question	in	95%	of	the	comparisons	(p=0.05).	

3.9 Model	validation	

3.9.1 External	validation	
Challenging	a	QSAR	model	with	a	new	set	of	chemical	compounds	can	be	the	ultimate	test	for	
model’s	predictivity.	Prior	to	constructing	a	QSAR	model,	the	data	pool	(with	m	number	of	
instances)	 is	 divided	 into	 two	 separate	 sets	 (training	 and	 test	 sets).	 The	 training	 is	 bigger	
(typically	75-80%)	and	is	used	to	develop	the	QSAR	model.	The	smaller	test	set	(usually	20-
25%)	is	used	to	evaluate	the	model’s	predictive	ability.	The	test	set	should	not	be	included	in	
any	model	 calibration	or	descriptors	 selection	processes	 (i.e.,	 completely	neglected	during	
model	construction).	

The	external	validation	approach	is	suitable	only	for	big	datasets.	It	has	the	disadvantage	of	
not	 fully	 utilizing	 the	 data	 at	 hand	 to	 maximally	 feed	 the	 QSAR	 model	 with	 all	 available	
information.	Furthermore,	an	important	consideration	is	the	procedure	of	data	split.	While	a	
random	split	is	suitable	for	a	sufficiently	large	dataset,	smaller	datasets	(e.g.,	<50	instances)	
are	more	prone	to	selection	bias.	For	instance,	in	a	classification	problem,	significantly	more	
instances	of	certain	class	can	fall	in	a	particular	set	and	therefore	negatively	affect	the	model’s	
performance.	

3.9.2 Cross-validation	(CV)	
For	avoiding	any	information	loss	in	the	form	of	instances	not	utilized	in	model	training	and	
cope	with	 smaller	 datasets,	 a	 cross-validation	 approach	 can	 be	 used.	 Data	 is	 divided	 into	
multiple	portions	checking	one	another.	Two	famous	types	of	the	cross-validation	techniques	
exist;	namely,	the	n-fold	CV	and	the	leave-one-out	CV.	
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A. n-fold	cross-validation	
Data	is	partitioned	into	n	folds.	The	folds	are	normally	chosen	to	have	equal	sizes.	The	number	
of	folds	to	choose	has	been	investigated	in	literature	and	is	a	trade-off.	For	a	 large	n,	each	
training	sample	used	in	n-fold	cross-validation	has	size	m−m/n	=	m(1−1/n)	(illustrated	by	the	
right	vertical	red	 line	 in	Figure	18),	which	 is	close	to	m,	the	size	of	the	full	sample,	but	the	
training	samples	are	much	similar.	Thus,	the	method	tends	to	have	a	small	bias	but	a	large	
variance.	In	contrast,	smaller	values	of	n	lead	to	more	diverse	training	samples	but	their	size	
(shown	by	the	left	vertical	red	line	in	Figure	18)	is	significantly	less	than	m,	thus	the	method	
tends	 to	have	a	 smaller	variance	but	a	 larger	bias.	 In	most	QSAR	studies	5	or	10	 folds	are	
considered.	The	QSAR	model	fitting	process	is	repeated	n	times.	During	each	iteration,	one	
fold	 is	 considered	 as	 a	 validation	 set	 and	 is	 excluded	 from	 the	 fitting	 process	 while	 the	
remaining	labeled	instances	are	combined	and	used	as	a	training	set.	Then,	the	resulting	QSAR	
model	 is	 used	 to	 predict	 the	 labels	 of	 the	 left-out	 n-fold	 and	 performance	 statistics	 are	
calculated.	The	process	 is	 repeated	 for	n	 iterations	as	shown	 in	Figure	18.	The	 final	model	
quality	statistics	are	calculated	using	the	validation	folds.	Usually,	the	n	folds	are	portioned	
using	contiguous	blocks	or	venetian	blinds	methods:	

-	in	venetian	blinds	technique,	each	n-th	instance	of	the	dataset	is	selected	for	the	test	set,	
starting	at	the	first	sample.	

-	in	contiguous	blocks,	the	test	set	is	constructed	by	selecting	m/n	samples	from	the	dataset,	
starting	at	the	first	sample.	

B. Leave-One-Out	cross	validation	(LOO)	
LOO	can	be	considered	as	a	special	case	of	the	n-fold	cross	validation	where	the	number	of	
folds	(n)	is	equal	to	the	number	of	instances	(m).	In	LOO,	each	molecule	is	excluded	once	from	
the	model	training,	while	the	remaining	molecules	are	used	to	fit	a	QSAR	model	that	predicts	
the	outcome	of	 the	excluded	molecule.	This	process	 is	 repeated	m	 times.	The	 final	model	
quality	statistics	are	calculated	considering	only	the	predicted	left-out	molecules.	

The	 disadvantage	 of	 the	 LOO	 approach	 has	 been	 shown	 to	 result	 in	 overly	 optimistic	
prediction	statistics	as	it	only	omits	one	compound	at	a	time289.	A	better	approach	has	been	
proposed	which	omits	many	 compounds	at	 a	 time,	 thus	 called	 Leave-Many-OUT	 (LMO)290.	
Despite	 its	 robustness,	 LMO	 is	 computationally	 expensive.	Moreover,	 due	 to	 the	 random	
nature	of	 the	 selection	process,	 its	 results	 are	 irreproducible.	 LOO	 is	 also	 computationally	
expensive,	as	it	requires	the	calculation	of	m	number	of	QSAR	models	each	with	a	size	m-1.	It	
is	usually	left	for	smaller	datasets.	
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Figure	 18(a)	 Illustration	 of	 the	 partitioning	 of	 the	 training	 data	 into	 five	 folds.	 (b)	 Typical	 plot	 of	 a	 classifier’s	
prediction	error	as	a	function	of	the	size	of	the	training	sample:	the	error	decreases	as	a	function	of	the	number	of	
training	points.	
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C. Stratified	cross	validation	
Stratified	cross	validation	is	another	special	case	of	the	n-fold	cross	validation	technique.	It	is	
used	in	classification	problems	where	the	folds	are	selected	to	include	an	equal	distribution	
of	the	target	property	classes.	It	is	useful	for	avoiding	the	difficulties	of	unbalanced	datasets	
with	 machine-learning	 algorithms.	 For	 each	 of	 the	 folds,	 equal	 number	 of	 positive	 and	
negative	instances	are	randomly	selected.	The	number	of	compounds	per	fold	cannot	exceed	
double	the	size	of	the	minority	class.	

3.9.3 Bootstrap	aggregation	(Bagging)	
Bagging272	is	a	meta-algorithm	that	involves	the	random	sampling,	with	repetition,	of	many	
subsets	 of	 the	 original	 dataset	 (with	 ‘n’	 number	 of	 instances).	 A	 predefined	 number	 of	
iterations	are	executed.	In	each	iteration,	‘n’	training	examples	are	selected	randomly	from	
the	original	dataset	allowing	duplicates	(i.e.,	resampling	with	replacement)	and	a	QSAR	model	
is	 fitted.	 The	model	 is	 used	 to	 predict	 the	 outcome	 of	 the	 validation	 set	 (i.e.,	 out	 of	 bag	
compounds).	Thus,	bagging	validation	creates	an	ensemble	of	models	for	each	bagging	meta-
model	constructed.	Multiple	prediction	outcomes	exist	for	each	molecule.	The	final	prediction	
outcome	 is	determined	by	voting	among	the	ensemble	of	models	 that	predicted	the	given	
molecule.	The	final	meta-model	quality	statistics	are	calculated	based	on	the	final	prediction	
for	the	instances.	

The	number	of	iterations	(bagging	folds)	is	usually	selected	to	be	at	least	32	to	ensure	that	
each	 example	 is	 represented	 at	 least	 once	 in	 the	 validation	 set.	 Given	 the	 probability	 of	
selecting	the	same	instance	multiple	times,	the	probability	of	a	given	example	to	fall	into	the	
training	set	is	approximately	63.2%	(in	each	iteration)	as	shown	in	Equation	36.	Subsequently,	
the	probability	of	not	being	selected	in	the	training	set	(i.e.,	becomes	part	of	the	validation	
set)	is	approximately	36.8%	as	shown	by	Equation	37.	

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑓𝑜𝑟	𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑠𝑒𝑡	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 1 − 𝑒0a ≈ 63.2%	 Equation	36	

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑓𝑜𝑟	𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛	𝑠𝑒𝑡	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 	 𝑒0a 	≈ 36.8%			 Equation	37	

Throughout	this	work,	stratified	bagging291	was	used	as	a	validation	protocol.	It	also	served	to	
handle	the	unbalance	of	the	training	set292292.	An	ensemble	size	of	64	bagging	folds	was	used.	

Finally,	regardless	of	the	validation	protocol	in	use,	it	is	essential	to	remove	duplicates	during	
data	curation	as	discussed	earlier.	The	presence	of	a	duplicate	instance	in	both	training	and	
test	sets	simultaneously	can	affect	the	statistical	parameters	of	model	quality.	Leading	to	the	
fitting	quality	of	some	compounds	to	be	reported	as	predictions	and	therefore	resulting	 in	
over	optimistic	predictivity	measure	for	the	QSAR	models.	

3.10 Models	applicability	domain	(AD)	
The	statistical	metrics	for	judging	model’s	performance,	as	discussed	in	section	3.7	Goodness	
of	fit	and	prediction	above,	are	evaluated	during	the	construction	of	such	model.	However,	
they	 cannot	 guarantee	 the	 suitability	 of	 the	 model	 for	 the	 infinite	 chemical	 space.	
Furthermore,	these	metrics	comprises	an	average	of	the	model’s	performance.	On	the	other	
hand,	Chemicals	that	are	more	similar	to	the	majority	of	the	training	set	(interpolation	space)	
are	 expected	 to	 perform	 better	 than	 that	 average	 while	 those	 that	 are	 further	 from	 it	



 57 

(extrapolation	 space)	will	perform	worse.	This	has	also	been	highlighted	 through	 the	 third	
OECD	principle	(see	section	1.5.2)	regarding	the	use	of	QSAR	models	in	hazard	assessment	of	
chemicals278.	A	well-defined	AD	is	essential	before	a	model	can	be	considered	validated.	The	
description	of	the	model’s	AD	is	therefore	important	to	allow	regulators	to	assess	whether	
the	 provided	 prediction	 falls	within	 the	 range	 of	 reliability	 described	 by	 the	model.	Many	
approaches	for	assessing	the	AD	have	been	reported	in	literature152,293.	A	general	overview	of	
such	approaches	is	discussed	in	this	section.		

Different	AD	algorithms	try	to	estimate	the	interpolation	space	for	the	model’s	training	set.	
The	efficiency	of	 such	algorithms	 can	be	estimated	based	on	 their	 ability	 to	maximize	 the	
retention	of	true	predictions	while	rejecting	false	ones.	In	classification	models,	the	algorithms	
try	 to	 maximize	 the	 allocation	 of	 test	 molecules	 to	 their	 true	 classes.	 While	 in	 case	 of	
regression,	the	aim	is	to	lower	the	prediction	error.	

Algorithms	can	define	the	AD	in	a	variety	of	ways.	For	instance,	it	can	be	defined	based	on	the	
model’s	descriptor	space.	In	this	case,	a	certain	test	compound	is	said	to	fall	inside	the	model’s	
applicability	domain	(i.e.,	 interpolation	space)	if	 its	descriptor	values	match	certain	criteria.	
Another	 approach	 is	 defining	 a	 mechanistic	 AD;	 where	 a	 test	 molecule	 falls	 into	 the	
interpolation	 space	 if	 its	 mode	 of	 action	 matches	 that	 of	 the	 training	 set	 compounds.	 A	
metabolic	 AD	 can	 be	 defined	 based	 on	 the	 possibility	 of	 chemical	 substances	 being	
metabolized	or	undergo	certain	transformation1,294.		

The	four	major	categories	of	AD	definitions	in	the	descriptor	space	are:	range-based	methods,	
geometric	 methods,	 distance-based	 methods	 and	 Probability	 Density	 Distribution	 based	
methods152,293,295,296.	 The	 range-based	 methods	 include	 the	 bounding	 box	 method,	 which	
considers	 individual	 descriptors	 used	 for	 model	 building.	 The	 bounding	 box	 interpolation	
space	 is	defined	by	 the	minima	and	maxima	of	all	descriptors’	values.	This	method	cannot	
identify	the	empty	spaces	within	the	interpolation	space,	which	is	a	major	drawback293,297.	The	
PCA	bounding	box	is	another	range-based	method	that	considers	the	projection	of	chemical	
structures	in	principal	component	space.	The	method	takes	into	account	the	minimum	and	
maximum	values	of	the	principal	components	rather	than	the	individual	descriptors.	Because	
descriptors	are	projected	as	principal	components,	this	method	overcomes	the	problems	of	
intercorrelated	descriptors.	It	still	however	is	not	able	to	define	the	empty	areas	within	the	
interpolation	space.	

The	geometric	approaches	 include	the	Convex	Hull	method,	which	defines	the	applicability	
domain	based	on	the	smallest	convex	region	enclosing	the	entire	training	set.	This	approach	
is	typically	limited	to	QSAR	models	with	small	number	of	descriptors	due	to	the	challenges	in	
implementation	on	higher	complexity	datasets	(e.g.,	above	three	dimensional	data)298.	

The	distance	based	methods	estimate	the	distance	of	the	molecule	to	be	predicted	to	a	certain	
point	such	as	the	training	set	centroid	(called	centroid-based	distance	approach)	or	from	the	
nearest	k	molecules	of	the	training	set	(referred	to	as	K-nearest	neighbors	based	approaches).	
Such	 distance	 is	 then	 compared	 with	 a	 certain	 threshold,	 above	 which	 the	 compound	 is	
considered	 outside	 of	 the	model’s	 interpolation	 space.	 The	 definition	 of	 such	 threshold	 is	
user-defined	with	no	obvious	rules.	This	has	the	disadvantage	of	not	necessarily	reflecting	the	
data	density152,293,295,297.	Another	approach	is	to	define	the	distance	to	model	in	the	property	
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space	 (rather	 than	 the	 descriptor	 space)196.	 This	 approach	 uses	 the	 standard	 deviation	
between	 the	 predictions	 of	 an	 ensemble	 of	 models	 (generated	 through	 bagging	 or	 an	
ensemble	of	neural	networks).	Other	than	standard	deviations	(STD),	other	measures	exist,	
such	 as	 the	 correlation	of	 prediction	 vectors	 of	 ensemble	models	 for	 a	 certain	 compound	
(CORRELL).	In	binary	classification,	the	difference	between	the	numeric	value	predicted	by	the	
machine-learning	algorithm	and	the	class’s	value	can	also	be	used	as	a	measure	of	prediction	
certainty	by	the	model.	For	example,	if	0	represents	class	A	and	1	presents	Class	B,	a	prediction	
value	of	0.6	is	thought	to	be	less	certain	than	a	value	of	0.9	although	both	are	classified	as	
Class	 B	 prediction.	 This	 method	 is	 referred	 to	 as	 the	 rounding	 effect	 (CLASS-LAG).	 A	
combination	of	multiple	methods	is	also	possible.	The	prediction	based	distance	to	model	for	
applicability	domain	estimation	has	the	advantage	of	overcoming	problems	of	activity	cliffs	
where	small	differences	in	descriptor	values	result	in	large	difference	in	activity.	

The	probability	Density	 Function	methods	are	based	on	estimating	 the	Probability	Density	
Function	(PDF)	of	the	training	set	descriptors	using	parametric	or	non-parametric	methods.	It	
has	the	advantage	of	being	able	to	identify	empty	regions	in	the	interpolation	space293.	

Although	multiple	approaches	exist	for	defining	the	model’s	applicability	domain,	no	certain	
method	was	officially	accepted	or	recognized	by	authorities299.	The	increasing	awareness	of	
AD	is	important	for	increasing	the	confidence	in	adopting	QSAR	and	alternative	approaches	
for	regulatory	purposes.	In	this	work,	the	distance-to-model	in	the	prediction	space	was	used	
to	assess	the	applicability	domain	of	models.	The	STD	between	the	predictions	of	ensemble	
models	was	used	as	the	distance	measure,	unless	otherwise	stated.	
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4 QSAR	case	 studies	 for	 risk	assessment	and	computational	
modeling	of	datasets	

4.1 ToxCast™	phase	I	
The	ToxCast™	project	was	covered	above	(see	1.6	Role	of	in	vitro	assays	in	alternative	testing).	
The	following	analysis	was	conducted	using	the	Phase	I	data	from	the	project.	The	primary	
aim	of	the	study	was	to	examine	the	possibility	to	directly	predict	animal	toxicity	outcomes	
using	chemical	structures,	in	vitro	assay	response	panels	or	a	combination	of	both.	The	second	
aim	was	to	explore	whether	the	outcome	of	the	in	vitro	assay	panel	can	itself	be	predicted	
from	the	chemical	structures.	

4.1.1 Data	setup	and	curation	

A. In	vitro	toxicity	assays	datasets	
The	 in	 vitro	 screening	 data	 from	 ToxCast	 Phase	 I	 “Toxminer	 v17”	 MySQL	 dump	 was	
downloaded,	 reconstructed	 and	 integrated	 into	 a	 dedicated	 instance	 of	 OCHEM	 called	
iPrior186,	using	the	KNIME	workflow	tool.	

The	downloaded	database	includes,	in	addition	to	the	screening	data,	biochemical	pathways	
and	processes	correlated	to	the	target	toxicological	endpoints,	together	with	assay-gene,	and	
gene-pathway	mappings.	The	genes	and	pathways	correlations	were	gathered	from	different	
sources	 such	as	Gene	Ontology	 (GO)300,	pathway	commons301,	 Ingenuity	Pathways	analysis	
(IPA,	Ingenuity	systems	Inc.)302,	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)303	and	the	
OMIM304	phenotype	databases.	It	also	includes	the	chemical	structure	files	(in	SDF	format)	of	
all	ToxCast	phase	I	chemicals	(309	compounds).	The	in	vitro	screening	data	covers	467	assays,	
some	of	which	include	multiple	time-points,	resulting	in	a	total	of	669	assay	endpoints.	These	
assays	test	both	direct	interactions	between	chemicals	and	identified	receptors	and	enzymes,	
as	well	as	downstream	events	on	receptor	gene	activity	or	cellular	consequence.	They	cover	
nine	 technologies:	 cell-free	 HTS	 assays;	 multiplexed	 transcription	 reporter;	 biologically	
multiplexed	activity	profiling;	 high-content	 cell	 imaging;	multiplexed	gene	expression;	 cell-
based	 HTS;	 phase	 I	 and	 II	 XME	 cytotoxicity;	 real-time	 cell	 electronic	 sensing;	 and	 HTS	
genotoxicity.	The	response	of	 the	chemicals	 to	 in	vitro	assays	varies	across	categories.	The	
distribution	of	the	ToxCast	phase	I	chemicals	regarding	the	number	of	positive	in	vitro	assay	
hits	 (out	 of	 the	 total	 669	measured)	 and	 the	 corresponding	 number	 of	 positive	 pathway	
perturbations	calculated	is	shown	in	Figure	19.	

ToxCast™	database	included	either	the	calculated	half	maximum	activity	concentration	(AC50)	
or	lowest	effective	concentration	(LEC)	in	umol/L	for	each	assay/compound	combination	but	
not	 both.	 Analysis	 of	 the	 AC50/LEC	 ration	 was	 therefore	 not	 possible.	 This	 study	 only	
considered	classification	models	in	an	effort	to	compensate	for	the	limitations	due	to	the	small	
size	of	the	screened	chemical	set	as	well	as	the	uncertainties	typically	associated	with	HTS	
experimental	accuracy.	Successful	classification	models	can	encourage	the	future	exploration	
of	the	data	using	regression	models.		

To	construct	binary	classification	models,	all	 screening	assay	outcomes	were	discretized	to	
(response/no	 response)	 factors.	 The	 absence	 of	 response	 per	 certain	 assay	 threshold	was	
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reported	with	a	flag	value	of	106	umol/L	in	the	original	database.	The	same	value	was	used	as	
the	discretization	 threshold	“no	 response”	while	any	other	 reported	value	was	considered	
positive	“response”,	i.e.,	maintaining	the	original	threshold	of	the	ToxCast	assays.		

Roughly,	only	7%	of	the	full	assay/chemical	interaction	matrix	presented	a	positive	response.	
An	 alternative	 approach	 was	 considered	 for	 consolidating	 assays	 data.	 The	 ability	 of	 a	
chemical	 perturbing	 a	 given	 pathway,	 regardless	 of	 the	 exact	 gene	 affected	 in	 such	
perturbation	was	examined.	Therefore,	1456	pathways	were	correlated	to	chemicals	in	order	
to	 construct	 chemical-pathway	 perturbations.	 The	 pathways-genes	 correlations	 were	
examined	to	detect	whether	a	compound	would	show	activity	towards	any	assay	associated	
with	 these	 genes.	 Such	 compound	 would	 thus	 be	 considered	 perturbing	 the	 investigated	
pathway.	 Subsequently,	 a	 chemical/pathway-perturbation	 matrix	 was	 constructed	 where	
14%	of	 the	potential	 interactions	were	positive.	Because	 single	assay	might	 correlate	with	
several	pathways	and	vice-versa,	the	pathway	perturbations	represent	a	different	re-grouping	
of	 the	 in	vitro	 assay	 screening	data.	Such	 regrouping	 resulted	 into	 less	 sparse	datasets	 (as	
shown	 in	 Figure	 20)	 and,	 therefore,	 may	 be	 better	 suited	 for	 applying	 machine	 learning	
algorithms.	 The	 study	 investigates	 whether	 such	 regrouping	 can	 improve	 the	 predictive	
models.	

Although	screening	outcomes	for	all	669	in	vitro	assay	endpoints	were	available	for	all	ToxCast	
Phase	I	compounds,	most	of	the	assays	showed	only	few	active	hits.	in	vitro	assays	with	less	
than	 35	 hits	 among	 tested	 compounds	 were	 filtered	 out	 for	 having	 too	 few	 data	 for	 a	
statistical	 QSAR	 approach.	 Only	 144	 assays	 showed	 sufficient	 active	 hits	 and	 thus	 were	
modeled	using	QSAR.	 The	 list	 of	 selected	 in	 vitro	 assays	 is	 provided	 in	 the	 supplementary	
materials	 (Supplementary	 1:	 List	 of	 in	 vivo	 endpoints	 from	 ToxCast	 /	 ToxRefDB,	 their	
respective	total	number	of	hits	and	whether	it	was	selected	for	modeling.).	The	description	of	
the	in	vitro	assays	methodology	is	available	from	EPA182.	

B. In	vivo	animal	studies	dataset	
The	Toxicity	Reference	Database	(ToxRefDB),	part	of	 the	ACToR	system,	contains	summary	
outcomes	 from	 primary	 toxicological	 studies	 presented	 to	 the	 EPA	 for	 pesticides’	 active	
ingredients305.	 These	 data	 were	 gathered	 from	 EPA	 Office	 of	 Pesticide	 Programs	 (OPP)	
evaluations	of	studies,	based	on	harmonized	test	guidelines	from	EPA	Office	of	Prevention,	
Pesticides	 and	 Toxic	 Substances	 (OPPTS).	 Thousands	 of	 studies	 were	 characterized	 in	
ToxRefDB	 using	 standardized	 vocabulary,	 with	 consistent	 structure	 across	 multiple	 study	
types,	 and	 a	 high	 level	 of	 internal	 and	 external	 quality	 control	 (QC)	 for	 the	 abstraction	of	
endpoints	valuable	in	constructing	predictive	models306.	Toxicity	studies	were	performed	on	
mice,	rats	and	rabbits	(single	species	per	study).		

A	subset	of	the	(ToxRefDB)307	which	is	related	to	ToxCast	substances	was	incorporated	in	the	
ToxMiner	 v17.	 It	 reported	 results	 from	 461	 animal	 toxicity	 endpoints.	 For	 each	 toxicity	
endpoint,	in	vivo	toxicity	data	for	chemicals	were	discretized	to	a	binary	outcome	(toxic	/	non-
toxic).	The	same	flag	value	reported	with	the	original	database	(106)	for	lack	of	toxicity	was	
used	as	the	cutoff	between	active	and	inactive	responses.	Between	234-251	compounds	were	
tested	per	 toxicity	endpoint.	Only	61	 in	 vivo	 toxicity	endpoints	 (out	of	461)	 revealed	 toxic	
outcome	 for	 35	 or	 more	 compounds,	 a	 tentative	 threshold	 that	 was	 used	 to	 filter	 out	
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endpoints	 with	 insufficient	 data	 for	 statistical	 modeling	 QSAR.	 A	 list	 of	 in	 vivo	 toxicity	
endpoints	and	count	of	their	associated	toxic	compounds	is	provided	in	the	supplementary	
materials	(Supplementary	2:	List	of	in	vitro	assay	endpoints,	their	respective	total	number	of	
hits	and	whether	it	was	selected	for	modeling.).	Full	details	of	the	data	collected	can	be	found	
in	literature306.	

	

	

Figure	19.		Histogram	showing	count	of	chemicals	showing	positive	assay	and	pathway	hits	for	309	compounds	of	
ToxCast	Phase	I.	The	assay	data	(blue	bars)	is	very	sparse	-	most	chemicals	affect	only	a	few	assays.	Regrouping	
assays	 into	affected	pathways	 (red	bars)	allowed	 to	 retrieve	a	dataset	 that	 is	 less	 sparse	and,	 therefore,	more	
informative	to	machine	learning	algorithms.	
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Figure	20.		Heatmap	of	the	assay-chemical	activity	matrix	with	7%	of	all	possible	interactions	resulting	in	positive	
hits	 (top)	and	pathway-chemical	perturbation	matrix	with	14%	positive	hits	 (bottom).	 The	 regrouping	of	 assay	
results	into	pathways	perturbations	resulted	into	less	sparse	matrix	
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4.1.2 Methods	

A. Interacting	with	iPrior	
Throughout	this	study,	different	KNIME	workflows	were	used	to	upload	the	data,	initialize	the	
QSAR	modeling	on	iPrior	(as	shown	in	Figure	9)	and	download	the	modeling	results	(as	shown	
in	Figure	22)	(see	3.2.1	OCHEM	/	iPrior).	All	QSAR	models	construction	was	done	on	iPrior.	

B. In	silico	Descriptors	calculation	
The	 preprocessing	 of	 chemical	 compounds	 was	 conducted	 using	 Chemaxon	 Standardizer,	
integrated	within	iPrior	workflow.	The	standardization	workflow	consisted	of	removal	of	salt	
counter-ions,	 neutralization	 of	 charges,	 as	 well	 as	 standardizing	 the	 representations	 of	
aromatic	 rings	 and	 nitro	 groups.	 For	 the	 3D	 descriptors,	 structures	 were	 optimized	 using	
CORINA.308	 iPrior	 web	 platform186	 was	 used	 to	 calculate	 11	 in	 silico	 descriptor	 packages	
gathered	from	multiple	academic	and	commercial	partners	(see	Table	2).		

Descriptors	calculation	failed	for	ten	chemicals,	such	as	mixtures,	inorganics,	large	macrocyclic	
compounds	or	organometallics.	These	structures	were	excluded	(see	Supplementary	3:	List	of	
ToxCast	Phase	I	chemicals	excluded	from	modeling	due	to	failed	descriptors	calculation.).	The	
remaining	299	compounds	(out	of	309)	were	used	throughout	this	study	for	conducting	the	
analysis.	

C. Prefiltering	criteria:	
Descriptors	 with	 low	 variance	 can	 reduce	 the	 performance	 of	 distance	 based	 machine-
learning	algorithms.	Thus,	all	descriptors	were	pre-filtered	before	model	development.	The	
following	 pre-filtering	 criteria	 were	 used:	 first,	 descriptors	 that	 are	 constant	 among	 all	
compounds,	offering	no	information	gain,	were	removed.	Then,	normalized	descriptors	that	
have	variance	smaller	than	<	0.01	were	removed.	Finally,	descriptors	were	grouped	 if	 they	
showed	pair-wise	 Pearson's	 correlation	 coefficient	 (R)	 >	 0.95.	 The	 same	pre-filtering	 steps	
were	 also	 applied	 to	 biologically	 derived	 descriptors	 (assay	 results	 and	 pathways	
perturbations)	 for	 modeling	 in	 vivo	 toxicity	 endpoints.	 Some	 algorithms	 implemented	
automatic	scaling	as	part	of	their	training	protocols,	i.e.,	in	ASNN	the	descriptors	were	scaled	
to	[0,1]	interval,	in	MLRA	and	𝑘nn	the	variables	are	normalised	to	zero	mean	and	unit	variance.	
For	other	algorithms,	descriptors	were	scaled	to	the	range	[0-1]	prior	to	the	application	of	the	
algorithms.	The	prefiltering	step	was	also	applied	within	the	bootstrap	aggregation	protocol	
for	any	of	the	algorithms	used.	Thus,	the	exact	numbers	of	descriptors	used	could	be	different	
for	each	model.	
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Figure	22.		Partial	KNIME	workflow	showing	steps	to	collect	QSAR	modeling	results	from	iPrior.	The	process	starts	
with	querying	iPrior	for	QSAR	models’	IDs,	then	the	workflow	requests	model	status,	filters	by	ready	models	that	
were	successfully	completed	and	commences	with	downloading	their	statistics	

	

Table	2	List	of	in	silico	and	biological	descriptor	packages	used	in	the	study.	The	number	of	descriptors	within	the	
package	is	shown.	

Descriptors	package	name	 Type	 Descriptors	count	
ALOGPS309,310+	OEstate	indices311,312	 in	silico	 2+	222	
Chemaxon	descriptors313	 in	silico	(3D)	 465	
GSFragments314	 in	silico	 588	
ISIDA	fragments315	 in	silico	 1487	
CDK255	 in	silico	(3D)	 204	
Dragon	6222	 in	silico	(3D)	 3127	
inductive	descriptors316	 in	silico	(3D)	 40	
MERA	+	MerSy246–248	 in	silico	(3D)	 529	+	42	
QNPR251	 in	silico	 	
Spectrophores249,250	 in	silico	(3D)	 144	
Adriana.Code235	 in	silico	(3D)	 183	
ToxCast	in	vitro	assays	 Biological	 407	
ToxCast	in	vitro	assays	+	CDK	 Biological	+	in	silico	 407	+	204	
pathways	perturbation	 Biological	 1178	
pathways	perturbation	+	CDK		 Biological	+	in	silico	 1178	+	204	
ToxCast	 in	 vitro	 assays	 +	 pathways	
perturbation	

Biological	 407	+	1178	

ToxCast	 in	 vitro	 assays	 +	 pathways	
perturbation	+	CDK	

Biological	+	in	silico	 407	+	1178	+	204	

D. Machine	learning	methods	
Eight	 machine-learning	 methods	 were	 applied.	 These	 are	 k-Nearest	 Neighbors	 (𝑘NN),	
Associative	 neural	 networks	 (ASNN),	 C4.5	 decision	 tree	 (J48),	 Multiple	 Linear	 Regression	
Analysis	 (MLRA),	 Fast	 Stagewise	Multiple	 Linear	 Regression	 (FSMLR),	 Partial	 Least	 Squares	
(PLS),	 Random	 Forests	 (RF)	 and	 Support	 Vector	 Machine	 (SVM).	 The	 description	 and	
configurations	of	each	method	is	described	in	section	3.5	Machine	learning	algorithms	above.	
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E. Performance	measures	and	validation	protocol	
Different	 measures	 for	 accuracy	 estimation	 of	 models	 were	 calculated.	 These	 measures	
include:	 sensitivity,	 specificity,	 balanced	 accuracy	 (BAC),	 total	 accuracy	 (ACC),	 positive	
predictive	value	(PPV)	and	Matthews	correlation	coefficient	(MCC).	Section	3.7	Goodness	of	
fit	 and	prediction	 above	 shows	 the	 equations	 for	 these	measures.	Due	 to	 the	unbalanced	
nature	 of	 the	 datasets,	 balanced	 accuracy	was	 used	 throughout	 the	 study	 as	 the	 primary	
measure	 for	 comparing	models.	 Stratified	 bagging	was	 used	 as	 the	 validation	 protocol	 as	
described	in	section	3.9.3	Bootstrap	aggregation	(Bagging).		

F. Modeling	in	vivo	animal	toxicity	
Different	feature	combinations	were	used	for	modeling	as	listed	in	Table	2.	These	were	the	
11	in	silico	descriptor	packages	as	well	as	6	biological-derived	features.	The	biological	features	
were:	 The	 ToxCast	 in	 vitro	 assay,	 the	 pathway	 perturbations	 as	 described	 before,	 the	
combination	of	both	and	finally	combining	CDK	descriptors	(as	an	example	of	a	widely	used	in	
silico	descriptors	package)	with	each	of	the	three	features.	

G. Modeling	in	vitro	assays	
An	important	addition	to	previously	conducted	studies174	is	to	explore	the	extent	by	which	in	
silico	descriptors	could	predict	the	outcome	of	 in	vitro	assays.	For	that,	QSAR	models	were	
constructed	using	the	11	in	silico	packages	listed	in		Table	2.	

4.1.3 Results	and	discussion	

A. Modeling	in	vivo	animal	toxicity	
In	total	8	machine-learning	algorithms	were	applied	to	17	feature	combinations	(see	Table	2)	
to	model	the	61	in	vivo	toxicity	endpoints	resulting	in	8296	QSAR	models	constructed	with	64-
bagging-validation.	

Figure	 23	 summarizes	 the	 balanced	 accuracies	 for	 all	 8296	 models	 as	 grouped	 by	 their	
respective	endpoints.	Each	endpoint	is	represented	by	one	vertical	line,	therefore	61	vertical	
lines	in	total.	The	upper	tip	of	the	line	represents	the	maximum	achievable	balanced	accuracy	
among	all	136	combinations	(17	feature	combinations	*	8	learning	algorithms)	that	were	used	
to	model	that	endpoint.	Likewise,	the	bottom	tip	of	the	line	represents	the	lowest	balanced	
accuracy.	 The	 triangle	 shows	 the	 median	 balanced	 accuracy	 among	 the	 models.	 More	
statistical	 parameters	 such	 as:	 specificity,	 sensitivity,	 Matthews’s	 correlation	 coefficient	
(MCC)	and	overall	accuracy	were	calculated	and	deposited	in	an	open	GitHub	repository317.	

The	 low	 median	 balanced	 accuracies	 among	 models	 confirm	 the	 difficulties	 of	 modeling	
animal	 toxicity	 as	 previously	 reported174.	 However,	 it	 is	 worth	 investigating	 the	 top-
performing	models.	Table	3	lists	the	balanced	accuracy	of	the	top-five	predicted	in	vivo	toxicity	
endpoints.	Ranking	was	based	on	the	maximum	balanced	accuracy	achieved	across	the	136	
models	 generated	 for	 each	 respective	 endpoint.	 The	 machine	 learning	 algorithms	 that	
contributed	to	the	best	models	widely	differed	between	the	cases.	In	some	cases,	it	was	better	
to	have	a	linear	algorithm	while	in	others	the	non-linear	algorithms	predominated.	This	could	
be	related	to	the	complexity	of	the	endpoint	and	the	descriptors	involved.	Naturally	in	vitro	
assays	carry	some	errors	that	could	contribute	to	the	modeling	difficulties	
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Table	3.		The	five	best	predicted	in	vitro	assays	based	on	the	maximum	balanced	accuracy	of	the	respective	models.	
TPR:	true	positive	rate	(i.e.,	sensitivity),	TNR:	true	negative	rate	(i.e.,	specificity),	BACC:	balanced	accuracy,	MCC:	
Matthews	correlation	coefficient,	ASNN:	associative	neural	networks,	 ISIDA:	 framgementor	descriptors.	 1Model	
identification;	models	 can	be	accessed	 from	https://amaziz.com/iprior/model/id	 replacing	 “id”	with	 the	model	
identification	 number.	 268%	 confidence	 intervals	 of	 the	mean	 balanced	 accuracy	 are	 also	 shown.	 3Algorithms	
described	 in	 section	3.5	Machine	 learning	 algorithms.	4Descriptor	 packages	 described	 in	 section	 3.4	Molecular	
descriptors 

Id1	 Predicted	endpoint	 TPR	 TNR	 BACC2	 MC
C	

Algorithm3	 Descripto
r	
package4	

63	 Chronic	Rat	Endpoint	for	Any	
cholinesterase	inhibition	
measurement	(e.g.,	brain	and	
erythrocyte)	

0.93	 0.95	 0.94	
±0.02	

0.83	 ASNN	 ISIDA	

62	 Developmental	Rat	Maternal	
(Systemic)	

0.75	 0.7	 0.72	
±0.04	

0.33	 FSMLR	 CDK	

66	 Developmental	Rat	Maternal	 0.77	 0.71	 0.74	
±0.04	

0.35	 J48	 CDK	+	
ToxCast	
Pathways	

64	 Developmental	rat	Maternal	
(General	Maternal)	

0.75	 0.7	 0.72	
±0.04	

0.33	 FSMLR	 CDK	

65	 Chronic	Mouse	Endpoint	for	
All	effect	related	to	apoptosis	
and	necrosis	

0.67	 0.77	 0.72	
±0.04	

0.35	 ASNN	 ALOGPS,	
OEstate	

B. Understanding	significant	features	using	ToxAlerts	
Acetylcholinesterase	inhibition	was	one	of	the	most	predictable	endpoints,	with	the	balanced	
prediction	accuracy	reaching	more	than	90%.	The	analysis	below	concerns	this	endpoint.	 It	
was	used	as	an	example	to	investigate	the	success	with	modeling	some	endpoints	(as	shown	
in	Table	3).	To	analyze	the	most	significant	features	contributing	to	toxicity,	the	“Set	Compare”	
and	 “ToxAlerts”	 tools,	 previously	 developed	 within	 OCHEM	 platform224,291,318,	 were	 used.	
ToxAlerts	is	a	web	platform	that	is	freely	available	for	the	storage	of	structural	alerts.	It	holds	
a	 collection	 of	 alerts	 that	 have	 been	 collected	 from	 published	 literature	 in	 the	 form	 of	
SMARTS319	patterns.	The	current	collection	includes	more	than	2000	alerts	from	more	than	25	
publications.	It	also	allows	in	silico	screening	of	chemical	libraries	for	the	detection	of	potential	
toxic	 or	 adverse	 effects.	 Among	 the	 stored	 alerts	 are	 patterns	 for	 potential	mutagenicity,	
carcinogenicity,	 acute	 aquatic	 toxicity,	 skin	 sensitization,	 and	 possible	 idiosyncratic	 drug	
toxicity.	It	has	previously	been	used	to	identify	AlphaScreen	frequent	hitters	in	small-molecule	
HTS	as	well320.	

Upon	comparing	the	2	sub-sets	of	the	rat	acetylcholinesterase	inhibition	chemicals	(toxic	and	
non-toxic)	using	ToxAlerts224,	many	significant	 toxic	groups	were	detected.	The	 three	most	
significant	 alerts	 are	 shown	 in	 Table	 4	 together	 with	 their	 respective	 p-value.	 Indeed,	
organophosphorus	 insecticides	 functions	 through	 acetylcholinesterase	 inhibition	 as	 its	
primary	mechanism	of	action.	In	the	dataset	analyzed,	only	one	phosphorus	derivative	was	
reported	as	non-toxic.	This	may	be	a	simple	scaffold	for	descriptor	packages	accounting	for	
atom	counts	or	fragments	to	detect	such	toxicity.	However,	it	could	be	more	challenging	for	
in	vitro	assays	to	indirectly	capture	the	presence	of	such	scaffold.	The	p-values	and	enrichment	
factors	for	the	significance	of	each	SMARTS	pattern	detected	is	shown	in	Table	4.		
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C. Detecting	significant	in	vitro	assays	using	SetCompare	
To	 detect	 which	 in	 vitro	 assays	 or	 pathways	 perturbations	 can	 better	 act	 as	 a	 biological	
descriptor	 for	 building	 a	 bioactivity	 signature,	 the	 “Set	 Compare”	 tool	 was	 used.	 The	
Acetylcholinesterase	 inhibition	was	 selected	 as	 an	 example	 endpoint	 for	 the	 analysis.	 The	
toxic	vs.	non-toxic	sets	of	compounds	were	compared.	Table	5	shows	the	most	significant	in	
vitro	 assays	 together	 with	 their	 respective	 p-values.	 Indeed,	 Acetylcholinesterase	 (AChE)-
related	in	vitro	assays	in	both	rat	and	human	were	the	most	significant	ones.	While	this	sounds	
logical	a	posteriori,	the	analysis	did	not	assume	any	prior	knowledge	of	the	underlying	in	vivo	
toxicity	pathway.	This	confirms	the	potential	of	using	HTS	 in	vitro	 screening	to	understand	
mechanisms	of	toxicity	not	previously	known.	

Table	 4.	 	 Most	 common	 toxicity	 alerts	 for	 toxic	 acetylcholinesterase	 inhibitors	 identifying	 organophosphorus	
compounds.	1SMARTS	pattern319	describing	the	alert.	

Toxicity	Alert	 #	Toxic	set	(42)	 #	 non-toxic	
set	(206)	

Enrichment	
factor	

p-value	

	
[#6&!$([CX3]=[OX1,SX1])]	
[Sv2X2][!#1!#6]1	

14		
(33.30%)	

1		
(0.50%)	

68.7	 10-11	

[SX1]=[Pv5X4]([OX2][#6&!$([CX3]	
=[OX1,SX1])])	
([#7,#8,F,Cl,Br,I])[#7,#8,F,Cl,Br,I]	

10		
(23.80%)	

1		
(0.50%)	

49	 10-8	

[SX1]=[Pv5X4]([#7,#8,F,Cl,Br,I])	
([#7,#8,F,Cl,Br,I])[#7,#8,F,Cl,Br,I]	

10		
(23.80%)	

1		
(0.50%)	

49	 10-8	
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Table	 5.	 	 Most	 significant	 in	 vitro	 assays	 for	 toxic	 acetylcholinesterase	 inhibitors	 showing	 the	 association	 of	
acetylcholinesterase	pathway	

Toxicity	Alert	 #	Toxic	set	(42)	 #	non-toxic	set	
(206)	

Enrichment	
factor	

p-value	

ToxCast	assay:	Novascreen	Rat	
AChE	 13	(31.0%)	 1	(0.5%)	

63.8	
10-10	

ToxCast_Pathway:	512	
Glycerophospholipid	
metabolism	 13	(31.0%)	 1	(0.5%)	

63.8	

10-10	
ToxCast_Pathway:	801	
Process:	response	to	wounding	
GO	id:0009611		 10	(23.8%)	 1	(0.5%)	

49	

10-8	
ToxCast_Pathway:	796	--	
Component:	basal	lamina	
Description:	Component:	basal	
lamina	
GO	id:0005605	 10	(23.8%)	 1	(0.5%)	

49	

10-8	
ToxCast_Pathway:	793	
Function:	acetylcholinesterase	
activity	
GO	id:	0003990	 10	(23.8%)	 1	(0.5%)	

49	

10-8	
Novascreen	Human	AChE	 10	(23.8%)	 1	(0.5%)	 49	 10-8	

D. Comparing	performance	across	algorithms	and	descriptor	packages	
For	each	toxicity	endpoint,	the	individual	model	that	showed	the	highest	balanced	accuracy	
was	selected.	Then,	the	different	algorithms	and	descriptor	packages	were	ranked	according	
to	 the	 number	 of	 times	 they	 contributed	 to	 such	 models.	 Table	 7	 shows	 the	 ranking	 of	
different	 descriptor	 packages	 in	 their	 success	 to	 achieve	 the	 best	 predictive	 model	
(considering	the	highest	balanced	accuracy).	It	also	shows	the	number	of	toxicity	endpoints	
for	which	the	descriptor	package	contributed	to	its	best	model.	

Generally,	different	 in	silico	descriptor	packages	exhibited	similar	performance	as	shown	in	
Table	 7	 while	 biological	 descriptors	 performed	 worse.	 However,	 it	 is	 worth	 noticing	 that	
biological	descriptors	outperformed	‘in	silico	descriptors-only	models’	for	the	prediction	of	9	
toxicity	endpoints.	In	8	cases,	the	pathways,	either	alone,	in	combination	with	the	assays	or	
in	combination	with	the	in	silico	descriptors	significantly	improved	the	model	prediction	ability	
(Table	6)	with	p-values	<0.05.	This	suggests	that	the	re-arrangement	of	in	vitro	assay	outcomes	
in	the	form	of	pathways	perturbation	provided	extra	information	for	modeling	these	toxicity	
endpoints.	Also,	biological	descriptors	in	combination	with	in	silico	descriptors	contributed	to	
achieving	the	highest	balanced	accuracy	for	5	endpoints.	For	these	cases,	it	might	be	because	
each	kind	of	descriptors	encoded	for	different	information	related	to	the	chemical	structure	
or	the	in	vivo	target.	

Error!	Reference	source	not	found.	shows	the	endpoints	where	use	of	biological	descriptors	
outperformed	the	 in	silico-only	descriptors.	 It	also	presents	 the	balanced	accuracies	of	 the	
biological	descriptors	alone,	in	silico	descriptors	alone	and	the	combination	of	both.	
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Table	8	compares	different	machine	learning	on	their	performance.	In	general,	both	simple	
methods,	such	as	the	FSMLR,	MLRA	and	𝑘NN	and	non-linear	high-resolution	methods,	such	
as	random	forests	and	neural	networks	showed	comparable	results.		

E. Modeling	in	vitro	assays	
The	same	 in	 silico	descriptors	and	machine	 learning	algorithms	were	applied	as	previously	
explained	for	the	in	vivo	toxicity	endpoint.	Eight	machine-learning	algorithms	in	combination	
with	11	descriptor	packages	were	used	to	model	144	endpoints	resulting	in	a	total	of	12672	
QSAR	models.	All	models	were	constructed	with	64-bagging	validation.	

Regarding	 the	best	performing	descriptors,	 unlike	 the	 case	with	 in	 vivo	 toxicity	endpoints,	
Dragon	6222	and	ALOGPS309,310+	OEstate	indices311,312	performed	better	than	other	descriptors	
as	 shown	 in	 Table	 7.	 Regarding	 machine-learning	 algorithms	 there	 was	 no	 distinctive	
difference	in	performance	as	shown	in	Table	8.	

Figure	 24	 summarizes	 the	 balanced	 accuracies	 for	 all	 12672	 models	 as	 grouped	 by	 their	
respective	in	vitro	endpoints.	Each	endpoint	is	represented	by	one	vertical	line,	therefore	144	
vertical	lines	in	total.	The	upper	tip	of	the	line	represents	the	maximum	achievable	balanced	
accuracy	among	all	88	combinations	(11	in	silico	descriptors	*	8	learning	algorithms)	that	were	
used	 to	 model	 that	 endpoint.	 Likewise,	 the	 bottom	 tip	 of	 the	 line	 represents	 the	 lowest	
balanced	accuracy.	The	triangle	shows	the	median	balanced	accuracy	among	the	models.	The	
figure	 shows	 generally	 higher	 balanced	 accuracies	 achieved	 across	 the	 in	 vitro	 endpoints	
compared	to	the	prediction	of	in	vivo	endpoints.	Table	9	lists	the	statistics	for	the	five	best-
predicted	in	vitro	assays	based	on	the	maximum-achievable	balanced	accuracy	among	the	88	
models	 built	 per	 endpoint.	Multiple	 in	 vitro	 assays	 (79	 out	 of	 144)	 presented	 a	 balanced	
accuracy	 of	 >	 0.7.	More	 statistical	 parameters	 were	 calculated	 and	 deposited	 in	 an	 open	
GitHub	repository317.	 In	vitro	assays	measuring	the	expression	of	different	CYP450	isoforms	
were	 among	 the	 most	 successful	 to	 be	 modeled.	 This	 agrees	 with	 earlier	 QSAR	 studies	
reporting	similar	success321–323.	

F. Modelability	of	the	datasets	
Aside	from	the	modeling	process	itself,	many	characteristics	of	the	training	set	can	affect	the	
predictive	power	of	QSAR	models	 including	 its	diversity,	size,	presence	of	activity	cliffs	and	
activity	distribution324,325.	Previous	study	investigated	ToxCast	Phase	I	data	with	regard	to	its	
modelability	showing	that	too	many	activity	cliffs	in	comparison	with	the	dataset	size	makes	
it	not	suitable	for	QSAR	modeling326.	In	this	study,	the	median	balanced	accuracy	of	all	models	
built	for	each	individual	endpoint	was	used	to	compare	its	relative	ease	of	modeling.		

For	 in	vivo	endpoints,	only	7	endpoints	had	a	median	balanced	accuracy	of	above	0.6.	The	
chronic	rat	acetylcholinesterase	inhibition	stands	as	a	clear	exception	for	an	endpoint	that	is	
easy	to	model	where	the	median	balanced	accuracy	for	all	models	exceeds	0.85.	For	in	vitro	
endpoints,	the	provided	statistics	reveal	that	21	endpoints	have	median	balanced	accuracy	
above	 0.70.	 Comparatively,	 in	 vitro	 assays	 where	 easier	 to	 model	 than	 in	 vivo	 toxicity	
endpoints.	

Table	6.		Toxicity	endpoints	where	the	biological	descriptors	contributed	to	the	best	predictive	QSAR	model	(with	
the	underlined	balanced	accuracy).	Balanced	accuracies	 for	models	developed	using	CDK	(as	an	example	 for	 in	
silico	descriptors)	as	well	as	different	biological	descriptors	are	shown.		
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Toxicity	endpoint	
	
	

Best	model	 (out	 of	
136	 models	 per	
endpoint)	

Balanced	accuracies	

	 id	 BACC	

Algorithm
	

CDK	

CDK+	
Pathw

ay
	1	

CDK+	Assays	

CDK+Assays+	
Pathw

ay		

Pathw
ay	

Assays	

Assays	
+	

Pathw
ays	

Chronic	 rat	 liver	
preneoplastic	
lesion	

793	 0.64	
±0.044	

PLS	 0.49	 0.54	 0.53	 0.60	
	

0.54	
	

0.56	
	

0.64	

Chronic	 rat	 testes	
any	lesion	

70	 0.61	
±0.04	

FS
ML
R	

0.54	 0.56	 0.53	
	

0.61	 0.50	 0.52	 0.51	

Chronic	 rat	
endpoint	 for	 all	
neoplastic	 and	
non-neoplastic	
proliferative	 liver	
lesions	

71	 0.62	
±0.03	

J48	 0.50	 0.55	 0.58	 0.61	 0.60	 0.58	 0.62	

Developmental	
rabbit	 maternal	
(mLEL_rabbit)	

72	 0.61	
±0.06	

FS
ML
R	

0.50	 0.44	 0.51	 0.61	 0.36	 0.46	 0.44	

Developmental	rat	
maternal	
(mLEL_rat)	

66	 0.74	
±0.04	

J48	 0.63	 0.74	 0.55	 0.55	 0.52	 0.59	 0.51	

Developmental	rat	
general	 fetal	
pathology	

73	 0.62	
±0.05	

FS
ML
R	

0.47	 0.51	 0.47	 0.49	 0.56	 0.62	 0.54	

Developmental	
Rat	 Skeletal	
Appendicular	

74	 0.62	
±0.04	

ASN
N	

0.53	 0.58	 0.55	 0.55	 0.61	 0.59	 0.62	

Multigenerational	
rat	 reproductive	
performance	

75	 0.67	
±0.04	

PLS	 0.50	 0.67	 0.52	 0.57	 0.63	 0.59	 0.53	

Multigenerational	
rat	 endpoint	 for	
viability	Index	

76	 0.64	
±0.04	

ASN
N	

0.49	
	

0.60	 0.60	 0.58	 0.64	 0.60	 0.57	

1Assays:	 ToxCast	Assays,	 2Pathways:	 ToxCast	pathways	perturbation.	 1Model	 identification;	
models	 can	 be	 accessed	 from	 https://amaziz.com/iprior/model/id	 replacing	 “id”	 with	 the	
model	identification	number.	468%	confidence	intervals.	
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0.
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0.
8	
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9	1	

NVS_ADME_rCYP2C11	
NVS_ADME_hCYP3A5	

Toxcast_Novascreen	Rat	
ATG_ERa_TRANS	
BSK_LPS_PGE2_up	

Toxcast_Novascreen	Rat	
CLM_CellLoss_72hr	

CLM_Hepat_DNADamage_48hr	
CLZD_CYP3A4_48	

BSK_hDFCGF_Proliferation_down	
BSK_4H_MCP1_down	

Toxcast_Novascreen	Human	
BSK_LPS_TNFa_down	

BSK_LPS_VCAM1_down	
NCGC_PXR_Agonist_human	

ATG_PXR_TRANS	
BSK_3C_SRB_down	

ATG_VDRE_CIS	
CLZD_CYP2B6_48	

NVS_ADME_hCYP2C19	
BSK_hDFCGF_SRB_down	

CLZD_GSTA2_48	
BSK_BE3C_MMP1_up	

CLM_MicrotubuleCSK_24hr	
CLM_MitoMembPot_24hr	

ATG_PPARg_TRANS	
BSK_LPS_IL8_down	

ACEA_IC50	
ATG_PXRE_CIS	
Solidus_PhaseII	
Solidus_P450	

BSK_SAg_Eselectin_down	
CLM_Hepat_CellLoss_24hr	

BSK_SAg_CD38_down	
CLZD_CYP1A1_6	

BSK_3C_Vis_down	
BSK_4H_Pselectin_down	

CLM_Hepat_CellLoss_48hr	
NVS_NR_hPXR	

BSK_4H_SRB_down	
ATG_RORE_CIS	
ATG_MRE_CIS	

CLZD_SULT2A1_24	
BSK_3C_MCP1_down	

BSK_LPS_Eselectin_down	
CLZD_UGT1A1_24	

CLM_MitoticArrest_24hr	
CLZD_CYP1A2_6	
ATG_ERE_CIS	

BSK_hDFCGF_MCSF_down	
CLM_OxidativeStress_72hr	

ACEA_LOC2	
CLM_Hepat_Steatosis_48hr	

ATG_BRE_CIS	
BSK_KF3CT_MCP1_down	
CLM_StressKinase_72hr	
BSK_4H_Eotaxin3_down	

CLZD_CYP2C9_48	
BSK_hDFCGF_IP10_down	
CLM_StressKinase_24hr	

CLZD_SULT2A1_6	
BSK_hDFCGF_MMP1_up	

ATG_CRE_CIS	
BSK_SAg_PBMCCytotoxicity_up	

ATG_AP_1_CIS	
CLM_Hepat_Steatosis_24hr	
BSK_hDFCGF_VCAM1_down	

BSK_SAg_CD38_up	
BSK_hDFCGF_EGFR_up	
BSK_KF3CT_uPA_down	
BSK_SM3C_MCP1_down	

BSK_BE3C_uPAR_up	
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Table	7.	 	Comparing	 the	performance	of	different	descriptor	packages	 in	constructing	QSAR	models	 for	 in	vivo	
toxicity	and	in	vitro	assays.	The	number	of	in	vivo	toxicity	endpoints	/	in	vitro	assays	where	the	descriptor	package	
contributed	to	the	model	with	highest	balanced	accuracy	is	shown.		

Descriptors	 In	vivo	
rank	

#	in	vivo		
endpoints	

In	vitro	
rank	

#	in	vitro	
endpoints	

ISIDA	 1	 9	 3	 16	
CDK	 2	 7	 7	 8	
ALOGPS	+	OEstate	 3	 6	 2	 26	
GSFrag	 4	 6	 8	 8	
Dragon6	 5	 5	 1	 35	
Spectrophores	 6	 5	 11	 2	
Adriana	 7	 3	 6	 12	
Inductive	descriptors	 8	 3	 10	 3	
QNPR	 9	 3	 9	 6	
ToxCast	assays	+	ToxCast	Pathways	 10	 3	 	 	
Chemaxon	Descriptors	 11	 2	 4	 15	
MERA	+	MerSy	 12	 2	 5	 14	
CDK	+	ToxCast	Pathways	 13	 2	 	 	
CDK,	 ToxCast	 assays	 +	 ToxCast	
Pathways	 14	 2	 	 	
CDK	+	ToxCast	assays	 15	 1	 	 	
ToxCast	Pathways	 16	 1	 	 	
ToxCast	assays	 17	 1	 	 	
Total	 	 61	 	 1451	

1One	in	vitro	assay	endpoint	showed	an	exact	tie	between	2	models	

Table	8.		Comparing	the	performance	of	the	machine-learning	algorithms	in	constructing	QSAR	models	for	in	vivo	
toxicity	 and	 in	 vitro	 assays.	 The	 number	 of	 in	 vivo	 toxicity	 endpoints	 and	 in	 vitro	 assays	where	 the	 algorithm	
contributed	to	the	model	with	highest	balanced	accuracy	is	shown.		

Algorithm	 In	vivo	
rank	

#	in	vivo		
endpoints	

In	vitro	
rank	

#	in	vitro	
endpoints	

FSMLR	 1	 16	 3	 21	
ASNN	 2	 13	 4	 18	
WEKA-RF	 3	 11	 1	 33	
PLS	 4	 7	 2	 26	
MLRA	 5	 5	 8	 6	
𝑘NN	 6	 3	 7	 10	
LibSVM	 7	 3	 5	 18	
WEKA-J48	 8	 3	 6	 13	
Total	 	 61	 	 1451	

1One	in	vitro	assay	endpoint	showed	an	exact	tie	between	2	models	
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Table	 9.	 	 The	 five	 best-predicted	 in	 vitro	 assays	 based	on	 the	maximum	achievable	 balanced	 accuracy	 for	 the	
endpoints. 

Model	
id	

property	 Sensitivity	 Specificit
y	

Balanced	
accuracy	

MCC
1	

Algorith
m	

Descripto
r	package	

673	 Novascreen	
Human	
CYP2B6		

0.81	 0.91	 0.86	
±0.032	

0.6	 ASNN	 ALOGPS,	
OEstate	

77	 Novascreen	
Human	
CYP2C18		

0.74	 0.93	 0.84	
±0.04	

0.62	 LibSVM	 ALOGPS,	
OEstate	

68	 Novascreen	
Rat	CYP2C6		

0.83	 0.81	 0.82	
±0.03	

0.5	 WEKA-RF	 ALOGPS,	
OEstate	

69	 Novascreen	
Rat	
CYP2C11		

0.93	 0.86	 0.9	±0.02	 0.65	 FSMLR	 Dragon6	

78	 Novascreen	
Human	
CYP3A5	

0.81	 0.87	 0.83	
±0.03	

0.58	 LibSVM	 Dragon6	

1MCC:	Matthews	correlation	coefficient.	268%	confidence	intervals	of	the	mean	balanced	accuracy	are	also	shown.	
3Models	can	be	accessed	 from	https://amaziz.com/iprior/model/id	 replacing	“id”	with	 the	model	 identification	
number.	

4.1.4 Summary	of	ToxCast™	phase	I	analysis	aspects	
Several	in	vivo	endpoints	with	a	promising	predictive	balanced	accuracy	exceeding	0.75	were	
identified	(examples	listed	in	Table	3).	In	some	cases,	the	biological	descriptors	derived	from	
the	 in	vitro	profiling	of	chemicals	significantly	improved	(p-values	<0.05)	models’	predictive	
ability	compared	to	the	use	of	in	silico	descriptors	alone	(Table	6).	Also,	the	regrouping	of	the	
in	vitro	assay	responses	in	the	form	of	pathway	perturbations	significantly	improved	(p-values	
<0.05)	the	predictivity	for	some	toxicity	endpoints		

However,	 analysis	 of	 ToxCast	 Phase	 I	 compounds	 remains	 challenging	 for	 most	 in	 vivo	
endpoints	 as	 shown	 by	 the	median	 performance	 of	 constructed	QSAR	models.	 It	 remains	
difficult	 to	 replace	 animal	 toxicity	 testing	 using	 predictive	 QSAR	 models,	 with	 a	 possible	
exception	for	the	acetylcholinesterase	inhibition.	However,	the	comprehensive	modeling	with	
multiple	 machine	 learning	 algorithms	 and	 descriptors	 shows	 relative	 success	 for	 selected	
endpoints	(Table	3).	Thomas	et	al174	presented	similar	findings	and	advised	the	combination	
of	QSAR	and	in	vitro	profiling	of	chemicals	as	means	for	prioritization,	rather	than	substitution,	
of	animal	toxicity	testing.	The	“Set	Compare”	utility	proved	successful	for	detecting	the	most	
significant	 in	vitro	assays	correlated	to	toxicity	endpoints	(Table	5).	This	shows	that	 in	vitro	
assays	could	assist	in	understanding	the	underlying	mechanism	of	toxicity.	

Multiple	in	vitro	assays	showed	a	high	balanced	accuracy	(>0.8)	(Table	9)	when	modeled	by	in	
silico	descriptors.	This	represents	a	different	methodology	towards	toxicity	modeling	where	
in	silico	descriptors	can	be	used	to	model	in	vitro	assay	outcomes	known	to	be	related	to	in	
vivo	effect.	Tox21	project	explores	this	possibility	by	profiling	large	number	of	chemicals	using	
in	vitro	assays	as	an	investigation	and	exploratory	tool	(see	Tox21	project).		

Many	challenges	remain	in	place:	first,	QSAR	modeling,	as	a	statistical	approach,	necessitates	
a	significant	amount	of	data.	The	low	number	of	chemicals	(as	training	instances)	restricts	the	
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modeling	process.	This	constrain	would	gradually	diminish	as	more	data	becomes	available	in	
future	stages	of	ToxCast	and	other	programs.	The	applicability	domain	and	predictive	power	
of	models	is	more	likely	to	increase.	Secondly,	the	in	vitro	representation	could	be	too	simple	
to	address	the	complexity	of	the	interactions	in	vivo.	Bioavailability	and	biotransformation	can	
play	a	significant	role	in	inducing	or	diminishing	toxic	effects	for	chemicals.	The	importance	of	
absorption,	distribution,	metabolism,	elimination	(ADME)	for	both	drug	discovery	as	well	as	
environmental	risk	assessment	cannot	be	overestimated327–329.	Thirdly	and	finally,	the	assays	
conducted	might	not	be	sufficient	for	capturing	biochemical	events	on	the	molecular	level	or	
depict	 the	 pathways	 responsible	 for	 toxicity.	With	 that	 taken	 into	 consideration,	 ToxCast	
Phase	I	still	provided	useful	overview	of	the	chemical	initiating	events.	Some	assays	may	be	
redeemed	unnecessary	in	future	tests,	as	they	were	focused	on	promiscuous	endpoints	or,	
vice	versa,	were	not	sensitive	enough.	As	more	data	is	being	gathered	from	chemical	providers	
through	programs	like	REACH,	ToxCast	and	Tox21,	QSAR	modeling	will	play	more	significant	
role.	

For	this	study,	the	public	platform	iPrior186	(Figure	9)	was	deployed	and	is	currently	hosting	
data	 from	 ToxCast,	 Tox21,	 e1K	 projects.	 iPrior	 is	 a	 public	 online	 tool.	 It	 allows	 users	 to	
reproduce	any	of	the	QSAR	models	created	in	this	study	as	well	as	run	predictions	on	new	
chemicals	 using	 these	 models.	 The	 configurations	 (machine	 learning	 algorithm	 and	
descriptors)	that	provided	the	best	balanced-accuracy	for	each	endpoint	 is	provided	 in	the	
supplementary	materials	(Supplementary	4:	Statistical	parameters	for	the	models	with	best	
balanced-accuracy	for	each	of	the	144	in	vitro	assay	endpoints	from	the	ToxCast	database.)	as	
well	as	(Supplementary	5:	Statistical	parameters	for	the	models	with	best	balanced-accuracy	
for	each	of	the	61	in	vivo	toxicological	endpoints	from	the	Toxicity	reference	database.)	Users	
are	encouraged	to	investigate	the	model	profiles,	applicability	domains	and	run	predictions	
using	 their	 own	 chemical	 structures.	 It	 is	 open	 to	 researchers	 to	 upload	 more	 data	 or	
contribute	their	descriptor	packages.	 iPrior	supports	the	full	cycle	of	QSAR	research	online.	
The	platform	is	freely	accessible	for	the	non-commercial	use	of	the	academic	community.	The	
required	workflows	and	modeling	infrastructure	is	in	place	to	assist	scientists	in	developing	
predictive	 bioactivity	 signatures.	 This	 infrastructure	 remains	 open	 for	 the	 investigation	 of	
upcoming	data	releases.	Models	that	become	accepted	by	the	community	and	regulators	can	
play	a	role	in	predicting	in	vivo	toxicity	and	reduce	animal	testing.	
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4.2 Lowest	effect	level	prediction	
This	study	was	made	as	part	of	the	ToxCast	challenge	2014	organized	by	EPA	and	the	Topcoder	
competition	platform.	 The	aim	of	 this	 study	 is	 to	develop	QSAR	models	 to	predict	 Lowest	
effect	 level	 (LEL)	 concentration	 based	 on	 in	 vitro	 measurements	 and	 calculated	 in	 silico	
descriptors.	 LEL	 is	defined	as	 “the	 lowest	dose	 that	 shows	adverse	effects	 in	 these	animal	
toxicity	tests.”	The	LEL	values	are	used	by	regulators	to	put	limits	on	exposure	to	chemicals	to	
ensure	that	they	are	tolerated	by	majority	of	the	population.		

The	author	participated	in	the	challenge	under	the	name	(AMAZIZ)	and	achieved	the	fifth	rank	
among	47	participants.	EPA	published	a	summary	of	the	challenge	that	can	be	accessed	from	
the	 web	 archives330.	 This	 study	 expands	 on	 the	 work	 done	 during	 the	 competition	 and	
provides	further	analysis.		

4.2.1 Data	acquisition	and	curation	
The	 total	 dataset	 used	 during	 the	 challenge	 included	 1,854	 molecules	 divided	 into	 three	
groups.	The	first	group	(Group	A)	covered	483	compounds	for	which	their	LEL	values	were	
disclosed.	 These	 chemicals	were	 intended	 to	 be	 used	 as	 a	 training	 set.	 The	 second	 group	
(Group	B)	 included	143	chemicals,	 for	which	 the	 LEL	values	was	not	 revealed.	A	 randomly	
selected	subset	consisting	of	63	compounds	from	Group	B	was	used	as	a	provisional	test	set.	
Contestants	are	allowed	to	submit	predictions	against	the	provisional	test	set	and	receive	a	
score,	during	the	competition,	in	order	to	optimize	their	algorithms.	Finally,	the	remaining	80	
compounds	from	Group	B	were	considered	as	the	final	test	set	that	were	used	to	determine	
the	final	ranking	for	the	competition.		

The	EPA	did	not	reveal	which	compounds	belong	to	which	group.	Users	were	always	asked	to	
predict	 the	outcome	of	all	1,854	compounds	 including	1228	compounds	of	group	C,	which	
were	part	of	neither	training	nor	test	sets.		

Besides	the	chemical	structures,	the	dataset	included	measurements	from	more	than	700	in	
vitro	assays	 from	different	biochemical	and	cell-based	assays.	As	described	earlier	 (see	4.1	
ToxCast™	 phase	 I	 -	 In	 vitro	 toxicity	 assays	 dataset),	 they	 cover	 a	 wide	 range	 of	 proteins,	
pathways,	and	cellular	processes	against	which	chemicals	may	interact.		

Data	was	downloaded	 from	the	EPA	website.	The	data	was	divided	 into	multiple	 files	 that	
contain	experimental	measurements,	structure	representations	(in	SMILES	format)	as	well	as	
few	 in	silico	descriptors.	A	KNIME	workflow	(shown	 in	Figure	25)	was	used	to	examine	the	
dataset	and	join	the	chemical	structures	to	their	corresponding	LEL	values	for	the	training	set	
(483	compounds).	
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Figure	25.		KNIME	workflow	used	to	analyze	the	LEL	data	and	prepare	the	submission	files	

4.2.2 Methods	
Two	modeling	approaches	were	used	to	build	QSAR	models	for	the	prediction	of	LEL	values.	
These	are	Feature	nets	and	consensus	modeling.	

A. Feature	nets		
The	first	approach	used	feature	nets	(FN)	to	simultaneously	build	models	for	LEL	as	well	as	
Octanol/Water	partition	coefficient	and	water	solubility.	The	model	used	OEstate	indices311,312	
as	 in	 silico	 descriptors.	 The	 in	 vitro	 assays	 were	 ignored,	 because	 it	 did	 not	 improve	 the	
prediction	accuracy.	 FN	 is	 an	example	of	 inductive	 knowledge	 transfer	 approaches	where,	
unlike	 the	conventional	 single-task	 learning	 (STL)	modeling	 focused	only	on	a	 single	 target	
property	without	any	 relations	 to	other	properties,	 in	 the	 framework	of	 inductive	 transfer	
approach,	the	individual	models	are	viewed	as	nodes	in	the	network	of	interrelated	models	
built	sequentially331.	The	rationale	behind	selecting	lipophilicity	and	water	solubility,	for	such	
inductive	 knowledge	 transfer,	 is	 that	 they	 have	 been	 known	 to	 correlate	 well	 with	many	
biological	 and	 toxicological	 activities7,8.	 The	 dataset	 used	 for	 training	 the	 FN	 consists,	 in	
addition	 to	 the	 LEL	 measurements	 discussed	 above,	 of	 8072	 experimental	 solubility	
measurements	 and	 16823	 lipophilicity	 measurements.	 It	 is	 the	 same	 dataset	 behind	 the	
ALOGPS	model234,	which	has	been	shown	high	predictive	power	in	multiple	studies332,333.	
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The	predictions	by	the	final	QSAR	model	developed	in	this	approach	was	used	as	the	author’s	
participation	in	the	challenge	(team:	AMAZIZ)	

B. Consensus	modeling	
The	second	approach	used	ten	in	silico	descriptor	packages	implemented	in	OCHEM	to	build	
10	 independent	 QSAR	 models.	 The	 ten	 descriptor	 packages	 are:	 OEstate	 indices311,312,	
Chemaxon	descriptors313,	GSFragments314,	ISIDA	fragments315,	CDK255,	Dragon	6222,	inductive	
descriptors316,	 MERA	 +	 MerSy246–248,	 QNPR251	 and	 Adriana.Code235	 descriptors.	 The	 3D	
structure	 representation	 was	 generated	 using	 Corina17.	 Finally,	 a	 consensus	 model	 was	
constructed	to	average	the	prediction	outcomes	from	all	ten	models.	This	approach	is	similar	
to	 the	 approach	 used	 in	 study	 4.1	 ToxCast™	 phase	 I	 above.	 It	 was	 used	 by	 contestant,	
Novserj334,	and	is	included	for	comparison.		

Descriptors	calculation	failed	for	37	molecules	for	different	packages	(11	of	which	are	from	
the	training	set).	These	compounds	presented	chemotypes	that	were	unsupported	by	some	
descriptor	packages.	For	instance,	CDK	descriptors	package	fails	for	chemicals	containing	[Sn],	
[Hg],	[B]	or	[As]	atoms.	Other	compounds	were	too	large	to	be	calculated	with	the	current	
descriptors	 implementation.	 These	 compounds	 included	 rifampicin,	 alpha-cyclodextrin,	
milbemectin,	 emamectin	 that	 failed	 due	 to	 calculation	 time-out	 or	 structure	 conversion	
errors.	To	compensate	for	unavailable	predictions	for	failed	molecules,	the	median	LEL	value	
for	all	training	set	compounds	(logLEL	=	-	3.201	log(M))	was	used	in	the	first	approach	while	
the	mean	LEL	value	(logLEL	=	-3.2602	log(M))	was	used	in	the	second.		

For	comparison,	two	more	models	were	built.	The	first	is	based	only	on	in	vitro	assay	outcomes	
while	 the	 second	was	 based	 on	 two	 simple	 descriptors:	molecular	weight	 and	 number	 of	
carbon	atoms	using	linear	regression,	ASNN	and	LibSVM.	The	purpose	of	these	models	is	to	
compare	in	silico	and	in	vitro-based	descriptor	performances	as	well	as	judge	whether,	and	to	
what	extent,	complex	machine	learning	and	descriptor	packages	improve	prediction	accuracy.	

Associative	neural	networks	(ASNN)	was	the	selected	machine-learning	algorithm	for	building	
QSAR	models	 in	 both	 approaches.	 The	 algorithm	was	 used	 as	 described	 in	 3.5.2	 Artificial	
neural	 networks	 (ANN).	 The	 same	 descriptor	 selection	 workflow	 was	 used	 for	 both	
approaches	as	described	in	section	3.6	Variable	selection	above.		

To	 avoid	 over-fitting,	 Bootstrap	 aggregation	 (bagging)	 was	 used	 for	 estimating	 models	
performance	in	both	approaches	as	described	in	section	3.9.3	Bootstrap	aggregation	(Bagging)	
above	with	64	models	bag.	Bagging	was	also	used	to	validate	the	consensus	model	built	in	the	
second	approach.	As	the	provisional	test	set	was	much	smaller	(N	=	63)	than	the	training	set	
(N	=	483).	Therefore,	optimizing	the	prediction	algorithm	against	such	provisional	set	is	likely	
to	result	in	overfitting.	For	this	reason,	a	conscious	decision	was	made	in	both	approaches	to	
neglect	 the	 provisional	 test	 set	 and	 rely	 solely	 on	 the	 bagging	 standard	 deviation	 on	 the	
training	set	as	a	measure	for	models’	confidence	intervals.	

The	challenge	organizers	used	a	scoring	function	(Equation	38)	based	on	Root	Mean	Square	
Error	 (RMSE)	as	 the	statistical	metric	 to	compare	models’	performance.	Therefore,	models	
with	lower	RMSE	will	receive	a	higher	score	and	therefore	be	judged	as	more	superior	(i.e.,	
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ranked	 higher).	 Furthermore,	 the	 organizers	 provided	 Pearson	 correlation	 coefficient	 and	
AUROC	for	some	winning	submissions	in	a	summary	report	released	after	the	challenge330.	

𝑆𝑐𝑜𝑟𝑒 = 	1000000	×	(2 − 𝑅𝑀𝑆𝐸)  Equation	
38	

4.2.3 Results	and	discussion	
Table	10	summarizes	the	statistical	results	of	the	competition	as	published	by	the	organizers	
on	 the	challenge	website	and	 the	 summary	 report330	 complemented	with	 results	 from	the	
investigations	in	this	study.	The	RMSE	of	the	two-descriptor	model	with	linear	regression	on	
the	training	set	was	1.0	±	0.04	log	unit.	While	LibSVM	with	the	same	two	simple	descriptors	
decreased	RMSE	to	0.97	±	0.04	log	unit.	This	error	was	significantly	higher	than	that	obtained	
by	either	the	consensus	modeling	approach	or	the	feature	net	approaches.	On	the	other	hand,	
it	was	exactly	equal	 to	 the	performance	of	 the	QSAR	model	built	using	 the	 in	 vitro	 assays	
measurements	(RMSE	=	0.97±0.04).		

The	first	approach	resulted	in	RMSE	of	0.92±0.04	on	the	training	set	and	R2	of	0.19	±	0.02.	The	
final	 predictions	 for	 all	 1854	 compounds	 is	 deposited	 in	 an	 open	 GitHub	 repository317	 for	
reference.		

In	the	second	approach,	models	developed	with	different	in	silico	descriptor	sets	resulted	in	
similar	 performance	 as	 shown	 in	 Table	 11.	 Interestingly,	 in	 vitro	 assays	 measurements	
provided	 the	 lowest	 accuracy	 (RMSE:	 0.97±0.04)	 compared	 to	 other	 descriptor	 packages.	
Consensus	modeling	achieved	an	 improved	performance	 regarding	both	RMSE	 (0.88±0.04)	
and	R2	(0.27±0.04)	measures.		

It	is	worth	noticing	that	there	have	been	large	swings	in	ranking	between	provisional	and	final	
test	sets.	For	example,	the	author’s	submission	(AMAZIZ)	was	ranked	20th	in	the	provisional	
submission	but	achieved	the	fifth	place	in	the	final	prediction.	Likewise,	the	fourth	winner	in	
the	final	test	set	was	ranked	27th	in	the	provisional	set.	On	the	other	hand,	the	first	provisional	
rank	was	only	able	to	score	ninth	in	the	final	test	set.	As	expected,	the	provisional	ranking	was	
not	 a	 good	 indicator	of	 the	 final	 ranking.	 This	may	be	due	 to	 contestants	optimizing	 their	
submissions	for	the	provisional	set.		

This	can	be	explained	by	investigating	the	confidence	intervals	as	a	function	of	dataset	size.	
The	consensus	model	RMSE	was	0.88	±	0.04	for	N=472	training	set	molecules.	The	confidence	
interval	of	the	provisional	set	was	estimated	by	random	sampling	of	N	=	63	molecules	from	
the	training	set,	for	each	of	which	the	intervals	were	calculated.	The	confidence	interval	for	a	
set	of	such	size	was	(±	0.08)	and	therefore	twice	as	large	as	the	training	set.	This	means	that	
a	selection	of	a	model	based	on	its	performance	about	the	provisional	test	set	would	be	about	
twice	uncertain	as	the	selection	based	on	the	training	set.	It	is	therefore	advisable	to	rely	on	
the	 estimated	 accuracy	 on	 the	 training	 set,	 rather	 than	 the	 provisional	 test	 set	 for	model	
selection.	

It	is	also	worth	noticing	that	the	confidence	interval	for	the	final	test	set	(N	=	80	molecules)	is	
about	the	same	as	for	N	=	63	molecules.	The	wide	confidence	intervals	for	both	provisional	
and	 final	 test	 contributed	 to	 the	 fluctuations	 of	 ranks	 of	 challenge	models	 for	 both	 sets.	
Provisional	and	final	model	ranks	were	correlated	only	with	R=0.76.		
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It	is	worth	noting	that	the	RMSE	of	the	top	eight	models	were	in	range	1.12	to	1.16	and	thus	
were	 within	 the	 confidence	 intervals	 of	 the	 winning	 model.	 Therefore,	 from	 a	 statistical	
perspective,	these	models	had	the	same	performance	and	their	scoring	differences	are	not	
more	significant	than	random	chance.	

	
Table	10.		Summary	of	the	performance	of	the	top-ranked	models	in	EPA	ToxCast	challenge	

	
Model	

training	seta	 test	sets	
provisional	 final	

RMSE	 R2	 RMSE	 rank	 RMSE	 R2	 Rank	
novserj	 0.88±0.04	 0.27±0.04	 1.03±0.08b	 8	 1.12±0.08b	 0.31	 1	
NobuMiu	 	 	 1.03	 9	 1.131	 0.30	 2	
a9108tc	 	 	 1.05	 16	 1.134	 0.29	 3	
klo86min	 	 	 1.09	 27	 1.139	 0.29	 4	
amaziz	 0.92±0.04	 0.19	±	0.02	 1.06	 20	 1.145	 0.29	 5	
in	vitro	assaysc	 0.97±0.04	 0.11±0.03	 	 	 	 	 	
	MW	+	NCd	 0.97±0.04	 0.11±0.03	 	 	 	 	 	

aThe	accuracy	of	predictions	 for	 the	validation	“out-of-the-bag”	samples.	 bConfidence	 intervals	were	estimated	
using	the	sets,	which	were	sampled	from	the	training	set	and	had	each	the	same	size	as	the	respective	test	set318.	
cThe	best	model	based	on	the	in	vitro	assays	descriptors	developed	using	LibSVM	method.	dThe	model	based	on	
molecular	weight	(MW)	and	number	of	carbon	atoms	(NC)	developed	using	LibSVM	method.	

	
Table	11.		Performance	of	QSAR	models	based	on	in	silico	descriptors	for	the	prediction	of	LEL	

Descriptor	packages	 RMSE	 R2	

OEstate	 0.95	 0.18	

CDK	 0.92	 0.23	

Dragon6		 0.92	 0.23	

ISIDA	Fragmentor	 0.95	 0.2	

GSFragments	 0.96	 0.16	

MERA	+	MerSy	 0.93	 0.21	

Chemaxon	Descriptors	 0.92	 0.23	

Inductive	Descriptors	 0.94	 0.18	

Adriana	 0.93	 0.21	

QNPR		 0.97	 0.17	

	

4.2.4 Summary	of	LEL	prediction	aspects	
QSAR	 models	 for	 the	 prediction	 of	 LEL	 were	 developed.	 Two	 different	 approaches	 were	
discussed,	 both	 of	which	 received	 a	 top	 ranking	 in	 the	 EPA	 ToxCast	 challenge,	which	was	
organized	 by	 the	 Topcoder	 platform335.	 The	 performance	 of	 in	 vitro	 assays	 and	 in	 silico	
descriptors	 was	 compared.	 In	 vitro	 descriptors	 alone	 performed	 in	 par	 with	 in	 silico	
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descriptors.	 The	 winning	 approaches	 described	 in	 this	 study	 were	 able	 to	 achieve	 such	
ranking334	despite	not	including	in	vitro	descriptors.	

The	exclusion	of	the	model	based	on	in	vitro	descriptors	did	not	change	the	accuracy	of	the	
ASNN	consensus	model.	Using	a	model	based	on	the	combination	of	both	in	silico	and	in	vitro-
based	descriptors	requires	the	availability	of	both	descriptors.	This	hinders	its	application	to	
chemicals	for	which	in	vitro	measurements	are	available.	Performing	such	experiments	has	a	
higher	cost	and	 is	more	 time	consuming	 than	 the	calculation	of	 in	 silico	descriptors	alone.	
Therefore,	LEL	models	based	on	in	silico	descriptors	only	are	recommended	as	they	are	more	
feasible	and	does	not	compromise	on	prediction	accuracy.	
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4.3 Tox21	project	

4.3.1 Introduction	and	data	source	
This	study	was	made	as	part	of	a	challenge	organized	by	National	Institute	of	Health	(NIH)	/	
National	Center	 for	Advancing	Translational	Sciences	 (NCATS).	Through	 this	 challenge,	HTS	
assay	data	 from	12	 targets	were	made	available	 to	 contestants	 to	predict	 the	potential	of	
activation	of	 such	 targets	 using	 different	 in	 silico	 approaches.	 Targets	were	divided	 into	 2	
panels;	a	nuclear	receptor-signaling	panel	as	well	as	a	stress	response	panel.	For	each	target,	
the	datasets	were	given	in	2	portions;	an	initial	training	set	and	a	leaderboard	set.	The	logic	
behind	the	 leaderboard	set	was	to	allow	competing	teams	to	understand	their	standing	as	
compared	 to	 other	 competitors	 using	 a	 unified	 test	 set.	 The	 ground	 truth	 (labels)	 for	 the	
evaluation	sets	was	released	towards	the	end	of	the	competition	to	allow	all	contestants	to	
maximize	 the	 learning	 for	 their	 model336.	 The	 final	 ranking	 was	 done	 using	 an	 external	
validation	set	of	222	compounds,	for	which	all	contestants	were	asked	to	predict	their	possible	
response	against	all	targets.	The	ground	truth	of	these	compounds	was	also	made	available	
after	the	teams’	ranking	was	released.	Table	12	shows	the	number	of	records	for	each	target.	

The	Tox21	Data	challenge	follows	the	open-innovation	principles337	to	crowdsource	scientists’	
efforts	in	analyzing	HTS	data	generated	through	the	Tox21	project.	It	aspires	to	predict	the	
pathways’	interference	of	chemicals	using	only	their	chemical	structures.	Such	predictions	can	
therefore	 guide	 regulators	 and	 participating	 governmental	 agencies	 in	 identifying	 the	
chemicals	 (either	 drugs	 or	 industrial)	 that	 carry	 the	 highest	 concern	 for	 human	 and	
environmental	 risks.	 The	 aim	 of	 this	 study	 is	 to	 describe	 the	 methodologies	 used	 by	 the	
winning	 corresponding	 author	 during	 the	 challenge	 (team:	 AMAZIZ)338	 and	 to	 extend	 the	
analysis	on	the	chemical	libraries	beyond	what	was	possible	during	the	limited	duration	of	the	
challenge.	 The	 study	 investigates	 a	 comprehensive	 approach	 on	 consensus	 modeling	 and	
analyzes	multiple	descriptor	packages.	

The	pathway	endpoints	investigated	were:	

A. Estrogen	receptor	(ER)	
Tox21	 compounds	 library	 was	 screened	 for	 potentially	 acting	 as	 agonist	 at	 the	 estrogen	
receptor	alpha.	Such	activators	could	lead	to	reproductive	dysfunction(Aop:30).	Two	different	
cell	lines	were	used:	

— ER-alpha-UAS-bla	GripTiteTM	cell	line	(AID:	743077340):	This	cell	line	is	developed	by	
Invitrogen,	Carlsbad,	CA,	USA.	Cells	contain	a	beta-lactamase	reporter	gene	controlled	
by	 an	 Upstream	 Activator	 Sequence	 (UAS)	 stably	 integrated	 into	 HEK293	 cells.	
Throughout	this	work,	this	dataset	is	referred	to	as	(ER-LBD).		

— BG1-Luc-4E2	 cell	 line	 (AID:	 743079341):	 Dr.	 Michael	 Denison	 from	 University	 of	
California	provided	the	cell	line.	Cells	endogenously	express	the	full-length	ER-alpha	
and	 are	 stably	 transfected	 with	 a	 plasmid	 containing	 four	 estrogen	 responsive	
elements	 (ERE)	 under	 the	 control	 of	 an	 upstream	 luciferase	 reporter	 gene.	
Throughout	this	work,	this	dataset	is	referred	to	as	(ER-full).		
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B. Androgen	receptor	(AR)	
The	ability	of	chemical	compounds	to	agonist	the	estrogen	receptor	alpha	was	measured	in	2	
different	cell	lines	that	were	used	to	screen	the	Tox21	compound	library.	

— GeneBLAzer	AR-UAS-bla-GripTite	cell	line	(AID:	743053342):	This	cell	line	is	provided	by	
Invitrogen,	Carlsbad,	CA,	USA.	Cells	contain	a	beta-lactamase	reporter	gene	controlled	
by	 an	 upstream	 activator	 sequence	 (UAS)	 stably	 integrated	 into	 HEK293	 cells.	 To	
assess	the	possibility	for	false	positive	or	false	negative	results,	the	chemicals	were	
also	 tested	 for	 auto	 fluorescence,	which	 could	 interfere	with	 the	 biological	 target	
readout.	Throughout	this	work,	this	dataset	is	referred	to	as	(AR-LBD).		

— MDA-kb2	AR-luc	cell	line	(AID:	743040343):	This	cell	line	was	deposited	by	Wilson	et	al.	
It	 is	human	breast	carcinoma	cell	 line	 that	was	stably	 transfected	with	a	 luciferase	
reporter	gene	under	control	of	the	MMTV	promoter	containing	response	elements	
for	both	androgen	receptor	 (AR)	and	glucocorticoid	receptor	 (GR).	Throughout	this	
work,	this	dataset	is	referred	to	as	(AR-full).		

C. Aryl	hydrocarbon	receptor	(AHR)	(AID:	743122344)	
A	 cell	 based	 HepG2-AhR-luc	 assay,	 developed	 by	 Dr.	 Michael	 S.	 Denison	 (University	 of	
California	 at	 Davis),	 was	 used	 to	 assess	 the	 activation	 of	 AhR	 for	 Tox21	 compounds.	 The	
human	hepatocellular	carcinoma	(HepG2)	Cells	were	stably	transfected	with	an	Ah	receptor-
responsive	firefly	luciferase	reporter	gene	plasmid	carrying	20	dioxin	responsive	elements	and	
luciferase	 reporter	 gene.	 AhR	 activation	 leads	 to	 an	 increase	 in	 luciferase	 activity	 and	
therefore	ligands	can	be	detected.	Cell	viability	was	measured	using	CellTiter-Fluor	assay	in	
the	same	wells	to	detect	chemical	cytotoxicity	against	the	HepG2-AhR-luc	cell	line.		

D. Peroxisome	proliferator-activated	receptor	gamma	(PPAR-gamma)	(AID:	743140345)	
GeneBLAzer	PPAR	gamma	UAS-bla	HEK293H	cell	 line	was	used	in	this	assay.	This	cell	 line	is	
provided	 by	 Invitrogen,	 Carlsbad,	 CA,	 USA.	 Cells	 contain	 a	 beta-lactamase	 reporter	 gene	
controlled	by	an	upstream	activator	sequence	(UAS)	stably	integrated	into	HEK293H	cells.	To	
assess	the	possibility	for	false	positive	or	false	negative	results,	the	chemicals	were	also	tested	
for	auto	fluorescence,	which	could	interfere	with	the	biological	target	readout.		

E. Nuclear	factor	(erythroid-derived	2)-like	2/antioxidant	responsive	element	(Nrf2/ARE)	
(AID:	743219346)	

The	CellSensor	ARE-bla	Hep-G2	assay	was	used	to	assess	the	activation	of	the	report	gene	and	
thus	 identify	 chemicals	 that	 stimulate	 oxidative	 stress.	 The	 cells	 contain	 a	 beta-lactamase	
reporter	gene	controlled	by	the	Antioxidant	Response	Element	(ARE)	stably	integrated	into	
HepG2	cells.	Fluorescence	intensity	was	measured	to	assess	the	activation	of	the	responsive	
element.	Cell	viability	was	measured,	using	CellTiter-Glo	assay	(Promega,	Madison,	WI),	in	the	
same	 wells	 to	 detect	 chemical	 cytotoxicity	 against	 the	 ARE-bla	 cell	 line.	 Furthermore,	
compounds	 were	 tested	 for	 auto	 fluorescence	 to	 identify	 the	 possibility	 for	 false	 target	
readout.	

F. Aromatase	enzyme	inhibitors	(AID:	743139347)	
The	 MCF-7	 aro	 ERE	 cell	 line	 (human	 breast	 carcinoma),	 as	 provided	 by	 Dr.	 Shiuan	 Chen	
(Beckman	Research	Institute	of	the	City	of	Hope),	was	used	to	identify	aromatase	inhibitors.	
Cells	were	stably	transfected	with	a	promoter	plasmid,	pGL3-Luc,	encompassing	three	repeats	
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of	estrogen	responsive	element	(ERE).	Cell	viability	was	measured	using	CellTiter-Fluor	assay	
(Promega,	Madison,	WI)	in	the	same	wells	to	detect	chemical	cytotoxicity	against	the	MCF-7	
aro	ERE	cell	line.		

G. ATAD5	receptor	(ATAD5)	(AID:	720516348)	
A	 cell-based	 assay	 using	 embryonic	 kidney	 cells	 (HEK293T)	was	 used	 to	 screen	 the	 Tox21	
compounds	library.	The	assay	was	developed	by	Kyungjae	Myung	(NHGRI,	NIH)	to	detect	any	
enhanced	Level	of	Genome	Instability	Gene	1	(ELG1;	human	ATAD5)	protein,	which	increase	
in	 response	 to	 different	 kinds	 of	 DNA	 damage.	 The	 assay	 uses	 a	 luciferase	 reporter-gene	
tagged	with	ATAD5	 to	measure	 the	 induction	of	ELG1.	Therefore,	an	 increase	 in	 luciferase	
activity	marks	 a	 chemically	 induced	 genetic	 stress.	 Cytotoxicity	was	 also	 assessed	 through	
measuring	protease	activity	within	live	cells.	

H. Heat	shock	response	element	(HSE)	(AID:	743228349)	
HSE-bla	HeLa	cell	 line	was	utilized	in	this	HTS	assay.	This	cell	 line	is	provided	by	Invitrogen,	
Carlsbad,	CA,	USA.	Cells	contain	a	beta-lactamase	reporter	gene	controlled	by	the	heat	shock	
response	elements.	Cell	viability	was	measured,	using	CellTiter-Glo	assay	(Promega,	Madison,	
WI),	 in	 the	 same	 wells	 to	 detect	 chemical	 cytotoxicity	 against	 the	 HSE-bla	 cell	 line.	
Furthermore,	to	assess	the	possibility	for	false	positive	or	false	negative	results,	the	chemicals	
were	 also	 tested	 for	 auto	 fluorescence,	 which	 could	 interfere	 with	 the	 biological	 target	
readout.	

I. Disruptors	of	the	mitochondrial	membrane	potential	(MMP)	(AID:	720637350)	
An	 assay	 based	 on	 a	 homogenous	 cell-based	 assay	 with	 a	 water-soluble	 mitochondrial	
membrane	 potential	 sensor	 (m-MPI,	 Codex	 Biosolutions,	 MD)	 was	 applied	 to	 the	 Tox21	
compounds	 to	 identify	 those	 that	 can	 induce	 mitochondrial	 toxicity.	 In	 healthy	 cells,	 the	
water-soluble	dye	accumulates	in	the	mitochondria	as	aggregates,	causing	red	fluorescence.	
In	 case	 of	 a	 decrease	 in	MMP,	 the	 dye	 cannot	 accumulate	 in	 the	mitochondria	 and	 thus	
remains	 in	 the	 cytoplasm	 as	monomers	 causing	 green	 fluorescence.	 Cytotoxicity	was	 also	
assessed	in	the	same	wells	to	detect	chemical	cytotoxicity	through	the	quantitation	of	ATP	
present.	

J. Agonists	of	the	p53	signaling	pathway	(P53)	(AID:	720552351)	
Using	CellSensor	p53RE-bla	HCT-116	cell	line,	the	Tox21	compounds	were	screened.	This	cell	
line	 is	 provided	 by	 Invitrogen,	 Carlsbad,	 CA,	 USA.	 Cells	 contain	 a	 stably	 integrated	 beta-
lactamase	 (BLA)	 reporter	 gene	 controlled	 by	 the	 p53	 response	 elements.	 Fluorescence	
intensity	was	measured	to	assess	the	activation	of	the	responsive	element.	Cell	viability	was	
measured	by	measuring	the	intra	cellular	ATP	content	in	the	same	wells	to	detect	chemical	
cytotoxicity	against	the	p53	RE-bla	HCT-116	cell	line.	

4.3.2 Data	acquisition	and	curation	
Data	were	downloaded	from	the	Tox21	challenge	website336	in	both	SDF	and	SMILES	formats.	
The	files	contained	the	molecular	representation	(SDF	or	SMILES),	a	molecule	name	as	well	as	
the	target	response.	In	addition,	SDF	files	contained	few	extra	tags	for	the	DSSTox	compound	
ID	 (DSSTox_CID),	 the	chemical	 formula	and	the	average	mass	 (FW).	Both	 file	 formats	were	
compared	 to	 examine	 consistency.	 KNIME193	 was	 used	 to	 compare	 the	 structures	 and	
responses	in	both	file	formats.	The	data	covered	12	pathway	endpoints	covering	the	‘Nuclear	
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Receptor	 Signaling	 Panel’	 (7	 assays)	 and	 the	 ‘Stress	 Response	 Panel’	 (5	 assays).	 All	 assay	
endpoints	are	listed	in	Table	12.	

For	each	molecular	pathway	endpoint,	both	training	and	leaderboard	test	sets	were	combined	
to	 form	 a	 whole	 training	 set.	 Some	molecules	 were	 presented	 multiple	 times	 (i.e.,	 exact	
SMILES	 representation	 despite	 different	 molecule	 names).	 The	 basis	 for	 such	 duplicated	
records	may	be	 the	 result	of	 intentional	 repetitive	 testing	 for	quality	control	purpose.	The	
Online	CHEmical	database	and	Modeling	environment	platform	(OCHEM)183	was	used	to	check	
records	duplication.	It	calculates	the	INCHI180	key	structure	hash	to	compare	structures.	Some	
records	 showed	 different	 experimental	 responses	 despite	 exhibiting	 the	 same	 molecular	
structures.	 Figure	 26	 shows	 an	 example	 of	 such	 duplicates	 with	 conflicting	 experimental	
measurements.	Table	12	shows	the	number	of	records	per	dataset	as	well	as	the	number	of	
unique	molecules.	

SDF	molecular	representations	included	no	3D	coordinates.	The	files	showed	the	signature	of	
Marvin	 tool	 for	 compiling	 the	 SDF	 files.	 A	 single	 molecular	 representation	 in	 the	 final	
evaluation	dataset	(ID:	NCGC00357026-01)	held	an	ambiguous	aromaticity.	The	Marvin	tool	
was	used	to	adopt	a	corrected	aromatic	diazole	ring	structure	as	shown	in	Figure	27.	

	

	

Name:	p-Kresol	
SMILES:	CC1=CC=C(O)C=C1	
	
NCGC00013272-01	 Active	
NCGC00091519-04	 Inactive	
NCGC00257956-01	 Inactive	
NCGC00253980-01	 Inactive	
NCGC00258667-01	 Inactive	

	

	

Name:	1-methoxypropan-2-ol	
SMILES:	COCC(C)O	
	
NCGC00256978-01	 Active	
NCGC00259352-01	 Inactive	

	

Figure	26.	 	Example	of	conflicting	training	data.	The	examples	shown	were	obtained	from	the	estrogen	nuclear	
receptor	subset.	In	some	cases,	such	as	p-Kresol,	it	could	be	reasonable	to	assume	that	the	compound	would	be	
inactive	(4	records	shows	inactive	against	only	one	active	record).	In	other	cases,	such	as	methoxypropan-2-ol,	it	
is	not	possible	tell	whether	the	compound	was	truly	activating	the	estrogen	nuclear	receptor	(with	one	record	in	
each	class).	Compounds	are	compared	using	their	calculated	INCHI	keys	generated	from	the	SDF	representation.	
All	twelve	targets	showed	similar	cases.	



 87 

	 	

Figure	27.		To	the	left,	Compound	NCGC00357026-01	provided	structure	from	the	smiles	and	SDF	files	as	depicted	
by	Marvin	Sketch.	On	the	right,	the	corrected	aromatic	diazole	ring	adopted.	

	

Table	12.		Number	of	records	and	unique	molecules	in	each	dataset.	Nuclear	receptor	(nr)	assay	panel	contained	
7	assays	while	the	stress	response	(sr)	assay	panel	covered	5	assays	

Molecular	pathway	endpoint	 Training	 set	
records	 [unique	
molecules]	

Test	 set	
records	

Complete	
training	 set	
records	 [unique	
molecules]	

Nuclear	Receptor	Signaling	Panel	
Aryl	hydrocarbon	receptor	(nr-ahr)	 8169	[6716]	 272	 8441	[6988]	
Androgen	 receptor	 MDA-kb2	 AR-luc	
cell	line	(nr-ar)	

9362	[7468]	 292	 9654	[7760]	

Androgen	 receptor	 GeneBLAzer	 AR-
UAS-bla-GripTite	cell	line	(nr-ar-lbd)	

8599	[6927]	 253	 8852	[7180]	

Aromatase	enzyme	(nr-aromatase)	 7226	[5966]	 214	 7440	[6180]	
Estrogen	 receptor	 alpha	 BG1-Luc-4E2	
cell	line	(nr-er)	

7697	[6334]	 265	 7962	[6599]	

Estrogen	 receptor	 alpha	 ER-alpha-
UAS-bla	GripTiteTM	cell	line	(nr-er-lbd)	

8753	[7138]	 287	 9040	[7425]	

Peroxisome	 proliferator-activated	
receptor	gamma	(nr-ppar-gamma)	

8184	[6607]	 267	 8451	[6874]	

Stress	Response	Panel	
Nuclear	 factor	 (erythroid-derived	 2)-
like	2/antioxidant	 responsive	element	
(Nrf2/ARE)	(sr-are)	

7167	[5959]	 234	 7401	[6193]	

ATAD5	receptor	(sr-atad5)	 9091	[7256]	 272	 9363	[7528]	
Heat	 shock	 factor	 response	 element	
(sr-hse)	

8150	[6617]	 267	 8417	[6884]	

Mitochondrial	 membrane	 potential	
(sr-mmp)	

7320	[5941]	 238	 7558	[6179]	

p53	signaling	pathway	(sr-p53)	 8634	[6931]	 269	 8903	[7200]	
	

4.3.3 Methods	

A. Software	tools	
Throughout	this	study,	different	KNIME193	workflows	were	used	to	explore	the	data,	initialize	
the	 QSAR	 model	 building	 process	 on	 OCHEM	 (Figure	 28)	 and	 download	 the	 models’	
predictions	(Figure	29).	All	QSAR	models	were	built	using	OCHEM.	CRAN	R202	was	used	to	build	
consensus	models	and	analyze	models’	performance.	
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Figure	 28.	 	 KNIME	 workflow	 used	 to	 submit	 models	 for	 calculation	 on	 OCHEM.	 The	 workflow	 submits	 XML	
configuration	with	the	specific	instructions	for	the	machine	learning	algorithm,	descriptor	packages	as	well	as	the	
descriptors	 prefiltering	 and	 chemical	 structure	 standardization	 instruction.	 The	 workflow	 utilizes	 a	 previously	
prepared	set	of	chemicals	uploaded	to	OCHEM	(chemical	baskets)	that	contain	the	training	set	for	building	the	
models.	

B. In	silico	descriptors	calculation	
Ten	descriptor	packages	were	selected	from	OCHEM	to	be	used	for	constructing	QSAR	models.	
These	packages	were	compiled	from	multiple	academic	and	commercial	sources.	The	selected	
packages	are:	GSFrag314,	 ISIDA	 fragments	 (length	2	 -	 4)315,	Chemaxon	descriptors313,	 Estate	
indices311,312	&	ALOGPS309,352,	CDK	(using	all	constitutional,	topological,	geometrical,	electronic	
and	 hybrid	 descriptors)255,	 Inductive	 descriptors316,	 Dragon	 6222,	 Adriana.Code235,	MERA	 &	
MerSy246–248,	 QNPR	 (using	 SMILES	 representations	 -	 length	 1	 -	 3	 and	 a	 threshold	 of	 5)251.	
Further	 details	 on	 these	 packages	 and	 their	 integration	 within	 OCHEM	 can	 be	 found	 in	
section	3.4	Molecular	descriptors.		

The	same	structure-preprocessing	protocol	was	used	prior	to	the	calculation	of	any	descriptor	
package	 utilizing	 Chemaxon	 Standardizer	 that	 is	 integrated	 within	 OCHEM	workflow.	 The	
standardization	workflow	consisted	of	salt	counter-ion	removal,	charge	neutralization	and	the	
standardizing	of	certain	chemotype	representations;	such	as	nitro	groups	and	aromatic	rings.	
For	3D	descriptors,	 structural	 coordinates	were	optimized	using	CORINA308	 starting	 from	a	
clean	SMILES	representation.	Descriptors	calculation	failed	for	some	chemicals,	the	number	
of	failed	molecules	depends	on	the	nature	of	the	descriptor	package.	Reasons	for	calculation	
failure	may	be	a	large	molecules	size	or	undefined	chemotypes.	The	count	of	failed	molecules	
for	 each	 constructed	 model	 is	 available,	 together	 with	 the	 detailed	 modeling	 results,	
deposited	in	an	open	GitHub	repository317.	

C. Machine	learning	
The	associative	neural	networks	(ASNN)261,262	algorithm	was	used	to	construct	all	models	as	
described	in	section	3.5	Machine	learning	algorithms.	

D. Performance	measures	and	validation	protocol	
Due	to	the	unbalanced	nature	of	the	datasets,	balanced	accuracy	was	used	throughout	the	
study,	 as	 well	 as	 during	 the	 challenge,	 as	 the	 primary	 measure	 for	 comparing	 models’	
performance.	It	is	important	to	notice	that	the	challenge	did	not	only	account	for	the	balanced	
accuracy	but	also	the	Area	Under	the	Receiver	Operating	Characteristic	(AUROC)	curve281.		

Bagging272	was	used	to	validate	the	accuracy	of	the	training	set.	Bagging	is	a	meta-algorithm	
that	involves	the	aggregation	of	many	models,	each	of	which	is	based	on	its	own	training	set	
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(“bag”).	Bagging	utilized	the	random	sampling,	with	repetition,	of	many	subsets	of	the	training	
set.	In	each	bagging	meta-model	constructed,	an	ensemble	of	64	models	was	developed.	For	
each	model	in	the	ensemble	the	training	examples	were	selected	randomly	from	the	original	
training	set	allowing	duplicates	 (i.e.,	 resampling	with	 replacement).	The	prediction	of	each	
classification	was	determined	by	majority	voting	among	 the	ensemble	members.	Stratified	
bagging291	was	used	as	the	validation	protocol.	It	also	served	to	handle	the	unbalance	of	the	
training	set292.	In	the	current	implementation,	for	each	of	the	64	models	in	an	ensemble,	equal	
numbers	 of	 active	 and	 inactive	 compounds	were	 randomly	 selected.	 Thus,	 the	 size	 of	 the	
training	set	was	always	double	the	size	of	the	minority	class.	

The	 calculation	 of	 statistical	measures	was	 done	 only	 using	 the	 validation	 set	 (out	 of	 bag	
compounds).	For	molecules	with	conflicting	experimental	measurements	(see	Figure	26),	the	
class	with	more	experimental	measurements	 (majority	 vote)	was	 selected.	Molecules	 that	
showed	equal	number	of	active	and	inactive	experimental	measurements	were	excluded.	

E. Consensus	modeling	
For	 each	 endpoint,	 consensus	 models	 were	 built	 using	 all	 possible	 combinations	 of	 the	
underlying	ten	models	(each	built	using	different	in	silico	descriptor	package),	i.e.,	 𝐶haÅaÅ

hia .	
In	 total,	 12276	models	 (1023	 x	 12	 endpoints)	 were	 constructed.	 Simple	 averaging	 of	 the	
predictions	was	used	for	building	each	of	the	consensus	models.		

Two	 approaches	 for	 consensus	 model	 selection	 were	 investigated	 in	 this	 study.	 The	 first	
approach	considers	consensus	models	that	show	the	highest	validated	balanced	accuracy	on	
the	 training	set.	The	second	approach	considers	consensus	models	which	combine	models	
built	with	all	ten	descriptor	packages	regardless	of	the	resulting	validation	balanced	accuracy.	
Both	approaches	performed	comparatively	well	with	no	significant	difference	in	most	cases.	

F. Applicability	domain		
In	this	study,	a	distance-based	method	was	used	to	estimate	the	applicability	domain	for	all	
models.	The	distance	to	model	 is	defined	in	the	property	space	(rather	than	the	descriptor	
space)196.	This	approach	uses	the	standard	deviation	between	the	predictions	of	an	ensemble	
of	models	(generated	through	bagging)	as	a	measure	of	distance.		
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Figure	29.		KNIME	workflow	used	to	retrieve	QSAR	model	IDs	from	OCHEM.	The	model	predictions	on	the	training	
set	are	retrieved	for	analysis	of	models’	performance.	Information	on	the	model	name	are	also	retrieved	and	used	
to	store	meta-information	on	the	models’	algorithms	and	descriptors.	Finally,	KNIME	sends	instructions	to	OCHEM	
to	calculate	predictions	for	the	test	set	compounds.	

4.3.4 Results	and	discussion	

A. Individual	models	
In	total	10	descriptor	packages	were	used	to	model	twelve	in	vitro	assay	endpoints	resulting	
in	 120	 QSAR	 models	 constructed	 with	 64-bagging-validation.	 Different	 endpoints	 showed	
varying	 success.	 All	 models	 are	 published	 online	 and	 may	 be	 examined	 through	
http://www.ochem.eu/mode/[model-id]	 replacing	 [model-id]	 with	 the	 respective	 model	
identification	number	available	in	the	results	tables.	Users	can	see	a	model’s	summary	with	
performance	 statistics,	 applicability	 domain	 graphs	 as	 well	 as	 apply	 the	 model	 to	 new	
compounds.	Figure	30	shows	 the	balanced	accuracy	of	all	120	models	as	grouped	by	 their	
respective	 targets.	 Other	 statistical	 parameters	 such	 as	 specificity,	 sensitivity,	Matthews’s	
correlation	 coefficient	 (MCC)	 and	 overall	 accuracy	 are	 deposited	 in	 an	 open	 GitHub	
repository317	where	the	summary	statistics	of	all	models	are	publicly	available.	

To	compare	descriptor	packages	success,	each	package	was	given	a	score	 from	one	to	 ten	
according	to	its	rank	(a	score	of	10	was	given	to	the	descriptor	package	contributing	to	the	
model	with	the	highest	balanced	accuracy	and	1	for	the	lowest).	The	scores	were	summed	for	
all	endpoints.	The	final	rank	of	descriptors	can	be	seen	in	Table	13.	Dragon	and	CDK	descriptor	
packages	shared	the	top	positions	in	both	training	and	evaluation	sets.	

As	 shown	 in	 Figure	 30,	 a	 direct	 correlation	 exists	 between	 the	 validated	 training	 and	 the	
evaluation	set	balanced	accuracies	except	for	the	nr-ar-lbd	endpoint.	This	can	also	be	seen	by	
directly	plotting	the	training	set	against	the	evaluation	set	balanced	accuracies	as	shown	in	
Figure	31.	

Table	 14	 lists	 the	 performance	 of	 the	 single	 descriptor	 package	 models	 with	 the	 highest	
balanced	accuracy	for	each	pathway	endpoint	together	with	their	corresponding	performance	
on	the	final	evaluation	set.	The	highest	balanced	accuracy	achieved	by	any	team	(measured	
on	the	evaluation	set)	during	the	challenge	was	reported	online353.	It	is	also	shown	in	Table	3	
(referred	to	as	“winning	balanced	accuracy”)	for	reference.	
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Figure	30.		Training	set	balanced	accuracies	for	all	120	models	as	grouped	by	their	respective	endpoints.	Red	points	
represent	the	validated	(through	bagging)	balanced	accuracies	calculated	on	the	training	set.	Blue	points	represent	
the	balanced	accuracy	on	the	evaluation	set.	

	

Table	13.		Comparison	of	the	performance	of	different	descriptor	packages	in	constructing	QSAR	models	for	in	vitro	
pathway	disruption	prediction	

Descriptors	package	 Training	
total	score	

Training	 set	
rank	

Evaluation	
total	score	

Evaluation	
set	rank	

Dragon	6	 111	 1	 86	 2	
CDK	 105	 2	 98	 1	
ISIDA	Fragments	 88	 3	 65	 5	
Chemaxon	Descriptors	 79	 4	 71	 4	
ALOGPS,	OEstate	 73	 5	 79	 3	
Adriana.Code	 55	 6.5	 55	 8	
QNPR	 55	 6.5	 45	 9	
Inductive	Descriptors	 36	 8	 57	 7	
MERA,	MerSy	 30	 9	 62	 6	
GS	Fragments	 28	 10	 42	 10	
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Table	14.		Performance	of	the	single-descriptor-package	models	with	the	highest	training	set	balanced	accuracy	
for	each	pathway	endpoint.	The	balanced	accuracies	of	winning	models	 in	 the	data	challenge353	are	shown	for	
reference.	Cases	where	models	perform	better	than	wining	balanced	accuracy	are	underlined.	Three	significant	
digits	are	shown	for	comparison.	However,	the	difference	in	the	balanced	accuracy	in	many	cases	is	not	significant	
to	 justify	 some	 models	 as	 being	 more	 superior	 than	 others.	 The	 upper	 and	 lower	 boundaries	 for	 balanced	
accuracies	 as	 well	 as	 p-values	 are	 available,	 together	 with	 detailed	 QSAR	 results,	 from	 an	 open	 GitHub	
repository317.	

Molecular	
pathway	
endpoint	

Descriptors	
package	

Training	
balanced	
accuracy	

Evaluation	
balanced	
accuracy	

Wining	
balanced	
accuracy	
(evaluation	
set)	

nr-ahr	 CDK	 0.850	 0.836	 0.853	
nr-ar	 CDK	 0.779	 0.768	 0.736	
nr-ar-lbd	 CDK	 0.834	 0.643	 0.650	
nr-
aromatase	 Dragon	6	 0.818	 0.699	 0.737	
nr-er	 CDK	 0.728	 0.726	 0.749	
nr-er-lbd	 Dragon	6	 0.795	 0.650	 0.715	
nr-ppar-
gamma	 Dragon	6	 0.776	 0.784	 0.785	
sr-are	 Dragon	6	 0.770	 0.704	 0.729	
sr-atad5	 Dragon	6	 0.788	 0.773	 0.741	
sr-hse	 Dragon	6	 0.771	 0.803	 0.799	
sr-mmp	 CDK	 0.858	 0.888	 0.904	

sr-p53	
ISIDA	
Fragments	 0.781	 0.716	 0.765	
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Figure	31.		Correlation	between	training	and	validation	set	balanced	accuracies	for	120	models	constructed	for	12	
endpoints	using	10	individual	descriptor	packages	for	each	endpoint.	

B. Consensus	modeling	
For	comparison,	Table	16	shows	the	performance	of	the	consensus	models	involving	all	ten	
underlying	descriptor	packages	for	each	pathway	endpoint.	In	seven	endpoints,	the	predictive	
ability	of	these	models	on	the	evaluation	set	slightly	exceeded	those	of	the	highest	validated	
balanced	accuracy.	

Descriptor	packages	differed	in	their	success	in	representing	the	chemical	structures.	Some	
descriptor	 packages	 failed	 during	 the	 calculation	 phase	 for	 some	 of	 the	 molecules	 (e.g.,	
reporting	a	chemical	structure	being	too	large	for	calculation).	Therefore,	models	based	on	
them	would	be	deprived	from	any	information	gain	from	those	failed	molecules	(i.e.,	will	have	
a	smaller	training	set	size).	A	QSAR	model	built	on	such	descriptors	may	show	good	statistics	
on	the	smaller	training	set	but	fail	to	perform	similarly	for	an	external	evaluation	set.		

The	 second	 approach	 has	 the	 advantage	 of	 covering	 the	 largest	 number	 of	molecules	 by	
compensating	 for	 the	 failure	 of	 some	 packages	 in	 descriptors	 calculation.	 It	 can	 also	
compensate	for	some	packages	bias	by	offering	a	wider	range	of	molecular	representations.	
However,	it	might	suffer	from	the	disadvantage	of	picking	noise	from	descriptor	packages	with	
particularly	bad	performance.	It	also	involves	the	highest	computational	expense,	as	applying	
such	models	to	new	molecules	would	require	calculation	of	all	descriptors	from	ten	packages.	
On	the	other	hand,	the	first	approach	has	the	advantage	of	picking	fewer	descriptor	packages	
with	the	highest	performance.	
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In	Table	15,	 the	consensus	models	with	highest	 validated	balanced	accuracy	based	on	 the	
training	 set	 for	 each	 endpoint	 are	 listed	 as	 well	 as	 their	 respective	 performance	 on	 the	
evaluation	set.	For	all	endpoints,	consensus	modeling	could	improve	the	performance	on	the	
training	set.	In	six	endpoints,	the	consensus	models’	predictive	ability	on	the	evaluation	set	
would	 have	 been	 better	 than	 the	 winning	 balanced	 accuracy.	 The	 developed	 consensus	
models	can	be	accessed	at	http://amaziz.com/article/tox21.	

For	comparison,	Table	16	shows	the	performance	of	the	consensus	models	involving	all	ten	
underlying	descriptor	packages	for	each	pathway	endpoint.	In	seven	endpoints,	the	predictive	
ability	of	these	models	on	the	evaluation	set	slightly	exceeded	those	of	the	models	showing	
highest	validated	balanced	accuracy	(Equation	15)		

Descriptor	packages	differed	in	their	success	in	representing	the	chemical	structures.	Some	
descriptor	 packages	 failed	 during	 the	 calculation	 phase	 for	 some	 of	 the	 molecules	 (e.g.,	
reporting	a	chemical	structure	being	too	large	for	calculation).	Therefore,	models	based	on	
them	would	be	deprived	from	any	information	gain	from	those	failed	molecules	(i.e.,	will	have	
a	smaller	training	set	size).	A	QSAR	model	built	on	such	descriptors	may	show	good	statistics	
on	the	smaller	training	set	but	fail	to	perform	similarly	for	an	external	evaluation	set.		

The	 second	 approach	 has	 the	 advantage	 of	 covering	 the	 largest	 number	 of	molecules	 by	
compensating	 for	 the	 failure	 of	 some	 packages	 in	 descriptors	 calculation.	 It	 can	 also	
compensate	for	some	packages	bias	by	offering	a	wider	range	of	molecular	representations.	
However,	it	might	suffer	from	the	disadvantage	of	picking	noise	from	descriptor	packages	with	
particularly	bad	performance.	It	also	involves	the	highest	computational	expense,	as	applying	
such	models	to	new	molecules	would	require	calculation	of	all	descriptors	from	ten	packages.	
On	the	other	hand,	the	first	approach	has	the	advantage	of	picking	fewer	descriptor	packages	
with	the	highest	performance.	
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Table	15.		Performance	of	the	consensus	models	with	the	highest	training	set	balanced	accuracy	for	each	pathway	
endpoint.	 The	balanced	 accuracies	 of	winning	models	 in	 the	data	 challenge353	 are	 shown	 for	 reference.	 Cases	
where	models	perform	better	than	wining	balanced	accuracy	are	underlined.	Three	significant	digits	are	shown	for	
comparison.	However,	 the	difference	 in	 the	balanced	accuracy	 in	many	 cases	 is	not	 significant	 to	 justify	 some	
models	as	being	more	superior	than	others.	The	upper	and	lower	boundaries	for	balanced	accuracies	as	well	as	p-
values	are	available,	together	with	detailed	QSAR	results,	from	an	open	GitHub	repository317.	

Molecular	
pathway	
endpoint	

Training	 set	
balanced	
accuracy	

Evaluation	set	
balanced	
accuracy	

Wining	
balanced	
accuracy	
(evaluation	
set)	

Ids	for	models	
used	 in	
building	
consensus	

nr-ahr	 0.865	 0.859	 0.853	 512	
nr-ar	 0.785	 0.752	 0.736	 515	
nr-ar-lbd	 0.838	 0.592	 0.650	 516	
nr-aromatase	 0.824	 0.715	 0.737	 513	
nr-er	 0.736	 0.756	 0.749	 517	
nr-er-lbd	 0.810	 0.726	 0.715	 518	
nr-ppar-
gamma	 0.802	 0.741	 0.785	 514	
sr-are	 0.799	 0.730	 0.729	 534	
sr-atad5	 0.809	 0.734	 0.741	 519	
sr-hse	 0.794	 0.767	 0.799	 520	
sr-mmp	 0.882	 0.900	 0.904	 521	
sr-p53	 0.795	 0.783	 0.765	 522	

	

Table	16.		Performance	of	the	consensus	models	involving	all	10	descriptor	packages	for	each	pathway	endpoint.	
The	balanced	accuracies	of	winning	models	in	the	data	challenge353	are	shown	for	reference.	Cases	where	models	
perform	better	than	wining	balanced	accuracy	are	underlined.	Three	significant	digits	are	shown	for	comparison.	
However,	the	difference	in	the	balanced	accuracy	in	many	cases	is	not	significant	to	justify	some	models	as	being	
more	superior	than	others.	More	detailed	models	statistics	were	deposited	to	an	open	GitHub	repository317.	

Molecular	
pathway	
endpoint	

Training	 set	
balanced	
accuracy	

Evaluation	 set	
balanced	
accuracy	

Wining	
balanced	
accuracy	
(evaluation	set)	

nr-ahr	 0.850	 0.858	 0.853	
nr-ar	 0.770	 0.754	 0.736	
nr-ar-lbd	 0.824	 0.599	 0.650	
nr-aromatase	 0.811	 0.760	 0.737	
nr-er	 0.730	 0.744	 0.749	
nr-er-lbd	 0.794	 0.756	 0.715	
nr-ppar-gamma	 0.779	 0.759	 0.785	
sr-are	 0.789	 0.707	 0.729	
sr-atad5	 0.786	 0.727	 0.741	
sr-hse	 0.766	 0.773	 0.799	
sr-mmp	 0.875	 0.903	 0.904	
sr-p53	 0.784	 0.759	 0.765	
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Figure	32.		Each	sub-figure	shows	the	performance	of	1023	consensus	models	constructed	for	a	single	endpoint	
with	x-axis	representing	the	validated	balanced	accuracy	on	the	training	set	and	y-axis	shows	the	balanced	accuracy	
on	the	evaluation	set.	A	positive	trend	line	can	be	noticed	with	all	endpoints	except	nr-ar-lbd.	

Table	17.		Models	used	for	the	final	submission	by	team	AMAZIZ	during	the	Tox21	challenge.	Consensus	models	
involving	all	10	descriptor	packages	(sr-are	and	sr-mmp)	failed	for	the	calculation	of	23	molecules	of	the	evaluation	
set	and	were	replaced	by	simpler	models,	based	on	the	consensus	of	3	models	only,	predicting	these	molecules.	

Molecular	
pathway	
endpoint	

Ids	 for	 models	 used	
in	 building	
consensus	

nr-ahr	 523	
nr-ar	 524	
nr-ar-lbd	 525	
nr-aromatase	 351	
nr-er	 526	
nr-er-lbd	 527	
nr-ppar-gamma	 528	
sr-are	 533	
sr-atad5	 529	
sr-hse	 530	
sr-mmp	 531	
sr-p53	 532	
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4.3.5 Summary	of	Tox21	analysis	aspects	
Using	QSAR	for	modeling	in	vitro	assays	representing	molecular	pathways	showed	promising	
success	with	balanced	accuracies	reaching	up	to	more	than	85%	for	some	endpoints	as	shown	
in	Table	15.	The	relatively	high	balanced	accuracies	among	models	confirm	the	possibility	of	
modeling	HTS	in	vitro	assays	using	in	silico	descriptors	as	reported	in	the	study	4.1	ToxCast™	
phase	I187.	

Bagging	validation	provides	a	good	 indication	for	the	models’	predictive	ability	on	external	
validation	 sets	 (Figure	 31).	 Stratified	 bagging	 may	 counter	 the	 unbalanced	 nature	 of	 the	
training	set	and	reduce	bias	towards	the	majority	class.	However,	 it	 is	 important	to	realize	
that	due	to	the	variance	in	data,	selecting	the	highest	validated	accuracy	does	not	guarantee	
the	highest	predictive	ability	for	any	particular	evaluation	set.		

The	 Androgen	 receptor	 GeneBLAzer	 AR-UAS-bla-GripTite	 cell	 line	 endpoint	 showed	
exceptional	difficulty	 in	modeling.	Big	discrimination	exists	between	validated	performance	
on	the	training	set	and	the	prediction	ability	on	the	evaluation	set.	Indeed,	the	endpoint	had	
the	lowest	success	in	modeling	in	the	challenge	with	the	wining	model	being	able	to	achieve	
a	balanced	accuracy	of	only	65%	(the	lowest	among	all	endpoints).	

Further	investigation	of	the	models	constructed	for	this	endpoint	shows	multiple	models	that	
would	have	been	able	to	achieve	a	higher	predictive	ability	on	the	evaluation	set	(0.75-0.80)	
as	shown	in	Figure	32.	However,	such	models	did	not	show	the	highest	validated	balanced	
accuracy	 and	 were	 thus	 not	 selected.	 The	 lack	 of	 direct	 correlation	 between	 validated	
balanced	accuracy	and	predictive	ability	on	the	evaluation	set	(Figure	31)	may	suggest	that	
the	split	of	the	whole	cluster	of	chemicals	into	training	and	evaluation	sets	may	not	have	been	
random.		

Consensus	modeling	improves	the	predictive	ability	of	models	as	signified	by	both	validation	
and	evaluation	set	accuracies.	This	can	be	due	to	the	complementarity	between	descriptor	
packages,	 therefore	capturing	more	aspects	of	 the	molecular	structures.	Presence	of	more	
packages	may	also	compensate	for	each	other’s	failure	to	represent	certain	chemical	scaffolds	
and	thus	covering	the	entire	the	training	set.	

Due	 to	 the	 time	 constraint	 during	 the	 challenge,	 the	 consensus	models’	 selection	 for	 the	
author	(team	AMAZIZ)	was	based	on	expert	knowledge	including	the	criteria	discussed	in	this	
study,	namely	the	performance	of	the	models	with	regard	to	their	balanced	accuracy	and	to	
a	lesser	extent	the	AUROC,	preference	to	descriptor	packages,	which	show	more	success	in	
representing	a	larger	size	of	the	training	set	and	the	simplicity	of	the	underlying	descriptor	
packages	(e.g.,	2D	descriptors	are	simpler	in	calculation	than	3D	descriptors,	as	they	lack	the	
need	for	3D	optimization).	Table	17	shows	the	models	that	were	used	for	the	final	submission	
of	 team	AMAZIZ	 in	 the	 challenge.	 All	models	 can	 be	 accessed	 through	 their	 identification	
numbers	for	further	analysis	and	to	run	predictions	on	new	compounds.	This	study	represents	
a	systemic	approach	to	consensus	models’	selection	as	well	as	a	deeper	analysis	beyond	the	
challenge.	

The	combination	of	the	workflow	tool	(KNIME),	the	QSAR	modeling	platform	(OCHEM)	and	
the	statistical	package	 (CRAN	R)	allowed	the	creation	and	analysis	of	 thousands	of	models	
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with	high	efficiency.	Finally,	the	use	of	HTS	in	vitro	assays	to	construct	QSAR	models	that	can	
predict	 certain	 molecular	 pathways’	 perturbation	 paves	 the	 way	 towards	 a	 better	
understanding	for	the	mode	of	chemical	toxicity	and	allows	for	prioritization	of	testing	efforts.	
This	is	in	line	with	the	vision	of	EPA	and	ECHA	for	replacing	unnecessary	animal	toxicity	testing,	
rapidly	 filing	 information	 gaps,	 and	 achieving	 higher	 outcomes	 with	 available	 efforts	 and	
resources.	
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4.4 Pregnane	X	receptor	activators	(PXR)	
A	library	of	1889	compounds	was	screened	against	human	PXR	activation	using	the	DPX-2	cell	
line,	 provided	 by	 Puracyp	 Inc.	 The	 HepG2	 cells	 were	 co-transfected	 with	 a	 PXR	 response	
element	and	a	 luciferase	construct	containing	CYP3A4	promoter.	Therefore,	an	 increase	 in	
luciferase	 activity	 marks	 compounds	 that	 activate	 the	 PXR	 pathway.	 The	 original	 assay	 is	
reported	on	PubChem	BioAssay	AID:	720659354	

4.4.1 Data	acquisition	and	curation	
Data	was	downloaded	from	PubChem	BioAssay	AID:	720659354.	Records	with	activity	being	
reported	 as	 inconclusive	 were	 neglected	 (433	 records).	 Furthermore,	 21	 molecules	 were	
reported	as	being	both	active	and	inactive	(duplicate	records	with	mismatching	results),	these	
molecules	were	excluded	from	the	analysis.	The	final	training	data	set	included	1889	unique	
compounds	of	which	205	were	active.	

4.4.2 Methods	
All	QSAR	models	were	built	using	OCHEM.	Eleven	descriptor	packages	were	used	to	represent	
the	molecular	features	using	nine	machine-learning	algorithms	to	build	the	QSAR	models.	The	
models	 were	 validated	 through	 5-fold	 stratified	 cross	 validation	 and	 stratified	 bootstrap	
aggregation	with	 64	 bags.	 The	machine	 learning	 algorithms	 used	 are	 k-Nearest	Neighbors	
(𝑘NN),	Associative	neural	networks	(ASNN)261,262,	C4.5	decision	tree	(J48)200,201,	multiple	linear	
regression	 analysis	 (MLRA),	 fast	 stagewise	multiple	 linear	 regression	 (FSMLR),	 partial	 least	
squares	(PLS),	random	forests	(RF),	LADTree	and	support	vector	machine	(SVM).	Section	3.5	
Machine	learning	algorithms	cover	the	algorithms	configuration	in	details.		

The	 descriptor	 packages	 evaluated	 were	 Adriana.Code	 (3D)235,236,	 CDK	 (3D)255,	 Chemaxon	
calculators	 (3D)313,	 Dragon	 6	 (3D)221,222,	 Estate311,355,356,	 ISIDA	 Fragments315,	 GSFrag242,314,	
Inductive	 descriptors	 (3D)244,316,357,	 MERA	 (3D)358,	 Spectrophore	 fingerprints	 (3D)359,	
QNPR(Quantitative	 Name	 Property	 Relationship)251.	 Section	 3.4	 Molecular	 descriptors	
contains	details	about	each	descriptor	package.	

For	each	model,	sensitivity,	specificity,	accuracy,	balanced	accuracy,	MCC,	and	AUROC	were	
calculated.	As	the	dataset	is	unbalanced,	the	balanced	accuracy	(BAC)	was	used	as	the	primary	
metric	 for	 judging	models’	 performance.	 The	 applicability	 domain	 based	on	 a	 distance-to-
model	approach	was	estimated	for	all	models	as	described	in	section	3.10	Models	applicability	
domain	(AD).	

4.4.3 Results	and	discussion	
Table	18	shows	the	balanced	accuracies	for	all	108	QSAR	models	built	using	different	machine	
learning	 algorithms	 (columns)	 and	 descriptor	 packages	 (rows)	 for	 the	 prediction	 of	 PXR	
activation.	All	models	were	validated	using	5-fold	cross	validation.	Similarly,	Table	19	shows	
the	 balanced	 accuracies	 for	 the	 108	 QSAR	models	 built	 using	 the	 same	machine	 learning	
algorithms	 and	 descriptor	 packages,	 which	 were	 validated	 using	 stratified	 bootstrap	
aggregation.	In	general,	Bagging	validation	resulted	in	a	slightly	better	performance	for	the	
same	machine	learning	algorithms	and	descriptor	combinations.		

The	 highest	 validated	 balanced	 accuracy	 for	 a	 single	 model	 was	 based	 on	 the	 dragon	
descriptor	package	and	the	associative	neural	networks	(BAC:	83.6%	±	0.9).	The	final	model	is	
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published	 on	 OCHEM	 and	 can	 be	 accessed	 through	 the	 link:	
http://amaziz.com/model/6816904.	The	area	under	the	ROC	curve	 for	 this	model	 is	0.91	±	
0.01.	

The	applicability	domain	of	the	model	was	estimated	using	the	distance-to-model	approach.	
Figure	33	shows	a	plot	of	the	applicability	domain	of	the	aforementioned	model	as	a	function	
of	its	bagging	standard	deviation.	The	lower	the	deviation	is,	the	higher	the	model’s	accuracy.	
Therefore,	 the	bagging	 STD	 can	be	used	 to	 estimate	 the	 confidence	 in	 prediction	 for	 new	
molecules.	When	considering	 the	 training	set,	Figure	34	shows	that	more	 than	50%	of	 the	
compounds	were	predicted	with	an	accuracy	higher	then	90%.	

Table	18.		Balanced	accuracies	for	108	QSAR	models	built	using	different	machine	learning	algorithms	(columns)	
and	descriptor	packages	(rows)	for	the	prediction	of	PXR	activation.	All	models	were	validated	using	5-fold	cross	
validation	

	 ASNN	 𝑘NN	 SVM	 FSML
R	

MLR
A	

PLS	 J48	 LADT
ree	

RF	

CDK		 82%	 82%	 80%	 77%	 77%	 74%	 76%	 81%	 78%	
Dragon6	 84%	 78%	 73%	 77%	 75%	 81%	 77%	 80%	 80%	
ALOGPS,	
OEstate	

78%	 72%	 82%	 74%	 78%	 79%	 81%	 81%	 80%	

ISIDA	 75%	 61%	 80%	 68%	 72%	 73%	 65%	 38%	 71%	
GSFrag	 77%	 73%	 78%	 77%	 75%	 67%	 73%	 76%	 78%	
MERA,	MerSy	 79%	 74%	 29%	 70%	 76%	 70%	 71%	 78%	 75%	
Chemaxon	
Descriptors		

79%	 75%	 46%	 70%	 79%	 63%	 82%	 82%	 83%	

Inductive	
Descriptors	

79%	 72%	 71%	 41%	 75%	 74%	 70%	 74%	 77%	

Adriana	 81%	 78%	 50%	 81%	 76%	 75%	 77%	 81%	 77%	
Spectrophores		 75%	 69%	 46%	 65%	 68%	 63%	 69%	 68%	 71%	
QNPR	 73%	 59%	 77%	 72%	 67%	 74%	 72%	 69%	 71%	

	

	

Figure	 33.	 	Williams	 plot	 showing	 the	 applicability	 domain	 of	 the	 aforementioned	model	 as	 a	 function	 of	 the	
bagging	standard	deviation.	The	lower	the	deviation	is,	the	higher	the	model’s	accuracy.	The	bagging	STD	can	thus	
be	used	to	estimate	the	error	in	prediction	for	new	molecules.	
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Figure	34.		Williams	plot	showing	the	performance	of	the	model	within	the	dataset.	50%	of	the	dataset	is	predicted	
with	>90%	balanced	accuracy.	

Table	19.		Balanced	accuracy	for	108	QSAR	models	built	using	different	machine	learning	algorithms	(columns)	and	
descriptor	 packages	 (rows)	 for	 the	 prediction	 of	 PXR	 activation.	 All	 models	 were	 validated	 using	 bootstrap	
aggregation	(64-stratified	bagging)	

	 ASNN	 𝑘NN	 SVM	 FSML
R	

MLR
A	

PLS	 J48	 LADTre
e	

RF	

CDK		 82%	 81%	 80%	 80%	 79%	 81%	 80%	 81%	 82%	
Dragon6	 84%	 81%	 77%	 80%	 81%	 83%	 80%	 82%	 81%	
ALOGPS,	
OEstate	

82%	 72%	 84%	 81%	 78%	 80%	 80%	 83%	 83%	

ISIDA	 77%	 62%	 81%	 78%	 77%	 79%	 67%	 77%	 75%	
GSFrag	 81%	 77%	 78%	 80%	 78%	 78%	 79%	 80%	 79%	
MERA,	
MerSy	

81%	 77%	 50%	 79%	 80%	 72%	 80%	 81%	 79%	

Chemaxon	
Descriptors		

81%	 79%	 53%	 80%	 81%	 79%	 83%	 84%	 85%	

Inductive	
Descriptors	

82%	 77%	 74%	 61.20
%	

78%	 77%	 75%	 80%	 80%	

Adriana	 83%	 80%	 50%	 81%	 81%	 78%	 81%	 83%	 84%	
Spectrophor
es		

77%	 70%	 50%	 69%	 70%	 69%	 74%	 77%	 76%	

QNPR	 76%	 60%	 81%	 76%	 77%	 76%	 72%	 79%	 74%	
	

The	 highest	 validated	 balanced	 accuracy	 for	 a	 single	 model	 was	 based	 on	 the	 dragon	
descriptor	package	and	the	associative	neural	networks	(BAC:	83.6%	±	0.9).	The	final	model	is	
published	 on	 OCHEM	 and	 can	 be	 accessed	 through	 the	 link:	
http://amaziz.com/model/6816904.	The	area	under	the	ROC	curve	 for	 this	model	 is	0.91	±	
0.01.	

The	applicability	domain	of	the	model	was	estimated	using	the	distance-to-model	approach.	
Figure	33	shows	a	plot	of	the	applicability	domain	of	the	aforementioned	model	as	a	function	
of	its	bagging	standard	deviation.	The	lower	the	deviation	is,	the	higher	the	model’s	accuracy.	
Therefore,	 the	bagging	 STD	 can	be	used	 to	 estimate	 the	 confidence	 in	 prediction	 for	 new	
molecules.	When	considering	 the	 training	set,	Figure	34	shows	that	more	 than	50%	of	 the	
compounds	were	predicted	with	an	accuracy	higher	then	90%.	
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4.4.4 Consensus	modeling	
A	 consensus	model	 [model	 id:	 7103264]	was	 built	 using	 the	 four	 best	 performing	models	
regardless	of	 their	underlying	algorithm	or	descriptor	packages.	Another	model	 [model	 id:	
29021089]	 was	 constructed	 using	 the	 five	 best	 ASNN	 models	 (with	 different	 descriptor	
packages).		

Both	consensus	models	resulted	in	better	model	statistics.	The	consensus	between	the	best	4	
models	resulted	in	BAC	=	86%	±	1.0	and	AUROC	=	0.924	±	0.01.	The	consensus	between	the	
best	neural	network	models	had	BAC	=	85%	±	1.0	and	AUROC	=	0.92	±	0.01.	Both	models	can	
be	accessed	on	OCHEM	platform	for	prediction	of	new	compounds.	

4.4.5 Summary	of	PXR	activators	prediction	aspects	
Analysis	showed	that	data	has	good	potential	for	modeling	than	the	best	single	model.	The	
performance	for	bootstrap	aggregation	models	was	slightly	better	than	that	of	the	5-fold	cross	
validation.	On	average	the	associative	neural	networks	(ASNN)	showed	better	performance	
that	 other	 machine	 learning	 methods.	 CDK	 descriptor	 package	 was	 generally	 better	 than	
others.	Consensus	modeling	slightly	improved	the	balanced	accuracy	reaching	86%	±	1.0.	 	
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4.5 Aryl	hydrocarbon	receptor	activation	–	extended	study	
The	Scripps	Research	Institute	Molecular	Screening	Center	(SRIMSC)	conducted	an	HTS	assay	
to	identify	compounds	that	act	as	agonists	of	the	human	AHR.		

The	cell-based	assay	measured	the	ability	of	chemical	compounds	to	activate	AHR	signaling.	
The	 assay	 uses	 human	 hepatoma	 (HepG2)	 cells	 transfected	 with	 the	 AHR-dependent	
pGudLuc6.1-DRE	plasmid	(HG2L6.1c3	cell	line),	which	expresses	the	firefly	luciferase	reporter	
gene	 under	 control	 of	 a	 minimal	 promoter	 containing	 a	 synthetic	 DRE360,361362.	 The	
experimental	protocol	was	described	in	details	in	the	PubChem	Bioassay	repository363.	

Each	 compound	was	 tested	 in	 a	 single	 final	 nominal	 concentration	 of	 5.0	 UM.	 Cells	were	
incubated	 with	 test	 compounds	 for	 24	 hours.	 Cell	 lysis	 was	 then	 performed	 and	 well	
luminescence	detected	using	commercially	available	luciferase	reagent.	The	concept	behind	
this	 assays	 is	 that	 chemicals	 that	 act	 as	 agonists	 for	 the	 AHR	will	 increase	 its	 activity	 and	
nuclear	translocation.	This	will	thus	raise	the	activity	of	the	DRE	and	increase	the	transcription	
of	the	luciferase	transporter	gene	leading	finally	to	higher	luminescence.	DMSO	was	used	as	
a	low	control	and	Indirubin	as	a	high	control.	

The	criteria	to	judge	a	certain	compound	as	being	active	or	not	depended	on	the	amount	of	
luminescence	that	was	detected	as	compared	to	the	two	control	compounds.		

A	%	activation	value	was	then	calculated	for	every	compound	per	Equation	40	

%	𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 	100×
ÆÇÈÉÊËÌÍËÊÍËÎÏÐÑÏÒ	ÓÔÕÖÔ×ØÒ	0ÙËÚÉÛÊ	ÆÇÈÉÊËÌÍËÊÍËÜÝÞß	
ÙËÚÉÛÊ	ÆÇÈÉÊËÌÍËÊÍËàØÒáâ×ãáØ	0	ÙËÚÉÛÊ	ÆÇÈÉÊËÌÍËÊÍËÜÝÞß	

  

Equation	
39	

Compounds	 were	 then	 classified	 as	 either	 activators	 or	 non-activators.	 The	 cutoff	 for	
compounds	to	be	considered	as	activators	was	to	have	%activation	more	than	three	standard	
deviations	above	the	average	for	all	compounds.		

Compounds	were	also	ranked	according	to	their	observed	activation	with	the	highest	activity	
given	a	score	of	100	and	negative	activities	a	score	of	zero.	The	non-activators	had	a	score	
range	0-15	while	activators	had	a	score	of	15-100	

The	assay	was	run	on	a	total	 library	of	324858	substances.	According	to	 INCHI	calculations	
performed	 though	 OCHEM,	 these	 substances	 represented	 324744	 different	 compounds	
(324751	distinct	compound	identification	numbers	assigned	by	PubChem).	Of	the	total	library,	
only	 7988	 compounds	were	 active	 according	 to	 the	 criteria	 above.	 Therefore,	 the	 ratio	 of	
activators	to	non-activators	was	1:40.	

4.5.1 Data	acquisition	and	curation	
The	 HTS	 assay	 data	 for	 AHR	 activators/non-activators	 were	 collected	 from	 the	 PubChem	
Bioassay	database	(AID:	2796)363.	Data	were	downloaded	in	two	files;	An	SDF	file	format	for	
the	chemical	structures)	and	a	CSV	file	for	the	assay	results.	The	files	were	linked	through	a	
key	field	representing	the	PubChem	Substance	Id	(PUBCHEM_SID)	that	is	present	in	both	files.	
The	 correlation	 was	 conducted	 through	 the	 software	 package	 KNIME364	 with	 no	 errors	
reported.	
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All	 chemical	 structures	were	 standardized	 using	 Chemaxon	 Standardizer365	 integrated	 into	
OCHEM366183,	salt	counter	ions	were	strapped,	ions	were	neutralized.	

4.5.2 Methods	
Eight	 descriptor	 packages	 were	 used	 to	 represent	 the	 molecular	 features.	 Six	 machine-
learning	algorithms	were	employed	to	build	classification	QSAR	models.	All	models	were	built	
using	OCHEM.	All	models	were	 validated	 through	 stratified	bootstrap	aggregation	with	64	
bags.	 The	 machine	 learning	 algorithms	 used	 are	 k-Nearest	 Neighbors	 (𝑘NN),	 Associative	
neural	 networks	 (ASNN)261,262,	 multiple	 linear	 regression	 analysis	 (MLRA),	 fast	 stagewise	
multiple	linear	regression	(FSMLR),	random	forests	(RF)	and	support	vector	machine	(SVM).	

The	 descriptor	 packages	 evaluated	 were	 Adriana.Code	 (3D)235,236,	 CDK	 (3D)255,	 Chemaxon	
calculators	 (3D)313,	 Dragon	 6	 (3D)221,222,	 Estate311,355,356,	 ISIDA	 Fragments315,	 GSFrag242,314,	
Inductive	 descriptors	 (3D)244,316,357,	 MERA	 (3D)358,	 Shape	 signatures	 (3D)367,	 Spectrophore	
fingerprints	(3D)359.	

For	each	model,	 sensitivity,	 specificity,	accuracy,	balanced	accuracy,	Matthew’s	correlation	
coefficient,	 and	Area	under	 the	ROC	 curve	were	 calculated.	 The	positive	 predictive	 values	
were	also	an	important	parameter	to	consider	as	aim	of	the	users	who	are	likely	to	use	the	
model	would	be	to	reduce	the	number	of	hits	from	the	under-represented	class	of	activators	
since	AHR	activators	represent	a	potential	toxicity	hazard.	As	the	dataset	is	unbalanced,	the	
balanced	 accuracy	 (BAC)	was	 used	 as	 the	 primary	metric	 for	 judging	model	 performance.	
Applicability	domain	based	on	a	distance-to-model	approach	was	estimated	for	all	models	as	
described	in	section	3.10	Models	applicability	domain	(AD).	

4.5.3 Results	and	discussion	
Table	20	shows	the	balanced	accuracy	for	all	108	QSAR	models	built	using	different	machine	
learning	 algorithms	 (columns)	 and	 descriptor	 packages	 (rows)	 for	 the	 prediction	 of	 AHR	
activation.		

The	highest	validated	balanced	accuracy	for	a	single	model	was	based	on	the	CDK	descriptor	
package	and	the	associative	neural	networks	(BAC:	81.9%	±	0.2).	The	final	model	is	published	
on	OCHEM	and	can	be	accessed	through	the	link:	http://amaziz.com/model/222449.	The	area	
under	the	ROC	curve	for	this	model	is	0.894	±	0.01.	

The	applicability	domain	of	the	model	was	estimated	using	the	distance-to-model	approach.	
Figure	35	shows	a	plot	of	the	applicability	domain	of	the	aforementioned	model	as	a	function	
of	its	bagging	standard	deviation.	The	lower	the	deviation	is,	the	higher	the	model’s	accuracy.	
Therefore,	 the	bagging	 STD	 can	be	used	 to	 estimate	 the	 confidence	 in	 prediction	 for	 new	
molecules.	When	considering	 the	 training	set,	Figure	36	shows	that	more	 than	45%	of	 the	
compounds	were	predicted	with	an	accuracy	higher	than	80%.	

4.5.4 Summary	of	the	extended	AhR	study	
Analysis	showed	that	data	has	good	potential	for	modeling.	On	average	the	associative	neural	
networks	 (ASNN)	 showed	 better	 performance	 that	 other	machine	 learning	methods.	 CDK	
descriptor	package	was	generally	better	than	others.	Consensus	modeling	slightly	improved	
the	balanced	accuracy	reaching	81.9%	±0.2	
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Table	20.		Balanced	accuracy	for	48	QSAR	models	built	using	different	machine	learning	algorithms	(columns)	and	
descriptor	 packages	 (rows)	 for	 the	 prediction	 of	 AhR	 activation.	 All	 models	 were	 validated	 using	 bootstrap	
aggregation	(64-stratified	bagging).	

	 ASNN	 LibSVM	 𝑘NN	 RF	 FSMLR	 MLRA	
EState,	ALOGPS	 81.30%	 80.10%	 76.43%	 79.60%	 77.40%	 77.70%	
CDK	 81.92%	 80.70%	 78.20%	 78.10%	 75.90%	 78.60%	
Chemaxon	Descriptors	 80.60%	 78.60%	 76.58%	 77%	 75.40%	 75.30%	
Adriana	 81%	 79.70%	 75.90%	 76.90%	 69.10%	 74.90%	
Spectrophores	 70.60%	 69.10%	 66.40%	 67%	 57.06%	 67.20%	
GSFrag	 80.90%	 78.10%	 73.80%	 77.50%	 73.50%	 75.80%	
MERA	 79.10%	 78%	 74.20%	 75.90%	 55.77%	 77.40%	
Inductive	Descriptors	 76.50%	 75%	 73%	 75.20%	 56.93%	 73.70%	

	

	

Figure	35.		Williams	plot	showing	the	applicability	domain	of	the	best	performing	classification	model	(based	on	
ASNN	and	CDK	descriptors)	as	a	function	of	the	bagging	standard	deviation.	The	lower	the	deviation	is,	the	higher	
the	model’s	accuracy.	The	bagging	STD	can	thus	be	used	to	estimate	the	error	in	prediction	for	new	molecules.	

	

	

Figure	36.	 	Williams	plot	showing	the	performance	of	the	AHR	activation	model	within	the	dataset.	45%	of	the	
dataset	is	predicted	with	>80%	balanced	accuracy.	
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5 Applications	of	the	developed	and	validated	computational	
methodologies	

This	chapter	discusses	two	practical	applications	for	employing	QSAR	studies	in	environmental	
risk	assessment.	The	first	application	screens	the	large	dataset	of	EINECS	compounds	(see	1.1	
Chemicals	 regulations	 in	 the	 European	 Union)	 for	 potential	 pathway	 perturbations.	 The	
second	application	investigates	a	set	of	halogenated	carbazole	compounds	emerging	in	the	
European	and	US	ecology	without	being	actively	produced	or	imported.	

Twelve	QSAR	models	developed	in	the	previous	chapter	(Table	15)	will	be	used	to	assess	the	
potential	 hazards	 of	 the	 chemicals	 on	 specific	 nuclear	 receptors	 as	well	 as	 their	 ability	 to	
induce	a	stress	response	through	selected	biological	pathways.		

5.1 Toxicity-testing	priority	Score	(ToPS)	for	EINECS	

5.1.1 Introduction	
As	 discussed	 earlier,	 EINECS	 compounds	 were	 considered	 as	 already	 “existing”	 in	 the	
European	 market	 between	 1	 January	 1971	 and	 18	 September	 1981.	 They	 were	 left	 with	
insufficient	data	regarding	their	properties	or	effects	making	them	difficult	to	regulate.	

Therefore,	 EINECS	 compounds	demonstrate	 a	 high	need	 for	 filling	 information	 gaps	 and	 a	
good	case	of	application	for	alternative	testing	approaches.	The	developed	QSAR	models	can	
be	directly	used	to	provide	such	information.	

5.1.2 Methods	

A. Dataset	
EINECS	compounds	are	available	on	the	OCHEM	platform	as	a	compound	tag	and	can	be	used	
for	screening	and	analysis.	The	dataset	consists	of	68779	unique	compounds.	A	preliminary	
analysis	of	the	compounds	basic	properties	was	conducted	using	CDK	molecular	descriptors.	
Table	 21	 shows	 the	 mean,	 median	 and	 standard	 deviation	 of	 some	 basic	 descriptors	 for	
EINECS	compounds.		

Table	21.		Mean,	median	and	standard	deviation	of	some	basic	descriptors	for	EINECS	compounds	

Descriptor	 Mean	 Std.	
deviation	

Skewness	 Median	

Hydrogen	Bond	Acceptors	 3.79	 4.05	 3.03	 3.00	
Hydrogen	Bond	Donors	 1.21	 1.77	 3.72	 1.00	
Topological	Polar	Surface	Area	 75.84	 77.49	 2.94	 54.37	
Molecular	Weight	 318.40	 207.16	 2.34	 256.07	
XLogP	 3.33	 4.18	 2.40	 2.71	

	

B. QSAR	models	
The	QSAR	models	with	the	highest	balanced	accuracies	developed	in	4.3	Tox21	project,	listed	
in	Table	15	were	applied	to	the	EINECS	compounds.	The	applicability	domain	for	the	models	
was	also	assessed	using	the	standard-deviation	(STD)-based	distance-to-models	DMs.	It	has	
been	shown	to	provide	the	best	separation	between	accurate	and	inaccurate	predictions	in	
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multiple	studies368.	To	calculate	STD	values,	the	consensus	standard	deviation	was	used	as	the	
distance	measure.	The	DM	calculated	in	such	a	way	is	referred	to	as	CONSENSUS-STD.	This	
procedure	was	applied	to	all	QSAR	models,	providing	12	CONSENSUS-STD	DMs.		

C. Toxicity-testing	Priority	Score	(ToPS)	
A	point-based	scoring	system	was	applied	to	all	EINECS	compounds.	A	compound	would	gain	
a	full	point	if	it	is	predicted	to	be	toxic	to	the	specified	target	with	the	respective	QSAR	model	
and	where	the	compound	falls	completely	within	the	applicability	domain	of	the	model	(i.e.,	
the	model	has	100%	estimated	accuracy	for	the	compound’s	activity	prediction).	In	practice,	
no	given	compound	 is	 likely	 to	 receive	 such	perfect	estimated	prediction	accuracy.	As	 this	
analysis	covered	12	molecular	pathways,	the	maximum	points	a	compound	might	collect	is	12	
and	the	minimum	is	0.	

Equation	40	describes	 the	 suggested	point-based	 scoring	 system.	For	each	model	 (m),	 the	
prediction	 (Pm)	 is	 multiplied	 by	 the	 applicability	 domain	 (ADm)	 and	 a	 weight	 (wm).	 The	
prediction	can	be	binary	where	0	represents	a	prediction	of	an	inactive	compound	(i.e.,	with	
no	perturbation	to	a	given	molecular	pathway)	and	1	for	an	active	compound.	It	can	also	be	
any	fraction	in	between.	This	is	useful	for	models	that	provide	a	quantitative	estimation	of	the	
binary	classification.		

Likewise,	the	applicability	domain	can	be,	in	its	simplest	form,	a	binary	classification	where	0	
means	 a	 compound	 is	 out	 of	 applicability	 domain	 and	1	means	 a	 compound	 is	within	 the	
applicability	 domain	 of	 a	 given	 model.	 For	 more	 advanced	 quantitative	 approaches	 for	
applicability	domain	estimation	 (such	as	DM)	a	 fraction	between	0	and	1	 is	expected.	This	
fraction	describes	how	near,	to	the	model’s	applicability,	a	certain	prediction	is,	with	1	being	
the	nearest.		

To	allow	for	flexibility,	a	weighting	scheme	can	be	included.	Such	scheme	can	be	used	to	assign	
a	 higher	 priority	 to	 certain	 targets	 that	 might	 be	 deemed	 more	 important	 for	 certain	
investigation.	 In	 that	 case,	 the	 model	 predicting	 such	 target	 should	 be	 adjusted	 by	
multiplication	by	a	desired	weight	(wm).	The	weight	can	take	values	between	0	and	1.	Equation	
40	gives	the	general	formula	for	the	score.	

𝑷𝑻𝑺 = 𝒘𝒏 ∗ 𝑨𝑫𝒏 ∗ 𝑷𝒎

𝒎

𝒎i𝟏

	

Where	

wm:	is	a	weight	given	to	the	model	associated	with	specific	pathway	endpoint	
based	on	its	relative	importance	

ADm:	is	the	model’s	applicability	domain	for	a	given	prediction	

Pm:	is	the	model’s	prediction	

Equation	
40	

The	 models	 used	 in	 this	 study	 provide	 a	 quantitative	 estimation	 of	 the	 likelihood	 of	
classification	(where,	0	-	<0.5	represents	the	inactive	class	and	0.5	–	1	for	the	active	class).	
Such	value	was	used	as	a	quantitative	prediction	score	(Pm).	The	CONSENSUS-STD	was	used	as	
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a	quantitative	measure	for	the	distance	to	each	model	(ADm).	A	uniform	weight	was	used	(i.e.,	
w	=	1	for	all	models).	

5.1.3 Results	

A. EINECS	prediction	
Predictions	 for	 twelve	 pathways	 perturbations	 for	 68779	 compounds	 resulted	 in	 824605	
predictions	(743	predictions	failed	to	compute	due	to	descriptors	calculation	errors;	only	10	
compounds	failed	for	all	endpoints	predictions).	All	predictions	also	included	the	associated	
applicability	domain	estimates.	The	entire	prediction	set	was	deposited	 in	an	open	GitHub	
repository317	and	is	made	available	for	the	scientific	community	and	regulators	to	use.		

Figure	 37	 shows	 the	 correlation	between	 consensus	 standard	deviation	 (CONSENSUS-STD)	
and	the	estimated	predicted	accuracy	for	twelve	pathway	endpoints.	The	applicability	of	the	
models	 to	 the	 EINECS	 compounds	 differed	 between	 targets.	 As	 shown	 in	 Table	 22,	 The	
androgen	 receptor	 MDA-kb2	 AR-luc	 cell	 line	 (nr-ar-lbd)	 was	 predicted	 with	 at	 least	 85%	
accuracy	for	92%	of	the	compounds.	On	the	other	hand,	The	Nuclear	factor	(erythroid-derived	
2)-like	2/antioxidant	responsive	element	was	only	predicted	for	35%	of	the	compounds	with	
such	 high	 accuracy.	 The	 histograms	 in	 Figure	 38	 show	 the	 distribution	 of	 the	 estimated	
prediction	accuracy	for	the	twelve	pathway	endpoints	among	EINECS	compounds.	

A	tradeoff	always	exists	between	the	coverage	of	compound	set	and	the	minimum	accuracy	
considered.	As	the	purpose	of	this	study	is	to	draw	attention	to	the	compounds	that	are	most	
likely	to	be	harmful	and	therefore	may	receive	a	priority	for	testing,	a	high	accuracy	cutoff	of	
85%	was	used.	Under	such	cutoff,	the	percentage	of	compounds	predicted	to	disrupt	different	
molecular	pathways	ranged	from	4.6%	to	12.6%	of	the	entire	EINECS	compounds	as	shown	in	
Table	 22.	 The	 heatmap	 in	 Figure	 39	 shows	 the	 Predicted	 chemical/pathway	 perturbation	
matrix	of	the	EINECS	compounds	for	all	twelve	pathway	endpoints	with	high	accuracy	(>85%).	
The	 active	 compounds	 are	 shown	 in	 red	 while	 inactive	 compounds	 are	 shown	 in	 green.	
Compounds	with	prediction	accuracy	<0.85	are	omitted	(Grey).	
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Figure	37.		The	correlation	between	consensus	standard	deviation	(CONSENSUS-STD)	and	the	estimated	predicted	
accuracy	for	twelve	pathway	endpoints.	

	

Table	22.		Percentage	of	EINECS	compounds	with	high	prediction	accuracy	(>85%)	and	the	percentage	of	active	
compounds	(i.e.,	disrupting	the	molecular	pathways)	for	twelve	endpoints.	

Pathway	
endpoints	

Percentage	of	accurate	predictions	
(>=85%	estimated	accuracy)	

Percentage	of	active	compounds	among	
accurate	predictions	(and	among	total)	

nr-ahr	 66.6%	 17.1%	(11.4%)	
nr-ar	 77.3%	 7.2%	(5.5%)	
nr-ar-lbd		 92.0%	 6.5%	(5.9%)	
nr-aromatase		 39.7%	 11.7%	(4.6%)	
nr-er	 39.4%	 12.6%	(5.0%)	
nr-ppar-
gamma		 41.8%	 16.9%	(7.1%)	
nr-er-lbd	 73.1%	 12.8%	(9.4%)	
sr-are		 34.5%	 24.0%	(8.3%)	
sr-atad5	 56.8%	 12.2%	(6.9%)	
sr-hse	 52.3%	 18.0%	(9.4%)	
sr-mmp	 61.0%	 20.7%	(12.6%)	
sr-p53	 47.5%	 13.0%	(6.2%)	
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Figure	 38.	 	 Distribution	 of	 the	 estimated	 prediction	 accuracy	 for	 twelve	 pathway	 endpoints	 among	 EINECS	
compounds	

	

Figure	39.		Predicted	chemical/pathway	perturbation	matrix	of	EINECS	compounds	for	12	pathway	endpoints	with	
high	accuracy	(>85%).	(Red:	Active	perturbation,	Green:	no	perturbation,	Grey:	estimated	prediction	accuracy	<	
0.85)		
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B. Toxicity-testing	Prioritization	Score	(ToPS)	
The	toxicity-testing	priority	score	(ToPS)	was	calculated	for	all	EINECS	compounds.	The	scoring	
function	 takes	 into	 account	 the	 estimated	 accuracy	 based	 on	 the	 distance	 to	 model	
applicability	 domain	 through	 the	 ADm	 term.	 Therefore,	 all	 predictions	 were	 considered	
without	 cutoff.	 The	 ToPS	 scores	 for	 all	 compounds	 is	 deposited	 in	 an	 open	 GitHub	
repository317	for	public	scrutiny.	

Most	compounds	showed	ToPS	less	than	5.	Figure	40	shows	a	histogram	for	the	distribution	
ToPS	scores	among	EINECS	compounds.	Examining	the	compounds	with	highest	ToPS	scores	
show	 that	 they	 are	 highly	 conjugated	 fused-ring	 systems	 suggesting	 potential	 reactivity.	
Figure	42	shows	the	six	compounds	with	highest	ToPS	scores.	

5.1.4 Summary	
The	QSAR	models	developed	in	earlier	studies	were	used	to	predict	EINECS	compounds.	These	
chemicals	are	used	in	the	EU	and	were	left	with	insufficient	data	regarding	their	toxicity	risk.	
The	predictions	show,	with	high	confidence,	that	a	certain	percentage	of	chemicals	(between	
4.6%	and	12.6%	depending	on	the	target)	are	likely	to	disrupt	molecular	pathways	and	are	
worth	of	further	investigations.	

The	cross-reactivity	against	multiple	nuclear	receptors	has	been	reported	earlier	in	multiple	
studies.	Crosstalk	between	estrogen-	and	aryl	hydrocarbon	receptors	 leads	 to	 inhibition	of	
estrogenic	signaling	in	experimental	animals	as	well	as	in	vitro.	Studies	suggest	that	ARNT	is	a	
coactivator	of	ER369.	Crosstalk	has	also	been	reported	between	AhR,	PXR,	and	the	constitutive	
androstane	receptor	(CAR)370.	

Furthermore,	a	toxicity-testing	prioritization	score	(ToPS)	is	suggested	that	can	give	a	holistic	
overview	 of	 the	 compound’s	 molecular	 pathways	 perturbation	 and	 assess	 its	 overall	 risk	
profile.	Rather	than	judging	compounds	priority	arbitrarily,	ToPS	offers	a	systematic	rationale	
and	 a	 prioritization	 scheme.	 The	 score	 is	 calculated	 as	 a	 factor	 of	 the	 predicted	 toxicity,	
applicability	domain	(as	a	distance	to	model)	and	a	weight	for	the	different	endpoints.	
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Figure	40.		Histogram	of	the	distribution	of	ToPS	scores	among	EINECS	compounds	

		
ToPS	score:	10.036		

		
ToPS	score:	9.963		 		

ToPS	score:	9.927		

		
ToPS	score:	9.864		
	

		
ToPS	score:	9.838		
	

	
ToPS	score:	9.83	

Figure	41.		EINECS	compounds	with	highest	ToPS	scores	suggesting	high	disturbance	of	molecular	pathways	
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information	is	available	on	the	properties	of	halogenated	carbazoles.	They	have	recently	been	
reported	 in	 lakes371,	 sediments372,	 soil373,374	 and	 sea372,375	 in	 Europe	 and	 the	United	 States.	
Carbazole	as	well	as	chloro-	and	bromocarbazoles	have	been	previously	reported	to	exhibit	
dioxin-like	toxicity	by	EROD	induction376	and	have	been	recently	regarded	by	the	European	
Commission	as	potentially	persistent,	bioaccumulative,	and	toxic	(PBT)	substances.	

	Due	 to	 the	 emergence	 of,	 previously	 unknown,	 halogenated	 carbazoles	 in	 soil	 and	water	
samples377,	many	studies	are	looking	into	their	sources378	and	potential	effects376.	Although	
the	 compounds	 are	 not	 directly	 synthesized,	 their	 detection	 in	 the	 environment	 raises	
concerns.	Besides	their	toxicological	effects,	studies	have	shown	their	persistence	in	soil376.		

REACH	 regulations	 transferred	 the	 risk	 assessment	 responsibility	 to	 the	 producers	 and	
importers	of	chemicals.	For	compounds	that	are	not	actively	produced	or	imported,	ambiguity	
stands	 on	 the	 industrial	 responsibility	 to	 assess	 the	 potential	 toxicity	 of	 such	 compounds	
giving	the	high	cost	 for	conducting	toxicity	studies.	QSAR	can	play	a	 role	 in	prioritizing	 the	
testing	and	guiding	regulators	on	potential	toxicity	pathways	that	could	be	affected	by	these	
compounds.	

The	aim	of	this	application	is	to	investigate	the	ability	of	carbazole	derivatives	to	activate	the	
AHR	and	whether	such	activation	can	be	detected	using	QSAR	modeling.	

5.2.2 Methods	

A. Analysis	of	AHR	activation	by	carbazoles	in	HTS	in	vitro	assays	
Two	HTS	 in	vitro	AHR	activation	assay	datasets	were	searched	for	compounds	that	show	a	
carbazole	substructure	scaffold.	The	HTS	assays	came	from	the	PubChem	bioassay	database	
(AID:	2796)363	(described	in	4.5.1	Data	acquisition	and	curation	above)	and	the	Tox21	assay	
dataset	 (described	 in	 C	 Aryl	 hydrocarbon	 receptor	 (AHR)	 (AID:	 743122344)	 above).	 The	
carbazole	derivatives	detected	in	these	datasets	were	examined	for	being	AHR	activators	and	
the	 results	were	 statistically	 compared	 to	 the	 average	 probability	 of	 the	 presence	 of	 AHR	
activators	in	the	respective	dataset	using	hypergeometric	distribution.	

Furthermore,	 the	 first	 dataset	 (AID:	 2796)	 was	 large	 enough	 to	 allow	 the	 examination	 of	
structural	 features	 that	may	 contribute	 to	 the	 activation	 of	 the	 AHR	 receptor.	 Therefore,	
active	and	inactive	carbazolyl-bearing	compounds	from	the	first	dataset	were	compared	using	
the	“Set	Compare”	utility	and	 the	ToxAlerts	 structural	alerts224.	 ToxAlerts	 is	a	 collection	of	
2310	SMARTS	template	patterns	collected	 from	 literature.	These	structural	patterns	act	as	
alerts	 for	 endpoints	 related	 to	 different	 adverse	 outcome	 such	 as	 skin	 sensitization,	
carcinogenicity,	metabolic	activation,	mutagenicity,	and	compounds	that	may	form	reactive	
metabolites	with	potential	adverse	reactions.	The	alerts	are	available	online	as	part	of	 the	
OCHEM	platform.	The	“Set	Compare”	utility	compares	two	sets	of	chemicals	(in	this	case,	AHR	
active	and	inactive	compounds)	for	the	presence	of	certain	features	(in	this	case	the	ToxAlerts	
SMARTS	 patterns),	 counts	 the	 number	 of	 occurrences	 of	 each	 pattern	 in	 both	 sets	 and	
quantifies	 the	 p-value	 for	 the	 probability	 of	 such	 occurrences	 by	 chance	 according	 to	 a	
geometric	distribution.		



 115 

B. Carbazoles	as	drugs	
The	DrugBank	database379	version	4.3	was	searched	for	the	presence	of	carbazole	derivatives.	
Carbazolyl	drugs	detected	in	the	database	were	examined	for	AHR	activation	using	both	HTS	
in	 vitro	AHR	dataset	 (AIDs:	2796	and	743122340)	mentioned	above	 to	determine	whether	
these	drugs	are	AHR	activators.	DrugBank	hosts	comprehensive	drug	 information	 including	
drug	protein	targets.	It	contains	more	than	8206 drug	entries.	These	are	207	FDA-approved	
biotech	products	(proteins	and	peptides),	1991	FDA	approved	small	molecule	drugs,	and	more	
than	6000	experimental	drugs.	The	database	allows	full	chemical	structure	search	(including	
substructure	queries)	as	well	as	text	and	sequence	searches.	

C. Prediction	of	AHR	activity	for	halogenated	carbazoles	
Earlier	 studies	 suggested	 that	 bromo-	 and	 iodocarbazoles	 could	 be	 more	 persistent,	
bioaccumulative,	and	toxic	than	the	parent	carbazoles375.	Therefore,	the	toxicity	of	mono-,	di-
,	 tri-	 and	 tetra-	 halogenated	 carbazoles	 was	 predicted	 using	 QSAR.	 Figure	 42	 shows	 the	
markush	representation	of	the	carbazoles.	Overall,	250	unique	chemical	structures	resulted	
from	 enumerating	 the	 markush	 representation	 using	 Marvin	 Sketch.	 Structures	 were	
uploaded	to	OCHEM	in	SDF	format.	The	impact	of	these	chemicals	on	twelve	molecular	targets	
was	predicted	using	the	QSAR	models	developed	in	4.3	Tox21	project	and	listed	in	Table	15.	
Finally,	predictions	were	downloaded	using	KNIME	together	with	the	prediction’s	distance-to-
model	as	a	measure	for	applicability	domain. 

	

Figure	42.	 	Markush	 representation	of	halogenated	carbazoles	 investigated	using	QSAR	models	 for	12	 toxicity-
related	targets	

5.2.3 Results	

A. Analysis	of	carbazoles	activation	in	HTS	in	vitro	assays	
Tox21	 dataset	 comprised	 6988	 unique	 compounds,	 of	 which	 817	 compounds	 were	 AHR	
activators.	 The	 dataset	 included	 6	 carbazole	 derivatives	 of	 which	 5	 were	 AHR	 activators	
(83.3%).	

The	PubChem	dataset	(AID:	2796)	tested	324744	unique	compounds.	Among	them,	291	held	
the	carbazolyl	scaffold.	Two	compounds	were	reported	in	both	active	and	inactive	datasets	
and	were	 excluded	 from	 the	 analysis.	 Among	 the	 remaining	 289	 compounds,	 46	 of	 them	
(15.91%)	being	activators	for	the	AHR.	This	represents	more	than	6-fold	enrichment	from	the	
average	presence	AHR	activators	within	the	set	(7987	substances	≈2.46%).	This	represents	a	
highly	significant	increase	(p-value:	3	x	10-25)	in	the	AHR	activation	for	carbazole	derivatives.		
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Analyzing	 the	 PubChem	 dataset	 by	 comparing	 both	 active	 (46	 carbazole	 derivatives)	 and	
inactive	 (243	 carbazole	 derivatives)	 sets	 using	 the	 ToxAlerts	 SMARTS	 templates	 suggested	
some	structural	patterns	to	be	highly	correlated	to	the	AHR	activation	of	carbazoles.	These	
structural	patterns	are	listed	in	Table	23.	The	shown	scaffolds	suggest	that	aromatic	amines	
are	 highly	 correlated	 to	 the	 activation	 of	 AHR	 while	 alcohols	 and	 phenols	 are	 highly	
represented	among	AHR	inactive	compounds.	

B. Carbazoles	as	drugs	
Searching	the	DrugBank	database	 for	carbazole	derivatives	resulted	 in	 the	 identification	of	
two	FDA-approved	drugs	(carvedilol	and	carprofen)	shown	in	Figure	43	as	well	as	22	other	
investigational	or	experimental	compounds.			

Carvedilol	 is	 both	 a	 competitive	 beta-adrenoceptor	 antagonist380–382	 and	 an	 arterial	
vasodilator383.	 At	 higher	 concentrations,	 carvedilol	 is	 also	 a	 calcium	 channel	
antagonist380,381,383.	 The	 vasodilatory	 actions	 result	 primarily	 from	 alpha-adrenoceptor	
blockade383	although	in	certain	vascular	beds,	calcium	channel	blockade	may	also	contribute	
to	vasodilation381.	In	addition	to	these	actions	on	the	heart	and	vasculature,	carvedilol	has	also	
been	shown	to	possess	significant	antioxidant	and	antiproliferative	actions.	

Carprofen	 is	 a	 non-steroidal	 anti-inflammatory	 drug	 (NSAID)384	 that	 is	 used	 in	 veterinary	
medicine	 to	 treat	 geriatric	 dogs	with	 arthritic	 symptoms.	 The	 drug	was	 initially	 used	 as	 a	
human	drug	 (1985-1995).	The	compound	was	highly	 tolerated	with	 intestinal	ulcers	as	 the	
only	side	effect	that	was	reported	after	high	dose	exposure	in	animals384.	The	drug	was	pulled	
on	voluntary	basis	by	Pfizer	for	commercial	reasons385.	Other	mild	adverse	effects	were	similar	
to	those	reported	by	aspirin	and	other	NSAIDs	including	gastrointestinal	pain	and	nausea.	

Both	 compounds	were	 tested	 in	 both	 HTS	 AHR	 activation	 in	 vitro	 assays	 (AIDs:	 2796	 and	
743122340).	Carprofen	was	 reported	as	 inactive	 in	both	assays	while	 carvedilol	 result	was	
inconclusive.	It	was	reported	as	active	in	the	Tox21	dataset	only	(AID:	743122340).		

Among	 the	22	experimental/investigational	 compounds,	 experimental	AHR	activation	data	
was	 available	 for	 2	 compounds	 only	 (Staurosporine	 and	 (S)-Wiskostatin)	 shown	 in		
Figure	43.	Both	compounds	were	reported	as	inactive.	
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Table	23	Structural	patterns	with	high	significance	to	the	AHR	activation	for	the	carbazoles	within	the	in	vitro	assay	
screening	dataset	(AID:	2796).	P-values	are	calculated	through	a	hypergeometric	distribution	

Structural	pattern	 Pattern	name	 Occurances	
in	AHR	
active	

compounds	

Occurances	
in	AHR	
inactive	

compound
s	

Enrichme
nt	factor	

p-value	

	

Aromatic	amines	 29	(63.0%)	 56	(23.0%)	 2.7	 2.32E-7	

 

Aromatic	primary	and	
secondary	amines	

29	(63.0%)	 56	(23.0%)	 2.7	 2.32E-7	

 

Aromatic	amines	 31	(67.4%)	 68	(27.9%)	 2.4	 -10-7	

 

Anilines,	anilides	 29	(63.0%)	 62	(25.4%)	 2.5	 -10-6	

 

Aromatic	amines	precursors	 25	(54.3%)	 50	(20.5%)	 2.7	 -10-6	

 

Aromatic	N-Groups	alcohols	
or	phenols	

	

27	(58.7%)	 60	(24.6%)	 2.4	 -10-5	

 

Carboxylic	acid	secondary	
amides	

26	(56.5%)	 57	(23.4%)	 2.4	 -10-5	

 

Esters	of	aromatic	alcohols	
and	their	thio	and	aza	

analogues	

25	(54.3%)	 53	(21.7%)	 2.5	 -10-5	

 

Simple	anilines	and	phenols	 29	(63.0%)	 71	(29.1%)	 2.2	 -10-5	

Patterns	more	frequent	in	inactive	compounds	

 
Alcohols	 3	(6.5%)	 83	(34.0%)	 5.2	 -10-5	

 
Hydroxyl	compounds:	
alcohols	or	phenols	

4	(8.7%)	 99	(40.6%)	 4.7	 -10-6	
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Carvedilol	 Carprofen	

 

	

Staurosporine	 (S)-Wiskostatin	

	
Figure	43.	The	top	row	shows	the	chemical	structures	of	the	only	2	FDA-approved	drugs	that	show	a	carbazole	
substructure	according	to	the	DrugBank	database;	Carvedilol	(top-left)	and	Carprofen	(top-right).	The	bottom	row	
shows	the	chemical	structures	of	2	experimental	drugs	for	which	AHR	activation	HTS	assay	data	were	available;	
Staurosporine	(bottom-left)	and	(S)-Wiskostatin	(bottom-right)	

C. Prediction	of	AHR	activity	for	halogenated	carbazoles	
Applying	all	twelve	models	(Table	15)	to	250	unique	chemicals	results	in	3000	predictions	with	
no	 calculation	 errors.	Most	 predictions	 are	 estimated	 to	 have	 high	 prediction	 accuracy	 as	
shown	in	Figure	44.		

Halogenated	 carbazoles	 are	 predicted	 to	 cause	 perturbation	 to	 all	 investigated	 pathway	
endpoints,	except	the	androgen	receptor	MDA-kb2	AR-luc	cell	line	(nr-ar)	as	shown	in	Table	
24.	The	heatmap	in	Figure	45	shows	the	predicted	chemical/pathway	perturbation	matrix	of	
the	halogenated	carbazoles	for	all	twelve	pathway	endpoints	with	high	accuracy	(>85%).		
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Figure	44.		Distribution	of	the	estimated	prediction	accuracy	for	twelve	pathway	endpoints	among	halogenated	
carbazoles	compounds	

Table	 24.	 	 Percentage	 of	 halogenated	 carbazole	 compounds	 with	 high	 prediction	 accuracy	 (>85%)	 and	 the	
percentage	of	active	compounds	(i.e.,	disrupting	the	molecular	pathways)	for	twelve	endpoints.	

Pathway	endpoints	 Percentage	 of	 accurate	
predictions	 (>=85%	 estimated	
accuracy)	

Percentage	of	active	compounds	among	
accurate	predictions	(and	among	total)	

nr-ahr	 100%	 100%	(100%)	
nr-ar	 21%	 0%	(0%)	
nr-ar-lbd		 100%	 98%	(98%)	
nr-aromatase		 30%	 100%	(30%)	
nr-er	 80%	 100%	(80%)	
nr-ppar-gamma		 41%	 99%	(41%)	
nr-er-lbd	 92%	 100%	(92%)	
sr-are		 54%	 100%	(54%)	
sr-atad5	 60%	 100%	(60%)	
sr-hse	 42%	 100%	(42%)	
sr-mmp	 98%	 100%	(98%)	
sr-p53	 100%	 100%	(100%)	

nr_ahr nr_ar nr_ar_lbd nr_aromatase 

nr_er nr_ppar_gamma nr−er−lbd sr_are 
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Figure	 45.	 	 Predicted	 chemical/pathway	perturbation	matrix	 of	 halogenated	 carbazoles	 compounds	 for	 twelve	
pathway	endpoints	with	high	accuracy	(>85%).	Color	gradient	indicates	the	prediction	distance	from	class	limits	
(green	for	inactive	compounds	and	red	for	active	perturbation)	

5.2.4 Discussion	
The	 interesting	structural	 features	and	auspicious	pharmacological	behaviors	of	carbazoles	
resulted	in	an	immense	growth	in	the	carbazole	chemistry.	Alkaloid	derivatives	of	carbazoles	
are	famous	for	many	pharmacological	activities,	such	as	antifungal,	anti-bacterial,	anti-cancer	
and	anti-HIV	activities.	Some	carbazole	derivatives	(e.g.,	poly(vinylcarbazole))	are	being	used	
in	industrial	applications	as	optoelectronic	materials386.	The	presence	of	halogen	atoms	allows	
these	compounds	to	be	used	as	substrates	in	coupling	reactions	such	as	the	Suzuki-Miyaura	
cross-coupling.	

Investigating	carbazole	derivatives	among	HTS	in	vitro	assays	for	AHR	activation	revealed	that	
the	presence	of	carbazolyl	moiety	highly	correlates	with	AHR	activation	(p-value:	10-25)	and	
that	 such	moiety	 provides	 high	 enrichment	 factor	 (>	 6-fold).	 Such	 correlation	 adds	 to	 the	
weight	of	evidence	 that	 link	carbazoles	 to	dioxin-like	side	effects.	 It	may	suggest	 that	AHR	
activation	is	a	key	event	in	this	adverse	outcome	pathway.	This	is	in	accordance	with	earlier	
studies376,387	 which	 suggest	 that	 carbazoles	 act	 through	 the	 AHR	 activation.	 Further	
investigation	of	 relative	effect	potencies	of	different	carbazoles	 is	needed	 to	shed	 light	on	
potential	toxicity	from	such	activation.		

Further	analysis	of	carbazole	substitutions	to	determine	which	substituents	are	more	likely	to	
lead	to	AHR	activation	showed	that	aromatic	amines	were	highly	 likely	to	activate	AHR	(p-
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value:	10-5	 to	10-7)	while	alcohols	and	phenols	were	more	 likely	to	be	associated	with	AHR	
inactive	compounds	(p-value:	10-5	to	10-6).	

Searching	 for	 FDA-approved	 carbazolyl	 drugs	 showed	 only	 2	 candidates	 (carvedilol	 and	
carprofen)	in	the	DrugBank.	The	results	of	these	drugs	in	HTS	AHR	activation	 in	vitro	assays	
were	 either	 inactive	 (carprofen)	 or	 contradictory	 (carvedilol).	 On	 the	 other	 hand,	 22	
experimental	 compounds	 were	 reported	 in	 the	 DrugBank	 with	 carbazole	 substructure.	
Experimental	data	available	for	2	compounds	showed	them	being	AHR	inactive.		

The	prediction	of	pathway	perturbations	 for	250	halogenated	carbazoles	against	12	assays	
(representing	ten	biochemical	pathways)	show	high	confidence	in	prediction	for	most	targets.	
All	halogenated	carbazoles	show	activity	against	all	pathways	except	the	androgen	receptor	
MDA-kb2	AR-luc	cell	line	(nr-ar).	However,	it	is	important	to	notice	that	this	particular	target	
had	the	lowest	applicability	domain	coverage	among	all	targets	(only	21%	of	the	compounds	
had	an	estimated	accuracy	>	85%).	

Finally,	 activation	of	AHR	 in	 itself	does	not	necessarily	mandate	 toxicity.	AHR	has	multiple	
reported	endogenous	activators.	It	was	proposed	that	the	high	level	persistent	stimulation	of	
AHR	 by	 ligands	 is	 the	 cause	 of	 toxic	 effects44.	 Future	 studies	 are	 needed	 to	 quantify	 the	
duration	and	magnitude	of	receptor	activation	revealing	more	about	the	pharmacodynamics	
of	such	AHR	activators.	However,	this	study	shows	that	halogenated	carbazoles	represent	a	
class	of	persistent	organic	pollutants	exhibiting	dioxin-like	toxicity.	
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6 Summarizing	discussion	

6.1 Outcome	of	the	studies	and	conclusions		
The	 aim	of	 this	work	was	 to	 investigate	 the	 ability	 of	QSAR	modeling	 to	 predict	 potential	
systems	toxicity	of	chemicals.	The	overall	work	was	based	on	the	5	OECD	principles	for	QSAR	
models	construction.	 It	 included	available	 in-vitro	databases,	which	were	provided	through	
the	-	also	REACH-related	-	framework	of	development	and	generation	of	HTS	(in	vitro)	profiling	
methods,	and	included	development	and	optimization	of	predictive	computational	models.	
For	 the	purpose	of	modeling	and	prediction,	multiple	approaches	were	used	 including	 the	
direct	correlation	of	chemical	structures	to	in	vivo	animal	toxicity,	the	combination	of	in	vitro	
HTS	and	in	silico	descriptors	to	predict	in	vivo	outcomes	as	well	as	the	prediction	of	specific	
pathways	perturbations	by	correlating	in	silico	descriptors	to	results	from	HTS	of	such	targets.	

Generally,	the	direct	prediction	of	in	vivo	animal	toxicity	using	in	silico	descriptors	for	complex	
end	 points	 yielded	 limited	 success.	 Prediction	 was	 only	 feasible	 for	 restricted	 compound	
libraries	 with	 the	 same	 mode	 of	 action	 (e.g.,	 organophosphorus	 compounds’	 toxicity	
inhibition	 of	 acetylcholine	 esterase).	 Some	 in	 vivo	 endpoints,	 with	 a	 promising	 predictive	
balanced	accuracy	exceeding	70%	were	identified	in	the	course	of	the	studies.	These	include	
multiple	rat	maternal	toxicity	endpoints	and	chronic	apoptosis	and	necrosis	in	mice.	

Data,	derived	from	HTS	in	vitro	profiling	of	chemicals,	were	combined	with	in	silico	descriptors	
to	 build	 “biological	 descriptors”.	 This	 approach	 showed	 a	 significant	 improvement	 in	 the	
predictive	ability	of	QSAR	models	for	some	endpoints	(p-values <0.05) compared	to	the	use	of	
in	 silico	 descriptors	 alone	 (such	 as	 rat	 fetal	 pathology).	 Furthermore,	 the	 mechanistic	
classification	 and	 regrouping	 of	 the	 HTS	 in	 vitro	 assay	 responses	 in	 the	 form	 of	 pathway	
perturbations	significantly	improved	(with p <0.05)	the	predictivity	for	some	toxicity	endpoints.	
These	includes	chronic	rat	liver	neoplastic	lesions	and	multigenerational	rat	viability	among	
others.		

Overall,	the	prediction	of	final	in	vivo	toxicity	remains	challenging.	This	was	confirmed	by	the	
low	median	performance	of	QSAR	models	predicting	the	final	 in	vivo	 toxicity	by	analysis	of	
ToxCast	 Phase	 I	 compounds.	 Therefore,	 as	 to	be	 expected	 from	 the	 complexity	 of	 a	 living	
organism	 as	 opposed	 to	 in	 vitro	 isolated	 targets	 or	 in	 vitro	 biological	 systems,	 it	 remains	
difficult	 to	 directly	 replace	 animal	 toxicity	 testing	 using	 predictive	 QSAR	 models,	 with	 a	
possible	exception	of	acetylcholinesterase	inhibition.		

In	vitro	HTS	is	also	useful	in	detecting	molecular	pathways	that	are	most	correlated	to	in	vivo	
toxicity	outcomes	(by	using	the	“Set	Compare”	utility).	This	indicates	that	in	vitro	assays	could	
assist	 in	understanding	the	underlying	mechanism	of	toxicity	and	the	essential	biochemical	
pathways	 involved.	 Furthermore,	 fragment-analysis	 techniques	 used	 to	 support	 the	
investigation	of	potential	modes	of	action	were	also	promising.	

As	opposed	to	handling	or	generating	data	from	in	vivo	systems,	prediction	of	in	vitro	assays	
outcomes	using	 in	 silico	 descriptors	 showed	high	 success.	 This	was	 confirmed	by	 the	 high	
balanced	 accuracy	 for	 predicting	 ToxCast	 Phase	 I	 assay	 results.	 The	 concept	 represents	 a	
different	 approach	 towards	 toxicity	 prediction	 where	 in	 silico	 descriptors	 can	 be	 used	 to	
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model	 in	vitro	assay	outcomes	that	are	known	to	be	related	to	specific	 in	vivo	effects.	The	
Tox21	project	explores	this	possibility	by	profiling	a	large	number	of	chemicals	using	in	vitro	
assays	as	an	investigational	and	exploratory	tool.		

Using	 QSAR	 for	 modeling	 the	 outcome	 of	 Tox21	 in	 vitro	 assays	 (representing	 different	
molecular	pathways)	showed	promising	success	with	balanced	accuracies	reaching	up	to	more	
than	 80%	 for	 several	 endpoints,	 such	 as	 aryl	 hydrocarbon	 receptor	 activation	 (86%),	
mitochondrial	 membrane	 disruption	 (88%)	 and	 androgen	 receptor	 activation	 (82%).	 The	
relatively	high	balanced	accuracies	among	models	confirmed	the	possibility	of	modeling	HTS	
results	from	in	vitro	assays	using	in	silico	descriptors	as	reported	in	earlier	studies187.	

Bagging	validation	provided	a	good	indication	for	the	models’	predictive	ability	on	external	
validation	sets.	Stratified	bagging	addressed	the	unbalanced	nature	of	the	training	set	and	
reduced	bias	 towards	 the	majority	 class.	 The	 stratified	bagging	 contributed	models,	which	
were	 optimized	 towards	 the	 balanced	 accuracy.	 Models	 developed	 in	 the	 Tox21	 study	
calculated	the	best	balanced	accuracy	across	all	 twelve	analyzed	targets.	Furthermore,	 the	
used	 strategy	 allowed	 to	 calculate	 the	 highest	 AUROC	 scores	 for	 two	 targets.	 It	 is	 also	
important	to	realize	that,	due	to	the	model	prediction	variances,	selecting	a	model	with	the	
highest	validated	accuracy	does	not	guarantee	the	highest	predictive	ability	for	an	evaluation	
set.		

Consensus	modeling	improved	the	predictive	ability	of	models	as	signified	by	both	validation	
and	evaluation	set	accuracies.	To	a	high	degree	this	result	was	achieved	thanks	to	the	diversity	
of	descriptor	packages,	which	captured	different	aspects	of	the	molecular	structures.	Use	of	
different	descriptors	also	compensated	for	failure	of	some	descriptors	to	represent	certain	
structures,	 thus	 covering	 the	 entire	 training	 set.	 This	 methodology	 achieved	 the	 highest	
balanced	accuracy	for	all	12	targets	of	the	Tox21	Data	Challenge	organized	by	the	NIH.	The	
same	approach	was	used	to	build	QSAR	models	for	the	activation	of	pregnane	X	receptor	as	
well	as	QSAR	models	on	an	extended	dataset	for	the	aryl	hydrocarbon	receptor	activation.	
Both	studies	showed	high	prediction	accuracy.	

Finally,	 two	specific	applications	were	computed	and	discussed.	These	applications	put	the	
developed	in	silico	to	in	vitro	QSAR	studies	on	the	twelve	molecular	pathway	endpoints	of	the	
Tox21	project	in	practical	solicitation	for	environmental	risk	assessment.		

(1)	The	first	application	screens	the	large	dataset	of	EINECS	compounds	for	potential	pathway	
perturbations.	 The	 predictions	 show,	 with	 high	 confidence,	 that	 a	 certain	 percentage	 of	
chemicals	(between	4.6%	and	12.6%	depending	on	the	target)	are	likely	to	disrupt	molecular	
pathways.	Furthermore,	in	conclusion,	a	point-based	system	was	suggested:	toxicity-testing	
priority	 score	 (ToPS).	 This	 score	 provides	 a	 universal	 overview	of	 a	 compound’s	molecular	
pathways	perturbation	and	assesses	its	overall	risk	profile.	ToPS	offers	a	systematic	rationale	
for	 a	 compound-prioritization	 scheme.	 The	 score	 represents	 a	 factor	 of	 the	 predicted	
biochemical	 pathways	 perturbation,	 applicability	 domain	 and	 allows	 weighing	 different	
targets	 according	 to	 the	 investigated	 application	 or	 potential	 exposure	 scenario	 in	 the	
environment.	
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(2)	The	second	application	investigates	a	set	of	halogenated	carbazole	compounds	emerging	
in	the	European	and	US	ecology	without	being	actively	produced	or	imported.	All	halogenated	
carbazoles	show,	with	high	prediction	accuracy,	an	activity	against	all	pathways	except	the	
androgen	 receptor	MDA-kb2	 AR-luc	 cell	 line	 (nr-ar).	 This	 particular	 target	 had	 the	 lowest	
applicability	domain	coverage	(21%)	-	among	all	targets	-	for	high	accuracy	predictions	(>85%).	
Analyzing	HTS	data	showed	that	the	presence	of	carbazolyl	moiety	highly	correlates	with	Aryl	
Hydrocarbon	Receptor	 (AHR)	activation	(p-value:	3	x	10-25).	The	carbazolyl	moiety	provides	
high	enrichment	factor	(>	6-fold)	for	AHR	activation.	Certain	carbazolyl	substitutions	(such	as	
aromatic	amines)	are	more	likely	to	lead	to	AHR	activation	(p-value:	10-5	to	10-7)	while	alcohols	
and	phenols	were	more	likely	to	be	associated	with	AHR	inactive	compounds	(p-value:	10-5	to	
10-6).	

QSAR	 models	 developed	 in	 this	 thesis	 were	 recognized	 by	 winning	 multiple	 awards	 in	
challenges	organized	by	the	National	Institute	of	Health	(NIH)	as	well	as	the	environmental	
protection	agency	(EPA).	The	outcomes	of	the	dissertation	are	available	to	regulators	and	the	
scientific	 community.	 The	 public	 platform	 iPrior	 was	 deployed	 and	 is	 hosting	 data	 from	
ToxCast,	Tox21,	and	e1K	projects.	It	is	open	for	researchers	to	apply	the	developed	models	on	
new	compounds,	upload	more	data,	or	contribute	their	descriptor	packages.	Moreover,	the	
developed	 models	 based	 on	 the	 Tox21	 study	 are	 made	 publicly	 available	 at	
http://amaziz.com/article/tox21,	 thus	 allowing	 their	 use	 for	 prospective	 and	 retrospective	
analyses.	 Finally,	 the	 results	of	different	 studies	and	applications	are	made	available	 in	an	
open	GitHub	repository.	It	is	hypothesized	that	those	freely	accessible	models	may	become	
accepted	by	the	regulators	and	the	scientific	community	and	therefore	play	a	significant	role	
in	predicting	in	vivo	toxicity	and	reduce	animal	testing.	

6.2 Outlook	and	recommendations	
The	ultimate	goal	of	 computational	 toxicology	would	be	 to	achieve	a	precise	prediction	of	
human,	animal	and	environmental	 risk	of	chemicals	and	minimize	the	need	for	conducting	
animal	 studies.	 However,	 a	 number	 of	 open	 questions	 and	 underlying	 assumptions	 must	
always	be	kept	in	mind:	

1. The	in-vitro	to	in-vivo	extrapolation	of	toxic	effects	remains	a	challenge	that	still	needs	
to	 be	 further	 investigated	 and	 validated.	 The	 extrapolation	 suffers	 from	 multiple	
limitations.	The	contribution	of	bioavailability	(i.e.,	entrance	or	uptake	of	a	chemical	
into	the	biological	system)	in	activation	or	elimination	of	toxicity-relevant	chemicals	
remains	noteworthy	for	future	investigation.	In	vitro	studies	with	cell	line	settings	do	
not	account	for	metabolic	first-pass	effect	in	the	gastrointestinal	tract	(in	cases	of	oral	
ingestion	this	may	be	relevant).		

2. in	 vitro	 cell-lines	 (being	 frequently	 based	 on	 carcinoma	 cells)	 express	 different	
patterns	of	metabolizing	enzymes,	not	comparable	with	healthy	human	cells.	In	vitro	
assays	may	lack	the	bioactivation	pathways	that	are	exerted	in	vivo.	The	assumption	
of	 similarity	 of	 gene	 expression	 between	 carcinoma	 cells	 and	 normal	 human	 cells	
should	always	be	questioned.		

In	 conclusion,	 three	 major	 concerns	 with	 respect	 to	 this	 first	 pragmatic	 approach	 and	
successful	model	development	are	evident:	(1)	The	integration	of	QSAR	bioavailability	models	
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together	with	 toxicokinetic	 simulations	may	 advance	 the	presented	work	 forward	 yielding	
better	 extensibility	 towards	 in	 vivo	 chemical	 toxicity	 prediction.	 The	 additional	 “biological	
descriptors”	(such	as	biopharmaceutical	data)	might	aid	and	improve	the	overall	correlation.	
(2)	The	in	vitro	assays	examined	might	not	be	sufficient	for	capturing	biochemical	events	on	
the	molecular	level	or	depict	the	pathways	responsible	for	toxicity.	(3)	QSAR	modeling,	as	a	
statistical	 approach,	 necessitates	 a	 significant	 amount	 of	 data.	 Relatively	 low	 numbers	 of	
chemicals	as	training	instances	restrict	the	modeling	process	as	shown	with	the	ToxCast	study.	
This	constraint	would	gradually	diminish	as	more	data	becomes	available	in	future	stages	of	
ToxCast	and	other	programs.	The	applicability	domain	and	predictive	power	of	models	is	very	
likely	to	increase.	

6.3 Final	remarks	
The	continuous	development	and	extension	of	the	presented	QSAR	models	is	recommended	
and	 may	 be	 regarded	 as	 “natural”	 development	 following	 the	 growth	 in	 knowledge	 and	
experience.	 As	 machine-learning	 algorithms	 get	 more	 capable,	 computational	 power	
becomes	cheaper	and	descriptors	allow	higher	resolution	representations	about	chemicals,	
the	QSAR	models	 could	be	 further	 improved	 towards	 a	 continuously	 increasing	prediction	
ability.	Additionally,	more	biological	targets	should	be	considered	widening	the	spectrum	and	
increasing	 the	 probability	 to	 identify	 more	 toxicologically	 relevant	 structural	 elements	 in	
chemicals.	 The	methodology	 for	QSAR	models	building	was	performed	and	presented	 in	a	
way,	which	allows	its	extension	to	other	targets	of	interest.	

In	the	core	of	the	REACH	vision	is	the	belief	that	QSAR	studies	should	extend	from	description	
and	providing	reliable	prediction	into	guiding	the	chemical	design	process.	To	deduce	useful	
guidance	 from	QSAR	models,	 they	 should	offer	more	 insights	 into	 the	 reasons	behind	 the	
given	predictions,	which	requires	detailed	concept-	and	data	analysis,	particularly	with	respect	
to	potential	reasons	for	predicted	outcomes.	The	mechanistic	interpretation	is,	unfortunately,	
getting	harder	with	the	advance	of	complex	statistical	approaches	and	non-linear	models.	The	
use	of	prediction-driven	Matched	Molecular	Pairs	(MMP)	analysis192	may	be	a	next	step.	Such	
an	approach	may	analyze	the	space	of	available	compounds	for	minor	chemical	modifications	
that	 could	 lead	 to	 inverted	 outcome	 (e.g.,	 loss	 of	 toxicity).	 This,	 combined	 with	 the	
applicability	domain	estimation,	would	enlighten	chemical	manufacturers	and	pharmaceutical	
companies	 into	 the	 reasons	 behind	 developed	 toxicities	 and	 allow	 the	 design	 of	 safer	
chemicals	while	reducing	research	time	and	cost.		

The	goal	of	QSAR	models	in	predictive	toxicology,	ordinarily,	is	to	forecast	an	adverse	outcome	
beyond	 protein	 binding	 or	 nuclear	 receptor	 activation.	 In	 this	 sense,	 QSAR	 prediction	 of	
molecular	 pathways’	 perturbation	 is,	 in	 itself,	 an	 attempt	 to	 mechanistically	 understand	
toxicological	risks.	In	the	context	of	adverse	outcome	pathways	(AOP),	such	perturbations	are	
considered	as	molecular	initiating	events	(MIE)	or	key	events	(KE)	leading	to	certain	adverse	
outcome.	Such	KEs	are	connected	through	key	event	relationships	(KERs)	to	form	the	network	
of	multiple	AOPs	which	form	the	functional	prediction	component	for	real-life	circumstances.	
The	investigated	molecular	pathways	have	been	suggested	to	play	a	relevant	and	significant	
role	in	many	adverse	outcomes.		
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Finally,	 it	 is	 assumed	 that	 the	 presented	 work	 will	 assist	 in	 improving	 the	 regulation	 of	
chemicals	by	better	deployment	of	highly	potent	testing	capacities.	The	more	accurate	and	
sophisticated	 and	 accessible	 computational	 approaches	 get,	 the	 higher	 the	 potential	 for	
reducing	 environmental	 toxicity	 risks,	 saving	 animals,	 and	 speeding	 the	 –	 cost-intensive	 –	
discovery	processes	for	new	developments.		
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ar-lbd	 androgen	receptor	MDA-kb2	AR-luc	cell	line	
ARE	 Antioxidant	Responsive	Element	
AREs	 Androgen	Response	Elements	
ArKO	 Aromatase	Knockout	Mice	
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DRE	 Dioxin-Responsive	Element	
EC	 European	Commission	
ECHA	 European	Chemicals	Agency	
EDCs	 Endocrine	Disrupting	Chemicals	
EDSP	 Endocrine	Disruptor	Screening	Program	
EEM	 Electronegativity	Equalization	Method	
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EINECS	 European	Inventory	of	Existing	Commercial	Chemical	Substances	
EMA	 European	Medicines	Agency	
EPA	 Environmental	Protection	Agency	
EPI	 Estimation	Program	Interface	
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EU	 European	Union	
FDA	 Food	and	Drug	Administration	
FDR	 False	Discovery	Rate	
FOR	 False	Omission	Rate	
FPR	 False	Positive	Rate	
FSMLR	 Fast	Stagewise	Multiple	Linear	Regression	
GCODs	 Grid	Cell	Occupancy	Descriptors	
GPL	 General	Public	License	
GUI	 Graphical	User	Interface	
HAHs	 Halogenated	Aromatic	Hydrocarbons	
HERG	 Human	Ether-A-Go-Go	Channel	
HSEs	 Heat	Shock	Factor	Response	Elements	
HSF	 Heat	Shock	Factor	
HSP	 Heat	Shock	Proteins	
HSR	 Heat	Shock	Response	
HTS	 High	Throughput	Screening	
IC50	 Half	Maximal	Inhibitory	Concentration	
IGC	 Growth	Inhibition	Concentration	
InChI	 International	Chemical	Identifier	
IPEs	 Interaction	Pharmacophore	Elements	
IUPAC	 International	Union	of	Pure	and	Applied	Chemistry	
𝑘NN	 K-Nearest	Neighbors	
KRR	 Kernel	Ridge	Regression	
LBD	 Ligand-Binding	Domain	
LD50	 Median	Lethal	Dose	
LGPL	 Lesser	General	Public	License	
LMO	 Leave-Many-Out	
LOO	 Leave	One	Out	
LQTS	 Long	QT	Syndrome	
LVs	 Latent	Variables	
MAE	 Mean	Absolute	Error	
MCDM	 Multi-criteria	Decision	Making	
MFC	 Molecular	Fragments	Count	
MGD	 Multi-Gaussian	Distribution	
MLR	 Multivariate	Linear	Regression	
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MLRA	 Multiple	Linear	Regression	Analysis	
MMP	 Mitochondrial	Membrane	Potential	
NCATS	 The	National	Center	for	Advancing	Translational	Sciences	
NER	 Non-Error	Rate	

NIEHS/NTP	 The	 National	 Institute	 of	 Environmental	 Health	 Sciences/	 National	 Toxicology	
Program	

NIH	 The	National	Institutes	of	Health	
NIST	 National	Institute	of	Standards	and	Technology	
NLS	 Nuclear	Localization	Sequence	
NPV	 Negative	Predictive	Value	
nr	 nuclear	receptor	
OCHEM	 Online	Chemical	Modeling	Environment	
OECD	 Organization	for	Economic	Co-Operation	and	Development	
OPP	 Office	of	Pesticide	Programs	
OPPTS	 Office	of	Prevention,	Pesticides	and	Toxic	Substances	
P53	 Tumor	protein	p53	
PAHs	 Polycyclic	Aromatic	Hydrocarbons	
PBT	 Persistent,	Bioaccumulative	And	Toxic	
PCA	 Principal	Component	Analysis	
PDF	 Probability	Density	Function	
PLS	 Partial	Least	Squares	
PPAR-γ	 Peroxisome	Proliferator-Activated	Receptor	Gamma	
PPV	 Positive	Predictive	Value	
PXR	 Pregnane	X	Receptor	
QC	 Quality	Control	
QSAR	 Quantitative	Structure	Activity	Relationship	
QSAR/QSPR	 Quantitative	Structure	Activity/Property	Relationship	
QSPR	 Quantitative	Structure	Property	Relationship	
RBF	 Radial	Basis	Functions	
REACH	 Registration,	Evaluation,	Authorization	and	Restriction	of	Chemicals	
RF	 Random	Forests	
RMSE	 Root	Mean	Square	Error	
ROC	 Receiver-Operating	Characteristic	
ROS	 Reactive	Oxygen	Species	
RXR	 Retinoid	X	Receptor	
SDF	 Structure	Data	File	
SDF	 Structure-Data	File	
SGD	 Single-Gaussian	Distribution	
SIEF	 Substance	Information	Exchange	Forum	
SMF	 Substructure	Molecular	Fragments	
SMILES	 Simplified	Molecular	Input	Line	Entry	Specification	
SMILES	 Simplified	Molecular	Input	Line	Entry	Specification	
sr	 stress	response	
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STD	 Standard	Deviation	
STD-PROB	 Standard	Deviation	and	Probability	Based	DM	
SVD	 Singular	Value	Decomposition	
SVM	 Support	Vector	Machine	
SVs	 Support	Vectors	
TNR	 True	Negative	Rate	
ToxRefDB	 Toxicity	Reference	Database	
TPR	 True	Positive	Rate	
TZDs	 Thiazolidinediones	
US	EPA	 United	States	Environmental	Protection	Agency	
vPvB	 very	Persistent	and	very	Bioaccumulative	
WAT	 White	Adipose	Tissue	
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2. Prof.	dr.	ir.	W.J.G.M.	(Willie)	Peijnenburg	(Institute	of	Environmental	Sciences	(CML),	

Faculty	of	Science,	University	of	Leiden,	The	Netherlands,	October-December	2012)	
3. Prof.	Dr.	Hilde	Spahn-Langguth	(Mainz,	July-August	2012)	
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Curriculum	Vitae	

	

Ahmed Abdelaziz Sayed 
Telefon: (+49) 1577 688 7277 
Email: contact@amaziz.com  
www.amaziz.com 

Akademische Ausbildung 

° Doktorand in Chemoinformatik; Technische Universität München, Titel:: “In silico modeling using in vitro 
High Throughput Screening data for toxicity prediction within REACH”. Doktorvater: Prof. Karl-Werner 
Schramm 

° Executive MBA student in Innovation and Business Creation - TU München. 

° M.Sc. in der pharmazeutischen Chemie; Fakultät für Pharmazie und Biotechnologie, Deutsche Universität 
in Kairo, Titel: “Kinetics of active metabolites: In-silico predictions and compartmental approach accounting 
for first-pass metabolism” (2010; A+) 

° B.Sc. Pharmazeutische Wissenschaften; Fakultät für Pharmazie, Ain-Shams-Universität, Kairo, Ägypten. 
(2005; Very Good with honors) 

° Data Science Specialization by Johns Hopkins University 

Berufserfahrung 

05/2015– 
gegenwa ̈rtig 

Independent Berater - Rosettastein Consulting 

03/2011 – 01/2015 Chief Commercial Officer, Managing Director - eADMET GmbH 

02/2010 – 04/2013 FP7 Marie-Curie fellow, EU researcher -  Helmholtz-Zentrum München 

09/2006 – 01/2010   Teaching & Research Assistant - German University in Cairo (GUC) 

Fa ̈higkeiten 

• Programmiersprachen: C#, VB.NET, ASP.NET, Java, PHP 
• Datenbanken: SQL server, MySQL/MariaDB, MongoDB 
• Betriebssysteme: Linux, MacOSX, Windows 
• Daten Wissenschaft Software: R, WEKA, Orange, qtiPlot, SPSS, PSPP 
• PK/PD Software: GastroPlus, ADMET Predictor, WinNonLin, SimCYP 
• Sprachen: English (fluent), German (business proficiency), Arabic (native) 

Auszeichnungen 

• Best balanced accuracy for machine-learning predictive models in the NIT/NCATS TOX21 data 
challenge 2014 

• TUM Graduate school scholarship for the executive MBA studies in innovation and business creation. 
• FP7 Marie-Curie fellowship for the environmental Chemoinformatics project (2010-2013) 
• Best Industrial contribution for 2009 by FIP (International pharmaceutical Federation)  
• Semi-finalist in California Berkeley technology entrepreneurship competition 2008. (Intel+ UC Berkeley 

Technology entrepreneurship challenge) 
• First place in the “3rd Arab Technology Business plan competition” by ASTF (Arab science and 

Technology Foundation) (Morocco, October 2008) 
• IEEE Egypt Gold award for (Made in Egypt) competition 

 

 


