1 bit Massive MIMO Transmitter

Markus Staudacher
markus.staudacher@tum.de

Motivation

- Massive MIMO provides significant advantages
 - High spectral efficiency
 - Relaxed scheduling
 - Spatial multiplexing - Diversity - Beamforming

Why no massive MIMO implementation yet [1,2]?

1. Cost
 - Each antenna requires own RF chain
2. Size
 - \(\lambda/2 \) distance between antennas
3. Power Consumption
 - Increases with number of RF chains

1 bit Massive MIMO

- Very low cost RF chain
- Can be added to boost existing systems

System Model

General Idea

As each antenna is connected to an RF chain, we aim to reduce the cost of the overall system by simplifying the RF chain. We only use one bit for the amplitude (0/1) and few bits (0-3) for additional phase information. In order to reliably transmit, we propose to modulate the symbol over the air, e.g., the channel coefficients add up to the desired symbol.

Example: 3 antennas, 3 RF chains

\[H = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.4 & 0.6 & 0.1 \\ 0.1 & 0.3 & 0.5 \end{bmatrix}, \quad u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \]

MSE averaged over multiple channel realizations and UEs for a different number of bits for the phase information (m) with the Rayleigh channel model

Simulation Results

- Behavior of the MSE for an increasing number of antennas
- No noise is assumed
- For 256 QAM the target is -20 dB

Suboptimal Algorithm

- Motivated by the knapsack problem
- Achieves close to exhaustive search results
- Best channel coefficients are chosen sequentially

Basic Algorithm

1. \(H = H/\sqrt{T} \)
2. \(u = u \)
3. for \(i = 1 : N \) do
4. \(\gamma = \text{argmin}_{j \in \{1 \ldots M\}} \| u - H(:, j) \|_2 \)
5. if \(\| u - H(:, j) \|_2 < \| u - H(:, \gamma) \|_2 \) then stop;
6. \(u = u - H(:, j) \)
7. end

Plug \(H \) into the basic algorithm

Algorithm with Phase

When phase is added, only a few changes have to be made:

- Create the row vector with all possible phase values \(\phi \)
- Compute \(H = \phi_\text{phi} \otimes H \), where \(\otimes \) denotes the Kronecker product
- Plug \(H \) into the basic algorithm

Combination with Full RF

- The WINNER 2 Urban Macro channel model is implemented with Quadriga [3]

WINNER Channel Settings

- BS height: 25 m
- BS array: ULA
- BS antenna distance: 3\(\lambda/2 \)
- UE distribution: Uniform in 200 m radius
- Center Frequency: 2.5 GHz

Combining with Full RF

- Minimize the distance to the desired symbol with the low complexity RFs
- Minimize the remaining error with the full RF chains by utilizing the least squares solution
- The antennas connected to full RF chains should be distributed throughout the array to avoid high correlation

10 UEs and 8 full RF

10 UEs

- Average MSE in dB

Simulation Results

- Number of transmit antennas

Knapsack and Exhaustive Search

- Number of transmit antennas

Results

- MSE goes down exponentially at first
- Linear decrease at some point depending on the number of UEs
- Phase information is important
- Large amount of antennas needed for multi user systems

References

[3] The WINNER 2 Urban Macro channel model is implemented with Quadriga [3].