
Total Energy Shaping for Underactuated Mechanical
Systems: Dissipation and Nonholonomic Constraints

Sergio Delgado Londoño

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Manfred Hajek
Prüfer der Dissertation: 1. Prof. Dr.-Ing. habil. Boris Lohmann

2. Prof. Dr. phil. Ravi N. Banavar,
Indian Institute of Technology Bombay, Mumbai, Indien

Die Dissertation wurde am 30.03.2016 bei der Technischen Universität München
eingereicht und durch die Fakultät für Maschinenwesen am 15.06.2016 angenommen.





To my family.





Abstract
This thesis deals with a new systematic design of energy shaping control techniques
for underactuated mechanical systems. Thereby, the focus is put on challenges arising
from the implementation to practical systems. The first part of the thesis is devoted
to dissipation in unactuated coordinates. The second part is devoted to nonholonomic
systems.

Kurzfassung
Diese Arbeit behandelt einen neuartigen systematischen Entwurf energiebasierter Re-
gler für unteraktuierte mechanische Systeme. Insbesondere werden Aspekte der prak-
tischen Implementierung berücksichtigt. Der erste Teil der Arbeit befasst sich mit
Dämpfung in unaktuierten Koordinaten. Der zweite Teil behandelt nichholonome Sys-
teme.
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Glossary

Notation

By convention, scalars are denoted by lower and upper case letters in italic type. Vectors
are written in lower case letters, in upright boldface type; matrices in upper case letters,
in upright boldface type. Sets and manifolds are denoted by upper case letters in
calligraphic or blackboard type.

α, b, Π(·), f(·) Scalars/ scalar-valued functions

ξ, x, ν(·), f(·) Vectors/ vector-valued functions

R, Σ, J(·), M(·) Matrices/ matrix-valued functions

R, Sn, D, M, X Sets, manifolds

According to the standard convention for partial derivatives, the Jacobian is written
as ∂f

∂x , and, for a scalar function f(x), it represents the row vector of first-order partial
derivatives. The ∇-symbol is used to denote the gradient (column vector of first-order
partial derivatives) of a scalar function f(x). The Hessian—or second-order derivative—
of a function f(x) with respect to its argument x is represented by ∇2

xf . The (element-
wise) derivative of a matrix function A(x) with respect to xi is denoted by ∂xi

A. If
obvious from the context, arguments will be dropped for simplicity.

Mathematical accents, subscripts, and superscripts

˙(·) First-order time derivative of the scalar, vector, or matrix (·)
(̈·) Second-order time derivative of the scalar or vector (·)
(·)T Transpose of the vector or matrix (·)
(·)i i-th component of a vector: xi is i-th component of x

(·)ij Entry of the matrix (·) in row i and column j

(·)−1 Inverse of the quadratic matrix (·)
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(·)0 Initial value of the scalar or vector (·)
(·)∗ (Desired) equilibrium point

(·)∗ Value of the matrix function (·) at the desired equilibrium point:
A∗ = A(x∗)

(̂·) Reference value of the state/configuration/velocity (·)
(·)e State/configuration/velocity error (·)e = (·)− (̂·)
(·)d Desired (closed-loop) matrix or scalar function (·) in IDA-PBC

(·)c Desired (closed-loop) matrix or scalar function (·) in CL

(·)⊥ Full rank left annihilator of the matrix or vector (·)

List of frequently used symbols and operators

R Set of real numbers

R+
0 Set of non-negative real numbers

R+ Set of positive real numbers

Rn Set of real vectors with n components

Rn×m Set of real n×m matrices

Sn n-dimensional unit sphere

Q Configuration space (manifold)

QR Reduced (unconstrained) configuration manifold

QC Subset of the configuration manifold (constrained)

D Constrained distribution

0 Column vector or matrix with all elements equal to zero

I Identity matrix

rank(A) Rank of the matrix (function) A

sym(A) Symmetric part of the matrix (function) A

A > (<) 0 The symmetric matrix A is positive (negative) definite

A ≥ (≤) 0 The symmetric matrix A is positive (negative) semidefinite

V > (<) 0 The scalar function V is positive (negative) definite

V ≥ (≤) 0 The scalar function V is positive (negative) semidefinite



xv

|x| Absolute value of the scalar x

‖x‖ Euclidean norm of the vector x

[fi, fj] Lie bracket of the vector fields fi and fj
diag(A,...,Z) Block diagonal matrix with the square matrix blocks A, . . . ,Z

col(x,y) Stacked column vector of the vectors x and y, col(x,y) = [xT yT]T

Λ(A) Set of eigenvalues of the square matrix A

Acronyms

CL (Method of) Controlled Lagrangians

DA Domain of Attraction

DC Dissipation Condition

DE Dynamical Equilibrium

IDA Interconnection and Damping Assignment

IP Inverted Pendulum (on a cart)

ISS Input-to-State Stable/Stability

IWP Inertia Wheel Pendulum

LLDA Local Linear Dynamics Assignment

LMI Linear Matrix Inequality

LQR Linear Quadratic Regulator

LTI Linear Time-Invariant

ODE Ordinary Differential Equation

PBC Passivity-Based Control

PDE Partial Differential Equation

PFL Partial Feedback Linearization

pH port-Hamiltonian

PVFC Passive Velocity Field Control

WIP Wheeled Inverted Pendulum
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1 Introduction

Since the emergence of control theory in the last century, a lot of effort has been put into
the integration of feedback and feedforward control into mechanical systems to develop
manipulators that accurately perform a unique task over and over again. To guarantee
the required precision and to eliminate possible disturbances that might affect the
performance of the machine, mechanical systems have been built remarkably rigid, and
strong and stiff actuators have been employed [141]. That is, for a long time, researchers
put the focus on stiff fully actuated solutions. While these systems are comparatively
straightforward to control, as they are equipped with motors and sensors at every joint,
they lack the efficiency and the speed that underactuated mechanical systems are likely
to provide. As fully actuated systems are forced to follow a desired motion, considerable
joint torque is required to cancel out the natural dynamics of the machine. For instance,
as of today, a biped robot uses roughly 20 times more energy than a human to walk
[202].
For that reason, people have started to carefully reevaluate the objective of control

for mechanical systems, dismissing the paradigm of using feedback to cancel out their
natural motion, and focusing on exploiting the plant’s intrinsic dynamics to potentially
achieve faster and more efficient mechanisms [202].
In a formal way, this trend has lead to a deliberate study of underactuated mechan-

ical systems—systems with more degrees of freedom than actuators. Underactuated
systems emerge in different contexts:
Dynamics of the system. Drones (flying robots), underwater vehicles, and other
systems that locomote like walking machines are intrinsically underactuated. In partic-
ular, animal and human locomotion relies on underactuation to achieve more efficient
and faster dynamics.
Design. Mainly to reduce costs, weight and space, for instance, in aerospace appli-
cations (e. g. satellite with two thrusters).
Elasticity. When joint (or link) elasticity plays a major role, the rigid model has
to be augmented by its elastic properties [7]. Apart from being more efficient and less
costly, light and flexible robot manipulators are desirable, as they are intrinsically safe
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for humans in future human-machine collaborations.
Actuator failure. Fully actuated systems become underactuated if one of the actu-
ator fails. The analysis of underactuated systems is fundamental to study robustness
to actuator failure.
The control of underactuated systems is challenging, since not all degrees of freedom
can be independently controlled at every instant in time [196]. Hence, underactuated
systems cannot be commanded to follow arbitrary trajectories. To control this class of
systems, it is necessary to develop control algorithms that exploit the system’s complex
potential and inertial couplings. In the last two decades, energy shaping has played a
central role in this development [188].

The idea of energy shaping emerges from the notion of viewing dynamical systems as
"energy-transformation devices" [155]. The control objective can then be understood as
shaping the energy, such that this new virtual energy—according to which the closed-
loop system behaves—has a unique minimum at the desired equilibrium point, and
changing the way this new energy is interchanged and dissipated to achieve the desired
dynamics.

Example 1.0.1 (Total energy shaping). To illustrate total energy shaping for mechanical
systems, let us consider the simple two degree of freedom mechanical system from
Figure 1.1 (left), whose dynamics are given by

Mẍ = Gu−∇xV, (1.1)

with constant inertia matrix M =
[
m1 0
0 m2

]
, potential energy V (x) = 1

2 k(x2 − x1)2, and
input matrix G=[ 1

0 ].

What does it mean to shape the potential energy through feedback? The idea is
to create a virtual potential field Vvir(x), such that the resulting closed-loop potential
energy Vtot(x)=Vvir(x)+V (x) has desired properties (for instance, an isolated minimum
at the desired equilibrium x∗). We are, however, not free to choose the function Vvir(x).

u

x1x1 x2x2

kk
c

d

m1m1 m2m2

Figure 1.1: Potential energy shaping.
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As the system is underactuated, the function Vvir(x) has to satisfy

G⊥∇xVvir(x) = 0,

which means that the forces arising from the virtual potential Vvir(x) lie in the image of
the input matrix—G is the input matrix, and G⊥ its left annihilator, i. e., G⊥G = 0—
and can be reproduced by the input. In addition to the creation of a new potential,
damping is injected for asymptotic stability. Figure 1.1 (right) illustrates the situation.
The structure of the system suggests that it is only possible to directly add potential
and damping forces to the actuated mass. However, additional virtual dynamic cou-
plings between the bodies can be generated by shaping the kinetic energy. While less
interesting for fully actuated systems, this technique is widely used for underatcuated
systems for stabilization and performance improvement.

The outstanding benefit of energy shaping is the physical nature of the approach.
The closed-loop system is motivated by the physical properties of mechanical systems,
which, in turn, facilitates the controller parametrization. One can hardly overestimate
the simplicity that this physical insight is likely to provide [188].
This thesis addresses two practical problems in the implementation of energy shap-

ing to underactuated mechanical systems, which are covered in Part II and Part III.
Part II is devoted to the applicability of total energy shaping to systems with physical
dissipation in unactuated coordinates. Dissipation is often neglected for mathematical
elegance and simplicity. However, it has been shown that damping may impede the
passivation of the closed-loop system via energy shaping [74]. How to apply energy
shaping in the presence of physical damping nonetheless is the topic of Part II.
Part III is concerned with the application of energy shaping for the stabilization and

tracking of underactuated wheeled robots. Manned vehicles, and more recently, wheeled
robots and autonomous systems bring many benefits to humans in terms of transporta-
tion and human assistance, as working machines, and for leisure and entertainment.
While other forms of ground-based locomotion, like walking machines, are still ineffi-
cient and require complex control structures, the wheeled locomotion achieves a better
performance in terms of energy consumption and speed in even surfaces. In particular,
the wheeled inverted pendulum (WIP) has been widely studied for a series of novel
applications [128]. For instance, the novel Electric Networked Vehicle, En-V, has been
developed to address the upcoming challenges of urban mobility [204]. Wheeled mobile
robots and vehicles are designed to move from one place to another. In the absence of
a pilot in a futuristic scenario, automatic control accounts for the navigation.
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1.1 Literature review

The field of energy shaping for stabilization and tracking of both holonomic and non-
holonomic systems is evolving at a fast pace. Therefore, it is (probably) impossible
to give a complete and comprehensive overview. Nonetheless, to put our work in the
right context, in the following we give a short review of the advances in related fields
during the last years, and present the state of the art. According to the main contri-
butions of our work, this section focuses on total energy shaping control methods for
holonomic and nonholonomic underactuated systems, dissipation related challenges in
passivity-based control, and trajectory tracking and path following control using energy
arguments.

1.1.1 Total energy shaping for mechanical systems

Energy shaping methods are strongly linked with passivity—a property of dynamical
systems that proves to be useful for their stability and robustness analysis. As the name
suggests, the basic idea is to shape the total energy—consisting of potential and kinetic
energy—through feedback. By doing so, these methods provide a closed-loop system
that still has mechanical structure, and for which both the specific shape of the energy
and the way the energy is interchanged and dissipated within the system’s boundaries
characterize the behavior. Shaping the energy such that it is bounded from below and
injecting damping such that the (closed-loop) energy gets dissipated, ensures passivity
of the closed-loop system. There is, therefore, a strong link between passivity-based
control (PBC) and total energy shaping [153].
The idea of energy shaping dates back to 1981, the year when Arimoto and Takegaki

first presented the idea of shaping the potential energy and adding damping for asymp-
totic tracking of fully actuated manipulators in their well-known paper [11]. If the
system’s energy is shaped such that it has an isolated minimum at the desired equi-
librium, then it can be used as a Lyapunov function for the closed-loop system. The
approach provides in this way a unified framework for the control design and stability
analysis of a variety of control systems. The famous PD controller for robotic ma-
nipulators (cf. [141, 189]) is a classic example of potential shaping. The proportional
(P) gain comprises the virtual forces stemming from the shaped potential energy, the
derivative (D) gain constitutes the injected damping to provide asymptotic stability.
Potential shaping was put in a geometric framework in [180] for Hamiltonian systems,
and has been further developed for diverse applications including the control of flexible
joint robots [6, 7], satellite attitude stabilization [19], or attitude control of a quadrotor
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helicopter with saturating inputs [64], among many others.
While potential energy shaping (plus damping injection) is enough to stabilize fully

actuated mechanical systems, also shaping the kinetic energy might be necessary for
the stabilization of some underactuated mechanical systems, or to improve transient
performance. Over the last two decades, mainly three approaches to shape both the
potential and the kinetic energy simultaneously have been developed: Interconnection
and damping assignment passivity-based control (IDA-PBC), Hamiltonian in nature,
was first developed for physical (not necessarily mechanical) systems by the beginning of
the 21st century [151, 155, 156]. Viewing dynamical systems as "energy-transformation
devices" [155], one attempts not only to alter the system’s energy, but also to change
the way the energy gets transformed and dissipated within the system’s boundaries.
IDA was soon developed for mechanical systems, for which the energy of the closed-
loop system is restricted to be the sum of kinetic and potential energy [5, 158]. The
Lagrangian counterpart to IDA for mechanical systems is called the method of Con-
trolled Lagrangians (CL). CL in its more general form aims at rendering the closed-loop
system mechanical (with desired controlled Lagrangian). Generalized gyroscopic forces
are additionally introduced as tuning parameters, damping forces for asymptotic sta-
bility. Its roots date back to 1992, when Bloch et al. developed stabilizing feedback
controllers that artificially altered the mass matrix of rigid bodies, thus, shaping their
kinetic energy [26]. This concept was further developed in a series of conference pa-
pers [28, 29, 31], and finally formalized in [32]. Originally, the idea was to shape the
kinetic energy of underactuated mechanical systems with symmetry1. The symmetry
condition was relaxed and potential energy shaping was allowed in [25, 30]. The ad-
dition of generalized gyroscopic forces finally lead to its most general form, which has
been proven to be equivalent to IDA for mechanical systems [22, 47]. Despite po-
tential shaping being significantly more popular, kinetic—and specially total energy
shaping approaches—have also found a place in the literature and practical applica-
tions, such as the speed regulation of bipedal walking robots [92], smooth trajectory
design for a formation of mobile robots [20], and stabilization of underactuated me-
chanical systems [2, 151]. Less popular, but in essence an energy shaping strategy for
port-Hamiltonian systems as well, is another method that relies on time-varying gen-
eralized canonical transformations—which preserve the Hamiltonian structure of the
closed-loop system—to stabilize mechanical systems [68].
The adaptation of energy shaping to constrained systems came with the work of

1A mechanical system is said to exhibit a symmetry if the Lagrangian is independent from a config-
uration variable. The corresponding variable is known as cyclic variable.
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Maschke and van der Schaft on the Hamiltonian formulation of nonholonomic systems
[185], and their stabilization via potential shaping [134]. As nonholonomic systems
are not smoothly stabilizable at a point, for they fail to satisfy Brockett’s necessary
condition [14], the approach results in the asymptotic stabilization of an invariant set
in the state-space. In [21], Blankenstein gives a complete overview of the extension
of IDA-PBC to nonholonomic systems. Concerning the Lagrangian framework, an
energy-momentum-based technique was developed for the stabilization of constrained
systems in [33]. The relation to CL is assumed, but not yet completely understood. The
canonical transformations have also been modified for the stabilization of constrained
systems [69]. Worth to mention is the work of Fujimoto et al. [66], in which the authors
assign non-smooth potential functions for the asymptotic stabilization of fully actuated
nonholonomic systems.
For fully actuated systems, energy shaping represents a physically motivated, and

intuitive approach, which not only guarantees passivity and stability of the closed-
loop system, but has also proven to improve robustness [155]. When dealing with
underactuated systems (holonomic and nonholonomic), however, the applicability of
energy-shaping is restricted by the solution of nonlinear PDEs, the so-called match-
ing equations. Since not every degree of freedom can be controlled independently,
when matching the system’s dynamics with the desired closed-loop dynamics, some
conditions—the matching equations2—have to be satisfied independent from the con-
trol input. The shaping of the potential energy is restricted to the solution of a linear
PDE with state dependent coefficients. For kinetic energy shaping, the solution of a
nonlinear PDE is necessary.
Despite of large amounts of research, finding a solution for the matching equations is

still a very challenging task. Nonetheless, there have been some remarkable advances
towards their analytical solution, such as the so-called λ-method—a method used to
transform the kinetic energy matching equation into a set of linear PDEs—presented by
Auckly and Kapitanski in [15, 16]. For a class of mechanical systems, it is even possible
to transform the PDE for the kinetic energy into an ODE as shown in [209]. Viola et al.
present in [206] a way of simplifying the projected matching equations via coordinate
transformations in the momenta. More recently, the trend goes towards manipulating
the equations in order not to require the solution of PDEs. In [4], an approach is
pursued to obviate the solution of PDEs for general input-affine systems by designing
an approximating integral together with a dynamic extension to replace the PDEs with

2The term matching equations is sometimes used for the entire matching problem. The conditions
that are independent from control are then referred to as projected matching equations.
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algebraic inequalities. In [58], the structure-preserving requirement for the closed-loop
system to be of mechanical structure is obviated. The authors then present a method
to shape the total energy of a class of mechanical systems without solving PDEs. In
general, these existing methods apply only for a limited number of systems, for very
strong assumptions are made. Therefore, finding solutions to the PDEs remains the
main obstacle for the wider application of total energy shaping methods. Although it is
possible to formulate the matching problem in terms of algebraic equations by fixing the
closed-loop energy, this approach has proven difficult to apply [151]. Some approaches
exist regarding the algebraic solution in IDA-PBC for general port-Hamiltonian systems
(cf. [148]), but to the best of our knowledge, no algebraic solution has been presented
for underactuated mechanical systems.
Existing total energy shaping methods also lack transparency regarding the controller

parametrization. Despite the approach being physically motivated, the closed-loop sys-
tem does not always behave as intuitively expected: As shown in [108] (Example 4.2),
the (virtual) reduction of the inertia parameters of an electrical machine via energy
shaping results, counterintuitively, in slower transient dynamics. On the other hand,
although shaping the energy stabilizes underactuated mechanical systems, simulations
often show undesired oscillating and slow transient dynamics [1, 167, 173]. Yet, trans-
parency with respect to the parameter tuning can be achieved via local linear dynamics
assignment (LLDA), a method that specifies the eigenvalues of the linearized closed-
loop system to fix the controller parameters [110]. However, it is not always possible
to fix all eigenvalues as desired, which results in the aforementioned strong oscillations
and slow convergence.
Finally, systems with a stabilizable linearization cannot always be rendered passive

with a storage function that is minimal at the desired equilibrium via IDA, CL, or
canonical transformations. In particular, physical dissipation in unactuated desgrees of
freedom plays a critical role in their applicability.

1.1.2 Dissipation in passivity-based control

Against the intuition, energy dissipation does not always enhance stability. It has been
known for over one-hundred years that the combination of gyroscopic and dissipation
forces has unexpected effects on the stability of mechanical systems (cf. theorems of
Thompson and Tait [135]). In [221], Ziegler presented the counterintuitive behavior
of systems that exhibit stable equilibria (or steady motions) when modeled without
friction, but, by introducing small damping, they get destabilized. This is known as
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Ziegler’s paradox. Since their discovery, dissipation-induced instabilities have awakened
the attention of engineers and mathematicians. In their excellent survey article [115],
Krechetnikov and Marsden describe the phenomenon of dissipation-induced instabilities
with several examples. For instance, the particular behavior of the Tippe-Top can only
be fully described if friction is considered. As shown in [37], the Tippe-Top’s inversion
is a classic example of a dissipation-induced instability, where the static equilibrium
gets destabilized by the effect of the dry friction once the top starts to spin.
The importance of dissipation in mechanical control systems has lead researchers to

study the effect of physical damping in the application of energy shaping approaches.
Most of the work deals with the effect of damping in actuated coordinates, where the
dissipation is large compared to the one in unactuated coordinates. Having this damp-
ing under control is, therefore, crucial for the performance of mechanical systems. In
particular, the studies include the stick-slip effect, which is likely to cause an undesired
limit cycle behavior around the desired equilibrium point [43]. For the energy-based
modeling and control of dissipation forces in actuated coordinates, the reader is referred
to [43, 107, 178].
Soon after the introduction of total energy shaping control methods, researchers began

to study dissipation-related issues for underactuated systems. In [73], Gomez-Estern
showed the importance of physical damping for the performance of passivity-based
control laws. Incidentally, a paradoxical destabilizing effect of the dissipation forces
might also occur when the kinetic energy of an underactuated mechanical system is
altered through feedback, since damping terms do not necessarily remain dissipative
with respect to the closed-loop energy function.
If this phenomenon occurs, and physical dissipation in unactuated coordinates is

considered, the closed-loop damping matrix becomes indefinite, which impedes the pas-
sivation of the mechanical system through feedback. Thus, the implementation of an
IDA-PBC (or CL) controller is hampered by physical dissipation in unactuated de-
grees of freedom [74]. The so-called dissipation condition (DC) determines if required
definiteness properties for the closed-loop system can be fulfilled in the presence of dis-
sipation or not. Yet, it is well-known that no stabilizing energy-based controller exists
that fulfills the requirements of the DC for a series of mechanical systems [43, 74, 112,
209]. In other words, it is not possible to find a controller that renders the closed-loop
system passive with respect to the shaped energy in (simple) mechanical form.
Nonetheless, it is possible to prove asymptotic stability of an equilibrium that has

been stabilized via energy shaping for the lossless system, when damping is considered
and the DC is not satisfied. The stability verification is based on spectral analysis. One
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important contribution can be found in [167, 168, 209], in which the authors show that
the presence of (small) damping does not destabilize mechanical systems that have been
assumed undamped and stabilized via energy shaping. If the control parameters are
appropriately chosen, stability is shown by analyzing the linearized closed-loop system.
Yet, by doing so, the domain of attraction is lost. Up to now, no passivity-based
methodology exists that accounts for dissipation in unactuated coordinates from the
very beginning.

1.1.3 Trajectory tracking and path following for nonholonomic systems

There are roughly two control strategies employed to track the desired motion of me-
chanical systems: trajectory tracking and path following. In trajectory tracking, as the
name suggests, the mechanical system is controlled to asymptotically converge towards
a reference trajectory. The system is commanded to be in a particular position with
a defined velocity at a particular time. For fully actuated mechanical systems, the
tracking control problem is well understood and can be consulted, for instance, in the
textbooks of Bullo and Lewis [42], and Slotine and Li [189].
In path following, the primary goal is to steer the system towards a desired geometric

path, and then to move along this path. As the path is usually defined only for the
output and not for the entire configuration, path following is also known as output
maneuver regulation, in which the output approaches and moves along a given geomet-
ric curve. For instance, for an industrial paint robot, the path is defined only for the
applicator at the tip, and not for the remaining joints. Although, in general, no time
dependency is assigned to the path, one may assign a desired velocity profile to specify
the dynamics along the path as a secondary goal. Often, the path following problem is
solved based on an admissible trajectory, which is assumed to exist and to be known
[61, 87].
Trajectory tracking. In the context of energy shaping, the trajectory tracking prob-
lem has been tackled by describing the error dynamics as a port-Hamiltonian system,
and then stabilizing the origin of the error system via passivity-based control; either
by employing generalized canonical transformations [67], or IDA-PBC [114]. This ap-
proach has also been used for reference tracking of fully actuated mechanical systems
when only position measurements are available [56]. Energy shaping strategies can be
used for trajectory tracking of underactuated mechanical systems as well. In [199], the
authors combine a feedforward and a feedback controller for the inertia wheel pendulum
to track a reference trajectory. In [65], an energy-based trajectory tracking controller is
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derived for a quadrotor system, which accounts for input saturation by appropriately
designing the required potential fields.
Rather than tracking a reference trajectory, a usual approach is output trajectory

tracking, where a specific motion of the output is to be exactly followed. This problem
has been extensively studied in [118] and [94]. As a desired trajectory of the output is
given, dynamic inversion is required to determine the corresponding input, which is a
particularly difficult task for systems with unstable zero dynamics [54]. However, this
method is extremely useful in the context of differentially flat systems. A dynamical
system is said to be differentially flat if its entire state and control signals can be
described by means of the output and a finite number of its derivatives [62, 118, 172].
Therefore, any sufficiently smooth output trajectory directly specifies the control input
required to precisely track the reference trajectory, and, in addition, automatically
provides the time evolution of all remaining state variables. The computed input—
which is used as feedforward controller—guarantees exact output tracking in the absence
of disturbances. An additional feedback controller is necessary to regulate initial state
errors, and to compensate for model uncertainties and external disturbances.
One major drawback in trajectory tracking remains the fact that the reference tra-

jectory has to be admissible, i. e., it has to be compatible with the system’s dynamics.
For unconstrained and fully actuated mechanical systems, any sufficiently smooth refer-
ence trajectory is admissible, as one is able to command arbitrary accelerations in any
given direction. However, in general, finding admissible trajectories for underactuated
systems is challenging, as not every possible motion between two points is also com-
patible with the system’s dynamics. Note, for instance, that unactuated coordinates
can only be steered by exploiting the system’s potential and dynamic couplings. In
[76], the authors present a numerical method to determine admissible trajectories for
underactuated systems with input and output constraints using commercial software
tools. In [54], a dynamic inversion procedure for output tracking is presented, which
provides bounded input trajectories regardless of unstable zero dynamics.
As far as trajectory tracking for nonholonomic systems is concerned, a useful contri-

bution is the chained form, introduced by Murray and Sastry in 1993 [142]. This special
class of systems—which covers flat systems like mobile robot platforms and car-trailer
systems—has been in the focus of research for its practical applications. In order to
simplify the problem setting, some researchers employ the kinematic model, neglecting
the dynamics (cf. [137, 177]). As a consequence, a predefined path can be easily con-
verted to a reference trajectory, as the velocity profile along the path can be arbitrarily
designed [57]. Some of the research, nonetheless, considers the dynamic model, and
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includes robust backstepping [71, 95] and sliding-mode control [49, 213], among others.
However, these approaches assume fully actuated nonholonomic systems.
Path following. Due to the inherent difficulties of trajectory tracking, path following
has recently gained more and more attention. Also, for some control applications such as
the operation of a welding robot, path following is a more appropriate problem setting.
In path following, the geometric path of the output is only required to be continuous,
can be time-varying [200], and no dynamic inversion is necessary, as the dynamics along
the path are not specified a priori. A well-known method for path following, which relies
on potential shaping and which has also been successfully applied to obstacle avoid-
ance in robotic manipulation and navigation of mobile systems, is the introduction of
attractive or repulsive potential fields [160, 198]. A further technique is passive velocity
field control (PVFC), introduced as velocity field control by Li and Horowitz in 1993
[123], in which the motion task is encoded in a velocity field, and the closed-loop system
interacts in an energetically passive manner with its environment [124]. PVFC was for-
malized for fully actuated mechanical systems in [125] and [126]. Vector fields methods
have proven convenient for path following of mobile robots: In [146], the authors use
vector fields that provide the heading commands to force small unmanned vehicles to
converge towards a desired path even in the presence of constant disturbances. Once
on the path, the velocity field controller guarantees a prescribed forward speed along
the path. Further extensions of PVFC for fully actuated mechanical systems have been
developed by Duindam and Stramigioli [60], and Fujimoto and Taniguchi [70]. The
notion of vector (velocity) fields is similar to that of potential fields in the sense that
the control forces are commanded by these fields. However, the vector fields do not
necessarily represent the gradient of a scalar function. Rather, the vector fields simply
specify the desired direction of motion. From a practical point of view, the vector field
strategy can be easily embedded in the energy shaping framework, even though, strictly
speaking, no energy is being shaped. Despite the advantages of vector-field-based ap-
proaches, the characterization of a vector field that encodes a complex task is difficult,
and the description of that vector field often requires a lot of storage memory. A sim-
ple technique for path following which bypasses these drawbacks is waypoint tracking.
The idea is to define discrete equilibrium points along a geometric path. These points
are then successively stabilized by a stabilizing controller. Even though the path is
only approximated by the discrete set points, very complex maneuvers are possible, as
relatively little storage memory is required. Additionally, following waypoints can be
computed in real time to improve robustness and performance. Nonetheless, because of
the step-wise changes of the desired equilibrium, the time evolution of the state exhibits
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a periodic pattern, as the system continuously accelerates and decelerates [138]. How
to define the different waypoints, and, if necessary, how to place new waypoints as the
system moves, is still topic of research: In [40], the authors employ a Lyapunov-based
generator of waypoints for linear systems that accounts for input saturation and guar-
antees stability. As the strategy uses continuously moving waypoints, the undesired
acceleration and deceleration of the plant is avoided. In [55], the authors present an
extension of the aforementioned strategy by including nonlinearities via Takagi-Sugeno
formulation, and considering multiple inputs.
Because of the flexibility of the problem setting, path following is preferred for non-

holonomic underactuated systems, like the wheeled inverted pendulum (WIP)—the
paramount example for this class of mobile robots. Although reference tracking has
been successfully implemented in the past for the linearized system [78], path following
is more common in recent publications: In [216], the authors develop a path following
strategy for a wheeled pendulum with inherently stable pitch dynamics, for the pendu-
lum’s center of mass lies below the wheel axis; in [138], the authors use waypoint track-
ing for the WIP, which requires less storage memory, but the path cannot be followed
exactly, as the finite number of waypoints only approximate the path. Additionally,
the pitch dynamics exhibit an undesired periodic pattern due to the acceleration and
deceleration of the WIP.

1.2 Contributions of this thesis

This thesis is devoted to the development of energy shaping control techniques for un-
deractuated mechanical systems. Therein, the focus is set on theoretical developments
to tackle implementation problems in practice, and thereby enhance the applicability of
the control approach. Whilst Part II deals with the difficulties in the implementation
of energy-based controllers that arise from physical dissipation in unactuated coordi-
nates, Part III is devoted to constrained systems, and, in particular, the stabilization,
tracking, and path following control for nonholonomic mechanical systems. Thereby,
we place emphasis on the wheeled inverted pendulum. The main contributions of our
work are summarized in the following:

Chapter 3: Augmented Interconnection and Damping Assignment. In this
chapter, we are concerned with the stabilization of mechanical systems via IDA in
the presence of dissipation in unactuated coordinates. The so-called dissipation con-
dition (DC) [74] represents an obstacle for the passivation of the closed-loop system.
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Therefore, inspired by the analysis of the linear system, we augment the closed-loop
Hamiltonian by a non-physical cross term between coordinates and momenta to bypass
the DC. By doing so, we are able to develop a passivity-based methodology that ac-
counts for dissipation in unactuated coordinates from the very beginning, retaining the
usual benefits from PBC: passivation of the closed-loop system, and simple stability
analysis and estimation of the domain of attraction via Lyapunov theory [155]. Addi-
tionally, our approach only requires the solution of algebraic equations to satisfy the
matching problem rather than the solution of difficult PDEs. Further, the introduction
of additional design degrees of freedom by augmenting the closed-loop Hamiltonian al-
lows for performance improvement and facilitates the parametrization via LLDA [109].
The main contributions of Chapter 3 are:

◦ the development of a passivity-based control technique for underactuated mechan-
ical systems that accounts for physical dissipation in unactuated coordinates from
the very beginning,

◦ the algebraic formulation of the matching problem for underactuated mechanical
systems, and

◦ sufficient conditions for the solution of the algebraic matching equations.

Chapter 4: Controller Design. In this chapter, we address the question of how
to use the theory developed in Chapter 3 for a systematic controller design procedure.
As we do not require the solution of PDEs for matching, the simultaneous solution to
the matching equations and the parametrization of the closed-loop system is based on
the solution of one Lyapunov equation. Inspired by LLDA as a parametrization tool
for the controller that relies on the assignment of desired local dynamics, we guarantee
not only stability, but—locally—also desired transient behavior with the developed
controller. A procedure comprising five simple steps summarizes the controller design.
The contributions of Chapter 4 are:

◦ the derivation of a systematic procedure for the controller design for a class of
underactuated mechanical systems that guarantees desired local behavior in terms
of the eigenvalues of the closed-loop system by solving one Lyapunov equation,
and

◦ the characterization of the class of systems, for which the procedure can be sys-
tematically applied.
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Chapter 5: Applications. In this chapter, we illustrate the application of the
augmented IDA approach step by step as developed in Chapter 3 and Chapter 4, and
demonstrate its effectiveness on a number of benchmark examples. We consider the
stabilization of the three underactuted mechanical systems acrobot, inertia wheel pen-
dulum, and inverted pendulum on a cart. Not only a series of simulations illustrates
the performance compared to other controllers, but also experiments conducted on the
inverted pendulum on a cart show its practical applicability. The main contribution of
Chapter 5 is:

◦ the demonstration of the applicability and performance of the augmented IDA
technique for the control of mechanical systems with dissipation in unactuated
coordinates.

Chapter 6: Total Energy Shaping for Nonholonomic Systems. This chapter
deals with the position and velocity stabilization of a class of nonholonomic mechanical
systems via total energy shaping. Thereby, we assume that the DC is satisfied, such
that no augmentation of the desired energy is required to render the closed-loop system
passive with respect to the closed-loop energy function. Specifically, we design smooth
control laws for the position stabilization in a reduced (unconstrained) configuration
space QR, and show that, for a class of systems, the solution to the matching problem
in reduced coordinates automatically provides the solution to the matching problem in
configuration space Q (or a subset QC thereof). In this case, nonetheless, the energy
shaping approach asymptotically stabilizes an invariant set. If some (minor) conditions
are satisfied, then the results can be directly applied for velocity stabilization as well.
In addition to the design of stabilizing control laws, we consider in this chapter two
aspects of practical relevance: the robustness properties of the controllers by means
of input-to-state stability (ISS), and the incorporation of actuator dynamics into the
controller design. As far as we are aware, there is no unified framework that uses
the structural advantages of energy shaping for the position stabilization and speed
control of underactuated nonholonomic systems, which, at the same time, takes into
account the robustness of the control system, and also includes actuator dynamics. The
contributions of Chapter 6 are:

◦ the application of the same unifying framework for the position and velocity con-
trol design for underactuated nonholonomic systems in reduced space QR,

◦ the derivation of conditions, under which the result can be directly transfered
to a constrained subset of the configuration space QC ⊆ Q for the asymptotic
stabilization of an invariant set
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◦ the estimation of the magnitude of the disturbance tolerated by the controllers by
means of an ISS analysis, and

◦ the incorporation of actuator dynamics in the energy shaping controller design via
backstepping.

Chapter 7: Trajectory Tracking and Path Following. In this chapter, we are
concerned with trajectory tracking and path following for nonholonomic underactuated
mechanical systems via energy shaping. Due to the difficulty in finding admissible
trajectories, [87], especially for systems with unstable zero-dynamics (cf. [54, 76]),
we consider in this chapter non-admissible trajectories, and study the boundedness of
the closed-loop signals and the stability of the system with respect to the tracking
error, that is, as trajectories that are not compatible with the system’s dynamics can
only be approximately tracked, we show that the tracking error remains bounded and
converges towards the origin if the reference trajectory is admissible. In that context,
we also develop a stabilizing hybrid position and velocity controller for nonholonomic
systems.
In reference tracking, large discrepancies of the initial state with respect to the ref-

erence might result in large input torques or saturation. Partially because of that, and
in order to bypass the computation of admissible trajectories, path following strategies
emerged. They also better describe a number of practical tasks like automatic welding
and painting with robotic arms. In this chapter, we incorporate into the energy shap-
ing approach a unified path following strategy that can be applied to track arbitrary
geometric paths. Further, we analyze the system’s convergence to the path, and the
stability of the closed-loop system by means of ISS.
To the best of our knowledge, the structural properties of energy shaping have not

been yet exploited to develop control laws for unstable, underactuated nonholonomic
systems to (approximately) track non-admissible trajectories or geometric paths. The
contributions of Chapter 7 are:

◦ the stability analysis of the closed-loop system with respect to non-admissible
trajectories, i. e., the analysis of the boundedness of the tracking error

◦ the derivation of a stabilizing hybrid position and velocity controller, and

◦ the incorporation of path following strategies in the energy shaping controller
design, and their stability analysis.
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Chapter 8: The Wheeled Inverted Pendulum. In this chapter, we apply the
theory developed in Chapter 6 and Chapter 7 to the wheeled inverted pendulum sys-
tem, which is a mobile robot subject to nonholonomic constraints, and with unstable
pitch dynamics. We show an elegant solution to the matching problem for the WIP,
and present a procedure to fix the closed-loop parameters to guarantee desired local
dynamics by means of the eigenvalues of the linearized system. The applicability of the
stabilization, trajectory tracking, and path following controllers is demonstrated by a
series of simulations and, in particular, experiments conducted on a small scale WIP,
which has been developed at the Institute of Automatic Control of the Technische Uni-
versität München. Furthermore, we show in this chapter how the results of Chapter 6
and Chapter 7 can be combined, for instance, for the stabilization of a specific point
on the horizontal plane, or for the application of path following strategies with a given
velocity profile along the path.
In conclusion, this chapter studies the systematic and integrated design of stabilizing

and tracking controllers for the wheeled inverted pendulum system in a single, energy-
based framework. An emphasis is put on the structural advantages of the approach and
the experimental validation of the control laws. The main contributions of Chapter 8
are:

◦ the solution to the matching equations for theWIP and the transparent parametriza-
tion of the closed-loop system

◦ the demonstration of the viability and performance of the stabilizing and tracking
approaches proposed in Chapter 6 and Chapter 7 and adaptations thereof with
the aid of a series of simulations, and, in particular,

◦ experimental results on a small scale WIP.

1.3 Outline of the thesis

The remainder of the thesis is organized as follows: Chapter 2 gives an overview of the
theoretical background required for all upcoming chapters. It includes an introduction
of basic notions of geometry and mechanical systems, a review of existing results from
stability analysis and passivity for nonlinear systems, and a brief presentation of the
two most popular energy shaping methods—Interconnection and Damping Assignment
(IDA) and the method of Controlled Lagrangians (CL)—from a passivity-based control
(PBC) perspective.
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The scientific contributions of the thesis are clustered in two parts: Part II covers
Chapters 3, 4 and 5, and deals with the difficulties in the implementation of total energy
shaping controllers that occur when physical dissipation is considered in unactuated
coordinates. In Chapter 3, the so-called dissipation condition (DC) is presented, and
a method that considers physical dissipation in the controller design from the very
beginning is developed via IDA-PBC by breaking the mechanical structure of the closed-
loop system. Chapter 4 presents the controller design in a series of steps; simulations
and experiments for the validation of the proposed method are shown in Chapter 5.
Part III covers Chapters 6, 7 and 8, and deals with energy shaping methods for

stabilization, path following, and reference tracking for underactuated nonholonomic
systems. Thereby, the DC is assumed to be satisfied, and the conventional total energy
shaping approach is applied. Chapter 6 presents the main position and speed stabi-
lization results for underactuated nonholonomic systems using total energy shaping in
reduced space. In Chapter 7, methods for path following and trajectory tracking are
developed for the considered systems. The energy-based controllers are validated with
a series of simulations and experiments using a small scale wheeled inverted pendulum
(WIP) in Chapter 8.
The thesis concludes with a short summary and ideas for future work in Chapter 9.

An appendix is included to present the proofs of some theorems as well as the dynamical
model of the WIP that is used for the controller design and the simulations.
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This chapter presents the theoretical basis, which this thesis is built on. After some brief
mathematical preliminaries in Section 2.1, where we introduce non-euclidean configu-
ration manifolds and some geometric concepts, we discuss simple mechanical systems
in both Lagrangian and Hamiltonian representation in Section 2.1.2 and Section 2.1.3,
respectively. In particular, when considering nonholonomic constraints, geometric me-
chanics become indispensable for the understanding of the behavior of the system. Non-
holonomic systems are briefly discussed in Section 2.1.4. As this thesis places emphasis
on the stabilization of mechanical systems, we then recall some notions of stability
in Section 2.2, and present a number of theorems that will be used throughout the
manuscript. We close this preliminary chapter by introducing the passivity-based con-
trol theory in Section 2.3. Beginning with the passivity property of dynamical systems,
we then move on to the class of port-Hamiltonian (pH) systems, and finally present
two energy-shaping control approaches that rely on passivity for the stabilization of
mechanical systems.

2.1 Simple mechanical systems

The word simple does not imply that the class of systems we consider is easy to deal
with. A mechanical system is called simple if its Lagrangian function is defined as
its kinetic minus its potential energy. A large number of mechanical systems belongs
to this category, and many of them are highly complex. Throughout this thesis, the
word simple will often be dropped, and we will refer to this class simply as mechanical
systems.
This thesis is devoted to underactuated simple mechanical systems. As the name

suggests, this class of systems is characterized by having less actuators than degrees
of freedom, and includes robot manipulators with flexible links and/or joints, flying
robots, underwater vehicles, and other systems that locomote like mobile robots and
walking machines, among others. While fully actuated systems can be controlled with
classical control methods like feedback linearization [141], underactuated systems re-
quire more sophisticated control techniques that take into account the complex internal
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dynamics for stabilization and tracking. Unlike fully actuated systems—which are rigid
and bulky, in general, and, thus, lack flexibility and speed—underactuated mechanical
systems benefit from their natural dynamics, which leads to an increase in the per-
formance in terms of speed, efficiency and robustness [202]. Therefore, this class of
systems has moved to the focus of researchers in an attempt to enhance the perfor-
mance, while lowering the production costs and energy consumption. However, the
control of underactuated systems is challenging, as the degrees of freedom cannot be
controlled independently, and, for that reason, complex internal potential and inertial
couplings need to be exploited for the design of control systems [196].
We will differentiate between holonomic and nonholonomic systems. In 1894, Hein-

rich Hertz defined holonomic systems as "systems between whose possible positions all
conceivable continuous motions are also possible motions" [86]. For nonholonomic sys-
tems, on the contrary, not every "conceivable continuous motion" between two positions
is also possible: Nonholonomic constraints restrict the motion direction at any given
configuration. For that reason, control theorists face additional challenges designing
techniques to control nonholonomic systems.
In the following, we introduce some geometric concepts that are necessary to under-

stand the behavior of mechanical systems, and in particular, of nonholonomic systems.
Thereafter, we present the equations of motion of mechanical systems in both the La-
grangian and Hamiltonian framework, and introduce nonholonomic constraints.

2.1.1 Geometric preliminaries

As an engineer, we are familiar with the concepts of differential and integral calculus in
the n-dimensional Euclidean space Rn. Dynamical systems—and in particular mechan-
ical systems—often evolve on a manifold Q, which may or may not be Euclidean. The
configuration manifold Q represents the set of all possible configurations and is locally
homeomorphic to, e. i., looks like, an Euclidean space of the same dimension. Globally,
however, they might differ. Generally, we will work with a local set of coordinates, say
xi, and assume that the configuration manifold is Rn. Nonetheless, we have to keep
in mind that Q is, in general, non-Euclidean. It is important to make the distinction,
since Q does often not accept globally stabilizing smooth control laws1 [42].
We do not aim at giving a comprehensive introduction to differential geometry.

Rather, our intention is to intuitively introduce the geometric concepts that will be
used throughout the manuscript. To a great extent, this section is based on the text-

1For instance, no global stabilizing smooth control law exists for the unit circle S1.
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Figure 2.1: Smooth manifoldM with compatible coordinate charts Ni and Nj. We will
normally work with a set of local coordinates, e. g., xi, and pretend to be dealing with
an open subset of Rn.

books [24, 63, 116]. For a general introduction to smooth manifolds and differential
geometry, the reader is referred to the excellent textbooks of Lee [116] and Spivak
[193]. For a treatment in application to physics and mechanical systems, the books of
Frankel [63], Bullo and Lewis [42], Marsden [132], Marsden and Ratiu [133], or Bloch
[24] can be consulted. For manifolds in the context of control, we refer to the textbooks
of Lévine [118], Nijmeijer and van der Schaft [147], and Isidori [94].

Definition 2.1 (Smooth manifold [24]). An n-dimensional smooth manifoldM is a set
of points together with a finite or countably infinite set of subsets Ni⊂M and smooth
diffeomorphisms2 ψi : Ni → Rn such that

1. ⋃i Ni =M

2. For each non-empty intersection Ni ∩ Nj, the set ψi(Ni ∩ Nj) is an open subset
of Rn, and the smooth function ψi ◦ψ−1

j : ψj(Ni ∩Nj) → ψi(Ni ∩Nj) is 1-to-1
and onto.

Essentially, a manifold is a set that can be locally parametrized by Rn, and different
parametrizations need to be compatible with one another. Figure 2.1 explains the
situation. The charts Ni and Nj are compatible with one another in the sense that
in the region, where both charts overlap (gray area), a smooth bijective map that
transforms the elements of Ni into Nj (and back) exists.
We will normally work with a specific parametrization, and assume to be dealing with

an open subset of Rn with local coordinates xi. We need to take into account, however,
2A smooth diffeomorphism is a smooth 1-to-1 mapping.
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that our results are only locally valid, since a single chart Ni might not be sufficient to
cover the whole manifoldM.
A typical and important way, in which manifolds arise is as level sets in Rn: Let

φ1, . . . , φm : Rn → R. The level set

M = {x ∈ Rn| φ(x) = 0}

is a differentiable manifold of dimension n−m if

rank(
[
∂φ

∂x

]
) = m, ∀x ∈M.

We say that the level set is a submanifold of Rn.

Definition 2.2 (Tangent space). LetM be a smooth manifold of dimension n, then,
to every point x∈M, there exists one tangent space TxM. The tangent space at x is
an n-dimensional vector space.

Let γ : I → M be a smooth curve on M, where I ⊂R is an interval. The notion
of the tangent space naturally leads to an interpretation of the tangent vectors to a
curve γ(t) on a manifoldM. Let x0 =γ(t0). The derivative γ ′(t0) lives in Tx0M and
defines the tangent vector to the curve γ(t) at x0. If the parameter t∈I represents the
time, then the tangent vector is nothing but the velocity vector γ̇(t0). Therefore, the
tangent space can be understood as the set of possible velocities at any point x ∈M
(cf. Figure 2.2). For any smooth manifold M, we define the tangent bundle of M,
denoted by

TM =
⊔

x∈M
TxM,

to be the disjoint union of the tangent spaces at all points x∈M. The tangent bundle
describes, hence, the set of all possible configurations and velocities and is a smooth
manifold of dimension 2n. With some slight abuse of notation, we write (x, ẋ)∈TM.
In the context of mechanical systems, the configuration manifold Q represents the set of
all possible configurations, the tangent space TqQ is the set of the possible velocities at a
given configuration q∈Q, and the tangent bundle TQ is a 2n-dimensional manifold that
characterizes the state, which consists of all configurations and velocities (q, q̇)∈TQ.

Definition 2.3 (Vector field). A vector field f on a manifoldM is a map f :M→ TM
that assigns to each point x ∈ M a tangent vector fx = f(x), i. e., an element of the
tangent space TxM. The vector field is said to be smooth if it varies smoothly with x.
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γ
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Figure 2.2: Tangent space and curve on manifold. The vector tangent to the curve γ(t)
at x0 lives in the tangent space Tx0M. The curve γ(t) is an integral curve if there exists
a vector field f on the manifoldM, such that γ ′(t)= f(γ(t)) is satisfied for all t∈I.

Definition 2.4 (Integral curve). An integral curve of f with initial condition x0 at t0 is
a differential map γ : I →M, such that I is an open interval containing t0, γ(t0) = x0,
and

γ ′(t) = f(γ(t)), ∀ t ∈ I.

We will assume—unless explicitly stated otherwise—that t0 = 0, and I = [0, ∞[. If
the vector field f is locally Lipschitz, then there exists a unique flow for small times
t∈I.

Definition 2.5 (Flow of a vector field). The flow of the vector field f is the collection
of maps

γ(t) :M→M,

such that t 7→ γx(t) is the integral curve of f with initial condition x.

The flow describes, therefore, the set of solutions of the ordinary differential equation
(ODE)

ẋ = f(x), x ∈M.

Definition 2.6 (Lie bracket in coordinates). Let x = (x1, . . . , xn) be a set of local
coordinates forM. The Lie bracket of two vector fields f and g is a third vector field
defined as

[f , g] = ∂g
∂x f − ∂f

∂x g. (2.1)

Geometrically speaking, the Lie bracket characterizes the rate of change of one vector
field along the second vector field. The vector fields are said to commute if their Lie
bracket vanishes. Figure 2.3 illustrates the Lie bracket in case of non-commuting vector
fields.

Definition 2.7 (Smooth distribution). A smooth distribution D on a manifoldM is
the assignment of a subspace of the tangent space to each point x∈M.
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Figure 2.3: Lie bracket of two vector fields f1 and f2. Suppose that we start at x and
move along the first vector field f1 for a given time τ ; then move along f2 for the same
time. Let us then repeat the procedure, this time inverting the order, i. e., first moving
along f2, and then along f1. For non-commuting vector fields, γf1

τ ◦ γf2
τ (x) 6=γf2

τ ◦ γf1
τ (x)

holds. Geometrically, the vector field [f , g] represents this discrepancy.

A distribution D is said to be involutive if for any two vector fields f1 and f2 onM
with values in D, [f1, f2] is also a vector field with values in D. In other words, the
distribution is involutive if it is closed under brackets3 [63]

f1, f2 ∈ D ⇒ [f1, f2] ∈ D. (2.2)

Given a set of vector fields f1, . . . , fk in M, we denote the distribution given by their
span as

D = span{f1, . . . , fk}.

The distribution at any point x ∈ M is given by Dx. A distribution is said to be
regular if it is of constant rank: There exists a constant d, such that

rank(Dx) = d, ∀x ∈M.

Throughout the thesis, regularity of smooth distributions is assumed.
We are now ready to formulate one basic result of differential geometry that plays

an important role in both nonlinear control theory and the theory of nonholonomic
systems.

Theorem 2.1 (Frobenius). A regular smooth distribution D is integrable if and only
if it is involutive.

If the distribution D is the differential of a function φ(x) onM, then, the distribution
3A distribution of commuting vector fields is always involutive.
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Figure 2.4: The integral manifoldsMD of a distribution D. The collection of allMD

through all points ofM forms a foliation.

is integrable and
MD = {x ∈ Rn| φ(x) = c} (2.3)

represents an immersed manifold ofM for any constant c. As a result, D is the tangent
bundle of MD. The collection of all integral manifolds (2.3) through all points of M
forms a foliation (cf. Figure 2.4).

Example 2.1.1 (Foliations of R2). The set of lines parallel to the x-axis (y = c, for
constant c∈R) is a foliation of R2. The set of circles with radius r= c, for c∈R+ is a
foliation of R2\{0}. Each line (or circle) is itself an embedded manifold in R2.

Definition 2.8 (Involutive closure). The involutive closure D of a smooth distribution
D is the smallest involutive distribution containing D.

The dual space to the tangent space TxM is called cotangent space and is denoted
by T∗xM. The cotangent space T∗xM is the set of R-valued real maps on TxM, i. e.,
the result of the action of the elements of T∗xM on elements of TxM lives in R. In
the geometric framework of mechanics, forces take values in the cotangent space T∗xM:
Force times velocity equals to power, which is a scalar quantity. The cotangent bundle

T∗M =
⊔

x∈M
T∗xM

is the disjoint union of the cotangent spaces at all points x ∈M.

2.1.2 Lagrangian mechanics

Lagrangian mechanics describes the time evolution of a Lagrangian system in its con-
figuration space Q. In a simple mechanical system, the configuration space Q is an
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n-dimensional manifold. The tangent bundle TQ represents the velocity phase space.
The Lagrangian L is a smooth map L : TQ → R and is defined as the kinetic minus the
potential energy L = T − V of the system. The motion of a forced mechanical system
coincides with the Euler-Lagrange equations

d
dt

(
∂L

∂q̇

)T

−
(
∂L

∂q

)T

= Fext, (2.4)

where Fext represents all non-potential forces, and includes—among others—the control
input and friction terms. These equations can be derived from variational principles
such as Hamilton’s principle of least action or—in the presence of external forces—the
Lagrange-d’Alembert principle. The reader is referred to standard textbooks, e. g., [12,
24, 42, 133, 198], for details. It is common to write (2.4) in matrix form as

Mq̈ + Cq̇ +∇qV = Fext, (2.5)

where M(q) is the symmetric and positive definite inertia matrix. Moreover, C(q, q̇) is
the matrix corresponding to the Coriolis and centrifugal forces, which elements ckj are
determined by the Christoffel symbols (of the first kind) corresponding to the matrix
M(q). Consequently, the expression C(q, q̇) is solely defined by the inertia matrix4.
The matrices M and C are not to be separated, since only together they have an actual
meaning5 (cf. [42]). However, it is of practical convenience to write them detached
in the matrix form (2.5), as we will exploit the following property for control in later
chapters.

Proposition 2.1. For a given mechanical system with inertia matrix M it holds true
that Ṁ=C + CT, and, as a consequence, the matrix (Ṁ− 2C) is skew-symmetric.

Proposition 2.1 is a standard result and its proof can be found, e. g., in [141, 198].
If the Lagrangian is independent from a configuration variable, say qj, then we say

that qj is a cyclic variable and the Lagrangian exhibits a symmetry. Symmetries can
be exploited to express the equations of motion in a reduced form, e. g., the Euler-
Poincaré or Routh’s equation [12, 133]. Cyclic variables also play an important role
when defining dynamic equilibria, as we shall see in Chapter 7.

4The matrix C(q, q̇) may not be unique. However, we assume that it is defined by the Christoffel
symbols (see [101, 198]) for the properties in Proposition 2.1 to hold.

5Together, the terms containing M and C are related to the covariant derivative in the Riemannian
geometric point of view.
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2.1.3 Hamiltonian mechanics

As stated before, Lagrangian mechanics describes the equations of motion of simple
mechanical systems by means of the configuration manifold. Hamiltonian mechanics,
as an equivalent formulation, describes the time evolution of the system in an even-
dimensional manifold called the phase space [12]. This phase space in simple mechanical
systems is nothing but the cotangent bundle T∗Q of the configuration manifold, and its
local coordinates are composed of the configuration q and the canonical momenta p.
The Hamiltonian representation of the dynamics can be directly derived from (2.4) and
is given as [90]  q̇

ṗ

 =

 0 I

− I 0


 ∇qH

∇pH

+

 0

Fext

 , (2.6)

where the Hamiltonian functionH is the Legendre transform of the Lagrangian function,
i. e.,

H(q,p) = pTq̇ − L(q, q̇), (2.7)

and the generalized momenta are defined as

p =
(
∂L

∂q̇

)T

= Mq̇. (2.8)

The Hamilton canonical equations (2.6) constitute a special case of the so-called port-
Hamiltonian (pH) systems introduced in Section 2.3.2.

2.1.4 Nonholonomic constraints

A simple mechanical system as described above by the Euler-Lagrange or the Hamilto-
nian equations is called holonomic. Holonomic constraints restrict the possible config-
uration of a mechanical system. Examples are the restriction of a rigid body to have
constant distances between two points, or the restriction of the motion thorough a joint
between two links. The choice of so-called generalized coordinates allows us to locally
describe the motion of holonomic systems with a minimum number of independent vari-
ables q ∈ Q. Nonholonomic systems represent a special class of mechanical systems,
which does not fit in the latter description, and usually arise from constraints given at
velocity level that cannot be integrated to the configuration level6. For an extensive
discussion on the topic, the reader is referred to the textbooks by Bloch [24] and Holm

6Every constraint that is non-holonomic is nonholonomic. Nonholonomic constraints are therefore
also given, for instance, by inequalities.
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[91]. In this thesis, we will focus on the relevant type of non-integrable constraints
linear in velocity, which can be written as

AT(q)q̇ = 0. (2.9)

These constraints do not restrict the configuration manifold on which the dynamics
evolve, but they restrict the admissible motion direction at a given point [24]. The
nonholonomic constraints are given by a non-integrable, smooth distribution D⊂TqQ
known as constraint distribution. In a mechanical system with k nonholonomic con-
straints, the admissible velocities at a configuration q are, thus, restricted to a (n−k)-
dimensional subset (Dq ∼= Rn−k) of the tangent space TqQ.

Example 2.1.2 (Rolling Coin). The configuration space of a vertical coin rolling on a
plain is given by Q = R2×S1×S1. We can describe the configuration with (generalized)
coordinates (x, y, θ, φ), where the coordinates of the contact point C are given by
(x, y), and θ and φ denote the orientation and absolute rotation angle, respectively (cf.
Figure 2.5). If r is the radius of the coin, the rolling-without-slipping constraints in the
form (2.9) are given as

ẋ− rφ̇ cos θ = 0
ẏ − rφ̇ sin θ = 0.

These two constraints restrict the velocity space at any given point to a two-dimensional
subspace Dq ⊂ TqQ. The configuration space, however, remains four-dimensional, as
the distribution D is non-integrable. From our personal experience, we know that it is
possible to reach any given configuration by rolling the coin back and forth and rotating
it to change its orientation7.
Let us consider the kinematic rolling coin, whose equations of motion are given as



ẋ

ẏ

θ̇

φ̇


=



r cos θ

r sin θ

0

1


u1 +



0

0

1

0


u2 = f1u1 + f2u2, (2.10)

7Independently from the initial and desired configurations, we can always steer the coin towards the
desired equilibrium ξ∗: First, change the orientation to face the desired position p∗= [x∗ y∗]T on
the plane, then, move towards the desired position and once there, rotate to the desired orientation
θ∗. If the rolling angle φ 6= φ∗, then make a circular loop of appropriate radius and come back.
Theoretically, this can be done arbitrarily fast.
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Figure 2.5: The vertical rolling coin.

where we assume to directly command angular velocities u1 = φ̇ and u2 = θ̇. The proof
of controllability is provided by Chow’s Theorem (cf. [85]), which basically states that
if the involutive closure (the closure under Lie bracketing) of the constraint distribution
D has full rank n, then the system is controllable. As the constraint distribution D of
the rolling coin is not involutive, Lie bracketing the vector fields associated with the
inputs u1 and u2 provides directions that are not contained in D. Since the involutive
closure

D̄ = span {f1, f2, [f1, f2], [[f1, f2], f2]} (2.11)

has rank four (= n), it is possible to steer the system in any direction by alternating
u1 and u2, and, thus, to reach any q ∈Q arbitrarily fast. However, even though the
system is controllable in the sense that there exist appropriate—usually discontinuous
or time-varying—inputs that drive the system from any initial configuration q0 ∈ Q
to any other configuration q1 ∈ Q in finite time, no continuous differentiable control
law exists that makes q1∈Q asymptotically stable [39]. In fact, a desired equilibrium
cannot be asymptotically stabilized using continuous control laws [217].

The distinctive features of nonholonomic systems rely on the fact that the velocity
space—which is given by the constraint distribution D—is of a lower dimension than the
configuration manifold Q. This particular property has some important consequences
for control as we will see in Chapter 6.
The dynamics of systems subject to nonholonomic constraints can be modeled using

diverse methods in both Lagrangian and Hamiltonian representation [24, 27, 159, 185].
In particular, the Lagrange-d’Alembert equations [24]

d
dt

(
∂L

∂q̇

)T

−
(
∂L

∂q

)T

= Fext + Aλ (2.12)
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have become prevalent for their similarity to the Euler-Lagrange equations (2.4). They
differ in the constraints, which are adjoined to the system in (2.12) via Lagrange mul-
tipliers λ∈Rk that represent the constraint forces. These forces oblige the system to
satisfy the constraints, and are defined such that they do no work, e. i.,

Wconstr =
∫

q̇TAλ dt =
∫
λTATq̇ dt = 0. (2.13)

The constraint forces can be eliminated after the evaluation of (2.12) by projecting the
equations of motion on the admissible space. An analogous Hamiltonian formulation
can be constructed via the Legendre transform as shown in [185]. The modeling and
control of nonholonomic systems is the focus of Chapter 6.

2.2 Stability of nonlinear systems

This thesis is mainly devoted to the stabilization of mechanical systems. In this section,
we formalize the notion of stability in the sense of Lyapunov, and introduce necessary
conditions for stability of dynamical systems and equilibrium points. When speaking of
asymptotic stability, we also want to know how far we can start from the equilibrium
point and still converge towards it as time goes to infinity. It gives rise to the domain of
attraction, or stability region, which, undoubtedly, also constitutes an important design
objective in control. Finally, we introduce the notion of input-to-state stability, which
naturally expands the concept of stability to systems with inputs. The material of this
section is essentially borrowed from the books [102, 179, 189], where also the proofs of
the theorems can be found.

2.2.1 Time-invariant systems

We consider nonlinear systems whose dynamics evolve on X ⊂Rn

ẋ = f(x), x0 = x(t0), (2.14)

where the vector field f : X → Rn is locally Lipschitz. Let γ(t, t0,x0) be the solution
of (2.14) that starts at initial state x0 at time t0, and let it be defined for all t ≥ t0.
Time-invariant systems satisfy γ(t+T, t0 +T,x(t0 +T )) = γ(t, t0,x(t0)) for any T ∈R.
Without loss of generality, we, thus, set t0 = 0, and write γx0(t) instead of γ(t, t0,x0).
A point x∗ is an equilibrium point of (2.14) if f(x∗) = 0.

Definition 2.9 (Lyapunov stability). The equilibrium point x∗ of (2.14) is
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◦ stable if, for each ε > 0, there exists a δ = δ(ε) > 0, such that

‖x0 − x∗‖ < δ =⇒ ‖γx0(t)− x∗‖ < ε, ∀ t ≥ 0, (2.15)

where ‖ · ‖ is the Euclidean norm.

◦ asymptotically stable if it is stable, and δ can be chosen such that

‖x0 − x∗‖ < δ =⇒ lim
t→∞

γx0(t) = x∗. (2.16)

◦ unstable if it is not stable.

If the equilibrium x∗ is obvious from the context, we will say, with some abuse of
terminology, that the system (2.14) is stable (unstable), meaning that x∗ is a stable
(unstable) equilibrium of (2.14).

Theorem 2.2 (Lyapunov’s indirect method). Assume that x∗ is an equilibrium point
of the system (2.14), and the map f : X → Rn is continuously differentiable in a
neighborhood B of x∗. The linearization

∆ẋ = A∆x, A = ∂f
∂x

∣∣∣∣∣
x∗
, (2.17)

where ∆x = x−x∗, locally approximates the behavior of (2.14). If Λ(A), the set of
eigenvalues of the matrix A, strictly lies in the open left-half complex plane, then the
equilibrium point x∗ is asymptotically stable. If at least one eigenvalue of A is strictly
in the right-half complex plane, the equilibrium point x∗ is unstable. In any other case,
one cannot conclude stability or instability from the linearization (2.17).

While the theorem provides information whether the equilibrium is stable or not, it
does not reveal any data about the value of δ.

Definition 2.10 (Domain of attraction). Suppose x∗ is an asymptotically stable equi-
librium point of the system (2.14). The domain of attraction (DA) of x∗ is the set

A(x∗) =
{
x0 ∈ X | lim

t→∞
γx0(t) = x∗

}
. (2.18)

The exact calculation of the DA, or stability region, of a particular asymptotically
stable equilibrium x∗ is generally a hard task and remains unsolved up to now. Never-
theless, the following theorem and corollary help to provide an estimation.
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Theorem 2.3 (Lyapunov’s direct method). Suppose there is a continuously differen-
tiable function V : X → R satisfying

V (x) > V (x∗), ∀x 6= x∗ (2.19)

in an open set B containing x∗. The equilibrium x∗ is stable if

V̇ (x) = ∂V

∂x f(x) ≤ 0, ∀x ∈ B. (2.20)

The equilibrium x∗ is asymptotically stable if

V̇ (x) = ∂V

∂x f(x) < 0, ∀x ∈ B \{x∗}. (2.21)

Corollary 2.1. Let V be a function that satisfies (2.19) and (2.21). If

Sc = {x ∈ X |V (x) ≤ c} (2.22)

is bounded and contained in B, then Sc is an estimate of the DA of x∗, since all solutions
of (2.14) starting in Sc remain in Sc, and approach x∗ as t→∞.

A function V (x) that satisfies the conditions of stability is called a Lyapunov func-
tion8. A big hurdle in using the above theorem lies in the difficulty of finding an
appropriate Lyapunov function. A systematic procedure does not exist in general. If
the system is mechanical, however, then its total energy is a good candidate. For that
choice, V̇ is only negative semidefinite, such that asymptotic stability cannot be shown
from Theorem 2.3. The following invariance principle by LaSalle helps to conclude
asymptotic stability nonetheless.

Theorem 2.4 (LaSalle’s invariance principle). Let B ⊂ X be a compact set that is pos-
itively invariant with respect to (2.14). Let V : X → R be a continuously differentiable
function such that V̇ ≤0 in B. Let further S={x∈B | V̇ (x) = 0}, and E be the largest
invariant set in S. Then every solution γB(t) starting in B approaches E as t→∞.

Corollary 2.2. If E = x∗, then the equilibrium x∗ is asymptotically stable.
8The original definition assumes, without loss of generality, that x∗ = 0, and V (0) = 0. The function
V (x) can be made positive definite by shifting x∗ and V (x∗) to the origin.
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The invariance principle expands Lyapunov’s theory in three important ways. It
relaxes the positive definiteness requirements of Lyapunov’s original theory and gives
an estimate of the domain of attraction that is not necessarily a level set of a Lyapunov
function. The Lyapunov function, however, can be very useful for determining the
invariant sets B and S. The third, and most important extension for our purposes, is
useful when dealing with nonholonomic constraints: The invariance principle can also
be applied to asymptotically stable sets that are not just given by a single point.

2.2.2 Mechanical systems

Our interest is in showing asymptotic stability of the desired equilibrium point of a
mechanical system. Let us apply the preceding results to a Lagrangian mechanical
system

Mq̈ + Cq̇ +∇qV = Jq̇ −Rq̇ (2.23)

evolving on the smooth manifold Q, where J(q, q̇) = −JT(q, q̇) is a skew-symmetric
matrix linear in q̇ that corresponds to generalized gyroscopic forces, and R(q) ≥ 0
is a symmetric matrix related to the dissipative forces in the system. To guarantee
asymptotic stability, the positive semidefinite damping matrix needs to ensure pervasive
damping.

Definition 2.11 (Pervasive damping [208]). The damping in a mechanical system is
pervasive if every motion elicits energy dissipation.

As a consequence, if a system is pervasively damped, it cannot move indefinitely and
will eventually come to rest. The following corollary is an immediate result from the
preceding results.

Corollary 2.3. The equilibrium q∗ of the system (2.23) is locally stable if the potential
energy V has a strict minimum at q∗. The equilibrium is locally asymptotically stable
if it is stable and the damping is pervasive.

Proof. Since the inertia matrix M is positive definite, and q∗= arg min V , the total
mechanical energy

E = 1
2 q̇TMq̇ + V (2.24)

qualifies as Lyapunov function in an open set B ⊂ TQ containing (q∗, 0). The rate of
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change of E along the trajectories of (2.23) is

Ė = q̇TMq̈ + 1
2 q̇TṀq̇ +∇T

qV q̇

= q̇T (J−R −C) q̇ − q̇T∇qV + 1
2 q̇TṀq̇ +∇T

qV q̇

= − q̇TRq̇,

where Ṁ = C + CT from Proposition 2.1 has been used. Stability of the equilibrium
follows from Theorem 2.3, since R≥0. If the damping is pervasive, the largest invariant
set under the system dynamics (2.23) contained in

{
(q, q̇) ∈ TQ | Ė = 0

}
(2.25)

is given by ∇qV = 0, and equals the equilibrium q∗, since V has a strict minimum at
q∗. Asymptotic stability follows from LaSalle’s invariance principle. An estimate of the
domain of attraction is given by the largest bounded level set of E contained in B.

2.2.3 Time-varying systems

Consider time-varying systems whose dynamics evolve on X ⊂Rn

ẋ = f(t,x), x0 = x(t0), (2.26)

where the vector field f : [t0,∞[×X → Rn is locally Lipschitz in x and piecewise
continuous in t. Let γt0x0(t) =γ(t,x0, t0) be the solution of (2.26) that starts at initial
state x0 at time t0, and let it be defined for all t≥ t0. A point x∗ is an equilibrium
point of (2.26) at t= t0 if, for all t≥ t0, it holds that f(t,x∗) = 0. Since the conditions
for stability of time-varying systems may also depend on the initial time t0, we need to
refine Definition 2.9:

Definition 2.12 (Lyapunov stability for non-autonomous systems). The equilibrium
point x∗ of (2.26) is

◦ stable if, for each ε>0, there exists a δ=δ(ε, t0)>0 such that

‖x0 − x∗‖ < δ =⇒ ‖γt0x0(t)− x∗‖ < ε, ∀ t ≥ t0 ≥ 0. (2.27)

◦ uniformly stable if, for each ε > 0, there exists a δ = δ(ε)> 0, independent of t0,
such that (2.27) is satisfied.
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◦ asymptotically stable if it is stable, and there is a positive constant c=c(t0) such
that

‖x0 − x∗‖ < c =⇒ lim
t→∞

γt0x0(t) = x∗. (2.28)

◦ uniformly asymptotically stable if it is uniformly stable, and there is a positive
constant c> 0, independent of t0, such that, for each η > 0, there is T =T (η)> 0
such that

‖x0 − x∗‖ < c =⇒ ‖γt0x0(t)− x∗‖ < η, ∀ t ≥ t0 + T (η). (2.29)

Definition 2.13 (Domain of attraction for nonautonomous systems). Suppose that x∗

is a uniformly asymptotically stable equilibrium point of the system (2.26). Its DA is
the set

At0(x∗) =
{
x0 ∈ X | lim

t→∞
γt0x0(t) = x∗

}
. (2.30)

Note that in this definition, the DA depends on a particular initial time t0. Lyapunov
theory can as well be extended to this time-variant case. We can, accordingly, give an
estimate of the DA of an equilibrium of (2.26) by means of a Lyapunov function.

Theorem 2.5. Let x∗ be an equilibrium point of (2.26). Let B⊂X be a neighborhood
of x∗, and let V : [t0,∞[×X → R, V (t,x∗)=0 be a continuously differentiable function
such that, for all t≥ t0, and all x∈B, the inequalities

W1(x) ≤ V (t,x) ≤ W2(x) (2.31)

V̇ (t,x) = ∂V

∂t
+ ∂V

∂x f(t,x) ≤ −W3(x) (2.32)

hold for continuous functions Wi : X → R, i=1, 2, 3 satisfying

Wi(x∗) = 0, Wi(x) > Wi(x∗), ∀x ∈ B. (2.33)

Then x∗ is uniformly asymptotically stable.

Corollary 2.4. If c>0 is such that the sets

SW1
c = {x ∈ X | W1(x) ≤ c} (2.34)
SW2
c = {x ∈ X | W2(x) ≤ c} (2.35)

are bounded and contained in B, then SW2
c is an estimate of the DA of x∗, since all

solutions of (2.26) starting in SW2
c remain in SW1

c and approach x∗ as t→∞.
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Note that we ask for a positive definite function W3(x) in the above theorem. Al-
though there is no unifying formulation for the asymptotic stability of general non-
autonomous systems when V̇ (t,x) is only negative semidefinite, some extensions of the
invariance principle to time-varying systems can be consulted in [102] and the references
therein. The reader is also referred to [18], where the author considers time-varying
systems of the form (2.26) and Lyapunov functions V (x) independent from time for
the formulation of the invariance principle. The celebrated Lemma of Barbalat in its
"Lyapunov-like" version can also help to conclude asymptotic stability from V̇ (t,x)≤0
(see Section 4.5 in [189] for a short discussion and examples).

2.2.4 Input-to-state stability

The notion of input-to-state stability (ISS) was introduced by Sontag in [190], and is
essentially the natural extension of the Lyapunov stability to systems with input

ẋ = f(t,x,u), x0 = x(t0), t0 = 0 (2.36)

where u ∈ U ⊂Rm. The vector field f : R+
0X×U → Rn is piecewise continuous in t,

and locally Lipschitz in x and u. Suppose that the unforced system has an equilibrium
point at x∗

f(t,x∗,0) = 0. (2.37)

The stability of the unforced system can be nicely tackled by Lyapunov’s stability the-
ory. For some bounded input disturbance u 6=0, the ISS property provides a framework
in which to formulate the notions of stability for the system (2.36). Basically, the
question is whether the trajectories of (2.36) remain bounded under the effect of u
(bounded-inputs bounded-states). Since its origins in the late eighties, the ISS property
has constituted a central concept for the analysis of nonlinear systems. Let us first
introduce the following comparison functions (cf. [81])

◦ A function α : R+
0 → R+

0 belongs to class K (α ∈K) if it is continuous, strictly
increasing, and satisfies α(0)=0. A function ᾱ∈K is in K∞ if ᾱ(t)→∞ as t→∞.

◦ A function α : R+
0 → R+

0 belongs to class L (α ∈ L) if it is continuous, strictly
decreasing, and satisfies lim

t→∞
β(t)=0.

◦ A function α : R+
0 ×R+

0 → R+
0 belongs to class KL (α∈KL) if it is of class K on

the first argument and of class L on the second argument.
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Definition 2.14 (Input-to-state stability [102, 191]). Let B be an open set of X con-
taining x∗. The system (2.36) is said to be locally ISS if there exist functions γ∈K and
β∈KL, and constants k1,k2>0 such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖u‖L∞) (2.38)

holds for all x0 ∈B and u∈U satisfying ‖x0‖<k1, and ‖u‖L∞ <k2
9. It is said to be

globally ISS (or simply ISS) if B=X , γ ∈K∞, and (2.38) is satisfied for any bounded
input (k2 =∞).

A further characterization of ISS can be given in terms of a Lyapunov-like function.

Definition 2.15 (ISS-Lyapunov function). Let UB = {u∈U | ‖u‖≤ γ−1◦ α(‖x‖)}. A
continuously differentiable function V : R+

0 ×X → R is called a local ISS-Lyapunov
function if it is positive definite in B and its time derivative satisfies

V̇ (x,u) = ∂V

∂t
+ ∂V

∂x f(t,x,u) ≤ −α(‖x‖) + γ(‖u‖), ∀x ∈ B, u ∈ UB, (2.39)

for some functions α,γ ∈ K. The function V is called ISS-Lyapunov function if it is
radially unbounded, B = X , and α∈K∞.

Theorem 2.6 ([192]). A system is ISS if and only if it admits a smooth ISS-Lyapunov
function V (t,x).

Globally speaking, ISS is a very strong condition and does not always hold for me-
chanical systems that are globally asymptotically stable (GAS) in the absence of inputs.
See, e. g., the closed-loop system arising from a passivity-based tracking design for a
mechanical system, where the "input" corresponds to a time-varying desired state, or to
measurement noise [9]. This can be intuitively explained by some nonlinear resonance
produced by bounded inputs. Nevertheless, GAS (closed-loop) mechanical systems do
present some boundedness in the state trajectories with respect to certain inputs (mea-
surement noise or time-varying desired state). To capture this property, the weaker
form of integral input-to-state stability has been proposed, which relates the amplitude
of the state to the energy of the input [9]. However, since our results hold only lo-
cally, we will restrict the analysis to the local version of ISS, which has been proven
to be equivalent to the (local) asymptotic stability of the uncontrolled system (2.36)
for u = 0. Local input-to-state stability is, therefore, only of interest for robustness
analysis if both the domain of attraction and the magnitude of the tolerated inputs can

9‖u‖L∞ represents the sup norm of the input u, i. e., ‖u(t)‖L∞ = supt≥0(‖u(t)‖).
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be estimated. For further details on the ISS property and its variations, the reader is
referred to [45, 191].

2.3 Passivity-based control and energy shaping

The term passivity-based control (PBC) was first introduced in the context of motion
control of mechanical systems in [157]. Energy shaping is a PBC method used for the
stabilization of mechanical systems, which has its roots in the work of Takegaki and
Arimoto [11] long before it was related to passivity. The goal of energy shaping is to
virtually modify the energy of the system, composed of kinetic and potential energy, in
order to stabilize a desired equilibrium point.
In this thesis we focus our attention on two widespread energy shaping control meth-

ods for mechanical systems: the parametric form of interconnection and damping as-
signment, and the method of Controlled Lagrangians. Both methods have been proven
to be equivalent formulations of the stabilization problem in [22, 47].

2.3.1 Dissipativity, passivity, and stability

This section revisits the notions of dissipativity and passivity, and how they are used
in control theory for stabilization. Readers interested in a broader overview on the
topic are referred to the books [153, 181, 187], and the papers [44, 151, 154]. Passivity
is a structural property that stems from the fact that energy is dissipated in physical
systems. It essentially states that the energy of the system cannot increase more than
the amount of energy that flows into it. Mechanical systems naturally satisfy the energy
conservation10

Stored energy = Supplied energy−Dissipation,

and are, therefore, passive as we shall see later in the next section. The concept of
passivity was long used in the context of network systems but it was not until the early
70’s that Willems generalized it, and put it in a control theoretic framework [207]. Let
us consider input affine systems of the form

ẋ = f(x) + G(x)u, (2.40a)
y = h(x), (2.40b)

10Dissipation is defined as a positive quantity.
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where x∈X ⊆ Rn is the state, u∈ U ⊆ Rm is the input, and y∈Y ⊆ Rm represents
the output.

Definition 2.16 (Dissipative system). The System (2.40) is called dissipative if it
satisfies for all initial conditions x0, and all inputs u(t), t ≥ 0 the inequality

S(x(t))− S(x0) ≤
∫ t

0
w(y(τ),u(τ)) dτ (2.41)

for a positive semidefinite storage function S(x), and supply rate w(y(t),u(t)).

Definition 2.17 (Passive system). The System (2.40) is passive if it is dissipative with
supply rate w = yTu.

We assume S(x) to be continuously differentiable, such that the passivity inequality

Ṡ(x) ≤ yTu (2.42)

holds. If u = 0, then Ṡ(x) ≤ 0 from (2.42), and S(x) qualifies as a Lyapunov function if
it is positive definite (cf. [88]). Passivity is, thus, a very attractive property of dynamical
systems, which gave rise to the PBC methods, whose aim is to render the closed-
loop system passive. Despite the term passivity-based control being first introduced by
Ortega and Spong in 1989 [157], the idea of PBC for mechanical systems dates back
to Takegaki and Arimoto, who in 1981 proposed the now well-known potential energy
shaping and damping injection technique to solve set point regulation problems for fully
actuated systems [11]. As of today, the PBC approach for mechanical systems aims at
keeping the structure of the closed-loop system mechanical, and, thus, passive11, but
shaping its energy such that it exhibits a local minimum at the desired equilibrium
point. A key advantage of passivity-based methods relies on passivity as a structural
property, and as such, no exact knowledge of the system parameters is required.

2.3.2 Port-Hamiltonian systems

Port-Hamiltonian (pH) systems describe a class of intrinsically passive dynamical sys-
tems. Viewed as the generalization of the Hamiltonian representation of mechanical
systems presented in Section 2.1.3, pH systems naturally arise from a port-based model-
ing of lumped-parameter physical systems and constitute an important class throughout
this thesis. This section introduces pH systems and presents some of their key proper-
ties. For more detailed information, we recommend the textbook [181], and the survey
11Note that a realistic mechanical energy is always bounded from below.
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paper [184], which gives a very nice introduction to the topic from a rather geometric
point of view. For the use of pH systems as a unifying framework for the port-based
modeling and control of complex physical systems, we refer to the more recent book [59],
and to the papers [182, 183]. We consider port-Hamiltonian systems whose dynamics
evolve on X ⊂ Rn, and which are of the form

ẋ = (J(x)−R(x))∇xH(x) + G(x)u (2.43a)
y = GT(x)∇xH(x), (2.43b)

where the continuously differentiable Hamiltonian function H : X → R is bounded
from below, and represents the stored energy. Further, J : X → Rn×n is a skew-
symmetric matrix representing the lossless energy exchange in the system, and R :
X → Rn×n is a symmetric matrix, which characterizes the energy dissipation, and is
positive semidefinite for physical systems. The input u ∈ U ⊆ Rm and the output
y ∈ Y ⊆ Rm are conjugate variables, i. e., their product gives a power quantity.
The system (2.43) is passive with storage function H(x), as the passivity inequality

Ḣ = −∇T
xHR∇xH +∇T

xHG︸ ︷︷ ︸
yT

u ≤ yTu (2.44)

holds, since J is skew-symmetric, and R is positive semidefinite. If u = 0, and

x∗ = arg minH, (2.45)

then H is a Lyapunov function, and stability of the equilibrium point x∗ follows from
Theorem 2.3. Adding damping of the form u = −φ(y) for a function φ(y) satisfying
φ(y)y > 0 for all y 6= 0, guarantees asymptotic stability if the output y is zero-state
detectable.

2.3.3 Interconnection and damping assignment

The passivity-based control method interconnection and damping assignment (IDA)
exploits the aforementioned properties of pH systems for the stabilization of dynamical
systems. The approach was first presented in [156] for pH systems and was generalized
for input affine systems in [151]. The application to underactuated mechanical systems
in Hamiltonian representation was introduced by Ortega et al. in [158]. The following
is a short exposition of the method; for details and additional material, the reader is
referred to the survey paper [151] and the references within. Consider the input affine
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system
ẋ = f(x) + G(x)u, (2.46)

with drift vector field f , and input matrix G. The idea of IDA is to find a static state
feedback u = u(x), such that the closed-loop system is port-Hamiltonian

f(x) + G(x)u != (Jd(x)−Rd(x))∇xHd(x). (2.47)

To ensure (asymptotic) stability of the desired equilibrium x∗ according to Theorem 2.3,
we additionally impose the following definiteness constraints

1. The damping matrix Rd is positive (semi-) definite

2. The desired Hamiltonian function Hd has a strict minimum at x∗

We will often make use of following fundamental result (Lemma 2 in [154]):

Lemma 2.1. Let G be a matrix-valued map G : X → Rn×m of constant rank rank(G)=
m < n. Define G⊥ ∈R(n−m)×n as the full rank left annihilator of G, i. e., G⊥G = 0.
For any f ∈Rn, u∈U⊆ Rm

f + Gu = 0 ⇔
 0 = G⊥f

u = − (GTG)−1GTf
(2.48)

Proof. The matrix  G⊥
GT


is full rank. Therefore

f + Gu = 0 ⇔

 G⊥
GT

 (f + Gu) = 0.

The proof is concluded using the annihilating property of G⊥, and noting that the
matrix GTG is invertible.
According to Lemma 2.1, (2.47) is equivalent to

u = (GTG)−1GT
(
(Jd −Rd)∇xHd − f

)
, (2.49a)

0 = G⊥
(
(Jd −Rd)∇xHd − f

)
. (2.49b)
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Therefore, the matching problem is solved if and only if the projected matching equa-
tion (2.49b) is satisfied, and the control law is chosen according to (2.49a). For un-
deractuated systems, some restrictions on the design matrices Jd and Rd, and/or on
the closed-loop energy function Hd arise from the projected matching equation, since
G⊥ 6= 0. Finding a solution for (2.49b) can be very challenging, constituting therefore
the major obstacle for the control design via IDA.
There are, roughly speaking, three ways to proceed for the solution of the matching

problem (2.47). In the most common approach, known as the non-parametrized IDA,
the idea is to fix the desired interconnection and dissipation matrices Jd(x) = −JT

d (x)
and Rd(x) = RT

d (x) ≥ 0—hence the name. The admissible energy functions Hd(x)
are then described by the set of partial differential equations (PDEs) given by (2.49b).
The energy function Hd(x) is chosen such that it has a strict minimum at the desired
equilibrium x∗.
In the algebraic IDA approach, one fixes the desired energy function12. The projected

matching equations (2.49b) become algebraic equations in Jd(x) and Rd(x). The diffi-
culty of the latter lies in choosing Hd(x) such that Rd(x) ≥ 0 is a possible solution of
the matching problem.
The third approach is called parametrized IDA and is widely used for the stabilization

of mechanical systems [158]. In this particular case, the structure of the closed-loop
Hamiltonian function is physically motivated and chosen to be—in the context of me-
chanical systems—the sum of kinetic and potential energy. This choice results in a
different (and simpler) set of PDEs (2.49b), but it also imposes some constraints on
Jd(x) and Rd(x), as we shall see in the following. We consider (damped) mechanical
systems with input in Hamiltonian representation

 q̇

ṗ

 =

 0 I

− I −R


 ∇qH

∇pH

+

 0

G

u. (2.50)

The dissipation matrix R = RT ≥ 0 is assumed to satisfy G⊥R = 0, which means
that there is no physical dissipation in unactuated coordinates. We also assume—for
obvious reasons—that the equilibrium to be stabilized is admissible.

Definition 2.18 (Admissible equilibrium). An equilibrium (q∗,0) (or simply q∗) of a
mechanical system is called admissible if G⊥∇qV |q∗ = 0.

12The name IDA here is somehow misleading.
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Since the structure of the desired closed-loop energy is chosen to be of mechanical
form

Hd = 1
2 pTM−1

d p + Vd (2.51)

for this particular case, the matching equation (2.47) becomes
 0 I

− I −R


 ∇qH

∇pH

+

 0

G

u !=

 0 J1

−JT
1 J2 −R2


 ∇qHd

∇pHd

. (2.52)

It is necessary that J1 = M−1Md, for the relation q̇ = M−1p still needs to be satisfied
in the closed-loop system. Based on the result of Lemma 2.1, (2.52) is satisfied by the
control law

u = (GTG)−1GT
(
∇qH + RM−1p−MdM−1∇qHd + (J2 −R2) M−1

d p
)

(2.53)

if and only if
G⊥

(
∇qH −MdM−1∇qHd + (J2 −R2) M−1

d p
)

= 0 (2.54)

holds. Assuming that R2 = R2(q), and J2 = J20(q)+J21(q,p), with J21 linear in p, the
projected matching equation (2.54) can be naturally split according to the dependency
on p: The terms quadratic and independent from p correspond to the kinetic and
potential energies, respectively. The terms linear in p correspond to the dissipation.
Thus, (2.54) can be written as

G⊥
(
∇q(pTM−1p)−MdM−1∇q(pTM−1

d p) + 2J21M−1
d p

)
= 0, (2.55a)

G⊥
(
∇qV −MdM−1∇qVd

)
= 0, (2.55b)

G⊥(J20 −R2) M−1
d p = 0. (2.55c)

The first equation is a nonlinear PDE that has to be solved for the unknown elements
of the inertia matrix Md(q). For a given desired inertia matrix, the second equation
becomes a linear PDE for the unknown function Vd(q), and the third equation is a
simple algebraic equation, which can be solved by the choice

J20 −R2 = G (KJ −KR) GT, (2.56)

with free parameters KR = KT
R > 0, and KJ = −KT

J . The following corollary results
directly from Theorem 2.3:
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Corollary 2.5 (Stability of the closed-loop system). If

q∗ = arg minVd, Md > 0 and R2 ≥ 0 (2.57)

in a neighborhood of q∗, then the equilibrium q∗ is (locally) stable with Lyapunov func-
tion Hd. Local asymptotic stability follows if the damping is pervasive.

Proof. Stability follows from Theorem 2.3 noting that Hd is positive definite, and
Ḣd ≤ 0. If the damping is pervasive, asymptotic stability can be shown by invoking
LaSalle’s invariance principle.

Remark 2.3.1. There is a significant difference between the zero-state detectability prop-
erty and pervasive damping. The output y is zero-state detectable if y = 0 implies,
without loss of generality, that the state x→0 as time goes to infinity. In the context
of mechanical systems, zero-state detectability of y implies that if y = 0, the system
converges to the desired configuration q∗. Pervasive damping, on the other hand, guar-
antees that the system will come to rest, since q̇→0 as time goes to infinity. However,
it does not guarantee that the system will converge towards the desired equilibrium
q∗. For that reason, the damping matrix R2 = GKRGT (KR > 0) induces pervasive
damping if the output y=GTM−1

d p is zero-state detectable, but the converse does not
hold.

2.3.4 Method of Controlled Lagrangians

The method of Controlled Lagrangians (CL) as the Lagrangian counterpart to para-
metric IDA for mechanical systems aims at stabilizing an equilibrium point by shaping
the system’s total energy and, in its more general form, also includes generalized gy-
roscopic forces as additional degree of freedom. Damping is subsequently injected to
achieve asymptotic stability of the desired equilibrium q∗. In the following, we give the
general idea of CL for the stabilization of an admissible equilibrium q∗. Consider the
mechanical system

Mq̈ + Cq̇ +∇qV = Gu. (2.58)

The goal of the Controlled Lagrangians procedure is to transform (2.58) by static state
feedback u = u(q, q̇) into a target Lagrangian closed-loop system. Let

Lc = 1
2 q̇TMcq̇ − Vc (2.59)
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be the desired closed-loop Lagrangian with mass matrix Mc(q) = MT
c (q) and potential

energy Vc(q), and let us consider the Euler-Lagrange equation for the target system
with dissipation and generalized gyroscopic forces

d
dt

(
∂Lc

∂q̇

)T

−
(
∂Lc

∂q

)T

= (Jc −Rc) q̇, (2.60)

where the matrix Jc = Jc0(q) + Jc1(q, q̇) (Jc1 linear in q̇) is skew-symmetric, and the
closed-loop damping matrix Rc = Rc(q) is symmetric and positive (semi-)definite. The
target dynamics (2.60) can then be given in matrix form as

Mcq̈ + Ccq̇ +∇qVc = (Jc −Rc) q̇, (2.61)

or equivalently
q̈ = −M−1

c Ccq̇ −M−1
c ∇qVc + M−1

c (Jc −Rc) q̇. (2.62)

The following corollary follows directly from Corollary 2.3:

Corollary 2.6. The desired closed-loop system (2.61) is asymptotically stable if

q∗ = arg minVc, Mc > 0, Rc ≥ 0, (2.63)

and the damping is pervasive.

Conditions, under which both—the system (2.58) and the target Lagrangian system
(2.61)—match, can be derived by inserting the target dynamics (2.62) into the system’s
equations of motion (2.58). The objective is to find an appropriate input u, which solves
the corresponding matching equation

−MM−1
c Ccq̇ −MM−1

c ∇qVc + MM−1
c (Jc −Rc) q̇ + Cq̇ +∇qV = Gu. (2.64)

Splitting the equations by means of the dependency on the velocities q̇, leads to the
matching equations for the potential (independent from q̇) and the kinetic (quadratic in
q̇) energy, and for the dissipation, which consists of the terms linear in q̇. The resulting
set of equations

Guke = Cq̇ −MM−1
c (Cc − Jc1) q̇, (2.65a)

Gupe = ∇qV −MM−1
c ∇qVc, (2.65b)

Gudi = MM−1
c (Rc − Jc0) q̇, (2.65c)
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determines the components of the control law

u = uke + upe + udi (2.66)

related to the shaping of kinetic and potential energy, as well as damping injection.
The solution of all three matching equations (2.65) is sufficient to satisfy (2.64).

Remark 2.3.2. As we will see in Chapter 6, the matching equations (2.65) in Controlled
Lagrangians can be split into a non-actuated part, which is equivalent to the matching
problem (2.55) in IDA, and a fully actuated part. From the latter we can directly
compute the control law that renders the mechanical system (2.58) the desired closed-
loop system (2.60), provided that the projected matching equations—the non-actuated
part of (2.65)—are satisfied.



II

Physical Dissipation in Unactuated
Coordinates





3 Augmented Interconnection
and Damping Assignment

Physical dissipation in mechanical systems is mostly neglected in PBC for the sake
of simplicity and mathematical elegance, especially in unactuated coordinates, where
it is assumed to be small. Yet, it plays a crucial role in the applicability of energy
shaping to mechanical systems. Intuitively, physical damping enhances stability, since
it dissipates energy. However, if dissipation occurs in unactuated coordinates of the
uncontrolled mechanical system, shaping the kinetic energy through feedback, e. g., via
CL or IDA, might cause the dissipation terms to have a destabilizing effect on the
closed-loop system. The so-called dissipation condition—firstly introduced in [74]—
determines a posteriori, i. e., after the controller has been designed for the undamped
system, if the required definiteness properties for the closed-loop system are also fulfilled
in the presence of dissipation or not.

This chapter addresses the systematic design of passivity-based controllers for me-
chanical systems in the presence of dissipation in unactuated coordinates. In order to
render a mechanical system passive by shaping its total energy, the dissipation condi-
tion has to be met. To bypass this obstacle, a more general, non-mechanical structure
for the closed-loop energy is allowed. By doing so, we do not only counteract the dis-
sipation related problems, we also increase the design freedom of the approach, but, at
the same time, break the system’s mechanical structure.

The chapter is organized as follows: After the formulation of the problem in Sec-
tion 3.1, the augmented IDA approach for mechanical systems is motivated by means
of a linear system in Section 3.2.1. The idea is then transfered to nonlinear systems
in Section 3.2.2, for which the new matching equations are given. A solution to this
new matching problem is then proposed in Section 3.3. In Section 3.4, we give the La-
grangian formulation of the closed-loop dynamics, and conclude the chapter with some
final remarks.
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3.1 Problem formulation

Let us first briefly recapitulate the IDA-PBC approach for underactuated mechanical
systems as presented in Section 2.3.3. We consider Hamiltonian systems of the form

 q̇

ṗ

 =

 0 I

− I −R


 ∇qH

∇pH

+

 0

G

u, (3.1)

where (q, p) ∈ T∗Q are the generalized local coordinates and momenta, respectively,
u ∈ U ⊆ Rm is the input, and G ∈ Rn×m is the input matrix with rank(G) = m < n.
The Hamiltonian

H = 1
2 pTM−1p + V (3.2)

corresponds to the total energy with inertia matrix M(q) > 0 and potential energy
V (q). The goal is to stabilize the equilibrium q∗ via total energy shaping. The state
feedback

u = (GTG)−1GT
(
∇qH + RM−1p−MdM−1∇qHd + (J2 −R2) M−1

d p
)

(3.3)

transforms (3.1) into a pH system
 q̇

ṗ

 =

 0 M−1Md

−MdM−1 J2 −R2


 ∇qHd

∇pHd

 (3.4)

with new (shaped) energy
Hd = 1

2 pTM−1
d p + Vd (3.5)

if the projected matching equations (2.55) are satisfied. According to Corollary 2.5, if
further

q∗ = arg minVd, Md > 0, and R2 ≥ 0, (3.6)

then q∗ is stable, provided that G⊥R = 0.

Unlike the common approach, in this chapter we consider physical dissipation in
unactuated coordinates, such that G⊥R 6= 0. For that reason, the matching equation
related to the dissipation (2.55c) takes the new form

G⊥
(
RM−1p + (J20 −R2)M−1

d p
)

= 0. (3.7)
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In [74], Gómez-Estern and van der Schaft derive the dissipation condition1 (DC)

G⊥
(
RM−1Md + MdM−1R

)
GT
⊥ ≥ 0 (3.8)

from (3.7), and show that it is a necessary and sufficient condition for the existence
of a passive closed-loop system with given positive definite storage function Hd. Note
that the DC depends on Md. It, therefore, provides the information after the matching
equation for the kinetic energy (2.55a) has been solved. If it turns out, for instance,
that the DC is not satisfied, one cannot know for certain whether it will be satisfied for
a different Md or not. Yet, it is well-known that in the presence of physical damping
in unactuated degrees of freedom for many mechanical systems—such as the acrobot
system, the Furuta and the inverted pendulum on a cart among others—it is not possible
to find a solution for the matching equations (2.55a) and (2.55b) that simultaneously
satisfies the definiteness requirements (3.6) and the DC (3.8) (see, e. g., the papers [43,
74] for the DC in IDA, or [209] for the CL point of view). Two questions naturally arise
from this fact:

◦ Is it possible, nonetheless, to show stability of an equilibrium q∗ that has been
stabilized in the absence of damping, when damping is considered?

◦ How can the IDA approach be modified, such that it can cope with dissipation
in unactuated coordinates from the very beginning, regardless of the dissipation
condition?

The answer to the first question is given by Woolsey, Reddy, and others in [167, 168,
209]. Assuming small dissipation values, the authors prove stability of the desired
equilibrium for appropriately chosen control parameters via spectral analysis of the
linearized closed-loop system. However, even though it is possible to show asymptotic
stability, the analysis is cumbersome, and one loses the estimate of the domain of
attraction, which constitutes one of the advantages of the energy shaping methodology
that we do not want to lose. The purpose of this chapter is to give an answer to the
second question.

3.2 Non-mechanical PBC for mechanical systems

The central question that is addressed in this section is whether or not it is possible
to transform a damped mechanical system into a closed-loop pH system by static state

1The DC is not to be confused with the dissipation obstacle also known from PBC approaches [155].
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feedback if the DC is not satisfied. Indeed, the answer is yes. It can be achieved by
augmenting the desired Hamiltonian function by a cross term between coordinates and
momenta, breaking the mechanical structure of the closed-loop system2.

3.2.1 Linear time-invariant systems

To motivate the approach, let us consider linear time-invariant (LTI) systems of the
form

ẋ = Ax + Bu, x ∈ Rn, u ∈ Rm. (3.9)

A substantial analysis of IDA-PBC for general LTI systems can be found in [162] and
[152]. The CL case is treated in [219]. For simplicity—and without loss of generality—
the desired equilibrium to be stabilized is taken to be the origin. Applying IDA to LTI
systems consists in finding a linear state feedback u = −Dx such that

Ax + Bu != (Jd −Rd) Pdx. (3.10)

The matrix Pd is positive definite and defines the Hamiltonian of the closed-loop system,
i. e., the Hamiltonian is given by

Hd = 1
2 xTPdx. (3.11)

It has been shown in [152] that, for general LTI systems, IDA-PBC is equivalent to
stabilizability: if the pair (A,B) is stabilizable, then there exists a matrix D ∈ Rm×n,
such that Ad = A − BD is Hurwitz. Further, given a positive definite matrix Rd, a
unique solution P−1

d > 0 to the Lyapunov equation

AdP−1
d + P−1

d AT
d = −2Rd (3.12)

exists. The projected matching equations—i. e., conditions that have to be satisfied
independent from control—stem directly from (3.10): The applicability of IDA to a
general LTI system (3.9) is equivalent to the solvability of the LMIs (Proposition 7 in
[162] and Proposition 3.1 in [152])

Pd > 0 (3.13a)
sym(B⊥AP−1

d BT
⊥) ≤ 0, (3.13b)

2A PBC can be denoted non-mechanical if the energy term (Hamiltonian function) of the closed-loop
system is not composed of the sum of kinetic and potential energy.



3.2 Non-mechanical PBC for mechanical systems 55

where B⊥ is a full rank left annihilator of B, i. e., B⊥B = 0.

When dealing with mechanical systems, the structure of the desired Hamiltonian
function is restricted to be of mechanical form. This has some important repercussions
as shown in the following. We consider linear mechanical systems in the Hamiltonian
representation

ẋ =

 q̇

ṗ

 =

 0 I

− I −R


 ∇qH

∇pH

+

 0

G

u = Ax + Bu, (3.14)

with quadratic energy
H = 1

2 pTM−1p + 1
2 qTQq. (3.15)

The aim of IDA is now to transform (3.14) by linear state feedback into a new LTI
mechanical system

ẋ =

 q̇

ṗ

 =

 0 M−1Md

−MdM−1 J2 −R2


 ∇qHd

∇pHd

 = Adx (3.16)

with shaped Hamiltonian composed of the sum of desired kinetic and potential energy

Hd = 1
2 pTM−1

d p + 1
2 qTQdq. (3.17)

Notice that, in doing so, the matrix Pd is restricted to be of a predefined block-diagonal
form

Pd = ∇2
(q,p)Hd =

 Qd 0

0 M−1
d

 . (3.18)

By imposing (3.18), the conditions (3.13) exhibit a familiar structure: On the one
hand, the LMI (3.13a) demands positive definiteness of both matrices Md and Qd, and
thereby, positive definiteness of the kinetic and potential energy. On the other hand, the
LMI (3.13b) characterizes the linear version of the potential energy matching equation
(2.55b), and of the dissipation condition (3.8), which are given as

G⊥(MdM−1 −QQ−1
d ) = 0, (3.19a)

−G⊥(RM−1Md + MdM−1R)GT
⊥ ≤ 0. (3.19b)
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According to Proposition 7 in [162], the linear state feedback

u = (GTG)−1GT
[(

Q−MdM−1Qd
)

q +
(
RM−1 + (J2 −R2) M−1

d

)
p
]

(3.20)

renders (3.14) the closed loop-system (3.16) if a solution Pd to the set of LMIs (3.13) re-
stricted to (3.18) exists (cf. [219] and [112]), or, equivalently, a solution to the matching
equations (3.19)3 can be found. Yet, for many mechanical systems it is not possible to
find positive definite matrices Md and Qd that solve (3.19a) and (3.19b) simultaneously
[73, 111, 112].
In [152], Ortega and co-workers show that stabilizability is not sufficient for the

applicability of parametrized IDA to linear (undamped) mechanical systems, since some
conditions on the uncontrolled modes have to be additionally imposed. In addition, if
physical damping is considered, then the dissipation condition needs to be satisfied to
render the closed-loop system passive. However, as previously mentioned, stabilizability
is indeed sufficient for the existence of an IDA controller if we relax the condition on
the mechanical structure for the closed-loop system: By allowing off-diagonal entries
in the matrix Pd—representing a cross term between coordinates and momenta in the
energy function (3.17)—a positive definite solution Pd to the set of LMIs (3.13) can
always be found, assuming stabilizability of (3.9). It is, thus, possible to asymptotically
stabilize linear mechanical systems via IDA-PBC regardless of the DC.

Remark 3.2.1. In [219], the stabilization of (conservative) linear mechanical systems us-
ing only position feedback in the CL framework is discussed. Therein, the closed-loop
Hamiltonian is initially assumed to have a non-block-diagonal Hessian, which corre-
sponds to the structure of the augmented closed-loop Hamiltonian in the next section.

3.2.2 Augmented Hamiltonian function and new matching equations

Starting from the premise that a stabilizing state feedback for systems with a stabilizable
linearization always exists, it is intended to reformulate the target pH system such that
a nonlinear IDA controller can be derived, although the DC is violated. The non-block-
diagonal structure of the solution of the set of LMIs (3.13) gives rise to assume an
augmented formulation of the closed-loop energy function

Hd = 1
2 pTM−1

d (q)p + Vd(q) + pTnd(q) (3.21)

3Note that the matching equation for the kinetic energy is obviated in the linear case.
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for the generalized target pH system

Fd∇Hd =

 W(q) X(q)

Y(q) Z(q,p)


 ∇qHd

∇pHd

 , (3.22)

where Z=Z0(q)+Z1(q,p), and Z1(q,p) is skew-symmetric and linear in p. Because of
the non-mechanical form of Hd, the closed-loop interconnection and damping matrices
Fd = Jd(q,p) − Rd(q) are required to be of a more general form than in the classic
approach. As q̇ = M−1p still holds in the closed-loop system (3.22), the matrices W
and X are required to satisfy M−1p = W∇qHd + X∇pHd. Splitting the equation in
different dependencies on p—quadratic, linear, and independent—yields the sufficient
conditions

W∇q
(
pTM−1

d p
)

= 0, (3.23a)

W
(
∂nd

∂q

)T

+ XM−1
d −M−1 = 0, (3.23b)

W∇qVd + Xnd = 0. (3.23c)

Furthermore, the unactuated part of the second rows of (3.1) and (3.22) must match.
A sufficient condition is represented by the new projected matching equations (again,
splitting the terms)

G⊥
(
Y∇q

(
pTM−1

d p
)

+ 2Z1M−1
d p +∇q

(
pTM−1p

))
= 0, (3.24a)

G⊥

RM−1p + Z0M−1
d p + Z1nd + Y

(
∂nd

∂q

)T

p
 = 0, (3.24b)

G⊥ (∇qV + Y∇qVd + Z0nd) = 0. (3.24c)

The computation of an analytical solution to the matching problem given by (3.23) and
(3.24) subject to

Hd > 0, Rd ≥ 0, (3.25)

is, in general, far from trivial. The next section presents a way to systematically
compute a solution for a class of mechanical systems.
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3.3 Solving the matching problem in augmented IDA

One of the main difficulties of the IDA-PBC approach lies in finding a solution to the
projected matching equations. Not all degrees of freedom being equipped with actuators
results in certain restrictions on the achievable closed-loop dynamics of underactuated
systems. These restrictions are given in the form of algebraic equations and PDEs:
the matching equations. Whilst in its parametric mechanical form the restrictions are
given by two PDEs and one LMI—the matching equations for the potential and kinetic
energy, and the dissipation condition—the matching problem in augmented IDA is much
more challenging. Even though the structure of the desired Hamiltonian (3.21) is not
left completely free, the closed-loop system still possesses a vast amount of degrees of
freedom that need to be tuned appropriately to guarantee the definiteness conditions
(3.25). As mentioned earlier in Section 2.3.3, there are, basically, two ways of solving
(3.23) and (3.24): On the one hand, one can fix the desired interconnection and damping
matrices—in terms of W, X, Y, and Z—and then try to solve the PDEs. The solution
to the corresponding homogeneous PDEs needs to be fixed such that Hd > 0. This
results in the non-algebraic approach, which is discussed in Section 3.3.1. On the other
hand, one can fix the Hamiltonian Hd. The conditions for matching (3.23) and (3.24)
become algebraic equations for the desired interconnection and damping matrices, and
need to be satisfied for Rd≥0. This concept is treated in Section 3.3.2.
In the following, we generalize the theory developed in the papers [52, 112] for the

simplification and solution of the new matching equations (3.23) and (3.24). In the
process, we impose some conditions on the closed-loop system, and restrict the analysis
to a special class of mechanical systems. Initially, our concern is to find a general
solution to the matching equations. Its parametrization, such that it also satisfies the
definiteness requirements (3.25), will be addressed in Chapter 4.

Assumption 3.1. The underactuation degree is one, i. e., rank(G⊥) = n−m = 1.

Assumption 3.2. The closed-loop inertia matrix Md is chosen to be constant, i. e.,
∇q

(
pTM−1

d p
)

= 0. For convenience of notation, it will be denoted as Md∗.

Assumption 3.1 is often made for the application of IDA to underactuated mechan-
ical systems, see, e. g., the representative papers [5, 151, 158]. The reason for that is
twofold: On the one hand, the PDEs are significantly simplified. In fact, it is possible
to construct an analytical solution to the classic matching problem for this class of
systems if damping is not considered [5]. On the other hand, the matching conditions
are given in terms of scalar PDEs, and are, therefore, always integrable according to the
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Frobenius Theorem 2.1. That is, the existence of a solution is guaranteed, in contrast
to the case m<n−1, where a system of PDEs with non-constant coefficients has to be
examined for solvability first, and then has to be solved. In the following, the matrix
W is assumed to be full rank, such that Assumption 3.2 is necessary for the solution
of (3.23a).

3.3.1 Non-algebraic approach

One way of solving (3.24) is fixing a parametrization for the matrices Y and Z0, and
solving n+1 PDEs for Vd, and the elements of nd. The idea was first presented in
[112] for the benchmark system acrobot, for which the mass matrix is independent of
unactuated coordinates, i. e., G⊥∇q

(
pTM−1p

)
= 0. Then, equation (3.24a) is trivially

satisfied for Z1 = 0. It remains to find solutions Vd(q) and nd(q) to the PDEs (3.24b)
and (3.24c). In [112], a parametrized solution to these PDEs has been constructed. The
subsequent parametrization of the closed-loop system and the stability analysis have
been carried out via local linear dynamics assignment (LLDA) (see Section 4.1).

This method provides a solution for the problem of designing a passivity-based con-
troller via IDA even though the DC is violated. However, a series of practical difficulties
arises in the application of non-algebraic augmented IDA: The solution of additional
PDEs for the vector-valued function nd(q) is required, the estimate of the region of
attraction is shown to be poor, and the controller becomes confusingly complicated.
The algebraic approach aims at solving some of these issues.

3.3.2 Algebraic approach

In the algebraic approach of IDA, the closed-loop Hamiltonian Hd is fixed. By doing so,
the matching problem is reduced to a set of algebraic equations for the interconnection
and damping matrices. The condition q̇ = M−1p for the closed-loop system (3.22)
is represented by the set of equations (3.23). Assumption 3.2 guarantees the solution
of (3.23a). Without loss of generality, and in order to provide an expression for the
matrices W(q) and X(q) in closed form, the vector-valued function nd(q) is given as

nd(q) = −Kd(q)∇qVd(q), (3.26)
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where Kd ∈ Rn×n is a smooth matrix-valued function. For a given closed-loop Hamil-
tonian (3.21), equations (3.23b) and (3.23c) are, consequently, satisfied by

W = XKd, X = M−1

Kd

(
∂nd

∂q

)T

+ M−1
d∗

−1

, (3.27)

assuming regularity of
(
Kd

(
∂nd
∂q

)T
+ M−1

d∗

)
. For a systematic solution of the projected

matching equations (3.24), it is convenient to first express (3.24a) and (3.24b) in an
alternative, equivalent form.

Proposition 3.1. Let Assumption 3.1 and Assumption 3.2 hold. Equation (3.24a) is
equivalent to

ΓM−1
d∗ + M−1

d∗ΓT +
n∑
j=1

G⊥j(∂qj
M−1) = 0, (3.28)

where
Γ =

N∑
i=1

fi(q)G⊥Ji, N = n2 − n
2 , (3.29)

the N free vector-valued functions fi(q) are free parameters, and the N matrices Ji

constitute a basis for the set of n-dimensional skew-symmetric matrices. The scalar G⊥j
denotes the j-th coefficient of G⊥, and ∂qj

M−1 represents the element-wise derivative
of the matrix M−1 with respect to the configuration variable qj.

Proof. See Appendix A.1.

We are now ready to formulate the main result of this chapter.

Theorem 3.1. Let the desired Hamiltonian function Hd be defined as in (3.21) with
fixed Vd(q), Md∗, and nd(q) = −Kd(q)∇qVd(q). Suppose that one can find m functions
fi(q), such that the matrix Γ is a solution for (3.28), and define

Sd = VGT
⊥nT

d ΓT

G⊥VGT
⊥

M, (3.30)

for an arbitrary matrix V(q) ∈ Rn×n satisfying G⊥VGT
⊥ 6= 0. Further, let Ld(q) be a

solution of
G⊥ (∇qV − LdKd∇qVd) = 0, (3.31)
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and set

Y = −
(
LdM−1

d∗M + R + Sd

)
W, (3.32)

Z0 = −
Y

(
∂nd

∂q

)T

+ RM−1 + SdM−1

Md∗ + GηT, (3.33)

where η(q) ∈ Rn is an arbitrary vector-valued function, and W is defined according to
(3.27). Then, the state feedback

u = (GTG)−1GT
(
∇qH + RM−1p + Y∇qHd + Z0∇pHd

)
(3.34)

transforms (3.1) into the closed-loop system (3.22).

Proof. According to (2.49), the solution of (3.24) is sufficient to render (3.1) the
desired closed-loop system (3.22) using the state feedback (3.34). From Assumption 3.2
and Proposition 3.1, we can conclude that if a matrix Γ satisfying (3.28) exists, then it
also satisfies (3.24a). Additionally, Assumption 3.2 and Proposition 3.1 imply that the
matching equation (3.24b) can be rewritten as

G⊥

RM−1 + Z0M−1
d∗ + Y

(
∂nd

∂q

)T
+ nT

d ΓT = 0. (3.35)

One can show by direct calculation that the matrix Z0 defined by (3.33) is a solution
to (3.35), and thus, to (3.24b). Finally, from (3.23b) and (3.23c), it can be concluded
that

W
∇qVd −

(
∂nd

∂q

)T

Md∗nd

 = −M−1Md∗nd, (3.36)

such that replacing (3.33) in (3.24c) yields

0 = G⊥

∇qV + Y∇qVd −
Y

(
∂nd

∂q

)T

+ RM−1 + SdM−1

Md∗nd



= G⊥

∇qV + Y
∇qVd −

(
∂nd

∂q

)T

Md∗nd


︸ ︷︷ ︸

(3.36)
= −W−1M−1Md∗nd

− (R + Sd) M−1Md∗nd



= G⊥
(
∇qV −

(
YW−1 + R + Sd

)
M−1Md∗nd

)
. (3.37)



62 3 Augmented Interconnection and Damping Assignment

Defining
Ld = −

(
YW−1 + R + Sd

)
M−1Md∗, (3.38)

and rewriting equation (3.37) with (3.38) and nd = −Kd∇qVd finishes the proof.

3.4 Concluding remarks

The procedure presented in this chapter breaks the mechanical structure of the closed-
loop system. Nonetheless, also in this augmented formulation, there is still a relation
between the Hamiltonian and the Lagrangian framework as we can see in the following.
Introducing the Lagrangian

Ld(q,y) = pTy−Hd(q,p), (3.39)

where the new pseudo-velocities y satisfy

y = ∇pHd, (3.40)

the closed-loop dynamics (3.22) can be written in the form

d
dt

(
∂Ld

∂y

)T

+ Y
(
∂Ld

∂q

)T

= Z y. (3.41)

For the classical IDA approach (2.52) with nd = 0, (3.41) describes the closed-loop
system with y = M−1

d Mq̇, Z = J2−R2, and Y = −MdM−1 (cf. [22]). Notice also
that (3.41) represents the Euler-Lagrange equations of motion for standard mechanical
systems with velocity-proportional damping if y = q̇, Z = −R, and Y = − I. Based
thereupon, we can as well give the augmented formulation of the dynamics in Lagrangian
form for the controller design and stability analysis as in [127]. However, for simplicity,
and since IDA is not restricted to mechanical systems in its original formulation, we
will restrict the analysis to the Hamiltonian representation (cf. Chapters 4 and 5).
In this chapter, we introduced a novel IDA controller design approach for underactu-

ated mechanical systems based on a more general closed-loop Hamiltonian function—yet
not completely free—that is not affected by physical damping, since dissipation is con-
sidered for the controller design from the very beginning. Additionally, the methodology
is attractive from a practical point of view, for it does not require the solution of PDEs.
The next chapter presents the controller parametrization via LLDA, and provides a
framework consisting of five simple steps for the systematic controller design.



4 Controller Design
Implementation

In Chapter 3, we assumed an augmented formulation for the desired Hamiltonian Hd in
order to bypass the dissipation condition. This leads to a more general representation
of the closed-loop pH system and a considerable amount of free parameters. Since the
approach breaks the physical structure of the system, it is no longer possible to achieve
a physically motivated choice of the design parameters by means of the potential energy
and inertia matrix of the closed-loop system. This chapter shows that transparency with
respect to achievable dynamics can be provided by local linear dynamics assignment
(LLDA), nonetheless.
The remainder of the chapter is organized as follows: After the introduction of LLDA

in Section 4.1, we show stability of the closed-loop system and provide an estimation
of the domain of attraction of the equilibrium in Section 4.2. Section 4.3 gives a step-
by-step guideline to systematically design augmented IDA controllers for the class of
mechanical systems in consideration. Section 4.4 concludes the chapter with some final
remarks.

4.1 Local linear dynamics assignment

In general, the control design via IDA requires the tuning of free parameters such that,
besides from stability, the closed-loop system exhibits desired properties in terms of
performance and/or robustness. By fixing Hd>0, the matching conditions are given by
a set of algebraic equations. As mentioned earlier in Section 2.3.3, the main obstacle
of the algebraic IDA-PBC approach lies, in fact, in choosing a positive definite desired
Hamiltonian Hd such that Rd≥0 is a possible solution to the matching problem. Even
if we manage to guarantee stability, it is uncertain how individual parameters affect the
robustness, the estimate of the domain of attraction, or the transient dynamics.
The method of LLDA was first introduced in [113] to provide transparency in the

parametrization of IDA controllers. Essentially, the idea is to parametrize the closed-
loop dynamics according to a desired local behavior predefined by the designer. By
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doing so, not only the choice of the free parameters is reduced to the election of appro-
priate eigenvalues for the linearized closed-loop dynamics—arising, e. g., from a linear
quadratic regulator (LQR) [38, 103]—but also Rd>0 is guaranteed in a neighborhood
of the desired equilibrium q∗, such that stability is provided. The adaptation of LLDA
to time-varying systems, particularly to the design of an error controller for trajectory
tracking, has been presented in [114]. The method has been later adapted to mechanical
systems with underactuation degree one in [109], and it has been finally synthesized in
[110].
The original approach was designed for the parametric and non-algebraic IDA. As we

make use of the algebraic procedure from the previous chapter to solve the matching
equations, we proceed slightly differently than in the original formulation. The principle,
however, remains the same: The design parameters of the controller are chosen such
that desired local dynamics are achieved by means of the eigenvalues of the linearized
closed-loop system

∆ẋ = Ad∆x. (4.1)

Remark 4.1.1. When applying LLDA to mechanical systems in the classical IDA for-
mulation, the number of assignable eigenvalues is, in general, larger than the number
of free parameters [109], such that LLDA can be applied only to some extent. On the
contrary, the augmented formulation always provides enough design degrees of freedom
to place all eigenvalues of the linearized closed-loop as desired if the linearized system
is controllable.

Since LLDA relies on the assignment of desired closed-loop eigenvalues, the following
assumption is required for its applicability

Assumption 4.1. The mechanical system is given by (3.1), and its linearization at the
desired (admissible) equilibrium q∗ is controllable.

Let
∆ẋ = A∆x + B∆u, ∆x = col(q−q∗,p) ∈ R2n, (4.2)

be the linearized mechanical system at q =q∗, p∗=0. Assumption 4.1 guarantees the
existence of a linear state feedback ∆u = −D∆x, such that the matrix Ad = A−BD
has eigenvalues as requested. Then, a unique, positive definite matrix Pd exists that
solves the Lyapunov equation

AdP−1
d + P−1

d AT
d = −2Rd∗ (4.3)

for any Rd∗>0 (cf. [38]).
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4.2 Stability and estimation of the domain of attraction

The parametrization of the closed-loop system via LLDA guarantees asymptotic stabil-
ity of the equilibrium and, at least locally, desired transient dynamics. The following
theorem synthesizes the result:

Theorem 4.1. Let the conditions of Theorem 3.1 be satisfied. Let the stabilizing linear
feedback ∆u =−D∆x for the damped underactuated mechanical system (3.1) result in
a closed-loop system locally approximated by the state matrix Ad. Fix Rd∗ > 0 and
compute the solution

Pd =

 Pd,11 Pd,12

PT
d,12 Pd,22

 > 0 (4.4)

of (4.3). Set

Qd = Pd,11, Md∗ = P−1
d,22, Kd∗ = −PT

d,12P−1
d,11,

 W∗ X∗
Y∗ Z∗

 = AdP−1
d . (4.5)

Fix Vd, such that
∇qVd|q∗ = 0, ∇2

qVd
∣∣∣
q∗

= Qd, (4.6)

and suppose one can find a solution Ld of (3.31) that satisfies Ld(q∗)=Y∗W−1
∗ . Then,

the static state feedback (3.34) asymptotically stabilizes the equilibrium q∗. According
to Theorem 2.3, from the largest bounded level set of Hd, where Rd > 0 holds, an
estimate of the domain of attraction can be derived. The closed-loop system is locally
approximated by (4.1).

Proof. The state feedback (3.34) transforms (3.1) into a pH system (3.22) according
to Theorem 3.1. From the parameter choice in (4.5), and from the structure of the
closed-loop energy (3.21),

∇2
(q,p)Hd

∣∣∣
(q∗,0)

= Pd > 0 (4.7)

can be deduced, i. e., positive definiteness of Hd in an open neighborhood of (q∗,0) is
guaranteed. The dissipation matrix at the equilibrium is

Rd(q∗) = − 1
2
(
AdP−1

d + P−1
d AT

d

)
= Rd∗ > 0. (4.8)

Since the elements of Rd are continuous functions in q, strong dissipativity in an open
neighborhood of (q∗,0) is guaranteed. An estimate of the region of attraction follows
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from usual Lyapunov arguments. The linearization of the closed-loop pH system around
(q∗,0) directly yields (4.1).
The difficulty in augmented IDA mainly lies in the vast amount of free parameters and

functions to be tuned. Even after the parametrization via LLDA, fixing the function Vd,
the matrix Rd∗, and the matrix-valued function Kd still possesses great optimization
potential. Apart from their local approximation at the equilibrium, Vd and Kd can
be freely chosen; the matrix Rd∗ is only required to be positive definite. In [104], the
authors introduced a procedure to optimally determine remaining degrees of freedom
after the application of LLDA for IDA controllers. The algorithm maximizes the domain
of attraction of the desired equilibrium together with its estimation.

4.3 Constructive augmented IDA for a class of mechanical
systems

In this section, we present a scheme to compute the augmented IDA controller for the
class of systems that satisfy the condition of Theorem 3.1. The approach is systematic
and, therefore, easy to implement. The following five steps summarize the controller
design procedure:
Step 1: Finding a stabilizing linear state feedback. In this initial step, we design
a linear state feedback u=−D∆x to both stabilize the equilibrium (q∗,0) and achieve
desired dynamical behavior in terms of robustness and performance. Since the linearized
system is assumed to be controllable, it is always possible to find a feedback matrix D
such that all eigenvalues of the linearized closed-loop system

∆ẋ = Ad∆x, ∆x = (q−q∗,p) ∈ R2n, (4.9)

can be placed as requested. The designer can either directly choose the eigenvalues or,
alternatively, optimally determine D via LQR design.
Step 2: Solving the Lyapunov equation. In this step, we are interested in the
solution P−1

d of the Lyapunov equation

AdP−1
d + P−1

d AT
d = −2Rd∗. (4.10)

The matrix Rd∗= RT
d∗> 0 is a free parameter that does not affect the local behavior,

as it is completely specified by the choice of eigenvalues in Step 1. However, the choice
of Rd∗ has some implications regarding the estimate of the region of attraction. The
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elements of Rd∗ can, for instance, be optimized employing the procedure presented
in [104] to maximize the estimate of the DA. The matrix Pd , which stems from the
solution of (4.10), is the Hessian of the closed-loop Hamiltonian at (q∗,0)

∇2
(q,p)Hd

∣∣∣
(q∗,0)

=

 Qd −QdKT
d∗

−Kd∗Qd M−1
d∗

 = Pd . (4.11)

From the closed-loop state matrix in (4.9) and the local approximation of the Hamilto-
nian (4.11), the desired interconnection and damping matrices at the equilibrium can
be directly computed as

 W∗ X∗
Y∗ Z∗

 = Jd(q∗,0)−Rd(q∗) = AdP−1
d . (4.12)

Step 3: Fixing of the Hamiltonian. As we are considering the algebraic problem,
the closed-loop Hamiltonian needs to be fixed in advance. In order to guarantee the
desired local behavior from Step 1, the matrix-valued function Kd(q), and the potential
energy Vd(q) have to satisfy

∇2
qVd (q)

∣∣∣
q∗

= Qd, ∇qVd(q)|q∗ = 0, Kd(q∗) = Kd∗. (4.13)

How to specifically choose both functions cannot be generalized. However, the simplest
choice

Vd = 1
2qTQdq, Kd(q) = Kd∗

fulfills the conditions (4.13).
Step 4: Solving the matching equation. According to Theorem 3.1, for the com-
putation of the stabilizing controller, it is sufficient to find a solution Ld to the scalar
matching equation

G⊥ (∇qV − LdKd∇qVd) = 0.

To guarantee the local behavior specified in Step 1, the matrix Ld(q) is required to
satisfy Ld(q∗) = Y∗W−1

∗ as specified in Theorem 4.1. It is not difficult to find such a
matrix Ld. However, this step should be done with care: Some elements of Ld(q) might
need to be smartly fixed in advance to ensure a suitable solution (cf. Chapter 5).
Step 5: Computation of remaining matrices and control law. In this final
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step, the matrix-valued functions Y and Z0 are calculated from

Y = −
(
LdM−1

d∗M + R + Sd
)

M−1

Kd

(
∂nd

∂q

)T

+ M−1
d∗

−1

Kd,

and

Z0 = −
Y

(
∂nd

∂q

)T

+ RM−1 + SdM−1

Md∗ + GηT,

according to Theorem 3.1. The vector-valued function η=η(q) has to be chosen such
that Z0(q∗)=Z∗. Otherwise, it is free to shape and can be used, for instance, to inject
nonlinear damping. See, e. g., Section 5.3. Finally, the control law is computed from
(3.34).

4.4 Concluding remarks

This chapter presented the parametrization via LLDA for the augmented IDA approach
of the previous chapter. We presented a scheme of five simple steps for the computa-
tion and parametrization of a stabilizing controller. Based on the design of a desired
Hamiltonian for the closed-loop system that is not of mechanical form, we were able to
overcome three of the main obstacles arising in IDA-PBC: First, even if the dissipation
condition is not satisfied, we are able to systematically design energy-based stabilizing
controllers. Second, the closed-loop system can be entirely parametrized via LLDA.
Third, the solution of PDEs is obviated, as we consider the algebraic matching problem
by fixing the closed-loop Hamiltonian. The resulting nonlinear controller guarantees
desired local behavior and provides an estimate of the domain of attraction based on
standard Lyapunov arguments. There is, however, a significant amount of free degrees
of freedom that can be exploited for the controller design: Apart from the desired
eigenvalues of the closed-loop system, the right hand side Rd∗ of the Lyapunov equa-
tion (4.10) is a free design parameter. Additionally, besides from conditions (4.13), the
matrix-valued function Kd(q), and the potential energy Vd(q) are free functions, just
as the matrix Ld(q) and the vector-valued function η(q), which are only fixed at the
equilibrium q∗. Due to the large number of design quantities it is indispensable to in-
tegrate the controller design sketched above into an optimization loop. One possibility
is to maximize the domain of attraction as presented in [104].
The next chapter shows the applicability of the method with a series of simulations

and experiments using well-known benchmark systems.
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In this chapter, we demonstrate the applicability and performance of the augmented
IDA approach developed in Chapter 3 and Chapter 4. We consider three different well-
known benchmark systems: the acrobot, the inertia wheel pendulum (IWP), and the
inverted pendulum on a cart (IP). These underactuated mechanical systems are widely
employed for nonlinear control problems and robotics, for they are "complex enough to
yield a rich source of nonlinear control problems, yet simple enough to permit a complete
mathematical analysis" [195]. The motivation for the acrobot and the pendulum systems
is more than only academical, though. Take, for instance, the liftoff of a space shuttle.
While the main thruster pushes the rocket upwards, smaller thrusters actively stabilize
the pitch angle of the system for it to remain stable. The problem is not very different
from the inverted pendulum on a cart. The same stabilization problem is again found
in Segway-like systems used for human transportation [128, 186], and even in ship
dynamics: Although capsize in large ships is rare, roll instabilities can occur with a
catastrophic outcome. Thus, the response of the ship dynamics to sea waves, and, in
particular, the roll motion, needs to be passively or actively stabilized [120]. The inertia
wheel pendulum is found in [72] as a model for a monorail tramway, whose roll motion is
stabilized by an inertia wheel. In biomechanics, the pendulum and the acrobot are used
for the modeling of bipedal walking as can be found in [75]. During the leg-swinging
period, the leg in contact with the ground can be seen as an acrobot-like system; the
hanging leg as a free swinging pendulum.
The dynamics of all three benchmark systems can be described by the well-known

second order differential equation

Mq̈ + Cq̇ +∇qV = Gu−Rq̇. (5.1)

All three systems are controllable (at the equilibrium point of interest), have two degrees
of freedom and just one input, and all three fail to satisfy the dissipation condition1 for
a matrix R 6=0, satisfying G⊥R 6=0, which is assumed in the following. In other words,

1Although the DC depends on the chosen closed-loop inertia matrix Md, it can be shown that the
DC can never be satisfied.
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since energy gets dissipated in the unactuated coordinate, the conventional passivity-
based stability analysis in IDA fails.
There is a large number of studies about the analysis and control of underactuated

mechanical systems. In particular, the three benchmark systems considered in this
chapter are found in countless publications. Their simple construction and the inherent
nonlinear and unstable dynamics make them appropriate test-beds for the design of a
variety of classical and novel control techniques. For it is impossible to give a complete
overview of the past work, we simply refer to the following relevant contributions [141,
150, 194, 196, 198], and the references therein. For the sake of clarity and consistency, in
the following we compare the augmented IDA approach with a classical IDA controller
found in the literature, and with a linear quadratic optimal state feedback (LQR).
The augmented IDA controller and the LQR are equally parametrized in terms of the
eigenvalues of the linearized closed-loop system; the free parameters of the classical IDA
controller are chosen according to the reference the controller is taken from.

Remark 5.0.1. The configuration space of the benchmark systems can be seen either
locally as Q= R2 or, taking into account the periodicity of the angular variables, as
Q=S2 (for the acrobot and the IWP), or Q=R×S1 (for the IP). However, we adopt the
local form for the controller design to allow for feedback laws that are not necessarily
periodic in their variables. Although it constitutes a parametrization that does not
globally represent the dynamics accurately, this simplification is often valid for the
practical implementation, as the dynamics of each system are usually restricted to a
region of physical interest.

5.1 The acrobot

The term acrobot was coined at Berkeley by Murray and Hauser in the nineties as an
abbreviation for acrobatic robot [84, 140]. Basically, the acrobot is a two-link planar
robot arm with an actuator at the elbow and no actuator at the shoulder. Figure 5.1
shows the schematic construction of the acrobot, which resembles a gymnast performing
on a single bar. The dynamical model can be found, e. g., in [131, 150, 195], and is
uniquely characterized by the system’s mass matrix

M(q) =

 c1 + c2 + 2c3 cos q2 c2 + c3 cos q2

c2 + c3 cos q2 c2

 , (5.2)
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Figure 5.1: The acrobot. The elbow is actuated (orange joint); the shoulder unactuated
(black joint).

its potential energy
V (q) = c4g cos q1 + c5g cos(q1+q2), (5.3)

and the input matrix

G =

 1

0

 . (5.4)

The configuration space is parametrized by q1 and q2, where q1 denotes the angle of
the first link with respect to the vertical position, and q2 denotes the relative angle of
rotation of the second link with respect to q1. The acrobot is subject to the gravitational
acceleration g. We assume massless joints and homogeneous links such that the constant
parameters ci are given as

c1 = 1
4m1l

2
1 +m2l

2
1 + I1, c2 = 1

4m2l
2
2 + I2,

c3 = 1
2m2l1l2, c4 = 1

4m1l1 +m2l1, c5 = 1
2m2l2,

where mi, li, and Ii represent the mass, the length, and the moment of inertia of the
i-th link, respectively. Additionally, we consider only dissipation in the unactuated
coordinate2 given by the viscous damping matrix

R =

 r1 0

0 0

 . (5.5)

Especially, the swing-up problem of the acrobot attracted the attention of researchers
in the past decades [195, 210, 211]. Energy-based swing-up control laws have been

2The dissipation in the actuated coordinate is assumed to be fully compensated.
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designed, which have been again inspired by the gymnast: by swinging the legs, the
gymnast is able to bring himself up into a vertical position above the bar. In the
upward (unstable) equilibrium, a second controller is required for the stabilization of
the acrobot. The stabilizing controller is usually a linear or a stabilizing energy-based
state feedback [109, 131]. Our goal is to design an augmented IDA controller capable
of stabilizing the upward (unstable) equilibrium of the acrobot with dissipation in the
unactuated joint. Note that the admissible equilibria are characterized by

G⊥∇qV (q) = c4g sin q1 + c5g sin(q1+q2) = 0. (5.6)

We will, however, restrict the analysis to the upward equilibrium given by q∗ = 0. The
parameters of the acrobot are borrowed from [131] and are given in Table 5.1.

Table 5.1: Model parameters for the acrobot.

Parameter Value Unit

c1 2.333 kgm2

c2 5.333 kgm2

c3 2.0 kgm2

c4 3.0 kgm
c5 2.0 kgm
r1 0.2 kg m2/s

g 9.81 m/s2

Controller design

In this section, we apply the procedure developed in Chapter 4 to design a stabilizing
controller. To that end, and according to Theorem 3.1, we first need to check if a
solution Γ to (3.28) exists. Clearly, the inertia matrix M = M(q2) does not depend on
unactuated coordinates. As a consequence, G⊥∇q

(
pTM−1p

)
= 0, and the matching

equation for the kinetic energy (3.28) is trivially satisfied setting Γ = 0. For consistency,
for the remaining of the controller design procedure, we follow the steps of Section 4.3.
The first three steps are straightforward: we choose the linear controller u= −Dx to
be a LQR that minimizes the cost function

J = 1
2

∞∫
0

qTQqq + pTQpp + ru2 dt, (5.7)
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with weighting factors

Qq =

 1 0

0 1

 , Qp =

 100 0

0 100

 , r = 1. (5.8)

This choice results in the feedback gain D = [−449.1, −179.7, −33.8, 19.3], and leads
to closed-loop eigenvalues Λ(Ad) = {−11.07, −4.01+j1.84, −4.01−j1.84, −0.32}. To
compute the solution to the Lyapunov equation (4.10), the positive definite matrix on
the right hand side is set as Rd∗=diag(0.5, 2.25, 1200, 50)3. Finally, and for simplicity,
the closed-loop potential energy is chosen to be quadratic

Vd(q) = 1
2 qTQdq, (5.9)

and Kd(q)=Kd∗ is fixed. In the fourth step, we are concerned with the solution Ld to
the matching equation (3.31). For the acrobot example, (3.31) can be explicitly given
as

c4g sin q1 + c5g sin(q1+q2)−
[
Ld,21 Ld,22

] a1q1 + a2q2

a3q1 + a4q2

 = 0, (5.10)

for some constants ai. In order to avoid singularities in the solution, we use the relation

sin(q1+q2) = sin q1 cos q2 + cos q1 sin q2

to split (5.10) into two equations

(c4 + c5 cos q2) g sin q1 − (Ld,21a1 + Ld,22a3) q1 = 0 (5.11a)
c5g cos q1 sin q2 − (Ld,21a2 + Ld,22a4) q2 = 0 (5.11b)

that are solved for Ld,21 and Ld,22 independently. The two remaining coefficients of the
matrix Ld, namely Ld,11 and Ld,12, are chosen to be constant and such that Ld(0) =
Y∗W−1

∗ holds. The fifth and last step is kept simple: We set the vector-valued function
η(q) to be constant, and determine its coefficients to satisfy Z0(0)=Z∗.

3For simplicity, the matrix Rd∗ is assumed to be of diagonal form. We have used a heuristic ap-
proach to optimize the value of the diagonal coefficients: the space R4 is discretized in an interval
[rd∗,j , r̄d∗,j ] (j = 1, . . . 4) using equidistant discrete points. Thereafter, we determine the estimate
of the DA of the equilibrium for each of the possible combinations, and finally fix Rd∗ with the
coefficients that maximize the estimate of the DA.
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Comparison with benchmark controllers

In order to illustrate the effectiveness of the method proposed in this thesis, we compare
our controller with a LQR, and a classical IDA controller, which was desinged by
Mahindrakar and coworkers for the undamped system [131]. Figure 5.2 shows the
estimated (left) and simulated (right) stability margins of the closed-loop system for
the three different controllers. In the left figure, the white area represents the set where
the dissipation matrix Rd is positive definite. Although the real stability margins show
that both the LQR and the augmented IDA controller lead to a similar DA, the blue
ellipse limits an area 34 times larger than the estimate of the DA given by the linear
controller. As the DC is not satisfied, no estimation for the DA for IDA can be given.
It should be noted that the DA is defined in the phase-space, which consists of the
configuration variables as well as the generalized momenta. For that reason, the DA is a
four-dimensional set. Figure 5.2 shows only a two-dimensional subset thereof. However,
since Rd only depends on q, and the energy function is quadratic, the ellipses in the
two-dimensional plane accurately represent the level sets that estimates the boundary
of the DA for p0 =0.
By adding damping in the unactuated coordinate, the IDA-PBC controller developed

in [131] yields a closed-loop with indefinite dissipation matrix Rd. For that reason, no
stability of the equilibrium can be proven by standard Lyapunov arguments. However,
as the real (simulated) stability margins in Figure 5.2 (right) show, the IDA controller
does, in fact, stabilize the equilibrium q∗=0.
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Figure 5.2: Comparison of the estimated (left) and real (right) stability boundaries of
the acrobot with respect to the equilibrium q∗= 0 for the different controllers. In the
left figure, the white area represents the set, where the closed-loop dissipation matrix
Rd is positive definite. As the DC is not satisfied, no estimation for the DA for IDA
can be given.
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Figure 5.3: The acrobot’s transient dynamics for an initial error q0 = (0.5, 0), p0 = 0.
While both the LQR and the augmented IDA controller show similar behaviors, the
classical IDA approach exhibits oscillations and slow convergence towards the desired
equilibrium.

Figure 5.3 shows the time evolution of the states for initial values q0 = (0.5, 0) and
p0 = 0. While all three controllers stabilize the system, the classical IDA controller
shows oscillating behavior and a slower transient response. Different parameter choices
only result in slightly different transient dynamics. With regard to the method pro-
posed in this thesis, it clearly shows similar transient dynamics compared to the linear
controller. This result was also expected, as the LQR was used for the parametrization
of the augmented IDA via LLDA.

5.2 The inertia wheel pendulum

Spong et al. [197] introduced the reaction wheel pendulum—also known as inertia
wheel pendulum (IWP)—in 2001. In their work, the authors present two different
nonlinear control laws based on a feedback linearization to swing-up and stabilize the
system. Since then, the IWP has served as a benchmark for the implementation of a
vast number of control laws [36], including passivity-based approaches for stabilization
and tracking [80, 158, 199]. As shown in Figure 5.4, the system consists of a simple
pendulum with an inertia wheel at the end. Both the pendulum’s and the wheel’s axis
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Figure 5.4: The inertia wheel pendulum.

of rotation are parallel, such that the acceleration of the wheel by the motor torque
generates a reaction torque on the pendulum’s axis. The configuration q consists of the
pitch angle q1, and the relative angle of rotation q2 of the reaction wheel with respect
to the pendulum. The model parameters of the IWP are given as

M =

 c1 0

0 c2

 , V (q) = c3 cos q1, G =

 −1

1

 , (5.12)

where
c1 = 1

4m1l
2
1 +m2l

2
1 + I1 + I2, c2 = I2, c3 = gl1(1

2m1 +m2).

Here again, the parameters mi and Ii represent the mass and the moment of inertia of
the i-th link, respectively. The length of the pendulum is given by l1 and g denotes the
gravitational acceleration. In the same manner as the acrobot example, we consider
physical dissipation in the unactuated coordinate given by the viscous damping matrix

R =

 r1 0

0 0

 . (5.13)

The parameters of the IWP are borrowed from [158] and are given in Table 5.2.

Controller design

Since the inertia matrix of the IWP is constant, the matching equation for the kinetic
energy (3.28) is satisfied for Γ = 0. In the first step of the design procedure, we let the
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Table 5.2: Model parameters for the inertia wheel pendulum.

Parameter Value Unit

c1 0.1 kgm2

c2 0.2 kgm2

c3 10 kgm2

r1 0.2 kg m2/s

g 9.81 m/s2

linear controller be a LQR that minimizes the cost function

J = 1
2

∞∫
0

qTQqq + pTQpp + ru2 dt, (5.14)

with the same weighting factors from the acrobot example

Qq =

 1 0

0 1

 , Qp =

 100 0

0 100

 , r = 1. (5.15)

For the IWP, this choice results in D=[−45.1, −1.0, −42.0, −11.6], and leads to eigen-
values Λ(Ad) = {−17.83, −7.03+j2.56, −7.03−j2.56, −0.5}. Using the same heuristic
approach from the previous example to determine the desired dissipation matrix at the
equilibrium q∗ = 0, we set Rd∗ = diag(0.3, 16, 1.2, 0.4). To maintain the controller
design as simple as possible, we choose Kd(q)=Kd∗, and set

Vd(q) = 1
2 qTQdq (5.16)

for the closed-loop potential energy. The next step consists of determining the solution
Ld to the matching equation (3.31). For the IWP, (3.31) can be given as

c3 sin q1 +
[
Ld,11 + Ld,21 Ld,12 + Ld,22

] a1q1 + a2q2

a3q1 + a4q2

 = 0, (5.17)
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for some constants ai. As in the previous example, we assign Ld,11 and Ld,12 constant
values and solve the equations

c3 sin q1 − ((Ld,11 + Ld,21) a1 + (Ld,12 + Ld,22) a3) q1 = 0 (5.18)
(Ld,11 + Ld,21) a2 + (Ld,12 + Ld,22) a4 = 0 (5.19)

for Ld,21 and Ld,22. In the last step, we set the vector-valued function η(q) to be
constant.

Comparison with benchmark controllers

In one of the first works on IDA for mechanical systems, Ortega et al. [158] develop
a controller capable of asymptotically stabilizing the IWP at the equilibrium q∗ = 0
without velocity feedback. The required velocities are generated by filtering the posi-
tion measurements. For the sake of fairness in the comparison, we consider the IDA
controller from [158] including velocity feedback. As we consider damping in the un-
actuated coordinates, this controller fails to provide an estimate for the DA of the
equilibrium; the estimated stability margins of the closed-loop system for the proposed
approach and for the LQR are shown in Figure 5.5. Although both the linear controller
and the controller proposed in this work provide a large estimate of the DA, the area es-
timated by the blue ellipse (A-IDA) is 28% larger than the area enclosed by the orange
ellipse (LQR).
In order to illustrate the differences in the transient dynamics, we have run the simula-

tions choosing a rather large initial error in the pendulum’s angle as shown in Figure 5.6.
A simple observation shows that all three controllers—including the IDA controller from
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Figure 5.5: Estimated stability boundaries of the IWP with respect to the equilibrium
q∗=0 for the LQR (orange) and the augmented IDA controller (blue).
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Figure 5.6: Transient dynamics of the IWP for an initial error q0 =(2, 0), p0 = 0. The
proposed approach shows fast convergence towards the equilibrium without undesired
oscillations.

[158]—stabilize the desired equilibrium. In fact, simulations show that all three con-
trollers stabilize the desired equilibrium for arbitrary initial conditions up to a set of
Lebesgue measure 0, which corresponds to the stable equilibrium point. However, in
contrast to the classical IDA approach, the augmented IDA shows fast convergence and
oscillation-free transient dynamics. Additionally, the proposed controller is transparent
to parametrize via LLDA, as we can assign, locally, arbitrary desired linear dynamics.
The conventional IDA design does not provide enough degrees of freedom to eliminate
the undesired oscillations of the closed-loop transient dynamics.

5.3 The inverted pendulum on a cart

One of the most common examples of underactuated mechanical systems in control
theory is the inverted pendulum on a cart (IP), or cart-pole, shown in Figure 5.7. A lot of
effort has been put in the design of nonlinear controllers for stabilization and tracking of
the IP: the approaches are diverse and range from the classical linear state feedback and
control laws based on a partial feedback linearization (PFL) [2, 194], to energy shaping
methods [32, 43, 83, 205, 214], immersion and invariance [3], backstepping [149], sliding
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Figure 5.7: The inverted pendulum on a cart: lab setup (left) and schematic diagram
(right).

mode [203], neural networks [8], model predictive control [130], and others. The IP
consists of a base, or cart, that is actuated and can move horizontally, and a pendulum
fixed to the cart. As the pendulum is not actuated and swings freely about the rotation
axis perpendicular to the cart’s motion, moving the cart back and forth is necessary to
stabilize the pendulum at its unstable upward equilibrium. The configuration q consists
of the linear displacement of the cart, represented by q1, and the rotation angle of the
pendulum with respect to its upward position q2. The dynamics of the IP can be found
in any of the aforementioned articles. A closer examination of the dynamics shows
that the mass matrix depends on the unactuated coordinate q2, which significantly
complicates the controller design. For that reason, we apply a PFL [194] to simplify
the dynamics. The model parameters of the IP after the PFL are given as

M =

 1 0

0 1

 , V (q) = cg cos q2, G(q) =

 1

c cos q2

 , (5.20)

with the constant parameter

c =
1
2m2l2

1
4m2l22 + I2

.

The pendulum’s mass, its length, and its moment of inertia with respect to the center
of mass are denoted by m2, l2, and I2. Again, the system is subject to the gravitational
acceleration g. Note that, as the PFL aims at transforming the dynamics such that the
acceleration of the cart is directly commanded by the input, the mass m1 of the cart
does not appear explicitly in the model. Yet, its exact value is necessary to compute
the input required for the PFL. The damping in the unactuated coordinate is given by
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the matrix

R =

 0 0

0 r1

 . (5.21)

Note that the damping parameter r1 does not directly represent the physical viscous
damping coefficient, since R has been altered by the PFL. The numerical values of
the parameters are given in Table 5.3, and correspond to the test bed at the Institute
of Automatic Control at the Technische Universität München (cf. Figure 5.7). The
specific units for the parameters arise from the PFL.

Table 5.3: Model parameters for the inverted pendulum on a cart.

Parameter Value Unit

c 3.9 1/m

g 9.81 m/s2

r1 4.7 · 10−2 1/s

Controller design

The controller design for the IP based on the augmented IDA approach was previously
presented in [52]. For completeness, we summarize the main design steps according to
Section 4.3. Note that, since the inertia matrix is the identity matrix, the trivial choice
Γ = 0 solves (3.28). For the linear controller u= Dx required in the first step of the
design procedure, we choose the feedback gain D=[−168.45, 631.02, −219.31, 101.66].
The feedback gain D has been identified by designing a LQR for the full model of the test
bed. The linearized closed-loop system has eigenvalues Λ(Ad)={−163.61, −6.18+j5.9 ·
10−2, −6.18−j5.9 · 10−2, −1.03}. In the second step of the procedure, we choose the
matrix Rd∗=diag(1, 1, 1

3 ,
1
3) for the right hand side of the Lyapunov equation (4.10).

To simplify the third step, we choose a quadratic form for the potential energy

Vd(q) = 1
2 qTQdq, (5.22)

and a constant Kd(q)=Kd∗. In the fourth step, we are concerned with the solution Ld

of the matching equation

gc sin q2 −
[
Ld,11a cos q2 − Ld,21 Ld,12a cos q2 − Ld,22

] a1q1 + a2q2

a3q1 + a4q2

 = 0. (5.23)
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To determine the matrix Ld, we first assign to Ld,21 and Ld,22 constant values, and then
solve the equations

(Ld,11a cos q2 − Ld,21) a1 + (Ld,12a cos q2 − Ld,22) a3 = 0 (5.24)
gc sin q2 − ((Ld,11a cos q2 − Ld,21) a2 + (Ld,12a cos q2 − Ld,22) a4) q2 = 0 (5.25)

for the remaining coefficients Ld,11 and Ld,12. In the fifth and last step, we set the
vector-valued function as

η(q) = η∗ + GkIP , kIP = 1200
(

1
cosϕ − 1

)
, (5.26)

where η∗ is a constant vector. This nonlinear damping term has an influence on the
estimate of the DA and on the transient dynamics of the closed-loop system.

Comparison with benchmark controllers

In this section, we demonstrate the applicability and practicability of our approach with
a series of simulations and experimental results. The proposed controller is compared
to a linear and an IDA-PBC controller as found in the literature [5]. In [5], Acosta
et al. develop an IDA controller using a constructive approach that directly yields
the solution to the matching equations if some conditions are satisfied. The controller
is characterized by a large DA in the absence of dissipation. However, the transient
dynamics are not fully satisfactory.
Let us begin by characterizing the DA. Figure 5.8 shows the estimated and simulated
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Figure 5.8: Comparison of the estimated (left) and real (right) stability boundaries of
the inverted pendulum on a cart with respect to the equilibrium q∗=0 for the different
controllers. As the DC is not satisfied, no estimation for the DA for IDA can be given.
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stability margins of the equilibrium q∗=0 for the different controllers. For the LQR and
the augmented approach, the region bounded by the largest level set of the potential
function Vd (cf. (5.22)) represents an estimate of the DA of the equilibrium point:
Since the energy function Hd is of quadratic form (given by the solution Pd to the
Lyapunov equation (4.10)), and the dissipation solely depends on the pendulum’s angle
q2, the four-dimensional sublevel set of Hd that completely contained in the region
where Rd > 0 is an estimate for the DA. The area enclosed by the largest level set of
the potential function Vd (blue ellipse), where Rd>0 (A-IDA) is 60% larger than the
area enclosed by the orange ellipse, which represents an estimate of the DA given by the
linear controller. As we consider dissipation in unactuated coordinates, and the system
fails to satisfy the DC, no analytic estimate for the DA can be given for the IDA-PBC
controller. The simulated stability margins show, however, that all controllers stabilize
the desired equilibrium, with the classic IDA approach exhibiting the largest DA, and
the LQR the smallest.

Figure 5.9 shows the response of the system controlled with the LQR, with the IDA-
PBC controller as found in [5] for the undamped system, and with the augmented IDA
proposed in this thesis. A closer look at the simulations reveals the nonlinear nature of
the augmented approach, especially provided by the injection of the nonlinear damping
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Figure 5.9: Transient dynamics of the inverted pendulum on a cart for an initial error
q0 =(0, 0.95), p0 =0.
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Figure 5.10: Experimental results versus simulation for the inverted pendulum on a cart
stabilized using the augmented IDA methodology.

term (5.26): For small angles q2, both the linear controller and the augmented IDA show
identical responses; for larger pitch angles—as shown in the simulation—the augmented
approach exhibits a smoother convergence to the origin and less overshoot in the q2

dynamics. The system controlled with the IDA-PBC controller presents oscillations in
the pitch angle and slow convergence of the cart position. The few tuning parameters
do not allow to completely eliminate the undesired oscillations.
Figure 5.10 shows the behavior of the augmented IDA-PBC controlled test rig. The

same controller parametrization from the simulation has also been used for the experi-
ments, which has been chosen rather slow to clearly visualize the results. The desired
position of the cart continuously changes from −0.1m to 0.1m and back. As the re-
sults show, the cart smoothly reaches the desired position as expected, keeping the
pendulum close to its desired equilibrium and showing a similar transient to that of the
simulations.

5.4 Concluding remarks

In this chapter, we have demonstrated through three benchmark examples how the
methods proposed in the last chapters can be applied to systematically design and
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parametrize passivity-based controllers via IDA while considering dissipation in unac-
tuated coordinates from the very beginning. On the one hand, the parametrization via
LLDA guarantees transparency in the controller tuning and required performance; on
the other hand, the systematic design not only copes with the dissipation in unactuated
coordinates but it also provides a Lyapunov function for the stability analysis and the
estimation of the DA, without requiring the solution of PDEs.
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Nonholonomic Mechanical Systems





6 Total Energy Shaping for
Nonholonomic Systems

This chapter presents the position and velocity control for a class of nonholonomic sys-
tems. Since no configuration q∗∈Q can be asymptotically stabilized using a continuous
control law, we restrict the analysis, if not stated otherwise, to a reduced space QR, in
which the system evolves unconstrained. Additionally, we assume that the DC is satis-
fied, such that no augmentation of the closed-loop energy function is necessary to render
the closed-loop system passive with respect to the closed-loop energy. Therefore, we
consider in the following the conventional total energy shaping approach. The chapter
is organized as follows. The problem setting is formulated in Section 6.1, nonholonomic
mechanical systems and their properties are presented in Section 6.2. Section 6.3 dis-
cusses the position control via energy shaping, and in Section 6.4, the results from
position control are used for velocity control. In Section 6.5, we show robustness of
both the position and the velocity controller by means of input-to-state stability. Sec-
tion 6.6 deals with actuator dynamics, and how they can be included in the energy
shaping framework via backstepping design. Finally, the chapter concludes with some
final comments and remarks in Section 6.7.

6.1 Problem formulation

Nonholonomic systems have been studied for more than a century, but they have become
the focus of attention of many researchers around the globe only recently [106], partially
due to the fast development and commercialization of mobile robots and autonomous
vehicles. This chapter deals, specifically, with the position and speed stabilization via
energy shaping for a class of nonholonomic systems. In particular, we are interested in
the following:

i) Systematically designing smooth stabilizing control laws, while exploiting the in-
trinsic properties of the system.

ii) Studying the robustness of the controllers by means of input-to-state stability.
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iii) Developing a procedure to include actuator dynamics in the controller design.

One of the central issues for control theorists in the field of nonholonomic mechanical
systems concerns the asymptotic stabilization of a certain configuration q∗ ∈ Q. It
has been known since the work of Brockett (cf. [39]) that time-varying or discontin-
uous control laws are necessary to asymptotically stabilize a desired q∗. For over two
decades, many researchers around the globe have been working on these control laws
for the asymptotic stabilization of nonholonomic systems (cf. Chapter 6 of [24] and the
references therein). One approach, introduced by Astolfi in 1994 [13], relies on a non-
smooth coordinate transformation in the states. In the new (non-smooth) coordinates,
a smooth control can be designed to asymptotically stabilize a desired configuration
q∗. This idea was later generalized in [14]. A second approach rests upon the fact
that many nonholonomic systems—such as chained systems—are controllable in the
sense that it is possible to steer them in any direction applying Lie bracket motion (cf.
Chow’s Theorem [142], Example 2.1.2). Based thereon, switching and time-varying
control laws in form of sinusoidal functions emerged [142, 213]. A further idea is to
employ non-smooth potential functions for the asymptotic stabilization of constrained
systems. The approach was presented in [66] for fully actuated nonholonomic systems.
However, assuming a non-smooth closed-loop potential energy not only leads to a weak
performance of the closed-loop system, but also significantly complicates the solution
of the matching problem for underactuated systems. Although discontinuous and time-
varying control laws are available for the asymptotic stabilization of a desired q∗, their
design procedure is cumbersome and they often exhibit a bad performance and slow
convergence [106, 174, 177]. Additionally, infinite switching leads to undesired chatter-
ing effects [213]. Thus, for the sake of practicability, we consider time-invariant smooth
control laws.
Furthermore, we wish to consider the structural benefits of mechanical systems for the

controller design. Some preliminary results on exploiting the system’s intrinsic structure
employing geometric control techniques for nonholonomic systems are provided in [35].
In [33], the authors introduce an energy-momentum-based technique (cf. [218]) that
takes advantage of quasi-velocities for the controller design. The approach is based on
"controlled conservation laws", and takes into account the geometric structure of the
mechanical system. However, it is hard to implement, since "the functions that define
these conservation laws are typically difficult or impossible to find explicitly". Due to
the difficulties of geometric control for the practical implementation, we consider total
energy shaping—a technique that benefits from the structural features of mechanical
systems and allows for a systematic controller design. The stabilization of nonholonomic
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systems via energy shaping was introduced by Maschke and van der Schaft in 1994 (cf.
[134]). In their work, the authors assign virtual potential forces and damping through
feedback, and show that the closed-loop system is stable and asymptotically converges
to an invariant set. This situation can be easily visualized with the following example:

Example 6.1.1 (Vertical coin rolling on a horizontal plane). Let us now consider the
vertical coin rolling on a horizontal plane from Example 2.1.2. The system’s normalized
dynamics are given as

ν̇ = u, u ∈ R2, (6.1)

for admissible velocities ν = (v, θ̇), where v is the forward velocity of the coin. As we
are not interested in the absolute rotation of the coin ϕ, we restrict the analysis to the
coordinates η = (x, y, θ), η ∈QC, where QC is a subset of the configuration space Q
that is still subject to nonholonomic constraints characterized by the matrix

S =


cos θ 0

sin θ 0

0 1

. (6.2)

To stabilize the origin η∗=0, we assign the virtual potential Vu(η)= 1
2 x

2 + 1
2 y

2 + 1
2 θ

2

through feedback. In addition to the virtual potential forces ∇ηVu, it is necessary to
inject damping forces Fdamp =−Rν with R>0 for asymptotic stability. The stabilizing
control law takes the form u=−ST∇qVu −Rν, and asymptotically stabilizes1 the set

X ∗ =
{
η ∈ QC | ST∇ηVu = 0

}
. (6.3)

The set X ∗ is characterized by x= θ = 0 with arbitrary y. Since the potential forces
arising from Vu are projected onto the admissible coordinates via ST, potential forces
acting perpendicular to the admissible motion direction of the coin get annihilated.

One can see from the example above that the simplest—and most intuitive—potential
energy does not lead to the asymptotic stabilization of (x∗, y∗, θ∗) = (0, 0, 0), as the
matrix ST cancels the forces acting perpendicular to the admissible motion direction.
Since energy shaping for constrained systems stabilizes a set (and not a point) as

discussed in [21] in the Hamiltonian framework, or in [82] and [220] in the Lagrangian
counterpart, we restrict the control synthesis to a reduced space QR, in which the
nonholonomic system evolves unconstrained. Based thereon, we systematically design

1Asymptotic stability of the set can be shown invoking LaSalle’s invariance principle (cf. Theo-
rem 2.4).
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smooth control strategies for the position stabilization.
The second concern of this chapter is speed stabilization of nonholonomic systems

by shaping their total energy. To the best of our knowledge, classical total energy
shaping approaches, like IDA, have only been developed for velocity control of electrical
machines (cf. [165]) and not for mechanical systems. However, one often wants to
stabilize a specific motion velocity of a mobile robot or vehicle [144, 161, 176]. We
show in this chapter that energy-based control approaches allow to transfer the results
from position stabilization to velocity control of mechanical systems and, later on, to
tracking (cf. Chapter 7).
In addition to the design of stabilizing control laws, we consider two aspects of prac-

tical relevance in this chapter. On the one hand, we study the robustness properties
of the stabilizing controllers by means of input-to-state stability. On the other hand,
we present a procedure to include actuator dynamics for the controller design via back-
stepping.
We consider the vertical rolling coin as an illustrative example to highlight the proper-

ties of the dynamics evolving on different spaces (reduced, constrained), and to clarify
the symbols and definitions required for the unified position and speed stabilization
approach.
The position and velocity control approaches of this chapter have been partially

presented in [50, 53].

6.2 Mechanical systems with nonholonomic constraints

In this section, we recapitulate the modeling of nonholonomic systems and characterize
the class of systems that is of relevance for the remainder of the thesis.

6.2.1 Equations of motion

There are several ways of deriving the dynamical model of mechanical systems subject
to nonholonomic constraints in both Lagrangian and Hamiltonian representation [24,
27, 159, 185]. Andrew D. Lewis, one of the experts on the field, states that "Sometimes
it seems to me as if there are as many techniques for deriving the equations of motion
in the presence of nonholonomic constraints as there are people who have thought about
doing this. These methods are, at least the correct ones, all distinguished by one simple
fact: they are all the same!" [119]. Since all correct methods are equivalent, there are no
intrinsic advantages in employing one method over the other. However, some researchers
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are more comfortable using geometric methods like the constrained Hamel equations2

[34], or employing a so-called Ehresmann connection3 that allows the description of the
equations of motion in terms of the constrained Lagrangian Lr (cf. [51]), while some
researchers tend to employ more classical approaches.
In this section, we restrict the analysis to the well-known Lagrange-d’Alembert equa-

tions (2.12) in the Lagrangian representation, and to the corresponding Hamiltonian
form as presented in [185]. It is known that the correct equations of motions of a
nonholonomic mechanical system cannot be simply derived from the Euler-Lagrange
equations restricting the Lagrangian to the admissible coordinates [24]. However, as a
direct result from both the Lagrangian and the Hamiltonian frameworks, the coordinate
form of the Hamel equations emerges (see, e.,g., [34]), which is given by means of the
constrained Lagrangian Lr.
Let us begin with the widely used Lagrange-d’Alembert equations

d
dt

(
∂L

∂q̇

)T

−
(
∂L

∂q

)T

= Fext + Aλ, (6.4)

which describe the dynamics of systems subject to k nonholonomic (Pfaffian) constraints
of the form

ATq̇ = 0. (6.5)

The matrix form of (6.4) is given as

M̃q̈ + C̃q̇ +∇qV = Fext + Aλ. (6.6)

The constraints have been adjoined to the system using Lagrange multipliers λ∈Rk that
represent the constraint forces, which oblige the system to satisfy the constraints (6.5).
The work done by these forces vanishes as can be seen by looking at the corresponding
power

Pconstr = q̇TAλ = λTATq̇ = 0. (6.7)

Due to the nonholonomic constraints (6.5), the admissible velocities at q∈Q must be
of the form

q̇ = Sν, (6.8)

with a smooth full rank matrix S(q) satisfying ATS=0, for all q∈Q, and local coor-
2The Hamel equations are characterized by replacing the canonical velocities q̇ by generalized
velocities—so-called quasi-velocities—that are expressed in a non-coordinate frame.

3An Ehresmann connection is nothing but a way to split the tangent space (velocity phase space)
into two parts and relate these two tangent subspaces to each other according to the constraints.
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dinates of the constrained tangent space ν∈Rn−k. The admissible velocities at q lie in
the subspace of TqQ spanned by the columns of S, which is the (n−k)-dimensional space
Dq, that is, the subspace of TqQ given by the constraint distribution D. Now, replace
q̇=Sν and q̈=Sν̇ + Ṡν in (6.6), and eliminate the constraints by pre-multiplying the
result by ST to get

STM̃Sν̇ + ST
(
M̃Ṡ + C̃S

)
ν + ST∇qV = STτ̃ . (6.9)

The dynamical system represented by (6.9) can also be written in the known mechanical
form

Mν̇ + Cν + ST∇qV = τ + Jν, (6.10)

where M=STM̃S, and τ =STτ̃ . Since the matrix C is solely defined by the Christof-
fel symbols of M, the matching of the systems (6.9) and (6.10) requires, in general,
additional gyroscopic forces Jν, where J(q,ν)=−JT(q,ν).

There is also the possibility of describing the equations of motion of nonholonomic
systems in the Hamiltonian framework as shown in [21, 66, 185]. The reduced equations
are obtained after applying a coordinate transformation to the full state model with a
subsequent truncation.

Let us consider the Lagrange-d’Alembert equations (6.4) in the Hamiltonian repre-
sentation  q̇

ṗ

 =

 0 I

− I 0


 ∇qH

∇pH

+

 0

τ̃

+

 0

A

λ, (6.11)

with total energy H = q̇Tp−L, and where4 (q,p)∈T∗Q, and p = ∇q̇L. The constraint
forces Aλ are uniquely determined by (6.5): Their magnitude is such that the dynamics
of the system evolve in the constrained phase space given by

XR =
{

(q,p) ∈ T∗Q |AT∇pH = 0
}
. (6.12)

According to [185], the equations of motion (6.11) subject to (6.12) can also be locally
described using a coordinate transformation in the momenta z = Tp, where

T =

 ST

AT

, with ATS = 0. (6.13)

4The cotangent bundle T∗Q is dual to the tangent bundle TQ.
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The system in the transformed coordinates (q, z) becomes
 q̇

ż

 =

 0 TT

−T J̃


 ∇qHT

∇zHT

+

 0

Tτ̃

+

 0

TA

λ (6.14)

where HT(q, z) = H(q,T−1z) is the total energy expressed in new coordinates. Note
that the gyroscopic forcing term in the structure matrix

J̃ = T
(
∇q
(
T−1z

)
−∇T

q

(
T−1z

))
TT (6.15)

arises from the transformation (6.13). The nonholonomic constraints (6.5) can be ex-
pressed by

ATTT∇zHT = 0. (6.16)

To eliminate the constraint forces, just truncate the last k rows of (6.14) and the last
k columns of the structure matrix. This is justified, since q and the first n−k elements
of z serve as local coordinates for the constrained space XR (see [185]). Additionally,
the last k elements of ∇zHT must vanish according to (6.16).
For the equivalence of both the Lagrangian and the Hamiltonian approach to become

clear, we define the quasi-velocities ν̃=∇zHT and apply to (6.14) the inverse Legendre
transform Lr =zTν̃ −HT to express the equations of motion in Lagrangian form

d
dt

(
∂Lr

∂ν̃

)T

−T
(
∂Lr

∂q

)T

= Tτ̃ + J̃
∣∣∣
z=z(ν̃)

ν̃ + TAλ, (6.17)

where
Lr = 1

2 ν̃
TTM̃TTν̃ − V. (6.18)

Equation (6.16) implies that the last k velocities in ν̃ must vanish, i. e., ν̃ = col(ν,0).
This property simplifies the constrained Lagrangian, which can now be written as

Lr = 1
2 ν

TSTM̃Sν − V = 1
2 ν

TMν − V. (6.19)

The equations of motion (6.17) in terms of the admissible coordinates (q,ν)∈Q×Rn−k

become
d
dt

(
∂Lr

∂ν

)T

− ST
(
∂Lr

∂q

)T

= STτ̃ + JS|z=z(ν) ν, (6.20)

where JS consists of the first n−k rows and columns of J̃ and is equal to the matrix J in
(6.10), setting z=TM̃Sν. We consider only input affine systems, such that STτ̃ =Gu
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for some input matrix G ∈ R(n−k)×m. The following result follows directly from the
Hamiltonian representation (cf. [139]):

Proposition 6.1. Let Σ be a (simple) mechanical system with (generalized) input forces
τ̃ , Lagrangian L : TQ → R, defined as kinetic minus potential energy, and subject to
k nonholonomic (Pfaffian) constraints ATq̇ = 0. Let Lr : D → R be the constrained
Lagrangian defined as Lr(q,ν) = L(q,Sν), where S ∈ Rn×(n−k) is a full rank matrix
satisfying ATS=0, and ν∈Rn−k are local coordinates for the admissible velocity space
at q. Then, the equations of motion for Σ in (q,ν)∈Q×Rn−k are given as

d
dt

(
∂Lr

∂ν

)T

− ST
(
∂Lr

∂q

)T

= Gu + Jν, (6.21a)

q̇ = Sν, (6.21b)

where the skew-symmetric matrix J is defined as

J =
{
ST
(
∇q
(
T−1z

)
−∇T

q

(
T−1z

))
S
}∣∣∣

z=TM̃Sν
. (6.22)

Proof. The equations (6.21) follow directly from (6.14) restricting the dynamics to
the admissible space (6.12).
The equations of motion (6.21a) are the coordinate form of the constrained Hamel
equations (see, e. g., [34]) for the admissible quasi-velocities ν=Sq̇; the reconstruction
equation is simply given by (6.21b). If required, the magnitude of the constraint forces
λ can be computed evaluating the last k rows of (6.17).
Nonholonomic systems are underactuated as per the most common definition, since

the number of configuration variables q is strictly larger than the number of independent
inputs u. However, we consider in this thesis underactuation in the admissible space
D.

Definition 6.1 (Underactuated nonholonomic system). We call a nonholonomic sys-
tem underactuated if the dimension of the input is strictly lower than the rank of the
constrained distribution D that defines the constraints.

According to this definition, the vertical coin rolling on a plane is a fully actuated
system. In this thesis we consider systems with underactuation degree one (m=n−k−
1). The dynamics of this class of systems are represented by (6.21), with a non-invertible
input matrix G. Shaping the total energy, therefore, is restricted to the solution to the
projected matching equations (cf. Section 6.3.1).
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6.2.2 Reduced space

In order to exploit the structural advantages of energy shaping and smooth control laws
for underactuated nonholonomic systems, we restrict the analysis to the reduced space5

QR.

Proposition 6.2 (Reduced space). Suppose there are coordinates ξ∈QR, and a basis
ν for the velocity space D such that ξ̇=ν. If the matrices M and S, and the potential
forces ∇qV in (6.10) depend only on ξ, then the equations of motion can be written in
the equivalent unconstrained form

Mν̇ + Cν − Fpot = Gu + Jν (6.23)

in the reduced space QR, where ST∇qV = −Fpot. If Fpot(ξ) can be derived from a
potential VR(ξ), then (6.23) can be given as

Mν̇ + Cν +∇ξVR = Gu + Jν. (6.24)

Proof. If the matrix M only depends on ξ, so does C, since C depends on the
coefficients of M alone. In the same manner, if the elements of S are only functions
of ξ, so is J=J(ξ,ν). Thus, the coordinates (ξ,ν) fully describe the dynamics (6.23).
If, additionally, the potential forces Fpot can be derived from a scalar function VR(ξ),
then ∇ξVR =−Fpot, and the equations of motion in reduced space can be given in the
mechanical form (6.24).

The matrix ST projects the potential forces onto the admissible space D. If all ex-
ternal and potential forces lie already in the admissible space, then the projection is
unnecessary.

Example 6.2.1 (Rolling coin on different surfaces). Consider the vertical coin from Ex-
ample 2.1.2 with coordinates q = (x, y, θ, φ) rolling on 1) a pan’s surface, 2) a plane
inclined in x-direction, and 3) a horizontal plane. The mass matrix M is constant, and

5With some abuse of terminology, we call the space QR reduced space. It should be clarified that
the space QR does not constitute a reduction of the configuration space Q. Rather, we employ a
different set of variables for the purpose of control that do not fully characterize the dynamics of
the system
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the matrix S is given as

S =



cos θ 0

sin θ 0

1 0

0 1


.

In the first case, the potential is given by V1 = x2 + y2, such that the potential forces
∇qV1 =∇qV1(q)=col(2x, 2y). As ST∇qV1 depends on x and y, the equations of motion
do not accept a formulation in reduced coordinates ξ= (φ, θ). In the second case, the
potential can be given as V2 = kx, for a constant k. Thus, ST∇qV2 = −Fpot(ξ) =
col(rk cos θ, 0), and the dynamics can be completely given in the reduced space QR

with coordinates ξ= (φ, θ). However, note that the resulting potential forces Fpot(ξ)
cannot be given in terms of the gradient of a scalar function VR2(ξ). In the third case,
V3 =VR3 =0, and the equations of motion accept the formulation (6.24) for coordinates
ξ∈QR.

In QR, the system evolves unconstrained, allowing the asymptotic stabilization of an
admissible equilibrium ξ∗ using smooth control laws. For the remainder of the thesis,
the nonholonomic systems are assumed to accept either formulation (6.23) or (6.24).
In the following, we show how to develop an energy-based controller to asymptotically
stabilize an admissible equilibrium ξ∗ ∈ QR in reduced space, and, additionally, we
illustrate how the result can be utilized to asymptotically stabilize an invariant set in
the configuration space or a subset QC⊆Q thereof.

6.3 Position control

This section discusses the systematic design of an energy-based controller that is capa-
ble of asymptotically stabilizing an admissible equilibrium ξ∗∈QR. We formulate the
conditions for the desired closed-loop equilibrium ξ∗ to be (asymptotically) stable based
on the matching of the system (6.23) with a Lagrangian target system. For the reduced
space QR, the matching problem in IDA and CL resemble the well-known matching
problem for holonomic systems as presented in Section 2.3.3 and Section 2.3.4. There-
fore, known methods for the solution of the matching equations can be used for this
class of nonholonomic systems. Since the Lagrangian and the Hamiltonian represen-
tations are equivalent—and also the procedures IDA-PBC and Controlled Lagrangians
for simple mechanical systems [23, 47]—the following controller design can be done in
both frameworks analogously. However, we put the focus on the Lagrangian case, for
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velocities are more intuitive than momenta.
As introduced in Section 2.3.4, the goal of the Controlled Lagrangians procedure is

to transform (6.23) by static state feedback u = u(ξ,ν) into a Lagrangian closed-loop
system

Mcν̇ + Ccν +∇ξVc = (Jc −Rc)ν, (6.25)

where the matrix Jc = Jc0(ξ) + Jc1(ξ,ν) (Jc1 linear in ν) is skew-symmetric, and
the closed-loop damping matrix Rc(ξ) is symmetric. According to Corollary 2.6, the
equilibrium ξ∗ of (6.25) is asymptotically stable if

ξ∗ = arg minVc, Mc > 0, Rc ≥ 0, (6.26)

and the damping is pervasive. For the stabilization of (6.23) it suffices to solve the
matching equations for the kinetic and potential energy, and for the dissipation

Guke = (C− J)ν −MM−1
c (Cc − Jc1)ν, (6.27a)

Gupe = −Fpot −MM−1
c ∇ξVc, (6.27b)

Gudi = MM−1
c (Jc0 −Rc)ν, (6.27c)

for closed-loop parameters that satisfy the definiteness requirements (6.26). In the
following, we assume that Jc0 =0, such that Jc =Jc1.

Remark 6.3.1. The parametrization of the closed-loop system can be realized in a trans-
parent matter either physically motivated by tuning the closed-loop mechanical param-
eters, or via LLDA. In Chapter 8, we show how the LLDA technique can be applied to
the WIP to achieve prescribed local dynamics in terms of the closed-loop eigenvalues.

6.3.1 Solving the matching equations

Shaping the kinetic energy. Unlike fully actuated systems, underactuated mechan-
ical systems often require the shaping of both kinetic and potential energy for stabi-
lization. It is, thus, necessary to solve (6.27) for a positive definite closed-loop matrix
Mc 6= M. Since Jc and Cc are linear in the velocities, and assuming that the kinetic
shaping input is of the form

uke = FTν, (6.28)

with F(ξ,ν) ∈Rn−k×m also linear in the velocities, more modest sufficient conditions
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for matching are obtained (cf. [209]). By doing so, (6.27a) becomes

(
C− J−MM−1

c (Cc − Jc)−GFT
)
ν = 0, (6.29)

and as it has to be satisfied for all ν, we get

Jc = Cc + McM−1(J−C + GFT). (6.30)

For the mechanical target system Ṁc =Cc + CT
c holds. Expressing the skew-symmetry

of Jc in (6.30) by Jc + Jc =0, we obtain

McM−1(J−C + GFT) + (J−C + GFT)TM−1Mc = −Ṁc. (6.31)

To extract the conditions that have to be satisfied independently from control, we pre-
multiply (6.31) by G⊥MM−1

c and post-multiply it by M−1
c MGT

⊥, which leads to the
projected matching equation

G⊥
(
(J−C)M̄cM + MM̄c(J−C)T

)
GT
⊥ = G⊥M ˙̄McMGT

⊥, (6.32)

where M̄c = M−1
c . In order to transform the PDE (6.32)—which is usually hard to

solve—into an ODE, we make the following assumptions:

Assumption 6.1. The inertia matrices M and Mc are constant or depend only on
one configuration variable ξj. That is, M(ξ) = M(ξj), Mc(ξ) = Mc(ξj). Consequently,
˙̄Mc = M̄′

c ξ̇j, where M̄′
c represents the element-wise derivative of the matrix M̄c with

respect to ξj.

Assumption 6.2. The matrices J and C are such that the row vector G⊥(J−C) can
be given as ξ̇j fT

C (ξj), for a vector-valued function fC : QR → Rn−k.

Note that with Assumptions 6.1 and 6.2, (6.32) is an ODE for the elements of the
inverse closed-loop inertia matrix M̄c, since it can be written as

2fT
CM̄cfM = fT

MM̄′
cfM , (6.33)

where fM =MGT
⊥. Thus, shaping the kinetic energy only requires a solution M̄c>0 of

(6.33)6. Assuming that a solution has been found, the kinetic energy shaping control

6Note that equation (6.33) has infinite solutions, as it represents a scalar ODE for all elements of M̄c.
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(6.28) is given as

uke = (GTG)−1GT
(
C− J−MM−1

c (Cc − Jc)
)
ν. (6.34)

The matrix Cc can be easily computed from the Christoffel symbols of Mc; the matrix
Jc by pre-multiplying (6.30) by G⊥MM−1

c , and fixing the coefficients to satisfy the
skew-symmetry.
Shaping the potential energy. With the help of the shaped mass matrix Mc, we
can proceed to shape the potential energy by solving (6.27b). The equivalent projected
matching equation is

G⊥
(
Fpot + MM−1

c ∇ξVc

)
= 0, (6.35)

which represents a set of linear first order PDEs that can be easily solved using a
computer algebra system. The closed-loop potential energy Vc is composed of a hetero-
geneous solution Φhet(ξ), and a free function Π(Φhom(ξ)) of the homogeneous solution
Φhom(ξ). If Φhet(ξ) has a minimum at ξ∗—which can be ensured by appropriately shap-
ing the kinetic energy—then one can always choose the function Π such that Vc has an
isolated minimum at ξ∗. The potential energy shaping control is then given by

upe = − (GTG)−1GT
(
Fpot + MM−1

c ∇ξVc
)
. (6.36)

Damping injection. To achieve asymptotic stability of ξ∗, it is necessary to add
(pervasive) damping according to Corollary 2.5, for which we need the solution of
(6.27c) for a dissipation matrix Rc ≥ 0, such that any possible system motion elicits
energy dissipation. First, let us define Rc = McM−1R̆M−1Mc, such that (6.27c) is
written as

Gudi = − R̆M−1Mcν. (6.37)

Choosing the damping matrix as R̆ = GKdiGT, for Kdi =diag(kd,1, . . . , kd,m)> 0, the
damping injection part of the control law is

udi = −KdiGTM−1Mcν. (6.38)

The following proposition gives a necessary and sufficient condition for pervasive damp-
ing:

Proposition 6.3. Let Mc>0, and the function Vc be positive semidefinite. The damp-
ing injection term (6.38) ensures pervasive damping for a positive definite matrix Kdi
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if and only if, for ν=βM−1
c MGT

⊥, the equation

β̇MGT
⊥ + β (C− J) GT

⊥ +∇ξVc = 0 (6.39)

is only satisfied for β=0.

Proof. See Appendix A.2.

Remark 6.3.2. The DC (3.8) is assumed to be satisfied in the following. Small damping
terms in unactuated coordinates that have not been included in the model enter as
dissipation with respect to the closed-loop energy. Thus, damping in the unactuated
coordinates does not represent a threat to the stability of the system.

6.3.2 Asymptotic stabilization in QR

The following result summarizes the asymptotic stabilization in reduced space QR:

Theorem 6.1. Consider the mechanical system (6.23). Assume there is a matrix
Mc(ξ)>0 and a scalar function Vc(ξ) that verify (6.33) and (6.35), where the function
Vc is such that ξ∗=arg min Vc. Then, the control law

u = uke + upe + udi (6.40)

according to (6.34), (6.36), and (6.38), asymptotically stabilizes the equilibrium ξ∗ for
Kdi>0 if the closed-loop damping is pervasive.

Proof. Assumption 6.1 and Assumption 6.2 imply that the ODE (6.33) is equivalent
to the the non-actuated part of (6.27a)—that is, the projection of (6.27a) onto the
kernel of G by pre-multiplying (6.27a) with the left annihilator G⊥. Thus, according
to Lemma 2.1, the matching equations (6.27) are satisfied if and only if a solution to
(6.27c), (6.35), and (6.33) can be found and, additionally, the input (6.40) is chosen
according to (6.34), (6.36), and (6.38).
Note that the damping matching equation (6.27c) is trivially solved by choosing the

closed-loop matrix as R̆=GKdiGT. Furthermore, as the projected matching equations
(6.33) and (6.35) are assumed to be satisfied for the matrix Mc(ξ) and the scalar
function Vc(ξ), the control law (6.40) renders (6.23) the closed-loop Lagrangian system
(6.25). Stability and asymptotic stability of the desired equilibrium ξ∗ follow from
Corollary 2.3, since the closed-loop damping is pervasive.
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6.3.3 Asymptotic stabilization in QC

Suppose now that we want to solve the matching problem for the configuration space,
or a subset QC⊆Q thereof, which comprises coordinates that are not included in the
reduced spaceQR. Although it is not possible to asymptotically stabilize a point using a
continuous controller—since the dynamics evolving on QC are subject to nonholonomic
constraints—it can be helpful to consider the constrained space7 QC, for instance, to
develop controllers that stabilize a specific position of a mobile robot in the horizontal
plane (cf. Section 8.4.1). As it is usually easier to postulate and solve the matching
problem in unconstrained reduced coordinates ξ ∈ QR than to employ constrained
coordinates η∈QC (cf. Chapter 8), we are interested in making use of the solution to
the matching equations in QR to find a solution to the matching problem in QC. To
that end, we make the following assumption:

Assumption 6.3. The space QC is a submersion. That is, the set of coordinates
η ∈QC can be given as η =φ(q), where φ is smooth and onto, and its differential is
of constant rank. Further, η∈QC includes, at least, the configuration variable ηj = ξj

from Assumption 6.1, and all coordinates ηi=qi the potential energy V depends on.

Assumption 6.3 implies that the dynamical system (6.10) can be given in new coor-
dinates η∈QC as

M(ηj)ν̇ + C(ηj,ν)ν + ST
η (η)∇ηV (η) = Gu + J(η,ν)ν (6.41a)

η̇ = Sη(η)ν, (6.41b)

where
Sη = ∂η

∂q S. (6.42)

Example 6.3.1 (Rolling coin.). Let us consider the vertical coin from Example 2.1.2
rolling on a horizontal plane. The configuration space Q is parametrized by the co-
ordinates q = (x, y, θ, φ), where (x, y) denotes the position of the contact point, and
θ and φ describe the coin’s orientation and its absolute rotation angle, respectively.
As, in general, we are not interested whether the figure on the coin is right side up,
we may study the dynamics of the system on the three-dimensional manifold QC⊆Q,
parametrized by η=φ(q)=(x, y, θ).
As no diffeomorphism (continuously differentiable coordinate transformation) exists

that directly relates ξ and η, the solution of the matching equations (6.27) in QR does
7With some abuse of terminology, we call the space QC ⊂ Q constrained space, although, strictly
speaking, the velocity space is constrained and not the space QC as such.
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not imply the solution to the matching problem in QC. However, from Assumption 6.3
and the fact that the constraint distribution D represents the space of admissible ve-
locities ν, which remains unchanged after the transformation, the kinetic energy and
damping matching equations are equal as in Section 6.3.1 and admit the same solution.
The potential energy PDE, however, changes to

G⊥
(
ST
η∇ηV −MM−1

c ST
η∇ηṼc

)
= 0, (6.43)

for the potentials V (η) and Ṽc(η) given in coordinates η. The following result holds
for the solution of the new potential energy matching equation (6.43):

Theorem 6.2. Assume that Vc(ξ) is a solution to the potential energy PDE (6.35),
and suppose that one can find a vector-valued function ϑ(η), such that

G⊥MM−1
c ST

η

(
∂ϑ

∂η

)T

= G⊥MM−1
c (6.44)

holds. Then, the potential function

Ṽc(η) = Vc(ξ=ϑ(η)) (6.45)

is a solution to (6.43).

Proof. For the gradient of Ṽc we can write

∂Ṽc

∂η
= ∂Vc

∂ξ

∂ξ

∂η
⇒ ∇ηṼc =

(
∂ϑ

∂η

)T

∇ξVc.

As ST
η∇ηV =−Fpot, replacing ∇ηṼc into (6.43) yields

G⊥

Fpot + MM−1
c ST

η

(
∂ϑ

∂η

)T

∇ξVc

 = 0. (6.46)

As (6.44) is assumed to hold, (6.46) equals (6.35), and is satisfied by Vc(ξ=ϑ(η)), as
Vc(ξ) solves (6.35) according to the theorem.

The result allows to consider stabilization in a constrained space QC, once we have
found the solution to the matching equations in reduced (unconstrained) space QR. If
the developed controller in reduced space stabilizes the admissible equilibrium ξ∗∈QR,
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then, setting ξ=ϑ(η), asymptotically stabilizes the invariant set given by

X ∗ =
{
η ∈ QC | ST

η∇ηṼc = 0
}
, (6.47)

provided that (6.44) is satisfied.

6.4 Velocity control

This chapter deals with the energy shaping procedure for speed control. In some appli-
cations, it is desired not just to stabilize a static equilibrium, for which the velocities
vanish, but to stabilize a so-called dynamical equilibrium.

Definition 6.2 (Dynamical equilibrium). A mechanical system is at a dynamical equi-
librium (DE) if the sum of forces and momenta acting on the system is zero, yet it
moves with constant velocity. Hence, an admissible DE only accepts nonzero velocities
in cyclic coordinates of the uncontrolled system.

Let us introduce the following notation for the characterization of a DE: Let us split
the coordinates ξ ∈ QR into ξd and ξs, and the corresponding velocities ν ∈ TξQR,
and ν̂ ∈ TξQR into νd and νs (resp. ν̂d and ν̂s). The vector ξd contains only the
cyclic variables with nonzero reference velocities ν̂d, while ξs contains the remaining
configuration variables, which are to be stabilized at a constant value ξ̂s. Since the
relationship ξ̇=ν holds, one has νd = ξ̇d and νs = ξ̇s as well.
Example 6.4.1 (Rolling coin). Consider the rolling coin on a horizontal plane with
(cyclic) coordinates ξ = (θ, φ). If the goal was to stabilize a specific forward velocity
that is characterized by φ̇, while maintaining a constant orientation θ∗, then ξd = φ,
and ξs =θ.
By defining the reference value ξ̂d = ξd, such that ξd

e = 0 for all times t > 0, the
potential energy V e

c does not depend on ξd. Thus, for the stabilization of a constant
(nonzero) reference velocity ν̂d, we completely ignore the configuration variables ξd.
That is,

∇ξV e
c =

 ∇ξdV e
c

∇ξsV e
c

 =

 0

∇ξsVc

. (6.48)

Additionally, the following relations hold for an admissible DE:

ξ̂ =

 ξ̂d

ξ̂s

 =

 ξd

ξ̂s∗

, ν̂ =

 ν̂d

ν̂s

 =

 ν̂d∗

0

, (6.49)
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for constant ξ̂s∗ and ν̂d∗.

Remark 6.4.1. It makes sense to define the dynamical equilibrium in this fashion, as
demanding a constant velocity ν̂i and at the same time, a constant position ξ̂i are
contradictory requests.

For the stabilization of a DE via energy shaping, we need to find a static state feedback
u=u(ξ,ν, t) that renders (6.23) the closed-loop system8

Mcν̇ + Ccνe +∇ξV e
c = (Jc −Rc)νe, (6.50)

where V e
c =Vc(ξe)9, and ξe =ξ− ξ̂ and νe =ν− ν̂ are the configuration and the velocity

errors from the reference values ξ̂ and ν̂, respectively.

Theorem 6.3. Let (ξ̂, ν̂) be an admissible DE with constant ν̂d and ν̂s = 0. Define
ξ̂d =ξd, such that the potential energy V e

c is only a function of the coordinates ξs. The
admissible DE (ξ̂, ν̂) of (6.50) is stable if Mc>0, V e

c is such that 0=arg min V e
c , and

Rc≥0. The DE is asymptotically stable if Rc≥0 ensures pervasive damping10.

Proof. Consider the time-invariant Lyapunov function

Eν = 1
2 ν

T
e Mcνe + V e

c . (6.51)

Its derivative along the trajectories of (6.50) is given by

Ėν = −νT
e Rcνe +∇T

ξ V
e

c

(
ν̂ − ˙̂

ξ
)
. (6.52)

The second term in (6.52) is always zero, since

∇T
ξ V

e
c

(
ν̂ − ˙̂

ξ
)

= ∇T
ξdV e

c︸ ︷︷ ︸
=0

(
ν̂d − ˙̂

ξd
)

+∇T
ξsV e

c

(
ν̂s − ˙̂

ξs
)

︸ ︷︷ ︸
=0

= 0. (6.53)

Stability of the DE (ξ̂, ν̂) follows, as Ėν ≤ 0. Asymptotic stability can be shown
invoking La Salle’s invariance principle if Rc≥0 ensures pervasive damping.
In order to find a control law u = u(ξ,ν) that renders (6.23) the closed-loop system
(6.50), consider the matching equations for the kinetic and potential energy, and for

8These equations have been motivated by the Controlled Lagrangians procedure for the stabilization
of an admissible equilibrium. Note that they cannot be derived from a Lagrangian function.

9The function V e
c is a so-called tracking error function (cf. Section 7.2).

10Note that for ν̂d =0 and constant ξ̂d, the closed-loop system (6.50) equals (6.25).
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the dissipation

Guke = (C− J)ν −MM−1
c (Cc − Jc)νe, (6.54a)

Gupe = −MM−1
c ∇ξV e

c − Fpot, (6.54b)
Gudi = −MM−1

c Rcνe, (6.54c)

respectively. The equations for the kinetic and potential energy (6.54a) (setting ν =
νe + ν̂) and (6.54b), and for the dissipation (6.54c), are very similar to (6.27a), (6.27b),
and (6.27c), and have a structurally identical solution of their projected part if

G⊥ (C− J) ν̂ = 0. (6.55)

From Lemma 2.1, the speed control law can be given as

u = (GTG)−1GT
(
(C− J) ν̂ − Fpot −MM−1

c ∇ξV e
c

)
+FTνe−KdiGTM−1Mcνe, (6.56)

and can be computed without much effort, since the matching equations involved have
been previously solved: Note that in order to get (6.56) from (6.28), (6.36), and (6.38),
it is merely necessary to add an extra term and replace some ν by νe.

Theorem 6.4. Assume there is a scalar function V e
c with a strict minimum at 0, and

matrices Mc > 0 and Rc ≥ 0, which verify the equations (6.27) and ensure pervasive
damping. Further, define the vector νe =ν− ν̂, where (ξ̂, ν̂) is an admissible dynamical
equilibrium with constant ν̂d, ξ̂s, and with ν̂s =0, and ξ̂d =ξd. Additionally, assume that
(6.55) holds true. Then, the control law (6.56) asymptotically stabilizes the admissible
equilibrium (ξ̂, ν̂).

Proof. In the same manner as in Theorem 6.1, the input (6.56) transforms (6.23)
into (6.50), since G⊥(C−J)ν̂=0. Stability and asymptotic stability follow from Theo-
rem 6.3.

6.5 Input-to-state stability

In Section 6.3, we designed a controller that is capable of stabilizing a desired admissible
equilibrium ξ∗. How the stability of the system is affected by varying this equilibrium
is the topic of this section. Let, without loss of generality, 0 = arg min Vc, and let
V e

c = Vc(ξ−ξ∗), such that ξ∗ = arg min V e
c . We analyze the input-to-state stability of
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the closed-loop system11

Mcν̇ + Ccν +∇ξV e
c = (Jc −Rc)ν (6.57)

with respect to the "disturbance" dξ = ξ∗. ISS is locally equivalent to asymptotic
stability. In this section, we give explicit bounds for the input disturbance dξ such that
boundedness of all closed-loop signals is guaranteed. For that purpose, we make the
following assumptions:

Assumption 6.4. A constant positive definite matrix K = KT exists, such that the
matrix

Rξ
ε = Rc −

ε

2 (McK∇2
ξVc +∇2

ξVc KMc) (6.58)

is positive definite in a neighborhood of ξ=0 for small values of ε. Note that it always
holds true for Rc>0.

Assumption 6.5. The potential function Vc satisfies

∇ξVc(ξ−dξ)−∇ξVc(ξ) = Πξdξ, (6.59)

for a matrix-valued function Πξ : QR → R(n−k)×(n−k).

Assumption 6.5 indicates that the closed-loop system (6.57) can be given as

Mcν̇ + Ccν +∇ξVc = (Jc −Rc)ν −Πξdξ, (6.60)

with input matrix Πξ, and input disturbance dξ. Recall that a system is ISS if the
states remain bounded in the presence of a disturbance in the sense that a positive
definite function exists—an ISS Lyapunov function—whose time derivative is negative
semidefinite for bounded input disturbances dξ.

Theorem 6.5. Let ε> 0 be a sufficiently small scalar. The system (6.60) is (locally)
input-to-state stable with respect to input disturbances satisfying

‖dξ‖ ≤
γλmin

σmax
‖χ‖, (6.61)

where χ=col(∇ξVc, ν), the scalar γ=]0, 1[ is free, σmax represents the largest singular

11Note that (6.57) is equivalent to (6.25) for a constant ξ∗ if 0=arg minVc, and V e
c =Vc(ξ−ξ∗).
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value of the matrix

Σ =

 εKΠξ

Πξ

, (6.62)

and λmin is the smallest eigenvalue of the positive definite matrix

Rχ =

 εK − ε
2 K (Jc + CT

c −Rc)
ε
2 (Jc + Rc + Cc) K Rξ

ε

. (6.63)

Proof. Consider the (local) ISS Lyapunov function

EξISS = 1
2 ν

TMcν + Vc + ε∇T
ξ VcKMcν, (6.64)

which clearly is positive definite for small values of ε. The time derivative along the
trajectories of (6.60) is

ĖξISS = νT((Jc −Rc −Cc)ν −∇ξVc −Πξdξ) + 1
2ν

TṀcν + νT∇ξVc + ε∇T
ξ VcKṀcν

+ ε∇T
ξ VcK ((Jc −Rc −Cc)ν −∇ξVc −Πξdξ) + ενTMcK∇2

ξVc ν

= −νT
(
Rc −

ε

2 (McK∇2
ξVc +∇2

ξVc KMc)
)

︸ ︷︷ ︸
Rξ

ε

ν − νTΠξdξ − ε∇T
ξ VcK∇ξVc

+ ε∇T
ξ VcK

(
Jc −Rc + CT

c

)
ν − ε∇T

ξ VcKΠξdξ. (6.65)

Defining χ=col(∇ξVc, ν), expression (6.65) can be given as

ĖξISS = −χTRχχ+ χTΣdξ, (6.66)

where

Rχ =

 εK − ε
2 K (Jc + CT

c −Rc)
ε
2 (Jc + Rc + Cc) K Rξ

ε

, Σ =

 εKΠξ

Πξ

. (6.67)

For any number 0<γ<1, we have for the derivative of the ISS Lyapunov function

ĖξISS = − (1− γ)χTRχχ− χT (γRχχ−Σdξ) ≤ 0,
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provided
χT (γRχχ−Σdξ) ≥ 0. (6.68)

Using the relations χ = ‖χ‖χ̄ and dξ = ‖dξ‖d̄ξ, where ‖χ̄‖ = ‖d̄ξ‖ = 1, the latter
inequality can be given as

‖χ‖γχ̄TRχχ̄ ≥ ‖dξ‖χ̄TΣd̄ξ. (6.69)

As χ̄TRχχ̄ ≥ λmin, where λmin is the smallest eigenvalue of Rχ, and χ̄TΣd̄ξ ≤ σmax,
where σmax = ‖Σ‖2 represents the spectral norm—or largest singular value—of the
matrix Σ, the inequality (6.69) is always satisfied for

‖dξ‖ ≤
γλmin

σmax
‖χ‖. (6.70)

Note that the right hand side of (6.70) is a class K function of χ, and, therefore, also
a class K function of the state variables (ξ, ν) ∈ TQR, as ∇ξVc(‖ξ‖) ∈ K, and the
composition of class K functions is again a class K function. Thus, the system (6.60)
is ISS according to Theorem 2.6.
Let us now analyze the robustness of the velocity controller of Section 6.4 with respect

to the "disturbance" dν = ν̂. To that end, we make the following assumption:

Assumption 6.6. A constant positive definite matrix K = KT exists, such that the
matrix

Rν
ε = Rc −

ε

2 (McK∇2
ξV

e
c +∇2

ξV
e

c KMc) (6.71)

is positive definite in a neighborhood of the DE (ξ̂, ν̂) for small values of ε.

Further, let us define the matrix Πν =Jc−Cc−Rc, such that the closed-loop system
(6.50) is given as

Mcν̇ + Ccν +∇ξV e
c = (Jc −Rc)ν −Πνdν . (6.72)

The following theorem illustrates the ISS property of the speed controller:

Theorem 6.6. Let (ξ̂, ν̂) be an admissible DE with constant ν̂d and ν̂s =0, and define
ξ̂d =ξd, such that the potential energy V e

c is only a function of the coordinates ξs. Let,
further, ε>0 be a sufficiently small scalar. The system (6.72) is (locally) input-to-state
stable for input disturbances dν satisfying

‖dν‖ ≤
γλmin

σmax
‖χ‖, (6.73)
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where χ=col(∇ξVc, ν), the scalar γ=]0, 1[ is free, σmax represents the largest singular
value of the matrix

Σ =

 εKΠν

Πν

, (6.74)

and λmin is the smallest eigenvalue of the positive definite matrix

Rχ =

 εK − ε
2 K (Jc + CT

c −Rc)
ε
2 (Jc + Rc + Cc) K Rν

ε

. (6.75)

Proof. Consider the (local) ISS Lyapunov function

EνISS = 1
2 ν

TMcν + V e
c + ε∇T

ξ V
e

c KMcν, (6.76)

which is positive definite for small values of ε. Its rate of change along the trajectories
of (6.72) is given as

ĖνISS = νT((Jc −Rc −Cc)ν −∇ξV e
c −Πνdν) + 1

2ν
TṀcν +∇T

ξ V
e

c

(
ξ̇ − ˙̂

ξ
)

+ ε∇T
ξ V

e
c KṀcν + ε∇T

ξ V
e

c K ((Jc −Rc −Cc)ν −∇ξV e
c −Πνdν)

+ ενTMcK∇2
ξV

e
c

(
ξ̇ − ˙̂

ξ
)
.

From the characterization of the DE (6.48) and (6.49), we conclude

∇T
ξ V

e
c

˙̂
ξ = 0, ∇2

ξV
e

c
˙̂
ξ = 0. (6.77)

The latter relationships imply

ĖνISS = −νT
(
Rc −

ε

2 (McK∇2
ξV

e
c +∇2

ξV
e

c KMc)
)

︸ ︷︷ ︸
Rν

ε

ν − ε∇T
ξ V

e
c K∇ξV e

c

+ ε∇T
ξ V

e
c K

(
Jc −Rc + CT

c

)
ν − νTΠνdν − ε∇T

ξ V
e

c KΠνdν . (6.78)

The rest of the proof is analogous to the proof of Theorem 6.5 for the input matrix Πν ,
and the disturbance dν , defining χ=col(∇ξV e

c , ν), and noting that

Rχ =

 εK − ε
2 K (Jc + CT

c −Rc)
ε
2 (Jc + Rc + Cc) K Rν

ε

 (6.79)
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is positive definite for ε sufficiently small.

Remark 6.5.1. The ISS property can be also invoked to study the robustness of con-
trollers to model uncertainties by reformulating the modeling errors as input distur-
bances. By doing so, one can show that, to a certain extent, energy-based controllers
are intrinsically robust to model uncertainties.

6.6 Motor dynamics

Many robotic platforms are actuated by DC motors, for instance, such that the input
forces (and/or torques) τ cannot be directly commanded. Rather, the armature voltage
of the motors uA is the input, and the torques are governed by the motor dynamics

τ̇ = f̃A + G̃AuA, (6.80)

which can be given in terms of the system’s input u as

u̇ = fA + GAuA, (6.81)

where fA = fA(ξ,ν,u) is the drift vector field, and GA is the new (invertible) constant
input matrix (cf. (B.4) in Appendix B.1). In the case that the motor dynamics (6.81)
cannot be neglected, the backstepping method—introduced in [105]—can be used to
include the actuator dynamics in the energy shaping procedure to design a control law
that asymptotically stabilizes the mechanical system (6.23) with actuator dynamics
(6.81). The following proposition summarizes the result for the position stabilization.
The same procedure, however, can be applied to include actuator dynamics for speed
stabilization.

Proposition 6.4. Let ũ be the desired input defined as in (6.40), which asymptotically
stabilizes the system (6.23) according to Theorem 6.1. Further, assume that the input
u cannot be commanded directly, but rather it is subject to the dynamics (6.81). Then,
the control law

uA = G−1
A

(
˙̃u−GTM−1Mcν − fA −KA(u− ũ)

)
, KA > 0, (6.82)

asymptotically stabilizes the equilibrium ξ∗.

Proof. As ũ cannot be commanded directly, let us consider the Lyapunov function
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candidate
Ebs = 1

2 ν
TMcν + Vc + 1

2 (u− ũ)T(u− ũ) (6.83)

for the system (6.23) including the motor dynamics (6.81). The function Ebs clearly
is positive definite in a neighborhood of the equilibrium ξ∗, as Mc(ξ) > 0 and ξ∗ =
arg min Vc. The rate of change of Ebs along the trajectories of (6.23) and (6.81) is
given as

Ėbs = νTMcν̇ + 1
2 ν

TṀcν +∇T
ξ Vcν + (u̇− ˙̃u)T(u− ũ)

(6.23)= νTMcM−1(Gu + Jν + Fpot −Cν) + 1
2 ν

TṀcν +∇T
ξ Vcν + (u̇− ˙̃u)T(u− ũ)

As known from the backstepping design, we add a zero in form of Gũ −Gũ. Since ũ
is defined as in (6.40) and asymptotically stabilizes (6.23), we get

Ėbs = νTMcM−1 (G(u− ũ) + Gũ + Jν + Fpot −Cν) + 1
2 ν

TṀcν

+∇T
ξ Vcν + (u̇− ˙̃u)T(u− ũ)

(6.40)= −νTRcν +
(
u̇− ˙̃u + GTM−1Mcν

)T
(u− ũ)

(6.81)= −νTRcν +
(
fA + GAuA − ˙̃u + GTM−1Mcν

)T
(u− ũ) (6.84)

If one chooses the control law (6.82), then (6.84) becomes

Ėbs = −νTRcν − (u− ũ)T KA (u− ũ) ≤ 0. (6.85)

The latter inequality proves asymptotic stability of the equilibrium ξ∗ according to
Corollary 2.3, as Rc ensures pervasive damping.

6.7 Concluding remarks

In this chapter, we considered the stabilization problem for underactuated nonholo-
nomic mechanical systems via total energy shaping. We presented a systematic so-
lution to the matching problem in reduced space QR, and showed how a coordinate
transformation allows us to consider the stabilizing problem also in a constrained space
QC for a class of nonholonomic systems. Further, we illustrated how the results from
the position controller are applied to design a speed control law that asymptotically
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stabilizes an admissible dynamical equilibrium if some conditions are satisfied.
In a following step, we showed robustness of the closed-loop system for both the posi-

tion and the velocity controller by means of ISS. This property allows us to continuously
vary the desired equilibrium (or dynamical equilibrium) within specific bounds without
threatening the stability of the system.
Finally, we showed how actuator dynamics can be easily embedded into the design

procedure via backstepping. By doing so, we are able to compute position and velocity
stabilizing control laws for mechanical systems with motor dynamics that cannot be
neglected.
Based on the stabilization and ISS results presented in this chapter, the next chapter

deals with trajectory tracking and path following strategies for nonholonomic systems.



7 Trajectory Tracking and Path
Following

Motion control for mechanical systems can be practically divided into three categories:
stabilization, trajectory tracking and path following. In the last chapter, we considered
the stabilization problem; this chapter is concerned with trajectory tracking and path
following for nonholonomic underactuated mechanical systems via total energy shap-
ing. The control problem is specified in Section 7.1. Section 7.2 discusses the trajectory
tracking problem. As admissible reference trajectories are often hard and even impos-
sible to compute, we also consider stability with respect to reference trajectories that
are not compatible with the system’s dynamics. Section 7.3 covers the path following
approach. Specifically, we present a vector field control strategy, and study the stability
of the closed-loop system. The chapter concludes with a final remark in Section 7.4.

7.1 Problem formulation

Mobile robots and vehicles are designed to move from one place to another. We are
mostly familiar with manned vehicles that are directly steered by humans. However,
drones, unmanned vehicles and mobile robots are being developed at a fast pace. In
the absence of a pilot, automatic control accounts for the navigation. In the course
of the years, different strategies have been developed for wheeled systems to automat-
ically displace from one point to another, or to execute a desired maneuver. In this
chapter, we are concerned with reference tracking and path following for underactu-
ated nonholonomic systems. Often, and in order to simplify the problem setting, some
authors employ kinematic models of nonholonomic systems for tracking [97] and path
following [137] (see also [57]). However, in this thesis we study underactuated systems,
whose behavior can only be accurately described including the inertial and/or potential
couplings. For that reason, it is necessary to consider the dynamical model.
The first approach we deal with is trajectory tracking, or reference tracking, which

aims at steering the mobile robot to asymptotically converge towards a reference tra-
jectory. A trajectory is a curve on the configuration (or reduced) manifold that is
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parametrized by time. That is, in trajectory tracking, the system is commanded to be
in a specific position with a specific velocity at a particular time. For simplicity, we
consider trajectory tracking in the reduced space QR.

Definition 7.1 (Admissible reference trajectory.). A reference trajectory ξ̂(t) is said
to be admissible if it is compatible with the system’s dynamics (6.23). In other words,
if ξ(0) = ξ̂(0), and ν(0) = ν̂(0), then, in the absence of disturbances, an input uff(t)
exists, such that ξ(t)≡ ξ̂(t), ∀t>0.

Using the result from Lemma 2.1, we can express the set of admissible trajectories
for the mechanical system (6.23) by the differential equation

G⊥
(
M(ξ̂) ˙̂ν + C(ξ̂, ν̂)ν̂ − Fpot(ξ̂)− J(ξ̂, ν̂)ν̂

)
= 0, (7.1)

where ν̂(t)= ˙̂
ξ(t). If a solution ξ̂(t) to (7.1) can be found, then (6.23) with input

uff = GTG−1GT
(
M(ξ̂) ˙̂ν + C(ξ̂, ν̂)ν̂ − Fpot(ξ̂)− J(ξ̂, ν̂)ν̂

)
(7.2)

exactly follows the reference ξ̂(t) if the initial conditions coincide. In addition to the
feedforward term uff , a state feedback term ufb is necessary to account for modeling
errors, initial offsets, and external disturbances.
The trajectory tracking problem can be stated as follows. Let ξe =ξ(t)− ξ̂(t) be the

tracking error, and let B be a neighborhood of (ξe, ξ̇e) = (0, 0). Design a controller
u = uff + ufb for the system (6.23) such that all closed-loop signals are bounded, and
the tracking error ξe, with (ξe(0), ξ̇e(0))∈B, converges to the origin in the absence of
disturbances. That is, find a control law u, such that

(ξe(0), ξ̇e(0)) ∈ B =⇒ lim
t→∞

ξ(t) = ξ̂(t). (7.3)

Note the local property of the result, as (7.3) holds for initial errors lying in a neighbor-
hood of the origin. For unconstrained fully actuated mechanical systems, the tracking
control problem is well understood and can be consulted in standard textbooks on con-
trol (cf. [118, 147, 189]) and robotics (cf. [42, 141]). Still, finding admissible trajectories
for underactuated systems is difficult and might be even unfeasible, as ξ̂(t) is subject
to (7.1). One possibility to find an admissible trajectory between two given states is to
employ stable nonlinear inversion approaches for output tracking [54, 76].
As we are not always able to compute admissible trajectories, there arises the question

whether the closed-loop system is stable with respect to reference trajectories ξ̂(t) that
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are not compatible with the system’s dynamics (6.23). That is, trajectories for which
no feedforward input term uff exists, such that ξ(t)≡ ξ̂(t) for all times t > 0, if their
initial conditions match. The tracking problem for non-admissible trajectories can be
stated as follows. Design a controller u = uff + ufb for the system (6.23) such that,
for all (ξe(0), ξ̇e(0))∈B, all closed-loop signals as well as the tracking error ξe remain
bounded. Furthermore, ξe converges towards the origin if ξ̂(t) is admissible.

The second approach we study in this chapter is path following, for which the primary
goal is to steer the system towards a desired geometric path, and then to regulate a
given, usually constant, velocity along the path. For simplicity, we consider geometric
paths in the two-dimensional Euclidean space, piecewise defined as

P =
{

(x, y, θ) ∈ R2 × S1 |Φ(x, y, θ) = 0
}
, (7.4)

where the function Φ(x, y, θ) is sufficiently smooth, and the path is admissible by the
nonholonomic constraints. In contrast to the holonomic case, in which the path can be
given as a function of x and y, the nonholonomic case demands a specific orientation θ
at every point of the path in accordance with the constraints. The approach can be, if
necessary, easily expanded to the three-dimensional Euclidean space R3. Although, in
general, no time dependency is assigned to the path, the dynamics along the path can
be further specified by assigning a desired velocity profile. However, in this chapter we
restrict the analysis to a constant velocity along the path. The control scheme consists,
therefore, of a passivity-based velocity controller together with a heading regulation to
approach and stay on the path. By doing so, large initial deviations to P do not affect
the magnitude of the input. As a result, the control signals are less prone to reach
saturation using path following strategies instead of reference tracking.

The goal of path following is to design feedback control laws for (6.23), such that
all the closed-loop signals are bounded, the position of the system converges to and
remains inside an arbitrarily small tube centered around the desired path P , and the
system travels along the path with desired constant speed v∗, i. e., the speed error
ve =v − v∗ converges to zero, as t→∞. Even though path following has received much
less attention than reference tracking in the literature, it has been widely used for flying,
underwater, and wheeled robots, especially since the introduction of the passive vector
field control (PVFC) in the nineties [123, 126, 146].
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7.2 Trajectory tracking

As mentioned before, in trajectory tracking, the goal is to steer the system such that
it converges toward a reference trajectory. We want, therefore, to control the system
to be in a defined position, and to move with a defined velocity, at a particular time.
To do so, the idea is to define the error from the actual trajectory with respect to the
reference, and then to control the system such that the error vanishes as time goes to
infinity.
Since the reference velocity ν̂ and the actual velocity ν live in different tangent

spaces T̂ξQR and TξQR, to measure the distance between actual and reference velocity,
we require the notion of a transport map to take vectors from one tangent space to
another. Let us for a moment denote the pair (ξ,ν)∈TQR as νξ, i. e., the velocity ν
at ξ.

Definition 7.2 (Transport map [42]). A transport map I : QR×TQR → TQR×QR is
a smooth map that satisfies

i) I(ξ,νξ) = νξ, ∀ ξ∈QR and νξ∈TQR.

This object plays an important role in control design, as it is necessary to define the
notion of a velocity error

νξ − I(ξ, ν̂ ξ̂) = νξ − ν̂ξ = νe. (7.5)

We will normally drop the index and write νe = ν− ν̂ with some abuse of notation.
Figure 7.1 illustrates the transport map.
In addition to the velocity error, for reference tracking we also require the error in

the configuration. To measure the distance between reference and actual position, we
make use of the tracking error function.

Definition 7.3 (Tracking error function [42]). A symmetric map Ψ: QR×QR → R is
a tracking error function if, for all ξ̂∈QR, it satisfies

i) Ψ(ξ̂, ξ̂) ≤ Ψ(ξ̂, ξ), ∀ ξ 6= ξ̂,

ii) ∇ξΨ(ξ̂, ξ) |ξ=ξ̂ = 0, and

iii) ∇2
ξΨ(ξ̂, ξ) |ξ=ξ̂ is positive definite.

A tracking function can be easily found via energy shaping: Suppose that Vc is a
solution to (6.35), i. e., the shaped potential energy, with a strict minimum at 0. For
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QR

I

νξ

ν̂ ξ̂

ν̂ξ
ξ̂

ξ

T̂ξQR

TξQR

Figure 7.1: The notion of the transport map I to measure the velocity error between
velocity vectors living in different tangent spaces.

arbitrary reference values ξ̂ ∈QR, the function V e
c = Vc(ξe) is locally a tracking error

function, where ξe =ξ − ξ̂ denotes the configuration error.

Definition 7.4 (Compatibility of the tracking error function and the transport map). A
pair (Ψ, I) is said to be compatible if for all (ξ, ξ̂)∈QR×QR, the following relationship
holds

∇ξ̂Ψ(ξ, ξ̂) = −I∗(∇ξΨ(ξ, ξ̂), ξ̂),

where the map I∗ is the dual of the transport map I.

The map I∗ : T∗QR×QR → QR×T∗QR is necessary to compare elements of the
cotangent bundle—generalized forces—living in different cotangent spaces. It takes the
elements from one cotangent space to another as shown in Figure 7.2.
The choice of the tracking error function Ψ has an effect on the performance of the

closed-loop system; the choice of a suitable (and compatible) transport map I has an
effect on the complexity of the controller. As the choice of the tracking error function
V e

c =Vc(ξe) is natural in the energy shaping framework, and ∇ξ̂V e
c =−∇ξV e

c holds, the
identity map is a compatible transport map.

QR

I
∗

∇ξV e

c

∇ξ̂V e

c
I

∗(∇ξV e

c
, ξ̂)

ξ̂

ξ
T

∗

ξ̂
QR

T
∗

ξ QR

Figure 7.2: The dual of the transport map I∗ is necessary to compare elements of the
cotangent bundle—generalized forces—that live in different cotangent spaces.



120 7 Trajectory Tracking and Path Following

7.2.1 Tracking admissible trajectories in reduced space

Reference tracking in reduced space is straightforward for admissible reference trajec-
tories ξ̂(t), as it resembles the holonomic case. We will, however, present the problem
setting in the energy-based framework for completeness. We want to design a controller
such that the closed-loop signals remain bounded, and the position and velocity errors
ξe = ξ − ξ̂, and νe = ν − ν̂, respectively, converge to zero as t→∞. To put it in en-
ergy shaping words, the idea is to find a control law that renders (6.23) the closed-loop
system

Mcν̇e + Ccνe +∇ξV e
c = (Jc −Rc)νe, (7.6)

where ξ̂(t) is an admissible trajectory for (6.23), and ν̂(t)= ˙̂
ξ(t). The following theorem

proves asymptotic stability of the error ξe for admissible trajectories ξ̂(t).

Theorem 7.1. Let (7.6) describe the closed-loop dynamics, where Mc > 0, V e
c is a

tracking error function, and Jc is skew-symmetric. Further, let the condition of As-
sumption 6.6 hold in a neighborhood of ξe =0, and let the initial errors ξe(0) and νe(0)
be sufficiently close to the origin. Then, the position and velocity error signals ξe =ξ− ξ̂
and νe =ν − ν̂, respectively, remain bounded and converge to zero as t→∞.

Proof. Consider the time-varying Lyapunov function1

Eε = 1
2 ν

T
e Mcνe + V e

c + ε∇T
ξ V

e
c KMcνe. (7.7)

Its derivative along the trajectories of (7.6) is

Ėε = −νT
e

(
Rc − εMcK∇2

ξV
e

c

)
νe − ε∇T

ξ V
e

c K∇ξV e
c

+ ε∇T
ξ V

e
c K (Jc −Cc −Rc)νe + ε∇T

ξ V
e

c KṀcνe. (7.8)

Defining χ=col(∇ξV e
c , νe), expression (7.8) can be given as

Ėε = −χTRχχ, (7.9)

where

Rχ =

 εK − ε
2 K (Jc + CT

c −Rc)
ε
2 (Jc + Rc + Cc) K Rν

ε

. (7.10)

Since Rν
ε is assumed to be positive definite (Assumption 6.6), it can be locally ensured

1A similar Lyapunov function can be found in [141] for trajectory tracking of fully actuated systems.
It is clearly positive definite for small values of ε.
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that Rχ>0 for ε sufficiently small, and, thus, Ėε<0. Uniformly asymptotic convergence
towards the reference trajectory ξ̂(t) follows from Theorem 2.5, since both ξe and νe

converge to the origin.
Note, again, the local nature of the result. To achieve the desired behavior (7.6), we
need to find an admissible trajectory ξ̂(t) for (6.23), and an input u that satisfies the
matching condition (comparing (6.23) with (7.6))

MM−1
c ((Jc −Rc −Cc)νe −∇ξV e

c ) + M ˙̂ν + (C− J)ν − Fpot = Gu. (7.11)

The solution of

Guke = −MM−1
c (Cc − Jc)ν + (C− J)ν, (7.12a)

Gupe = −MMc
−1∇ξV e

c , (7.12b)
Gudi = −MM−1

c Rcνe, (7.12c)
Guff = MM−1

c (Cc − Jc)ν̂ + M ˙̂ν − Fpot, (7.12d)

is sufficient to satisfy (7.11). In contrast to the potential energy PDE of the previous
chapters, the projected part of (7.12b) is a homogeneous PDE, as the system’s poten-
tial forces Fpot have been assigned to the equation for the feedforward term (7.12d).
Nonetheless, by means of Lemma 2.1, the matching equation for the kinetic and po-
tential energy, and for the dissipation, equations (7.12a), (7.12b), (7.12c), respectively,
accept the same solution from Section 6.3.1 (with the exception of the inhomogeneous
solution to the potential energy PDE) if the input u is chosen accordingly.
Pre-multiplying (7.12a) by G⊥ yields

G⊥MM−1
c (Cc − Jc) = G⊥(C− J). (7.13)

The latter equation implies that, in accordance to Lemma 2.1, equation (7.12d) is
satisfied for any admissible trajectory ξ̂(t) (cf. (7.1)) if uff is chosen as (7.2).

7.2.2 Tracking non-admissible trajectories in reduced space

The observation above reveals that extending the energy-based stabilizing approach to
the tracking problem in reduced coordinates is a simple task if we are able to compute
admissible trajectories. A much more interesting question is whether the energy shaping
approach can be applied to (approximately) track non-admissible trajectories. Let us
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consider the mechanical system (6.23), and assume that the relationships

Guke = −MM−1
c (Cc − Jc)ν + (C− J)ν, (7.14a)

Gupe = −MMc
−1∇ξV e

c − Fpot, (7.14b)
Gudi = −MM−1

c Rcνe (7.14c)

hold. Then, the closed-loop system (6.23) with input u=uke + upe + udi + û is given as

Mcν̇e + Ccνe +∇ξV e
c − (Jc −Rc)νe︸ ︷︷ ︸

LHS

= McM−1Gû− (Cc − Jc)ν̂ −Mc ˙̂ν︸ ︷︷ ︸
RHS

. (7.15)

The control objective is to design a state feedback controller such that the closed–loop
system ensures some stability properties in spite of considering non-admissible trajec-
tories. In particular, we are interested in the following:

i) Preserving asymptotic stability for admissible trajectories ξ̂(t).

ii) Ensuring ISS with respect to a disturbance d∆ that characterizes the divergence
of the desired trajectory to an admissible reference.

To compute the disturbance d∆, we use the following elementary result:

Lemma 7.1. For an arbitrary matrix G, the inverse of the regular matrix
 G⊥

GT


is given by [

GT
⊥(G⊥GT

⊥)−1 G(GTG)−1
]
. (7.16)

Proof. A direct computation yields
 G⊥

GT

 [ GT
⊥(G⊥GT

⊥)−1 G(GTG)−1
]

=

 I 0

0 I

 .
The proof is completed noting that the inverse is unique.
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By means of Lemma 7.1, the closed-loop dynamics (7.15) can be rewritten as

(LHS) = McM−1
[

GT
⊥(G⊥GT

⊥)−1 G(GTG)−1
]

︸ ︷︷ ︸
Σ

 G⊥
GT

MM−1
c (RHS)

= Σ

 −G⊥MM−1
c (Cc − Jc) ν̂ −G⊥M ˙̂ν

GTGû−GTMM−1
c (Cc − Jc) ν̂ −GTM ˙̂ν



= Σ

 −G⊥MM−1
c (Cc − Jc) ν̂ −G⊥M ˙̂ν

0


(7.13)= −McM−1GT

⊥(G⊥GT
⊥)−1G⊥

(
(C− J) ν̂ + M ˙̂ν

)
= ∆1ν̂ + ∆2 ˙̂ν, (7.17)

provided that û is chosen as

û = (GTG)−1GT
(
M ˙̂ν + MM−1

c (Cc − Jc) ν̂
)
. (7.18)

The dynamics of the closed-loop system (6.23) with input u = uke + upe + udi + û
according to (7.14) and (7.18), and for a non-admissible trajectory ˙̂

ξ are given by

Mcν̇e + Ccνe +∇ξV e
c = (Jc −Rc)νe + Π∆d∆, (7.19)

where V e
c =Vc(ξ− ξ̂), νe =ν − ν̂, and d∆ =col(ν̂, ˙̂ν) is a disturbance. In the following,

we study the stability of (7.19) for a bounded disturbance d∆ via ISS. The following
theorem directly results from Theorem 6.5.

Theorem 7.2. Let ε> 0 be a sufficiently small scalar. The system (7.19) is (locally)
input-to-state stable for input disturbances d∆ satisfying

‖d∆‖ ≤
γλmin

σmax
‖χ‖, (7.20)

where χ=col(∇ξV e
c , νe), the scalar γ=]0, 1[ is free, σmax represents the largest singular

value of the matrix

Σ =

 εK∆1 εK∆2

∆1 ∆2

 =

 εKΠ∆

Π∆

, (7.21)

and λmin is the smallest eigenvalue of the positive definite matrix Rχ (cf. (7.10)).
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Proof. Consider the time-varying ISS Lyapunov function

Eε = 1
2 ν

T
e Mcνe + V e

c + ε∇T
ξ V

e
c KMcνe. (7.22)

Its derivative along the trajectories of (7.19) is

Ėε = −νT
e

(
Rc − εMcK∇2

ξV
e

c

)
νe − ε∇T

ξ V
e

c K∇ξV e
c + νT

e Π∆d∆

+ ε∇T
ξ V

e
c K

(
Jc −Cc −Rc + Ṁc

)
νe + ε∇T

ξ V
e

c KΠ∆d∆. (7.23)

Defining χ=col(∇ξV e
c , νe), expression (7.23) can be given as

Ėε = −χTRχχ+ χTΣd∆, (7.24)

where

Rχ =

 εK − ε
2 K (Jc + CT

c −Rc)
ε
2 (Jc + Rc + Cc) K Rν

ε

, Σ =

 εK∆1 εK∆2

∆1 ∆2

.
(7.25)

Since Rν
ε is assumed to be positive definite (Assumption 6.6), it can be locally ensured

that Rχ>0 for ε>0 sufficiently small. The remaining of the proof is analogous to the
proof of Theorem 6.5 for the disturbance d∆.

7.2.3 Hybrid position and speed controller

In Section 6.4 (Theorem 6.4), we introduced a strategy for the stabilization of a dynam-
ical equilibrium (DE) that corresponds to a classical speed controller. In this section, a
second type—given in Corollary 7.1—also considers the configuration error ξd

e . The idea
is to stabilize a constant reference velocity ν̂d, and, at the same time, a time-varying
consistent position given as ξ̂d = ν̂d t + ξd

0, where ξd
0 is a constant value for the initial

(admissible) equilibrium.

Corollary 7.1. Let (ξ̂, ν̂) be an admissible DE. Let, further, the condition of Assump-
tion 6.4 be satisfied. Define ξ̂d = ν̂d t + ξd

0, where ξd
0 is an admissible equilibrium of

(6.23). Let, further, ν̂s = 0, and ν̂d be constant, and assume that G⊥ (C − J)ν̂ = 0.
The admissible DE (ξ̂, ν̂) of (7.19) is uniformly asymptotically stable if Mc > 0, and
V e

c is such that 0=arg min V e
c .

Proof. From Theorem 7.2, we know that the system (7.19) is ISS with respect to
the disturbance d∆. As ˙̂ν = 0, and G⊥ (C − J)ν̂ = 0 is assumed to hold, we have
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for the disturbance term Π∆d∆ = 0. The ISS property implies that the time-varying
dynamical equilibrium (ξ̂, ν̂) is, thus, uniformly asymptotically stable.

7.3 Path following

Some maneuvers are better described in the path following setting rather than reference
tracking. Consider, for instance, an industrial welding or paint robot, or a mobile
robot that should cover a specific area for surveillance. Nonetheless, even in cases for
which reference tracking is better suited for the description of the problem setting, its
inherent disadvantages may justify path following strategies. In this section, we aim at
designing a control law to stabilize a given, constant forward velocity v∗, and at finding
an appropriate passive velocity field control (PVFC) strategy to determine the required
steering commands for the system to approach and remain on a geometric path P .
From a practical point of view, the velocity field control can be easily embedded in the

energy shaping framework, even though, strictly speaking, no energy is being shaped.
As systems controlled via PVFC interact in a passive way with its environment, the
vector field can be used to extend the classic PBC stabilizing controllers [70] to path
following. The notion of vector (velocity) fields is similar to that of potential fields
in the sense that the control forces are commanded by these fields. Yet, the velocity
fields simply specify the desired direction of motion and do not necessarily represent
the gradient of a scalar function.
Let us begin by describing the idea of PVFC. Path following via vector field control

relies on using a speed control law for the forward velocity of the system, designing a
vector field that assigns to every point q ∈ Q a vector, whose direction specifies the
desired orientation θ̂, and controlling the orientation error θe =θ− θ̂ via energy shaping.
Note that path following is defined in the configuration space Q. There are different
ways of constructing an appropriate vector field. In this thesis, we use a strategy
introduced by Nelson and co-workers in [146]. Yet, in contrast to the work of Nelson
et al., we consider one single strategy as a unified procedure to construct vector fields
for arbitrary paths. For simplicity, let us consider mobile robots and two dimensional
paths P defined on the plane as in (7.4).
The point p ∈ R2 characterizes the closest point of the path with respect to the

actual position (x, y). For simplicity, we assume that p is unique. The vector field is
characterized by

θ̂ = θp − ε arctan(kρ), (7.26)
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where θp is the orientation at p (given by the tangent line at this point), ρ> 0 is the
distance of the system to the nearest point p of the path, and ε = {−1, 1} depends
whether the actual position lies on the right or left hand side of the path with respect
to the desired travel direction. The parameter k characterizes the shape of the vector
field: Large values of k correspond to faster convergence, but also to an abrupt transition
between approaching and moving along the path; small values of k lead to a slower,
but smoother convergence to the path, as the vector field flattens softer the closer
the system gets to the path. The effect of the parameter k is shown in Figure 7.3.
An advantageous feature of PVFC compared to reference tracking is the fact that the
input signal is not likely to reach saturation even for initial conditions far away from
the desired path P , as the commanded velocity v∗ is constant and does not depend on
the magnitude of the error ρ to the path.

Example 7.3.1 (Rolling coin.). Consider the vertical coin from Example 2.1.2 rolling on
a horizontal plane. Suppose that we want to steer the coin such that it tracks a circular
path of radius R=1 with constant velocity v∗=rφ̇∗. The path is defined as2

P =
{
q ∈ Q | x2 + y2 − 1 = 0, θ = +−

π

2 + arctan
(
y

x

)}
. (7.27)

The vector field that provides the commands for the desired orientation is defined as

θ̂ = θp + arctan(kρ), (7.28)

for all points outside the circle, or

θ̂ = θp − arctan(kρ), (7.29)

2Note that the oriantation angle θ is not free, as the system is subject to nonholonomic constraints.
The case differentiation plus or minus is necessary, since the arctangent is only defined for the first
and the fourth quadrants.

k = 1

k = 5

k = 0.2

Figure 7.3: Effect of the parameter k for the velocity field control. The smaller the
values of k, the slower, but also smoother the convergence to the path P .
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Figure 7.4: Vector field control for the vertical coin rolling on a horizontal plane for
k=5. The direction of each vector characterizes the desired orientation for the coin at
the respective position.

for all points inside thereof. Figure 7.4 illustrates the vector field for k=5.

To study the boundedness of the closed-loop signals and the convergence of the me-
chanical system to the path, we first show that the vector field given by (7.26) in fact
converges to the desired path P .

Proposition 7.1. Let P be an arbitrary path defined as in (7.4), and let p=(xp, yp) be
the nearest point thereon. Further, let θp denote the orientation of the path at p. The
course commands (7.26) converge to the path for a constant forward velocity v∗>0.

Proof. The distance ρ of a particle moving with constant velocity v∗> 0 according
to the vector field (7.26) from its actual position to the path evolves according to the
ODE

ρ̇ = v∗ sin(θ̂−θp) = −v∗ kρ√
k2ρ2 + 1

. (7.30)

Consider the Lyapunov function
Vp = 1

2 ρ
2, (7.31)

whose rate of change along the dynamics of ρ is given as

V̇p = ρρ̇ = −v∗ kρ2
√
k2ρ2 + 1

, (7.32)

which is clearly negative definite for k > 0 and v∗> 0. Thus, the distance ρ converges
to zero as t→∞, which implies that also θ̂→θp as time goes to infinity.
Proposition 7.1 implies that if the system satisfies θ= θ̂, and v= v∗ for all times t>0,
then it also converges to the path as t→∞. The following result follows from the ISS
property of the position and velocity controllers, and proves boundedness of the closed-
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loop signals with respect to the path as well as convergence of the velocity towards
v∗.

Theorem 7.3. Let P be an arbitrary path defined as in (7.4), and let p be the nearest
point thereon. Further, let θp denote the orientation of the path at p, and let (6.50)
describe the dynamics of the closed-loop system with Mc>0, 0=arg minV e

c , and Rc≥0.
Let v∗ be the desired forward velocity along the path, and let θ̂=θp− ε arctan(kρ) be the
desired orientation. Then, the velocity error ve = v − v∗ converges towards the origin,
and both the errors θe =θ− θp and ρ are bounded, and can be made arbitrary small for
sufficiently small desired forward velocities v∗ > 0. Additionally, for constant θp, the
errors θe =θ − θp and ρ converge towards zero as t→∞.

Proof. According to Theorem 6.3, the desired velocity v∗ is asymptotically stabilized.
Furthermore, the system is ISS with respect to the disturbance θ̂ (Theorem 6.5), which
implies that the system’s response to θ̂ is bounded, and converges towards θ̂ if the
course commands θ̂ are constant. The rate of change of the course commands directly
depends on the desired forward velocity v∗. Regardless of the shape of the path and
the vector field, a sufficiently small v∗ can always be found such that the rate of change
of θ̂ remains within given bounds. Since the error θ − θ̂ is bounded, and θ̂ converges
towards θp, also the error θe = θ − θp is bounded. As a result, the system remains as
closed as desired to the path P .
The theorem above implies that the system asymptotically converges towards a desired
path in the form of a straight line, where the orientation commands θ̂ evolve into
constant values, as θp is constant, whereas the error is only guaranteed to be bounded
for more complex and curved path geometries like circles.

Corollary 7.2. Let the assumptions of Theorem 7.3 hold, and let us augment the
velocity stabilizing controller by the yaw angular velocity ˙̂

θ= θ̇p. Then, the error θ̇e =
θ̇ − θ̇p is bounded and converges towards the origin for constant θ̇p.

Proof. The proof follows directly from the ISS property of both the position and the
velocity controllers, and noting that the velocity controller asymptotically stabilizes a
desired constant yaw rate ˙̂

θ.

7.4 Concluding remarks

In this chapter, we have addressed trajectory tracking and path following for underac-
tuated nonholonomic systems. Due to the intrinsic disadvantages of trajectory track-
ing, especially the need of an admissible trajectory, we studied stability with respect
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to non-admissible trajectories. We introduced sufficient conditions in terms of ISS to
prove boundedness of the tracking error. In particular, for a hybrid velocity and po-
sition control, we showed that, if a condition is satisfied, then the error converges to
zero.
The second half of the chapter was dedicated to the path following problem. Employ-

ing a unified passive velocity field control approach found in the literature, we showed
that the system will remain arbitrarily close to the path for sufficiently small desired
velocities v∗.
Reduced coordinates ξ ∈QR, in general, do not provide any information about the

position of the nonholonomic system in the Euclidean space R3. As the desired motion
of mobile robots is often specified in the Euclidean space, considering path following
strategies together with reference tracking can be useful to track more complex maneu-
vers.
In the next chapter, we evaluate the results of both Chapter 6 and Chapter 7 on a

wheeled inverted pendulum (WIP) system, which is an underactuated nonholonomic
system with unstable pitch dynamics. Preliminary ideas on the combination of path
following and reference tracking is shown in Section 8.4.2 for the WIP.





8 The Wheeled Inverted
Pendulum

The wheeled inverted pendulum (WIP)—and its most popular commercial version, the
Segway (cf. [186])—has gained interest for human assistance and transportation in the
past several years due to its high maneuverability and simple construction [128]. A
WIP—shown from the side in Figure 8.1 (left)—consists of a vertical body with two
coaxial driven wheels mounted on the body. The actuation of both wheels in the same
direction generates a forward (or backward) motion; opposite wheel velocities lead to a
turning motion around the vertical axis.
Although WIPs are statically unstable, two-wheeled robots have many advantages

over three- or four-wheeled vehicles and mobile robots: They require less space, can
turn on a spot—which makes them highly maneuverable—and being actively stabilized
increases their robustness, as they constantly counteract all types of disturbances, some
of which could, e. g., tip over a three-wheeled robot.
Mobile robotic systems based on the WIP, like the intelligent two wheeled road vehicle

B2 presented in [17], or the novel and more car-like Segway PUMA and Chevrolet En-V,
are being developed to be used as personal urban transportation systems in the near
future [163, 204]. Apart from this emerging transportation industry, WIPs are being
developed at institutes all over the world for research purposes, e. g., Yamabico Kurara
[78], JOE [77] and InPeRo [145], to name only three examples. These systems can be
further used as service robots like KOBOKER [117], or moving information platforms
like the Ballbot mObi [136]1.
The stabilization and tracking control for the WIP is not trivial: First, the system

is nonholonomic, for the rolling-without-slipping constraints of the wheels prevent the
WIP from moving sideways, and the forward velocity of the WIP and its yaw rate are
directly given by the angular velocity of the wheels. Second, the WIP belongs to the
class of underactuated mechanical systems, since two control inputs—corresponding to
the independent driving torques of the wheels—are used to control three degrees of

1Ballbots are robots balancing on a sphere, and thus, capable of omnidirectional movement [89, 143].
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wheels

body

yaw angle

plane

α

Figure 8.1: A wheeled inverted pendulum from the side (left). KRT32—the wheeled
inverted pendulum developed at the Institute of Automatic control of the Technische
Universität München (right).

freedom2. Third, the upward position of the body represents an unstable equilibrium
that needs to be stabilized by feedback. And finally, since, to the best of our knowl-
edge, no flat output has been found for wheeled inverted pendulum systems, being
underactuated significantly complicates the computation of admissible trajectories.

This chapter generalizes and completes the results of the conference paper [50], and
the article [53]. After the formulation of the problem in Section 8.1, we briefly present
the dynamic model of the WIP in Section 8.2. Instead of considering the six-dimensional
manifold Q, which represents the configuration space of the WIP, we restrict our anal-
ysis to a lower dimensional space QR, on which the system evolves unconstrained.
In Section 8.3, and based on the nonlinear model in QR, we present the solution to
the matching equations, and parametrize the closed-loop system applying local lin-
ear dynamics assignment (LLDA). The applicability and performance of a number of
energy shaping controllers is shown with a series of simulations and experiments in Sec-
tion 8.4. The chapter includes, besides stabilization, strategies for path following, for
non-admissible reference tracking, and for the stabilization of a point in the horizontal
plane. Finally, the chapter concludes with some final remarks in Section 8.5.

2The constraint distribution D of the WIP has rank three.
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8.1 Problem formulation

The WIP is very attractive from a control theoretic point of view, as it is statically un-
stable, shows nonlinear behavior, is restricted by nonholonomic constraints, and no flat
output has yet been found. Several control laws have been applied for the stabilization
and speed control of the WIP, mostly using linearized models [77, 78, 79, 128, 138].
While these models are simple and useful for many applications, they do not reflect the
system’s nonlinear behavior and are, thus, restricted to small pitch angles and yawing
velocities. To satisfy the increasing demand on performance and robustness in control
applications, more accurate models are necessary. Therefore, researchers have put a
strong focus on the nonlinear model during the last decade. A complete controllability
analysis of the WIP has been carried out in the works of Pathak et al. [161], Nasrallah
et al. [145], and Salerno and Ángeles [175]. Based on the analysis of the nonlinear sys-
tem, nonlinear control strategies have been developed for different purposes, including
pitch stabilization [139, 215], stabilization of a specific position in the horizontal plane
[138, 161], velocity control [93, 145, 161], disturbance rejection [166] as well as trajec-
tory planning and adaptive control [212]. The employed control methods range from
Lyapunov-based controller design [99, 100] to sliding-mode [93] and backstepping [48]
approaches, neural networks [96, 170], and even Takagi-Sugeno modeling and controller
design [121, 164]. For a very complete overview of the existing work on modeling and
control of WIPs until 2012, the reader is referred to [46].
Most existing methods do not exploit the intrinsic mechanical structure of the sys-

tem, as they rely on a partial feedback linearization (cf. [161]), or are designed for the
linearized model (cf. [138]). Additionally, some methods feature a cumbersome and
nonintuitive design procedure. Furthermore, the current literature is full with com-
pletely different control strategies to tackle diverse control tasks. As a consequence, the
combination of existing methods for the solution of new tasks requires a lot of effort.
We would like, therefore, to use a single, unified framework for the position and

speed control of the WIP that can be easily enhanced to tackle trajectory as well as
path following problems, and which is flexible and modular enough to be adaptable to
accomplish new tasks and satisfy further demands.

The total energy shaping approach provides such a framework, as it preserves the
nonlinear mechanical structure of the system. By doing so, the closed-loop system
retains the mechanical structure that, in turn, guarantees its stability and robustness.
The approach is physically motivated, and the controller design is transparent and
remarkably intuitive.
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The goal of this chapter is to present the design of a stabilizing and speed controller
for the WIP, based on the theory developed in Chapter 6. We show a feasible and
elegant solution for the matching problem for position and speed control of the WIP.
Based on this controller—which is easy to parametrize, either tuning the closed-loop
dynamic parameters, or applying LLDA—the approach is adapted for the stabilization
of a position in the horizontal plane, and for path following control and non-admissible
trajectory tracking according to the theory developed in Chapter 7.

8.2 Dynamical model

In this section, we briefly present the dynamical model of the WIP. For a detailed
development of the equations of motion, the reader is referred to Appendix B, and
to the conference paper [51], where the dynamical model is derived from a geometric
point of view. Figure 8.2 shows the coordinates used for the modeling of the WIP. Let
the configuration space be Q = R2 × S1 × S1 × S1 × S1 and define local coordinates
q = (x, y, θ, α, ϕr, ϕl)∈Q. The position of the WIP on the horizontal plane is given
by r = (x, y). The yawing and pitching angles are each identified by θ and α. The
coordinates ϕr =φr +α and ϕl =φl +α represent the absolute rotations of the right and
left wheel, respectively, for relative rotation angles φl and φr. Let 2d be the distance
between the wheels. For a given wheel radius r, the equations

ATq̇ =


− sin θ cos θ 0 0 0 0

cos θ sin θ d 0 − r 0

cos θ sin θ −d 0 0 − r

 q̇ = 0 (8.1)

represent the rolling-without-slipping constraints of the wheels. The natural choice of
admissible velocities ν = (v, α̇, θ̇), where v is the forward velocity of the WIP, results
in the reconstruction equation

q̇ = Sν =



cos θ 0 0

sin θ 0 0

0 0 1

0 1 0
1
r

0 d
r

1
r

0 − d
r




v

α̇

θ̇

 . (8.2)
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Let us define reduced local coordinates ξ = (s, α, θ) ∈ QR, such that3 ξ̇ = ν. Using
this particular choice of coordinates (ξ, ν), the equations of motion in reduced space
QR are given by4

Mν̇ + Cν +∇ξV = Gu + Jν (8.3)

with potential energy V =c2g sinα, and matrices

M =


c1 c2 cosα− c3 0

c2 cosα− c3 c4 0

0 0 Θ(α)

, J =


0 0 c2 θ̇ sinα

0 0 0

− c2 θ̇ sinα 0 0

,

3The variable s defines the path length.
4The matrix S does not explicitly appear in the model (8.3), because the conditions of Proposition 6.2
are satisfied for the WIP.

α, α̇

θ, θ̇

iz

ix

iy

φr
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bz
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r

v

2d

Figure 8.2: Coordinate systems and actuation of the WIP. The right (φr) and left (φl)
wheels can be independently actuated. The actuation of both wheels in the same
direction generates a forward (or backward) motion, characterized by the velocity v;
wheel actuation in opposite directions lead to a turning motion around the vertical
axis, given by the yaw angle θ. The pitch angle α is unactuated and has to be actively
stabilized by a back and forth motion. The position in the horizontal plane r = (x, y)
can be determined according to the reconstruction equation (8.2).
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C =


0 − c2α̇ sinα 0

0 0 − c5 θ̇ sinα cosα

0 c5 θ̇ sinα cosα c5α̇ sinα cosα

, G =


1
r

0

−1 0

0 1

, (8.4)

where Θ=c5 sin2 α + c6, and ci, i=1, ..., 6, are constant parameters.

8.3 Total energy shaping controller

The control laws presented in the following are all based on the model (8.3). Figure 8.3
gives an overview of the control system. The feedforward term û is computed according
to (7.18). The feedback controller comprises the terms uke, upe, and udi, given as

uke = (GTG)−1GT
(
(C− J)ν −MM−1

c (Cc − Jc)νe
)
, (8.5a)

upe = − (GTG)−1GT
(
MMc

−1∇ξV e
c + Fpot

)
, (8.5b)

udi = − (GTG)−1GTMM−1
c Rcνe. (8.5c)

Essentially, the controller is equal for all different regulation tasks (stabilization, speed
stabilization, reference tracking, and path following). The differences consist in the
computation and the definition of the desired values ξ̂ and ν̂ in the task specification
block. A series of sensors—the system is equipped with two encoders that measure the
rotation of the wheels relative to the body, an accelerometer and a gyroscope—directly
provides the information about the velocities ν, and the relative rotation of the right
and left wheel φr and φl. This information is, in turn, processed to compute ξ. The
detailed sensor fusion can be consulted in [98]. In addition to the actual state (ξ, ν), the
controller is provided with the desired values (ξ̂, ν̂), as the control input u is computed
based on the errors ξe =ξ− ξ̂ and νe =ν − ν̂. In the following, limited by the physical
nature of the problem setting, we restrict the analysis to −π/2<α<π/2.

8.3.1 Controller design

Let us begin by solving the matching problem (6.27), as it constitutes the basis for all
control strategies. In accordance to the solution developed in Section 6.3.1, we show an
elegant way to solve the matching problem for the WIP in reduced space QR.

Shaping the kinetic energy. As shown in Section 6.3.1, shaping the kinetic energy
only requires the solution M̄c of (6.33) for M̄c = M−1

c . Due to the large number of
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Figure 8.3: Feedforward and feedback scheme for the WIP. The controller is fed by the
desired and actual values of the state.

design degrees of freedom, let us assume that Mc only depends on the pitch angle α
and has a block-diagonal structure. Further, fix the two coefficients k1 and k2 to be
constant, such that

M−1
c =


k1 h(α) 0

h(α) w(α) 0

0 0 1
k2

, (8.6)

where h(α) and w(α) are free functions. By doing so, the projected matching equation
(6.33) is substantially simplified: The left hand side (lhs) of (6.33) is given as

lhs = 2 rc2 (hψ1 + wψ2) α̇ sinα, (8.7)

where

ψ1(α) = c1r + c2 cosα− c3 (8.8)
ψ2(α) = c4 + r (c2 cosα− c3) (8.9)

are computed from
fT
M = G⊥M =

[
ψ1(α) ψ2(α) 0

]
. (8.10)

The right hand side (rhs) of (6.33) becomes

rhs =
(
2h′ψ1ψ2 + w′ψ2

2

)
α̇, (8.11)
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where (·)′ denotes the derivative with respect to α. A possible solution is

w = k3ψ
2
1(α)

ψ2
2(α) , (8.12)

h = − γk3ψ1(α) + g

γψ2(α) , (8.13)

for constant positive parameters k1, k2, k3, and γ, which need to be chosen such that
Mc>0 for −π/2<α<π/2. For the kinetic energy shaping control law (6.34), also Cc and
Jc are necessary. The matrix Cc can be easily calculated from the Christoffel symbols
of Mc; the matrix Jc takes the form

Jc =


0 −f2v − f3α̇ 0

f2v + f3α̇ 0 −f1 θ̇

0 f1 θ̇ 0

 (8.14)

for some functions5 fi(ξ). Note that many other solutions to the matching equation
(6.33) exist. However, as it turns out, this particular solution simplifies the parametriza-
tion via LLDA.

Shaping the potential energy. The solution to the PDE (6.35) for the shaping of the
potential energy can be easily solved using a computer algebra system. The closed-loop
potential energy takes the form

Vc(ξ) = γ
(
ln(ψ1(α))(r2c1 − c3)− rc2 cosα

)
+ Π1(Φ(s, α)) + Π2(θ), (8.15)

where Π1(Φ(s, α)) is a free function of the homogeneous solution6

Φ(s, α) = s− rα + γ

g
(k1 − k3)((c4 − c3r)α + c2r sinα)

+ 2 c4 − c1r
2√

c2
2 − (c1r − c3)2

arctan
(c1r − c2 − c3)(1− cosα)√

c2
2 − (c1r − c3)2 sinα

 , (8.16)

and Π2(θ) is a free function of θ. Both Π1 and Π2 need to be chosen such that Vc(ξ)

5The explicit form of the functions fi(ξ) is omitted for brevity.
6We assume that c2

2>(c1r− c3)2 holds, which applies for the considered WIP. If this is not the case,
a similar function Φ(s, α) can be computed.
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has an isolated minimum at the desired value ξ= ξ̂. We choose

Π1 = 1
2 µΦ2(s−ŝ, α), µ > 0 (8.17)

Π2 = kp
(
1− cos(θ−θ̂)

)
, kp > 0, (8.18)

to account for the periodic property of θ ∈ S1.

Damping injection. The damping injection term is given as

udi = −KdiGTM−1Mcνe, (8.19)

where Kdi =diag(kd,1, kd,2)>0.

Proposition 8.1. The matrix Rc =McM−1GKdiGTM−1Mc for the WIP ensures per-
vasive damping.

Proof. See Appendix A.3.

8.3.2 Some remarks on the parameter choice

The desired eigenvalues for the linearized closed-loop system were computed in [10],
and are given as follows:

Forward and pitch dynamics Yaw dynamics

λ1 −3.94 λ5 −2.38
λ2 −35.96 λ6 −62.34
λ3 −3 + j0.77
λ4 −3− j0.77

For the potential function (8.18) and the damping injection (8.19), the closed-loop
yaw dynamics are of the form

k2 θ̈ + kp sin(θ−θ̂) = f1 θ̇α̇−
k2

2
c2

6
kd,2 θ̇. (8.20)

Note that the term quadratic in the velocities arises from (8.14). The free parameters
k2, kp, and kd,2 are chosen—similar to a PD controller—such that the linearized yawing
dynamics have closed-loop eigenvalues {λ5, λ6}. Their value is given in Table 8.1.
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For the parametrization of the remaining dynamics we apply the following procedure.
First, let us replace the remaining five free parameters k1, k3, γ, µ, and kd,1 in the
following manner:

k1 = ψ∗2(π4 − π2π3) + π2c2g

c2gψ∗1ψ
∗
2

π1

k3 = ψ∗1(π4 − π2π3)− c2g

c2g(ψ∗1)2 π1

γ = gψ∗1
π1

µ = π3c2gψ
∗
1ψ
∗
2

π1 ((ψ∗2 − π2ψ∗1)(π4 − π2π3) + π2c2g)
kd,1 = π1π5

π2c2gψ∗1(ψ∗2)3 ((c3 − c2)(ψ∗2 + ψ∗1r) + ψ∗1ψ
∗
2)2 ((ψ∗2 − π2ψ

∗
1)(π4 − π2π3) + π2c2g) ,

where ψ∗1 =ψ1(0) and ψ∗2 =ψ2(0), and πi, i= 1...5 are new free parameters. By doing
so, the linearized closed-loop system around the equilibrium point (ξ∗ = 0, ν∗ = 0) is
simplified to



v

α̇

θ̇

v̇

α̈

θ̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

π3 π4 0 − π5
π2

−π5 0

− ψ∗1
ψ∗2
π3

c2g−ψ∗1π4
ψ∗2

0 ψ∗1
π2ψ∗2

π5
ψ∗1
ψ∗2
π5 0

0 0 − kp
k2

0 0 − k2
c2

6
kd,2





s

α

θ

v

α̇

θ̇


. (8.21)

The remaining eigenvalues {λ1, . . . , λ4} corresponding to the forward and pitch dynam-
ics determine the values of the parameters πi, i = 2...5. Note that the characteristic
polynomial of the system’s matrix (8.21) does not depend on π1. The parameter π1 is
used to satisfy the definiteness requirements of the function Vc, and of the closed-loop
matrices Mc and Rc. Additionally, it can be used to optimize the domain of attraction
and its estimate by employing the technique presented in [104]. For a particular choice
of π1, the values of the parameters k1, k3, γ, µ, and kd,1 are given in Table 8.1.

Remark 8.3.1. The DC (3.8) is satisfied for the WIP. Small damping terms in unactuated
coordinates that have not been included in the model enter as dissipation with respect
to the closed-loop energy. Thus, damping in the unactuated coordinates does not
represent a threat to the stability of the system.
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Figure 8.4: Level sets of the total closed-loop energy Ec = 1
2 ν

TMcν + Vc. Left: Level
sets of the potential energy Vc for θ=0. Right: Level sets of the closed-loop energy Ec
for θ= θ̇=s= α̇=0.

Figure 8.4 shows the level sets of the potential energy Vc that correspond to the
stability margins of the WIP without input saturation.

8.4 Simulations and experimental results

This section presents the implementation of the control framework developed in Chap-
ter 6 and Chapter 7 on the WIP. The experimental setup consists of the WIP KRT32,
the small scale WIP developed at the Institute of Automatic Control of the Technische
Universität München. Figure 8.5 shows the internal structure of the WIP. The system
is equipped with an accelerometer, a gyroscope, and encoders that enable the direct
measurement of the relative rotation of the wheels with respect to the body. The ab-

Table 8.1: Closed-loop parameters for the wheel inverted pendulum.

Parameter Value

k1 14315.93852
k2 1
k3 5075.031964
µ 0.0009039394410
γ 0.2299298661
kp 155.67438789
kd,1 1192.763201
kd,2 0.0008437349532
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Figure 8.5: Configuration of the WIP.

solute position of the WIP on the plane is computed by means of the reconstruction
equation (8.2). The actuation of the wheels is provided by two DC motors, each of them
linked to one wheel by a two-stage gearbox. A Lithium Polymer battery serves as the
power supply for the DC-motors. Data exchange is possible via a Bluetooth module.
During the experiments, the armature voltage UA to control the motors is bounded by
the battery charge, which fluctuates approximately between 8.0V and 8.4V while fully
charged. We, thus, assume |UA|≤8.0V for the simulations and experiments. Addition-
ally, the current is limited by the H-bridge to 3.0A. All simulations and experiments
are run within the input limits to avoid saturation. The controllers are implemented
as continuous-time control laws in Simulink. For the experiments, the compiler auto-
matically converts the controllers to discrete-time. The code can then be flashed via
the Bluetooth module. For the simulations to reflect the micro-controller’s sample time
Ts = 5ms, the (continuous-time) controller is accordingly simulated in discrete-time
with the same sample time Ts. It was shown in [169] that the motor dynamics are fast
enough to be neglected. Therefore, we use the static model for the DC motors for the
controller design.

8.4.1 Stabilization

In this section, we consider two different scenarios to demonstrate the performance of
the stabilizing controller. The first scenario represents set point changes in the yaw
angle θ and the path length s, and illustrates the transient behavior of the stabilizing
controller in reduced space QR. The second scenario shows how the stabilization results
can be applied to stabilize a specific point on the xy-plane.
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Figure 8.6: Position control of the WIP in reduced coordinates.

Set point changes in reduced space. The first scenario corresponds to the posi-
tion stabilizing controller in reduced space. Specifically, the idea is to asymptotically
stabilize different admissible equilibrium points ξ∗. In reduced coordinates ξ ∈ QR,
the system evolves unconstrained, such that the control problem resembles the classical
stabilization problem for holonomic systems. One can, thus, asymptotically stabilize a
desired equilibrium ξ∗ employing the smooth control law that arises from the energy
shaping procedure. Figure 8.6 shows the results from the stabilizing controller. Before
the start of the experiment, the system is stabilized at the equilibrium point given by
ξ∗= 0. At t= 1 s, the set point s∗ changes from s∗= 0 m to s∗= 0.5 m; at t= 4 s, the
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set point θ∗ changes from θ∗ = 0 m to θ∗ = 2 rad. From t= 7 s on, the origin is again
stabilized. Clearly, the experimental results correspond well to the simulation.
Stabilization of a point in the horizontal plane. Let us now consider the con-
strained space QC parametrized by η = (x, y, θ, α). The goal of this approach is to
stabilize the point in the horizontal plane given by x = 0, and y = 0, starting from
different initial positions, while maintaining stable pitch dynamics. Point stabilization
cannot be achieved using smooth or continuous controllers [39], although the system
is proven to be controllable [145]. Steering via Lie bracket motion (cf. Chow’s Theo-
rem [142]), or discontinuous controllers have proven to show slow convergence, and—in
the case of controllers that require infinite switching, like sliding mode approaches—
undesired chattering effects occur. However, often the goal is for the system to reach
a certain position in the Euclidean space. For the WIP in QC, this is equivalent to
stabilizing a specific position r∗=(x∗, y∗), maintaining stable pitch dynamics (cf. [138,
161]). The orientation θ at r∗ is not of interest. Let us consider the dynamics of the
WIP on QC, and let us assume, without loss of generality, that r∗ = 0. According to
Theorem 6.2, the potential energy

Ṽc(η) = Vc(ξ=ϑ(η)), (8.22)

with

ϑ = (ST
ηSη)−1ST

η η =


x cos θ + y sin θ

α

θ − θ̂

, (8.23)

represents a solution to the matching problem in the constrained space QC. The corre-
sponding closed-loop dynamics

Mcν̇ + Ccν + ST
η∇qṼc = (Jc −Rc)ν (8.24)

asymptotically stabilize the set

X =
{

(η, ν) ∈ TQC | ST
η∇qṼc = 0

}
(8.25)
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according to Theorem 2.4. The set X corresponds to

x cos θ + y sin θ = 0
α = 0
θ = θ̂.

Note that the yaw dynamics (8.20) are almost global asymptotically stable (up to a set
of Lebesgue measure 0). This implies that the yaw dynamics (8.20) are globally ISS
with respect to the input disturbance θ̂. Hence, the system’s response to changes in
θ̂ remains bounded. If θ̂ is constant, then also θ converges towards θ̂. This reflection
gives rise to apply a control strategy that continuously changes the value of θ̂ such that
x and y converge towards the origin. We apply the following strategy

θ̂ =

 arctan
(
y
x

)
, for x cos θ + y sin θ ≥ 0

arctan
(
y
x

)
+− π, for x cos θ + y sin θ < 0.

(8.26)

Figure 8.7 shows the response of the distance ρ =
√
x2 + y2 to the origin, and the

path on the xy-plane taken by the WIP for four different initial positions r0. The
initial orientation is in all cases θ0 =0. The simulations and experiments illustrate the
applicability of the approach. The system remains stable and converges towards r∗=0.

Remark 8.4.1. To avoid input saturation, or even instability of the plant, for the stabi-
lization of a distant point in the xy-plane, a path following strategy can be first pursued
to get closer to the origin r∗=0 (cf. Section 8.4.3). Once the WIP enters the stability
boundaries of the position controller, it is possible to safely switch to the stabilizing
controller presented in this section, as a onetime switching between two stabilizing con-
trollers remains stable [129]. By doing so, the position stabilizing controller is only
active in a small region surrounding the desired position.

8.4.2 Tracking

In this section, we consider the tracking problem from Section 7.2 for two different sce-
narios. The first scenario corresponds to the hybrid position and velocity controller in
reduced space as presented in Section 7.2.3. The second scenario represents the track-
ing problem in the constrained space as a combination of tracking for non-admissible
trajectories in reduced space together with an orientation control law to compensate
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Figure 8.7: Stabilization of the WIP at a position in the xy-plane.

for the error in the xy-plane.
Hybrid position and speed stabilizing controller. This controller is based on
Corollary 7.1. The goal is to stabilize a constant velocity v∗, and, at the same time,
the corresponding time-varying path length ŝ= v∗t + ŝ0, for some constant s0. In this
particular case, we additionally demand a constant yaw rate θ∗. Prior to the beginning
of the experiment, the system is stabilized at the equilibrium ξ∗ = 0. At t = 1 s, the
set point v∗ changes from v∗= 0 m/s to v∗= 0.6 m/s, the corresponding desired position
is defined as ŝ(t) = v∗(t − 1) + ŝ0, with ŝ0 = 0.1 m. Since G⊥ (C − J)ν̂= 0, the system
asymptotically converges towards the desired values according to Corollary 7.1. As per
the results shown in Figure 8.8, the error regulation is concluded after approximately
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Figure 8.8: Hybrid position and speed control for the WIP.
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2 seconds t = 3 s. At t = 4.5 s, a pure velocity controller (i. e., θ̂ = θ) is used for the
regulation of the yawing angular velocity θ̇∗=2 rad/s. At t=6 s, the set point θ̇∗ changes
to θ̇∗ = −2 rad/s, and, at the same time, the desired forward velocity is reduced to
v∗= 0.3 m/s. We can see from Figure 8.8 that the hybrid position and speed controller
stabilizes both the error in the velocity v and the error in the position s. The pure
speed controller used for the yawing velocity assumes no error in the yaw angle θ and
regulates the desired yawing velocity within fractions of seconds.
Tracking non-admissible reference trajectories in the constrained space QC.
This scenario consists in (approximately) tracking a non-admissible trajectory defined
as follows: The x-coordinate evolves in time according to

x̂(t) = 21
40 t−

3te
40π sin

(2π
te
t
)
− 3te

32π sin
(4π
te
t
)
. (8.27)

The y-coordinate is defined as

ŷ(t) = sin x̂(t), ⇒ ˙̂y(t) = ˙̂x(t) cos x̂(t). (8.28)

The orientation along the trajectory θt is given by

θt = arctan
( ˙̂y

˙̂x

)
= arctan (cos x̂) . (8.29)

To account for initial errors, the desired value ξ̂(t) is defined as

ξ̂ =


s− (x− x̂) cos θ − (y − ŷ) sin θ

0

θt − arctan (k(y − ŷ))

, (8.30)

where the transition factor is chosen as k = 5. The particular choice of ξ̂(t) emerges
on the one hand from the stabilization of a point in the horizontal plane, and on the
other hand, from path following: For the computation of the desired path length ŝ, we
employ the coordinates of the constrained space QC; the desired orientation θ̂ resembles
path following. The desired values ν̂(t) and ˙̂ν(t) can then be computed as

ν̂ =


˙̂x

cos θp

0
˙̂
θ

, ˙̂ν =


¨̂x

cos θp
+ ˙̂xθ̇p sin θp

cos2 θp

0
¨̂
θ

. (8.31)
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Figure 8.9: Tracking control for the WIP. Position in the plane and distance error.

Clearly, the defined trajectory is not compatible with the system’s dynamics, as it is
not possible to accelerate and decelerate the WIP without affecting the pitch angle α.

Figure 8.9 shows the system’s response for an initial position given by x0 =−0.5 m,
and y0 =0.5 m. The first plot shows the driven path in the xy-plane. The second graph
shows the evolution of the error ρ=

√
(x− x̂)2 + (y − ŷ)2. Figure 8.10 shows the velocity

profile, the pitch angle, and the yaw angle in comparison with the desired values. The
results clearly show that the WIP converges towards the reference trajectory and stay
within a small region around the desired values. As the trajectory is non-admissible,
the errors do not converge towards the origin.
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Figure 8.10: Tracking control for the WIP. Forward velocity, pitch and yaw angle for a
non-admissible trajectory.

8.4.3 Path following

In this section, we present the results for two different path following strategies for
the same scenario. The first strategy corresponds to the classical path following from
Theorem 7.3, where we command a desired orientation angle θ̂ depending on the actual
position with respect to the path. In the second strategy, the desired yawing velocity θ̇p

is included in the speed stabilization to achieve a better convergence to path segments
that are not necessarily a straight line. That is, the steering of the WIP does not
only depend on its position with respect to the path, but also on its forward velocity



8.4 Simulations and experimental results 151

and yawing rate with respect to the desired values along the path. The path consists
of two parallel lines of length 1.2 m separated by a distance of 0.4 m, and two circle
segments of radius R = 0.2 m at both ends to create a closed circuit. The goal is
for the WIP to approach and stay on the path, and to travel along the path (in a
mathematically positive direction) with a constant forward velocity v∗ = 0.3 m/s. To
illustrate the differences of the approaches, both experiments are started with the same
initial error ρ0 = 0.2 m above the path, the initial orientation is θ0 = 0 rad, which
corresponds to the WIP facing the wrong travel direction.
Path following without yaw rate reference. Due to the nonholonomic constraints
of the WIP, the position error with respect to the desired path P can only be reduced
with the aid of appropriate steering commands θ̂ as the WIP moves forward. As the
shape of the desired path is simple, the point p ∈R2, which characterizes the closest
point of the path with respect to the actual position (x, y), can be easily computed.
The distance ρ is defined as a positive quantity for points lying outside the path, and it
takes negative values for all points inside the path. With this particular way of defining
ρ, the vector field that defines the desired orientation commands is given as

θ̂ = θp + arctan(kρ), (8.32)

where the convergence parameter is chosen as k=36. The orientation θp at p is equal
to 0 or π/−π for the line segments, and given by the tangent line to the path for the
circular segments. Figure 8.11 shows the results of the first path following strategy. The
system clearly approaches and stays on the path for the linear segments. However, the
error increases for the circular path segments, since a constant yawing velocity would
be required for the system to stay on the path.
Path following with yaw rate reference. The aforementioned drawback of the first
path following strategy is overcome by augmenting the vector-field-based orientation
commands (8.32) by the desired orientation angular velocity ˙̂

θ= θ̇p, where θ̇p is equal
to zero for the linear segments, and take the values θ̇p =κpv

∗ for the curved sections,
where κp represents the curvature of the path at p. Figure 8.12 shows the results of
the second path following strategy. In contrast to the first strategy, the integration of
the angular velocity information for path following strategies significantly increases the
performance by means of a faster convergence and smaller errors to the path.
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Figure 8.11: Path following control for the WIP.

8.5 Concluding remarks

In this chapter, we systematically designed and parametrized smooth control strategies
for the WIP, based upon the results from Chapter 6 and Chapter 7. The design proce-
dure results in an asymptotically stable closed-loop system with desired local dynamics
and a large domain of attraction.
The key advantage of the energy shaping control for the WIP relies on the unified

framework that is employed to tackle the different tasks: stabilization, tracking, and
path following. While the feedback controller remains essentially equal for all different
tasks, only the definition and computation of the desired values ξ̂ and ν̂ differs.
Even though we restrict the analysis to a reduced (unconstrained) space QR, we can
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Figure 8.12: Path following control WIP including yaw rate reference.

still employ smooth control laws to tackle stabilization, tracking and path following
problems that require the absolute position of the WIP in the horizontal plane given by
the coordinates x and y. The ISS property allows us to continuously change the desired
position and/or velocity for the completion of a variety of tasks without compromising
the stability of the WIP. This feature has been extensively exploited in this chapter.

In particular, this chapter presented the systematic and integrated design of a stabi-
lizing, tracking and path following controllers for the wheeled inverted pendulum system
in a single, energy-based framework. The advantage is clear compared to other existing
methods, as it exploits the mechanical structure of the system, is inherently robust, and
the controller design and its parametrization are transparent and physically motivated.
The applicability and the performance of the proposed controllers was demonstrated
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with a series of simulations and experimental results.
The controllers were implemented in Simulink7 as continuous-time control laws. The

discrete-time code for the micro-controller was automatically generated by the software.

7 c©2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or
brand names may be trademarks or registered trademarks of their respective holders.
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9 Final remarks
To satisfy the demand for increasing performance and robustness for mechanical control
systems, it is indispensable to employ model-based approaches for the controller design.
Total energy shaping control methods exploit the inherent properties of the mechanical
systems, as they integrate the nonlinear structure into the design procedure. Addition-
ally, these techniques are intuitive and physically motivated, and provide intrinsically
robust controllers.
In this work, we presented energy shaping from a practicable point of view for both

holonomic and nonholonomic mechanical systems. The first part of the thesis was
devoted to a known obstacle in passivity based-control for underactuated mechanical
systems, namely, the dissipation in unactuated coordinates, which may impede the pas-
sivation of the closed-loop system [74]. Since it is necessary to break the mechanical
structure of the closed-loop Hamiltonian in order to bypass the dissipation condition,
we proposed in this thesis the introduction of a non-physical cross term between con-
figuration variables and generalized momenta into the closed-loop energy. By doing
so, we break the mechanical structure as desired, but retain some structural properties
by not leaving the closed-loop Hamiltonian completely free. All in all, we developed a
framework that

i) allows for a systematic design of stabilizing controllers for underactuated mechan-
ical systems

ii) guarantees passivity and, based thereon, asymptotic stability of the closed-loop
system in spite of physical dissipation in unactuated coordinates,

iii) does not require the solution of partial differential equations,

iv) is transparent to parametrize via local linear dynamics assignment,

v) directly provides a Lyapunov function, which can be employed for the stability
analysis.

This is a strong result, as this theory copes with three of the fundamental difficulties of
energy-based approaches. On the one hand, the solution of complicated PDEs is obvi-
ated, as we only require the solution to some algebraic equations, and to one Lyapunov
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equation. On the other hand, we are able to render the closed-loop system passive
regardless of the dissipation condition, and, finally, the controller parametrization can
be easily performed via LLDA by assigning desired local behavior by means of the
eigenvalues of the linearized closed-loop system.
The second part of the manuscript was devoted to total energy shaping for under-

actuated nonholonomic systems. In particular, the developed theory was applied to
the speed and velocity stabilization as well as to tracking and path following for the
wheeled inverted pendulum (WIP)—commercially known as Segway [186]. The fast de-
velopment and commercialization of two-wheeled transportation devices and robots has
lead to a growing demand for controllers that fully exploit the performance potential
of the plant, but that also remain manageable in their complexity. Based on a solid
mathematical foundation, we developed a unified framework that

i) tackles a variety of practical problems,

ii) is physically motivated and intuitive,

iii) imparts controllers that are transparent to parametrize either via local linear dy-
namics assignment, or by tuning the mechanical parameters of the closed-loop
system,

iv) provides inherently robust control systems,

v) takes into account nonlinear effects, actuator dynamics, and input disturbances.

From a practical point of view, we believe that energy shaping as a physically mo-
tivated approach, constitutes a good trade-off between required controller complexity
and intuitive parametrization. Linear control systems are limited to a specific operat-
ing point and, thus, do not provide the required flexibility and performance that the
increasing complexity and nonlinear behavior of mechanical systems demand. On the
other hand, current non-linear approaches are often unintuitive in their computation
and parametrization, as diverse task specifications usually lead to completely differ-
ent control approaches. We can hardly overestimate the physical insight energy-based
approaches are likely to provide.
However, this research also gives rise to further questions. Motivated by the results

of the thesis, the following topics are of interest for further study.
Augmented design in the Lagrangian framework. In Chapter 3, we developed
a theory for the passivity-based control of mechanical systems that considers physical
dissipation from the very beginning of the controller design. The approach relies on
the augmentation of the closed-loop Hamiltonian (energy function) by a non-physical
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term. It would be interesting to investigate the meaning and interpretation of the new
structure, for instance, in the Lagrangian framework. In Section 3.4, we introduced
the Lagrangian formulation (3.41) of the closed-loop dynamics. The coupling of posi-
tion and velocity terms in the pseudo-velocities y gives rise to forces that depend on
the configuration, but which are not stemming from a potential field. Such forces are
known from circulatory systems [41, 122, 201]. The relationship between the formula-
tion (3.41) and circulatory systems is still an open question. Additionally, the approach
breaks the classical mechanical formulation, as it augments the energy function by a
non-mechanical cross term. It would be interesting to study whether the system (3.41)
admits a mechanical structure based on [171] nonetheless.
Exploiting the huge amount of degrees of freedom. In Chapter 4, we presented
a framework of five simple steps to systematically compute stabilizing controllers with
the augmented IDA-PBC methodology for mechanical systems. In Chapter 5, we ap-
plied the theory to three benchmark systems, and, to keep the procedure manageable,
we made a number of simplifications along the way. Nonetheless, the tuning freedom
has been shown to still be massive. The large number of free design parameters and
functions inevitably demands the embedding of the controller design procedure into an
optimization process. Additionally, it would be interesting to consider non-quadratic
energy functions, and to allow for non-constant scalar and matrix-valued free functions
to fully exploit the potential of the approach.
Non-smooth potential functions in total energy shaping for nonholonomic
systems. For nonholonomic mechanical systems, the asymptotic stabilization of a de-
sired configuration q∈Q requires discontinuous or time-varying control laws [14, 39]. In
the context of energy shaping, this can be achieved by assigning non-smooth potential
functions as shown in [66] for fully actuated systems. It would be interesting to study
the applicability of the approach to underactuated systems, for which the matching
equation for the potential energy needs to be satisfied. We have seen that finding the
solution to the matching PDEs constitutes the main obstacle of energy shaping. Allow-
ing for non-smooth functions—or smooth functions in non-smooth coordinates—would,
thus, establish new research directions in the field of energy shaping for underactuated
nonholonomic systems.
Input saturation. In real applications, we cannot ignore the saturation of the actua-
tors. In this thesis, we assumed that the motors are capable of supplying the necessary
input. However, it is of practical interest to explicitly include input saturation in the
controller design procedure, for example, employing a Lyapunov-based set point gen-
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erator for stabilization and/or waypoint tracking [40, 55]. As energy shaping relies on
Lyapunov theory for the stabilization of the plant, it should be possible to embed the
Lyapunov-based set point generator in the approach developed in this thesis. The origi-
nal strategy presented in [40] requires a quadratic function for the explicit incorporation
of input saturation. A possible method to include this strategy in our energy shaping
approach is employing a quadratic estimate of the closed-loop energy function. By do-
ing so, it is possible to make use of Lyapunov-based set point generator to analytically
incorporate input saturation into the energy shaping methodology.
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Appendix A

Technical Proofs

A.1 Proof of Proposition 3.1

As Assumption 3.1 and Assumption 3.2 hold, (3.24a) can be given as

2 G⊥Z1M−1
d∗p + G⊥∇q

(
pTM−1p

)
= 0. (A.1)

For an equivalent formulation of the term G⊥Z1, we use the following lemma:

Lemma A.1 (see, e., g., [5]). Any skew-symmetric matrix Z1(q,p) linear in p can be
expressed as:

Z1 =
N∑
i=1

pTfi(q) Ji, (A.2)

where the vector-values functions fi(q) ∈ Rn, i = 1, . . . , N , N = n2−n
2 , are free param-

eters, and the matrices Ji constitute a basis for the space of skew-symmetric matrices
defined as follows. Let us first define the set1

Z =
{
W ij ∈ Rn×n | 1 ≤ i < j ≤ n, Wij = 1, Wji = −1

}
. (A.3)

In particular, for n = 2 the set (A.3) corresponds to the matrix

W12 =

 0 1

−1 0

 , (A.4)

1Wij refers to the (i, j)-th element of the matrix Wij .
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and for n = 3 the set (A.3) is composed by

W12 =


0 1 0

−1 0 0

0 0 0

 , W13 =


0 0 1

0 0 0

−1 0 0

 , W23 =


0 0 0

0 0 1

0 −1 0

 . (A.5)

As the set (A.3) consists of N different matrices, we define

J1 = W12, . . . , Jn−1 = W1n, Jn = W23, . . . , JN = W (n−1)n.

With the help of Lemma A.1, G⊥Z1 can be rewritten as

G⊥Z1 = G⊥
N∑
i=1

pTfi(q) Ji

=
N∑
i=1

pTfi(q) G⊥Ji

= pT
N∑
i=1

fi(q) G⊥Ji︸ ︷︷ ︸
Γ

= pTΓ. (A.6)

For an equivalent formulation of the term G⊥∇q
(
pTM−1p

)
, note that, as G⊥ is a row

vector of dimension n (according to Assumption 3.1), the following relationship holds

G⊥∇q
(
pTM−1p

)
= pT

 n∑
j=1

G⊥j(∂qj
M−1)

p, (A.7)

where G⊥j is the j-th coefficient of G⊥, and ∂qj
M−1 denotes the element-wise derivative

of the matrix M−1 with respect to the configuration variable qj. The relations (A.6)
and (A.7) imply that (A.1) equals

2 pTΓM−1
d∗p + pT

 n∑
j=1

G⊥j(∂qj
M−1)

p = 0, (A.8)

which, for all values of p, is equivalent to

ΓM−1
d∗ + M−1

d∗ΓT +
n∑
j=1

G⊥j(∂qj
M−1) = 0.
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A.2 Proof of Proposition 6.3

To prove necessity and sufficiency of the condition, let us consider the function

Ec = 1
2 ν

TMcν + Vc, (A.9)

where Mc>0, and Vc is positive semidefinite. Its rate of change along the solutions of
the closed-loop system

Mcν̇ + Ccν +∇ξVc = (Jc −Rc)ν (A.10)

is given by
Ėc = −νTRcν = −yTKdiy, Kdi > 0. (A.11)

As per Theorem 2.4, the system (A.10) converges towards the set y=GTMM−1
c ν=0,

which is characterized by
ν = βM−1

c MGT
⊥, (A.12)

where β(ξ,ν, t) is an arbitrary scalar function. The dynamics of (A.10) constrained to
the set

X y
0 = {(ξ ν) ∈ TQR | y = 0} (A.13)

are then represented by

βMc
˙̄McMGT

⊥ + βṀGT
⊥ + β̇MGT

⊥ + βCcM−1
c MGT

⊥ +∇ξVc = βJcM−1
c MGT

⊥. (A.14)

The fact that Ṁc =Cc + CT
c implies

˙̄Mc = −M−1
c

(
Cc + CT

c

)
M−1

c , (A.15)

where M̄c =M−1
c . And since Ṁ=C + CT, the constrained dynamics (A.14) become

−β
(
Cc + CT

c

)
M−1

c MGT
⊥ + β

(
C + CT

)
GT
⊥ + β̇MGT

⊥ + βCcM−1
c MGT

⊥ +∇ξVc

= βJcM−1
c MGT

⊥. (A.16)
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From the solution of the matching equation for the kinetic energy (6.27a), and knowing
that J and Jc are skew-symmetric matrices, we have the following relation

G⊥MM−1
c (Jc −Cc) = G⊥ (J−C)

⇒
(
Jc + CT

c

)
M−1

c MGT
⊥ =

(
J + CT

)
GT
⊥, (A.17)

such that (A.16) can be rewritten as

β̇MGT
⊥ + β (C− J) GT

⊥ +∇ξVc = 0. (A.18)

Necessity. (The damping is pervasive ⇒ β = 0 is the only solution to (A.18))
According to the definition, the damping is called pervasive if every trajectory elicits
energy dissipation. In turn, the system cannot move infinitely and will eventually come
to rest. Therefore, pervasive damping implies that β= 0, and the dynamics of (A.10)
constrained to the set X y

0 —which are given by (A.18)—are restricted to ∇ξVc =0.
Sufficiency. (β = 0 is the only solution to (A.18) ⇒ the damping is pervasive)
Suppose that (A.18) only admits the solution β = 0. Then, y = 0 implies ν = 0, such
that Ėc =0 is only satisfied in the set

X ν0 = {(ξ ν) ∈ TQR | ν = 0, ∇ξVc =0}.

Consequently, the system asymptotically converges towards X ν0 , which implies that it
will come to rest. If Vc is positive definite, then X ν0 =ξ∗ (as ξ∗=arg minVc), and β≡0
is the only possible solution to (A.18)—which represents the dynamics for y=0—then
the output y=GTMM−1

c ν is zero-state observable, i. e., y=0 implies ν=0 and ξ=ξ∗.
Ergo, the damping is pervasive and the equilibrium ξ=ξ∗ is asymptotically stable.

A.3 Proof of Proposition 8.1

To proof pervasive damping of the WIP, we need to check whether (A.18) accepts
solutions for β 6= 0. Let us begin by writing (A.18) for the WIP. Without loss of
generality, we assume ξ∗ = 0, (and ν̂ = 0), such that for the WIP, the closed-loop
potential energy (8.15) can be given in the general form

Vc = f1(α) + 1
2 µ (s+ f2(α))2 + kp (1− cos θ) ,
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where the functions fi(α) satisfy f1(0) = f ′1(0) = f2(0) = 0. Thus, (6.39) (or, equiva-
lently, (A.18)) can be explicitly given as


ψ1

ψ2

0

β̇ +


− α̇c2 sinα

0

(c2r + c5 cosα) θ̇ sinα

β +


µ (s+ f2(α))

f ′1(α) + µ (s+ f2(α)) f ′2(α)

kp sin θ

 = 0, (A.19)

where2 ψ1(α) = c1r + c2 cosα − c3, and ψ2(α) = c4 + r (c2 cosα− c3). According to
(A.12), the velocities in the set X y

0 take the following form

ν = βM−1
c MGT

⊥ = β


ψ1 (k1 − k3)− g

γ

− gψ1
γψ2

0

, (A.20)

which implies that θ̇=0, and

β = ṡ
1

ψ1 (k1 − k3)− g
γ

= − α̇ γψ2

gψ1
.

Consequently, its time derivative is given as

β̇ = − α̈ γψ2

gψ1
+ α̇2 γ

g

rψ1 − ψ2

ψ2
1

c2 sinα.

As β is a free function, the following relation holds

ṡ = − α̇ γψ2

gψ1

(
ψ1 (k1 − k3)− g

γ

)
. (A.21)

Replacing θ̇=0, β, and β̇ into (A.19), and making some simple calculations yields

α̈ψ2 − α̇2rc2 sinα = gµ

γ
(s+ f2) (A.22)

α̈ψ2 + α̇2 ψ2 − rψ1

ψ1
c2 sinα− gψ1

γψ2
(f ′1 + µ (s+ f2) f ′2) = 0 (A.23)

kp sin θ = 0 (A.24)

2The functions ψ1(α) and ψ2(α) are strictly positive in the physically relevant domain −π/2<α<π/2.
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The third equation shows that θ converges towards the set given by sin θ=0. Equation
(A.23). Let us now derive (A.22) with respect to time. It results in the ODE

...
αψ2 − 3α̇α̈rc2 sinα− α̇3rc2 cosα = gµ

γ
(ṡ+ f ′2α̇) . (A.25)

We can eliminate the variable s from the equations by replacing (A.21) into (A.25),
and (A.22) into (A.23). By doing so, we get two conditions for pervasive damping

...
αψ2 − 3α̇α̈rc2 sinα− α̇3rc2 cosα− α̇ gµ

γ

(
f ′2 −

γ

g
ψ2 (k1 − k3) + ψ2

ψ1

)
= 0, (A.26)

α̈ (ψ2 − ψ1f
′
2) + α̇2

(
ψ2

ψ1
− r + ψ1

ψ2
rf ′2

)
c2 sinα− gψ1

γψ2
f ′1 = 0, (A.27)

by means of the pitch angle α. Hence, we are looking for a solution α(t) to both (A.26)
and (A.27) simultaneously. As the ODEs (A.26) and (A.27) are not equivalent, the
only possible solution to (A.26) and (A.27) is the trivial solution given by

...
α = α̈ = α̇ = α = 0.

This implies that also β≡0 is the only solution to (A.19). Thus, the damping injection
term (8.19) with Kdi>0 guarantees pervasive damping.
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Dynamical Model of the WIP
In Chapter 8, we use the equations of motion (8.3) for the controller design. In the
following, we show how to derive the dynamical model for the WIP. After presenting the
actuator dynamics, we compute the Lagrangian and the non-conservative forces acting
on the WIP to derive the complete mathematical model that we use for the simulations.
The derivation of the equations of motion for the WIP excluding the motor dynamics
has been carried out in the conference paper [51]. However, since the dynamics of the
system slightly differ by including the effect of the actuator and internal friction forces,
in this chapter, we present the main steps for the derivation of the equations of motion
for the complete model.
Figure B.1 shows a sketch of the WIP. It consists of three different bodies: the

pendulum, and the left and right wheel. The set of generalized coordinates describing
the WIP consists of

◦ the coordinates of the midpoint P of the wheel axis in the horizontal plane ((x, y)∈
R2),

◦ the heading angle around the vertical axis (θ ∈ S1),

◦ the tilting angle around the wheel axis (α ∈ S1), and

◦ the absolute rotation angle of the right and left wheel around the wheel axis
(ϕr ∈ S1 and ϕl ∈ S1). The relative angle of rotation of the wheels with respect to
the body is denoted by φr and φl. The relations ϕr =φr + α and ϕl =φl + α hold.

Thus, the six-dimensional configuration space is Q = R2×S1×S1×S1×S1. As the
system is subject to nonholonomic constraints

ATq̇ =


− sin θ cos θ 0 0 0 0

cos θ sin θ d 0 − r 0

cos θ sin θ −d 0 0 − r

 q̇ = 0, (B.1)
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Figure B.1: Configuration variables and measurements of the WIP. The configuration
space is parametrized by the coordinates of the midpoint P of the wheel axis in the
horizontal plane, given by (x, y), the yaw angle θ, the pitch angle α, and the right (ϕr)
and left (ϕl) wheel’s total angle of rotation (ϕr =φr + α, and ϕl =φl + α). The wheel
radius is denoted by r, the distance between the wheel axis and the body’s center of
mass Cb is denoted by b, and d is the value of half the wheel distance.

the velocity space is of dimension three. Let us choose the coordinates ν = (v, α̇, θ̇)
to parametrize the velocity space, where v is the forward velocity of the WIP. For this
particular choice, the matrix S required for the reconstruction equation (8.2) becomes

S =



cos θ 0 0

sin θ 0 0

0 0 1

0 1 0
1
r

0 d
r

1
r

0 − d
r


. (B.2)

B.1 Motor dynamics

Each wheel of the WIP is independently actuated by a DC motor placed in the main
body. The equivalent circuit model for the DC motor, shown in Figure B.2, can be
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Figure B.2: Circuit diagram for the DC motor.

represented as
UA = Rmi+ Lm

d
dti+ Uind, (B.3)

where the induction voltage is proportional to the rotor velocity, expressed by Uind =
kvωm. As for the resulting motor torque τm =kmi, the relation is given by the differential
equation

Lm τ̇m = −Rmτm − kvkmωm + kmUA. (B.4)

By considering the gearbox’ transmission ratio ıg, we get the relationships

τ = ıgτm, and φ̇ = 1
ıg
ωm (B.5)

for the torque τ acting on the wheel, and the wheel’s angular velocity φ̇. Since the
current dynamics are significantly faster than the wheel dynamics, the static model for
the DC motor (neglecting the current dynamics)

0 = − Rm

ıg
τ − kvkmıgφ̇+ kmUA, (B.6)

gives an accurate relation between the armature voltage UA and the motor torque τm.

B.2 Lagrangian

To derive the equations of motion as presented in Section 6.2.1, we require the La-
grangian L, which is defined as kinetic energy minus potential energy. The potential
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energy V is only defined by the gravity field and is given as

V = mbgb cosα, (B.7)

where mb is the mass of the main body (including the shell, the motors and gearboxes,
the battery, and all other components), g denotes the gravitational acceleration, and
b represents the distance from the wheel rotation axis to the body’s center of mass
Cb. To compute the kinetic energy T , we independently calculate the translational
and rotational terms for each of the bodies. For a detailed calculation of each of the
expressions, the reader is referred to the conference paper [51]. The kinetic energy of
the main body is given as

Tb = 1
2mbvT

b vb + 1
2ω

T
b Ibωb, (B.8)

where Ib = diag(Ibxx , Ibyy , Ibzz ) is the moment of inertia of the main body (again, as
a rigid body including all its components) with respect to its center of mass Cb, and
given in body-fixed representation. The translational velocity of the point Cb, and the
total body’s angular velocity are

vb =


ẋ+ α̇b cosα cos θ − θ̇b sinα sin θ

ẏ + α̇b cosα sin θ + θ̇b sinα cos θ

− α̇b sinα

, and ωb =


− θ̇ sinα

α̇

θ̇ cosα

, (B.9)

respectively. Note that vb is given in inertial coordinates, and ωb is given with respect
to a body-fixed coordinate frame. Analogously, the kinetic energy of each single wheel
is

Tw = 1
2mwvT

wvw + 1
2ω

T
wIwωw, (B.10)

where mw denotes the mass of the wheel, and Iw = diag(Iwxx , Iwyy , Iwzz ) denotes the
wheel’s moment of inertia with respect to the center of the wheel, given in body-fixed
coordinates. The translational velocity of the left and right wheel’s center point is given
as

vw,l =


ẋ− θ̇d cos θ

ẏ − θ̇d sin θ

0

, and vw,r =


ẋ+ θ̇d cos θ

ẏ + θ̇d sin θ

0

, (B.11)
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respectively. The angular velocities of the wheels are

ωw,l =


0

ϕ̇l

θ̇

, and ωw,r =


0

ϕ̇r

θ̇

. (B.12)

As both the motor and the gearbox rotate at a different angular velocity than the
wheels, the rotational energy stemming from their relative rotation with respect to
the body needs to be additionally calculated. Take, for instance, the right motor and
gearbox. Their angular velocity with respect to the body-fixed frame is given as

ωm,r =


− θ̇ sinα

α̇ + ωm,r

θ̇ cosα

, and ωg,r =


− θ̇ sinα

α̇ + ωg,r

θ̇ cosα

. (B.13)

The moment of inertia of the motor is Im = diag(Imxx , Imyy , Imzz ), and the one of the
gearbox is Ig =diag(Igxx , Igyy , Igzz ). As most of the energy terms arising from the motor
and the gearbox have been considered in (B.7) and (B.8), we are only concerned with
the kinetic energy term resulting from the relative rotation ωm,r (or ωg,r) with respect
to the body. The extra terms are given as

Tm,r = 1
2 Imı

2
gφ̇

2
r + Imıgα̇φ̇r, and

Tg,r = 1
2 Igı

2φ̇2
r + Imıgα̇φ̇r,

where Im = Imyy and Ig = Igyy denote the moment of inertia of the rotor and the gears
about the rotor axis, respectively, ı is the transmission ratio of a single stage, and ıg is
the total transmission ratio of the gearbox. The Lagrangian of the WIP is then given
as

L = Tb + Tw,r + Tw,l + Tm,r + Tm,l + Tg,r + Tg,l − V. (B.14)

The derivation of the equations of motion for the WIP according to Section 6.2.1 yields

Mν̇ + Cν + ST∇qV = Jν + Fnc, (B.15)

where Fnc =Gu+τ fr represents the non-conservative forces acting on the WIP (cf. Sec-
tion B.3), which are composed of the input u, and the generalized friction forces/torques
τ fr. The matrix S is given by (B.2), and the remaining dynamical parameters are given
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as

M =


c1 c2 cosα− c3 0

c2 cosα− c3 c4 0

0 0 Θ(α)

, J =


0 0 c2 θ̇ sinα

0 0 0

− c2 θ̇ sinα 0 0

,

C =


0 − c2α̇ sinα 0

0 0 − c5 θ̇ sinα cosα

0 c5 θ̇ sinα cosα c5α̇ sinα cosα

, G =


1
r

0

−1 0

0 1

, (B.16)

where Θ=c5 sin2 α + c6, and for constant parameters

c1 = mb + 2mw + 2
Iwyy + Imı

2
g + Igı

2

r2 , c2 = mbb,

c3 = 2
Imı

2
g + Igı

2

r
− 2 Imıg + Igı

r
, c4 = mbb

2 + Ibyy + 2
(
Imı

2
g + Igı

2
)
− 4 (Imıg + Igı) ,

c5 = Ibxx +mbb
2 − Ibzz , c6 = Ibzz + 2 Iwyyd

2

r2 + 2mwd
2 + 2Iwzz + 2

(
Imı

2
g + Igı

2
)
d2

r2 .

B.3 Non-conservative forces

The generalized non-conservative forces Fnc that act on the mechanical system are
composed of the input torques τ =(τl, τr) steering the left and right wheel, and friction
torques τ fr, mainly in the gearbox, that emerge from the relative rotation of the wheel
with respect to the body.

Let us begin with the input and assume that we can directly control the torques τ .
Projecting τ on the admissible space results in the generalized input forces

Gτ τ =


1
r

1
r

−1 −1

− d
r

d
r


 τl

τr

. (B.17)

These inputs can, however, be transformed into more natural quantities for the control
of the WIP. Employing the input transformation

u1 = τr + τl, u2 = d

r
(τr − τl), (B.18)
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or, equivalently

τ = Tuu =

 1
2

r
2d

1
2 − r

2d


 u1

u2

 , (B.19)

the inputs u1 and u2 represent the resulting torque for the forward and the turning
motion, respectively, and the system’s input becomes

Gτ τ = GτTuu =


1
r

0

−1 0

0 1


 u1

u2

 = Gu. (B.20)

Now, as we cannot directly control the torques τ (or u), the static model for the DC
motor (B.6) provides the required relation

uA = Rm

kmıg
Tuu + kvıgTνν, (B.21)

between the armature voltage of the right and left motor (uA = (UA,l, UA,r)), and the
input u. Note that for the angular velocity of the wheels, we have used the relation

 φ̇r

φ̇l

 =

 1
r
−1 d

r

1
r
−1 − d

r



v

α̇

θ̇

 = Tνν. (B.22)

For the friction torques τ fr, we use a smooth friction model that captures the effect
of both the Coulomb and the viscous damping. The friction torques acting on the
body—and which arise from the relative velocity φ̇ between wheel and body—are given
as

τb = dvφ̇+ dc tanh(d0φ̇), (B.23)

with viscous damping coefficient dv, and Coulomb friction dc. The constant d0 charac-
terizes the steepness of τb around the equilibrium point (cf. Figure B.3). The friction
forces acting on the right and left part of the body are given as

τb,l = dvφ̇l + dc tanh(d0φ̇l), (B.24)
τb,r = dvφ̇r + dc tanh(d0φ̇r), (B.25)

where φ̇r and φ̇l are computed according to (B.22). Note that, since the friction torques
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Figure B.3: Smooth and ideal friction models.

are internal torques, the reaction torques acting on the wheels τw,l =− τb,l and τw,r =− τb,r

need to be taken into account as well. Projecting these friction torques on the admissible
coordinates ν yields

τ b =


0

2dv
(
v
r
− α̇

)
+ dc

(
tanh(d0φ̇l) + tanh(d0φ̇r)

)
0

, (B.26)

τw,l =


− 1
r

(
dv
(
v
r
− α̇− d

r
θ̇
)

+ dc tanh(d0φ̇l)
)

0
d
r

(
dv
(
v
r
− α̇− d

r
θ̇
)

+ dc tanh(d0φ̇l)
)
, (B.27)

τw,r =


− 1
r

(
dv
(
v
r
− α̇ + d

r
θ̇
)

+ dc tanh(d0φ̇r)
)

0

− d
r

(
dv
(
v
r
− α̇ + d

r
θ̇
)

+ dc tanh(d0φ̇r)
)
. (B.28)

Hence, the friction torque takes the form

τ fr = τ b + τw,l + τw,r. (B.29)

The non-conservative forces are, thus, given as

Fnc = Gu + τ fr. (B.30)

Since G⊥τ fr =0 holds true—the friction torques τ fr act on the actuated coordinates—
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ν
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DC motor

(B.21)

Friction
compensation

(B.29), (B.31)

Figure B.4: Input transformation and friction compensation.

the effect of the friction can be fully compensated by the input

ufr = − (GTG)−1GTτ fr. (B.31)

Figure B.4 illustrates the relation between the input u, which is used for the controller
design in Chapter 8, and the real system’s input uA.

B.4 Reduced coordinates

Finally, as the conditions of Proposition 6.2 are satisfied, we define reduced coordinates
ξ = (s, α, θ)∈QR ⊂Q, such that ξ̇= ν, and restrict the analysis to QR by replacing
ST∇qV in (B.15) by

∇ξV =


0

− c2g sinα

0

. (B.32)

The control system for the wheeled inverted pendulum is shown in Figure B.5. The
blue box with input u and output q, ξ, and ν represents the WIP model (8.3) with
the corresponding reconstruction equation (8.2) used for controller design in Chapter 8.
The system’s parameters are taken from [10, 98], and are listed in Table B.1.
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Table B.1: System parameters for the wheeled inverted pendulum.

Model parameter Symbol Value Unit

Body mass mb 0.277 kg

Distance from the wheel axis
b 48.67 · 10−3 m

to the body’s center of gravity

Gravitational acceleration g 9.81 m/s2

Wheel mass mw 0.028 kg
Half of the wheel distance d 49 · 10−3 m
Wheel radius r 33.1 · 10−3 m

Body’s moment of inertia Ib

around x-axis Ibxx 543.108 · 10−6 kgm2

around y-axis Ibyy 481.457 · 10−6 kgm2

around z-axis Ibzz 153.951 · 10−6 kgm2

Wheel’s moment of inertia Iw

around y-axis (rotation axis) Iwyy 7.411 · 10−6 kgm2

around z-axis Iwzz 4.957 · 10−6 kgm2

Viscous damping coefficient dv 1.532 · 10−3 N m s/rad

Coulomb friction coefficient dc 32.6 · 10−3 Nm
Steepness friction coefficient d0 8 −
Single stage transmission rate ı 7.091 −
Gearbox’ transmission rate ıg 50.281 −
Gearbox’ moment of inertia

Ig 1.807 · 10−6 kgm2
around the rotation axis

Motor’s moment of inertia
Im 0.269 · 10−6 kgm2

around the rotation axis

Motor inductance Lm 400 · 10−6 H
Motor electric resistance Rm 1.5 Ohm
Motor torque constant km 3.76 · 10−3 M m/A

Motor voltage constant kv 3.76 · 10−3 V s/rad
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Constrained space, 103, 104, 144, 148
Constraint

holonomic, 29
non-integrable, see nonholonomic con-

straint
nonholonomic, 29, 91, 95, 96, 117,

169
Pfaffian, see nonholonomic constraint
rolling-without-slipping, see nonholo-

nomic constraint
Constraint distribution, 30, 31
Constraint forces, 32, 93, 95
Controlled Lagrangians, 7, 46, 98
Coordinates

generalized, 29
local, 23
reduced, 135, 143, 177

Cotangent bundle, 27, 94
Cotangent space, 27, 119
Cyclic variable, 28
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DC, see Dissipation condition
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Hamiltonian, 29
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simple, 21
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Non-conservative forces, 174
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Partial feedback linearization, 79
Passive system, 41
Passive velocity field control, 117, 125
Passivity inequality, 41
Passivity-based control, 40
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Path following, 115, 117, 125, 150
PBC, see Passivity-based control
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textbf, 35

PFL, see Partial feedback linearization
pH, see Port-Hamiltonian system
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Physical dissipation, 52
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Quasi-velocities, 95, 96

Reconstruction equation, 96, 134, 170
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Sample time, 142
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Lyapunov, 32, 36
Lyapunov’s direct method, 34
Lyapunov’s indirect method, 33
of mechanical systems, 35
of time-invariant systems, 32
of time-varying systems, 36

Symmetry, 28

Tangent bundle, 24, 28
Tangent space, 24, 118
Tangent vector, 24
Tracking error function, 118, 118
Trajectory

admissible reference, 116, 120
non-admissible reference, 121, 148

Trajectory tracking, 115, 118, 148
Transport map, 118, 118

Vector field, 24, 125
Velocity control, 104
Velocity error, 118
Velocity phase space, see Tangent bun-
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Virtual potential forces, 91

Wheeled inverted pendulum, 131
Dynamical model, 134, 169

WIP, see Wheeled inverted pendulum
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