Impact of non-linear station motions

Ralf Schmid, Mathis Bloßfeld, Detlef Angermann

Deutsches Geodätisches Forschungsinstitut (DGFI) München e-mail: angermann@dgfi.badw.de

Motivation

- Accuracy of space geodetic observations much higher than that of current reference frame realizations
- Current station parameterization (coordinates and linear velocities) can only cover secular station motions
- Neglected non-linear station motions are a major error source in current reference frame realizations

eferenzsystem

Non-linear station motions (1)

- Observed (GPS) vs. modeled (atmospheric and hydrological loading) weekly height variations
 - $\circ~$ atmospheric loading derived from NCEP
 - $\circ~$ hydrological loading from GLDAS
- Unmodeled effects (like atmospheric or hydrological loading) cause periodic signals in coordinate time series

Non-linear station motions (2)

Episodic motions due to snow accumulated on GPS antenna

Non-linear station motions (3)

Site displacement and non-linear post-seismic deformation

ĊGE

DFG Forschergrupp Referenzsysteme

Treatment of non-linear station motions

Geophysical modeling

- IAG/IERS JWG 1.2 "Modeling environmental loading effects for reference frame realizations
- Focus area of BKG within DFG Research Unit FOR 1503 "Space-time reference systems … "
- Sampling (e.g., epoch reference frames)
 - IAG/IERS JWG "Strategies for epoch reference frames"
 - DGFI research activities (see Bloßfeld et al., 2014)
- Extended parameterization of station motions
 - Focus area of DGFI within DFG Research Unit FOR 1503 "Space-time reference systems … "
 - This presentation

Overview of computation strategies

DFG Forschergruppe Referenzsysteme

Overview of computation strategies

Data and solution characteristics

- Data: 5 years of GPS data (2006.0 until 2011.0)
- More than 300 stations
- Estimated parameters: station coordinates, velocities and sine/cosine amplitudes (see below!), pole coordinates
- Datum realized via NNR/NNT/NNS conditions w.r.t. IGS08
- Different solution types:
 - daily/epoch solutions
 - multi-year solutions:
 - \circ zero amplitudes for all stations (standard solution)
 - \circ zero amplitudes for 3 datum stations (globally distributed)
 - non-zero amplitudes for all stations (requires dedicated datum conditions that are presently under progress!)
 - amplitudes not estimated for "poorly observed" stations

Magnitude of annual station signals

Referenzsysteme

10

Annual signal for GNSS station Kiruna, Sweden

CGE

DFG Forschergrup Referenzsysteme

Annual signal for GNSS station Tsukuba, Japan

Referenzsystem

Impact of seasonal signals on station velocities

Solution with estimated seasonal signals vs. standard solution

Station	Amplitude	Velocity difference [mm/yr]		
	[mm]	North	East	Up
TSKB, Japan	7.1	0.1	0.1	0.2
AMU2, Antarctica	8.6	1.2	0.1	3.3

CGE

DFG Forschergrupp Referenzsysteme

Impact of seasonal signals on pole coordinates

Pole coordinates from standard solution are affected by suppressed non-linear station variations (Bloßfeld et al., 2014)

Summary and outlook

- The estimation of seasonal station variations has been studied using 5 years of data of a global GPS network
- Estimated amplitudes for the horizontal components are mostly below 3 mm, but much larger for the height component
- The estimation of seasonal signals has an impact on other parameters (e.g., station velocities, pole coordinates)
- The estimation of seasonal signals is critical for short observation time spans and/or for stations with irregular behavior
- Next steps:
 - Implementation of datum conditions for seasonal signals
 - Check significance of estimated seasonal signals
 - Estimation of seasonal signals in the inter-technique combination
 - Comparisons at co-location sites
 - Study impact on ITRF results

Geodätische Woche, 7. Oktober 2014, Berlin

Back-up slides

Impact of seasonal signals on pole coordinates

Network orientation (x) \Leftrightarrow y pole

Network orientation (y) \Leftrightarrow x pole

Validation of multi-year solutions w.r.t. IGS08 (1)

18

DFG Forschergruppe Referenzsysteme

Validation of multi-year solutions w.r.t. IGS08 (2)

Referenzsysteme

19