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Abstract – Before the background of more accurate and denser gravity data it is worthwhile to

reassess geodetic isostasy. Nowadays, in geodesy isostatic models are primarily applied to gravity

reduction as needed by geoid and gravity modeling. The selection of the isostatic model is based

on four criteria: Isostatically reduced gravity anomalies should be (1) geophysically meaningful, (2)

easy to compute, (3) small, smooth and therefore easy to interpolate and (4) the indirect effect, i. e.

the change of potential and gravity due to isostatic mass replacement, should be small. In this study

we analyze free air anomalies as well as isostatic anomalies based on the Airy-Heiskanen model and

on the Pratt-Hayford model in regard to these criteria. Several facts suggest that free air anomalies

are the most realistic type of isostatic anomalies. They reflect the actual isostatic compensation, are

easy to compute and their indirect effect is negligibly small. However, they are not smooth due to

the fact that local topographic loads are only partially compensated. Smoothness can be achieved

by introducing either a mathematical low-pass filter or a hydrostatic isostatic model, such as the

Airy-Heiskanen or the Pratt-Hayford model. In both cases the resulting isostatically reduced gravity

anomalies fulfill all requirements. In order to improve the numerical efficiency, a new mathematical

description of the Pratt-Hayford model is formulated. The level of smoothing with respect to free

air anomalies is analyzed in global and regional contexts. It turns out that the mechanism of mass

compensation in regions of large topographic loads is better described by the Airy-Heiskanen model,

whereas the Pratt-Hayford model is more suitable for regions of deep ocean trenches.

Key words: Airy-Heiskanen model, free air gravity anomalies, isostatic gravity anomalies,

Pratt-Hayford model

1 Introduction

Isostasy describes the phenomenon of compensation of topographic loads. Gravity anomalies and

deflections of the vertical, as derived from topographic masses, are much larger than the correspond-

ing values based on measurements. More than 250 years ago this led to the hypothesis of isostatic

mass compensation, which was confirmed about 100 years later by field measurements (Heiskanen,

1950). Investigations of this theory belong to the interdisciplinary field of geodynamics, because

they combine geodetic, geophysical and geological observations and knowledge. A comprehensive

treatise on the development of isostasy and its state-of-the art is the monograph by Watts (2001).

In geophysics the concepts of isostasy are used to explain the mechanism of mass compensation
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and that of the flexure of the lithosphere under topographic loading. Isostasy is also the mechanism

underlying glacial isostatic adjustment, see e.g. Wolf (1993). It is also a key to an improved under-

standing of planetary evolution (Schubert et al., 2001; Watts, 2001). In geodesy isostatic models

are primarily applied to gravity reduction in the context of the solution of the Geodetic Boundary

Value Problem (GBVP), i. e. the determination of the gravity field at the Earth’s surface and in its

exterior as well as the determination of the geoid. The aim is to obtain smooth and representative

data, which can be easily interpolated. The selection of the isostatic model is thereby based on

four criteria: Isostatically reduced gravity anomalies should be (1) geophysically meaningful, (2)

easy to compute, (3) small, smooth and therefore easy to interpolate and (4) the indirect effect,

i. e. the change of potential and gravity due to isostatic mass replacement, should be small. These

four characteristics were discussed in the classical geodetic monograph by Heiskanen and Moritz

(1967). The fact that gravity data are getting more accurate and denser and numerical computations

more efficient makes it worthwhile to revisit ”geodetic isostasy” with these four criteria in mind.

Recent studies along this line are Rummel et al. (1988); Engels et al. (1995); Kaban et al. (1999);

Tsoulis (2001, 2004); Claessens (2003); Kuhn (2003); Heck and Wild (2005); Wild and Heck

(2005) as well as Wild-Pfeiffer (2007).

2 Isostatic models

The basic understanding is that the load of topographic masses requires some mechanism of

support or compensation. The two models commonly employed in geodesy are the Airy-Heiskanen

and the Pratt-Hayford model. They will be discussed below. As mentioned in Turcotte and

Schubert (1982) or in Watts (2001) a variety of actual geodynamic processes may be approximated

by them. The weakness of both models is that they assume local compensation: the topographic

load is compensated column-wise; hence the elastic flexural rigidity of the lithospheric plate is

ignored. An advantage is that simple mathematical models of isostasy can be formulated. For

instance, the Vening-Meinesz model of regional isostasy tries to avoid local compensation (e.g. Wolf,

1984; Moritz, 1990; Watts, 2001). Furthermore, it is known that only larger mountains are

compensated, while local topographic features with an extension of less than 100 km are supported

by the lithosphere underneath (Torge, 2003).

A gravimeter measures the gravitational attraction of the mass distribution. This implies that
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free air anomalies, whether computed at the geoid (Stokes) or the terrain (Molodenskii), are

the most realistic type of isostatic anomalies. This is the reason why free air anomalies are small

and produce only a small indirect effect. However, they are not very smooth due to the local

topographic features which are not locally compensated. Except for the lack of smoothness all of

the above-mentioned criteria are fulfilled. Smoothness can be attained by low-pass filtering of the

free air anomalies.

If the contribution of the topographic masses is subtracted from the measurements, Bouguer

gravity anomalies are obtained. They are smooth but rather large and anti-correlated with the large

topography features due to the neglect of mass compensation. Thus, interpolation is easy but the

actual mass distribution is modified significantly, resulting in a large indirect effect (criteria 4).

A logical step is therefore to introduce a model of isostatic compensation. The Airy-Heiskanen

model assumes the lighter crust (ρcr = 2.67 g cm−3) to float on the denser mantle (ρm =

3.27 g cm−3). The displaced mantle volume produces buoyancy, which results in a state of equilib-

rium. Mass surpluses of topography are compensated by what is known as roots of the low-density

crust whereas mass deficiencies of the oceans are compensated by anti-roots of the higher-density

mantle. The boundary between the Earth’s crust and mantle corresponds to the Mohorovičić-

discontinuity of seismology. Usually an average crustal thickness of T = 30 km is adopted. Other

values of average crustal thickness were tested as well, see e.g. Heiskanen (1950). A schematic view

of the Airy-Heiskanen model is displayed in Fig. 1. Crustal thickening underneath the Himalayas,

Andes and Alps suggest this model to apply. On the other hand, for deep ocean trenches the as-

sumptions of the Airy-Heiskanen model leads to unrealistical or even negative crustal thickness, see

Claessens (2003). As an alternative the Pratt-Hayford model may be used. It assumes equal

weight of each independent lithospheric mass column. Thus, hydrostatic equilibrium holds at a

constant depth of compensation D. Mass surpluses and deficiencies are compensated by a variable

density ρi of each column of the lithosphere. The reference or standard column is defined by a depth

D corresponding to an average thickness of the lithosphere of 100 km and by a density ρ0 corre-

sponding to an average lithospheric density of 2.915 g cm−3. For other assumptions, see Heiskanen

(1950). The model is shown in Fig. 2. With both the Airy-Heiskanen and the Pratt-Hayford models

all but the first criterion are largely met. Most of the above has already been discussed in the

literature, see e.g. Heiskanen and Moritz (1967) and Rummel et al. (1988). Kaban et al. (2004)

showed that realistical conclusions about the actual isostatic state of the lithosphere require detailed
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local studies and the use of data representative of the crustal structure and density distribution.

3 Computation of isostatically reduced gravity anomalies

As early as in the fifties and sixties it was concluded that the use of isostatic modeling was

important to obtain an accurate solution of the GBVP. However, numerical challenges were still

great at that time. This led to the development of efficient numerical models of isostasy, see e.g.

Heiskanen and Moritz (1967). Nowadays, it is mainly the vast amount of topographic data that

requires efficient algorithms. In the following, the numerical implementation of isostatic models will

be discussed.

Free air gravity anomalies are very simple to calculate. The basic formula is

∆gFAR = g + FAR1 + FAR2 − γ (1)

with g the measured gravity at some surface point, FAR1 and FAR2 the linear and quadratic free air

correction (Gruber, 2000) and γ the normal gravity at the corresponding foot point on the reference

ellipsoid. In geodesy an internationally adopted normal gravity field without geophysical significance

is employed for γ, while in geophysics an equilibrium figure is sometimes used (Nakiboglu, 1982).

The above formula holds for the Stokes and the Molodenskii type solution of the GBVP, although

with a different interpretation.

The computation of isostatic gravity anomalies of type Airy-Heiskanen is more compli-

cated. To improve numerical efficiency, first of all the difference in treatment of ocean and land areas

in the Airy-Heiskanen column model displayed of Fig. 1 must be converted into a uniform column

model (e.g. Rummel et al., 1988).

Approximate position of Fig. 1!

For this purpose the mass deficiency of the oceans due to the lower density of water (ρocean =

1.03 g cm−3) is replaced by an equivalent layer with crustal density. The resulting ocean depths are

denoted by ”equivalent-rock” topography h. They can be obtained by the following equation which

takes into account the convergence of the columns (Mladek, 2006):

h = −R +

(

ρoceanR3 + (ρcr − ρocean)(R − HW )3

ρcr

)
1

3

, (2)

where R = 6378137 m is the reference Earth radius and HW is the water depth. Now the condition

of mass equilibrium
∫ R+h

r=R
ρcrr

2dr =
∫ R−T

r=R−T−t
(ρm − ρcr)r

2dr can be applied equally for land and
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ocean columns. T = 30 km denotes the compensation depth and t the (anti-)root thickness. A

further benefit of this approach is that only one formula is needed for calculating the root as well as

the anti-root thickness:

t =
ρcr

ρm − ρcr

(

R

R − T

)2

h. (3)

Rummel et al. (1988) showed that the error of linear approximation remains below 1 %. After

introducing the uniform Airy-Heiskanen column model isostatic gravity anomalies can be determined

in four steps. In the following, all isostatic computations will be implemented in terms of global

spherical harmonic analysis and synthesis. Thereby, in order to avoid integration in the radial

direction, ”equivalent-rock” topographic heights are expanded into a Taylor series up to the third

power. The spherical harmonic coefficients of topographic heights are kept dimensionless by dividing

them by the Earth’s radius. For more details see Rummel et al. (1988) or Tsoulis (1999). The

resulting set of normalized dimensionless potential coefficients C
T

nm and S
T

nm of topography is

C
T

nm

S
T

nm







=
3

2n + 1
·

ρcr

ρearth

[{

hnmc

hnms

}

+
(n + 2)

2

{

h2nmc

h2nms

}

+
(n + 2)(n + 1)

6

{

h3nmc

h3nms

}]

(4)

with the mean Earth density ρearth = 5.52 g cm−3 and the linear, quadratic and cubic topographic

cosine (c) and sine (s) coefficients hnm, h2nm, h3nm of degree n and order m following from a series

expansion of the dimensionless linear, squared and cubic height functions h/R. From this set of

coefficients, the refined Bouguer Topographic Reduction (BTR) is computed by

A
T

m(θ)

B
T

m(θ)







=

N
∑

n=m

Pnm(cos θ)







−

GM
R2 (n + 1)C

T

nm

−

GM
R2 (n + 1)S

T

nm

(5)

and BTR(θ, λ) =
N

∑

m=0

A
T

m(θ) cosmλ + B
T

m(θ) sin mλ, (6)

where λ is the longitude and θ the colatitude of the integration point, GM is the product of the

gravitational constant and the mass of the Earth and Pnm(cos θ) are the fully normalized associated

Legendre polynomials. By adding this reduction to the free air anomalies according to Eq. 1 one

obtains Bouguer gravity anomalies. As explained before they are smooth, but highly anti-correlated

with terrain. They refer to an Earth without topography (geoid) but with mass compensation

embedded in the lithosphere. In case of the Airy-Heiskanen isostatic model of root thickness t and
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average crustal thickness T , the coefficients of mass compensation are

C
C

nm

S
C

nm







= −

3

2n + 1
·

ρcr

ρearth

[

(

R − T

R

)n {

hnmc

hnms

}

−

(n + 2)

2

ρcr

ρm − ρcr

(

R − T

R

)n−3 {

h2nmc

h2nms

}

+
(n + 2)(n + 1)

6

(

ρcr

ρm − ρcr

)2 (

R − T

R

)n−6 {

h3nmc

h3nms

}

]

. (7)

From this set of coefficients the Airy Heiskanen Correction (AHC) is obtained via

A
C

m(θ)

B
C

m(θ)







=

N
∑

n=m

Pnm(cos θ)







−

GM
R2 (n + 1)C

C

nm

−

GM
R2 (n + 1)S

C

nm

(8)

and AHC(θ, λ) =

N
∑

m=0

A
C

m(θ) cos mλ + B
C

m(θ) sin mλ. (9)

The resulting isostatic gravity anomalies are computed via

∆gAiry = g + FAR1 + FAR2 − γ + BTR + AHC + δg. (10)

The indirect effect due to the replacement of topography and topographic roots is small and given

by

δg =
2

R
(V T + V C) (11)

in terms of gravity perturbation. Here V T is the gravity potential derived from the topography and

V C that from the compensating masses. It is sometimes claimed that in the case of perfect isostatic

compensation the resulting gravitational attraction would be zero. The comparison of Eq. 4 with

Eq. 7 shows, however, that even in linear approximation this is only true if T = 0 km. In the actual

case the crustal layer of thickness T = 30 km acts as a filter damping the gravity contributions of

the balancing masses at depth. For increasing T the effect of compensation is getting smaller and

becomes zero for T = R.

Recently, an efficient method for the determination of isostatic gravity anomalies of type

Pratt-Hayford has been established. This approach is shown in Fig. 3 and explained in Mladek

(2006).

Approximate position of Fig. 2 and Fig. 3!

The condition of equilibrium of mass for each column is

∫ R−h

r=R−D

ρir
2dr =

∫ R

r=R−D

ρ0r
2dr. (12)

Here, D is the depth of compensation and ρ0 is the average density of the lithosphere. For ocean

areas the Pratt-Hayford model contains two unknowns: the ”equivalent-rock” topographic height h
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F. Göttl and R. Rummel, A Geodetic View on Isostatic Models 7

and the density ρi. Solving for the column density yields

ρi = ρ0

(

R3
− (R − D)3

(R − h)3 − (R − D)3

)

. (13)

In order to be able to treat ocean columns like land columns, the water part of the ocean column

with depth HW must be replaced by equivalent rock of height HW −h and density ρi, see Fig.3. This

leads to the condition
∫ R

r=R−HW

ρoceanr2dr =
∫ R−h

r=R−HW

ρir
2dr. By inserting Eq. 13 the solution for

h is found to be

h =

(

k

l

)
1

3

− R with l = ρocean

[

R3
− (R − HW )3

]

− ρ0

[

R3
− (R − D)3

]

(14)

and k = ρ0(R − HW )3
[

−R3 + (R − D)3
]

− ρocean(R − D)3
[

−R3 + (R − HW )3
]

. (15)

The remaining computations are straightforward. The normalized, dimensionless potential coeffi-

cients of the lithospheric columns of length D + h and density ρi are obtained by

Cnm

Snm

}

=
3

2n + 1
·

ρ0

ρearth

[{

hnmc

hnms

}

+
(n + 2)

2

{

h2nmc

h2nms

}

+
(n + 2)(n + 1)

6

{

h3nmc

h3nms

}]

+
3

(2n + 1)(n + 3)
·

ρ0

ρearth

[

1 −

(

R − D

R

)n+3
]

{

ρnmc

ρnms

}

. (16)

Here, the linear, quadratic and cubic topographic coefficients hnm, h2nm, h3nm follow from a series

expansion of the dimensionless linear, squared and cubic height functions h/R times the dimension-

less density function ρi/ρ0. The density function is obtained from Eq. 13. The coefficients ρnmc

and ρnms are derived from a direct spherical harmonic expansion of ρi/ρ0, for details see Mladek

(2006). With the coefficient set Cnm and Snm the lithospheric columns are removed. This procedure

is therefore called remove step (REM):

Am(θ)

Bm(θ)

}

=

N
∑

n=m

Pnm(cos θ)

{

−

GM
R2 (n + 1)Cnm

−

GM
R2 (n + 1)Snm

(17)

and REM(θ, λ) =

N
∑

m=0

Am(θ) cos mλ + Bm(θ) sin mλ. (18)

Afterwards, a homogeneous and spherical lithospheric shell is restored, represented by only one

spherical harmonic coefficient:

Cn=0,m=0 = −

ρ0

ρearth

R3
− (R − D)3

R3
, (19)

which leads to the gravitational potential of a spherical shell. This is called the restore step (RES):

RES(θ, λ) = −

GM

R2
Cn=0,m=0. (20)
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One ends up with isostatic gravity anomalies of type Pratt-Hayford:

∆gPratt = g + FAR1 + FAR2 − γ + REM + RES + δg. (21)

They refer to an Earth without topography and with a spherical and homogenous lithosphere of

100 km thickness. The indirect effect resulting from this change of mass distribution is small. It is

δg =
2

R
(V REM + V RES) (22)

in terms of a gravity perturbation. Here, V REM is the gravity potential derived from the heteroge-

neous lithosphere and V RES that from the homogenous lithosphere of constant thickness.

4 Signal size and smoothness of isostatic gravity anomalies

In the previous section it has been shown that efficient numerical algorithms can be constructed

for the isostatic models of Airy-Heiskanen and Pratt-Hayford. In this section the signal character-

istics and the level of smoothness of free air, Airy-Heiskanen and Pratt-Hayford gravity anomalies

are discussed.

Figures 4 show these three types of gravity anomaly based on the Earth Gravity Model 1996

(EGM96) up to degree and order 360 and the elevation model JPG95E. Free air anomalies exhibit

higher variability, especially in mountain and ocean trench areas, than do Airy-Heiskanen or Pratt-

Hayford isostatic anomalies. This is also verified by the root mean square values (RMS), which

amount to 27 mGal for ∆gFAR, 22 mGal for ∆gAiry and 24 mGal for ∆gPratt. If a Gaussian

filter with a smoothing radius of 50 km is applied to the free air anomalies, their RMS is reduced

to 22 mGal. This shows that smoothed free air anomalies do not show higher variability than

Airy-Heiskanen or Pratt-Hayford isostatic anomalies. Further, it can be concluded that the free

air anomalies are higher correlated with local topography, whereas isostatic anomalies are quite

independent of topography.

Approximate position of Fig. 4!

This can also be seen in the differences of free air anomalies and isostatic anomalies of type

Airy-Heiskanen and Pratt-Hayford respectively (Fig. 5), which display topographic patterns, such

as mountains and ocean ridges. Even though free air anomalies are isostatic anomalies too, these

differences are rather large; the RMS differences amount to 16 mGal for the isostatic approach of

Airy-Heiskanen and 26 mGal for the Pratt-Hayford model. Reasons could be that, neither of the
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two models is conforming to reality.

Approximate position of Fig. 5!

The level of smoothness of the three types of gravity anomaly can be checked by their correspond-

ing degree variances c2
n(∆gFAR), c2

n(∆gAiry) and c2
n(∆gPratt) (Fig. 6). Degree variances represent

the spectral power of global signals. One can see that isostatic anomalies of type Airy-Heiskanen

and Pratt-Hayford are smoother for higher degrees than are free air anomalies. Degree variances

of smoothed free air anomalies exhibit a high agreement with degree variances of Pratt-Hayford

anomalies up to degree 125.

Approximate position of Fig. 6!

As an indication of the level of smoothing we determine smoothing values per spherical harmonic

degree with

sn = 100 −

√

c2
n(∆gAiry/Pratt)

c2
n(∆gFAR)

· 100. (23)

They provide a measure of the percentage of smoothing per degree of the isostatic Airy-Heiskanen/Pratt-

Hayford relative to the free air anomalies, see Fig. 7. Up to degree 10 nearly no smoothing occurs.

For the range between degree 100 and 200 the two isostatic models show a similar smoothing level

of about 25 %. Outside this range the isostatic anomalies based on the Airy-Heiskanen model ex-

hibit 10 % higher smoothing values than the isostatic anomalies based on the Pratt-Hayford model.

Beyond degree 200 the level of smoothing decreases.

Approximate position of Fig. 7!

The models by Airy-Heiskanen and by Pratt-Hayford are now tested for typical tectonic settings.

The question under investigation is which of these two isostatic models yields smaller residuals when

compared to the free air anomalies. We select for our tests the following regions: Alps, Andes,

Himalayas, Mariana Trench, Puerto-Rico-Trench and Atacama Trench. The statistics, range of the

values, mean and RMS value are shown in Tab. 1. We conclude that smoothing is higher in regions

of large topographic variability, such as the Andes and the Himalayas. In these regions a smoothing

of around 39 % can be reached for both isostatic models. In the Alps only the Airy-Heiskanen model

achieves a smoothing of about 11 %. Thus, the Airy-Heiskanen model is superior for large mountain

chains. For deep ocean trenches, such as the Mariana and the Atacama Trenches, the Pratt-Hayford

model achieves a smoothing of around 41 %, whereas that of Airy-Heiskanen reaches only 31 %.

Therefore, the isostatic assumption of Pratt-Hayford seems to apply for deep ocean trenches. This

suggests the use of the Airy-Heiskanen model in continental regions and of the Pratt-Hayford model
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in oceanic regions, as recommended by Wild and Heck (2005). In order to optimize the individual

model results, one may vary the free parameters of the models: in case of Airy-Heiskanen the

compensation depth and in case of Pratt-Hayford the compensation depth and/or the density of the

normal column. Helpful suggestions are given in Rummel et al. (1988).

Approximate position of Tab. 1!

5 Conclusions

In this study four basic criteria for isostatic modeling in geodetic applications are tested: (1)

geophysically significance, (2) simplicity of computation, (3) case of interpolation and (4) smallness

of the indirect effect. Free air anomalies directly reflect the state of isostatic compensation. While

free air anomalies are relatively small and smooth on large and medium scales, they are rugged and

strongly correlated with local, uncompensated topography on short scales. They are easy to compute

and their indirect effect is negligibly small. For geoid determination smoothness is an important

requirement, because interpolation may be needed in case of regional under-sampling or data gaps.

One option to attain smoothness is low-pass filtering of free air anomalies (using e.g. a Gaussian filter

with optimized radius). The drawback of this is the loss of physical information. Smoothness can

be also achieved by using isostatic models, such as the Airy-Heiskanen or the Pratt-Hayford models.

They are based on hypotheses of mechanisms of local isostatic mass compensation. Small isostatic

anomalies indicate that the model choice is correct from a geophysical point of view. However, as

shown by Kaban et al. (2004), realistic conclusions about the actual state of isostatic mass balance

require local analysis and the use of complementary crustal and lithospheric data. Thus, we conclude

that the models of Airy-Heiskanen and Pratt-Hayford provide only an approximation of the state of

isostatic compensation. Both models fulfill, however, the geodetic criteria of simplicity, smoothness

and small indirect effect. It can be shown that an efficient numerical computation is possible for the

Pratt-Hayford approach, similar to the one widely used for the Airy-Heiskanen model. Numerical

studies show that the model of Airy-Heiskanen applies for mass compensation of major mountain

ranges, such as Himalayas, Andes and Alps, whereas the model of Pratt-Hayford fits better for deep

ocean trenches, such as Mariana, Puerto-Rico or Atacama., see also Claessens (2003). Globally,

isostatically reduced free air gravity anomalies based on the Airy-Heiskanen model are about 10 %

smoother than those based on the Pratt-Hayford model. Maximum smoothing (25 %) is thereby
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achieved for spatial scales between 100 km and 400 km. The models also suggest that small scale

topographic loads (smaller than 60 km for Airy-Heiskanen and 70 km for Pratt-Hayford) are no

longer compensated. This agrees well with the geophysical fact that small-scale loads are supported

by the strength of the lithosphere, see e.g. Watts (2001) and Torge (2003).
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Figure 1: Airy-Heiskanen model, with topography of height h, compensation depth T and root

thickness t.
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Figure 2: Pratt-Hayford model, with topography of height h, compensation depth D, average density

of the lithosphere ρ0 and variable density ρi.
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Figure 3: ”Equivalent-rock” topography, with topography of height h, compensation depth D and

water depth HW .
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Figure 4: Maps of a) free air anomaly, b) Airy-Heiskanen isostatic anomaly and c) Pratt-Hayford

isostatic anomaly.
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Figure 5: Maps of a) Airy-Heiskanen isostatic anomaly minus free air anomaly and b) Pratt-Hayford

isostatic anomaly minus free air anomaly.
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Figure 6: Degree RMS of free air anomaly (black, thick line), smoothed free air anomaly (black,

thin line), isostatic anomaly of type Airy-Heiskanen (dark grey) and Pratt-Hayford (light grey).
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Figure 7: Smoothing percentage per spherical harmonic degree of isostatic relative to free air anoma-

lies using the Airy-Heiskanen (dark grey) and the Pratt-Hayford model (light grey).
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Table 1: Range of the values, mean and RMS value of free air, Airy-Heiskanen and Pratt-Hayford

gravity anomalies for selected regions.

Geographical region ∆gFAR ∆gAiry ∆gPratt

Alps: θ = [40◦ 50◦]; λ = [0◦ 20◦]

min/max [mGal] -107/102 -126/82 -133/92

mean [mGal] 15 12 9

RMS [mGal] 27 24 29

Andes: θ = [85◦ 125◦]; λ = [275◦ 295◦]

min/max [mGal] -193/304 -125/180 -184/162

mean [mGal] 15 11 10

RMS [mGal] 52 31 32

Himalayas: θ = [50◦ 70◦]; λ = [70◦ 110◦]

min/max [mGal] -230/339 -182/343 -188/327

mean [mGal] -6 -16 -20

RMS [mGal] 54 34 33

Mariana T.: θ = [60◦ 80◦]; λ = [135◦ 155◦]

min/max [mGal] -300/292 -243/202 -137/130

mean [mGal] 7 8 14

RMS [mGal] 47 38 30

Puerto-Rico-T.: θ = [60◦ 80◦]; λ = [290◦ 310◦]

min/max [mGal] -330/182 -277/104 -221/62

mean [mGal] -27 -24 -16

RMS [mGal] 42 34 34

Atacama T.: θ = [100◦ 130◦]; λ = [280◦ 290◦]

min/max [mGal] -193/277 -111/183 -142/162

mean [mGal] 10 11 16

RMS [mGal] 61 35 33
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