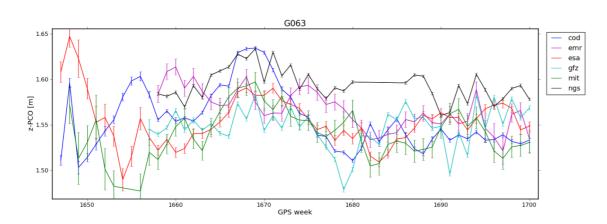
Splinter Meeting of the IGS Antenna Working Group

Ralf Schmid

Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, Germany e-mail: *schmid@dgfi.badw.de*



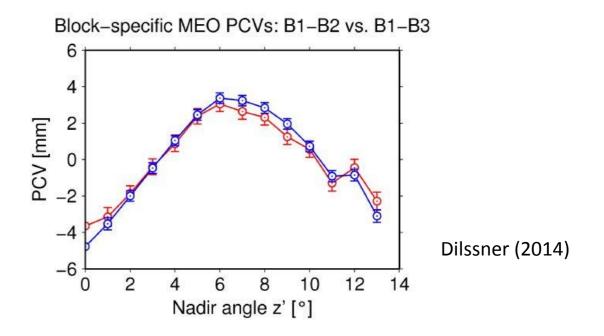
1. Satellite antenna issues

1.1 repro2/ITRF2013 implications

- reestimate z-offsets of latest satellites: G064, G065, G066, (G067), R743, R747, (R754)
- keep terrestrial IGS08 scale or reestimate all z-offsets in case ITRF2013 scale differs significantly from ITRF2008 scale?
- update of receiver antenna calibrations when switching to ITRF2013/IGS13? (e.g.: ASH701073.1 calibrations provided by the University of Hannover)

1. Satellite antenna issues

1.2 Combined processing of terrestrial and LEO data


- goals: IGS to provide independent terrestrial scale; consideration of azimuth-dependent PCVs
- requirements: reanalyzing the full history of IGS/LEO data to derive new satellite antenna PCVs by at least two ACs considering:
 - igs08.atx/igs13.atx receiver antenna calibrations
 - multiple GNSS (at least GPS and GLONASS)
 - nadir angles up to 17 deg
 - azimuth-dependence
- date: new set of satellite antenna corrections should be available before the start of repro3

1. Satellite antenna issues

1.3 Estimation of phase center corrections for new GNSS

- conventional phase center offset values available on the MGEX website
- cf. poster presentation by Dilssner et al.: *Estimation of satellite antenna phase center corrections for BeiDou*
- other initiatives?

2.1 Status of new calibration institutions

National Geodetic Survey (NGS):

- L2 tracking issue solved?
- status of the GLONASS calibration?

Geoscience Australia (GA):

- comparisons needed in order to be accepted as an IGS calibration institution
- any experience with robot calibrations for the BeiDou frequencies?

2.2 Chamber calibrations from Bonn for MGEX purposes

- University of Bonn provided chamber calibration sets for 15 different antenna/radome combinations including 18 frequencies
- W. Aerts and M. Moore provided comparison with igs08.atx for GPS and GLONASS frequencies of 13 antenna types: good agreement for 5, "fair" agreement for 6 and poor agreement for 2 antenna types
- in accordance with ANTEX 1.4, all 18 frequencies can only be added separately, even though some of them are identical (update of the ANTEX format needed)
- as existing igs08.atx calibrations cannot be changed, only shortterm possibility is to merge chamber (new frequencies) with robot calibrations (GPS/GLONASS)
- possible inconsistency could be removed with igs13.atx?

2.3 Strategies to compare phase center calibrations

- two common strategies to define the "datum" of phase center corrections (PCC) resulting in different comparison residuals:
 - PCC(zenith direction) == 0
 - mean(PCC) == 0
- unclear to which strategy the thresholds for "acceptable" PCC differences agreed upon in Newcastle refer
- datum-independent quality measures focusing on the shape of the PCC could be helpful
- status of the toolbox?

2.4 Campaign to compare calibrations with "ground truth"?

- several institutions generally interested to do comparisons: Royal Observatory of Belgium, Finnish Geodetic Institute, University of Luxembourg, others?
- organized comparison campaign desired?
- any antenna samples available that were already calibrated by multiple calibration institutions?
- besides coordinates also troposphere and clock parameters should be analyzed



8

3.1 MGEX-related issues

Identical frequencies for different GNSS

- e.g.: G01 = E01 = J01 = S01
- currently, calibration values have to be duplicated
- solution: allow further entries in START OF FREQUENCY section

START OF FREQUENCY

3.1 MGEX-related issues

Manufacturer-defined spacecraft body frames and attitude modes

• necessary to consider conventional phase center offsets etc.

Constellation		Attitude Mode	Compatibility with IGS Attitude Model
GLONASS-M/K		yaw-steering	Requires mapping (+x _{GLO} = -z _{IGS} , +y _{GLO} = +x _{IGS} , +z _{GLO} = -y _{IGS})
GIOVE-A/B		yaw-steering	Requires mapping (+x _{GIO} = -x _{IGS})
Galileo IOV		yaw-steering	Requires mapping (+x _{GAL} = -x _{IGS})
QZSS		yaw-steering	Requires mapping (+x _{QZSS} = -x _{IGS})
		orbit-normal	NO
BeiDou	MEO	yaw-steering	Yes*)
BeiDou	IGSO	?	?
BeiDou	GEO	orbit-normal (?)	NO
SBAS		orbit-normal (?)	NO

Montenbruck (2012)

3.2 RMS section

• ANTEX format description **not practicable**

Record indicating the start of an rms value section related to the specified	3X, A1, I2, 54X *
frequency. The section includes the rms values of the phase center eccentricities and of	
	value section related to the specified frequency. The section includes the rms values of

- as PCO and PCVs are intimately connected, separate RMS values make no sense
- only PCV RMS should be provided
- should it be allowed to provide RMS values for a subset of frequencies only? (Geo++ can currently provide GPS RMS, but no GLONASS RMS)
- reasonable to include RMS sections into the official IGS model?

3.3 Various issues (what is necessary and practicable?)

- consideration of individual GLONASS frequencies
- code calibrations for satellite and receiver antennas
- (receiver-dependent) carrier-to-noise patterns CN0
- near- and/or far-field effects?
- station-specific empirical biases?

4. CB antenna file issues

4.1 rcvr_ant.tab

- accepted as a standard by manufacturers; maintenance gets more and more time-consuming
- could data flow between calibration institutions and the CB be optimized?

4.2 antenna.gra

- definition of the north reference point (NRP) ready to be published
- compromise for JAVGRANT antennas necessary
- "call for photos" to replace NRP=UNK after publication
- antennas at IGS stations should **not** be touched in case the orientation was not in accordance with antenna.gra! (comment in the station log might be helpful)

5. Any other business

Further questions or comments?