DGFI part of project PN 5 Status report

Ralf Schmid, Mathis Bloßfeld, Detlef Angermann, Michael Gerstl

Deutsches Geodätisches Forschungsinstitut der TU München (DGFI-TUM) Munich, Germany e-mail: schmid@tum.de

1st phase: work packages and schedule

Work	1	st Proj	ect Yea	ar	2	nd Proj	ect Yea	ar	3 rd Project Year				
Packages	I	Ш	Ш	IV	I	П	Ш	IV	I	Ш	Ш	IV	
WP5300	Development of refined combination strategies (NEQ level)												
WP5310									Long-term comb.				
WP5320									Non-linear motions				
WP5330									Epoch combination				
WP5400	Homogeneously processed observation time series												
WP5410									Definit		nition		
WP5420									V		VL	.BI	
WP5430									SL		R		
WP5600		Com	putatio	on of lo	ng-term	ה (LRF) מ	and epo	och refe	rence f	rames ((ERF)		
WP5610									LR		RF		
WP5620									ER		RF		
WP5700				Ana	lysis an	d inter	oretatio	on of re	sults				
WP5700													

GPS height time series for Zwenigorod (RUS)

- very good agreement between estimated annual signal (green) and deformation from global geophysical fluid models (GGF, red)
- still reasonable to investigate seasonal signals?

BKG tool to plot impact of GGF: Zwenigorod (RUS)

amplitude of about 1 cm caused by hydrology

Annual height signal for Tsukuba (JPN)

- amplitude of Tsukuba comparable to amplitude of Zwenigorod
- significant reduction of RMS value

BKG tool to plot impact of GGF: Tsukuba (JPN)

• GGF only have an impact of 2-3 mm

DFG Forschergrupp Referenzsysteme

 regional or local effect at Tsukuba cannot be compensated by global models

Annual height signal for Kiruna (SWE)

- coordinate time series have to be carefully checked
- outliers can distort the estimation of seasonal amplitudes

Magnitude of annual station signals

Referenzsysteme

8

Impact of seasonal signals on station velocities

Solution with estimated seasonal signals vs. standard solution

Station	Amplitude	Velocity difference [mm/yr]					
	[mm]	North	East	Up			
TSKB, Japan	7.1	0.1	0.1	0.2			
AMU2, Antarctica	8.6	1.2	0.1	3.3			

New VLBI processing software DOGS-RI

- currently detailed comparisons between OCCAM and DOGS-RI (a priori values, partial derivatives, intermediate results, etc.)
- operational OCCAM processing could benefit from comparisons:
 - a priori troposphere gradients not up-to-date
 - a priori coordinates interchanged in case of jumps
 - interpolation of a priori EOP wrong in certain cases
- advantages of DOGS-RI:
 - consistent with IERS 2010 Conventions
 - (dX, dY) instead of ($d\psi$, $d\varepsilon$)
 - correct relativistic calculation of partial derivatives w.r.t. parameters
 - difference quotients replaced by time derivatives
 - common adjustment of multiple sessions possible
 - improved handling of station coordinates and jumps

VLBI reprocessing (1)

- reprocessing to include radio source coordinates
- "outdated" OCCAM version is still used to do the preprocessing: identification of clock jumps, check of the quality of the cable calibration, detection of outliers
- final processing applying DOGS-RI will be necessary using the OCCAM preprocessing options
- current status: consistent set of solutions from April 2008 until December 2014 available
- validation of the session solutions via the official IVS combination (rapid and quarterly solutions)

VLBI reprocessing (2)

Sessions successfully analyzed for the time span from April 2008 to December 2014:

Session type	#
APSG	11
CONT08	15
CONT11	15
CONT14	15
CRF	3
EUROPE	37
IVS-OHIG	19
IVS-R1	339
IVS-R4	340
IVS-R&D	44
IVS-T2	34
VLBA	40
Total	912

IVS rapid product (using R1/R4 sessions only)

DGFI

IVS quarterly solutions (using all 24 h sessions)

DFG Forschergruppe Referenzsysteme 14

IVS quarterly solutions (using all 24 h sessions)

unclear whether improved behavior as of 2009 is connected to reprocessing

Multi-year VLBI-only reference frame (1)

- accumulation of all R1 and R4 sessions between April 2008 and December 2014 (tbd.: other session types)
- normal equations (NEQs) contain: station coordinates, source coordinates, EOP (pole coordinates/rates, Δ UT/LOD, $d\psi/d\varepsilon$)
- introduction of station velocities and discontinuities
- stacking of station and source coordinates
- constraints: NNR/NNT w.r.t. selected set of stations, NNR w.r.t. all sources

Multi-year VLBI-only reference frame (2)

Validation via 14-parameter similarity transformation w.r.t. DTRF2008 (IVS-only):

- RMS of the transformation: 4.9 mm for coordinates, 0.6 mm/a for velocities
- significant scale bias (about 7 mm) and scale drift bias (about 0.7 mm/a) w.r.t. DTRF2008

VLBI-only frame: pole coordinates

- systematic effects (e.g., drifts) have to be analyzed
- order of magnitude of the WRMS values is comparable to the IVS input for DTRF2008

VLBI-only frame: annual station signals

mean annual height variation for Wettzell

mean annual height variation for Matera

2nd phase: work packages and schedule

Work	1	st Proj	ect Yea	ar	2	nd Proj	ect Yea	ar	3 rd Project Year				
Packages	I	II	Ш	IV	I	II	Ш	IV	I	Ш	Ш	IV	
WP5100			Hor	nogene	ous reprocessing of GNSS, SLR and VLBI								
WP5130													
WP5140										VI	BI		
WP5200	Multi-technique combined solutions for TRF+EOF									OP			
WP5220									Epoch reference			rames	
WP5230									Multi-year solutions				
WP5300		Stud	ly non-l	linear st	tation n	n motions based on four different methods							
WP5310									ERF				
WP5320									Seasonal signals			s	
WP5340		Comp	arison										
WP5400				Consist	ent est	imatio	n of TRF	, EOP a	nd CRF		-	-	
WP5410	V	LBI-only	/ solutio	on									
WP5420	Combined solution												
WP5440	Study impact and gain												

2nd phase: work packages and schedule

Work	1	st Proj	ect Yea	ır	2	nd Proj	ect Yea	ar	3 rd Project Year			
Packages	I	Ш	Ш	IV	I	П	Ш	IV	I	Ш	Ш	IV
WP5100			Hon	nogene	ous reprocessing of GNSS, SLR and VLBI							
WP5130												
WP5140										VI	BI	
WP5200			Ми	ılti-tech	tions fo	r TRF+E	OP					
WP5220									Epoch reference			ames
WP5230									Multi-year solutions			
WP5300	Study non-linear station motions based on four different								nt met	hods		
WP5310									ERF			
WP5320									Seasonal signals			S
WP5340		Comp	arison									
WP5400				Consist	ent est	imatior	n of TRF	, EOP a	nd CRF			
WP5410	VI	LBI-only	/ solutio	on								
WP5420	Combined solution											
WP5440	Stud	dy impa	ict and	gain								

2nd project phase

- DFG Research Unit FOR1503, 5/6 Febr. 2015, Hannover
- Project proposal:

"WP5100: [...] Compared to the first funding period, the time span is extended to cover **20 years (1994-2013)** in order to get reliable statements on the improvement of the reference frame when using geophysical fluid models or parameterized seasonal signals."

- only two instead of three project years were granted
- DGFI-TUM intends to reduce the time span for the analysis of space geodetic data to 10 years (2004-2013)

Summary

- good agreement between estimated annual station signals and deformation derived from global geophysical fluid models, if global loading phenomena dominate
- estimation of seasonal signals necessary to compensate local or regional effects
- short time series: problem to decorrelate station velocity and seasonal signals
- consistent VLBI time series available from April 2008 to December 2014
- accumulation of R1 and R4 sessions to multi-year reference frame successful; other session types tbd.
- annual signals for VLBI stations visible, but longer time series could be helpful

