Uncertainty of GNSS antenna phase center corrections

Ralf Schmid

Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, Germany e-mail: *schmid@dgfi.badw.de*

implemented with igs05.atx (in November 2006):

- **absolute** receiver antenna calibrations (i.e., calibrations independent of a reference antenna)
- consideration of the **radome effect** (if calibration available)
- satellite-specific **satellite antenna** *z***-offsets**
- block-specific satellite antenna PCVs (phase center variations)

implemented with **igs08.atx** (in April 2011):

• GLONASS-specific receiver antenna corrections

 \rightarrow considerable reduction of technique-specific biases

Uncalibrated radomes at co-located stations (I)

 \rightarrow errors of up to several cm by ignoring the radome

CGE

Uncalibrated radomes at co-located stations (II)

Paris	
013,	
1ay 2	
'22 N	
, 21/	
shop	
Nork	
IERS \	

Agency	Station	Antenna	Radome	Removed	Reinstalled
JPL	AREQ	AOAD/M_T	JPLA	2011-08-19	2012-02-03
	CR01	ASH701945G_M	JPLA	2011-04-01	2011-06-24
	FAIR	ASH701945G_M	JPLA	2012-04-27	2012-08-04
	GODE	AOAD/M_T	JPLA	2012-07-06	2012-12-13
	MD01	AOAD/M_T	JPLA	2013-02-22	tbd.
	MONP	ASH701945B_M	SCIS	—	—
	SANT	AOAD/M_T	JPLA	—	—
	SHAO	AOAD/M_T	JPLA	—	—
	TIDB	AOAD/M_T	JPLA	—	—
	TID1	AOAD/M_T	JPLA		—
	TID2	AOAD/M_T	JPLA		—

 \rightarrow CRO1 results questionable due to switch from IGS05 to IGS08 in April 2011

Uncalibrated radomes at co-located stations (III)

Agency	Station	Antenna	Radome	Removed	Reinstalled
BKG	LHAZ	ASH701941.B	SNOW	tbd.?	—
GA	YAR2	AOAD/M_T	JPLA	2012-05-23	2012-09-28
GSI	SYOG	AOAD/M_T	DOME	—	—
	TSKB	AOAD/M_T	DOME	2011-07-01	2011-08-30
	TSK2	(TRM29659.00)	(DOME)	2011-07-01	2011-08-30
LMV	ONSA	AOAD/M_B	OSOD	—	
NICT	KGNI	ASH701945C_M	SCIS	—	
	KSMV	ASH700936E	SCIS	—	—
NMA	NYA1	ASH701073.1	SNOW	—	—
	NYAL	AOAD/M_B	DOME		
WHU	WUHN	(ASH700936E)	ENCL		

→ 8 out of 22 stations participated; TSK2 antenna replaced by calibrated one

Uncalibrated radomes at co-located stations (IV)

preliminary results by P. Rebischung (2011; corrected for postseismic relaxation)

 \rightarrow local tie corrections will be available for several ITRF2013 stations

ĊGE

Calibration status of the IGS network

Status of 440 IGS stations in January 2013:

Absolute robot calibration (azimuthal corrections down to 0° elevation)	76.8%
Converted field calibration (purely elevation-dependent PCVs above 10°)	7.7%
Uncalibrated radome (or unmodeled antenna subtype)	15.5%

Examples for unmodeled antenna subtypes (initially undetected!):

JPSREGANT_DD_E JPSREGANT_SD_E

LEISR399_INT

JAVTRIANT

further undetected subtypes?

CGE

The JPSREGANT problem

- antenna set-up probably changed in 2000
- subtypes detected by Geo++ GmbH in 2002/03
- subtypes considered by IGS in 2012: coordinate corrections of up to \pm 20 mm in the vertical component [IGSMAIL-6662]

Quality of phase center calibrations (I)

Calibration institutions approved by the IGS:

Geo++ GmbH Univ. Hannover SenStadt Berlin Univ. Bonn NGS (GPS-only) Geo++ specifications (Wübbena et al., 2003, 2006):

- precision/standard deviation for L1/L2 PCVs: < 0.5 mm</p>
- repeatability (different place/robot): < 1 mm</p>

IGS requirements for new calibration institutions (since Newcastle 2010):

- <1 mm agreement with robot results above 10° elevation and</p>
- < 2 mm below 10° for azimuthal PCVs</p>

ĊGE

Quality of phase center calibrations (II)

Amplification of PCV uncertainties in the position domain:

- amplification by a factor of 3, if the ionosphere-free linear combination is applied
- further amplification depending on troposphere modeling, etc.
- PCV errors superimposed by **station-specific effects** like multipath
- Calibration institutions cannot meet the IGS requirements for every antenna type:
- near-field multipath of the calibration instrumentation is the dominant error source (Aerts et al., 2013)
- diversity of the antenna quality as regards the phase center stability

→ Absolute GNSS station positions cannot be determined with mm accuracy

Calibration differences for identical antennas (I)

Calibration differences for identical antennas (II)

Individual vs. type mean calibrations

- IERS Workshop, 21/22 May 2013, Paris
- EPN uses individual antenna calibrations, if available; IGS model igs08.atx restricted to type mean calibrations
- usually, differences between individual antennas of the same type are smaller than differences between calibration institutions
- however, individual calibrations would help to detect malfunctioning antennas and unreported changes of the set-up (cf. JPSREGANT problem)
- impossible to get individual calibrations for current and legacy IGS network

Position offsets induced by individual calibrations for 53 EPN stations (Baire et al., 2012)

Near- and far-field multipath dominates!?

Height differences between the baseline w.r.t. WTZA and the corresponding local tie (troposphere parameters estimated; Steigenberger et al., 2011)

CGE

IERS Workshop, 21/22 May 2013, Paris

14

Conclusions

- IERS Workshop, 21/22 May 2013, Paris
- Considerable **reduction of GNSS-specific biases** with adoption of absolute IGS antenna phase center models (igs05.atx, igs08.atx)
- 8 out of 22 **uncalibrated radomes temporarily removed** at co-located sites to get tie corrections for ITRF2013
- Fewer/smaller jumps in coordinate time series due to consideration of JPSREGANT subtypes
- IGS calibration institutions **do not agree on the 1 mm level** at the moment
- Accuracy of 1 mm for L1/L2 PCVs not sufficient to realize absolute station positions on the same level due to **amplification of the error by forming the ionosphere-free linear combination**
- Individual calibration ideal to check the proper functioning of an antenna, but difficult to implement on the IGS level
- Near- and far-field multipath are most likely the limiting error source

Thanks for your attention!

ZECK

SKE0

3

