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Abstract The satellite gravity mission GOCE mea-

sured the second-order derivatives of the Earth’s gravi-

tational potential with high accuracy. The GOCE data

enrich our gravity field knowledge especially at spatial
resolutions from 750km down to 80km. In this paper we

carry out regional gravity field analysis using radial lo-

calising basis functions that permit the combination of
different data types tailored to their accuracy and spec-

tral signal content. We formulate observation equations

for each individual GOCE gravity gradient as they are
distinctive reflections of the gravity field and contain

directional information. To optimally use the original

GOCE measurements, we derive the mathematical ex-

pressions in the gradiometer reference frame. The ex-
pressions and their implementation are validated for a

test area in Scandinavia by comparison with the global

gravity field model GOCO03s, which yields small dif-
ferences of less than ± 1 mE. The relative weighting of

the observations is determined by variance component

estimation. Moreover manually fixing the weights leads
to smaller residuals with respect to GOCO03s, which is

probably caused by systematic errors in the gradients.

We demonstrate the capabilities of our method through

a combination of the gradient data with terrestrial free-
air anomalies. At spatial resolutions down to 40km the

terrestrial data get much larger relative weights than

the GOCE data, which indicates the proper perfor-
mance of the combination method.
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1 Introduction

Equipped with a 3-axis gradiometer the satellite mis-
sion GOCE (Gravity field and steady-state Ocean Cir-

culation Explorer) (Rummel et al., 2002) observed all

second-order derivatives of the Earth’s gravitational po-
tential. The gravity gradient tensor contains the com-

plete curvature information of the local gravity field,

with the advantage over the 1D gravity field informa-
tion from GRACE (Gravity Recovery And Climate Ex-

periment) (Tapley et al., 2004) that it can be applied in

high-resolution gravity field determination (Pail et al.,

2011), but also contains directional information allow-
ing the gradients to be used for Earth interior research

and for geophysical exploration (Ebbing et al., 2013).

An advantage of regional over global gravity field anal-
ysis is that one can adapt to local data availability

and signal content. Well-established methods exist such

as least-squares collocation (Tscherning and Arabelos,
2011) or spherical splines (Eicker et al., 2007). We ap-

ply radial basis functions enabling a consistent spectral

combination of different observation types in order to

create regional gravity fields containing maximum de-
gree of information (Schmidt et al., 2007). The main

focus in this paper lies on setting up the observation

equations for the GOCE gradients in the gradiometer
reference frame (GRF), which was not done so far for

this method. Variance component estimation (VCE) of-

fers the possibility of combining all 6 GOCE gradients
in a flexible way: less accurate measurements can be

down-weighted or excluded.

The GOCE measurement technique and the data set

that is used are described in Section 2. The modelling
approach itself consists of analysis and synthesis pro-

cedures which are explained in detail in Section 3. In

Section 4 the results are presented and the relative
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Fig. 1 Extract of the frequency spectrum which is split into
resolution levels j : upper boundary corresponds to a maxi-
mum degree l spatial resolution r. Levels where GOCE has
its highest sensitivity are indicated in red (MBW).

weighting of the input data is discussed. We validated

the regional models with a global model. Furthermore
the modelling approach can be extended by combin-

ing GOCE observations with other observation types.

We present an example for the combination with high

resolution free-air anomalies.

2 Gravity gradient measurements from GOCE

We use the reprocessed release 2 of GOCE observa-

tions (level-2 products), available through the GOCE

Virtual On-line Archive1. Three pairs of accelerome-
ters measured the gradients in the Cartesian GRF with

its xyz axes pointing approximately along-track, cross-

track and in radial direction. The 3×3 gravity gradient
tensor is

Vab =



Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz


 (1)

with Vxy = Vyx, Vxz = Vzx, Vyz = Vzy, a, b ∈ {x, y, z}

and trace (Vab) = 0. Vxy and Vyz are less accurate than

the other components and a rotation of the GOCE ob-
servations would reduce the accuracy in the rotated

frame (Bouman, 2007; Fuchs and Bouman, 2011). We

use observations from 02/2010 until 05/2012. The gra-
dient errors are lowest in the measurement bandwidth

(MBW) between 5mHz and 100mHz, above and below

the MBW the errors increase rapidly. As the low part

of the frequency spectrum is less accurately observed,
it is removed by high-pass filtering with a cut-on fre-

quency at the lower boundary of the MBW and filled up

with model information from GOCO03s (Mayer-Gürr et
al., 2012) to obtain a complete data set. Furthermore

outliers and less accurate measurements have been re-

moved.

3 Regional gravity field modelling approach

Our regional gravity field modelling approach uses ra-

dial basis functions that act as low-pass filters. They

1 eo-virtual-archive1.esa.int/Index.html

are related to specific frequency bands denoted as res-

olution levels j (Fig. 1). The basis functions can be ex-
pressed in terms of Legendre polynomials Pl (cf. Eq.

(2)) developed up to a certain degree l = l′j . This

degree is related to the upper boundary of the cor-
responding level j with l′j = 2j − 1, representing the

cut-off frequency of the low-pass filter. The degree is

related to the spatial resolution at the Earth’s surface
as r ≈ 20000km/l′j . Higher levels allow to model higher

spatial resolutions contained in the gravity data.

In our approach we start with the choice of an appro-

priate level j = J + 1 related to the resolution r of the
input data. Next we set up the the basis functions φJ+1

of level J + 1 which remove the high frequencies of the

input data above degree l′J+1 (Schmidt et al., 2007). Fi-
nally we approximate gravitational potential differences

∆V between the potential V and an appropriate global

background model, in order to represent high frequency
deviations for specified regions. The series expansion in

terms of scaling functions φJ+1 and scaling coefficients

dJ,q reads

∆V (xp) =

NJ∑

q=1

dJ,q φJ+1 (x
p,xq)

=

NJ∑

q=1

l′J+1∑

l=0

2l + 1

4π
dJ,qΦJ+1,l

(
R

r

)l+1

Pl (cosψ)

(2)

for an observation point P (xp) with position vector

xp = r rp. Herein r = |xp| means the radial distance

and rp = (cos θ cosλ, cos θ sinλ, sin θ)
T
is the unit vec-

tor depending on spherical longitude λ and co-latitude

θ. The number NJ of unknown scaling coefficients dJ,q
(q = 1, . . . , NJ ) and thus the number of computation
points Q (xq) on which the functions φJ+1 are located

depends on the level J+1. In Eq. (2) ΦJ+1,l are the Leg-

endre coefficients, R is the mean Earth radius and ψ is

the spherical distance between point P and Q (Schmidt
et al., 2007). Eq. (2) is given in a Terrestrial Refer-

ence Frame (TRF) in spherical coordinates, whereas

the GOCE gravity gradients are measured in the Carte-
sian GRF. Consequently, the second-order derivatives

of Eq. (2) are needed and have to be transformed into

the GRF.

3.1 Adopted scaling functions

The 6 different space dependent GOCE gravity gradi-

ents in Eq. (1) are treated as 6 separate measurements

and thus K = 6 observation equations have to be for-
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mulated. The elements ∆Vab can be expressed by

∆Vab =
∂2∆V

∂a ∂b
=

NJ∑

q=1

dJ,q φJ+1,ab (x
p,xq) (3)

for level J+1 according to Eq. (2). The adopted scaling
functions φj,ab (x

p,xq) read for level j ≤ J + 1

φj,xx =

l′j∑

l=0

2l + 1

4π

(
R

r

)l+1

Φj,l

·

(
1

r
Pl (cosψ)

(
−
l + 1

r

)
+

1

r2
∂Pl (cosψ)

∂θ2

)
(4)

φj,xy =

l′j∑

l=0

2l + 1

4π

(
R

r

)l+1

Φj,l ·

(
1

r2 sin θ

∂Pl (cosψ)

∂λ∂θ

−
1

r2 sin2 θ

∂Pl (cosψ)

∂λ

)
(5)

φj,xz =

l′j∑

l=0

2l + 1

4π

(
R

r

)l+1

Φj,l

·

(
1

r2
∂Pl (cosψ)

∂θ
−

1

r

(
−
l + 1

r

)
∂Pl (cosψ)

∂θ

)
(6)

φj,yy =

l′j∑

l=0

2l + 1

4π

(
R

r

)l+1

Φj,l ·

(
1

r
Pl (cosψ)

(
−
l + 1

r

)

+
1

r2 tan θ

∂Pl (cosψ)

∂θ
+

1

r2 sin2 θ

∂Pl (cosψ)

∂λ2

)
(7)

φj,yz =

l′j∑

l=0

2l + 1

4π

(
R

r

)l+1

Φj,l ·

(
1

r2 sin θ

∂Pl (cosψ)

∂λ

−
1

r sin θ

(
−
l + 1

r

)
∂Pl (cosψ)

∂λ

)
(8)

φj,zz =

l′j∑

l=0

2l + 1

4π

(
R

r

)l+1

Φj,l

· Pl (cosψ)
(l + 1) (l + 2)

r2
. (9)

Similar expressions can be derived for other radial ba-
sis functions, as e.g. covariance functions (Tscherning,

1993) or spherical splines (Eicker et al., 2007).

3.2 Analysis

The reduced GOCE gradients are treated as separate

observations assuming that we have no error correla-
tions. The observation equation reads for one tensor el-

ement ∆Vab, observed at the observation points xp with

p ∈ {1, . . . , P} according to Eq. (3) and considering the
measurement error eab

∆Vab (x
p) + eab (x

p) = φφφTab (x
p)dJ . (10)

φφφab is the NJ × 1 vector of modified scaling functions

according to Eqs. (4) to (9). In the analysis step we
use the Shannon scaling function with the Legendre co-

efficients ΦSHA
J+1,l = 1, which is an ideal low-pass filter

up to degree l′J+1 (Schmidt et al., 2007). Rotating the
resulting expressions into GRF leads to the observa-

tion equations of the tensor in GRF. The NJ ×1 vector

dJ = [dJ,1, . . . , dJ,NJ
]
T

of scaling coefficients is then
estimated by VCE as will be briefly explained in the

following. We collect all measurements of a particular

gravity gradient, so that each observation group ∆vk

with k ∈ {1, . . . ,K} represents a P × 1 vector of the
measurements ∆Vab and φφφk represent the correspond-

ing P ×NJ matrices of scaling functions:




∆Vxx

∆Vxy

∆Vxz

∆Vyy

∆Vyz

∆Vzz



=




∆v1

∆v2

∆v3

∆v4

∆v5

∆v6



= ∆v and




φφφ1
φφφ2
φφφ3
φφφ4
φφφ5
φφφ6



= φφφ. (11)

For the combination of GOCE gradient observations

with further measurement techniques the vector ∆v

can be extended by other observation groups ∆vk with

k > K. The stochastic part is formulated as

D







∆v1

∆v2

∆v3

∆v4

∆v5

∆v6

µµµd







=




σ2
1P

−1
1 0 . . . 0

0 σ2
2P

−1
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
dΣd


 . (12)

D is the covariance matrix, Pk is the P × P weighting
matrix of the observation vector ∆vk. Note, the back-

ground model is introduced as additional observation

to avoid singularity problems. Referred to Schmidt et
al. (2007) the vector µµµd contains the expectation values

of the coefficients from the background model and Σd

is the corresponding NJ × NJ covariance matrix. The
variance components (VC) σ2

k and σ2
d are determined

iteratively according to Koch and Kusche (2002). With

the estimated VCs the estimated coefficients d̂J result

in

d̂J =

(
6∑

k=1

1

σ̂2
k

φφφTkPkφφφk +
1

σ̂2
d

Σ−1

d

)−1

·

(
6∑

k=1

1

σ̂2
k

φφφTkPk∆vk +
1

σ̂2
d

µµµd

)
. (13)

The estimated covariance matrix of the coefficients reads

Qdd =
(∑6

k=1
1

σ̂2
k

φφφTkPkφφφk + 1

σ̂2
d

Σ−1

d

)
−1

.
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Fig. 2 (a) Geographical location of the test area Scandinavia
(green bordered) with altitude encoding topography. (b) Dis-
tribution of the grid points (red dots).

3.3 Synthesis

For the synthesis step we set up the series expansions

(3) in terms of Blackman scaling functions φJ+1,ab, char-

acterized by the Legendre coefficients ΦBLA
J+1,l (Schmidt

et al., 2007). Compared with the Shannon kernel the

functions act also band-limiting as low-pass filters up

to degree l′J+1 according to Fig. 1, but with a smoother
declining behavior. Consequently, in the spatial domain

the oscillations and sidelobes of the Blackman functions

are much smaller. Thus erroneous edge effects are sig-

nificantly reduced. Inserting the estimated coefficients
d̂J (cf. Eq. (13)) into Eq. (3) and using Eqs. (4) to

(9) with ΦBLA
J+1,l yields the estimated gradients of the

reduced gravitational potential.

4 Numerical investigations

4.1 Study area and modelling parameters

We study the Scandinavian region with an extent of 2◦

to 25◦ in longitude and 54◦ to 78◦ in latitude, see Fig.

2(a). The frequency part where GOCE measures with

its highest sensitivity can be seen from Fig. 1. It is high-
lighted in red and indicates a spatial resolution down

to ∼ 80 km. Level j = 8 is the maximum level which

is completely located within the sensitivity domain of
GOCE, whereas the upper part of level 9 contains a

lot of noise so that only the low frequencies of j = 9

deliver significant information. For our numerical inves-
tigations we consequently use the modelling approach

up to level J + 1 = 8. The level depending computa-

tion points of the scaling functions can be seen in Fig.

2(b) (red dots). The computation area has a larger ex-
tent than the modelling area (green bordered) to di-

minish edge effects. The observation area containing

the GOCE satellite tracks has an extension in-between

both margins. Furthermore the data set is reduced by

the global background model GOCO03s up to maxi-
mum degree and order 250 following Eq. (3). We used

exactly the same model as for filling up the low fre-

quencies to be consistent. The resolution of GOCO03s
reaches nearly to the modelling resolution at level 8, so

that most of the signal is reduced and only small devia-

tions remain which are approximated in the estimation
process.

Inserting the reduced GOCE gradients in the obser-

vation equation (10), assuming that the measurement

errors are uncorrelated and have the same accuracies
within an observation group k, allows us to introduce

identity matrices for the weighting matrices Pk in Eq.

(12). As prior information we use the same model as
the background model (GOCO03s). Consequently we

assume that the NJ × 1 vector µµµd is equal to 0 and

the covariance matrix Σd corresponds to the identity
matrix.

4.2 Gradient grids

As output from the synthesis procedure we obtain ap-

proximation signals which can be expressed as any func-

tional of the gravitational potential (e.g. geoid undula-
tions N , gravity anomalies ∆g). Restoring the back-

ground model, subtracting the normal potential from

the reference ellipsoid WGS84 and computing the

second-order derivatives Vab lead to the gradients of the
disturbing potential Tab for all combinations of the xyz

Cartesian coordinates. Figure 3 shows the results ac-

cording to the xyz tensor arrangement in a local-north-
oriented frame with its axes pointing north-, west- and

upwards. The modelling height corresponds to the mean

GOCE orbit height of 270 km within this region. The
gradients of the disturbing potential show clearly differ-

ent structures depending on the different spatial direc-

tions. As expected, the radial zz component pointing

directly along the field line of the Earth’s gravitational
potential has the largest magnitudes between ± 0.5 E.

The sum of the diagonal elements should be zero ac-

cording to the Laplace condition trace (Tab) = 0. The
trace criteria gives values which are 3 orders of mag-

nitude smaller than the signals of the single compo-

nents. Considering the modelling accuracy, which de-
pends on edge effects, oscillations of the scaling func-

tions, smoothing and interpolation effects, the Laplace

condition is therefore fulfilled. The approximation sig-

nals without restoring the background model GOCO03s
vary between ±1mE containing additional signal to the

global model but also errors from the regional approach.
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Fig. 3 Gravity gradient grids of the second-order derivatives
of the disturbing potential modelled from GOCE gradient
measurements at 270 km height.

4.3 Analysis of VCE

Variance component estimation provides a flexible tool

for relative weighting of different observation groups by

combining them at the level of observation equations.
A large VC σ2

k means hereby a low relative weight of

the observation group ∆vk in Eq. (13). Table 1, col.

(a) lists the orders of magnitude of the iteratively esti-

mated VCs with reference to Vzz. The diagonal compo-
nent Vxx obtains the same weight as the radial pointing

Vzz. It has a smaller signal content, but also a twice

smaller noise level, so that similar weighting seems to
be appropriate. The less accurate components Vxy and

Vyz are down-weighted by 2 and 5 orders of magnitude,

respectively. Thus some information from Vxy is still
present in the solutions while the influence of Vyz is

negligible. The prior information is down-weighted by

2 orders of magnitude indicating that it contributes also

to the output grids. The down-weighting is justified in
the errors of the long wavelengths part of GOCO03s

which cannot be accounted for. Against the expecta-

tion that the 4 accurate GOCE gradients should have
comparable weights, Vxz gets a lower weight signifying

that this gradient component is less accurate than the

diagonal elements. We assume that this effect is specific
for the Scandinavian region, as studies in other regions

deliver similar VCs for the 4 components.

Vyy gets the same weight as the diagonal components

Vxx and Vzz, but as our test area is located near the
North pole we further have to deal with systematic er-

rors in this component (Bouman et al., 2011; Bouman

and Fuchs, 2012). In a second computation we thus

Table 1 Relative weighting of observations. Given are the
orders of magnitude of the related VCs σ2

k [–].

observation (a) est (b) fix (c) fix

GOCO03s 102 102 102

Vxx 1 1 1
Vxy 102 1013 108

Vxz 103 102 102

Vyy 1 105 105

Vyz 105 1013 108

Vzz 1 1 1
FA 10−2

manually fixed the relative weights (Table 1, col. (b)):
the VCs of Vxx and Vzz are adapted to the estimated

values, but Vyy is down-weighted by 5 orders of mag-

nitude. We assume a noise behaviour comparable with
that of Vyz obtained in the estimated case. Vxy and

Vyz are additionally down-weighted. Using those fixed

weights we apply least squares estimation within a
Gauss-Markov model. We compare the results from both

weighting strategies with the global GOCO03s model.

The mean standard deviation of the difference grids

decreases from 0.1 mE (for estimated VCs) down to
0.03 mE when setting a lower relative weight for Vyy
component. In our study area the differences decline

especially in the northern part at latitudes > 70◦. We
conclude that this might be due to the down-weighted

impact of Vyy and plan to investigate further studies.

4.4 Combination with free-air anomalies

Finer structures can be modelled by combining GOCE
gravity gradients with high-resolution data sets such as

free-air anomalies (FA). Figure 4 shows gravity anoma-

lies with variations between ± 100mGal at the Earth’s
surface obtained from a combination at level 9 (l′ =

511). Compared with GOCE, the FA data set (Olesen et

al., 2010a,b) contains detailed information from altime-

try, terrestrial and shipborne gravimetry. The FA data
therefore get a higher weight than the GOCE Vzz gra-

dients (2 orders of magnitude, determined with VCE).

Table 1, col. (c) shows the corresponding manually fixed
weights of all input data sets. The lower frequency do-

main of the solution is stabilised by the GOCE obser-

vations. For areas where high-frequency data are avail-
able, our regional gravity field modelling approach of-

fers the opportunity to combine data sets which are

sensitive to different frequency domains by VCs such,

that the data with the highest signal content up to a
specific level j contribute the most. In contrast to other

gravity analysis techniques weights can be introduced

individually for each resolution level.
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Fig. 4 Combination of GOCE gravity gradients and free-air
anomalies (FA) at level 9 (j′ = 511) using manually fixed
relative weights, Table 1 (c).

5 Summary

We derived the observation equations for GOCE grav-

ity gradient measurements in a regional gravity field
modelling approach using radial basis functions. Our

aim was to use the original GOCE gravity gradients

in the GRF to maintain the precision of the 4 accu-
rate components. The resulting gradient grids show dif-

ferent structures that give information of the Earth’s

gravitational potential depending on different spatial
directions. This advantage might further be used for

research on the Earth’s interior and for geophysical ex-

ploration (Ebbing et al., 2013). A validation of our re-

gional gradients grids with GOCO03s gives differences
that are smaller than ± 1 mE, which confirms that our

method works properly. We also found that the use of

VCs for the automatic estimation of the relative weights
of the different gradient components may not be op-

timal. Manually down-weighting the less accurate Vxy
and Vyz components as well as down-weighting the re-
gionally less accurate Vyy component, significantly re-

duces the differences to the global GOCO03s model.

Thus the optimal combination of the gradient data sets

requires further study, especially in the presence of sys-
tematic errors as may be the case for Vyy. Moreover

we demonstrated a combination of the GOCE gravity

gradients with high-resolution FA anomalies. The latter
enable to model more detailed structures at higher res-

olution levels. With this additional information radial

basis functions might offer the possibility to enrich and
supplement global gravity fields in specified regions.
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