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Abstract

Computational models are ubiquitous in science and engineering and are often the only means
by which systems and processes can be studied. The more researchers and engineers rely on nu-
merical simulation techniques, the more important truly predictive simulations become. Predic-
tive simulations, which account for incomplete and inaccurate information about the problems
of interest and provide distributions or error bars rather than deterministic results, are desirable
in virtually all application scenarios for numerical models. However, one field of application
which is in particular need of predictive techniques is biomedical engineering.

In many biomedical applications information about model input parameters is scarce and
patient-specific model parameters, such as constitutive properties, are usually not easy to obtain.
Furthermore, it is often difficult or impossible to validate simulation results with experimental
tests in vivo and, in addition, the consequences of faulty predictions can be fatal. Thus, uncertain-
ties and imprecise information have to be considered in the computational model. However, due
to limited computational resources and several shortcomings of traditional uncertainty quan-
tification approaches, parametric uncertainties, modeled as random fields, have not yet been
considered in patient-specific, nonlinear, large-scale, and complex biomechanical models.

The main focus of this work lies in the development of a comprehensive uncertainty quantifi-
cation framework based on efficient multi-fidelity sampling and Bayesian formulations. Thereby,
the emphasis is on biomedical applications. Specifically, the developed framework is applied to
computational models of abdominal aortic aneurysms and reduced order models of the human
lung as prototype applications. The goal of this work is the development and application of a
novel approach to quantify the impact of uncertain model input parameters and to enable pre-
dictive simulations by providing probability distributions, error bars, or worst case estimates for
the respective quantity of interest.

As a first step, uncertainty quantification requires an accurate probabilistic description of
the uncertain model input parameters as random variables or multi-dimensional random fields.
Therefore, innovative approaches to infer suitable parameters for these probabilistic models
from available experimental data are devised, allowing patient-specific, probabilistic predic-
tions of uncertain model input parameters with unprecedented accuracy. For the propagation
of the uncertainties, a multi-fidelity framework is developed. The key feature of the presented
method is the ability to rigorously exploit and incorporate information from cheap low-fidelity
models. Thereby, the approach merely requires that the low-fidelity model and the correspond-
ing high-fidelity model share a similar stochastic structure, i.e., dependence on the random input
variables. The result is a tremendous flexibility in choice of the low-fidelity model.

The flexibility and capabilities of the framework are demonstrated by performing uncertainty
quantification in large-scale, nonlinear, patient-specific finite element models of abdominal aor-
tic aneurysms and the human lung as showcase examples. However, the approach is readily
transferable to many other application scenarios. The employed approach results in a tremen-
dous reduction of computational costs, rendering uncertainty quantification in combination with
complex patient-specific nonlinear biomechanical models practical for the first time. Regarding
abdominal aortic aneurysms, the impact of the uncertainty in the input parameters on mechanical
quantities typically related to aneurysm rupture potential is analyzed, and estimates on the dis-
tribution and variability of these mechanical quantities due to uncertain constitutive parameters
or wall thickness are provided for the first time.
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Zusammenfassung

Numerische Modelle sind heutzutage allgegenwärtig in Ingenieurwesen und Wissenschaft und
stellen häufig die einzige Möglichkeit dar, Systeme und Prozesse zu analysieren. Je mehr sich
Wissenschaftler und Ingenieure auf numerische Simulationsmethoden verlassen, desto wichti-
ger werden vorhersagefähige Simulationen. Vorhersagefähige Simulationen, die unvollständige
und ungenaue Informationen über das zu untersuchende System berücksichtigen und Wahr-
scheinlichkeitsverteilungen oder Fehlerbalken darstellen sind in praktisch allen Anwendungs-
gebieten numerischer Modelle deterministischen Methoden überlegen und diesen vorzuziehen.

Für viele biomedizinische Simulationsanwendugen trifft dies im besonderen Maße zu. Ei-
ner der Gründe hierfür ist, dass bei vielen biomedizinischen Fragestellungen patientenspezi-
fische Modellparameter überhaupt nicht beziehungsweise. nicht in ausreichender Genauigkeit
bestimmbar sind. Des Weiteren ist es häufig schwierig beziehungsweise unmöglich, Simula-
tionsergebnisse mittels experimenteller Untersuchungen in vivo zu validieren. Es kommt er-
schwerend hinzu, dass fehlerhafte Vorhersagen fatale Konsequenzen haben können. Aus die-
sen Gründen müssen unscharfe Informationen sowie Unsicherheiten im numerischen Modell
berücksichtigt werden. Aufgrund beschränkter Rechenkapazität sowie bestehender Defizite tra-
ditioneller Verfahren zur Quantifizierung von Unsicherheiten wurden parametrische Unsicher-
heiten in Form von Zufallsfeldern bis dato nicht in komplexen, patientenspezifischen, nichtli-
nearen biomechanischen Modellen berücksichtigt.

Den Schwerpunkt der vorliegenden Arbeit bildet die Entwicklung eines umfassenden Werk-
zeugs zur Quantifizierung von Unsicherheiten basierend auf effizientem multi-fidelity Samp-
ling in Kombination mit Bayesschen Ansätzen. Das Hauptaugenmerk liegt dabei auf biome-
dizinischen Anwendungen. Als exemplarische biomedizinische Fragestellungen, die mit dem
entwickelten Ansätzen untersucht werden können, werden numerische Modelle von abdomina-
len Aortenaneurysmen sowie der menschlichen Lunge betrachtet. Das Ziel dieser Arbeit ist die
Entwicklung und Anwendung neuartiger Ansätze, die den Einfluss von Modelleingangsparame-
terunsicherheiten quantifizieren und vorhersagefähiger Simulationen durch die Berechnung von
Wahrscheinlichkeitsverteilungen, Fehlerbalken, oder Worst-Case-Szenarien für die betrachtete
Modellausgangsgröße ermöglichen.

Als ersten Schritt bedarf es einer präzisen probabilistischen Beschreibung der unsicheren
Modelleingangsparameter als Zufallsvariablen oder mehrdimensionale Zufallsfelder. Hierfür
werden innovative Ansätze entwickelt, um die Parameter dieser stochastischen Modelle aus
verfügbaren experimentellen Daten abzuleiten und somit eine probabilistische, patientenspe-
zifische Vorhersage unsichererer Modelleingangsgrößen zu ermöglichen. Zur Berechnung der
Fortpflanzung von Unsicherheiten im numerischen Modell wird ein neuartiger multi-fidelity
Ansatz verwendet. Die Schlüsseleigenschaft der dargestellten Methode ist, dass Informationen
aus vereinfachten Modellen konsequent genutzt werden können und so der Berechnungsauf-
wand drastisch gesenkt werden kann. Dabei setzt der verwendete Ansatz lediglich eine ähnliche
stochastische Struktur der Modelle voraus, was zu einer großen Flexibilität bezüglich der Wahl
des vereinfachten Modells führt.

Die Leistungsfähigkeit und Vielseitigkeit des Ansatzes und der Implementierung werden
anhand ausgewählter Anwendungen in Form von großen, nichtlinearen, patientenspezifischen
Finite-Element-Modellen abdominaler Aortenaneurysmen sowie der menschlichen Lunge auf-
gezeigt. Der entwickelte Ansatz ist ebenfalls direkt auf andere Anwendungsszenarien übertragbar.
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Die dabei erzielte Reduktion des Rechenaufwands ermöglicht erstmals die Betrachtung der-
art komplexer, patientenspezifischer Probleme in einem sinnvollen, zeitlichen Rahmen. Bei
den Modellen der abdominalen Aortenaneurysmen wird der Einfluss unsicherer Modellein-
gangsparameter auf mechanische Kenngrößen, die mit dem Rupturrisiko des Aneurysmas as-
soziiert sind, bestimmt. Außerdem können erstmals Verteilungen und Abschätzungen über die
Schwankungen dieser mechanischer Größen aufgrund unsicherer Modelleingangsparametern
wie Wanddicke oder Konstitutivparameter berechnet werden.
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Nomenclature
Notation of scalars, vectors, and matrices

c, C Deterministic scalar variable
v Deterministic vector
M Deterministic matrix
x, x(!), ✓(!) Random variable
x, x(!),✓(!) Random vector
f(x), f(x, !) Random process/field
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(·)�1 Inverse of a matrix
˙

(·) Time derivative
[ Union
\ Intersection
⇢ Subset
E[·] Expectation
M[·] Median
V[·] Variance
k·k L2-norm
|·| Determinant of a matrix
log(·) Natural logarithm
Div Material divergence operator
Grad Material gradient operator
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Nomenclature

Computational solid mechanics

�

t

Nonlinear deformation map
⌦

0

,⌦
t

Reference and spatial configuration
X,x Position in reference and deformed configuration
u Displacement field
F ,Fvol ¯

F Deformation gradient, volumetric part, isochoric part
I Identity tensor
J Determinant of deformation gradient
V

0

, V Volume in reference and deformed configuration
A

0

, A Area in reference and deformed configuration
C,Cvol, ¯

C Right Cauchy-Green tensor, volumetric part, isochoric part
E Green-Lagrange strain tensor
b Left Cauchy-Green tensor
e Euler-Almansi strain tensor
I
i

, ¯I
i

i-th principal invariant, i-th modified invariant
t Traction vector
f Resulting force
n Outward normal
� Cauchy stress tensor
P First Piola-Kirchhoff stress tensor
S Second Piola-Kirchhoff stress tensor
 , 

vol

, 
iso

, Strain-energy function, volumetric part, isochoric part
C Elasticity tensor
�

u

,�
�

Neumann and dirichlet boundary
ˆ

b

0

Body forces
⇢

0

Density in reference configuration
ˆ

u Prescribed displacements
w Weight functions
�W Virtual work
H1 Sobolev space
d Discrete nodal displacements
N Matrix of element shape functions
⇠ Position in finite element parameter space
X, ¯

x Nodal positions in reference and current configuration
J

(e) Element Jacobian matrix
M Mass matrix
f

int Vector of internal forces
f

ext Vector of external forces
K

T

Effective tangential stiffness matrix

x



Nomenclature

Probability theory and statistics

A, B, Ac, Bc Event and complementary event
P (A) Probability of event A
P (A|B) Conditional probability
⌦ Sample space
F ��algebra
p
x

(x) Probability density or mass function
p
x,y

(x|y) Conditional probability density or mass function
F
x

(x) Cumulative distribution function
cov(x, y) Covariance of two random variables x and y

⇢(x, y) Correlation coefficient of x and y

⌃(x, y) Covariance matrix of two random vectors x and y

erf(·) Error function
d Dimension of stochastic process
�2

g

(x) Variance function of stochastic process
m2

g

(x) Mean function of stochastic process
r2

g

(x,x0
) Auto-correlation function of stochastic process

k2

g

(x,x0
) Auto-covariance function of stochastic process

⇢2

g

(x,x0
) Normalized auto-covariance function of stochastic process

⌧ Lag vector
` Correlation length
K,⌃ Covariance matrix
GP(m

g

(x), k
g

(x,x0
)) Gaussian process with mean m

g

(x) and auto-covariance k
g

(x,x0
)

P Matrix containing the charateristic length scales
B

⌫

(·) Modified Bessel function
�(·) Standard Gaussian cumulative distribution function
�(·) Standard Gaussian probability density function
�
k

Eigenvalues of a covariance kernel
v
k

(x) Eigenfunctions of a covariance kernel
!
k

i

Phase angles of Fourier expansion
˜L Length of generated field
˜L
x

i

Length of generated field in x
i

-direction
n
k

Truncation threshold of Fourier expansion
c
k

Coefficients of Fourier expansion
K Indexing set for truncation
� Retained fraction of variability
s
g

(·) Power spectral density
s
h,t

(·) Target power spectral density of non-Gaussian process h
⌧ Frequency vector

iu

Cut-off wave numbers
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Nomenclature

Bayesian regression

d Dimension of the problem
n Number of training cases
n⇤ Number of test cases
m Number of basis functions
D Dataset
X Design matrix
x Vector of explanatory variables, input variables
x

⇤ Test input
y Response variable, target variable
y⇤ Prediction of response variable for test input
ȳ Average of all target variable in the training set
ȳ⇤ Mean prediction of target variable for test input
ỹ⇤ Measured target variable corresponding to test input
f Latent function
f ⇤ Prediction of latent function for test input
¯f ⇤ Mean prediction of latent function
✏ Noise or error
✓ Vector of (hyper-)parameters
✓

m

,✓
k

,✓
l

Parameters of mean, covariance, and likelihood function
ˆ

✓ Point estimate of ✓ based on maximum marginal likelihood
¯

✓ Posterior mean value of ✓
✓MAP Maximum posterior value of ✓
w Vector of weights
wLS Least square estimate of weights
SS

ess

Error sum of squares
�2

✏

Variance of the noise/error
� Set of basis functions
� Design matrix when basis functions are used
I Identity matrix
L Likelihood function
L Negative logarithm of marginal likelihood
� Gamma function
�⇤ 2

s Standardized mean predictive variance
�⇤ 2

P,s Patient standardized mean predictive variance
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Nomenclature

UQ Methods

f(·) Computational model
f

GP

(·) Gaussian process based surrogate model
fPCE(·) Polynomial chaos based surrogate model
x Vector of (uncertain) input parameters
y Model output of interest
A Failure domain
y

fail

Failure threshold
P

fail

Failure probability
ˆPfail Monte Carlo estimate of P

fail

1A(y) Indicator function
N
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Number of samples
µ
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Mean of y
µ̂
y

Monte Carlo estimate of µ
y

�2

y

Variance of y
�̂2
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Monte Carlo estimate of �2

y
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�
y

(i)

Delta-Dirac mass
W Normalized importance weight
w Unnormalized importance weight
w̌

n

Unnormalized incremental weigth
q
x

(x) Importance distribution
⇡
t

(x) Target density
Z

t

Normalizing constant
�
t

(x) Normalized ⇡
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(x)

�
n

Transition parameter
◆(x) Initial tractable distribution
�̃
n

(x

1:n

) Auxiliary distribution defined on extended space
L
k

(x

k+1

,x
k

) Backward Markov kernel
K

k

(x

k�1

,x
k

) Forward Markov kernel
⌘(x

⇤|x(i)

n

) Proposal distribution
↵(x

⇤,x
n�1

) Acceptance ratio
�
j

(x) Multivariate orthogonal polynomials
w

j

Weight of polynomial j
�
ij

Kronecker delta
x

(s) Quadrature or sampling points
q(s) Quadrature weights
N

s

Number of quadrature points
Q Weight matrix
x

(i)

0
i-th simulation design point

m̃(x; ✓̂

m

) Posterior mean function of GP surrogate
˜k(x,x0

; ✓̂

k

) Posterior covariance function of GP surrogate
ˆ

✓ = [

ˆ

✓

m

, ˆ

✓

k

] Hyper-parameters of GP surrogate

xiii



Nomenclature

m̃( j )0
(x) Posterior mean of GP using simulation design points

˜k( j )0
(x,x0

) Posterior covariance of GP using simulation design points
M Mean of y
ˆM Estimate of mean of y based on GP surrogate

�̂2

ˆ

M

Variance of mean of y due to code uncertainty in GP
M

f

( j )
GP

Mean of y based on j�th realization of posterior GP
q Quantile of y
q
f

( j )
GP

Quantile of y based on j�th realization of posterior GP
V Variance of y
V
f

( j )
GP

Variance of y based on j�th realization of posterior GP
F

y

(y) CDF of y
F ( j )
y

(y) CDF of y based on j�th realization of posterior GP
ˆF
y

(y) Mean of ˆF
y

based on GP surrogate

Bayesian Multi Fidelity Monte Carlo

y
hi�fi

Quantity of interest computed with high-fidelity model
y

lo�fi

Quantity of interest computed with low-fidelity model
z Vector of uncertain model input parameters
✓(!) Vector of parameters of regression function
p
✓

(✓) Prior density of regression model parameters
⇡
✓

(✓) Posterior density of regression model parameters
�
✏

2

(!) Variance of the noise term
⇡̂(y

hi�fi

) Posterior mean estimate of probability density of y
hi�fi

⇡(✓, �2

✏

) Joint posterior density of ✓(!) and �
✏

2

(!)

NSAM Number of samples
Nparticles Number of particles
Nreal Number of GP realizations
W (i) Importance weight
�(·) Standard normal CDF
y

0

Failure threshold
H(·) Heavyside function
qA(y

lo�fi

,✓, �
✏

) Probability of y
hi�fi

2 A, given y
lo�fi

,✓, and �
✏

q̂A(y
lo�fi

) Expected value of qA(y
lo�fi

,✓, �
✏

) with respect to ✓ and �
✏

qA,0.01

, qA,0.99

1% and 99% quantile of qA
� Continuation parameter
� Load factor
p Vector containing element wise constitutive parametres
d

(1) Nodal displacements corresponding to p

(1)

xiv



Nomenclature

Experimental measured quantities of aneurysm wall

�max Failure strength
Tmax Failure tension
Fmax Maximum recorded force
A

0

Initial cross-sectional area of tensile test specimen
b
0

Tensile test specimen width
t Wall thickness
tILT ILT thickness
dbif Distance to bifurcation
⇢̃ Correlation coefficient between adjacent tensile test specimens
˜

⌧ Distance between tensile test specimens

Models of abdominal aortic aneurysms

c Stiffness parameter of ILT
clum ILT stiffness luminal layer
cmed ILT stiffness medial layer
cablum ILT stiffness abluminal layer
⌘ Empirical coefficient
 Bulk modulus
⌫ Poisson ratio
↵, � Stiffness parameters of arterial wall
µ
�

Location parameter of the probability distribution of �
�
�

Scale parameter of the probability distribution of �
t Wall thickness
µ
t

Location parameter of the probability distribution of t
�
t

Scale parameter of the probability distribution of t
tstoch(x, z) Stochastic wall thickness
tconst Deterministic, constant wall thickness
�

(i)

tstoch
(x) Stresses based on stochastic wall thickness

�max Maximum wall stress
�fail Failure threshold

xv



Nomenclature

Models of the human lung

C,I ,R Capacitive, inductive, and resistive component
N

adj,i

Number of adjacent acini or pleural spaces for acinus i
P

in

,P
out

Pressure at airway in- and outlet
P

a

Acinar pressure
P

pl

Pleural pressure
P

t

Pressure at tracheal inlet
P

intr

Inter-acinar pressure
Q

in

,Q
out

Flow rate at airway in- and outlet
V

a,0

Initial acinus volume
V

a

Current acinus volume
V

CP

p

Percentile vital capacitance
V Lung volume
V

R

Residual volume of the lung
V

TLC

Total lung capacitance
V

tidal

Tidal volume
 Acinar stiffness parameter


0

Baseline acinar stiffness
µ


Location parameter of the probability distribution of 
�


Scale parameter of the probability distribution of 
"
vol

Volumetric acinar strain
"
vol,max

Maximum volumetric acinar strain

xvi



Nomenclature

Abbreviations

AAA Abdominal aortic aneurysm
ADP Adenosine diphosphate
ALI Acute lung injury
ARDS Acute respiratory distress syndrome
BMFMC Bayesian multi-fidelity Monte Carlo
CHD Coronary heart disease
DM Diabetes mellitus
CDF Cumulative distribution function
CKD Chronic kidney disease
COV Coefficient of variation
CT Computed tomography
EELV End-expiratory lung volume
EGFR Estimated glomerular filtration rate
ESS Effective sample size
EVAR Endovascular aneurysm repair
FFT Fast Fourier transform
FORM First order reliability method
GP Gaussian Process
IBVP Initial boundary value problem
ILT Intra Luminal Thrombus
IS Importance sampling
LHS Latin hypercube sampling
LOOCV Leave-one-out cross-validation
MAP Maximum a Posterior
MC Monte Carlo
MCH Mean corpuscular hemoglobin
MCHC Mean corpuscular hemoglobin concentration
MCMC Markov Chain Monte Carlo
MCV Mean corpuscular volume
MLMC Multi-Level Monte Carlo
MULF Modified updated lagrangian formulation
NORD Local normalized diameter
OR Open surgical repair
PCE Polynomial chaos expansion
PDE Partial differential equation
PDF Probability density function
PEEP Positive end-expiratory pressure
PMF Probability mass function
PSD Power spectral density
PSMSE Patient standardized mean square error
PVD Peripheral vascular disease

xvii



Nomenclature

RMSE Root mean square error
RPI Rupture Potential Index
R&V Raghavan & Vorp material model
SD Standard deviation
SEF Strain energy function
SMC Sequential Monte Carlo
SMSE Standardized mean square error
SORM Second order reliability method
UQ Uncertainty Quantification
VDG Vande Geest Model
VILI Ventilatory Associated Lung Injury

xviii



1 Introduction

1.1 Motivation and background

Methodological advances in computational biomechanics in combination with the advent of rel-
atively cheap high-performance computing platforms have led to a tremendous improvement
of computational models for various biomechanical systems, biophysiological processes, and
diseases. These computational models have in turn led to an improved understanding of the sys-
tems and processes under investigation. Many challenging biomechanical problems have been
addressed by researchers in recent decades such as establishing models for the full cardiovas-
cular system or specific parts thereof [11, 42, 104, 247, 335]. Many aspects of cardiovascular
diseases, e.g., coronary artery stenosis [324] or aneurysms both aortic [102, 103, 109, 203] and
cerebral [168, 276, 293], can be nowadays assessed using computational tools. Another promi-
nent example are computational models of the human respiratory system [163]. Of course, many
other applications of computational tools in medicine exist. Aside from diagnosis and assess-
ment of diseases, computational models are of course also used for the development and design
of medical devices and surgical procedures.

As these computational models mature to the verge of clinical application [91], the predictive
capabilities of the computational models becomes increasingly important. The term predictive
is used here in the sense that incomplete and often inaccurate information about the problems of
interest is accounted for, and that, moreover, error bars or probability distributions are provided
as simulation results rather than deterministic values. In addition, as pointed out previously by
Chen et al. [61] and Kennedy and O’Hagan [174], uncertainty is introduced also by the often
ambiguous choice of mathematical models and applied boundary conditions, which will affect
the simulation results as well.

Although the need for predictive models applies also in many, if not all, other engineering
disciplines, predictive computational models are particularly important in many biomedical ap-
plications for several reasons. First of all, faulty or wrong predictions made by computational
models can have dire consequences for patients. Second, many of the model input parameters
cannot be precisely measured or assessed with the accuracy that is standard in many of the more
classical engineering problems. In addition, many of these parameters intrinsically vary within
and between patients and are also significantly affected by lifestyle, age, and diseases, which
lead to further substantial variations. Third, computational simulation models have surpassed
experimental capabilities and meaningful experimental tests to validate or calibrate complex
computational models are often difficult or impossible to perform.

However, often when truly patient-specific data are inaccessible assumptions about these pa-
rameters are made, or population-averaged values are used. The difference between the actual
patient-specific values and any assumed or averaged values in the input parameters in a deter-
ministic model of course translates to uncertainty or potential error in the computed quantities.
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1 Introduction

Therefore, in absence of truly patient-specific parameters, it is extremely important to be
aware of the uncertainty in population averaged or assumed patient-specific model parameters.
In lack of true patient-specific values, these uncertainties should be incorporated into the com-
putational model to quantify the impact of the uncertainty on the computed results and to obtain
more reliable predictions or worst-case scenarios. The identification and quantification of the
uncertainties in the computational results will help to assess the margin of error of simulation
results due to uncertain model parameters, thus enabling estimates on the accuracy of deter-
ministic models. This is particularly important if computational models are, ultimately, to be
incorporated in the clinical decision process, e.g, for diagnostic purposes of cardiovascular dis-
eases, or to obtain recommendations for prevention and treatment of individual patients. In any
of these scenarios it is crucial to take the aforementioned uncertainties and incomplete informa-
tion into account.

The predictive capabilities of computational models can be significantly improved if a prob-
abilistic point of view is adopted and the uncertainties in the input parameters are accounted for
in the model. Identification and quantification of these uncertainties will inevitably lead to more
accurate simulations but also to a deeper understanding of the investigated systems, physiologi-
cal processes, or diseases, and also bring to light limitations of existing models. Therefore, the
development and application of efficient computational approaches for uncertainty quantifica-
tion (UQ) is crucial for the advance of numerical models of biomechanical systems to clinical
research and, ultimately, to clinical application.

The predictive error or uncertainty in todays computational models can be attributed to var-
ious causes. In order to recognize and analyze the different components a taxonomy of uncer-
tainties in computational models according to [174, 240] is introduced here.

• Parametric uncertainty The first major source of uncertainty is referred to as parametric
uncertainty. Often there is uncertainty about the values of certain model input parame-
ters such as physical input parameters like stiffness, porosity, permeability, diffusivity,
etc.. Frequently, the boundary conditions are also subject to uncertainty. In the context of
biomechanical models this includes, e.g., the blood pressure or in- and outflow conditions
in the form of velocity profiles. Another source of uncertainty are uncertain (computa-
tional) geometries. In biomedical application model geometries are often reconstructed
from medical image data, the resolution of which is often not sufficient to extract all
relevant geometric features of the model.

• Model inadequacy In the sense that “all models are wrong, but some are useful“ (George
E. P. Box) simulating a real world system or process by means of computational models
will likely yield a difference between model prediction and truth, even if all input pa-
rameters were known exactly and no parametric uncertainty existed. This discrepancy is
referred to as model inadequacy.

• Residual variability Suppose a model predicts a specific system response for a given set
of parameters and conditions. However, in reality the system response might not always
be the same although the same parameters and conditions hold. This might be due to an
inherent randomness of the system or due to model inadequacy because the chosen set of
parameters and conditions do not fully capture or describe the system. This variability is
referred to as residual variability in [174].
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• Code uncertainty This uncertainty results from the fact that a computational model usu-
ally cannot be evaluated at all possible combination of input parameters that are of inter-
est. Examples for this kind of uncertainty are sampling errors or interpolation errors if the
model output for some input configuration is interpolated from the model output of other
input configurations.

The identification and propagation of these uncertainties is difficult and no unified mathe-
matical approach exists to address all types of uncertainty described above in a consistent and
efficient manner. The focus of this work are parametric uncertainties as described above and
their efficient propagation through complex computational models. The quantification of this
kind of uncertainty has received a lot of attention amongst researchers, scientists, and engi-
neers in the last two decades, which has lead to marked progress. However, even though the
importance of reliable, predictive simulations is generally acknowledged in the biomechanics
community, the amount of research regarding UQ and sensitivity analysis in combination with
biomedical problems is very limited, so far. In the context of cardiovascular models, only few
scientist have started to address the issue of uncertain model input parameters by means of UQ.

When speaking of parametric uncertainties, literature often distinguishes between aleatory,
i.e., truly random irreducible uncertainty, and epistemic uncertainty, which describes uncertainty
due to lack of knowledge or data. Epistemic uncertainty is also often referred to as reducible
uncertainty. However, an exact discrimination and definition of these two types is often difficult
and the border between aleatory and epistemic is blurred [82, 240]. When trying to distinguish
between aleatory and epistemic uncertainty one quickly winds up in a philosophical debate
whether such a thing as true randomness exists.

Anyway, the uncertainties considered in this work are essentially epistemic since the pre-
dominant problem in biomechanical models is rather a lack of knowledge, i.e., the values for
a parameter of a specific patient are not known, than parameters being truly random. Mostly,
the problem is rooted in not being able to determine model input parameters in a non-invasive
fashion. Thus, roughly speaking, the systems and models considered in this work are not truly
random but treated as random because the exact values of the parameters of the model for a
specific patient are not known. To this end, a Bayesian view of probability is adopted in this
work, i.e., probability is used as a vehicle to formulate statements about degrees of belief or to
represent a state of knowledge rather than a frequency of some phenomenon or parameter.

The main goal of this work is the development of a comprehensive UQ framework, which al-
lows the treatment of complex, large-scale, non-linear models. In addition, the approach should
be able to cope with high-stochastic dimension, i.e, many random input parameters. The exam-
ple problems that the developed framework is predominantly applied to in this work are patient-
specific models of abdominal aortic aneurysms (AAAs). Hence, before the aim, objectives,
and outline of this work are explained, the reader is provided with the necessary background
information about AAAs and engineering approaches regarding the assessment of the disease.

Abdominal aortic aneurysm are permanent balloon like dilatations of the aorta between the
renal arteries and the aortic bifurcation. An example of an AAA is shown in Figure 1.1. In
the majority of the cases, this enlargement of the aorta is accompanied by the formation of in-
traluminal trombus (ILT) as a product of blood coagulation [143]. Due to the relatively high
prevalence (4% - 8% in men and 0.5%-1.5% in women [190, 191, 195, 231, 343]) in the popu-
lation and the high-mortality rate in case an AAA ruptures, AAA are amongst the leading causes

3



1 Introduction

(a) Three-dimensional reconstruction of an AAA. (b) Computed tomography image
(sagittal view) of an AAA.

Figure 1.1 Infrarenal abdominal aortic aneurysm. Figure taken from [202].

of death in the elder population. Clinically, AAAs can be categorized into asymptomatic, symp-
tomatic, and ruptured AAAs. The vast majority of all AAAs are asymptomatic and their discov-
ery is often coincidental, although many countries have introduced screening programs to detect
AAAs at an early stage. Symptomatic AAAs, characterized by sudden pain in the abdomen or
back, are a clear indication for surgical intervention, because 90% of all symptomatic AAAs
rupture within 2 years if left untreated [222]. Ruptured AAAs present a severe cardiovascular
emergency, which requires immediate surgical treatment. The prognosis of ruptured AAAs is
grim with roughly 90% of the patients dying before reaching the hospital [285, 372]. Even if
the patient is in the hospital at the time of rupture and can be treated right away, mortality rates
are still 48% on average [47].

For asymptomatic AAAs the indication for surgical intervention is not so clear. Amongst
other risk factors discussed in literature such as female gender [52, 84], hyper tension [51],
smoking [256], family history of AAA [187], geometry of the AAA [349], or large amounts of
ILT [143], the size of the aneurysm, usually in form of the maximum diameter serves as major
indicator of rupture risk. Epidemiological studies, such as the UK small aneurysm trial [51]
relate the diameter of an aneurysm to the annual rupture risk. According to [51] AAAs have a
0.3 % annual risk of rupture if the diameter is smaller than 4.0 cm. As the aneurysm gets larger,
the risk of rupture increases. Aneurysms with a diameter between 4.0 to 4.9 cm are reported to
have 1.5% annual risk of rupture, whereas aneurysms between 5.0 to 5.9 cm have a 6.5% annual
risk of rupture. For larger aneurysms the annual risk of rupture rises markedly.

There are two treatment options for AAA open surgical repair (OR) and endovascular repair
(EVAR). OR is a highly invasive technique where a prosthesis is used to replace the bulged
and weakened section of the aorta in an open surgical intervention. In contrast, EVAR entails
the minimal invasive deployment of a stent-graft across the aneurysm through the iliac arteries
by means of a catheter. Each of the methods has its indication and distinctive advantages and
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disadvantages but both techniques are associated with significant mortal risk for the patient. In
the short term, 30-day mortality rates are clearly in favor of the EVAR treatment, with mortality
rates between 1.6 % and 1.2 % for endovascular repair and a mortality rate of 4.6% for OR
[129, 258], respectively. However, studies investigating long term effects question these benefits
[39, 130], as endovascular repairs require more secondary intervention due to endoleakage,
migration, or other graft-related complications. In any case, surgical intervention can not be
considered risk free and the risk associated with surgical intervention has to be balanced with
the risk of rupture.

To date clinicians mainly rely on statistical rupture risk indicators such as the diameter of the
AAA. Guidelines indicate 5.5 cm as threshold for surgical intervention [49]. From a mechanical
point of view, the diameter criterion can be interpreted as very crude mechanical model for the
wall stress within an AAA. Based on the law of Laplace, the wall stress in a cylindrical tube is
proportional to the radius, given constant wall thickness and pressure. Thus, the diameter can
be used as a proxy for the wall stress. Obviously, this very simple model does not provide good
estimates for the wall stress in complex patient-specific AAA geometries, nor can it account for
ILT.

Based on the notion that rupture of an aneurysm is a mechanical phenomenon that occurs if lo-
cal wall load exceeds the local wall strength, researchers have started to conceive more elaborate
models to predict wall loading in AAA. Specifically, computational finite element models have
been used to assess mechanical quantities such as wall stress. In several retrospective studies
AAA wall stress and other biomechanical factors, e.g., rupture risk indices [109, 340] have been
related to AAA rupture potential. Moreover, it has been shown that these biomechanical factors
are able to discriminate better than the diameter criterion between ruptured and non-ruptured
AAAs for diameter matched groups of ruptured and non-ruptured AAAs [100, 109, 203].

Most of the finite element models used to assess AAA rupture potential are based on a solid
mechanics approach. It is refrained from the term rupture risk in this context because the compu-
tational models typically do not provide a rupture risk in the stochastic sense, i.e., a probability
of rupture, but only a mechanical quantity which shows a statistical correlation to the risk of rup-
ture. Thereby, models have been gradually refined to include nonlinear materials, calcifications,
and anisotropic wall materials. Many of the models used to determine AAA rupture potential
are based on a stress measure or on stress divided by a wall strength. This quotient is frequently
referred to as rupture potential index or rupture risk index [109, 340]. However, there is still a
debate about the most suitable failure criterion for aneurysmatic arterial wall in literature. Strain
and strain-energy based failure models have been proposed in addition to stress based measures
[206, 345–347]. Other researchers strive to include growth and remodelling phenomena into
their models. Moving away from ”snap-shots” trying to capture the current mechanical state of
the aneurysm, computational growth and remodelling approaches aim at modelling the dynamic
mechanobiological process governing aneurysm formation, enlargement and eventually rupture
[10, 161, 185, 347].

In any case, all of the models mentioned above require a multitude of patient-specific param-
eters, not all of which are directly or non-invasively measurable. If computational simulation
models for AAAs are ever to be used in a clinical setting, these models obviously need to pro-
vide reliable predictions without requiring any additional invasive examinations to determine
patient-specific model parameters. Unfortunately, many of the patient-specific parameters, e.g.,
the arterial wall thickness, constitutive parameters, wall strength, and boundary conditions, vary
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significantly within and between patients. Thus, these parameters, although not truly random,
are not exactly known when the simulation has to be performed. This essentially raises two
questions, which this work attempts to answer, how to construct mathematical models for the
uncertainties present in the various model parameters, and second how to efficiently propagate
the uncertainties through the respective computational model.

1.2 Objectives and achievements
The goal of this work is the development of an efficient UQ framework which enables the
propagation of uncertainties through nonlinear, large-scale, and patient-specific models. An
additional challenge is the often very high stochastic dimension of the problems at hand in
these circumstances. Although a major requirement to the developed framework is its general
applicability, it is chiefly applied in this work to computational models of AAA as example
application of complex patient-specific biomechanical models. The computational assessment
of the mechanical state of AAAs is a particular suitable application because, the consequences
of faulty predictions can have fatal ramifications. Hence, the provision of confidence intervals of
all computed quantities or worst case estimates in face of parametric uncertainty is of paramount
importance.

On the most abstract level, two major objectives can be formulated for this work: The first is
the development of a methodological framework which allows the mathematical description of
uncertainties in various model input parameters and their efficient propagation through complex,
nonlinear models. The second is the application of this framework to exemplary model prob-
lems. Here, first and foremost computational models of AAAs are considered and the impact of
uncertain input parameters on the relevant output quantities is investigated. However, models of
the human lung are studied as well to demonstrate the general applicability of the framework.

Development of methods The challenge this work embarks on is the development of an
UQ framework which allows efficient UQ in combination with complex, nonlinear and large-
scale computational model and uncertainties which are best described by three-dimensional
non-Gaussian random fields. The term large-scale computational model is used here to imply
that the evaluation of these models requires a significant amount of computational resources,
i.e., the solution takes hours our days on multiple processors.

In order to obtain meaningful results in an UQ analysis, an accurate mathematical descrip-
tion of the input uncertainties is needed. Because the first envisaged application of the devel-
oped framework are finite element models of AAAs, an accurate mathematical model for the
input uncertainties in AAA models is needed. Therefore, a worldwide unique experimental
dataset is used to construct probabilistic models with varying degrees of sophistication capable
of capturing inter- as well as intra-patient variations of several parameters. Several probabilis-
tic models are constructed using, amongst others, Bayesian regression techniques harnessing
non-invasively assessable parameters from the dataset to obtain probabilistic, patient-specific
predictions for model input parameters such as wall thickness, constitutive parameters, and fail-
ure measures with unprecedented accuracy.

The second step in an UQ analysis is the propagation of the uncertainties through the com-
putational model. The development of an efficient framework for this task is one of the major
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objectives of this work. The typically high stochastic dimension resulting from a random field
description of the uncertain parameters render current non-sampling based UQ approaches in-
feasible. Moreover, the large nonlinear patient-specific finite element models prevent the use of
sampling based schemes as these often require an exuberant amount of model evaluations. Thus,
a framework based on a novel multi-fidelity UQ approach proposed by Koutsourelakis [183],
which is referred to as Bayesian multi-fidelity Monte Carlo (BMFMC), is developed. More
specifically, the approach incorporates information from approximate, low-fidelity models and,
in combination with Bayesian formulations, is able to alleviate the computational burden that is
posed even by advanced sampling based UQ methods. The use of a non-parametric Bayesian
regression model allows to not only establish a quantitative connection between an approxi-
mate model and an accurate and expensive high-fidelity model, but also provides confidence
intervals. Using this approach the cost of UQ for models with high-stochastic dimension can
be significantly reduced, rendering UQ on a patient-specific basis possible also in clinical sce-
narios. Thereby, it is important to note that the proposed approach provides not only the first
moments of the response, but also an estimate of the full probability distribution. In addition to
the use of low-fidelity models, parameter continuation approaches are developed to exploit the
problem structure of repeated forward model evaluations in order to further improve the overall
efficiency of the UQ scheme.

Biomedical applications To demonstrate the capabilities and flexibility of the developed
UQ framework, the multi-fidelity approach is applied to a range of challenging problems in-
cluding patient-specific nonlinear finite element models of AAAs and reduced order models
of the human lung. It is shown that the computational cost for UQ in patient-specific models
can be reduced to the equivalent of only a moderate number of runs of the high-fidelity model.
Furthermore, the developed framework speeds up the computation such that results can be ob-
tained within one day even for large forward models. However, the purpose and variety of the
considered example goes beyond mere demonstrative purposes. To the knowledge of the au-
thor, this is the first time that patient-specific AAA models are investigated while accounting for
uncertainty in the parameters through three-dimensional random fields. The impact of several
different parameters on mechanical quantities typically related to AAA rupture risk is investi-
gated. Moreover, different probabilistic models are compared, e.g, in case of the wall thickness,
where wall thickness models based on random fields are compared with a wall thickness model
based on random variable.

1.3 Organization of this thesis
This thesis begins with a short summary of computational mechanics in Chapter 2. All as-
pects of relevance for the setup of computational solid mechanics models of AAAs are covered.
Specifically, the basics of nonlinear continuum mechanics including hyper-elastic constitutive
laws, finite element discretization schemes, and solution schemes for linear and nonlinear sys-
tems of equations are discussed. In addition, a method to account for prestressed cardiovascular
structures is introduced.

The rather brief introduction to the fundamentals of the computational mechanics is followed
by a more detailed introduction to probability theory and Bayesian statistics in Chapter 3. Since
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the present thesis is the first work at the Institute for Computational Mechanics that deals with
UQ, which requires a fair amount of probability theory, this Chapter provides an explanation
of the relevant concepts of probability theory and Bayesian inference. First, the concepts of
random variables and random processes are elaborated. Thereby, a special focus lies on the
concept of Gaussian processes (GPs) and their unique properties, because extensive use of GPs
is made throughout this work for various tasks. Most importantly, they from the underlying
basis for many of the probabilistic models used for uncertain model input parameters in this
work. Secondly, GPs are extensively used in this work for the purpose of regression. The
description of the regression techniques used in this work comprise the second part of this
Chapter. Here, the Bayesian interpretation of linear regression is provided before two more
elaborate, non-parametric Bayesian techniques are explained.

Aside from providing the reader with a brief problem description and introduction to model
based UQ, Chapter 4 is essentially a mixture between a literature review of existing, well known
UQ methods and their limitations regarding applicability to large-scale nonlinear problems with
high stochastic dimension, and a description of UQ techniques that are also used in this work.
Sampling based UQ approaches like Monte Carlo (MC) and more advanced sampling based
schemes are introduced, before some classic reliability and second order methods are briefly
reviewed. Next, two particularly popular examples from the class of surrogate based UQ tech-
niques are explained. Since GP based models are used in this work for low-dimensional UQ
problems, greater emphasis is put on this methodology. Polynomial Chaos expansion (PCE)
based approaches, being the second covered class of surrogate techniques, are also mentioned
here because they are very popular in the engineering community and are frequently used to
construct surrogate models for the purpose of UQ. The differences to the GP approach used
in this work are discussed and PCE based surrogates are contemplated from a more statistical
viewpoint.

After some general remarks on using models with different levels of fidelity, Chapter 5 con-
tains a description of the developed BMFMC UQ framework, which allows the incorporation
of information from low-fidelity model versions of the system under investigation to speed up
the computation of the relevant statistical summaries. The details on how to compute high-
fidelity solution statistics are followed by some remarks on the efficient implementation of the
approach using nested parallelism and a parameter continuation scheme. Moreover, the relation
to other multi-fidelity approaches, which have been recently proposed in literature, is discussed
to provide some perspective.

Chapter 6, which is largely based on [33], deals with the construction of suitable probabilis-
tic models for several mechanical parameters of the AAA wall. A brief review of mechanical
modelling of aneurysmatic arterial wall is given before the implications of random variable and
random field models are discussed. This is followed by a description of the developed tech-
niques for the probabilistic prediction of mechanical wall parameters. These predictions can
be either based on direct study population measurements of these parameters or on probabilis-
tic predictions using additional non-invasively assessable explanatory variables in combination
with Bayesian regression approaches. Furthermore, the extraction of suitable probabilistic mod-
els for several mechanical wall parameters from a large experimental dataset is described and
the predictive capabilities of several techniques are compared.

In Chapter 7 the results from the previous Chapter are used to set up realistic stochastic
models of AAAs. The uncertainties in the model input parameters are propagated through the
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finite element models and the impact on mechanical output quantities such as wall stress, strain,
or strain-energy is studied for several patient-specific AAA geometries. Thereby, Chapter 7
documents the application and performance of the developed BMFMC approach. As a first step
towards fully probabilistic models of AAAs, models with uncertainties in wall thickness or one
constitutive parameter are studied. However, as these parameters are modelled by random fields,
the stochastic dimension of the considered problems is very high. In addition, it is demonstrated
that the BMFMC approach can also handle problems with more than one random field in a proof
of concept fashion. This chapter is based, in parts, on [32].

To show that the proposed framework is indeed very general and not limited to models of
AAAs or only applicable to solid mechanics problems, the framework is used to perform UQ in
combination with a reduced order model of the human lung in Chapter 8.

Chapter 9 provides the conclusion of this thesis and summarizes the most important results of
the present work, ongoing work, and open questions. Also, some directions for future research
are provided.
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2 Computational solid mechanics
This chapter contains a brief summary of the fundamentals of nonlinear continuum mechanics,
a description of the initial boundary value problem of nonlinear solid mechanics, and a short
section about the corresponding finite element formulations and solution approaches for nonlin-
ear systems of equations. In addition, a technique to account for prestress in structures such as
AAAs is briefly explained. The chapter is by no means meant to be a thorough introduction to
these topics, but merely presents the necessary armamentarium for the problems and examples
considered in the following chapters of this thesis.

The number of different approaches one can take to briefly summarize the fundamental prin-
ciples and to introduce all necessary quantities is limited, as the material itself dictates a more or
less strict path. In the opinion of the author the approach taken by Popp [255] is well structured
and sufficiently comprehensive, and hence the outline of this chapter follows the corresponding
one in [255]. An abundant amount of literature exists, offering a more in depth treatment of
both subjects. The reader is referred to, e.g., [43, 155, 207, 237] for an introduction to nonlin-
ear solid mechanics and to, e.g., [159, 186, 363, 374] for a more detailed description of finite
element solution schemes, respectively.

2.1 Nonlinear solid mechanics

2.1.1 Kinematics
The structures investigated in this work exhibit geometric as well as constitutive nonlinearities
and thus have to be described using nonlinear continuum mechanics. Throughout this work it is
assumed that the structure under consideration undergoes only elastic deformation. The follow-
ing description is thus restricted to elastic deformations. In addition, a restriction to cartesian
coordinates is made. The starting point is the definition of an bijective nonlinear deformation
map �

t

which describes the deformation and motion of the body from an undeformed reference
configurations ⌦

0

⇢ R3 to a deformed spatial configuration ⌦
t

⇢ R3

�

t

(X) =

(

⌦

0

! ⌦

t

X ! x = �

t

(X, t).
(2.1)

Therein, the coordinates of all points in the reference configuration at t = 0 are denoted by X

and the changed positions at a generic time t are denoted by x. The two tensors are connected
via the displacement field u, defined by

x(X, t) = X + u(X, t). (2.2)

The partial derivative of the current position vector field with respect to the reference coordinates
is defined as deformation gradient F , which serves as a fundamental measure for deformation
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2 Computational solid mechanics

and strain
F =

@x(X, t)

@X
= I +

@u(X, t)

@X
. (2.3)

Here, I denotes the second-order identity tensor. The definition of a mapping between an in-
finitesimal line element dX in the reference configuration to the corresponding line element dx

in the current configuration, is the geometric interpretation of the deformation gradient F

dx = FdX. (2.4)

Based on the assumption that the deformation is bijective and smooth, the inverse mapping of
this so called push-forward operation can be obtained

dX = F

�1

dx, (2.5)

where F�1 is the inverse of the deformation gradient F�1

=

@X

@x

. The reverse mapping is gener-
ally referred to as pull-back operation. Moreover, the Jacobian determinant of the deformation
is defined as:

J = det(F ) > 0. (2.6)

Due to the bijectivity and smoothness of the deformation, the determinant of the deformation
gradient is always positive. The Jacobian can be used to define push-forward and pull-back
operations for infinitesimal volume elements

dV = detFdV
0

= JdV
0

, (2.7)

where dV
0

and dV denote the volumes of an infinitesimal volume element in the reference
configuration and current configuration, respectively. The push-forward operation for an in-
finitesimal area element is given by the following equation

dA = JF�T

dA
0

, (2.8)

which is typically referred to as Nanson’s formula. These relations can easily be obtained from
the definition of deformation gradient.

Based on the deformation gradient, several objective measures of deformation and strain can
be derived. Thereby, objective means that the measure is invariant under any superimposed rigid
body motion. First, the right Cauchy-Green tensor is defined as

C = F

T

F . (2.9)

On the basis of C, the so-called Green-Lagrange strain tensor can be computed using

E =

1

2

(C � 1). (2.10)

The symmetric Green-Lagrange strain tensor is a widely used strain measure in nonlinear con-
tinuum mechanics. Both, the right Cauchy-Green and the Green-Lagrange tensor are defined in
the reference configuration. Deformation measures which are related to the spatial configuration
can also be derived based the deformation gradient F . Using the left Cauchy-Green deformation
tensor b, which is defined as

b = FF

T , (2.11)

12



2.1 Nonlinear solid mechanics

the Euler-Almansi strain tensor can be calculated by

e =

1

2

�

1 � b

�1

�

. (2.12)

Similar to the Green-Lagrange strain tensor, the Euler-Almansi strains tensor is an objective
measure for finite strains. In contrast to the Green-Lagrange strains, the Euler-Almansi strain
tensor is defined with respect to the spatial configuration. Both tensors share the same so-called
principal invariants, which are often used for the formulation of nonlinear constitutive laws.
The three invariants I

1

, I
2

, and I
3

are defined as follows:

I
1

= I
1

(C) = I
1

(b) = trC, (2.13)

I
2

= I
2

(C) = I
2

(b) =

1

2

⇥

(trC)

2 � tr(C2

)

⇤

, (2.14)

I
3

= I
3

(C) = I
3

(b) = detC = J2. (2.15)

For the formulation of nonlinear constitutive laws it is sometimes helpful to split the de-
formation into a volumetric (volume-changing) part and an isochoric (volume-preserving) part
[155, 237]. To achieve this separation of volumetric and isochoric deformation, a multiplicative
split of the deformation gradient is performed

F = Fvol ¯

F , (2.16)

therein Fvol = J
1

3

I denotes the volumetric part and ¯

F = J� 1

3

F the isochoric part of the
deformation gradient, respectively. Since the isochoric part is volume preserving:

¯J = det

¯

F = 1. (2.17)

Naturally, isochoric and volumetric parts of other deformation measures can be computed as
well. For instance, the right Cauchy-Green tensor can be decomposed into

C = Cvol ¯

C, (2.18)

with volumetric (Cvol) and isochoric ( ¯

C) part defined as

Cvol = J
2

3

I and ¯

C = J� 2

3

C. (2.19)

Based on ¯

C the so-called modified invariants can be computed

¯I
1

= J� 2

3 I
1

, ¯I
2

= J� 4

3 I
2

, ¯I
3

= det

¯

C = 1. (2.20)

Note that by definition, ¯I
3

is always equal to one since the isochoric part of the deformation is
volume preserving.
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2 Computational solid mechanics

2.1.2 Stress measures
Deformation of an elastic body results in internal stresses, which are a measured in the physical
unit of force per unit area. Several stress measures exist since the acting force as well as the
area can be defined in either the current or the reference configuration. The starting point in the
current configuration is the definition of a traction vector t(x,n, t), which is defined as the limit
of a resulting force f acting on a surface element �A with unit outward normal vector n

t(x,n, t) = lim

�a!0

�f

�A
=

df

da
. (2.21)

Then, Cauchy’s stress theorem postulates the existence of a unique second order tensor field,
the so-called Cauchy stress tensor as follows

t = � · n. (2.22)

The Cauchy stress tensor � is defined in the a priori unknown deformed, current configuration
and can be interpreted as true internal stress, in the sense of a spatial acting force f per unit
surface area in the current configuration. The Cauchy stress tensor is symmetric and admits
the interpretation of its diagonal terms as normal stresses and of its off-diagonal terms as shear
stresses. Using the previously defined pull-pack operations for line and surface elements, one
can derive two other common stress measures, namely the first and second Piola-Kirchhoff
stress tensor. In contrast to the Cauchy stress, which relates spatial acting force to unit surface
area in the current configuration, the unsymmetric first Piola-Kirchhoff stress tensor P relates
the spatial acting force to a surface element in the reference configuration. It is obtained from
the Cauchy stress tensor by applying Nanson’s formula, i.e., (2.8), yielding

P = J�F�T . (2.23)

If, in addition, the force f is pulled back into the reference configuration using (2.4), the second
Piola-Kirchhoff stress tensor S is obtained

S = JF�1

�F

�T . (2.24)

Like the Cauchy stress tensor, the second Piola-Kirchhoff tensor is symmetric. In contrast, it
lacks the clear engineering interpretation of � due to the performed pull-back operations. How-
ever, it is often very useful in computational mechanics and frequently used for the formulation
of constitutive laws for solids. Various strain and stress measures exist; however, they cannot
be combined in an arbitrary fashion, but so-called energy-conjugate pairs of strain and stress
measures have to be used [43], meaning that they deliver identical strain-energies and virtual
works. For the stress and strain measures introduced so far, the following pairs arise: {S,E},
{P ,F }, and {�, e}.

2.1.3 Constitutive laws for nonlinear elasticity
Having introduced strain as a measure for deformation and stress, the constitutive law pro-
vides the missing link between the two. For purely elastic deformation, the constitutive law
allows the calculation of the stress tensor solely based on the current deformation state of the
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2.1 Nonlinear solid mechanics

solid body. Restricting considerations to hyper-elastic materials, the stress tensor can be de-
rived from a scalar potential function  , which is called strain-energy function (SEF). Using
Green-Lagrange strains and the energy-conjugate second Piola-Kirchhoff stresses, the typically
nonlinear relationship between strain and stress is defined by

S =

@ 

@E
= 2

@ 

@C
. (2.25)

Of course, this relationship can be formulated for other energy-conjugate pairs of strains and
stresses as well [155].

During the course of a computational solution of the initial boundary value problem, which
will be defined in Section 2.1.4, a linearized constitutive equation is required. For this, one
needs the fourth oder elasticity tensor C, which can be computed using

C =

@2 

@E@E
= 4

@2 

@C@C
. (2.26)

For isotropic materials the strain energy function can equivalently be expressed in terms of the
first three invariants of C, as defined in (2.14)

 =  (I
1

(C), I
2

(C), I
3

(C)). (2.27)

In case of anisotropic materials, additional invariants have to be considered. Based on the split
of the deformation into an isochoric and a volumetric part, it is also possible to formulate con-
stitutive laws where isochoric and volumetric contributions are decoupled [43, 237, 304]. This
split of the constitutive laws allows for a separate treatment of bulk and shear stiffness of the
solid. Moreover, this split is often employed to model nearly incompressible solids. The term
nearly incompressible is used here for materials which are, in fact, incompressible; however,
their numerical treatment is facilitated if the incompressibility condition is slightly relaxed and
small volumetric deformations are admissible [43]. In this work, nearly incompressible formu-
lations are used to model the constitutive behaviour of soft biological tissue, which is generally
considered to be incompressible. Using the modified invariants computed from ¯

C, the strain-
energy is split in two parts

 (

¯I
1

, ¯I
2

, J) =  

iso

(

¯I
1

, ¯I
2

) + 

vol

(J). (2.28)

Dependence on ¯I
3

is omitted, since it is always equal to one by definition and thus does not
contribute to the strain-energy. In case of heterogenous materials, the strain energy function
may, in addition to C or the invariants, also depend on the location in the solid, i.e.,  (C,X).
In order to constitute a valid strain-energy function and thus constitutive law,  must fulfill
several conditions. Firstly, the stored strain-energy must be positive for any deformation state.
Under the assumption that there are no residual stresses, i.e., that the reference configuration is
stress free, the strain-energy function at C = I has to fulfill  (C = I) = 0. Moreover, the
SEF has to be objective, meaning that the SEF must be independent from any superimposed
rigid body translations or rotations. Lastly, the functional form of the SEF has to be such that
it fulfills what is generally referred to as polyconvexity. See, e.g., [24, 207] for an in depth
discussion of this subject.
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2.1.4 Initial boundary value problem
Having introduced the basic notation for kinematics, stresses, and constitutive laws in the previ-
ous section, this section introduces the initial boundary value problem (IBVP) for solid mechan-
ics, which arises as a consequence of the balance equations for linear and angular momentum,
mechanical energy, and conservation of mass. Since growth and remodeling processes or ma-
terial degradation are not considered in this work, conservation of mass is always fulfilled and
hence will not be further dwelled upon. Moreover, the balance of mechanical energy reduces
to a consequence of the balance of linear momentum for purely mechanical systems, in other
words, no other kind of energy such as thermal or electrical energy is taken into consideration.
Thus, the balance of mechanical energy does not provide extra information in addition to the
balance of linear momentum. The balance of linear momentum requires that the time derivative
of linear momentum equals the sum of all external forces which act on the body. Similarly, the
balance of angular momentum requires that the time derivative of the angular momentum with
respect to a fixed point is equal to the sum of all external moments. Together with a set of initial
and boundary conditions, the consequence of the balance of linear momentum comprises the
IBVP, i.e., a set of coupled second-order partial differential equations (PDEs). These are given
in the following with respect to the reference configuration; a formulation in spatial description
can be derived as well. Note that the balance of angular momentum is automatically fulfilled by
demanding symmetry of the stress tensor. The boundary @⌦

0

of the domain ⌦
0

is divided into
two disjoint sets, �

u

and �
�

. Thereby �
�

denotes the Neumann boundary on which tractions ˆ

t

0

are prescribed. The other part represents the Dirichlet boundary where the displacements ˆ

u are
prescribed

�

u

[ �
�

= @⌦
0

and �

u

\ �
�

= ;. (2.29)

The IBVP for nonlinear solid mechanic then reads:

Div(F · S) +

ˆ

b

0

= ⇢
0

¨

u in ⌦

0

⇥ [0, T ], (2.30)
u =

ˆ

u on �

u

⇥ [0, T ], (2.31)

P · N =

ˆ

t

0

on �

�

⇥ [0, T ]. (2.32)

Where Div is the material divergence operator, the vector ˆ

b

0

defines the body force, and ⇢
0

denotes the density in the reference configuration. Moreover, T denotes the endpoint of the
considered time interval. In addition to the boundary conditions defined in (2.31) and (2.32),
initial conditions have to be specified as well

u(X, 0) =

ˆ

u

0

in ⌦
0

, (2.33)

˙

u(X, 0) =

ˆ

˙

u

0

in ⌦
0

. (2.34)

In the equations above ˙

u(X, t) and ¨

u(X, t) denote the first and second material time derivates
of the displacements u(X, t), respectively. After choosing an appropriate constitutive law for
the problem at hand, the definition of the IBVP is complete. The solution of this IBVP requires
numerical approaches since a general analytic solution to this problem cannot be obtained. Only
very few special cases admit an analytic solution; typically elementary geometries under addi-
tional restrictions regarding boundary conditions and constitutive law. The IBVP as given above
is referred to as the strong form of the IBVP, since a point wise fulfillment of the balance of lin-
ear momentum is required. Using the method of weighted residuals, an alternative formulation
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2.2 Finite element formulations and solution schemes

of the IBVP, the so-called weak form, can be derived. This weak form defines the starting point
for the finite element methods, which allow a numerical treatment and solution of the problem.

2.2 Finite element formulations and solution schemes
While the strong form requires fulfillment of (2.30) to (2.32), an equivalent demand is that the
weighted residual of these equations are zero. Choosing arbitrary weighting functions w and
integrating the residuals over the respective domains yields

Z

⌦

0

(Div(F · S) +

ˆ

b

0

� ⇢
0

¨

u) · w dV
0

+

Z

�

�

ˆ

t

0

� (P · N ) · w dA
0

= 0. (2.35)

Moreover, in order to fulfill the Dirichlet boundary conditions one has to ask for

w = 0 on �
u

⇥ [0, T ]. (2.36)

Applying the Gauss divergence theorem yields
Z

⌦

0

(Gradw)

T

: (F ·S) dV
0

�
Z

⌦

0

ˆ

b

0

·w dV
0

�
Z

⌦

0

⇢
0

ü ·w dV
0

�
Z

�

�

ˆ

t

0

·w dA
0

= 0, (2.37)

which denotes the weak form of the IBVP. Therein, Grad is the material gradient operator.
It is important to note that the restatement of the IBVP above is completely equivalent to the

strong form given in (2.30) and (2.32) if arbitrary weighting functions are admissible [159]. It is
referred to as weak form because it poses weaker differentiability requirements to the solution
functions u, since only the first derivative of u with respect to X appears in (2.37), instead of
the second as in (2.30). The weak form can be identified as the Principle of Virtual Work (PVW)
if the weight functions are interpreted as virtual displacements. Replacing w with �u in (2.37)
yields

�W =

Z

⌦

0

(Grad�u)

T

: (F · S) dV
0

�
Z

⌦

0

ˆ

b

0

· �udV
0

�
Z

⌦

0

⇢
0

ü · �udV
0

�
Z

�

�

ˆ

t

0

· �udA
0

= 0.

(2.38)

Algebraic rearrangement allows the clear identification of three work contributions comprising
the virtual work

�W =

Z

⌦

o

⇢
0

ü · �u dV
0

| {z }

��Wkin

+

Z

⌦

0

S : �E dV
0

| {z }

��Wint

�
Z

⌦

ˆ

b

0

· �u dV
0

�
Z

�

�

ˆ

t · �u dA
0

| {z }

��Wext

= 0, (2.39)

namely the kinetic virtual work contribution �Wkin, the internal virtual work contribution �Wint,
and the virtual work contribution of the external loads �Wext. While the problems in this work ex-
hibit hyper-elastic behavior and only conservative external loads are considered, it is important
to stress that at no point in the derivation of the weak form an assumption regarding constitutive
law or external loads was made. Thus, the PVW is a very general principle and can be applied
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even in the context of non-conservative external loads and non-elastic deformations. Based on
the highest appearing derivative in the weak form, the function spaces for the solution functions
u and the weight functions �u are chosen to be:

U ={u 2 H1

(⌦)| u(X, t) =

ˆ

u(X, t) on �
u

}, (2.40)
V ={�u 2 H1

(⌦)| �u(X) = 0 on �
u

}. (2.41)

Here H1 denotes the first order Sobolev space of square-integrable functions and square-integrable
first derivatives. Based on the definitions above, the IBVP can be restated in an abstract fashion
as

Find u 2 U such that �W = 0 8 �u 2 V. (2.42)

As mentioned above, as long as the admissible functions of u and �u are not further restricted,
the weak form is equivalent to the strong form and still does not admit a general solution. It is
the restriction of admissible functions to finite dimensional subspaces Uh for u and Vh for �u
which defines the approximative step in the derivation of the finite element method. At the same
time it is this step that enables a numerical solution of the IBVP at hand.

2.2.1 Discretization in space and time
In practice, the abstract notion of restricting the function space translates to a finite element
discretization of the spatial domain ⌦

0

, the solution u, and the weight functions �u. Simply
speaking, it entails an approximate partition of the domain into geometrical primitives called
elements, which are connected to each other at discrete points, referred to as nodes. Then,
instead of seeking a continuos solution of the IBVP on the continuous domain ⌦

0

, one tries to
find an approximate solution at these nodes and uses a local interpolation scheme between those
nodes to obtain a solution throughout the domain. Therefore, the domain ⌦

0

is subdivided into
Nele non-overlapping subdomains

⌦

0

⇡
N

nele

[

e=1

⌦

(e)

0

. (2.43)

Based on these elements, which are connected at the nodes, a local interpolation scheme for the
solution is devised, often on the basis of low order Lagrange polynomials. In the context of finite
elements, the used polynomials are generally referred to as shape-functions. The displacement
within an element can then be written as

u

(e)

(X, t) ⇡ u

(e)

h

(X, t) =

N

(e)

nodes

X

k=1

N
k

(X)d

k

(t). (2.44)

Where the vector d
k

(t) contains the nodal displacements, which are still continuous in time.
Alternatively, all shape functions of an element can be arranged in matrix form and (2.44) can
be rewritten as matrix vector product

u

(e)

h

(X, t) =

N

(e)

nodes

X

k=1

N
k

(X)d

k

(t) = N (X)d

(e)

(t), (2.45)
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where the vector d(e)

(t) contains the nodal displacements of all nodes belonging to a particular
element e. Analogous, the same ansatz can be made for the virtual displacements

�u(e)

(X, t) ⇡ u

(e)

h

(X, t) =

N

(e)

nodes

X

k=1

N
k

(X)�d
k

(t) = N (X)�d(e)

(t), (2.46)

where �d
k

(t) denotes the vector of virtual nodal displacements. Using the same ansatz for
both the displacements and the virtual displacements (or more generally weighting functions),
is referred to as Bubnov-Galerkin method, which is the predominant choice for finite elements
in solid mechanics. If different shape functions are used for the displacements and their virtual
counterparts, the discretization scheme is referred to as Petrov-Galerkin method. While other
approaches are also conceivable, the so-called isoparametric concept is employed in this work,
meaning that the ansatz functions used for the displacements are also used to approximate the
geometry in reference X and current configuration x.

The main purpose is to map an element to a simple undistorted reference geometry or pa-
rameter space described by ⇠ = (⇠, ⌘, ⇣), which facilitates, e.g., numerical integration of the
weak form. Of course, the change of coordinate system must be accounted for by using the
determinant of the element’s Jacobian matrix

J

(e)

=

@X(e)

@⇠
. (2.47)

Following the isoparametric concept, displacements, current geometry, and reference geometry
can be written as

u

(e)

h

(⇠, t) = N (⇠)d

(e)

(t), (2.48)

x

(e)

h

(⇠, t) = N (⇠)x

(e)

(t), (2.49)

X

(e)

h

(⇠) = N (⇠)X

(e)

. (2.50)

Here, X(e) and ¯

x

(e)

(t) are the nodal position in reference and current configuration, respectively.
Moreover, based on geometrical shape, number of nodes, and chosen interpolation functions a
wide range of different elements can be formulated. The finite element models considered in
this work are typically discretized with 3D elements based on low order Lagrange polynomi-
als. Examples include 8-noded hexahedral elements (hex8), 6-noded wedge-shaped elements
(wedge6), and 4-noded tetrahedral elements (tet4). Depending on the complexity of the model
geometry, it can be advantageous to use multiple types of elements within one model. Further
description of the construction of shape-functions and different element types is given in the
respective literature, e.g., [159, 374]. Due to the non-overlapping partition and the local inter-
polation scheme, the integral over the domain ⌦

0

in the weak form can be subdivided into a sum
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of integrals over the individual element domains.

�W =

N

ele

X

e=1



�d
(e)T

h

⇢

Z

⌦

e

N

T⇢
0

NdV
0

| {z }

elem. mass matrix M

(e)

d̈

(e)

+

Z

⌦

e

✓

@E(d

(e)

)

@d(e)

◆

T

S(d

(e)

)dV
0

| {z }

elem. int. force vector f

int,(e)

�
Z

⌦

e

N

T

ˆ

b

0

dV
0

�
Z

�

�

N

T

ˆ

t

0

dA
0

| {z }

elem. ext. force vector f

ext,(e)

��

(e)

= 0

(2.51)

Based on the above definition of element mass matrix m

(e), element internal force vector f int,(e),
and element external force vector f ext,(e), the discretized version of the weak form can be written
as

�W =

N

numele

X

e=1



�d(e), T

⇢

M

(e)

d̈

(e)

+ f

int,(e)

(d

(e)

) � f

ext,(e)

(d

(e)

)

��

= 0. (2.52)

Since the displacements are required to be C0 continuous through (2.41) and the elements are
connected at the nodes, adjacent elements can contribute to the same nodal displacement. The
process of sorting the contribution of the elements into a single global system of equations is

referred to as assembly which is denoted by the operator
N

ele

A
e=1

. The assembly of the discretized
weak form

numele

A
e=1



�d(e)T

⇢

M

(e)

d̈

(e)

+ f

int,(e)

(d

(e)

) � f

ext,(e)

(d

(e)

)

��

= 0, (2.53)

leads to a global, semi-discrete system of nonlinear equations

�dT{M ¨

d + f

int

(d) � f

ext

(d)} = 0. (2.54)

Here, the vector d denotes the global vector of nodal displacements and ¨

d denotes its second
time derivative. Since (2.54) must hold for arbitrary virtual nodal displacements, the term in the
braces, i.e., the residuum, has to vanish

r(d) = M

¨

d + f

int

(d) � f

ext

(d, t) = 0. (2.55)

For the sake of completeness, it is noted that (2.55) can be extended to consider damping as well.
While the system of equations is discrete in space, it is still continuous in time. Usually this is
the point where a time-discretization based on a finite difference scheme is introduced. Many
different approaches for this task have been proposed in the literature, see, e.g., Belytschko et al.
[29] for an overview. However, since all solid mechanics problems considered in this work are
quasi-static, time dependence and inertia terms are neglected from this point forward. Without
dependence on time, the discrete system of nonlinear equations simplifies to

r(d) = f

int

(d) � f

ext

(d) = 0. (2.56)

In the vast majority of cases, this system of nonlinear equations cannot be directly solved with
an iterative solution method, like the Newton-Raphson method. The Newton-Raphson method
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j

load
factor �

d
j,k+1

�
k+1

�
k

incrementation
load

displacement

Figure 2.1 Load-displacement diagram

requires an ”good” initial iterate in order to converge. Therefore, the nonlinear equations are
usually solved for a certain number of incremental load levels, where the solution of one load
level provides a reasonable initial iterate for the next one, thus allowing for an efficient iter-
ative solution using a Newton-Raphson scheme. Before a more detailed explanation of the
Newton-Raphson solution scheme is given, the employed load incrementation procedure will
be explained briefly. Instead of applying the full external load at once, a load factor � is intro-
duced, which enables an incremental increase of the external load

f

ext

�

= �f ext. (2.57)

A visualization of the described incrementation procedure is given in Figure 2.1. As mentioned
before, each incremental step requires an iterative solution to achieve equilibrium at the cur-
rent load level. In certain circumstances other incrementation procedures, such as displacement
controlled or so-called arc-length controlled schemes might be better choices, see [70, 270] for
details. However, for the problems considered in this work, the simple load controlled scheme is
sufficient. For a given load step k the system of algebraic equations for static equilibrium has to
be solved for f ext

�

k+1

to obtain the displacements d
k+1

, i.e., the root of the residual in (2.56) has to
be found. This is done using the Newton-Raphson method. Based on the directional derivative
of the residual function at a certain starting point, the root of the function is approximated by
computing the root of the linearized function, which entails solving a linear system of equa-
tions. The obtained approximation is then the starting point for the next step. The procedure is
repeated until a convergence criterion is met, e.g., the L2-norm of the residual is smaller then
a certain threshold

�

�

r(d

i

k+1

)

�

� < tol. Based on a first order Taylor expansion around d

i

k+1

, the
linearization of (2.56) is

˜

r = r(d

i

k+1

) +

@r(d)

@d

�

�

�

�

d

i

k+1

| {z }

K

T

�d

i+1

k+1

= r(d

i

k+1

) + K

T

�d

i+1

k+1

. (2.58)

The so-called effective tangential stiffness matrix K

T

contains contributions from the lineariza-
tion of internal and external forces. The root of the linearized residual can be computed by
solving a linear system of equations

K

T

�d

i+1

k+1

= �r(d

i

k+1

), (2.59)
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and updating the displacements according to:

d

i+1

k+1

= d

i

k+1

+�d

i+1

k+1

. (2.60)

After the convergence criterion is met, the procedure is repeated for the following load steps.
During the course of a nonlinear finite element solution scheme, linear systems, as the one

given above, have to be solved repeatedly. Moreover, for large finite element models the re-
peated solution of these linear systems account for the bulk of the overall computational costs.
Thus, efficient solution techniques for linear systems are of pivotal importance. Depending on
system size and the matrix’ properties, many different direct or iterative approaches for the solu-
tion of large linear systems are available [263, 283]. For all large models and resulting large lin-
ear systems considered in this work, iterative solution techniques based on the generalized min-
imal residual (GMRES) [283] method are employed. The method is used in combination with
the multilevel preconditioner ML [110], which is integrated in the AztecOO iterative package
[152]. ML and AztecOO are part of the collection of open source software libraries called Trili-
nos, which are developed and maintained by the Sandia National Laboratories [153]. Another
Trilinos package, AMESOS, also provides an interface to direct solvers, such as UMFPACK
[72], which is used for the treatment of the smaller numerical models in this work. All finite el-
ement simulations in this work were conducted using the parallel in-house research code BACI,
which is jointly developed at the Institute for Computational Mechanics and the Mechanics and
High-Performance Computing Group at Technische Universität München [350]. The C++ code
BACI heavily relies on many of the open-source libraries of the Trilinos Project, including the
linear solver packages.

2.2.2 Treatment of prestressed structures
When creating patient-specific finite element models of cardiovascular structures such as AAAs
from segmented CT image data, it is important to account for the prestressed imaged state. The
vessel walls are subject to intraluminal pressure, exerted by the blood within the lumen of the
vessels. Hence, the imaged geometry is in equilibrium with the intraluminal pressure load and
is not stress free. Several approaches have been proposed in to either identify the stress free
geometry, or to imprint a so-called prestress or prestrain in the current, imaged configuration
[74, 111, 112, 197, 355]. In this work an approach based on a modified updated Lagrangian
formulation (MULF) proposed by Gee et al. [111, 112] is used to imprint stresses. If the loads
corresponding to the prestressed state are known, the MULF scheme can be used to imprint a
deformation gradient which accounts for the prestress without changing the geometry. Based on
the works of Gee et al. [111, 112], the basic steps of the MULF scheme are briefly summarized
below.

Starting point is a known spatial configuration ⌦
t

with a known coordinate vector field x

t

.
The configuration ⌦

t

is not stress free and the reference geometry is not known. The goal is
to compute an approximation to the stress state of the configuration ⌦

t

, given some known
external loads ˆ

t

t

. In this work, the spatial configuration is obtained from CT scans of AAAs and
the blood is assumed to act on the arterial wall as pressure load.

The MULF scheme is based on a multiplicative split of the deformation gradient F
tot

into
two parts

F

tot

= F

u

F

pre

, (2.61)
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corresponding to a share F
u

resulting from deformation and a part F
pre

accounting for prestress,
respectively. The increase of S(F

tot

) caused by F

pre

is called prestress. The MULF scheme is
used to approximate F

pre

attributed to the applied loads ˆ

t

t

, using an incremental update of the
loads while keeping x

t

fixed.
Consider two neighboring configurations ⌦

n

with x

h

n

and ⌦
n+1

where x

h

n+1

= x

h

n

+�x

h

n+1

and the corresponding deformation gradients are F

n

and F

n+1

. Moreover, let �F

n+1

describe
the mapping between the configuration ⌦

n

and the following configuration ⌦
n+1

which can be
computed using

�F

n+1

= I + N

,⇠

J

�1

t

�x

h

n+1

, (2.62)

with the identity tensor I , the derivatives of the shape functions with respect to the element
coordinates N

,⇠

, and the inverse of the Jacobian J

�1

n

. By setting the residual in (2.58) to zero,
�x

h

n+1

can be calculated. In addition, all other quantities that are required for the calculation
of �F

n+1

, i.e., N
,⇠

and J

�1

t

, can be determined without knowledge of x
n

. Using �F

n+1

, J�1

n+1

can be computed as well
J

�1

n+1

= J

�1

n

�F

�1

n+1

(2.63)

The total deformation gradient can then be computed using

F

n+1

= �F

n+1

F

n

, (2.64)

without knowledge of the reference configuration, or x

n

. During the course of a standard
simulation scheme starting from ⌦

0

, the current configuration would be updated by setting
x

h

n+1

= x

h

n

+ �x

h

n+1

before repeating the steps (2.62) to (2.64). In the MULF scheme this
update step is omitted,�x

h

n+1

is simply set to zero, and ⌦
n+1

is set to ⌦
n

. This way, raising the
external load incrementally, F

pre

can be successively build up repeating the updates in (2.62) to
(2.64) until the desired external load ˆ

t

t

is reached. Now, S(F

pre

) provides an approximation to
the desired prestressed state [112]. If further calculations from this point on are necessary, the
prestressed state of the model can be considered in standard nonlinear finite element solution
schemes simply by setting

F

tot

= F

u

F

pre

, (2.65)

where F

u

is determined as usual, using (2.3).
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3 Probability theory and Bayesian
statistics

The understanding of the methods described and developed in this work require a fair amount
probability theory and hence, this chapter aims at introducing the aspects of probability theory
that are relevant to this work. For a more extensive introduction to probability theory the reader
is referred to the textbooks [30, 48, 280], or for a more mathematical treatment of the subject,
e.g, [133, 246].

The chapter is comprised of two main parts. In the first part, the basic rules of probability,
random variables, and the concept of stochastic processes and fields are covered. Both ran-
dom variables and random processes are extensively used in the following chapters to describe
uncertain input parameters of computational models. In addition to the fundamental concepts,
an important aspect in the context of UQ is the efficient generation of realizations, i.e., sample
functions, of stochastic processes. Therefore, the present chapter also addresses and explains the
techniques used in this work for the efficient generation of realizations of stochastic processes.

The second part of this chapter introduces the concept of Bayesian inference, with a partic-
ular focus on Bayesian regression techniques. Throughout this work, extensive use is made
of Bayesian regression techniques, e.g., for the prediction of patient-specific input parameters
or to construct surrogate models for computationally expensive finite element models. More-
over, Bayesian regression is a centerpiece to the developed Bayesian multi-fidelity Monte Carlo
scheme which warrants a somewhat more detailed introduction of the concept of Bayesian re-
gression. Thus, after briefly describing linear regression from a Bayesian point of view, two
more elaborate, non-parametric regression approach are described

3.1 Fundamentals of probability theory
We start our discussion about probability theory, which provides the necessary tools to quan-
tify and modify uncertainty, by defining the two main components of a general probabilistic
model. The first ingredient is the so-called sample space ⌦, which defines the set of all possi-
ble outcomes of an experiment. The second is a probability law which assigns a nonnegative
number P (A) to a set A of possible outcomes, referred to as event. This number P (A) is called
the probability of A. A very general definition as to what constitutes a probability is given by
Kolmogorov [180] is based on the following three axioms. The probability of any event A is
nonnegative

P (A) � 0. (3.1)

The probability of the complete sample space ⌦ is equal to 1, i.e.,

P (⌦) = 1. (3.2)
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3 Probability theory and Bayesian statistics

The probability of the union of two events A and B, written as A [ B in the following, can be
computed using the addition rule of probability. If A and B are two mutually exclusive events,
it reads

P (A [ B) = P (A) + P (B). (3.3)

The two events A and B are called mutually exclusive or disjoint if the occurrence of A excludes
the occurrence of B and vice versa. In addition, the following concepts from set theory are
introduced. The intersection A\B of the two events A and B is defined as the event that occurs
if both A and B occur. For every event A, a corresponding complementary event can be defined
which be denoted by Ac in the following.

Technically, in order to define a valid probability measure P , a collection F of events to
which probabilities can be assigned needs to be defined. However, because the mathematical
intricacies of the requirements for F are well beyond the scope of this work, it is only mentioned
that this collection is a so-called ��algebra. For further details, the reader is referred to [37]. To
conclude, a so-called probability space, the formal definition of a probabilistic model, is defined
by the triple (⌦, F , P ).

On the basis of the three axioms of probability, additional laws or rules, which of course
have to comply with the axioms above, can be defined. A fundamental concept in probability
theory is that of conditional probabilities. The resulting law or rule allows reasoning about the
outcome of an experiment if only partial information is available. Assuming that the outcome of
an experiment is B, what is the probability that the outcome of the experiment also belongs to an
event A? The formal definition of conditional probability P (A|B), which is read as probability
of A given B, is

P (A|B) =

P (A \ B)

P (B)

. (3.4)

Rearrangement yields the multiplication or product rule of probability

P (A \ B) = P (A|B)P (B). (3.5)

If the occurrence of event B does not provide any information about the occurrence of event A,
the two events are called independent. Hence, the occurrence of B does not alter the probability
of A

P (A|B) = P (A). (3.6)

Inserted into (3.4) above equation can be restated in the more general form which also holds for
P (B) = 0

P (A \ B) = P (A)P (B). (3.7)

Independence is a symmetric property, i.e, if A is independent of B, then B is also independent
of A. Conditional probabilities are very useful for computing probabilities of an event A that
can be decomposed into several distinct events for which only the conditional probability and
the probability of the conditioning event is known. Let {B

1

, B
2

, ...B
l

} be a set of pairwise
disjoint events with P (B

n

) > 0. which form a partition of the entire sample space ⌦, that is
[1

n=1

B
n

= ⌦, then the law of total probability states that

P (A) =

1
X

n=1

P (A|B
n

)P (B
n

). (3.8)
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The famous Bayes’ rule relates the two conditional probabilities P (A|B) and P (B|A)

P (A|B) =

P (A)P (B|A)

P (B)

(3.9)

and can be derived as direct consequence of the definition of conditional probability and the
multiplication rule. In the given original form, it was first published in 1763, shortly after the
death of Thomas Bayes, by Richard Price [26]. The importance of this deceptively simple
formula can hardly be overstated as it is the basis for countless innovations in the last decades.
It is also pivotal for the understanding of the concepts presented in this work. An important
interpretation of the Bayes theorem is that it provides a coherent way to update one’s belief in
the light of new, additional information. It is, in essence, the mathematical formula for learning
by experience.

3.2 Random variables
In the previous section, a probabilistic model has been defined using the abstract concepts of
sample spaces and events, i.e., the outcome of an experiment to which probabilities can be
assigned. Often, the outcome of an experiment is a numerical value or can be associated with
a numerical value. The notion of a random variable formalizes the assignment of a particular
number to each possible outcome of an experiment. Mathematically, a random variable defines a
real-valued function of the experimental outcome x(!) : ⌦ ! R, where ! is used here to denote
the outcome of the experiment. Note that in this work, random quantities are denoted using a
font without serifs and the dependence on ! is usually omitted for the sake of an uncluttered
notation. An exception are random variables denoted by greek letters where the random nature
is signified through retaining the dependence on !.

Two types of random variables are distinguished. A discrete random variable is defined as
real-valued function that can take at most countably infinite number of values. In contrast a
continuous random variable can take an uncountably infinite number of values, e.g, any value
from the interval [�1, 1]. The most common way to characterize a random variable is through
its probability mass function if the variable is discrete, or its probability density function if the
variable is continuous.

3.2.0.1 Probability mass function

For discrete random variables the probability mass function (PMF), denoted by p
x

(x), assigns a
probability to any possible value x that the random variable x can take

p
x

(x) = P (x = x) (3.10)

From the additivity and normalization axioms defined in (3.3) and (3.2) it follows that the sum
of p

x

over all possible values of x is
X

x

p
x

(x) = 1. (3.11)
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3.2.0.2 Probability density function

The analogue of the probability mass function for a continuous random variable is the proba-
bility density function (PDF) of x. The PDF, also denoted by p

x

(x), is a nonnegative function
which gives the probability that x lies in the interval [a, b] by

P (x 2 (a, b)) =

Z

b

a

p
x

(x)dx. (3.12)

In order to constitute a valid PDF, the function p
x

(x) must be nonnegative, that is p
x

� 0, 8x.
In addition, the normalization axiom has to be fulfilled by continuous random variables as well.
Hence, its required that

Z 1

�1
p
x

(x)dx = 1. (3.13)

3.2.1 Cumulative distribution functions

The probability distributions of both discrete as well as continuous random variables can be
characterized with a single mathematical concept: the cumulative distribution function (CDF).
The CDF of a random variable x is denoted by F

x

(x) and completely determines the probability
distribution. It provides the probability that a random variable x falls within the interval (�1, x)

F
x

(x) = P (x(!)  x) = P (y  x)

8

>

>

<

>

>

:

X

kx

p
x

(k) if x is discrete,

Z

x

�1
p
x

(t)dt if x is continuous.

(3.14)

Of course, one can also obtain the PMF and PDF from the CDF through differencing and dif-
ferentiation, respectively. In addition to (3.14), Bertsekas and Tsitsiklis [30] list the following
general properties that F

x

(x) must fulfill:

• 0  F
x

(x)  1, 8 x

• F
x

is monotonically nondecreasing, if x < y, then F
x

(x) < F
x

(y)

• If x is discrete, then F
x

(x) is a piecewise constant function of x

• If x is continuous, then F
x

(x) is a continuos function of x

3.2.2 Functions of random variables

Based on a random variable x, another random variable can be defined by applying a transfor-
mation to x. For instance, consider a general nonlinear function f(·), then a random variable y

can be defined through transformation of the random variable x:

y = f(x) (3.15)
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If x is a discrete random variable, y is also a discrete random variable and its PMF can be
computed by summing the probabilities of all values of x such that f(x) = y:

p
y

(y) =

X

{x|f(x)=y}

p
x

(x). (3.16)

For the consideration of the continuous case, the following two restrictions for the transfor-
mation f(x) are made. First, it is assumed that the function f is differentiable. Second, f(·)
is required to be strictly monotonic on some interval I which contains the range of the ran-
dom variable x, such that f(x) = 0, x /2 I . Thus, f(·) is invertible and its derivative is either
nonnegative or nonpositive, depending on whether the function is monotonically increasing or
decreasing, respectively. If aforementioned requirements hold, the PDF of y is given by

p
y

(y) = p
x

(f�1

(y))

�

�

�

�

d

dy
(f�1

(y))

�

�

�

�

. (3.17)

3.2.3 Extension to multivariate random variables
Since many applications require the consideration of multiple random variables simultaneously
and investigation of their mutual interactions, the notions of PMF and PDF are extended to
multiple random variables. Furthermore, the concepts of conditional and marginal probability
distributions are introduced. Based on a collection of either discrete or continuous random
variables x

1

, x
2

, x
3

, ...x
n

, denoted by the vector x, the so-called joint probability mass function or
joint probability density p

x

(x) can be defined. This collection of random variables is generally
referred to as multivariate random variable or random vector.

For the remainder of the section, a restriction to two random variables is made to facilitate the
discussion; however, the extension to more than two variables is straightforward. First, consider
two discrete random variables x and y, denoted by x = [x, y]T in the following. The probability
of the event {x = x, y = y} is given by the joint PMF, of the two random variables p

x,y

,

p
x,y

(x, y) = p
x

(x) = P (x = x, y = y) (3.18)

Based on the joint PMF, one can compute the PMFs of x and y using

p
x

(x) =

X

y

p
x,y

(x, y), p
y

(y) =

X

x

p
x,y

(x, y). (3.19)

In this context, p
x

(x) and p
y

(y) are referred to as marginal probability mass functions and pro-
vide a probability distribution of one variable if the other one is not known. Similarly, one can
describe the distribution of two continuous variables associated with the same experiment with
their joint probability density function. The joint PDF is a nonnegative function which allows
the computation of the probability that x and y lie within A, a subset of R2

P ((x, y) 2 A) =

Z Z

(x,y)2A

p
x,y

(x, y) dxdy. (3.20)

The joint PDF is sufficient to compute the probability of any event that can be defined regarding
the two random variables because the joint PDF contains all probabilistic information about x
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and y including mutual dependencies. If the event of interest involves only one of the two, e.g,
the event {x 2 B} where B is a subset of the real line, (3.20) becomes

Z

x2B

Z 1

�1
p
x,y

(x, y) dxdy, (3.21)

which yields the following definition for the marginal PDF p
x

(x)

p
x

(x) =

Z 1

�1
p
x,y

(x, y)dy. (3.22)

The marginal distribution of y can be obtained in the same fashion. The joint distribution of two
random variables can be obtained by the applying the sum and the product rule of probability

p
x

(x) =

Z

p
x,y

(x, y)dy, (3.23)

p
x,y

(x, y) = p
y|x(y|x)p

x

(x). (3.24)

Note that (3.23) and (3.24) represent extensions of the sum and the product rule defined in
(3.3) and (3.5) for discrete events to continuous random variables. The formal justification
of this extension requires extensive use of measure theory and hence only the result is stated
here. Similarly to the PDF and PMF, the CDF can also be extended to include multiple random
variables.

3.2.4 Expectation and moments of random variables
While PMF, PDF, and CDF completely define all probabilistic properties of one or more random
variables, it is often helpful to characterize a probability distribution based on its so-called mo-
ments, which provide a summary of the distribution in terms of a few representative numbers.
The most important summary associated with a random variable is the expected value, here also
referred to as expectation, first moment, or mean value, which defines its probabilistic average.
The expected value of a random variable x is denoted by E

x

[x]. For a discrete random variable
it is defined as

E
x

[x] =

X

x

xp
x

(x) (3.25)

such that each possible value x of x is weighted by the relative probability p
x

(x). For continuous
variables, the sum in (3.25) becomes an integral with respect to the corresponding probability
density function

E
x

[x] = µ =

Z

xp
x

(x)dx. (3.26)

Often, one has only a finite number of N samples from the PMF or the PDF. If this is the case,
then for both, discrete and continuous variables, the expected value can be approximated by the
sum

E
x

[x] ⇡ 1

N

N

X

n=1

x
n

, (3.27)
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which becomes exact in the limit N ! 1. Apart from the mean, another important summary
is the 2nd central moment of the random variable x, which is defined as expected value of
(x�E

x

[x])

2. The 2nd central moment, also referred to as the variance of x, provides an important
measure for the variability of the random variable x around its mean and is defined as

V
x

[x] = E
x

⇥

(x � E
x

[x])

2

⇤

=

Z

(x � µ)

2p
x

(x)dx. (3.28)

The square root of the variance, the so-called standard deviation �
x

�
x

=

p

V
x

[x], (3.29)

provides another measure of dispersion of x around its mean value. In addition to the first mo-
ment, the mean, the nth moment of a random variable is defined as the expectation of the random
variable x

n. Moreover, the nth central moment about the mean is defined by E
x

⇥

(x � E
x

[x])

n

⇤

.
The standardized third and fourth central moment, i.e., divided by the standard deviation, are
called skewness and kurtosis and provide a measure for asymmetry and ”peakedness”, respec-
tively.

3.2.5 Expectation of functions of random variables
The concept of expectation can be used to find weighted averages of a function f(x) under a
probability distribution p

x

(x) and not just of the variable itself. This is an extremely important
operation for instance in the context of UQ where the function f(x) represents the output of
a complex numerical model. If a full probabilistic description in the form of a PDF is not
available, the expected value of f(x) and the variance of f(x) provide very useful characteristics
of the distribution. For continuous variables, the expectation is expressed as the integral with
respect to the corresponding probability distribution

E
x

[f(x)] =

Z

f(x)p
x

(x)dx, (3.30)

which can be approximated by the following sum if only a finite number of samples are available

E
x

[f(x)] ⇡ 1

N

N

X

n=1

f(x
n

). (3.31)

3.2.6 Percentiles
Like the mean, the so-called median of a distribution provides another measure of location. The
median M

x

[x] is defined as any number which fulfills the following set of inequalities

P (x  M
x

[x]) � 1

2

and P (x � M
x

[x]) � 1

2

. (3.32)

The median is the 50th percentile, which, roughly speaking, means that of an uneven number of
samples from a distribution, 50% of the samples will be smaller than the median.

In general, percentiles or quantiles define the value below which a given percentage of the
distribution falls. Hence, the 95th or 99th percentile can be used to compute a worst case
estimate for a random variable, in the sense that it is not very likely that the random variable
will have a value greater than the 95th or even 99th percentile.
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3.2.7 Covariance and correlation
The covariance is a measure for the extent to which two random variables change together

cov(x, y) = E
x,y

⇥

(x � E
x

[x])(y � E
y

[y])

⇤

= E
x,y

[x, y] � E
x

[x]E
y

[y]. (3.33)

If the covariance has a positive sign, then, on average, large values of one variable tend to
correspond to large values of the other. In the opposite case, if the covariance has a negative sign,
large values of one variable tend to correspond to small values of the other. When cov(x, y) =

0, one speaks of uncorrelated random variables. If two variables are independent, they are
also uncorrelated, but not vice versa. The interpretation of the magnitude of the covariance is
difficult and hence one often encounters the normalized variant of the covariance, the correlation
coefficient which is defined as

⇢(x, y) =

cov(x, y)
p

V(x)V(y)

, (3.34)

and satisfies
�1  ⇢(x, y)  1. (3.35)

If a direct increasing or decreasing linear relation exists between the two variables x and y, the
correlation coefficient is 1, or �1, respectively. The concept of covariance can be extended to
the multivariate case. For two random vectors x and y, the covariance matrix can be computed
using

⌃(x, y) = E
x,y

⇥

(x � E
x

[x])(y � E
y

[y])

⇤

, (3.36)

therein the (i, j)-th element of the covariance matrix ⌃ is cov(x

i

, y
j

).

3.2.8 The Gaussian probability distribution
Throughout this work, extensive use of the uni- and multivariate Gaussian distribution as well
as its extension to Gaussian processes is made. Because the Gaussian or normal distribution is
central to the understanding of the concepts in this work, this section is devoted to the description
of the Gaussian distribution and the discussion of some of its important properties. Moreover,
the Gaussian distribution is used to exemplify some of the abstract concepts introduced in the
previous sections. Other important probability distributions that are used on this work can be
found in Appendix A.

For a single real-valued random variable, the univariate Gaussian distribution is defined by
its probability density function

p
x

(x|µ, �) = N (x|µ, �) =

1

(2⇡�2

)

1/2

exp

n

� 1

2�2

(x � µ)

2

o

, (3.37)

where µ denotes the mean and �2 the variance parameter. Alternatively, the Gaussian PDF can
be formulated in terms of the inverse of the variance, the so-called precision ⌧ = 1/�. Often, the
shorthand notation x ⇠ N (µ, �) will be used if a random variable obeys a Gaussian distribution.
Integration of (3.37) yields the well-known CDF of the Gaussian distribution

F
x

(x) =

1

2

⇥

1 + erf

�x � µ

�
p

2

�⇤

, (3.38)
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Figure 3.1 Standard univariate Gaussian distribution. (a) Probability density function with 95% confidence re-
gion shown in light blue. (b) Cumulative distribution function.

where erf denotes the error function. Figure 3.1 shows the PDF and CDF for the standard
Gaussian distribution, i.e., µ = 0, � = 1. In addition, Figure 3.1a shows also what will be
referred to as the 95% confidence interval or confidence region in the remainder of this work.
Of all observations, 95% will fall in the domain which is shown in light blue. The 95% or
99% confidence interval can be computed from the CDF of a random variable. For a Gaussian
random variable, however, confidence intervals can be computed directly using µ and �, e.g.,
the 95% confidence interval is approximately given by µ ± 1.96�.

The Gaussian distribution can be extended to the multivariate case for which the PDF is
defined by

N (x|µ,⌃) =

1

(2⇡)

d/2

1

|⌃|1/2
exp

n

�1

2

(x � µ)

T⌃�1

(x � µ)

o

. (3.39)

Here µ is the d-dimensional mean vector, ⌃ is the symmetric, positive definite, d ⇥ d covari-
ance matrix, and |⌃| denotes its determinant. Multivariate Gaussian distributions have two
very important properties, namely that both marginal and conditional distributions of multivari-
ate Gaussian distributions are again Gaussian distributions. These properties are crucial to the
study and conditioning of so-called Gaussian processes, which will be introduced in one of the
following sections. For the sake of brevity, the proof of these properties is omitted and only the
result is given. If two multivariate random variables x and y are considered, which are jointly
Gaussian random vectors
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, (3.40)

then the marginal distribution p
x

(x) is a Gaussian distribution as well and can be computed by

p
x

(x) =

Z

p(x,y)dy = N (µ

x

,⌃
xx

). (3.41)
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Figure 3.2 Partitioned Gaussian distributions. (a) Contours of a bivariate Gaussian distribution p(x, y). (b)
Marginal distribution p(x), shown in black and the conditional distribution p(x|y) for y = 0.75, shown in red

The conditional distribution of x given y is also Gaussian

p
x

(x|y) = N (µ

x|y,⌃x|y) (3.42)

with

µ

x|y = µ

x

+ ⌃
xy

⌃�1

yy

(y � µ

y

), (3.43)
⌃

x|y = ⌃
xx

� ⌃
xy

⌃�1

yy

⌃
xy

. (3.44)

To illustrate these properties, Figure 3.2 depicts an example of a bivariate Gaussian distribu-
tion with the associated marginal and conditional distributions. Furthermore, Figure 3.2 shows
the effect of a positive covariance between x and y, i.e., on average, large values of x tend to
correspond to large values of y.

3.3 Random processes and fields
A random or stochastic process g(t, !), t 2 T is essentially the extension of a multivariate
random variable to an infinite number of dimensions. It is a mathematical construct to model a
process whose dependence on a parameter t can be captured by probabilistic laws. For historic
reasons, the index parameter t is often associated with time but it can also denote a spatial
coordinate or, more generally, a scalar- or vector-valued parameter from an index set T . This
index set can either be continuous or discrete or a combination from both. In the literature and in
this work, the term random field is used instead of random process if the index parameter denotes
spatial coordinates. Moreover, in case of a multi-dimensional index parameter, the symbol x
will be used. The values that g(x) can assume are referred to as state-space which can also be
either continuous or discrete. In addition, one can distinguish between scalar-valued stochastic
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processes and vector-valued, i.e., multivariate processes. In the following discussion the focus
lies on univariate processes with a general multi-dimensional index parameter x 2 T = Rd.

A stochastic process can be interpreted as a function of two variables, the index parameter x
and the probability parameter ! which can take values from the sample space ⌦ based on the
outcome of a random experiment. For a fixed value x, g(x, !) becomes a random variable. If
! is held fixed, g(x, !) defines a function in, e.g., time or space and is referred to as realization
or sample function of the stochastic process. The collection of all possible realizations is called
ensemble of the stochastic process. The distribution of the random variable for a particular x is
given by the so-called first-order distribution F

g

(g,x)

F
g

(g,x) = P (g(x)  g), (3.45)

or the first-order density resulting from

p
g

(g(x)) =

@F
g

(g,x)

@g
(3.46)

If the first-order density does not depend on the parameter x, then the density is referred to as
first-order density of g(x, !). Otherwise, the process has a family of first-order densities. Based
on the first-order density, the mean function and the variance function of the stochastic process
can be derived. Similar to the expected value of a random variable, the mean function m

g

(x) is
defined by

m
g

(x) = E
g

[g(x)] =

Z 1

�1
gp

g

(g,x)dg. (3.47)

The variance function of the random process is defined as

�2

g

(x) = E
g

⇥

g(x) � m
g

(x)

⇤

2

= E
g

⇥

g(x)

2

⇤� E
g

⇥

m
g

(x)

⇤

2

. (3.48)

The second-order distribution of the process is defined as the joint distribution of the two
random variables g(x

1

) and g(x

2

)

F (g
1

, g
2

,x
1

,x
2

) = P (g(x

1

)  g
1

, g(x
2

)  g
2

). (3.49)

The corresponding second-order density can be computed using

p(g
1

, g
2

,x
1

,x
2

) =

@2F
g

(g
1

, g
2

,x
1

,x
2

)

@g
1

, @g
2

. (3.50)

Based on the second-order distribution, another important characteristic of the stochastic pro-
cess, the expectation of the joint moment, the so-called auto-correlation function

r
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(x

1

,x
2
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Z 1

�1

Z 1

�1
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1
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2
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(g
1
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2
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,x
2
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1
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2

= E
h

g
1

g
2

i

(3.51)

can be computed. The so-called auto-covariance function is closely related to auto-correlation
function and can be computed by

k
g
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1

,x
2
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�1

Z 1

�1
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g
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1
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g

(x

1
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2

� m
g
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)]

i

(3.52)
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The variance function �2

g

(x) can be obtained from the covariance function by setting x

1

= x

2

=

x. Through division by the variance, the normalized auto-covariance function, or correlation
coefficient function can be obtained.

⇢
g
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1
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2
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g

(x

2

)

(3.53)

The correlation coefficient functions provides a measure of linear dependence, analogous to
the correlation coefficient for two random variables. Note, that the above definition of the
auto-correlation function is not the one which is commonly used in the statistics literature, in
which the auto-correlation function is typically defined as the normalized version of the auto-
covariance function given by (3.53).

If a mean and covariance or correlation function are used to characterize a stochastic pro-
cess, one speaks of a second-order or second moment characterization of the stochastic process.
While this characterization is frequently used and mean and covariance function provide a lot of
information, it is only an incomplete characterization of a general stochastic process since two
processes with the same second-order description can exhibit very different sample properties.
An exception to this rule are Gaussian processes (GPs), which are completely determined by
mean and covariance function, and no additional information is required. GPs will be covered
in more detail in the following section.

For the sake of completeness, it is mentioned that for a general stochastic process, a full
specification of all n-th order densities is required [246]. The joint n-th order density is defined
by

p
n

(g
1

, g
2

, g
3

, ..., g
n

,x
1

,x
2

,x
3

, ...,x
n

). (3.54)

A stochastic process is then defined by a system of n-th order probability density functions for
all n and for every finite subset x

1

,x
2

,x
3

, ...,x
n

of T .
There is rarely, if ever, sufficient data to determine the full joint probability distribution of a

stochastic process. If the stochastic processes is homogeneous or ergodic, the analysis and syn-
thesis of the stochastic process is significantly facilitated. While ergodicity entails homogeneity,
the converse is not always true. Homogeneity in the strict sense means that the joint probability
density p

n

is invariant to translations of the parameters x

1

,x
2

,x
3

..,x
n

. If the parameter x is
one-dimensional and especially if it is associated with time, the term stationarity is used instead
of homogeneity. The strict sense definition is of limited practical value. Hence, in this work
a stochastic process is referred to as homogeneous if it is homogenous in the weak sense, that
is, homogeneous in mean and covariance. To be stationary in a weak sense, the following two
conditions must hold. The mean function has to be constant and not dependent on the parameter
x, i.e.,

E
g

[g(x)] = m
g

= const < 1, 8 x 2 T. (3.55)

Furthermore, the covariance function has to depend only on the difference or lag between x

1

and x

2

and not on their absolute position

k
g

(x

1

,x
2

) = k
g

(x

1

� x

2

) = k
g

(⌧ ). (3.56)

A stochastic process characterized by mean and covariance function which fulfill these condi-
tions is homogeneous in the weak sense. Note, that in (3.56) ⌧ , is the so-called lag-vector or
simply lag.
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Another property regarding the regularity of multi-dimensional processes is the isotropy of
the covariance function. A covariance function of a multi-dimensional process is referred to as
isotropic if its properties are invariant under rotation of the coordinate system which is equiva-
lent to the covariance function only depending on the distance between two points, i.e.,

k
g

(x

1

,x
2

) = k
g

(kx
1

� x

2

k) = k
g

(k⌧k). (3.57)

A stochastic process is ergodic in the strict sense if the joint probability distribution can be
completely determined from one realization of the process alone. As with homogeneity, weaker
criteria for ergodicity are often used. Roughly speaking, if a stochastic process is ergodic in the
mean or correlation function, then the mean or the correlation function of the process can be
computed from an average over the parameter space T . The formal requirements and conditions
for ergodicity are omitted for the sake of brevity and the reader is referred to, e.g., [260, 308]
for a more thorough definition.

Like random variables, stochastic processes can also be extended to the multivariate case.
These types of processes are also referred to as vector processes in literature. If the individual
components of the vector-process are coupled, the cross-correlation between the components is
described with a cross-covariance function

k
g

1

g

2

(x

1

,x
2

) = cov[g

1

(x

1

)g

2

(x

2

)]. (3.58)

3.3.1 Gaussian processes
Having introduced the general concept of stochastic processes, this section deals with a special
subclass of stochastic processes, so-called Gaussian processes. Moreover, this section intends
to illustrate some of the introduced abstract concepts on the basis of GPs. A stochastic process
is referred to as Gaussian if all joint probability distributions are Gaussian, i.e., it is an infinite
collection of random variables, any finite subset of which has a multivariate Gaussian distribu-
tion. Also, the second-order probability distribution is Gaussian and thus for a fixed location
parameter, a Gaussian random variable is obtained. A key feature of Gaussian processes is that
they are fully specified by the definition of a mean m

g

(x) and covariance function k
g

(x,x0
).

Throughout this work, the following notation to define a Gaussian process will be used:

g(x) ⇠ GP(m
g

(x), k
g

(x,x0
)). (3.59)

Note that from here on, the common notation x and x

0 instead of x
1

and x

2

for the arguments
of the covariance function will be used. Like other stochastic processes, Gaussian processes
can be interpreted as a distribution over functions, in the sense that a Gaussian process defines
an ensemble of functions which share some common properties. The mean function defines an
overall trend whereas the covariance function defines the smoothness, the scale of fluctuations,
and the amount of fluctuation of the realizations or sample functions. For a visualization, con-
sider the realizations of a one-dimensional, stationary Gaussian process depicted in Figure 3.3.
The figure shows four realizations of two zero mean Gaussian processes with different covari-
ance functions, resulting in, roughly speaking, different degrees of smoothness. This illustrates
the usage of a stochastic process as a tool to specify a collection of functions with certain prop-
erties that are characterized statistically. In addition, Figure 3.3 shows the 95% confidence area

37



3 Probability theory and Bayesian statistics

x

g
(x
)

−5.0 −2.5 0.0 2.5 5.0
−3.0

−1.5

0.0

1.5

3.0

(a)

x

g
(x
)

−5.0 −2.5 0.0 2.5 5.0
−3.0

−1.5

0.0

1.5

3.0

(b)

Figure 3.3 Realisations of Gaussian processes and 95% confidence interval. (a) Squared exponential covariance
function, (b) Matérn covariance function.

which is based on the variance of the Gaussian random variables at each of the input points.
In the following, the covariance functions that are employed in this work will be introduced to
discuss their parameters and overall properties.

3.3.1.1 Covariance functions

Not every conceivable function of x and x

0 constitutes a valid covariance function. In order to
be an admissible covariance function, the function must be positive semidefinite. In this context,
this means that any n ⇥ n matrix K which is computed based on the points {x(i)}n

i=1

and has
the entries K

ij

= k(x

(i),x(j)

), is positive semidefinite. In the following, the covariance func-
tions that are used in this work are introduced. For a comprehensive overview of covariance
functions, the reader is referred to, e.g., [2, 361].

Squared exponential covariance function One of the most common covariance function is
the so-called squared exponential or Gaussian covariance function. In its simplest form, the
covariance only depends on the absolute distance between two points x and x

0,

k(x,x0
) = �2

g

exp{�kx � x

0k2

`2

}. (3.60)

Therein, �2

g

denotes the variance of the process, i.e., the variance of the Gaussian random vari-
able for fixed x. Often, a slightly different definition of this covariance function is used where
`2 is multiplied by a factor two. The parameter ` defines the characteristic length-scale of the
process, which determines how fast the correlation between the value of the process at two
points decays with their distance. For a one-dimensional process, this is illustrated in Figure
3.4. Figure 3.4a depicts the covariance function for two different characteristics length scales
and Figure 3.4b shows three realizations for each of the corresponding processes.
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Figure 3.4 Influence of characteristic length scale. (a) Squared exponential covariance function with unit vari-
ance and different characteristic length scales. (b) Realizations drawn from Gaussian processes with a squared
exponential covariance function.

If the process shows a different behavior for each dimension, this can be accounted for by
separately prescribing a characteristic length scale for each dimension. (3.60) then becomes

k(x,x0
) = �2

g

exp{�(x � x

0
)

T

P

�1

(x � x

0
)} (3.61)

with the diagonal P matrix that contains the squares of the characteristic length scales `2

i

> 0

for the different dimensions

P =

0
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1
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A

. (3.62)

Example realizations of one isotropic and one anisotropic process are shown in Figure 3.5.
Matérn Class of covariance functions In its general form the Matérn class of covariance

functions [209] is given by

k(r) = �2

g

2

1�⌫

�(⌫)

⇣p
2⌫r

⌘

⌫

B
⌫

⇣p
2⌫r

⌘

(3.63)

where r is definded as
r =

p

(x � x

0
)

T

P

�1

(x � x

0
), (3.64)

and B
⌫

(·) is a modified Bessel function [3]. In addition to the characteristic length scales `
i

,
the Matérn class has another positive parameter ⌫ which controls the smoothness of the process.
In the limit ⌫ ! 1, the squared exponential covariance function is retained. For small ⌫,
the corresponding stochastic process is rougher. After some algebraic rearrangement, setting
⌫ = 3/2 yields

k(x,x0
) = �2

g

⇣

1 +

p
3r
⌘

exp

⇣

�
p

3r
⌘

. (3.65)
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(a) (b)

Figure 3.5 Realizations of two-dimensional Gaussian processes (a) Realization of isotropic process (b) Realiza-
tion of anisotropic process, i.e., different characteristic length scales in x

1

and x

2

.

3.3.2 Non-Gaussian processes
There are many natural phenomena that cannot be accurately described, or are incompatible with
a Gaussian distribution. For instance, the random parameters considered in this work exhibit
a distinct non-Gaussian distribution. Characterization of a non-Gaussian process through its
family of finite-dimensional distribution functions is difficult. In this work, a restriction to a
special class of non-Gaussian processes, namely so-called translation processes, is made and
the reader is referred to [131] for a more detailed discussion of this subject. The non-Gaussian
translation processes considered in this work can be obtained via memoryless transformation
from a Gaussian process. Based on a Gaussian process g(x) with zero mean unit variance and
homogeneous covariance function, a non-Gaussian translation process can be obtained via the
following nonlinear transformation [131]

h(x) = F�1

h

� ��g(x)

�

= F�1

h

{��g(x)

�} (3.66)

where �(·) denotes the standard Gaussian CDF as in (3.38) of the underlying Gaussian process,
F
h

denotes an arbitrary non-Gaussian target CDF, and F�1

h

the corresponding inverse function.
The transformation is called memoryless because the value of g(x) at an arbitrary location x

depends solely on the value of g(x) at x.
If the distribution F

h

(h) is continuous, then the resulting process h(x) has the first-order
probability distribution

P
�

h(x)  h
�

= P
�

F�1

h

� ��g(x)

�

)  h) = F
h

(h), (3.67)

and thus h(x) can have arbitrary first-order probability distributions. The q-th order moment is
obtained via

E[h(x)]

q

= E[F�1

g

� ��g(x)

�

]

q

=

Z 1

�1

�

F�1

h

{�(g)}�q�(g)dg (3.68)
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The transformation also affects the auto-covariance function of the process. According to Grig-
oriu [131], the auto-correlation function of the translation process can be computed based on
the normalized auto-covariance function ⇢(⌧) of the underlying Gaussian process by

k
h

(⌧ ) =

Z 1

�1

Z 1

�1
F�1

h

{�(g
1

)}F�1

h

{�(g
2

)}�
�

g
1

, g
2

; ⇢
g

(⌧ )

�

dg
1

dg
2

(3.69)

where � denotes the standard joint Gaussian density of the two correlated random variables
g

1

= g(x) and g

2

= g(x + ⌧ ). In analogy to (3.69), higher-order densities of h(x) can also be
computed, see, e.g., [131].

3.3.3 Sample generation techniques for Gaussian processes

In the context of UQ, one needs to generate sample functions of stochastic processes, or rather
evaluate sample functions at discrete points in space or time. The procedure of generating
discrete realizations of stochastic processes is often referred to as simulation of stochastic pro-
cesses in the corresponding literature. In order to avoid misunderstandings, the term simulation
is avoided in the context of generating realizations of stochastic processes and is used only in
the context of finite element simulations.

The most important aspect of generating sample functions is accuracy, in the sense that an
ensemble of generated sample functions shows the desired properties in terms of first-order dis-
tribution function and auto-covariance function. The second requirement is the efficiency of the
generating algorithm, i.e., the computational effort to compute one realization of the stochastic
process with a given spatial or temporal resolution. Another issue, which arises mainly in the
context of UQ with certain methods, regards the dimensionality of the representation. Essen-
tially, all approaches to generate sample functions aim at achieving this based on a vector of
independent random variables from which samples can be drawn using standard pseudorandom
number generators. Depending on the employed approach to generate the sample functions, the
number of random variables needed to represent a stochastic process can differ significantly. As
the efficiency of some UQ approaches depend on the number of random variables, this can be
an important criterion and maybe explains the popularity of some approaches, particularly, in
the stochastic mechanics community.

The generation of sample functions of stochastic processes is a field of ongoing investigation
and active research, in particular for non-Gaussian processes. Many approaches have been
proposed in the past, an in depth introduction and discussion of which is well beyond the scope
of this work. In the following sections, the methods to generate sample functions of stochastic
processes, which are used in this work, are introduced and the difficulties that can arise in the
non-Gaussian case will be discussed. For a more in depth and complete overview of techniques
to generate sample functions of stochastic processes, the reader is referred to, e.g., [41, 309,
314].

3.3.3.1 Direct decomposition of the covariance matrix

If one is interested in a realization of a Gaussian process evaluated at a moderate number of
locations {x(i)}N

i=1

, all that is needed is a draw from a finite-dimensional multivariate Gaussian
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distribution. The mean vector µ and the covariance matrix ⌃ are readily obtained from the
mean and covariance function of the process

µ
i

= m(x

(i)

) ⌃

ij

= cov(x

(i),x(j)

) i, j = 1, ..., N. (3.70)

A sample from a multivariate Gaussian distribution N (µ,⌃) is obtained using a sample of
uncorrelated Gaussian variables with zero mean and unit variance and the following relationship

g = µ + Lz (3.71)

where L is defined as LL

T

= ⌃. Independent samples from the standard normal distribution
are readily available through standard pseudorandom number generators. The decomposition of
the covariance matrix can be performed with, e.g., the Cholesky factorization. If the required
spatial or temporal resolution is high, i.e., the number of points N is large, the Cholesky factor-
ization, which has a computational complexity of approximately N3/3, becomes impractical. In
addition, UQ approaches, whose computational complexity depends on the number of random
input variables, can in general not be used in combination with this approach since the stochastic
dimension is to high even for moderate spatial resolutions.

3.3.3.2 Karhunen-Loève expansion

Another alternative for the generation of sample functions, that is popular especially in the
stochastic mechanics community, is based on the Karhunen-Loève expansion of the stochas-
tic process. The Karhunen-Loève expansion has been proposed by several authors in the late
1940’s [169, 170, 196] and is also known in other fields of study as principal component anal-
ysis or proper orthogonal decomposition. Consider the stochastic process g(x, !) where x is
the location vector defined on a domain D and ! denotes an event from the sample space
⌦. Dependence on ! is omitted in the following for the sake of an uncluttered notation. The
Karhunen-Loève expansion decomposes the sample functions of a centered, i.e., zero mean
stochastic process into the following series

g(x) =

1
X

k=0

p

�
k

v
k

(x)z

k

, (3.72)

where {z
k

} is a set of uncorrelated random variables and �
k

and v
k

(x) are the eigenvalues and
eigenfunctions of the covariance kernel of the stochastic process, respectively. The eigenvalues
and eigenfunctions can be determined by solving the following integral equation
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The series is optimal in the Fourier sense, that is, it minimizes mean squared error when trun-
cated after a finite number of terms and it can be shown that the expansion is unique [117]. If
the expanded process is Gaussian, the set of random variables {z

k

} becomes Gaussian, too, and
as a consequence of the Gaussian property, they are also independent. Thus, realizations of a
Gaussian process can be generated using the truncated version of (3.72)

g(x) =

N

X

k=0

p

�
k

v
k

(x)z

k

, (3.74)
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in combination with a vector of independent Gaussian random variables with zero mean and
unit variance. These are available through standard random number generators. Of course,
non-centered Gaussian processes with mean E

g

[g(x)] can also be considered using

g(x) = E
g

[g(x)] +

1
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g

(x) +
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k

(x)z

k

. (3.75)

The number of terms that have to be considered in the expansion depends on the regularity and
smoothness of the covariance function. Furthermore, the characteristic length scale of the co-
variance functions plays an important role. The shorter the characteristic length, the more terms
have to be considered in the Karhunen-Loève expansion to keep the error of the approximation
constant.

In order to generate realizations using (3.72), the functions v
k

(x) must be determined by
solving the generalized eigenvalue problem (3.73). Analytic solutions are available only for
very few covariance functions, e.g., the exponential covariance function [117], and hence a
numerical approach to solve (3.73) is often required. One option to obtain a numerical solution
is to use a Galerkin projection based on a finite element discretization [117]. Recently, it has
been shown that the Karhunen-Loève expansion is independent from the domain on which the
eigenvalue problem is solved [257].

3.3.3.3 Direct Fourier series expansion of the covariance function

Similar to the frequently employed Karhunen-Love expansion Nobile et al. [230] and Tamellini
[322] proposed a Fourier expansion of the covariance function in order to facilitate the gen-
eration of sample functions of homogeneous Gaussian processes with a squared exponential
covariance structure. It allows for an efficient truncation of the series and enables a fast compu-
tation. Extended to the three-dimensional case, the formula from [230] reads
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(3.76)

where !
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. Here ˜L denotes the length of the generated field in
all three dimensions. Moreover, zi

k

denotes random amplitudes that are independent identically
distributed (i.i.d) standard normal random variables. The normalized coefficients c
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fulfill the
following condition
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and can be computed using
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To be computable, the series in (3.79) has to be truncated
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(3.79)

where K is an indexing set that is large enough to take a sufficient portion of the total variability
of the the process g into account. The amount of variability � retained by the truncation in
(3.79) can be computed by

P
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, the following truncation is used
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The amount of variability that is retained by the expansion can be adjusted by changing the
truncation threshold n

k

. Note that the expansion given above produces accurate results for
` < 0.35

˜L [322].

3.3.3.4 Spectral representation method

Another method to generate sample functions of stochastic processes is based on the so-called
spectral representation method which was pioneered in [299–301]. The so-called power spectral
density (PSD), which describes the distribution of variance over generalized frequency, can
be computed from the auto-covariance function of a process, and vice versa, by the Wiener-
Khintchine relationships [176, 357]
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()d. (3.82)

Therein, d denotes the dimension of the index set x, ⌧ the lag-vector, and  the generalised
frequency vector. For some auto-covariance functions, an analytic solution of (3.81) exists [6,
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264, 341]. For the sake of completeness, because the squared exponential covariance function
is used frequently in this work, the corresponding PSD is stated explicitly in the following. For
a d-dimensional process, the squared exponential covariance function

k
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(⌧ ) = �2
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h

��k⌧k
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�

2

i

, (3.83)

corresponds to the power-spectral density [368]

s
g

() = �2

g

� `

2

p
⇡

�

d

exp

⇥��` kk
2

�

2

⇤

. (3.84)

Based on a PSD, realizations of a multi-dimensional, homogeneous, Gaussian stochastic pro-
cesses can be generated using the spectral representation method [299]. Thereby, the realizations
of the process are represented by a series of cosine functions with random phase angles. The
spectral representation can be applied to create sample functions of one or multi-dimensional
stochastic processes. In the following, the methodology is introduced for the three-dimensional
case, i.e., x = (x

1
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2

, x
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) since it is the formulation used in this work. According to Shinozuka
and Deodatis [299], a three-dimensional stochastic process can be represented by the following
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, i = 1, ..., 4, denote four different sets of independent random phase angles
which are uniformly distributed (cf. Table A.1) in the range [0, 2⇡]. Furthermore,
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where 
1u

, 
2u

, and 
3u

are the upper cut-off wave numbers above which the PSD is assumed
to be zero or at least of insignificant magnitude. Sample functions generated with (3.85) are
asymptotically Gaussian for N ! 1 by virtue of the central limit theorem. However, a value
of N

i

= 64 yielded accurate results and hence was used throughout this work for the generation
of sample functions.

It is important to note that (3.85) is valid only for so-called quadrant symmetric processes
[341] where the PSD and the auto-covariance function fulfill the symmetry conditions
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While the conditions for quadrant symmetry are always fulfilled in the examples considered in
this work and hence (3.85) can be used to generate sample functions of Gaussian processes, the
formula for the general case can be found in [299], which also contains the formulas for lower
dimensional processes.

It can be shown that the samples generated using (3.85) are periodic along all axes with the
periods
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As a consequence, if the cut-off wave numbers are fixed, the periods become longer as smaller
�

i

or larger N
i

are chosen, respectively. While (3.85) is easy to implement, especially if
the PSD is available in closed form, the formulation is not particularly efficient because of
the three-fold sum and the large number of necessary cosine function evaluation. However,
(3.85) can be restated in a form that admits treatment and sample function generation using
the Fast Fourier Transform (FFT), which significantly speeds up the computation [299, 369].
Using the FFT technique to generate realization based on the spectral representation works
very well for one- and two-dimensional processes. However, for three-dimensional processes
memory limitation often hampers the effective application of the FFT. Processes with longer
characteristic length scales require smaller �

i

to properly resolve the frequency content. In
combination with spatial resolution requirements, this can result in very large three-dimensional
arrays impeding the use of standard FFT techniques and libraries even on current hardware.
Hence, one has to resort to the direct but slower computation using (3.85).

It is mentioned that the approaches described above are, in fact, related, e.g., it can be shown
that the Karhunen-Loève expansion is equivalent to the spectral representation method in some
circumstances [134, 310].

3.3.4 Sample generation techniques for non-Gaussian processes
In this work, non-Gaussian processes are used as probabilistic model for random media and ge-
ometries. The Gaussian model cannot be used because of physical constraints such as positivity.
While Gaussian processes are fully described by their mean and covariance function, this is not
the case for non-Gaussian processes. Nevertheless, a second-order description is frequently used
for non-Gaussian processes as well. Hence, when generating sample functions of non-Gaussian
processes, the goal is to generate an ensemble of functions which match a prescribed first-order
probability distribution and a prescribed covariance function.

Using translation process theory it is possible to generate an ensemble of sample functions
which match the prescribed first-order probability distribution. Therefore, sample functions
g(i)

(x) from a Gaussian process with zero mean and unit variance are generated first. These
sample function are then transformed by

h(i)

(x) = F�1

h

{��g(i)

(x)

�}, (3.90)
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and samples from a non-Gaussian process which exhibits the desired first-order distribution are
obtained. Matching a prescribed covariance function in addition to the first-order distribution
can be significantly more challenging, in some cases even impossible. The normalized covari-
ance function ⇢

g

(⌧ ) of the underlying Gaussian process is affected by the nonlinear transforma-
tion in (3.90) and the resulting translation process will exhibit a different normalized covariance
function ⇢

h

(⌧ ), which can be computed using (3.69). Thus, in order for the normalized covari-
ance of the non-Gaussian process to match a prescribed target normalized covariance ⇢

h,t

(⌧ ),
(3.69) has to be inverted to compute a covariance function of the underlying Gaussian process,
which, if translated, will yield the desired target function. However, this approach is not always
feasible as covariance function and first-order distribution have to be compatible and cannot
be prescribed arbitrarily. Grigoriu [131] distinguishes two cases of incompatibility where the
inversion of (3.69) cannot be used to compute a valid normalized covariance function for the
underlying Gaussian process. Briefly, the transformation (3.69) maps the normalized covariance
function of the Gaussian process, which can take values in the range [�1, 1], to the normalized
covariance function of the non-Gaussian image, which takes values in the range [⇠⇤, 1]. This
behavior is called correlation distortion. The lower bound ⇠⇤ depends on the nonlinear trans-
form and thus on the desired first-order distribution and is not necessarily equal to �1 [131].
The desired ⇢

h,t

(⌧ ) can only take values in this range. If it takes values outside the admissible
range, one speaks of type one incompatibility. Type two incompatibility arises when the inverse
transformation of ⇢

h,t

results in a function which is not positive semi-definite and hence not
admissible as a normalized covariance function of the underlying Gaussian process.

However, even if one of the aforementioned incompatibilities between covariance function
and first-order distribution arises, it is often desirable to employ translation process theory to
generate samples which match the prescribed characteristics as closely as possible. Depending
on the application, the focus might shift between the accurate representation of the first-order
distribution or the covariance function. In reliability problems where random media are mod-
eled using non-Gaussian processes, it is considered more important to match the first-order
probability distribution including an accurate representation of its tails [132].

Nevertheless, additionally matching the prescribed covariance function as close as possible is
desirable for some applications as well and hence the efficient and generation of sample func-
tions of non-Gaussian stochastic processes has been and still is an area of active and ongoing
research. An in-depth discussion of the various possibilities and approaches is well beyond the
scope of this work. However, for the sake of completeness some reference to important publi-
cations in this area of research are given here in chronological order: Yamazaki and Shinozuka
[369], Grigoriu [131, 132], Gurley et al. [139], Popescu et al. [254], Gurley and Kareem [138],
Deodatis and Micaletti [80], Puig et al. [261], Sakamoto and Ghanem [286, 287], Graham et al.
[124], Shi and Deodatis [295], Bocchini and Deodatis [41], Shields et al. [297].

The approach proposed by Shields et al. [297] is very appealing because of its simplicity
and efficiency and has been implemented in this work to be able to modify the normalized
auto-covariance function of the underlying Gaussian process such that the covariance function
of the non-Gaussian process matches a prescribed target. The approach is used here since it
works for for the compatible case as well and it is based on an iterative scheme which relies
on the repeated evaluation of (3.69) and then (3.81), followed by an update of the PSD of the
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underlying Gaussian process s
g

using

si+1

g

() =



s
h,t

()

si
h

()

�

�

si
g

(). (3.91)

Therein, s
h,t

denotes the desired target PSD, which corresponds to the desired target covariance
function, and s

g

denotes the PSD of the underlying Gaussian process in iteration i and i + 1,
respectively. The parameter is set to 1.4, in accordance with Shields et al. [297] to optimize con-
vergence speed. In the first iteration, s1

h

() is set to s
h,t

() as start value. The iterative scheme is
terminated once a the relative difference between s

h,t

() and si
h

() reaches a predefined thresh-
old.

For a simple covariance function such as the isotropic, radially symmetric squared exponen-
tial covariance function, which has only one length scale parameter, another option to estimate
this parameter exists. One can apply the inverse of the transform in (3.90) to the quantity that
is to be modeled as stochastic process and estimate the correlation length in the transformed
space. This approach is particularly advantageous if the KLE expansion or the direct Fourier
series expansion is employed because an analytic decomposition of the covariance function,
which exists only for certain cases, can still be used and a comparatively expensive numerical
solution can be avoided.

Some approaches to generate sample functions of non-Gaussian processes accurately match-
ing some desired characteristics in an ensemble average sense have been elaborated. Now, it is
important to discuss some difficulties in obtaining or choosing these characteristics for uncertain
model input parameters in the context of UQ.

If an uncertain quantity is to be modeled as a stochastic process using a second-order de-
scription, first the type of first-order probability distribution and covariance function have to be
specified and then their respective parameters need to be determined. Especially, the covariance
function can have multitude of parameters. Given sufficient data, i.e., measurements at multi-
ple locations from multiple realizations of the process, these parameters can be estimated. If
the process is ergodic, measurements from a single realization can be sufficient as well. Alas,
data is usually scarce and rarely sufficient to reliably and uniquely determine the probability
distribution, covariance function, and all the hyper-parameters which determine the particular
shape of these two functions. Hence, although it is important to accurately match the desired
characteristics of a stochastic process describing uncertainties in some model input parame-
ters, it is also crucial to acknowledge that these prescribed characteristics and the corresponding
hyper-parameters are often an educated guess. It is common practice in the field of stochastic
mechanics to make extensive assumptions about covariance functions and probability distribu-
tions for stochastic processes used as probabilistic model for random and uncertain quantities
[58]. Chapter 6 addresses these problems and describes the procedure used in this work to esti-
mate random field parameters for several mechanical quantities of AAA wall based on available
data.

With regard to the generation of sample functions of non-Gaussian processes using trans-
lation process theory, it is worth mentioning that the change or distortion of the covariance
function due to the nonlinear transform in (3.90) is often comparable or smaller than the vari-
ation due to a lack of knowledge about hyper-parameters such as the correlation length. For
illustration, consider the normalized covariance functions that are depicted in Figure 3.6. Each
plot in Figure 3.6 shows normalized covariance functions of a Gaussian process with squared
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Figure 3.6 Normalized correlation functions of Gaussian and corresponding non-Gaussian translation process.
(a) COV = 0.5, (b) COV = 2.

exponential covariance function for three different correlation lengths, 12.5 mm, 25 mm, and 50
mm in blue. The red curves in the two plots in Figure 3.6 show the corresponding normalized
covariance function of a log-normal translation process obtained using an analytic solution for
(3.69) from Grigoriu [131] for log-normal translation processes. Depending on the coefficient
of variation (COV) of the log-normal distribution, the distortion of the normalized covariance
function is more or less pronounced. If the coefficient of variation is 0.5, the difference in the
covariance function is barely visible, as shown in Figure 3.6a. If the coefficient of variation
of the log-normal distribution is larger, Figure 3.6b depicts the case where the coefficient of
variation is 2, the difference increases as well. However, as also can be seen in Figure 3.6b,
if the correlation length cannot be accurately determined, the effect of the non-linear transfor-
mation can still be considered secondary. Similar results are reported for other non-Gaussian
probability distributions with moderate coefficients of variation; Der Kiureghian and Liu [83]
state that ⇢

g

(⌧) ⇡ ⇢
h

(⌧) without any additional measure to counter distortion of the normalized
covariance function.

3.3.5 Cross-correlated random processes and fields
Although cross-correlated random processes or fields are beyond the scope of this work, refer-
ences to approaches suitable for the generation of realizations of cross-correlated non-Gaussian
vector random fields are provided for the sake of completeness and future reference [63, 101,
296, 348, 370].

3.4 Bayesian inference and prediction
Having introduced the basics of probability theory and corresponding nomenclature, the fol-
lowing sections introduce the concept of Bayesian inference and prediction in particular for
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regression problems and the closely related interpolation problems. From here on, the term
regression will be used to describe both problems, regression , i.e., fitting a function to noisy
data and approximate interpolation, i.e, fitting a function which passes (almost) exactly through
the data points. Bayesian inference is a method of statistical inference to draw conclusions
from data about quantities which cannot be directly measured or observed. Within the Bayesian
paradigm, which is adopted throughout this work, probability is used as a yardstick for uncer-
tainty. Consequently, each uncertain quantity or parameter is assigned a probability distribution
to reflect this uncertainty. The distribution describing the uncertainty can be rationally updated
and modified in light of new information using Bayes’ theorem. This updated probability state-
ment is the statistical conclusion obtained by Bayesian inference.

In this work, Bayesian regression techniques are used to a) obtain predictions for patient-
specific parameters which are otherwise obtainable only through invasive measurements, b) to
make inference about functions in terms of computational models with uncertain input param-
eters, and c) to infer a probabilistic relationship between computational models of different
fidelity. Since these techniques are applied in such a variety of contexts, the presentation of
the material in this section is rather abstract and self-contained. However, the similarities will
become clear in later chapters of this work. The focus of the present chapter is to convey the
concepts that are needed for probabilistic inference and predictions based on available data.
Moreover, the theory presented in this section will facilitate the discussion of different uncer-
tainty UQ in Chapter 4.

The vantage point for all considered inference problems is a dataset D = {x(i), y(i)}n

i=1

where
the vector x 2 Rd contains d predictor measurements also referred to as explanatory variables
or input variables. The outcome measurement is denoted by y and is also referred to as response
variable, target variable, or simply target. Note that, if not stated otherwise, the input vector x
is considered to be augmented with an additional entry which is always one in order to account
for a bias or offset. Using matrix-vector notation, the dataset can be also written as: D = (X,y)

where

X =

⇥

x
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⇤
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x
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3

7

7

7

7

7

5

; 2 Rn⇥1. (3.92)

In addition, a latent function f linking input variables to the target is introduced. This function
could, e.g., be a functional relationship but also stand for a complex finite finite element model.
Often, measurements are contaminated with noise such that the following additive error model
is usually assumed

y(i)

= f(x

(i)

) + ✏(i). (3.93)

However, under certain circumstances, the measurements can be considered noise-free, e.g.,
when the y(i) are generated by computer simulations. The function f typically depends on a
number of unobservable parameters ✓. Based on the observed dataset D = {x(i), y(i)}n

i=1

, one
of the goals is the inference of these parameters in terms of a probability distribution.

The way Bayesian inference works is that all available prior knowledge about the parameters
✓ before looking at the data is captured by the so-called prior distribution, or short prior p(✓).
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If little or no information is available, vague or non-informative priors such as Jeffreys’ priors
[166] can be used. However, it is noted that the design of truly uninformative priors can be
tricky and the necessity of prior distributions is considered one of the most controversial aspects
of Bayesian statistics.

Once the prior distribution is set, it is modified in light of observed data, i.e., D = {x(i), y(i)}n

i=1

through a conditional probability distribution referred to as likelihood function p(D|✓) using
Bayes theorem, resulting in the posterior distribution of the parameters. Bayes’ theorem adjusts
the distribution of the model parameters such that they are both probable under the prior and
compatible with the observed evidence or data. Note that for the sake of an uncluttered nota-
tion, the previously used subscript to indicate which random variable a probability density p(·)
describes is omitted from here on if the attribution is clear from the argument of the density
alone.

Similar to the formulation for the probabilities of discrete events in (3.9), Bayes’ theorem can
be stated for continuos random variables

posterior =

likelihood ⇥ prior
marginal likelihood

, p(✓|D) =

p(D|✓)p(✓)

p(D)

. (3.94)

The marginal likelihood, often referred to as evidence, serves as normalizing factor and en-
sures that the posterior is a valid probability distribution which integrates to one. The marginal
likelihood can be expressed as integral of likelihood and prior

p(D) =

Z

p(D|✓)p(✓)d✓. (3.95)

For the computation of the posterior, this term is frequently omitted since a distribution that is
proportional to the likelihood times prior is often sufficient. Bayes’ theorem then reads

p(✓|D) / p(D|✓)p(✓). (3.96)

However, while the marginal likelihood it often neglected for the computation of the posterior,
it commonly used for model comparison.

Once the posterior distribution p(✓|D) has been obtained, it can be used to make predictions
about the value of the response variable y⇤ corresponding to a new test input x⇤. The Bayesian
approach offers multiple choices to obtain estimates for y⇤. The most consistent way is to
compute the weighted average over all possible values of ✓, i.e., integrate over the posterior
distribution p(✓|D) to obtain the posterior predictive distribution for y⇤. Assuming, for the time
being that y is noise free. Then, y⇤

= f ⇤
= f(x

⇤
;✓) and the posterior predictive distribution

for f can be computed by

p(f ⇤|D) =

Z

f(x

⇤
;✓)p(✓|D)d✓. (3.97)

In contrast to deterministic inference approaches, a probabilistic prediction for f ⇤ is obtained,
taking into account the remaining uncertainty about ✓ after seeing the data. This probability
statement is often very helpful as it enables the computation of confidence intervals. Moreover,
point estimates for f ⇤, e.g., mean or median, are readily computed based on (3.97).
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Another way to obtain point estimates for f ⇤ is to use the maximum posterior (MAP) value
✓MAP or mean posterior value ¯

✓ estimate and compute the corresponding value for f ⇤ based on
these point estimates of ✓. This approach is often chosen in situations where the MAP or mean
posterior value of ✓ is significantly easier to obtain than the full distribution.

Bayes’ formula (3.94) looks deceptively simple. The difficulty, and the reason why Bayesian
methods have only relatively recently gained considerable attention, lies not so much in writing
down an analytic formula for the posterior, but rather in the actual computation of the multi-
dimensional integrals like (3.97) or the posterior mean. Although it is possible to evaluate the
posterior density at any given location, the aforementioned integrals can often not be performed
analytically, in which case, the posterior is referred to as analytically intractable.

Only relatively simple models and some combinations of likelihood and prior yield an analyt-
ically tractable posterior. Complex models in combination with elaborate prior models require
the use of advanced numerical sampling procedures such as Markov Chain Monte Carlo or se-
quential Monte Carlo samplers [89, 275], which will be briefly introduced in Section 4.3.2. The
computational costs of these sampling procedures can reach from significant to prohibitive, de-
pending on the model. Aside from sampling based approaches, approximate inference schemes
based on, e.g., expectation propagation [217] or variational Bayesian inference [38] can also be
used.

3.5 Bayesian regression
While the previous section introduced the concept of Bayesian inference in a rather abstract
fashion, the current section is concerned with the application of these concepts to regression
problems. There is a vast amount of literature about different regression approaches and method-
ologies and it is well beyond the scope of this work to provide an overview of all available tech-
niques. Hence, the following sections merely contain a description of the regression approaches
employed in this work and the reader is referred to the respective literature on the topic. Good
overviews of available techniques with a slight bias towards Bayesian approaches is provided,
e.g., by Bishop [38], Gelman and Hill [114], Hastie et al. [145], MacKay [201], Murphy [223].

Below, three different regression models are described: linear regression, Gaussian process
regression, and another non-parametric approach proposed by Koutsourelakis [183] which will
be referred to as Koutsourelakis model or approach from here on. Before the Bayesian inter-
pretation of the standard linear regression model is explained, a brief recap of linear regression
from a least squares perspective is provided. This is meant to aid the reader unfamiliar with
the Bayesian way of thinking to understand the Bayesian approach of regression and inference
by comparing the two points of view. In addition the comparison illustrates the similarities and
differences between the Bayesian and the least squares approach. The least squares perspective
is also helpful for the understanding of polynomial chaos based UQ approaches discussed later
on.

The starting point for all regression problems considered in this work is the assumption of an
additive noise or error as in (3.93). Based on the available dataset D = {x(i), y(i)}n

i=1

, the model
parameters, or rather the distribution of these parameters, have to be estimated, which in turn
can then be used to make predictions about y⇤ for a new test input x⇤. Based on this data, the
goal of a regression analysis is either information, in the sense that the objective is to uncover
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one or more relationships between one or more explanatory variables, or prediction, in the sense
that the goal is to predict the value of y⇤ for a set of new yet unseen explanatory variables x⇤.
Throughout this work, the focus will be more on the prediction side. The dataset which is used
to train the model, i.e., to infer the model parameters, will be referred to as training set. As
opposed to the test set which is used afterwards to evaluate the predictive performance of the
model.

3.5.1 Linear regression from a least squares perspective
In ordinary linear regression one usually starts with the assumption that the function f has the
following functional form:

f(x) = x

T

w, (3.98)

where the vector w denotes the weights or parameters of the regression model which need to
be determined. At this point, it is important to mention that linearity of f is only needed with
respect to w, not with respect to x, and hence, the methodology can be readily extended using
basis functions which are nonlinear in x, see Section 3.5.1.3. The weights can be obtained by
solving a simple least squares problem. Inserting (3.98) into (3.93) yields the squared error

n

X

i=1

�

✏(i)

�

2

=

n

X

i=1

�

y(i) � f(x

(i)

)

�

2

=

n

X

i=1

�

y(i) � x

(i)

T

w

�

2

. (3.99)

The matrix X as defined in (3.92) is usually referred to as design matrix in many statistics
textbooks. Please note that a slightly different definition is used here and the design matrix is
often defined as the transpose of the definition used in this work. Using the definition above,
(3.99) can be rewritten as

k✏k2

=

�

y � X

T

w

�

T

�

y � X
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w

�

. (3.100)

The squared error has to be minimal:

min

w2RN

k✏k2

= min

w2RN

�

y � X
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w

�

T

�

y � X

T

w

�

. (3.101)

Hence, taking the derivative and setting it to zero yields the least squares estimate for the weights

wLS = [XX

T

]

�1

Xy. (3.102)

Having determined the weights of the model, it can be used to make predictions for a yet unseen
data point x⇤. Based on the weights, the predicted value for ȳ⇤ corresponding to a new data
point x⇤ is simply

ȳ⇤
= x

⇤T
wLS. (3.103)

Obviously, this prediction is not perfect and it would be desirable to assess the accuracy of this
prediction.

In addition to the weights, an estimate for the average error between the predicted values
f(x

(i)

) and the true values y can be computed, e.g, by computing the error sum of squares
SS

ess

SS
ess

=

�

�

(y � X

T

w)

T

(y � X

T

w)

�

�

2

. (3.104)
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Dividing by the number of samples in the training set, the root mean squared error (RMSE),
which can be used to assess the accuracy, is obtained using

RMSE =

r

SS
ess

n
. (3.105)

3.5.1.1 Linear regression as Bayesian inference problem

Having described the linear regression problem from a least squares perspective, the current
section introduces the Bayesian point of view. The starting point is again the assumption of a
linear model with additive noise

y(i)

= f(x

(i)

) + ✏(i)

= x

(i)

T

w + ✏(i), (3.106)

followed by the assumption that the error abides by a Gaussian distribution, in other words, the
✏(i) are independent identically distributed samples from a Gaussian distribution

✏(!) ⇠ N (0, �2

✏

) (3.107)

with zero mean and yet unknown variance �2

✏

.
This gives rise to a Gaussian likelihood for the parameters of the model, which are in this

case the weights w.
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(3.108)

The likelihood is a conditional probability distribution for the observations y, viewed as a func-
tion of the parameters, here wand�2

✏

. Interpreted as a function of the parameters, it is also often
written in the following form:

p(y|X,w, �2

✏

) = L(w, �2

✏

|D). (3.109)

The likelihood is not necessarily a valid probability distribution with respect to the parameters
and hence must not integrate to one. Insertion of the linear model yields

p(y|X,w, �2
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Algebraic rearrangement leads to

p(y|X,w, �2

✏
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which can be rewritten using the design matrix as
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or

p(y|X,w, �2
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or in short
p(y|X,w, �2

✏

) = N (X

T

w, �2

✏

I). (3.114)

The second choice that needs to be made is that of prior distributions for the variance of the
noise and the weights. Without any additional information, it makes sense to choose a non-
informative Jeffreys’ prior. For linear regression, a common choice is a uniform prior for the
weights p(w) = U(�1, 1), which technically is not a proper probability distribution as it
does not integrate to one. Hence, it is often referred to as improper prior. Improper priors
can lead to problems as the posterior can become improper, too. However, in the case of the
considered regression problem, this is not the case [115]. For the variance, the prior is chosen as
p(�2

) / ��2

✏

, which can be interpreted as a flat, uniform prior on the log scale, i.e., p(log �) =

U(�1, 1) [113, 167]. As a result, the full prior model is p(w, �2

✏

) / ��2

✏

. Likelihood and
prior are combined to compute the posterior distribution for the weights using Bayes’ theorem,
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which can be rewritten as
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In this particular case, the posterior distributions can be computed analytically. As the likelihood
is Gaussian and a flat prior was used, the conditional posterior distribution can be shown to be
Gaussian as well,
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It is obvious that the posterior mean estimate of the weights is equivalent to the estimate of the
weights wLS obtained with the least squares approach in in (3.117). However, the Bayesian
approach provides information beyond the posterior mean estimate of the weights, e.g., credible
intervals for the weights can be readily computed using the computed posterior distribution. The
marginal posterior distribution of �2

✏

can be shown to follow a scaled inverse-�2 distribution (cf.
Table A.1)

p(�2

✏

|X,y) = Inv-�2

(n � d, s2

), (3.118)

with s2 being

s2

=

1

n � d
(y � X

T

wLS)
T

(y � X

T

wLS), (3.119)

where wLS is the estimated mean value of the weights.
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3.5.1.2 Making predictions

The obtained posterior distributions for w and �2

✏

can be used to obtain probabilistic predictions
for a new test input x⇤ in terms of a conditional probability distribution p(y⇤|x⇤,X,y). As the
regression model is based on the assumption of Gaussian noise, the conditional predictive poste-
rior distribution of y⇤ given w, �2

✏

, y, and X is Gaussian. In combination with the probabilistic
estimates for both w and �2

✏

, the probabilistic estimate for y⇤ is computed by averaging over all
possible values of w and �2

✏

, i.e., integrate over the distributions of w and �2

✏

, which gives

p(y⇤|x⇤,X,y) =
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✏
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✏
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✏

|X,y)d�2

✏

dw. (3.120)

The integrals above can be solved analytically and the resulting predictive distribution for y⇤ is
a non standardized t-distribution (cf. Table A.1) with center

ȳ = x

⇤T
wLS, (3.121)

a squared scale parameter
�̂2

n
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T

)
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x), (3.122)

and n � d degrees of freedom [115]
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For notational convenience, the dependance on the data is omitted here. Using the predictive
distribution, the expected value of y⇤ as well as confidence intervals can be readily computed.
The expected values is simply ȳ⇤, which is equal to the estimate one would have obtained with
the least squares procedure. The 95% confidence intervals are computed using

y⇤
ci = ȳ⇤ ± t

(0.025,n�d)

p
�⇤ 2 (3.124)

where t
(0.025,n�d)

denotes the 2.5 percentile of the t-distribution with n � d degrees of freedom.
If the number of data points is large and the dimension d comparably small, the t-distribution
approaches the Gaussian distribution with negligible error and the 95% confidence intervals are
readily computed based on the confidence interval of a Gaussian distribution

y⇤
ci = ȳ⇤ ± 1.96

p
�⇤ 2. (3.125)

As alternative to using the full posterior distribution of w and �2

✏

to estimate p(y⇤
), point esti-

mates for w and �2

✏

can be used to compute point estimates for y⇤, e.g., the MAP or the posterior
mean. For certain symmetric distributions, e.g., the Gaussian distribution, the MAP is equal to
the posterior mean and for the linear regression example considered here, the MAP for the
weights also coincides with the least squares estimate. The MAP estimate can be computed by
maximizing the posterior with respect to the weights and the variance of the noise, respectively.
In order to close the gap to the least squares procedure, the steps to obtain the MAP for weights
are given here for the sake of completeness. Multiplication of likelihood and prior yields
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This expression needs to be maximized with respect to w in order to obtain the MAP. Because
it is computationally more convenient, the negative logarithm of (3.126) is minimized instead:
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Taking the derivative of the equation above and setting it to zero yields
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[Xy + XX

T

w]. (3.128)

Thus,
wLS = [XX

T

]

�1

Xy, (3.129)

which is equal to the result obtained in (3.102) with the least squares approach.
At this point, it is important to mention that the same predictions including confidence inter-

vals can also be obtained from a frequentist point of view for linear regression [356]. For more
complex models, however, this is usually not the case.

3.5.1.3 Extension using nonlinear basis functions

Of course, the assumption that f varies linearly with x is very restrictive. However, this problem
can be circumvented, at least in principle, by a choosing a higher-dimensional input space by
using a set of m nonlinear basis functions �(x), which map the d-dimensional input space onto
a higher m-dimensional feature space, and then use the linear model in this space, i.e.,

f(x) = �(x)

T

w. (3.130)

Analogous to the definition of X , the design matrix then becomes

� =

⇥

�(x

(1)

) �(x

(2)

) · · · �(x

(n)

)

⇤

; 2 Rm⇥n, (3.131)

containing the columns �(x) for all x(i). Analysis of the model in (3.130) is carried out like for
the standard linear model but X is replaced with � in all formulas. Although using nonlinear
basis functions can remedy the restriction of linearity with respect to x, the appropriate choice of
basis functions can be difficult. While nonlinear basis functions add flexibility, choosing a high-
dimensional basis can lead to severe overfitting of the model and poor predictive performance
when used on new test inputs x⇤. The problem can be alleviated by using appropriate priors or,
if argued from a least squares perspective, regularization. Gaussian process regression, which
is presented in the following section is a popular, and very flexible regression approach, which
can, in fact, be interpreted as linear regression using an infinite number of basis function in
combination with a Gaussian prior on the weights [200, 361].

3.5.2 Gaussian process regression
The derivation of GP regression from the perspective of linear regression using kernel basis
functions is beyond the scope of this work and the reader is referred to [200, 361] for further
details. However, an alternative interpretation, which is referred to as function space-view by
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Williams and Rasmussen [361], provides another way to reach the same result. This approach
is followed here in the subsequent paragraphs. The approach hinges on the interpretation that
a Gaussian process is a distribution over functions and that inference can be made directly in
this function space. As already mentioned above, a Gaussian process is completely defined by
a mean m(x;✓

m

) and a covariance function k(x,x0
;✓

k

). The latter provides the covariance of
values of the Gaussian process at the two locations x and x

0 in the input space. The vectors ✓
m

and ✓

k

contain the a-priori unknown hyper-parameters of the mean and the covariance function
such as, e.g., the characteristic length scales. Any prior knowledge about the smoothness of the
process can readily be incorporated by choosing a particular covariance function, e.g., one of
the covariance functions presented in Section 3.3.1.1.

Starting point for GP regression is the definition of a GP prior over f(x)

f(x)|✓
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,✓
k

⇠ GP�m
f
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m

), k
f

(x,x0
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k

)

�

. (3.132)

The assumption of an additive, independent, and identically distributed Gaussian error gives rise
to a Gaussian likelihood defining the relative plausibility of f(x) given the data

p(y|f ,X) = N (f , I�2

✏

). (3.133)

Therein, I is the identity matrix and the vector f denotes the finite-dimensional subset of f

evaluated at all training points x

(i). Likelihood and prior can be combined to compute the
posterior of f which is also a GP and consequently the posterior distribution p(f ⇤|x⇤, D) for a
new point in the input space x

⇤ is Gaussian
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In the formula above, K denotes the covariance matrix K with the entries K
ij

= k(x

i

,x
j

; ✓̂

k

)

and k(x

⇤,X; ✓̂

k

) denotes the covariance vector between the test point x⇤ and the n training
points aggregated in X . The posterior variance in (3.136) captures the uncertainty about the
function f after seeing the data. Areas with fewer data point will exhibit larger variance as
compared to regions in the input space where data is more dense. Often, also the predictive
distribution p(y⇤

) is of interest rather than the distribution p(f ⇤
), and hence, (3.134) is used in

combination with the previous assumption that, conditional on f ⇤, y⇤ is normally distributed,
i.e.,

p(y⇤|f ⇤
) = N (f ⇤, �̂

✏

2

). (3.137)

Thus, the predictive distribution of y⇤ is computed by averaging over all possible values of f ⇤

p(y⇤|x⇤, D) =

Z

p(y⇤|f ⇤
)p(f ⇤|x⇤, D)df ⇤, (3.138)
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which results in the predictive distribution for y⇤, which is also Gaussian,

p(y⇤|x⇤, D) = N (

¯f ⇤, �⇤2
) (3.139)

with mean
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and variance
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Since the predictive distribution is Gaussian, the 95% confidence region is readily computed
using

y⇤
ci

=

¯f ⇤ ± 1.96

p
�⇤ 2. (3.142)

3.5.2.1 Determination of hyper-parameters

So far, the issue of determining the value of the hyper-parameters of mean and covariance func-
tion has been neglected. In typically scenarios, the value of the hyper-parameters is not known
a-priori and estimates for the hyper-parameter have to be inferred from the data as well. For
notational convenience, the collection of all hyper-parameters and the variance of the noise
[✓

m

;✓

k

; �2

✏

] will be denoted as ✓ in the following. In a fully Bayesian approach, a hyper-prior
distribution p(✓) is assigned to all unknown hyper-parameters. These hyper-parameters would
then be marginalized out from the joint posterior distribution in order to obtain the predictive
distribution for y⇤. However, as a result the joint posterior would no longer be analytically
tractable.

Hence, a different approach is followed here and the marginal likelihood is maximized instead
to obtain reasonable point estimates for the hyper-parameters [361, Chap. 5]. This procedure is
often referred to as training of the GP. Its result is the tractable Gaussian posterior given above
in (3.139).

The marginal likelihood (evidence) can be computed by

p(y|X,✓) =

Z

p(y|f,X,✓
l

)p(f |✓
p

)df. (3.143)

Instead of maximizing the marginal likelihood directly, it is more convenient to minimize the
negative logarithm of the marginal likelihood L(✓) instead. The negative logarithm of the
marginal likelihood is given by

L(✓) =

1
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(3.144)

A suitable point estimate for the hyper-parameters ✓ can then be obtained by

✓̂ = arg min

✓2⇥

�L(✓)

�

. (3.145)
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Some of the hyper-parameters are subject to a positivity constraint. A simple way to ensure
that these parameters remain positive is to perform the minimization of L with respect to the
logarithm of these hyper-parameters. The negative log of the marginal likelihood can, of course,
feature multiple local minima and the usual gradient based optimization schemes might not
always converge to the global minimum. However, it was found that an educated initial guess
for the hyper-parameters in combination with conjugate gradient schemes provides good results
for the problems considered here. Note that the GPML toolbox [271] was employed for the
construction of the GP based regression models used in this work.

3.5.3 Koutsourelakis regression approach
The third kind of regression model, which is used in this work, was proposed by Koutsourelakis
[183]. Hence, this particular variant will be referred to as Koutsourelakis model, or Koutsoure-
lakis approach. Although this model bears some resemblance to the GP regression approach,
the Koutsourelakis approach differs from the GP approach regarding flexibility of the model and
consistency with the Bayesian paradigm. More specifically, the regression approach proposed
by Koutsourelakis is more flexible and can cope with varying scales of fluctuation, i.e., chang-
ing characteristic length scales. In addition, in can be considered a more consistent approach
because it is based on a hierarchical, fully Bayesian formulation with priors and hyper-priors
assigned to all a-priori unknown parameters and hyper-parameters. As a consequence, the pos-
terior is no longer analytically tractable and advanced sampling schemes are needed to draw
samples from it. While the loss of analytic tractability can be considered a drawback of this
approach, the fully Bayesian approach adds flexibility to the model and the overall approach is
considered to be more consistent with the Bayesian paradigm.

The main concepts of the Bayesian regression model proposed by Koutsourelakis [183] will
be briefly outlined here for the sake of completeness. Because it is convenient for the specifica-
tion of the prior for this model, it is assumed that the input has been rescaled to the interval [0, 1].
Moreover, in contrast to the models discussed in the two previous sections, the input vector x
is not augmented with a constant term in the following. Starting from the same assumption as
before, i.e., that the error can be modeled as additive Gaussian noise, the model proposed by
Koutsourelakis [183] assumes the following functional form based on isotropic Gaussian kernel
functions

f(x,✓) = a
0

+

k

X

j=1

a
j

exp (�⌧
j

k⌫
j

� xk2

), (3.146)

therein, the vector ✓ contains all parameters of the model, including the number of kernel func-
tions used in this expansion which defines the cardinality k of the model, and which will be also
inferred from the data.

✓ = {k, {a
j

}k

j=0

, {⌧
j

}k

j=1

, {⌫
j

}k

j=1

}. (3.147)

The coefficients {a
j

}k

j=0

determine the weight of each kernel and a constant term, respectively.
The effect of the precision parameters of the kernels {⌧

j

}k

j=1

is analogue to the inverse of the
characteristic length scale of a covariance function. Small values of ⌧ correspond to a larger
scale of variability and vice versa. The set {⌫

j

}k

j=1

contains the locations of the kernel centers.
With likelihood and functional form defined, the prior distribution for all parameters has to be

specified. Note that by following a fully Bayesian approach with a hierarchical non-parametric
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prior, non-Gaussian posterior distributions can be obtained for y if all model parameters are inte-
grated out. This property is considered to be an advantage of this approach. The Koutsourelakis
model shares some similarities with another Bayesian regression approach called the relevance
vector machine [326, 327]. However, in contrast to [326], the number of kernel functions is not
a priori fixed, and, in addition, a more elaborate hierarchical prior model is adopted here.

3.5.3.1 Prior model

As proposed by Koutsourelakis [183], a hierarchical prior model with the following from is
employed:

p(k, {a
j

}k

j=0

, {⌧
j

}k

j=0

, {⌫
j

}k

j=0

) / p(k) ⇥ p({a
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}k

j=0

|k)

⇥ p({⌧
j

}k

j=0

|k) ⇥ p({⌫
j

}k

j=0

)|k).
(3.148)

The prior on the number of kernel functions in (3.146) is chosen to be a Poisson prior (cf.
Table A.1), which favors sparse representations, avoids over-fitting, and ensures that the simplest
regression model explaining the data is chosen [183].

p(k|�
k

) = exp(��
k

)

�k

k

k!

, k = 0, 1..., 1. (3.149)

As result of the chosen prior, the total number of kernel functions and the dimension of the
parameter space is a priori not fixed, but due to computational limitations the distribution is
truncated at kmax. To increase robustness and flexibility, an exponential hyper-prior p(�

k

|s) =

s exp(��
k

s) (cf. Table A.1) is put on the hyper-parameter �
k

. The resulting distribution can be
integrated with respect to � and the following result is obtained

p(k|s) / 1

(s + 1)

k+1

, k = 0, 1, ..., kmax. (3.150)

A Gamma(a
⌧

, b
⌧

) prior (cf. Table A.1), which favors smoother functions with a longer scale of
variability, is put on the each of the ⌧

j

. Assuming that the ⌧
j

are independent, this yields
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Here, �(·) denotes the Gamma function. Setting b
⌧

= µ
j

a
⌧

defines a location parameter µ
j

,
on which an exponential hyper-prior p(µ

j

|a
µ

) = 1/a
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/a
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) with hyper-parameter a
µ

is
used. Integrating over the µ

j

yields the prior model for the scale parameters:
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For the weights, a multivariate normal prior was chosen,

p({a
j

}k

j=1

|k, �
a

) = N (0, �2

a

I

k+1

), (3.153)
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where I

k+1

denotes the k + 1-dimensional identity matrix. A Gamma(a
0

, b
0

) distribution is
placed as a prior on 1/�2
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. Integrating out 1/�2
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Lastly, a prior distribution for the location of the kernel functions is needed. As before, the prior
is chosen in accordance with Koutsourelakis [183], who proposed a uniform prior

p(⌫
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|k) =

1

Vk

(3.155)

where V denotes the volume of the hypercube of the input space. By combining (3.148) with
(3.150) to (3.155), one arrives at the complete prior model for the parameters ✓:
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The remaining hyper-parameters s = 1.0, a
⌧

= 1.0, a
µ

= 0.01, a
0

= 1.0, b
0

= 1.0 were set
according to Koutsourelakis [183] and are used throughout this work. In addition to the prior
on ✓, an Inv-Gamma(a, b) prior (cf. Table A.1) was chosen for the variance �2

✏

of the Gaussian
noise with hyper-parameters a = 2 and b = 10

�6 used throughout this work.

3.5.3.2 Obtaining the posterior distribution

Combining likelihood and prior using Bayes’ theorem yields the following equation for the
posterior distribution

p(✓, �2

✏

|X,y) / p(y|X,✓, �2

✏

)p(✓)p(�2

✏

). (3.157)

It is convenient to integrate out the variance of the noise �2

✏

analytically first. The expression for
the likelihood where the variance of the noise has been integrated out is easy to obtain because
the prior p(�2

✏

) is conjugate to the likelihood above. Inserting the Inv-Gamma(a, b) prior and
integrating with respect to �2

✏

yields
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(3.158)

which can be used to obtain the marginal posterior distribution p(✓|X,y) through combination
with the prior p(✓)

p(✓|X,y) / L(✓)p(✓). (3.159)
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The expression above is analytically intractable and advanced Monte Carlo procedures such as
Markov Chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) are required to draw
samples from the posterior. While the discussion of MCMC is beyond the scope of this work
and the reader is referred to, e.g., [14, 106, 275] for an introduction to MCMC methods, a brief
description of the SMC approach used in this work will follow in Section 4.3.2. In order to
use SMC to obtain samples from the posterior, a sequence of auxiliary distributions is required,
bridging the gap between the prior, which can be easily sampled from, and the posterior. To
that end Koutsourelakis [183] introduced the following sequence of {⇡

n,�

} based on a modified
Likelihood L

�

(✓) and the number of training samples n

⇡
n,�

(✓) / L
n,�

(✓)p(✓), (3.160)

with L
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(✓) being defined as
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As with the other regression techniques presented in this work, the goal is to make probabilis-
tic predictions about the value of y for a new test input x⇤. Hence, in addition to the posterior
p(✓|X,y), information about the variance of the noise term is needed as well. It can be shown
that the conditional posterior p(�2

✏

|✓,X,y) has the following form
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(3.162)

Hence, if a set of samples from the posterior p(✓|X,y) is available, samples of �2

✏

are easily
computed by sampling from (3.162).

In the present work, the regression model proposed by Koutsourelakis [183] was used for
regression with one-dimensional input only. Moreover, the functional relationship was slightly
modified through the addition of a linear term in (3.146), which enhanced the performance of
the model and reads
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To accommodate the linear term, the prior had to be adjusted accordingly. For one-dimensional
input, the adjusted full prior model then reads
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4 Existing approaches for uncertainty
quantification and limitations
regarding complex models

Model-based UQ is arguably now one of the fastest growing methodological paradigms in the
field of computational simulation of engineering systems and has received a lot of attention
amongst researchers from different scientific fields in recent years. Both the engineering com-
munity and the field of applied mathematics have contributed tremendously to this area of re-
search. This has led to marked progress and the development of many different approaches for
the propagation of uncertainties through computational models. In this work, the focus lies on
probabilistic approaches, i.e., approaches where uncertainty is described using random variables
or processes. Non-probabilistic approaches, such as approaches based on fuzzy set theory, in-
terval analysis, Dempster-Shafer theory, or polymorphic uncertainty are not considered in this
work and the reader is referred to the corresponding literature on the subject [77, 165, 220, 294].

The present chapter begins with an abstract description of the UQ problem at hand and a
brief discussion of the challenges associated with model based UQ. Then, a short review and
introduction to state-of-the-art methods for UQ is given. Because some of these approaches are
employed in this work a more detailed explanation than necessary in a pure literature review,
is given. The emphasis is placed on two major categories which apply to the majority of the
existing approaches. The first broad class of algorithms is based on sampling approaches like
Monte Carlo (MC) and all its variants. These methods can be applied regardless of forward
model complexity or stochastic dimension, but often require an impractical or infeasible amount
of forward model evaluations for accurate results. First, standard the Monte Carlo approach is
discussed as it is extensively used for validation purposes in this work, before some of the
more advanced techniques are briefly reviewed. Sequential Monte Carlo (SMC) algorithms are
introduced, because SMC is used in this work to sample from high-dimensional distributions
arising in the context of Bayesian inference. As SMC can also be used for the purpose of UQ,
especially for estimating small failure probabilities, and because it fits better together with a
discussion of Monte Carlo and importance sampling, it is also discussed in this chapter instead
of the previous one.

Then, some classic approaches such as second order methods and reliability methods based on
first and second order reliability analysis (FORM/SORM) will be briefly touched for the sake of
completeness, before discussing the second major category of UQ methods, which are methods
based on some kind of surrogate model or metamodel. More specifically, surrogate models
that are either based on some form of the Polynomial Chaos Expansion (PCE) or on Gaussian
process models are introduced in this chapter. For low dimensional stochastic problems, i.e.,
systems which are governed by relatively few random variables, surrogate models are often the
method of choice and provide results of comparable accuracy to Monte Carlo solutions at a
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fraction of the computational cost. However, surrogate based UQ approaches are not suitable
for problems with high stochastic dimension.

4.1 Problem description
In the context of UQ it is often helpful to think of a model, e.g., a finite element model of an
AAA, as an abstract function f : Rd ! R which maps a vector of input parameters x 2 Rd to
the response y

y = f(x). (4.1)

Thereby, model input parameter is to be understood in a very broad sense, meaning that x can
describe, e.g., constitutive parameters, boundary conditions, the geometry of the model, or any
combination of these, either explicitly or via an appropriate parametrization. The model f(·) is
often referred to as forward model, solver or simulator. It is also often spoken of a code which
can be evaluated at certain locations in the input space. In principle, it is thereby irrelevant
whether f(·) is a complex computational model which requires the run of an elaborate finite
element solver to compute y or an analytic function. For the sake of simplicity scalar quantities
of interests, i.e., model outputs y, are considered here to facilitate the discussion. However,
vector valued output could be considered as well and the extension to multi-dimensional output
is straightforward for many UQ methods. As with the input, the model output is to be interpreted
in a very general sense and can also be a function of direct model output quantities.

Throughout this work, uncertainty is described using probability theory. Hence, if the input
parameters are uncertain, they can be described by a random vector x. As a consequence, the
response becomes random too

y = f(x). (4.2)

The goal of UQ is inference about the random variable y. Depending on the application different
summaries or statistics are relevant. Frequently, one is interested in expectations of the form

Z

h(y)p
y

(y)dy = E[h(y)] = E[h(f(x))] =

Z

h(f(x))p
x

(x)dx. (4.3)

For h(y) = y and h(y) = (y � E[y])

2 one obtains the first moments E[y] and V[y], respectively.
Often the mean and variance are not sufficient and also an estimate of the PDF or CDF of y is
desired. These can be used to compute quantiles or prediction intervals. For instance, in this
work the 95% quantile, i.e., the value of y below which 95% of the observations/realizations
fall, is used as worst case estimate for y.

Aside from mean, variance, or the full probability distribution the computation of a so-called
failure probability is of interest in many UQ applications. Based on the assumption that a system
fails if the output falls into the domain A, it is desired to compute the probability of failure,
i.e., P (y 2 A). The failure domain could for instance be defined by a failure threshold, i.e.,
A : y > y

fail

. The probability of failure can then be computed by evaluation of the following
integral

P (y 2 A) = P
fail

=

Z

1A(y(x))p
x

(x)dx (4.4)
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The estimation of the above mentioned quantities is often a challenging problem because f(·)
is usually not known explicitly, since it represents a complex computational model. And even
if it were known in closed form, an analytic solution to (4.3) or (4.4) is not available in all but
the simplest cases. Moreover, the dimension of the problem, often referred to as the stochastic
dimension of the problem, can be very high. This can have two reasons. First, only one or few
physical input parameters of the computational model are uncertain, but each of them has to be
modelled by a stochastic process or field. These processes have to be discretized using, e.g.,
one of the methods described in Section 3.3.3, which typically results in a description based on
many, often thousands, random variables. Second, many of the physical input parameters are,
in fact, uncertain, but admit a description with random variables instead of random processes or
fields. To be able to distinguish the two cases the notion of physical and mathematical stochastic
dimension is introduced here. The physical stochastic dimension denotes the number of uncer-
tain physical parameters in the model, whereas the mathematical stochastic dimension denotes
the total number of random input variables which might also originate from a stochastic field
model for a single uncertain physical input parameter.

The type of summary or statistic, that a UQ method provides, is obviously an important cri-
terion for choosing a method, as not all UQ approaches can provide estimates for all summaries
or statistics of the quantity of interest y. For instance, multiple so-called reliability methods
have been designed in the past specifically to tackle the computation of small failure proba-
bilities. While some of these methods are very efficient for the computation of small failure
probabilities, these methods typically cannot be used to obtain information beyond this failure
probability.

Another important aspect is the ability to cope with forward model complexity. UQ methods
drastically differ in their ability to cope with the complexity of the forward model. Some UQ
approaches are for instance limited to linear forward models. In the context of computational
solid mechanics many forward models exhibit nonlinear behaviour due to, e.g., geometric non-
linearities, constitutive nonlinearities, or boundary condition nonlinearities. Regarding other
applications, many models also show distinct nonlinearities or even discontinuities in the map
from model input to model output.

Similarly, UQ approaches differ in their ability to deal with stochastic model complexity.
Some methods are limited to a certain type of probability distribution for the random model
inputs, such as the standard normal distribution. Moreover, not all methods can cope with
correlated input parameters or a high stochastic dimension of the problem. Many UQ methods
suffer from the so-called curse of dimensionality, meaning that the computational complexity is
drastically influenced by the stochastic dimension of the model.

Often it is distinguished between so-called intrusive and non-intrusive UQ approaches. Intru-
sive approaches are essentially based on modifications of the governing equations by including
parametrized input uncertainty into the model and deriving a new set of equations to be solved
with a tailored numerical solution scheme. This implies that access to the source code is needed
and that elaborate legacy codes can, in general, not be used. Thus, the implementation of these
methods can be cumbersome and time consuming. Moreover, intrusive implementations are
often tailored to a specific problem, i.e., a specific partial differential equation, which hampers
reuse. In contrast, non-intrusive approaches use the forward model as a black-box and do not
necessarily require access and/or modification of the source code of the forward solver, but
merely require a series of evaluations of the forward model. Having said that, it is often useful
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to be able to modify the source code of the forward solver even if non-intrusive approaches
are used. For instance, implementation of a parameter continuation scheme, which requires
modification of the code, can dramatically speed up forward model evaluations. Because non-
intrusive approaches treat the forward model as black-box it is often straightforward to adapt
non-intrusive approaches to another type of forward problem, which is considered a major ad-
vantage.

While the aim of UQ is essentially the inference and description of the unknown distribution
of the stochastic model output y due to uncertain input parameters x, the aim of sensitivity analy-
sis is the identification of the contributions of particular subsets or individual uncertain input
parameters x

i

to the overall uncertainty in y. Identification of the components which contribute
the most and the least to the overall output uncertainty is important. First of all because the
components of x which do not contribute much to the overall output uncertainty could be fixed at
some average value. Secondly, a more accurate assessment of the parameters which contribute
the most to the output uncertainty would yield the biggest improvement and hence resources
should be focused primarily on the more accurate assessment of these parameters. However, the
primary focus of this work is UQ and hence methods for sensitivity analysis are not discussed
in detail here but the inclined reader is referred to, e.g., [156, 288, 306] for a more detailed
discussion of the subject.

4.2 Monte Carlo

Standard Monte Carlo is by far the most versatile and easy to implement UQ method. A rela-
tively recent review on UQ methods for engineering problems describes the Monte Carlo method
as ”perhaps the only universal tool for treating complex stochastic finite element applications”
[314]. It can be applied regardless of system complexity and stochastic dimension. Moreover, it
enables the computation of any desired response statistic and also provides an estimate for the
PDF of the quantity of interest. In addition, all desired quantities can, at least in principle, be
computed to arbitrary precision. That, however, comes at significant and sometimes prohibitive
computational cost, which is essentially the ”only” drawback of the Monte Carlo method. Be-
cause the Monte Carlo method is extensively used in this work, the basics of the standard Monte
Carlo methods are discussed here in more detail.

In order to use Monte Carlo one requirement is the ability to draw a number of samples
from the vector of random input quantities, i.e., {x(i)}N

SAM

i

⇠ p
x

(x) and then evaluate the
model f for these samples. Additionally, some very mild assumptions about the random output
y have to be made, namely that the integrals (3.27) and (3.28) exist, i.e., that y has a mean
E[y] = µ

y

and finite variance. If this is the case the following estimators can be used, resulting
in approximations for mean and variance of y:

µ
y

⇡ µ̂
y

=

1

NSAM

NSAM
X

i=1

f(x

(i)

) =

1

NSAM

NSAM
X

i=1

y(i), (4.5)

�2

y

⇡ �̂2

y

=

1

1 � NSAM

NSAM
X

i=1

⇣

f(x

(i)

) � µ̂
y

⌘

2

. (4.6)
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The estimate for the mean µ̂
y

is also a random variable. The variance of µ̂
y

can computed by

V[µ̂
y

] = E[(µ̂
y

� µ
y

)

2

] =

�2

y

NSAM

(4.7)

and be used to assess the accuracy of the Monte Carlo estimate, e.g., by computing the RMSE:

RMSE(µ̂) =

�
yp

NSAM
⇡ �̂

yp
NSAM

. (4.8)

Since the variance of y is generally not known, it has to be estimated from the samples as well.
The estimate �̂2

y

is asymptotically correct; however, for small sample sizes the estimate might
be very poor, which might lead to a false sense of convergence.

In addition, Monte Carlo can also be used to estimate failure probabilities. To estimate the
failure probability, the integral in (4.4) is approximated by the empirical mean

ˆPfail =

1

NSAM

NSAM
X

i=1

1A(x

(i)

) =

Nfail

NSAM
. (4.9)

The variance of that estimate can also be computed as

V[Pfail] = Pfail(1 � Pfail), (4.10)

which in turn can be used to compute confidence intervals for Pfail. However, it is more common
to express the accuracy of the estimate in terms of the COV, which in this case can be calculated
as

COV
Pfail =

p

Var[Pfail]/Pfail ⇡ 1/
p

NSAMPfail. (4.11)

In practical applications though one generally does not know Pfail and hence the estimated ˆPfail

has to be used to assess the accuracy, which can be low if Pfail is very small.
Aside from expectation, variance, and failure probabilities, Monte Carlo provides empirical

estimates for PDF, CDF, or confidence intervals for y as well. The Monte Carlo estimate for
p
y

(y) for instance is obtained by

p
y

(y) ⇡ 1

NSAM

NSAM
X

i=1

�
y

(i)

(y(x

(i)

)), (4.12)

where �
y

(i)

is the delta-Dirac mass. From a more general point of view, the Monte Carlo method
provides a particulate approximation to the distribution of interest which also can be written
more general as

p
y

(y) ⇡
NSAM
X

i=1

W (i)�
y

(i)

(y(x

(i)

)), (4.13)

where the W (i) denote the so-called normalized weights. In case of standard Monte Carlo all
samples have the same weight W (i)

= 1/NSAM. However, this does not need to be the case. In
many sampling based schemes so-called weighted particles {y(i), W (i)}NSAM

i=1

are used to approx-
imate a distribution. Thereby, the particles usually do not have the same weight.
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4 Existing approaches for uncertainty quantification and limitations regarding complex models

Confidence intervals for y are readily computed by reordering the samples in ascending order,
e.g., through re-indexing the samples y(i) as y(i)

0 such that y(1)

0  y(1)

0  · · ·y(NSAM)

0 . Then, a
(1 � ↵)% confidence interval containing (1 � ↵)% of all samples is readily obtained through

[ycf,low, ycf,up] = [y
j

, y
k

] with j = (NSAM+1)↵/2 and k = (NSAM+1)(↵/2�1). (4.14)

Arbitrary quantiles can be computed in a similar fashion as well. Having discussed the general
Monte Carlo procedure as well as the requirements, it is apparent that the Monte Carlo method
is a very general approach and easy to implement, since the computational model is treated as a
black-box. Moreover, because the samples are independent from each other, the algorithm can
be easily executed in parallel harnessing massively parallel computer architectures. The ability
to estimate any desired response statistics is also considered very beneficial. In addition, as can
be seen in (4.8) and (4.11) the accuracy of the estimates do not depend on the dimension of x
per se. This feature sets Monte Carlo apart from many other UQ approaches whose accuracy
deteriorates dramatically with increasing dimension of the problem, given that the number of
forward model evaluations is fixed. While the dimension by itself does not affect the accuracy
if additional random dimensions are considered, it is likely that the variance of the response �2

y

increases, which in turn effects the error in (4.8). An exception are models where one or more
physical parameters are modelled as stochastic processes, which results in a high stochastic
dimension of the problem. If the accuracy of the representation of the process is increased,
say by considering a larger number of terms in the representation of the process, the additional
random input variables will not have a dramatic effect on �2

y

.
Although Monte Carlo is conceptually simple, easy to implement, and can provide all desired

statistical quantities, its application is hampered by the computational effort that is needed to
achieve accurate results. The convergence rate of Monte Carlo is O(1/

p
NSAM) and an accurate

estimation of the aforementioned quantities requires a large number of model evaluations. Espe-
cially, for the estimations regarding the tail of the distribution, e.g., small failure probabilities or
99% quantiles, (4.11) indicates that the number of necessary samples becomes extremely high.
Moreover, the error estimates for the computed quantities hold only in the limit NSAM ! 1,
and might not be accurate for smaller sample sizes. Anyway, for current state of the art model in
computational mechanics the solution time to for a single forward model evaluation is typically
in the order of hours or even days using multiple processors. Hence, direct Monte Carlo with
several thousands or tens of thousands samples is prohibitively expensive or at least impractical.

4.3 Advanced sampling techniques

Since its introduction in 1949 by Metropolis and Ulam [214], researchers have made consid-
erable progress in improving the overall efficiency of standard Monte Carlo sampling. Most
of the conducted research aimed at reducing the computational cost by reducing the variance
of the estimators through selecting samples that fill the sample space more effectively than
purely random sampling. A popular class of techniques to improve on the accuracy of standard
Monte Carlo is stratified sampling, which includes the popular Latin hypercube sampling (LHS)
method [211]. The basic idea of these techniques is the subdivision of the sample space into
smaller regions which are then sampled separately. In the most basic version of LHS the range
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of each random dimension is divided into a number of j disjoint subsets which have equal prob-
ability. Then, for each dimension separately, j sample components are drawn, one from each
subset. Subsequently, a sample can be assembled by randomly drawing without replacement
from each of the generated sample components. This process is then repeated j times. Since
the assembly process is random, LHS is not unique and several algorithms have been proposed
to determine optimal pairings to produce samples which fill the sample space more effectively.
The design of optimal space filling sampling is an active area of research and many variants to
LHS as well as many alternatives have been proposed, see, e.g., [298, 344] and the references
therein. LHS has been successfully applied to UQ problems and it has been demonstrated that
it can improve the accuracy compared to standard Monte Carlo [150, 243]. Alas, it is in general
hard to predict the gain in computational efficiency since it depends on the specific application
as well as the structure and dimensionality of the investigated system [315]. Another option are
so-called Quasi-Monte Carlo methods, where the sampling is no longer random but based on
deterministic sequences, see, e.g., [55, 123] for further information.

4.3.1 Importance sampling based schemes
Importance sampling (IS) is another well known sampling approach, which forms the basis of
many advanced sampling schemes, including sequential Monte Carlo techniques, which will be
discussed shortly. It is essentially a variance reduction technique to increase the accuracy of
Monte Carlo. However, another equally important aspect is that the IS also provides a way to
compute estimates of properties of a distribution when only samples from a different distribution
than the distribution of interest are available.

Consider for instance the expectation of a general function '(x) under a probability distribu-
tion p

x

(x) in the form of

E['(x)] =

Z

'(x)p
x

(x)dx. (4.15)

The underlying concept is to draw samples x(i) from a so called importance distribution q
x

(x)

instead of p
x

(x). Ideally, the distribution q
x

(x) is concentrated in the important regions of
the parameter space. First, the usual integral (4.15) is simply extended with the importance
distribution q

x

(x), yielding

E['(x)] =

Z

'(x)p
x

(x)dx =

Z

'(x)p
x

(x)q
x

(x)

q
x

(x)

dx. (4.16)

Then, instead of drawing samples from p
x

(x) samples are drawn from q
x

(x), {x(i)}N

SAM

i

⇠
q
x

(x) and E['(x)] can be computed by

E['(x)] ⇡ 1

NSAM

NSAM
X

i=1

'(x

(i)

)p
x

(x

(i)

)

q
x

(x

(i)

)

=

1

NSAM

NSAM
X

i=1

'(x

(i)

)w(x

(i)

), (4.17)

with the unnormalized importance weight w(x) defined as

w(x) =

p
x

(x)

q
x

(x)

. (4.18)
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Using a more general notation and the concept of weighted particles {x(i), W (i)}Np
i=1

introduced
above, (4.17) can be written as

E['(x)] ⇡
Np
X

i=1

'(x

(i)

)W (i), (4.19)

with the normalized importance weights W (i), which can be computed from the unnormalized
importance weights w(i) of each particle by

W (i)

=

w(x

(i)

)

P

Np
i=1

w(x

(i)

)

=

w(i)

P

Np
i=1

w(i)

. (4.20)

Moreover, the particles provide an approximation to the distribution p
x

(x)

p
x

(x) ⇡
Np
X

i=1

W (i)�
x

(i)

(x). (4.21)

There are many scenarios in which importance sampling can be useful, one of which is the more
efficient estimation of failure probabilities, i.e., when '(x) = 1(f(x) > yfail) = 1A(x). For
the efficient estimation of P

fail

the importance distribution has to be concentrated in the region
of the failure domain. If a suitable importance distribution can be found, it can be shown that
importance sampling yields a more accurate estimator [275]. However, finding a suitable impor-
tance distribution is non-trivial in practice, especially for high-dimensional problems. Several
approaches have been proposed to construct importance distributions for the estimation of small
failure probabilities. Using design points obtained with, e.g., FORM analysis (cf. Section 4.4)
or performing an initial sampling step to identify import regions has been proposed by Bourgund
and Bucher [45] and Bucher [53]. Other approaches are based on kernel density estimation us-
ing samples in the failure domain obtained with Markov Chain Monte Carlo (MCMC) [15, 17].
Overall, it was found that the effort required to construct suitable importance distribution can
be very significant and that the extension to high dimensional problems is not straightforward
[18, 171]. To overcome the limitations of IS for reliability problems, other sampling methods
to estimate small failure probabilities have been proposed, e.g., line sampling [184], asymptotic
sampling [54], and subset simulation [17, 21]. Especially the latter was particularly successful
and has been applied to a variety of reliability problems [19, 20, 27, 245, 250]. Subset simu-
lation is also known as annealed importance sampling [228]. It is worth mentioning that the
aforementioned sampling schemes can be augmented by surrogate models (cf. Section 4.6) to
further improve the performance by reducing the number of model evaluations through incor-
poration of cheap to evaluate surrogate models [46, 71, 94]. However, it is important to keep in
mind that surrogate models tend to perform worse with increasing stochastic dimension of the
problem.

4.3.2 Sequential Monte Carlo
Another, scenario in which the importance sampling principle can be applied is when one can-
not sample directly from the distribution of interest. Consider for instance a Bayesian regression
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model f(x,✓) as given in (3.146), where ✓ contains the parameters of the model which are to
be inferred from data. Making predictions for a new test input x⇤,i.e., compute p(f ⇤|x⇤, D)

or obtain point estimates such as E[f

⇤
] requires sampling from the posterior distribution p(✓),

which usually cannot be done using the usual pseudorandom generators or other standard meth-
ods such as rejection sampling. Since designing a suitable importance sampling distribution
from scratch is extremely difficult or even impossible for moderate to high dimensional distri-
butions, MCMC techniques are usually used to obtain samples from the posterior distribution
[13, 361]. As pointed out in, e.g., [183], some of the disadvantages of MCMC techniques can
be improved upon by using sequential Monte Carlo (SMC) techniques. Sequential Monte Carlo
algorithms are, to some extend, an extension of importance sampling, which present a remedy to
this problem by, roughly speaking, building up the importance distribution sequentially [57, 76].
Furthermore, the aforementioned subset simulation can also be understood as a particular ver-
sion of SMC.

Sequential Monte Carlo provides a very general framework to sample from complex high
dimensional distributions based on a number of intermediate distributions as bridging steps.
SMC is used in this work to obtain samples from the posterior distribution of the Bayesian
regression model described in Section 3.5.3 and not to estimate failure probabilities. However,
the brief description of the approach is kept very general such that the application of the method
in the context of estimating small failure probabilities becomes clear as well.

Assuming that ⇡
t

(x) is the target density, one wishes to sample from or integrate over, and
that, moreover, this density is known up to a normalizing constant Z

t

, i.e.,

⇡
t

(x) =

�
t

(x)

Z
t

. (4.22)

Instead of considering the target distribution directly, a sequence of intermediate distributions
is designed to break down the problem into a series of easier ones. The goal is a series of
distributions {⇡

n

}t

n=1

which transition gradually from a simple, and hence easy to sample from,
distribution to the distribution of interest. Such series often arise naturally in Bayesian inference
schemes. Consider, e.g., the following sequence

⇡
n

(x) / p(x|y
1

, ..., y
n

), (4.23)

where t data points are available. Or a sequence of bridging distributions to move smoothly
from a tractable ⇡

1

= ⌘ distribution to the target distribution ⇡
t

⇡
n

(x) / ⇡(x)

�

n⌘(x)

1��

n , (4.24)

where 0  �
n

 �
t

= 1. Another option is the sequence defined in (3.160).
For estimating small failure probabilities, i.e., P (f(x) > yfail) ⇡ 0, the following definition

of {⇡
n

}t

n=1

based on an increasing sequence of thresholds f
1

 f
2

 f
3

 f
t

= yfail can be
used:

⇡
n

(x) / ⇡(x)1A,n

(x), (4.25)

where 1A,n

(x) is the indicator function of the events f(x) > f
n

. Without going into the details,
which are provided in [76], as to why this is necessary in order to build up an importance
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distribution sequentially, a second, auxiliary sequence of distributions is defined on an extended
space

�̃
n

(x

1:n

) = �
n

(x

n

)

n�1

Y

k=1

L
k

(x

k+1

,x
k

). (4.26)

Therein, �̃
n

(x

1:n

) is defined on ⌦n

= ⌦ ⇥ ⌦ ⇥ ⌦ ⇥ · · · ⇥ ⌦. In addition, the notation
x

1:n

= [x

1

,x
2

, · · ·,x
n

] is used. The construction of this sequence is such that {�̃
n

(x

1:n

)}t

n=1

admits �
n

(x

n

) as marginal distribution in every step. Based on the notion that the index n is
associated with time, the auxiliary distributions are defined using so-called backward Markov
kernels L

k

(x

k+1

,x
k

), which denote the probability density of moving from x

k+1

to x

k

. Simi-
larly, the importance sampling distribution is build up sequentially as well

q
n

(x

1:n

) = q
1

(x

1

)

n

Y

k=2

K
k

(x

k�1

,x
k

) (4.27)

using a series of so-called forward Markov kernels K
k

(x

k�1

,x
k

) describing a probability den-
sity of moving from x

k�1

to x

k

With the definition of these two sequences of distributions, sequential importance sampling
can be performed as follows: The starting point is a set of weighted particles {x(i)

1

, W
(i)

1

}Np
i=1

drawn from q
1

(x) which is easy to sample from; a popular choice is, e.g., q
1

(x) = ⇡
1

(x).
In the following steps, the particles are perturbed in the sense that samples are drawn from
q
n

(x

1:n

). Since the goal is to sample from {�̃
n

(x

1:n

)}, the weights have to be corrected. For the
unnormalized importance weights, the new weight in step n can be computed using the update
formula:
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with the unnormalized incremental weigths w̌
n

being
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It can be shown [76] that a good choice for L
n�1

(x

n

,x
n�1

) is
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) =
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(4.30)

if ⇡
n

and ⇡
n�1

are close, and under the condition that K
n

is a MCMC kernel that is ⇡
n�1

invariant. The MCMC kernel is referred to as ⇡
n�1

invariant if the following condition holds:
Z
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)K
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). (4.31)

Details as to what constitutes a MCMC kernel will be given shortly. Chosing L
n�1

(x

n

,x
n�1

)

according (4.30) results in a very simple update equation for the weights [76]
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) =
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)

. (4.32)
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It is a known problem that the importance weights in such an sequential importance sampling
scheme degenerate over time, i.e., the variance of the importance weights becomes larger and
many particles with an extremely low importance weight will occur in the particle population
[75, 90]. A remedy to this problem is resampling, which roughly speaking removes particles
with low weights from the population while duplicating important particles with large weights.
However, frequent resampling can reduce the informational content of the particle population.
The so-called effective sample size (ESS) can be used to gauge the need for resampling. The
ESS is defined as

ESS =

1

P

Np
i=1

(W (i)

)

2

, (4.33)

where W (i) denotes the normalized particle weight as defined in (4.20). The ESS can take values
between 1 and Np. A threshold for resampling of ESS = Np/2 was used throughout this work.

In practice, the SMC scheme described above generally consists of a repetition of three basic
steps, which are also summarized in Table 4.1. The first step entails reweighting of the particles
using (4.32). Afterwards each particle is rejuvenated, i.e., perturbed using a MCMC kernel.
Lastly, a resampling step is performed if the ESS falls below the resampling threshold.

So far it has not been discussed what constitutes a MCMC transition kernel or how to con-
struct one. Essentially, an MCMC transition kernel is a regular conditional probability distribu-
tion [48] which fulfils certain requirements [146, 215, 275] and which can be used to describe
the perturbation of a particle. Without going into the details, an example of the basic steps of
a local random walk MCMC kernel are given in Table 4.2, instead of a formal mathematical
definition. An example for a local proposal distribution ⌘(x

⇤|x(i)

n

) is a Gaussian distribution

Sequential Monte Carlo algorithm

1. For n = 0, initialize particles {x(i)
1

, w

(i)
1

}Np

i=1

from q

1

(x). Set n = 1.

2. Reweight w(i)
n = w

(i)
n�1

�n(x
(i)
n�1)

�n�1(x
(i)
n�1)

3. Rejuvenate that is perturb each particle x

(i)
n�1

! x

(i)
n using the MCMC Kernel Kn(xn�1

,xn)

4. Resample if ESS < ESSmin

5. if n < t then n = n+ 1 and goto step 2, else stop

Table 4.1 Basic steps of a Sequential Monte Carlo sampler.

Perturbation of a particle using an MCMC kernel

1. For i = 1, · · ·, Np

2. draw a sample x

⇤ from proposal distribution ⌘(x⇤|x(i)
n )

3. compute acceptance ratio: ↵(x⇤
,x

(i)
n ) = min

n

1, ⇡n(x
⇤
)⌘(x(i)

n |x⇤
)

⇡n(x
(i)
n )⌘(x⇤|x(i)

n )

o

4. draw a sample u

(i) from U(0, 1)

5. if u(i)  ↵(x⇤
,x

(i)
n ) then accept proposal, i.e., x(i)

n = x

⇤, else reject, i.e., x(i)
n = x

(i)
n

Table 4.2 Basic procedure of the MCMC step using a Metropolis-Hastings kernel [146, 215].
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(other distributions are admissible too) with mean x

(i)

n

. Based on the steps described in Table
4.2, the probability distribution K
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) then can be written as
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(4.34)

The latter part of (4.34) denotes the rejection probability which usually cannot be computed
analytically.

Putting all these things together, the result of a SMC scheme is a particulate approximation
of the distribution ⇡

t

in the form

⇡
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) ⇡
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W
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�
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. (4.35)

Estimates of any expectation of some function '(·) with respect to ⇡
t

is also readily computed
using

E['(x)] ⇡
Np
X

i=1

W
(i)

t

'(x

(i)

t

). (4.36)

SMC is used in this work to sample from the posterior distribution of the Bayesian regression
model described in Section 3.5.3. While the overall concept of SMC is described here, the
particular variant is more advanced and, e.g., allows for an adaptive adjustment of the number
of bridging distributions based on the ESS. Moreover, since the number of parameters in the
regression model is not a priori fixed, the dimension of x

n

can change and will depend on the
training data. In order to account for the varying dimension of x

n

in the SMC scheme, so called
reversible jump MCMC kernels [128], that allow transdimensional jumps, are employed. In
addition the proposal distribution of the kernels is adjusted to speed up the computation. For
further details on the used algorithm, the reader is referred to [182, 183].

4.4 Classic reliability methods
As alternative to sampling based approaches, multiple so-called reliability methods have been
developed to solve the reliability problem described in (4.4) and to compute the probability of
failure in face of uncertain input parameters. A comprehensive introduction can be found in sev-
eral textbooks, e.g., [87, 193, 212]. A shorter overview can be found in [320]. The so-called first
order reliability method (FORM ) and second order reliability method (SORM) are prominent
examples of methods that can be used to solve the above mentioned type of stochastic problem.
Briefly, these methods rely on the implicit definition of the failure domain through a limit state
function which separates the safe domain from the failure domain. First, a transformation of
variables is required which allows the conversion of the probability distributions of the random
input quantities to a standard multivariate Gaussian distribution. Popular choices include the
Rosenblatt [279] and the Nataf [225] transformation. Now, the so-called design point, which is
defined as the point on the limit state surface closest to the origin in standard normal space, has
to be determined by solving a constrained global optimization problem. Once the design point
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has been found, the limit state surface is approximated by replacing the limit state functions
with either a first (FORM) or a second order (SORM) expansion around the design point. The
transformation of variables to standard normal space together with the first or second order ap-
proximation of the limit state function result in a simplified expression for the integral in (4.4),
which then can be evaluated in closed form.

The major advantage of FORM and SORM is that the computational effort does not depend
on the magnitude of the failure probability. However, there are also some significant drawbacks
to these approaches, which are briefly mentioned in the following. For a more detailed com-
parison to sampling based reliability methods, the reader is referred to [290]. First challenges
could arise in finding a suitable transformation of the random input variables to standard nor-
mal space. Moreover, to compute the design point, a constrained optimization problem must be
solved. If these reliability methods are to be used in combination with complex finite element
models with high stochastic dimension, two problems arise. First, derivatives with respect to the
input parameters are difficult to obtain and approximation through finite-difference schemes is
unfeasible. Second, design points obtained with the usual gradient based optimization schemes
might not be unique. The primary reason to exclude classic reliability methods from this study,
however, is that they do not provide probabilistic information beyond the failure probability.
Furthermore, neither FORM or SORM allow an estimation of the accuracy of the computed
failure probabilities.

4.5 Second order methods

Second order methods allow for the computation of mean and variance of the response quantity.
Some of the oldest methods for UQ belong to this class, with development going back to the
1980s. The pertubation method was pioneered for linear structural mechanics in the early 1980s
by Hisada and Nakagiri [154] and Handa and Anderson [142] and is based on a first-order Taylor
expansion of the model f(x) around the mean of the random inputs x. For stochastic problems
involving random fields, the method has been used together with a number of approaches to
represent stochastic processes. In case of finite element analysis for linear elastic structures one
variant, where stochastic element stiffness matrices are computed based on a weighted integral
of the process over the element domain, goes by the name weighted integral method [78, 79, 81].
Another approach for low dimensional problems is the so-called quadrature method, whereby
the integrals for mean and variance are evaluated based on some quadrature rule which depends
on the chosen input distribution [23]. Thus, the method is technically not a purely second order
approach. Second order approaches neglect nonlinear relations between model input and output,
and thus accurate results can only be obtained if the coefficient of variation of the random input
variables is small (c.f. Sudret and Der Kiureghian [320]), and only the first moments of the
response are provided. Moreover, gradients of the model with respect to the random quantities
are typically required. Due to these limitations, such methods are not considered in this work.
If further information is desired, the reader can consult [320] for a more extensive overview of
second order methods.
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4.6 Surrogate based techniques

The overall cost of an UQ scheme in combination with complex forward models is mainly
driven by the number of necessary forward model evaluations, which are often very expensive.
Thus, a frequently applied approach to reduce the computational cost of UQ is the use of a
surrogate model instead of the complex simulator, which could be an elaborate finite element
model. When using a surrogate based approach, the overall UQ procedure comprises two steps.
First, a surrogate model, which provides a cheap to evaluate approximation to the expensive
computational model, is set up. Since the expensive model has to be evaluated numerous times
during this setup phase to construct the surrogate, virtually all computational cost arise during
this step. In a second step UQ is performed with, e.g., standard Monte Carlo, using the previ-
ously defined surrogate. Because the surrogate model is so cheap to evaluate, the computational
cost associated with the sampling of the surrogate is negligible compared to the cost of set-
ting up the surrogate. If the employed surrogate model provides an accurate approximation to
the simulator, the obtained distribution or first moments of the quantity of interest will be very
close to the result that would be obtained by sampling the expensive model directly. Note that
for some combinations of surrogate model and distribution of the uncertain input parameters,
the second step can be omitted if one is only interest in the first two moments of the response,
because these are directly provided by the surrogate in closed form.

Plenty of different approaches to construct surrogate models have been proposed over the
course of recent decades, and since they originated from very different fields of study, they
go by very different names such as response surface, meta model, or emulator. Due to the
large number of different approaches and variants of surrogate models used for UQ, it is well
beyond the scope of this work to provide an overview of all available methods. Instead, the
focus of this section is a short review and introduction to two particularly popular methods, or
rather classes of methods. The first class of methods are based on the PCE and belong to the
most prevalent methods for surrogate based UQ in engineering. The second class is based on
GPs and constitutes a Bayesian approach, which is more rooted in the statistics community.
The discussion, especially of the latter class, goes beyond a pure literature review, as GP based
surrogates are also used in this work for UQ problems with low stochastic dimension (cf. Section
7.3). For a broader discussion of other surrogate models the reader is referred to [317, 318].

4.6.1 Surrogates based on Polynomial Chaos Expansion

Uncertainty quantification using PCE based surrogates has received considerable attention in
recent years and a significant amount of literature is available on the subject. Here, only the
very fundamentals of the approach are discussed. For a more detailed introduction the reader is
referred to the textbooks [189, 364]. The goal of the PCE is to express the output of a simulator
using multivariate polynomials that are orthogonal with respect to the joint probability of the
random input parameters. The theory was first introduced by Wiener [358] for Gaussian random
variables using multivariate Hermite-polynomials as basis and later applied in the context of
stochastic finite elements in the seminal work of Ghanem and Spanos [117]. The theory was then
generalized to non-Gaussian input variables using different types of orthogonal polynomials by
Xiu and Karniadakis [366] and Soize and Ghanem [307]. Consequently, its often referred to as
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generalized polynomial chaos expansion. In this work, generalized PCE is also simply referred
to as PCE for the sake of conveniece.

The originally proposed solution scheme is based on a Galerkin procedure for the random
dimensions and, hence, presents a natural extension of the finite element method to the ran-
dom space. Although this approach has been applied to various problems [118, 178], it suffers
from several drawbacks which have hampered its widespread use and render the method inap-
plicable to large scale problems with high stochastic dimension. First of all, it is an intrusive
approach, which means that existing deterministic legacy code cannot be used and that applica-
tion to another PDE requires a separate implementation for this particular problem. Moreover,
extension to UQ regarding derived quantities such as strains, stresses, or functions thereof is not
straightforward, nor is the extension to more challenging nonlinear problems such as nonlinear
elasticity involving finite strain, contact, plasticity, or other nonlinearities [4, 12, 194].

To address these issues, so-called non-intrusive schemes based on the PCE have been devel-
oped, which permit the use of elaborate legacy codes and which can be applied to a wide range
of problems including, e.g., large deformation plasticity [5], flow in complex geometries [289],
and also some multiphysics problems such as coupled electromechanics [7] or fluid-structure
interaction [362]. An apparently wide array of PCE based methods, which go by various dif-
ferent names, have been proposed in recent years. In this work it is distinguished between
non-intrusive projection methods see, e.g., [119, 179, 189, 364] and interpolatory collocation
methods see, e.g., [22, 135, 189, 364, 365], both of which are summarized under the umbrella
term stochastic collocation methods by Xiu [364]. Another seemingly different approach, the
so-called regression approach was introduced by Berveiller et al. [31], Choi et al. [64], Isuka-
palli et al. [164]. However, as shown in, e.g., [319], the non-intrusive projection approach and
the regression approach can, from a statistical point of view, essentially both be interpreted as
a variant of least squares regression using orthogonal polynomial basis functions with differ-
ent design points for the model in random space, respectively. Moreover, different truncations
of the PCE might be used. In the opinion of the author, the interpretation of discrete projec-
tion schemes as regression model with polynomial basis functions offers a nice statistical and
more intuitive interpretation as to what constitutes non-intrusive UQ approaches based on PCE.
Hence, the discrete projection and the regression viewpoint are briefly discussed and compared
here. Furthermore, the advantages and drawbacks, as well as the specific properties which hin-
der an application of PCE approaches to the problems studied in this work are discussed here
on the basis of the discrete projection approach and the related regression variant. With regard
to the problems and examples studied in this work, the interpolatory collocation method offers
no significant advantage over the discrete projection approach. Hence, a further discussion is
deemed unnecessary and the reader is advised to consult the provided references for further
information regarding this approach.

The fundamental concept of all PCE based UQ approaches is the representation of the model
output as an expansion of polynomials, hence the name. Thus, the output of the model is
projected onto a basis of orthogonal polynomials using the following expansion

y = f(x) ⇡ fPCE(x) =

N

p

X

j=0

w
j

�
j

(x). (4.37)
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Therein, �
j

(x) are multivariate polynomials, which are typically constructed from univariate
polynomials with tensor products [189]. Suitable weights w

j

of the polynomials have to be
determined in the setup phase of the surrogate. The type of polynomial depends thereby on the
probability distribution of the random inputs. The expected value of all polynomials is zero

E[�
e

(x)] =

Z

�
e

(x)p
x

(x)dx = 0. (4.38)

Moreover, since the polynomials are orthogonal, the following condition holds:
Z

�
i

(x)�
j

(x)p
x

(x)dx = �
ij

. (4.39)

Exploiting the orthogonality property (4.39), discrete projection schemes approximate the weights
of the polynomial expansion by solving the orthogonal projection

w
e

=

Z

f(x)�
e

(x)p
x

(x)dx, (4.40)

using a numerical integration scheme. Employing either tensorized quadrature schemes, sparse
grid cubature rules, or plain Monte Carlo, the above integral can be approximated as

w
e

⇡
N

s

X

s=1

f(x

(s)

)�
e

(x

(s)

)q(s). (4.41)

Here, the x

(s) are the quadrature or sampling points and the q(s) denote the associated weights.
For the sake of a consistent nomenclature, these points will also be referred to as design points
from here on. Both, the location of the points and the magnitude of the weights depend on the
employed quadrature scheme. The integrals to compute the weights can be solved very effi-
ciently if the random input space is low-dimensional. However, if tensorized one-dimensional
quadrature schemes are used to evaluate (4.41), the number of necessary model evaluations
increases exponentially with the number of dimensions. This phenomenon is often referred
to as curse of dimensionality. The use of integration schemes based on Smolyak sparse grids
[305] can alleviate this problem to some extend at the cost of an additional approximation er-
ror [116, 189]. Nevertheless, due to the large number of required model evaluations for high
dimensional problems, PCE based approaches offer computational savings only for problems
with relatively few random input parameters.

The discrete projection approach can also be interpreted as fitting a particular polynomial
regression model as a surrogate. For some choices of points in the random input space, at which
the expensive simulator is evaluated, equivalence of the two seemingly different approaches can
be shown. Starting point is again the assumption that the simulator output can be represented by
orthogonal polynomials. However, due to the finite truncation of the expansion, the polynomials
cannot exactly represent the simulator response and a truncation error ✏

p

has to be taken into
account:

y = f(x) =

N

p

X

e=0

w
e

�
e

(x) + ✏
p

. (4.42)
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After introducing the notation

w = [w
0

, w
1

, w
2

, · · ·, w
p

]

T , (4.43)
� = [�

1

(x), �
2

(x), �
3

(x), · · ·, �
p

(x)]

T , (4.44)

(4.42) can be rewritten as
y = �(x)

T

w + ✏
p

. (4.45)

As before, the goal is to determine the weights of the polynomials. One way this can be achieved
is by asking the mean squared error to be minimal, which gives rise to the minimization problem

wLS = min

w2Rp

E
h

�

f(x) � �(x)

T

w.
�

2

i

(4.46)

Taking the derivative and some algebraic rearrangement yield the following condition for the
optimal choice of weights (see [319] for details)

w = E[�(x)

Tf(x)], (4.47)

which is equal to (4.40) and hence demonstrates the principal equivalence of the two approaches.
In practical applications the expectation operator E is replaced by a discrete sum over a set

of training samples {y(i),x(i)}N

s

i=1

obtained from random sampling, e.g., MC or LHS or another
quadrature scheme. Another option, that has been advocated in the past, is to chose the sampling
points according to the roots of orthogonal polynomials [31, 164].

If the samples, i.e., the design points are obtained by random sampling, (4.46) simply be-
comes

wLS = min

w2Rp

1

N
s

N

s

X

i=1

h

�

f(x

(s)

) � �(x

(s)

)

T

w

�

2

i

. (4.48)

Using the definition of the design matrix in (3.131), the least squares estimate for the weights is
easily obtained by using (3.102)

wLS = [��]

�1�y, (4.49)

where y = [f(x

(1)

), f(x

(2)

), · · ·f(x

(N

s

)

)]

T . If the sample locations are determined by another,
non-random integration scheme, the samples no longer all have the same weights. This can be
accounted for by introducing a weight matrix Q = diag(q(1), q(2), · · ·, q(N

s

)

). The weights of the
polynomials are then similarly determined using a weighted least squares approach

wLS = [�Q�T

]

�1

Q�y. (4.50)

On an abstract level, non-intrusive spectral methods based on PCE expansion can be interpreted
as regression using nonlinear orthogonal basis functions and a particular choice of design points
or training samples to train the regression model. If seen from this perspective, it becomes ap-
parent that low-order polynomials might not always be the optimal choice to represent complex
nonlinear models. Moreover, PCE based surrogates do not offer a way to address the additional
uncertainty introduced by evaluating the surrogate model instead of the simulator. Even if the
the PCE surrogate matches the simulator exactly at the design points, the approximation pro-
vided by the surrogate does not necessarily match the simulator in between these points. This
additional uncertainty cannot be accounted for in the usual PCE framework. However, this issue
can be addressed by choosing a Bayesian approach based on GP models instead.
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4.6.2 Surrogates based on Gaussian processes

Another popular approach to building surrogate models for the purpose of UQ is based on Gaus-
sian process models. As before, the complex simulator is viewed as a function f(x) which maps
the inputs x into a scalar output y. For the purpose of UQ a cheap approximation f

GP

(·) based
on a Gaussian process is constructed using a set of design points and corresponding evaluations
of the simulator at theses points D = {x(i), y(i)}N

i=1

, which will be referred to as training sam-
ples. In contrast to the PCE approach, the idea to model the output of complex computer models
using GPs originated in the statistics community [284] and was then later applied in he context
of UQ and sensitivity analysis [148, 174, 234, 235]. In the context of modelling unknown func-
tions in statistics, the approach dates even further back see, e.g., [40, 177, 227, 239]. Gaussian
process modelling is also the basis of what is known as Kriging in the Geostatistics community
[69, 210, 316].

The approach is very flexible and general in the sense that it can in principal be used in
combination with a wide range of forward models. However, although it has been introduced
over two decades ago and has some very appealing properties, its adoption in the engineering
community is a relatively recent phenomenon and UQ using surrogate models based on GPs is
still significantly less common than PCE based approaches.

The most important difference between surrogate models based on PCE is that GP models
provide not just an approximation to f(x) ⇡ f

GP

(x) for an arbitrary input x, but a distribution
over functions, as explained in Section 3.5.2 on Gaussian process regression. In fact, it will
become apparent in the following paragraphs that the GP regression approach explained above
can be directly used to construct surrogate models for complex simulators and that the GP
surrogate approach used in this work is essentially nothing but a regression model based on
GPs. Instead of trying to establish a quantitive link between explanatory variables and some
measurements, the goal is now to find a relationship between some model input parameters x

and the model output f(x) = y. As already mentioned, several different variants to construct
GP surrogates exist, based on the choices for mean function, covariance function, and potential
hyper-priors.

In case of modelling simulation models, i.e., computer experiments as opposed to ”real”
experiments, the measurements are often considered to be noise free, because the simulator is
deterministic, in the sense that it always produces the same output y for a given input x. From
a theoretical point of view this is not a major problem. After putting a GP prior on f

GP

(x)

and evaluating the simulator at a set of design points to obtain a dataset D = {x(i), y(i)}n

i=1

,
computation of the posterior of f

GP

(x) in the noise free case is straightforward and merely
entails conditioning of a multivariate Gaussian distribution on the set of training samples. The
resulting posterior GP then interpolates the data-points exactly [361].

However, there are arguments against taking such an approach. Computation of the posterior
entails inversion of the covariance matrix of the GP which is often ill-conditioned, especially
for smooth covariance functions and hence the inversion can be numerically unstable [1, 226].
A frequently used remedy is to add a small so-called nugget term to the diagonal entries of the
matrix to improve the condition number. Adding this nugget term is equivalent to the addition
of an independent random noise term, as shown by Gramacy [125]. As a result the posterior
no longer interpolates the data-points exactly, but rather constitutes a fit to ”noisy” data, which,
although the noise term is usually very small, brings us back to the realm of regression. There are
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several other arguments that go beyond these computational issues. For instance, Gramacy and
Lee [126] concluded that including and estimating a nugget or equivalently a random noise term
often leads to surrogates with better statistical properties. They show that using a nugget term
results in smoother estimates which provide better predictions, especially when data is scarce,
i.e., when model evaluations are expensive and, thus, one is limited to a moderate number of
evaluations of the simulator or when assumptions such as stationarity of the covariance function
are violated.

In conclusion, the GP regression framework presented earlier is well suited to construct GP
based surrogates for complex finite element models. The same approach was also used recently
by [35], who extended the framework to the multi-output case, i.e., the case where the model
output is a vector instead of a scalar. In the following, some general advantages of GP based
surrogate models will be discussed along with the necessary steps to efficiently compute esti-
mates for the usual quantities of interest in an UQ analysis, which include mean, variance, and
quantiles of the distribution and the respective confidence bounds which can be calculated due
to the Bayesian nature of this approach.

Starting point is the choice of an appropriate mean and covariance function for the GP. Com-
mon choices for mean function include constant or linear polynomials. For the covariance func-
tion, the predominant choice is the squared exponential covariance function as given in (3.60)
or (3.61), which indicates a high degree of smoothness. Then, based on an initial set of training
samples, the posterior GP is readily computed using (3.134). The design points are usually cho-
sen according to some experimental design, e.g, LHS; however, purely randomly drawn samples
from p

x

(x) are also admissible, as are uniformly distributed points on a regular tensor grid or
points from sparse grids. For a discussion on experimental designs in the context of computer
experiments, see, e.g., [148, 284]. For now, it will be assumed that the posterior GP, given an
initial set of training data D can be written as

y = f(x) ⇡ f

GP

(x)|D, ˆ

✓ ⇠ GP
⇣

m̃(x; ✓̂

m

), ˜k(x, x0; ✓̂
k

)

⌘

, (4.51)

where the vector of hyper-parameters ˆ

✓ = [

ˆ

✓

m

, ˆ

✓

k

] is determined in this work by maximizing
the marginal likelihood. m̃(x; ✓̂

m

) and ˜k(x,x0
; ✓̂

k

) denote the posterior mean and covariance
function given the design points, respectively. Thereby, the variance of the noise term is initially
set to 10e � 6, resulting in a GP which almost exactly passes through the given data points.

From (4.51) it becomes clear that the GP surrogate provides more than just an approximation
to f(x), since it also provides a distribution around the mean, describing how close it is likely
to be to the actual f(x), i.e., the GP provides a measure of uncertainty from which confidence
intervals for its estimation of f(x) can be easily obtained. These confidence bounds are useful
for several purposes. First, they provide the basis for what is called active learning or sequential
experimental design, i.e., computing these confidence bounds can aid in the identification of
regions in the input space with high uncertainty about the value of f

GP

(·). After these regions
have been identified, additional evaluations of the simulator in these regions can be performed,
thereby improving the surrogate adaptively. Several approaches based on different utility func-
tions have been proposed to perform such an active learning task. For instance MacKay [199]
proposed an approach, referred to as active learning MacKay (ALM), in which the choice for the
next design point is determined by the maximum predictive variance. An alternative approach,
referred to as active learning Cohn (ALC) [66] in the following, choses the next sampling point
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according to the expected change in predictive variance averaged over the whole input domain.
The second benefit of having a predictive distribution rather than a simple deterministic surro-
gate is that confidence intervals can not only be computed for f

GP

(x), but also for all quantities
derived from the surrogate, i.e., the approximations for mean, variance, or CDF of y. Using
these confidence intervals, the accuracy of the surrogate can be judged and a decision whether
further evaluations of the simulator are necessary can be made. The following paragraphs con-
tain a brief description how to compute estimates for mean, variance, quantiles, CDF, and PDF
as well as their respective confidence intervals using a GP based surrogate model.

For some combinations of covariance function of the surrogate and probability distribution of
the uncertain model inputs p

x

(x) it is possible to compute several statistical summaries such as
mean and variance analytically [147, 172, 238], similar to PCE based surrogate models. In this
work, however, the more general sampling based approach is used instead.

The simplest way to compute statistical summaries of y is to treat the GP surrogate like any
other deterministic surrogate model, in the sense that the posterior mean m̃(x;

ˆ

✓) is consid-
ered as approximation for f(x). Then, all desired quantities can be computed by sampling of
m̃(x;

ˆ

✓). Because m̃(x;

ˆ

✓) is very cheap to evaluate, any desired quantity can be determined by
sampling to practically arbitrary precision. The problem with this approach is that it is based
on the assumption that one knows the true value of f(x) at all points x exactly. This is clearly
not the case, since its value is only known at locations at which the simulator has been evalu-
ated (assuming zero or negligible noise). By taking a Bayesian approach, this second level of
uncertainty, often referred to as code uncertainty, can be quantified since f

GP

(x) is treated as a
random function. As a result all summaries obtained using f

GP

(x) become random variables as
well. This property can be exploited to compute confidence intervals for these quantities. For
the computation of E[y], V[y], and quantiles of y, denoted by q from here on, the following three
step procedure described by Oakley [232, 233] is adhered to in this work. The procedure is
explained here using the example of the mean of y. However, the computation of estimates for
all other quantities can be done accordingly. Since f

GP

(x) is a random function, the mean of y
becomes a random variable:

E
x

[f

GP

(x)] = M. (4.52)

To compute mean, variance, and confidence intervals for this random variable, the following
steps are performed:

1. Step 1: Generate NSAM sample functions f ( j )
GP

(x) from the posterior process f
GP

(x)

2. Step 2: Compute the desired quantity of interest, in this case E
x

[f ( j )
GP

(x)] = M
f

( j )
GP

using
Monte Carlo sampling (other quantities can also be assessed, e.g., the variance V

x

[f ( j )
GP

(x)] =

V
f

( j )
GP

, or some quantile q
f

( j )
GP

).

3. Step 3: Repeat steps 1 and 2 to obtain a sample from the distribution p
M

(M), i.e.,
M

f

( 1 )
GP

, M
f

( 2 )
GP

, · · ·, M
f

( L )
GP

.

Based on this sample, one can compute estimates for, e.g., the mean, variance, or confidence in-
tervals for the respective quantity of interest. Thus, an estimate for E[y] can be readily calculated
using

ˆM =

1

NSAM

NSAM
X

i=1

M
f

( j )
GP

. (4.53)
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Similarly, the variance of E[y] can be computed by

�̂2

ˆ

M

=

1

NSAM

NSAM
X

i=1

(M
f

( j )
GP

� ˆM)

2 (4.54)

which yields the following 95% confidence bounds for E[y]:

[Mcf,low, Mcf,up] =

ˆM ± 1.96�̂
ˆ

M

(4.55)

The same procedure can be applied to compute V[y], q, and their respective confidence intervals.
For the procedure described above, sample functions, i.e., realizations of the posterior GP,

have to be generated in an efficient manner. One cannot create exact realizations of f
GP

(·) since
that would entail sampling f

GP

(·) at every point x in the sample space, which is infinite. Instead,
a procedure to create approximate realizations described in [232] is employed in this work.
Briefly, first a new set of simulation design points (x

(1)

0
,x(2)

0
, · · ·x(N

0
)

0
) which is distinct from

the original set is chosen. Since the random vector of outputs y

0
= [f

GP

(x

(1)

0
), f

GP

(x

(2)

0
), · ·

·f
GP

(x

(N)

0
)]

T has a multivariate Gaussian distribution according to (4.51), samples of y

0 are
easily obtained by drawing from this multivariate Gaussian. In combination with the original
set of design points, the data defines f ( j )

GP

(·) which still is a GP as defined in (4.51). Let the mean
and covariance functions of the new process be m̃( j )0

(x) and ˜k( j )0
(x,x0

), respectively. If the set
of simulation design points is sufficiently large and the position of the points is well chosen, the
variance of f ( j )

GP

(·) will be very small and f ( j )
GP

(·) is approximated by m̃( j )0
(x) with minimal error.

Hence, m̃( j )0
(x) can be used as approximate realization for f ( j )

GP

(·).
Often, it is desired to obtain the full probability distribution of the model output in form of

a CDF or PDF. It is relatively straightforward to compute these using the procedure based on
approximate realizations of the posterior process described briefly above and in more detail in
[232, 234]. The CDF of y is given by the following integral

F

y

(y) =

Z

1

�

f

GP

(x)  y
�

p
x

(x)dx, (4.56)

and considered random because of the uncertainty in f

GP

(·). However, samples of F
y

(y) can be
computed using realizations f ( j )

GP

(·) of f
GP

(·) in combination with MC

F ( j )
y

(y) =

1

NSAM

NSAM
X

i=1

1

�

m̃( j )0
(x

(i)

)  y
�

. (4.57)

Having computed L realizations of F ( 1 )
y

(y), F ( 2 )
y

(y), · · ·, F ( L )
y

(y), the sample mean can be used
as an approximation for F

y

ˆF
y

(y) =

1

L

L

X

j=1

F ( j )
y

(y). (4.58)

Oakley and O’Hagan [234] advise that the sample median might be a better choice, because it
is less affected by the potential skewness of the distribution of F

y

at high and low values of y.
In addition to mean and median, confidence bounds are also readily calculated using computed
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samples F ( j )
y

(y) either directly using the samples or by calculating the variance of F
y

first. Analo-
gous to the CDF it is trivial to compute estimates and confidence bounds for the corresponding
empirical quantile function.

Estimation of the density function of y( j )
= f ( j )

GP

(x) is done in the same fashion. Because
f ( j )

GP

(·) is so cheap to evaluate, a large number of samples (x

⇤(1),x⇤(2), · · ·,x⇤(N)

) drawn from
p
x

(x) and subsequent evaluation of f ( j )
GP

(x

⇤(i)
), which is approximated by m̃( j )0

(x

(i)

), provides
sufficient data points to estimate p( j )

y

. As before repeating this procedure yields a sample of
density functions, based on which summaries such as mean and median as well as confidence
bounds can be computed. With respect to the estimated median of the PDF it is important to note
that it will not necessarily integrate to one, but still might provide a good graphical summary of
p
y

(y) and highlight important features such as multi-modality.
Overall, GP based surrogate models offer a very flexible framework to construct accurate

surrogates for complex simulators, which can be treated as black box. Knowledge about the
smoothness of the output quantity of interest can be readily incorporated by an appropriate
choice for the covariance function. In contrast to deterministic surrogates, the GP approaches
allow for the computation of confidence intervals for all assessed quantities, which can be used
to assess whether further evaluations of the complex simulator are required or the accuracy has
reached an acceptable level

The design points of PCE based surrogates are often chosen according to a tensor or sparse
grid, matching a certain type of polynomial which in PCE schemes is linked to a certain proba-
bility distribution. In GP based approaches the design points are typically chosen more freely.
In principle it is possible to use the GP surrogate build with a single set of design points with
multiple different input distribution p

x

(x). Of course the chosen experimental design will be
suboptimal if used in combination with considerably different input distributions, but in some
cases the accuracy will still be sufficient or at least provide a reasonable starting point if an
adaptive scheme is used. Another advantage of using GPs over orthogonal polynomials is that it
is a non-parametric approach in the sense that the model structure is not fixed or limited a-priori
to, e.g., second or third order polynomials and, thus, offers significantly more flexibility.

The basic methodology as briefly presented here is quite mature and has been applied to a
range of problems in the past. The overall approach has received considerable attention in recent
years and has been applied to a variety of problems and extended in a number of ways, e.g., to
handle multiple outputs, dynamic simulators, discontinuities in the relationship between model
input and output, or to incorporate gradient information [35, 36, 67, 68, 85, 95, 127]. Also,
since GP based approaches admit the incorporation of parametrized basis functions for its mean
functions, orthogonal polynomials usually employed in PCE based approaches can be used as
well, resulting in some kind of hybrid approach between PCE and GP as recently investigated
by Kersaudy et al. [175]. Moreover, multi-fidelity ideas, which are based on the incorporation
of information from low-fidelity versions of the simulator have been developed with the goal to
reduce the required computational effort, see, e.g., [173, 188]. Because it is closely related to
the approach and framework developed and used in this work, the multi-fidelity concept will be
further discussed separately and in more detail in Section 5.3.3.

Overall, if the simulator is relatively well behaved and the stochastic dimension of the prob-
lem is low, surrogate models present a very convenient and efficient way to perform UQ and
sensitivity analysis. However, aside from difficulties like capturing strong nonlinearities or dis-
continuities in the map from the random input to the model output, which can be addressed by
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advanced techniques and adaptive schemes, the major fundamental disadvantage of surrogate
models is the curse of dimensionality. This renders surrogate based UQ approaches infeasible
for problems with high stochastic dimension, because the number of necessary model evalua-
tions to train the surrogate grows extremely fast with the stochastic dimension of the problem
[34, 98]. Simply speaking, setting up a surrogate model, no matter which kind, to represent a
complex simulator implies determination of suitable parameters of the respective surrogate. For
PCE based surrogates these are the weights of the polynomials and for GP based models these
are weights for the basis function of the mean, which could also be polynomials, and the param-
eters of the covariance function. The higher the dimension of x, the more parameters need to
be estimated, which in turn requires more data. Consequently, setting up surrogate models for
complex simulators in which uncertainties are characterized by random processes and fields is
difficult since the representation of these uncertainties often leads to vectors x with thousands
of entries.
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5 Bayesian multi-fidelity Monte Carlo
and its relation to other multi-fidelity
approaches

The main purpose of the present chapter is the description of the developed Bayesian multi-
fidelity Monte Carlo (BMFMC) framework for efficient UQ with large-scale models and high-
stochastic dimension. A secondary aspect is the discussion of other multi-fidelity UQ ap-
proaches and their relation to the proposed approach.

Therefore, the underlying concept of using models with different levels of fidelity is intro-
duced in Section 5.1, before the Bayesian multi-fidelity Monte Carlo approach is elaborated in
Section 5.2. To put the proposed approach into context with other multi-fidelity approaches, the
two most prominent multi-fidelity UQ schemes, the so-called multi-level Monte Carlo method
and the concept of multi-fidelity GP surrogates, are briefly explained and their relation to the
BMFMC approach is discussed in Section 5.3.

5.1 Multi-fidelity concept
In engineering applications UQ is usually performed in combination with elaborate computa-
tional simulation models which involve the numerical solution of a PDE. More often than not, it
is possible to construct or conceive low-fidelity versions of these models, which are significantly
cheaper to evaluate at the price of yielding a less accurate result. There are many different ways
to create low-fidelity versions of complex computational models. For instance, one could use a
numerical solution scheme with lower-fidelity. This can be obtained by using a coarser spatial
and/or temporal discretization or the use of looser tolerances in the nonlinear or linear solver.
Another option is the use of lower-fidelity mathematical/physical models, e.g., by considering
linear instead of nonlinear elasticity, nonlinear elasticity instead of plasticity, or potential flow
instead of Navier-Stokes flow. The computational costs can usually also be reduced by consider-
ing only parts of the system, omitting certain components for the benefit of shorter computation
times at the cost of a less accurate solution. Reduced order models constructed using proper or-
thogonal decomposition [60, 359] or proper generalized decomposition [62] could, in principle,
also be used as low-fidelity approximation for a complex high-fidelity finite element model. Last
but not least, engineering insight or heuristics can, in some cases, yield very good low-fidelity
approximations.

A low-fidelity model cannot be used directly in an UQ scheme by itself, because it provides a
less accurate and possibly distorted result for the quantity of interest and potentially introduces
very large modelling or discretization errors. Hence, any uncertainty distribution derived from
the low-fidelity approximate model will be distorted and not provide correct information about
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the systems of interest. On the other hand, high-fidelity models may provide an accurate as-
sessment of the studied system, yet allow only a small number of model evaluations due to the
associated high computational cost. Statistical summaries based on only few evaluations of the
high-fidelity models are prone to sampling errors or, if surrogate models are used, interpolation
errors. Multi-fidelity or multi-level UQ schemes hinge on the ability to create low-fidelity ver-
sions of the model and try to gain overall efficiency and accuracy by combining information
from low-fidelity models and high-fidelity models using two or more levels of sophistication.

The overall idea is similar to that of geometric or algebraic multi-grid approaches for the
solution of linear systems of equations [50]. However, as will be become clear shortly, several
stochastic multi-fidelity approaches can make use of ”coarse level” approximations to the ”fine
level” solution that are much worse than tolerable in deterministic multi-grid schemes. This
leads to more flexibility in creating low-fidelity models.

5.2 Bayesian multi-fidelity Monte Carlo

In order to enable UQ for large-scale, complex computational models, a framework based on a
multi-fidelity sampling strategy is developed in this work. Thereby, the main focus lies on sys-
tems for which surrogate models cannot be efficiently used due to a high stochastic dimension.
The overall concept is to incorporate models with different levels of sophistication or fidelity
in a sampling based UQ approach as proposed by Koutsourelakis [183]. Roughly speaking, the
sampling is done on an inexpensive, approximate, low-fidelity model. Then, to account for the
discrepancy between low-fidelity and high-fidelity solution a probabilistic correction factor in
form of a conditional probability is used, for the calculation of which only few evaluations of
the expensive high-fidelity model are required.

The basic premise of the BMFMC framework is the ability to construct two computational
models for a given system of interest; an accurate, expensive high-fidelity model and a cheap,
approximate low-fidelity version. The latter could be obtained, for instance, by creating a much
coarser discretization. Suppose that one is interested in computing a particular quantity y

hi�fi

(z)

or rather its probability distribution, e.g., in the form of its density p(y
hi�fi

), or some statistics
of the response, e.g., as given in (4.3) or (4.4). Here, let z denote the vector of random input
parameters of the model instead of x to avoid confusion with spatial location. The case where
the dimension of this vector is high, e.g., as it represents the random amplitudes of one or more
discretized random fields is of particular interest, because it precludes the use of surrogate based
techniques.

Analogous to y
hi�fi

(z), the quantity of interest computed with the high-fidelity model, the
corresponding quantity and its density computed using the low-fidelity model will be referred to
as y

lo�fi

(z) from here on. For example, if y
hi�fi

is the von Mises stress at a particular location in
the high-fidelity model, y

lo�fi

denotes the von Mises stress evaluated at the same spatial location
in the low-fidelity model. Based on the premise that the low-fidelity model is cheap to evaluate,
the distribution p(y

lo�fi

) can be readily approximated using any kind of sampling algorithm such
as direct Monte Carlo. While direct Monte Carlo is used throughout this work, it is important
to note that other sampling techniques such as LHS, Quasi-Monte Carlo or SMC could be used
as well [183].
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Figure 5.1 Principle of BMFMC approach. Probability distributions of low-fidelity and high-fidelity model are
indicated through the respective densities in blue. Training samples which will be used to infer the conditional
probability p(y

hi�fi

|y
lo�fi

) are shown as black dots. A conditional distribution p(y
hi�fi

|y⇤
lo�fi

) is exemplarily
shown for y⇤

lo�fi

as well.

The second prerequisite is that the solution of the low-fidelity y
lo�fi

model provides sufficient
stochastic information about the quantity of interest. This is a very weak requirement, since even
crude approximations are admissible and it suffices if the low-fidelity model and the high-fidelity
model have the same stochastic structure, i.e., both model outputs exhibit a similar dependence
on the random input parameters. If this is the case, then a noisy statistical correlation between
y

lo�fi

and y
hi�fi

as shown in Figure 5.1 can be observed. This correlation can be exploited if
it can be captured as conditional probability distribution p(y

hi�fi

|y
lo�fi

). Then, p(y
hi�fi

) can be
readily computed, as illustrated in Figure 5.1, using

p(y
hi�fi

) =

Z

p(y
hi�fi

|y
lo�fi

)p(y
lo�fi

)dy
lo�fi

. (5.1)

What is missing so far is the conditional distribution p(y
hi�fi

|y
lo�fi

). This conditional distribu-
tion can be inferred using a Bayesian regression model if data in form of a set of training samples
{y

lo�fi

(z

( j )
), y

hi�fi

(z

( j )
)}n

j=1

= {y( j )
lo�fi

, y( j )
hi�fi

}n

j=1

is available. These training samples can be ob-
tained by computing the quantity of interest on both the high-fidelity and the low-fidelity models
for several realizations of the random input parameters z( j ). A Bayesian regression model can
then establish a probabilistic link between the low- and high-fidelity model, thus, allowing to
compute either p(y

hi�fi

) using (5.1), but also failure probabilities like P (y 2 A). Therefore,
(4.4) is rewritten as

P [y
hi�fi

2 A] =E [P [y
hi�fi

2 A|y
lo�fi

]]

=

Z

P [y
hi�fi

2 A|y
lo�fi

] p(y
lo�fi

)dy
lo�fi

.
(5.2)

One interpretation of the regression model in combination with the information from the low-
fidelity model is that of a data fit surrogate for the respective high-fidelity model. Another
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Figure 5.2 Two extreme scenarios for interrelation between high-fidelity and low-fidelity solution. (a) Direct
one-to-one correspondence. (b) Statistical independence.

interpretation is that the regression model provides a probabilistic correction factor to account
for the discrepancy between high- and low-fidelity solution. Thereby, it is important to note
that this correlation can be exploited to predict p(y

hi�fi

) no matter how good the low-fidelity
model approximates the high-fidelity model in a deterministic sense, meaning that large errors
or discrepancies between the low-fidelity solution and the high-fidelity solution are admissible.

At this point it is helpful to consider the two most extreme cases which could possibly occur,
to explore the limits of the proposed approach. These two cases are shown in Figure 5.2. The
most favourable case where a direct one-to-one relationship exists between y

lo�fi

and y
hi�fi

is
shown in Figure 5.2a. In this case it is obvious that it would be easy to come up with a functional
relationship that could reproduce the interrelation between y

lo�fi

and y
hi�fi

. In combination with
p(y

lo�fi

) obtained from sampling, the calculation of p(y
hi�fi

) is trivial. The other extreme occurs
if y

lo�fi

and y
hi�fi

are statistically independent, as shown in Figure 5.2b. In this case the low-
fidelity model does not provide any information about the high-fidelity solution and cannot be
used to expedite the computation of p(y

hi�fi

).
In order to facilitate the understanding for the reader, a sketch of the basic steps of the

BMFMC approach is provided here, before a more detailed explanation of the individual steps is
given. Starting with an existing accurate, high-fidelity model of a system of interest, an approx-
imate low-fidelity model has to be constructed. This approximate model should have a similar
stochastic structure as the high-fidelity model. However, it is not necessary that the approximate
model provides an accurate approximation in a deterministic sense, as needed in deterministic
multi-level/grid schemes. The only prerequisite is a mere statistical correlation between the
high-fidelity and the approximate model. This very weak requirement offers a tremendous flex-
ibility in the choice of approximate models. As shown in several numerical examples in the
following chapters, the BMFMC approach also works if, e.g., a simpler physical model is used.

In the second step of the proposed approach the distribution p(y
lo�fi

) of the quantity of interest
y

lo�fi

has to be approximated by sampling the low-fidelity model. Independent of the particular
choice of the sampling algorithm, computing p(y

lo�fi

) by sampling is much cheaper as compared
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Bayesian multi-fidelity MC

1. Construct a low fidelity and a high-fidelity model of the system of interest, e.g., by creating a coarse and
a fine discretization.

2. Compute p(y
lo�fi

) by sampling of the cheap low-fidelity model.

3. Select a very small subset of the samples {y( j )
lo�fi

}nj=1

, fully covering the (empirical) support of p(y
lo�fi

).

4. Compute corresponding high fidelity solution {y( j )
hi�fi

}nj=1

for the selected subset of samples.

5. Use the samples {(y( j )
lo�fi

, y

( j )
hi�fi

)}nj=1

from both models as training data for a Bayesian regression model
to obtain a (probabilistic) relationship between y

lo�fi

and y

hi�fi

, i.e, p(y
hi�fi

|y
lo�fi

).

6. Approximate p(y
hi�fi

) and P (y
hi�fi

2 A) from p(y
hi�fi

|y
lo�fi

) and p(y
lo�fi

) using (5.1) and (5.2), re-
spectively.

Table 5.1 Basic steps of the proposed BMFMC scheme. Taken from [32].

to sampling of the high-fidelity model. For the example problems considered in this work,
low-fidelity models are between 10 and 1000 times cheaper to evaluate than the corresponding
high-fidelity model.

Then, a small subset {y( j )
lo�fi

}n

j=1

of all computed samples is selected. Now, the high-fidelity
solution {y( j )

hi�fi

}n

j=1

corresponding to the {y( j )
lo�fi

}n

j=1

is computed. The dataset {y( j )
lo�fi

, y( j )
hi�fi

}n

j=1

is then used to train a Bayesian regression model which provides probabilistic information on
y

hi�fi

given y
lo�fi

. More specifically, the predictive distribution of the Bayesian regression pro-
vides the desired conditional probability distribution p(y

hi�fi

|y
lo�fi

). Once the conditional den-
sity p(y

hi�fi

|y
lo�fi

) is obtained, standard probability theory can be used to compute p(y
hi�fi

).
Overall, the proposed BMFMC approach can be summarized in six basic steps, which are given
in Table 5.1.

5.2.1 Sample selection
Assuming that the low-fidelity model has been evaluated NSAM times, a small subset

�

y( j )
lo�fi

 

n

j=1

of these computed samples is selected. For an accurate computation of p(y
hi�fi

) these sam-
ples should fully cover the support of p(y

lo�fi

), i.e., cover the whole range of values that y
lo�fi

can take. Since usually only a particulate approximation of p(y
lo�fi

) is available, this range is
approximated by the samples with the smallest and largest y

lo�fi

value, respectively. For the
examples considered in this work, 100-200 evenly distributed samples, which cover the range
of all possible y

lo�fi

values, yield consistent and excellent results.
However, it is noted that other more elaborate schemes to select the training samples can

further reduce the number of evaluations of the high-fidelity model, especially if one is inter-
ested in estimating a small failure probability or say the 99 % quantile. Another scenario for
more elaborate selection schemes is an extremely expensive high-fidelity model which severely
limits the number of affordable model evaluations. In these situations more elaborate selection
scheme could make a difference. To this end an adaption of the two stage design point selection
procedure for GP surrogates to estimate percentiles of the distribution of interest as presented
by Oakley [233] was investigated regarding its potential to further reduce the number of training
points. Briefly, a preliminary version of the regression model is trained using an initial set of
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very few training samples, say 10. Based on this preliminary regression model a rough approx-
imation for the value of, e.g., the 99% quantile can be computed. In a second step, additional
training samples are selected in the vicinity of the 99% quantile. Together with the initial set
of training samples a second, more accurate version of the regression model can then be con-
structed, which is then used to produce a more accurate assessment of the 99% quantile. An
initial assessment of this idea yielded interesting results. However, further research is deemed
necessary before this approach can be reliably applied. Active learning approaches like ALM
[199] and ALC [66] were also investigated [44], but it was found that the performance of the
method based on a set of space filling samples is often hard to beat if a moderate number of
high-fidelity model evaluations is affordable.

5.2.2 Bayesian regression models
Given that a set of training samples {y( j )

lo�fi

, y( j )
hi�fi

}n

j=1

is available, a Bayesian regression model
can be trained based on this data set. The predictive distribution of the regression model then
provides the desired quantitative link p(y

hi�fi

|y
lo�fi

). A plethora of Bayesian regression ap-
proaches have been described in literature and are, in principle, applicable to this problem.
Within the present work the regression approach proposed by Koutsourelakis [183] is used with
minor modification as described in Section 3.5.3. The approach has several advantages, i.e.,
that marginally, meaning when all parameters are integrated out, also non-Gaussian distribu-
tions p(y

hi�fi

|y
lo�fi

) can be considered, even though the likelihood is considered to be Gaussian.
Moreover, it is a very consistent fully Bayesian approach with prior distributions for all param-
eters and hyper-parameters, cf. [183]. In addition, it is extremely flexible and can also handle
varying scales of fluctuation. The downside of the Koutsourelakis regression approach is that
the posterior distribution of the parameters and the predictive distribution, i.e., p(y

hi�fi

|y
lo�fi

)

cannot be computed in closed form and that consequently advanced Monte Carlo techniques,
such as SMC, are needed to sample from the posterior. The basic principle of SMC samplers
has been previously discussed in Section 4.3.2. For this task the SMC technique described in
[182, 183] is employed. Although the cost associated with the inference of the posterior dis-
tribution of the parameters of the regression model are negligible compared to the cost of a
single evaluation of any forward model considered in this work, simpler regression approaches
are computationally faster. Perhaps more importantly other Bayesian regression approaches are
easier to implement or third party libraries or packages can be used, facilitating the setup of a
BMFMC framework. For this reason, examples where GP regression (see Section 3.5.2) is used
instead of the Koutsourelakis regression approach are included in the following chapters. The
particular version of GP regression used here is not a fully Bayesian approach and as a results
the predictive distribution might tend to underestimate the uncertainty in the predictions [361].
For the examples in this work, significant differences in computed end results were not found.
However, a more detailed comparison between different available regression models to address
this issue should be investigated in future research.

5.2.3 Computing solution statistics of the high-fidelity model
Once the regression model has been trained, the original problem of computing statistics of the
high-fidelity solver output based on the low-fidelity solution and the now available quantitative
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link between low-fidelity and high-fidelity model can be tackled. By choosing a Bayesian ap-
proach levels of confidence can be assigned to the obtained estimates as well. The required steps
differ depending on the particular regression approach that is used. In the following the steps to
obtain the desired high-fidelity solution statistics based on the Koutsourelakis regression model
are described in detail. Computing high-fidelity solution statistics based on a GP regression
model is slightly simpler and the differences to Koutsourelakis regression model will also be
briefly discussed in the following.

Based on the set of training samples the SMC algorithm yields a particulate approximation
of the posterior density ⇡(✓), where ✓(!) denote all parameters of the regression model (see
(3.147)). Corresponding samples for the variance of the noise term �

✏

2

(!) can be readily drawn
using the conditional posterior given in (3.162). Based on the Gaussian likelihood, the condi-
tional distribution of y

hi�fi

given ✓, �2

✏

, and y
lo�fi

is given by

p(y
hi�fi

|y
lo�fi

) ⇡ p(y
hi�fi

|y
lo�fi

,✓, �
✏

) =

1p
2⇡

1

�
✏

exp

⇢

� 1

2�2

✏

(y
hi�fi

� f(y
lo�fi

,✓))

2

�

(5.3)

with f(y
lo�fi

,✓) defined according to (3.146). In order to obtain an estimate for the distribution
p(y

hi�fi

) one can integrate over the parameters ✓(!) and the variance of the noise �
✏

2

(!) to
obtain the posterior mean estimate of the probability density of y

hi�fi

, which will be referred to
as ⇡̂(y

hi�fi

) in order to distinguish between the distribution p(y
hi�fi

) calculated directly with MC
and the estimate computed by BMFMC. The posterior mean ⇡̂(y

hi�fi

) can be computed using

⇡̂(y
hi�fi

) = E
✓,�

✏

,y

lo�fi

[p(y
hi�fi

)]

=

Z

p(y
hi�fi

|y
lo�fi

,✓, �
✏

)p(y
lo�fi

)⇡(✓, �2

✏

)d✓d�2

✏

dy
lo�fi

.
(5.4)

Using particulate approximations of p(y
lo�fi

) and the joint posterior density ⇡(✓, �2

✏

)

p(y
lo�fi

) ⇡
NSAM
X

i=1

W (i)�
y

(i)

lo�fi

(y
lo�fi

),

⇡(✓, ��2

✏

) ⇡
Nparticles
X

l=1

W (l)�
(✓,�

✏

)

(l)

(✓, �2

✏

),

(5.5)

the posterior mean ⇡̂(y
hi�fi

) can be readily approximated with

⇡̂(y
hi�fi

) ⇡
Nparticles
X

l=1

NSAM
X

i=1

W (l)W (i)�(y
hi�fi

� f(y
(i)

lo�fi

,✓(l)

), �(l)

✏

)). (5.6)

Here, � denotes the Gaussian PDF as given in (5.3).
Another summary of interest is the probability of y

hi�fi

exceeding a specific threshold y
0

.
Given the model parameters ✓ and the variance �2

✏

the probability of y
hi�fi

exceeding a specific
threshold y

0

can be computed by

P (y
hi�fi

< y
0

;✓, �
✏

) =

Z

qA(y
lo�fi

;✓, �
✏

)p(y
lo�fi

)dy
lo�fi

(5.7)
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with qA(y
lo�fi

,✓, �
✏

) being defined as

qA(y
lo�fi

,✓, �
✏

) =

Z 1

y

0

p(y
hi�fi

|y
lo�fi

,✓, �
✏

)dy

= �

✓

f(y
lo�fi

,✓) � y
0

�
✏

◆
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where �(·) is the standard normal CDF. The posterior mean approximation of qA, computed
using the particulate approximation of ⇡(✓, �2

✏

), can be used to produce an estimate of the ex-
ceedance/failure probability for a specific value of y

lo�fi

E
✓,�

✏

[qA(y
lo�fi

)] ⇡ q̂A(y
lo�fi
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.
(5.9)

Substituting into (5.7) and using (5.5) yields an estimate for the failure probability in the sense
that on average, given the training samples, the probability of y

hi�fi

exceeding a threshold y
0

is
given by:

E
✓,�

✏

,y

lo�fi

[P (y < y
0

)] ⇡
NSAM
X

i=1

W (i)q̂A(y
(i)

lo�fi

) (5.10)

Another advantage of the Bayesian approach is that in addition to point estimates like the poste-
rior mean, confidence intervals can be estimated from the posterior, quantifying the uncertain-
ties in the inferred parameters and hence in the regression model. P-quantiles qA,p

(y
lo�fi

) for the
failure probability can be readily estimated using:

P (qA(y
lo�fi

)  qA,p

(y
lo�fi

)) ⇡
Nparticles
X

i=1

W (i)H
⇣

q
(i)

A (y
lo�fi

) � qA,p

(y
lo�fi

)

⌘

= p, (5.11)

where H(·) denotes the heavyside function. To provide confidence intervals for exceedance
probabilities in the following sections, p = 1% and p = 99% quantiles qA,0.01

and qA,0.99

are
used.

The computation for the high-fidelity solution statistics is shown above specifically for the
Koutsourelakis regression model based on a particulate approximations of the posterior distri-
bution of its parameters. However, other Bayesian regression techniques can be used just as
well. The technical steps involved might be a bit different, but the overall procedure remains
the same. In order to put the steps described above in a more general context and explain the
procedure if a GP based regression approach as discussed in Section 3.5.2 is used, it is help-
ful to think of f(y

lo�fi

,✓(!)) simply as a random function f(y
lo�fi

) instead of a deterministic
function with random parameters ✓(!). Then instead of integrating over all possible parameters
weighted with their relative plausibility, one integrates over the distribution of the function. The
concept of random function has been introduced before in the context of Gaussian processes. As
explained in Section 3.5.2 the posterior process in GP regression can be interpreted as random
function. Realization of this posterior process can be easily generated as described in Section
4.6.2. Based on these realizations {f (i)

(y
lo�fi

)}Nreal
i=1

with equal weight W (i)

= 1/Nreal, statistics
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of the high-fidelity solution can be computed in the same fashion as described above, including
confidence intervals. Integration with respect to �

✏

is not necessary, since the magnitude of the
noise is not considered to be a random variable in the GP case, but determined using maximiza-
tion of the marginal likelihood. Hence, the conditional distribution of y

hi�fi

given a realization
f (i) is simply a Gaussian distribution.

5.2.4 General remarks
While it is difficult to provide general guidelines regarding how to construct good or optimal
low-fidelity models for the BMFMC framework, it is important to mention that the suitability
of a low-fidelity model and the applicability of the BMFMC scheme for a given pair of low-
fidelity and high-fidelity model can be assessed based on the training samples alone; a full MC
reference solution of the high-fidelity model is not necessary. Aside from a visual assessment of
the interrelation between low-fidelity and high-fidelity solution, e.g., the correlation coefficient
or the fraction of the variance of y

hi�fi

that can be explained by the chosen regression model
can provide a first indicator about the strength of the correlation. If the interrelation between
the two models is similar to the one depicted in Figure 5.2b, the low-fidelity model does not
provide sufficient information about the high-fidelity solver output and has to be discarded. One
can then either try use another low-fidelity approximation or chose to perform sampling using
the high-fidelity model. In any case, it is considered a major advantage of the method that it
provides information about the limits of its own applicability.

While the BMFMC scheme is described here using one low-fidelity model, the use of multiple
low-fidelity models is, in principle, also possible [183]. Multiple low-fidelity models could be
considered in either a hierarchical or parallel fashion. The hierarchical approach is based on a
sequence of models with increasing levels of sophistication or accuracy. The overall efficiency
gain is thereby based on the notion that as the fidelity increases, the number of model evaluations
needed to estimate the difference between the levels decreases, because the model discrepancy
term becomes smoother and the magnitude of the difference becomes smaller. The idea to use
a hierarchy of models has been employed in both Multi-level Monte Carlo (MLMC) [121] (cf.
Section 5.3.1) and Gaussian process based surrogates [188] (cf. Section 5.3.3) and has proven to
be an effective way to reduce computational costs. The second option would be to use multiple
low-fidelity models in a parallel fashion. Thereby the different low-fidelity models are selected
such that they capture different regimes of the system’s response. However, the investigation of
multi-model BMFMC schemes is beyond the scope of this work and will be subject of future
research.

5.2.5 Efficient implementation
The BMFMC approach advocated in this work is a non-intrusive UQ scheme, since the approach
does not necessitate modification of the code that is used to evaluate the forward model. Hence,
BMFMC can be used in combination with elaborate and well tested legacy codes. BMFMC,
in principle, only requires the ability to evaluate the forward model for a given set of input
parameters. Nevertheless, it does not constitute a black box approach in a strict sense, since
some knowledge about the model or system of interest is required to construct a suitable low-
fidelity model. Although access and modification of the forward solver is not a necessity to use
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the BMFMC scheme, the ability to modify the forward solvers source code can increase the
overall efficiency of an UQ framework dramatically.

For instance, it is more efficient if the individual realizations of all uncertain and hence ran-
dom properties can be generated at runtime as opposed to using separate input files. In case of
uncertain constitutive properties this is relatively straightforward. After computing a realization
of the random field describing the respective constitutive parameter, each element in the model
is assigned the parameter value which corresponds to, e.g., its center location. For random
geometries, however, things are not as easy.

Geometry and mesh adjustment at runtime Meshing, i.e., discretizing a geometry in
space with finite elements is usually part of the preprocessing and more often than not per-
formed with other software than the finite element solver. In any case, BACI does not have
an integrated meshing package and third party packages are used to generate meshes. In this
work, AAA models with an uncertain wall thickness are considered as examples for models
with an uncertain geometry. Hence, one requirement of the developed UQ framework is the
ability to efficiently generate realizations of the random AAA geometry and the corresponding
finite element meshes. To avoid external tools in form of standalone mesh generation software
or scripts, realizations of random geometries are created at runtime through a geometry and
mesh adjustment step using a pseudo structure mesh movement algorithm. The approach was
developed specifically for adjusting the wall thickness in relatively thin wall structures, but it
could also be applied in other scenarios. To simplify the discussion of the geometry adjustment
approach, consider the generic artery segment model depicted in Figure 5.3. The goal is to
efficiently create versions of the depicted finite element model where the wall thickness is no
longer uniform but varies spatially according to a realization of a random field. To achieve this,
the first step is the computation of the value of the random field describing the thickness at all
nodes on the outer surface of the wall. Next, a solid mechanics problem is set up with the aim to
move the nodes on the outer surface using appropriate dirichlet boundary conditions such that
the resulting local wall thickness matches the values of the random field. For this the nodes on
the inner surface of the model are fixed through zero displacement dirichlet boundary conditions
and the nodes on the outer surface of the model are moved in the direction of the local surface
normal. The magnitude is thereby determined by the difference between current, uniform wall
thickness and the desired local wall thickness prescribed by the realization of the random field.
The position of the nodes between the two surfaces are adjusted accordingly by solving for equi-
librium. To ensure a regular, uniform, and high-quality mesh, the outermost nodes are moved
in multiple steps. An example of a resulting wall thickness distribution is shown in Figure 5.3b.
The obtained deformed geometry is then used as reference configuration for the actual forward
problem of interest.

Parameter continuation Sampling based UQ usually entails the repeated evaluation of a
forward model with different sets of parameters. The fact that very similar forward problems
have to be solved can be exploited for conservative forward problems by using numerical con-
tinuation schemes, which can help to reduce the overall computational effort associated with
UQ. For instance all mechanical models of AAAs studied in this work are considered to be
elasto-static problems, for which equilibrium solution is path independent and hence parameter
continuation schemes can be used.
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(a) (b)

Figure 5.3 Geometry adjustment based on pseudo structure mesh movement algorithm, shown for the example
of a generic artery segment model. (a) Original geometry with uniform wall thickness. (b) Modified geometry with
wall thickness adjusted to match realization of a random field.

To illustrate the continuation scheme it is helpful to first recap the discrete system of nonlin-
ear equations resulting from the discretized static boundary value problem of nonlinear elasto-
statics derived in Section 2.1.4 which is repeated here to facilitate the discussion

r(d) = f

int

(d,p) � f

ext

(d) = 0. (5.12)

Herein, r denotes the residual vector, f int the internal forces, and f

ext the external forces.
Moreover, the implicit dependence of the internal forces on the constitutive parameters through
the stress tensor is recognized here by introducing the vector p, which contains all constitutive
parameters for all elements. Thereby p could in turn depend on a set of random variables z. Let
p

(1) denote a particular set of parameters and d

(1) the corresponding solution of the boundary
value problem determined through and incremental ”load continuation scheme” as described in
Section 2.2. Now, if the solution of the boundary value problem for a new set of constitutive
properties p

(2) is sought - say the two vectors correspond to two different realizations of a
random field - one could of course solve the nonlinear boundary value problem using the load
incrementation procedure to obtain d

(2), as illustrated in Figure 5.4. Another option, since d

(1)

is known, is to leave the load continuation parameter � constant and use continuation in the
material parameters instead. Therefore, the parameter 0  �  1 is introduced, which in turn is
used to define the following sequence

p

�

= (1 � �)p

(1)

+ �p(2). (5.13)

Now, instead of incrementally increasing the load factor � and solving for static equilibrium,
� is set to 1 and a sequence of internal forces, defined through f

int

(d,p
�

), is used to transi-
tion incrementally to the static equilibrium solution d

(2), which corresponds to the constitutive
properties p(2) and the external loads f ext.

Continuation in material properties is used here to improve the efficiency of the developed
UQ framework. In practice, this means that a realization where all constitutive parameters are
equal to their respective mean values is computed first. Then, based on this initial solution, con-
tinuation with respect to material parameters is performed to obtain solutions for all following
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parameter continuation
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Figure 5.4 Illustration of the used parameter continuation scheme.

realizations. A prerequisite for this scheme to be more efficient is of course that the respective
solutions are relatively close to each other. A related questions is how the necessary number of
continuation steps can be determined. This question could be answered based on some sort of
distance measure. An alternative is to employ an adaptive scheme, which adjusts the step size.
A basic version of this approach is used in this work. The continuation scheme implemented
within the scope of this work attempts to blend over to the next equilibrium in a preset number
of steps. If the linear or nonlinear solver fails to converge, the step size is divided in half and
a new attempt is made. Continuation schemes for constitutive properties have been previously
used, e.g., within the scope of optimization problems, with the aim to identify some constitutive
properties of the forward model, see [122]. To the knowledge of the author, parameter contin-
uation schemes have not been applied in the context of an UQ framework, yet. Their use can
significantly reduce the computational effort needed for the evaluation of the forward model, if
model structure admits such a continuation approach.

Nested parallelism The solution time of many computational models to date, including
the examples presented in the scope of this thesis, is often in the range of hours to days and
their treatment usually requires multiple cores and parallel software architecture. In virtually all
non-intrusive UQ schemes the forward model needs to be evaluated multiple times. Hundreds
or thousands of evaluations are the norm rather than the exception. If these evaluations were
performed sequentially, the actual time to solution would render UQ infeasible, even if only a
modest number of forward model evaluations, say 100, is required. The use of approximate
models as advocated in this work alleviates the problem, but the time to solution would still be
impracticably large for many applications. Hence, the evaluations have to be carried out in a
concurrent fashion. This problem can be solved by introducing a second level of parallelism in
the code. By using what is referred to from here on as nested parallelism, parallel evaluation of
multiple versions of the forward model is enabled within the same instance of the running code.
This feature is particularly useful for embarrassingly parallel algorithms such as Monte Carlo,
where instead of computing the samples sequentially, all samples are computed at the same
time or at least in several strands. Of course, a similar speedup could be achieved by creating
multiple instances of the software. However, while the integration of nested parallelism merely
facilitates file handling and execution in case of direct Monte Carlo, it is crucial for more ad-
vanced sampling schemes like SMC, where communication between the otherwise independent
groups is necessary to perform the resampling step, cf. Section 4.3.2. In any case, the software
framework BACI was extended such that e.g., Monte Carlo simulations can be performed in a
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parallel fashion using nested parallelism, such that the same framework will also permit the use
of more advanced sampling schemes in the future.

5.3 Other multi-fidelity UQ approaches
The BMFMC approach is not the only method which uses models with different levels of fi-
delity to reduce the computational costs in an UQ scheme. Two other, prominent examples of
multi-fidelity UQ schemes are introduced and discussed in the following and their relation to
the BMFMC approach is explained. First, the so-called multi-level Monte Carlo technique is
introduced. Then, the extension of GP based surrogates to multiple models with different fideli-
ties is discussed. For the sake of completeness it is mentioned that a multi-fidelity framework
for PCE based surrogates has also been proposed, see [224, 373].

5.3.1 Multi-Level Monte Carlo
Multi-level Monte Carlo (MLMC) is essentially a variance reduction technique based on the
same idea as iterative multi-grid solvers for large systems of linear equations, i.e., finding the
solution for a coarser version of the problem first and then applying correction steps to obtain
the solution at a higher resolution. Multi-level Monte Carlo can be used to compute expectations
more efficiently by decomposition of the problem into several sub-problems based on s so-called
levels of the model. These levels could be created, e.g., by generating a hierarchy of meshes
with increasing resolution. Then, based on the linearity of the expectation operator, instead
of estimating the expectation of the quantity of interest E[y

s

] directly on the finest level using
Monte Carlo, the expected value is computed based on the expectation on the coarsest level
and several correction terms, which add the difference between the expectations computed on
consecutive levels

E[y

s

] = E[y

0

] +

s

X

l=1

E[y

l

� y

l�1

]. (5.14)

In multi-level Monte Carlo these expectations are estimated independently through, e.g., the
standard Monte Carlo estimate with N

l

number of samples

E[y

l

� y

l�1

] =

1

N
l

N

l

X
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y
(i)

l

� y
(i)

l�1

⌘

. (5.15)

Here y
(i)

l

and y
(i)

l�1

denote the quantity of interest computed on different levels but based on
the same realization of random input quantities z

(i). Through an appropriate choice of the
number of samples N

l

needed to estimate the correction terms on each level, the overall variance
of the multi-level estimator defined through the sum in (5.14) can be minimized for a fixed
computational cost.

It has been shown that multi-level Monte Carlo can achieve a superior accuracy at the same
computational cost as standard Monte Carlo if the two assumptions, that the accuracy and com-
putational cost increase with the level and that the variance of the correction term decreases with
increasing level, are fulfilled [120, 121]. Although estimation of a failure probability can be, in
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principle, reformulated as an estimation of an expectation, calculation of a failure probability is
not that simple using MLMC [99, 333].

Since its introduction for geometric integration by Heinrich [149], multi-level Monte Carlo
has been applied to several problems, such as path simulations in finance [120], subsurface
flow [25, 59, 65], and inviscid incompressible flow [218, 219]. To the knowledge of the author
the method has not been applied to nonlinear structural mechanics yet. The multi-level Monte
Carlo method has gained tremendous traction in recent years and several extensions have been
proposed quite recently, see e.g., [121] for a detailed review including recent developments. For
instance, Haji-Ali et al. [140] proposed the so called multi-index Monte Carlo methods which
generalizes the concept of levels such that levels can be defined in multiple directions.

The generation of levels in MLMC is not restricted to a hierarchy of meshes with different
resolutions. Using other techniques to construct cheap approximate solutions such as solving
a simplified version of the problem at hand is also a valid approach [221], as long as the as-
sumptions mentioned above are fulfilled. Nevertheless, MLMC is predominantly applied as
a geometric multi-grid scheme in literature. For problems that rely on structured meshes or
grids on regular domains, the generation of a hierarchy of grids is simple. However, practical
engineering problems often rely on discretization schemes with unstructured meshes and, in ad-
dition, often feature very complex geometries. In biomedical applications with patient-specific
models mesh generation often requires a fair amount of manual labour and is difficult to au-
tomize. In these scenarios the generation of many mesh levels is impractical and may be one of
the reasons why MLMC has not been applied to problems with complex geometry yet.

5.3.2 Relationship between MLMC and BMFMC

The MLMC methodology can also be related to the Bayesian multi-fidelity approach advocated
in this work. Because the BMFMC approach is based on two models with different levels of
fidelity a comparison with a two-level MLMC approach is given here. In a two-level MLMC
scheme the MLMC estimator for the expected value of y

hi�fi

can be restated as a relationship
between y

hi�fi

and y
lo�fi

using a very simple regression model. Essentially, the correction term
between two consecutive levels can be also interpreted as the following linear model between
two levels of fidelity

y
hi�fi

= f(y
lo�fi

) + " = ay
lo�fi

+ b + ", (5.16)

where the parameter a = 1 and the parameter b is estimated based on N
1

computed samples
such that the error term is minimal in the least square sense. The gain in efficiency of this
two level MLMC scheme is to a large extent determined by the variance in the error term, i.e,.
magnitude of the average error, which among other things in this case depends on how close the
actual relation between y

hi�fi

and y
lo�fi

is to the assumed relation y
hi�fi

= 1 · y
lo�fi

+ b.
In the opinion of the author a more detailed comparison between MLMC and BMFMC ap-

proach presents a very interesting direction of future research. However, investigations regard-
ing this matter are beyond the scope of this work.
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5.3.3 Multi-fidelity surrogate models based on Gaussian
Processes

The extension of the GP surrogate framework to incorporate information from simulator evalu-
ations with different levels of fidelity was originally proposed in the seminal work by Kennedy
and O’Hagan [173] and later has been further developed in [188, 262]. Although the approach
is very elegant and general, it has received comparatively little attention in the engineering com-
munity for the purpose of UQ so far, see [86] for an application to membrane deformation prob-
lems. From an engineering standpoint a related approach called the model-correction-factor
method has been proposed, which applies the same idea to reliability analysis [88]. Anyway,
similar to MLMC, the approach requires that at least one lower-fidelity version of the compu-
tational model can be constructed, the evaluation of which is computationally cheaper than the
high-fidelity simulator. In addition the approach is based on the following assumptions, which
are replicated here from [173] for the sake of completeness. The first assumption is that the
output from the different models are correlated, i.e., share some basic features. Moreover, it is
assumed that the models exhibit a degree of smoothness with respect to the uncertain input pa-
rameters, in the sense that output values are similar for similar input values. Lastly, it is assumed
that prior beliefs about the model can be formulated as (stationary) Gaussian process and that
the quantity of interest is a scalar value. The only difference to the single level GP surrogate is
the first assumption, that the output from different versions of the simulator need to show some
correlation, which intuitively makes sense given that the low-fidelity version is supposed to be
an approximation to the next higher-fidelity simulator.

Instead of fitting a GP directly to the output y
s

of the model with the highest fidelity, a GP sur-
rogate for a low-fidelity model is constructed first, then a correction to account for the discrep-
ancy between the levels or versions of the model is estimated separately. Various possibilities
exist based on, e.g., the choice of covariance function, hyper-parameter and corresponding pri-
ors, and particular choice to model the discrepancy between the levels. Kennedy and O’Hagan
[173] proposed the following relationship for two consecutive levels

g

l

(z) = o
l�1

g

l�1

(z) + d

l

(z), (5.17)

where g

l

(z) and g

l�1

(z) are GP based surrogates for level l and l � 1, respectively. The scalar
o
l�1

is referred to as regressive coefficient and accounts for the part of the difference between
two consecutive levels which is proportional to the lower-fidelity solution. The remainder of the
discrepancy is accounted for by d

l

(z) for which, conditional on some hyper-parameters, a zero
mean GP prior is used. The approach can be formulated, like MLMC, to incorporate information
from s levels of fidelity. However, for ease of exposition, a restriction to two levels is made here
to facilitate the discussion. In a two level scheme, first a GP surrogate for the low-fidelity model
is constructed based on a set of design points. At these design points the low-fidelity model is
evaluated to obtain a training data set {y

0

, z
(i)

0

}N

0

i=1

. Subsequently, the correction term comprised
of o

0

and d

l

(z) , which account for the difference between low-fidelity model and high-fidelity
model are calculated. Both, o

0

and d

l

(z) are estimated based on the output of the high-fidelity
model evaluated at a subset of the aforementioned design points, which in combination with
g

0

(z) gives rise to the posterior GP g

1

(z). This posterior GP is then used to make inference
about the desired statistical summary of the quantity of interest, analogous to the procedures
described in Section 4.6.2. The described approach can be also interpreted as a way to perform
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implicit model calibration. If experimental data is available, it can be incorporated in the scheme
at the highest level, thereby correcting for modelling errors between the high-fidelity simulator
and an experiment. It is important to note that while the multi-fidelity approach might alleviate
the curse of dimensionality, it does not resolve the fundamental problem that parameters of
GP models in d-dimensional (if z 2 Rd ) space have to be trained. This entails estimation
of parameters of, e.g., the covariance function, and the number of these parameters typically
increases with the dimension. Thus, many data points are required in order to obtain reliable
parameter estimates.

5.3.4 Relationship between GP surrogate models and BMFMC

To facilitate the following discussion of the relation between multi-fidelity GP surrogates and
BMFMC let us assume that the regression model used in the BMFMC framework is based on a
GP as well. In this case, although the BMFMC approach cannot be directly linked to the multi-
fidelity framework described by Kennedy and O’Hagan [173], BMFMC it can be interpreted
as GP surrogate model with a special, proxy-based, covariance function. Usually, the goal of
the GP surrogate is to capture the relation between (random) model input parameters z and
model output y. Thereby, based on the assumption that y varies smoothly with z, the model
is only evaluated at few points in the input space and y is interpolated in-between the chosen
design points. The assumptions about the smoothness are made through the particular choice of
covariance function k(z, z0

). When the dimension of z becomes large, this approach becomes
infeasible because it typically requires estimation of correlation parameters, e.g., `

i

, for each
dimension.

If it were possible to come up with a different measure of similarity, which is based in a
lower dimensional space, the problem of having to estimate correlation length parameters for
each dimension could be circumvented. The output of a lower-fidelity model version can be
interpreted as a proxy, which provides exactly this measure of similarity, in the sense that two
high-fidelity model solutions are likely similar if the low-fidelity solutions are similar as well.
This can be achieved by using a covariance function which depends on y

lo�fi

(z) as argument,
i.e., k(y

lo�fi

(z), y
lo�fi

(z

0
)). The advantage is that only a one-dimensional GP model needs to be

trained, which obviously has fewer parameters than a d-dimensional model. The downside of
this approach is that the relation between low-fidelity solution and high-fidelity solution is not a
one-to-one relation, but contaminated with noise.

5.3.5 Combination of BMFMC with GP based surrogate models

As a consequence of the interpretation introduced above, it is possible to see that the BMFMC
approach could be extended such that the low-fidelity model provides only partial information
about the similarity of the high-fidelity model output and that the remaining information is
provided by the distance with respect to certain components of z. This would make sense in
scenarios where it is possible to construct a cheap surrogate, which can only capture parts of
the variability regarding a particular subset of z. Another scenario is if the relationship between
one component of the uncertain inputs and the high-fidelity model output is not smooth, but
a cheap surrogate for this particular dependence is available. Splitting z into two parts, i.e.,
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z = [z1, z2], some kind of mixed covariance function could be constructed

k(z, z0
) = k

1

(y
lo�fi

(z1), ylo�fi

(z

0
1)) + k

2

(z2, z
0
2). (5.18)

This covariance function could be used in some kind of hybrid UQ scheme, i.e., a mixture be-
tween GP surrogate in the usual sense and the BMFMC approach advocated here. In the opinion
of the author this kind of scheme could yield significant computational savings, especially if
sensitivity analysis is considered in future applications as well.
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6 Elicitation of probabilistic models
for AAA wall properties based on
experimental data

The present chapter addresses the estimation of probabilistic models of AAA wall properties,
such as thickness, constitutive parameters, and failure measures. Thereby, a data-driven ap-
proach is pursued and elicitation of probabilistic models is based on a large database of ex vivo
tensile tests, thickness measurements, and supplementary non-invasively measurable parame-
ters. The results in presented in this chapter are largely based on the previous publication by the
author [33].

The chapter commences with a brief discussion and overview of constitutive modeling of
AAA wall and existing experimental and computational research regarding this subject. Further-
more, the need for probabilistic models for several patient-specific parameters is elaborated on
the basis of experimental findings from both, own experiments and literature. After concluding
that probabilistic models present the only coherent choice in view of uncertain patient-specific
parameters, the remainder of the chapter addresses the estimation of suitable probabilistic mod-
els for patient-specific AAA wall parameters. The goal is to predict-patient specific parameters
more accurately and with less uncertainty than predictions based on study population averages.
This is achieved by using Bayesian regression techniques in combination with non-invasively
assessable explanatory variables. Therefore, the two possible choices for a probabilistic model,
i.e., random variable or random field, will be discussed and it will be shown that the simpler
random variable model is overly simplistic for most AAA wall parameters and that the data in-
dicates that the random field model is the more appropriate choice. Next, available experimental
data, which was in parts gathered within the scope of this work, is harnessed to elicit probability
distributions for several AAA wall parameters. These probability distributions might also vary
depending on the location within the AAA geometry. Two options to obtain suitable proba-
bility distributions are investigated and compared. The first is fitting a probability distribution
directly to the measurements of the respective parameter, while the second is to use supplemen-
tary, non-invasively available data to construct advanced Bayesian regression models based on
Gaussian processes. The predictive distribution of these regression models provide the desired
patient-specific, and possibly location dependent, probability distributions for the uncertain wall
properties. For the purpose of comparison linear regression models based on the same data are
constructed for all parameters as well. However, a Bayesian viewpoint is adopted for theses
models as well.

It is shown that the predictive uncertainty can effectively be reduced, and the predictive
assessment of several patient-specific parameters, most importantly for thickness and failure
strength of the AAA wall, can be improved when additional non-invasively assessable param-
eters are taken into account for the prediction through regression models. Thereby, the more
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elaborate Bayesian regression approach based on Gaussian processes consistently outperforms
standard linear regression. Moreover, a comparison to a previously proposed statistical model
for the wall strength is given later on in this chapter.

Aside from the first-order probability distribution of a random field describing a certain AAA
wall parameter, the spatial correlation structure of the random field is another important char-
acteristic which has to be estimated. In the context of UQ problems this is notoriously difficult
because the data is rarely, if ever, sufficient to determine a correlation structure unequivocally
[58]. Based on the assumption that the parameters vary smoothly in space, the correlation
length of a relatively simple covariance structure can be estimated from the gathered experi-
mental data. The details of the proposed procedure are described at the end of this chapter. The
probabilistic predictions for AAA wall parameters and the estimated correlation structure will
be combined to setup random fields describing uncertain input parameters of mechanical mod-
els of a AAAs. Several different choices will be compared and discussed based on UQ using
these patient-specific AAA models in Chapter 7.

6.1 Mechanical modeling of AAA wall

In this work only purely elastic models of AAAs are considered and the aneurysmatic arterial
wall is modeled as nonlinear hyper-elastic continuum. The consideration of growth and remod-
eling effects is beyond the scope of this work. However, it is important to acknowledge that
these inelastic growth and remodeling effects govern the progression of the disease and the dy-
namics of the underlying mechanobiological processes. The mathematical and computational
modeling of these processes is an area of active research, see, e.g., [10, 160] for an overview.
Future work will likely encompass these phenomena as well.

That being said, the objective here is to define a suitable elastic model of the arterial wall
which enables the computation of mechanical response quantities which are often related to
AAA rupture risk. Although the actual failure mechanism is still debated in literature, popular
choices for rupture risk indicators are often stress based, e.g., peak wall stress, both maximum
normal stress or maximum von Mises stress, or the rupture potential index (RPI) proposed by
Vande Geest et al. [337]. However, while many studies assess rupture potential by computing
wall stresses based on an elastic model, it has been pointed out that the damage and failure
process of soft tissue might be more involved and thus cannot be captured with purely elastic
models employing a stress based failure criterion. Hence, other mechanical quantities such as
peak strain or strain energy density are considered to be potential quantities of interest as well
[107, 206, 251, 278, 345, 347].

In order to accurately compute stresses, strains, and strain-energy prevailing in the AAA
wall, several patient-specific model input parameters are needed —most importantly the wall
thickness, the parameters of a suitable constitutive law, and possibly failure measures such as
the wall strength or failure tension. The computation of meaningful failure criterions based
on mechanical quantities, such as the RPI, also requires knowledge of these input parameters.
Unfortunately, the parameters cannot be exactly determined in a clinical setting and remain, to
some extend, uncertain, which is the motivation for choosing a probabilistic model for these
parameters. Below, the limitations of obtaining estimates for these parameters are discussed
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and the methodology to infer probabilistic models for these parameters based on experimental
data is explained.

6.1.1 Wall thickness
The wall thickness is obviously of paramount importance for the accurate simulation of the
mechanical behavior of an AAA. Alas, unlike the overall geometry, the wall thickness and its
regional distribution over the surface of the AAA can usually not be determined from standard
clinical CT image data. Recently Shum et al. [302] and Martufi et al. [208] proposed an approach
to estimate the wall thickness, including regional variations, from CT images and claim superior
accuracy. If their findings can be replicated and confirmed, this approach could improve the
accuracy of patient-specific AAA models. However, given that the resolution of current CT
imaging systems is in the order of 1mm voxel size, it seems unlikely that the wall thickness will
be determinable with negligible uncertainty.

The wall thickness could, in principle, also be quantified more accurately using, e.g., intravas-
cular ultra-sound, but this would require an additional examination and is hitherto not part of the
standard clinical routine. As a result, most researchers to date use a spatially constant uniform
wall thickness estimated form a sample of ex vivo measurements and ignore the uncertainty
about the true patient-specific wall thickness.

6.1.2 Constitutive models and parameters
A suitable constitutive model with patient-specific parameters is particularly important for the
accurate computation of strain and strain-energy density computations. As will be discussed
in more detail later on, the wall stress is relatively insensitive to variations of the constitutive
parameters. Studies, such as [93, 277], claiming dramatic effects on wall stress usually neglect
the prestressed state of the imaged AAA geometry and therefore obtain flawed results, which
are additionally also more sensitive to variations in the constitutive parameters.

Nevertheless, an accurate, patient-specific constitutive model should be the basis for a compu-
tational investigation of AAAs. Several constitutive models for aneurysmatic arterial wall have
been proposed by researchers in the past. A relatively simple isotropic constitutive model that is
widely used because it captures the mechanical behavior of AAA tissue well, was introduced by
Raghavan et al. [267] and Raghavan and Vorp [266]. It is based on the following strain-energy
function

 = ↵(I
1

� 3) + �(I
1

� 3)

2, (6.1)

with the constitutive parameters ↵ and �. In the following, these two parameters will be referred
to as ↵-stiffness and �-stiffness, respectively. The first invariant I

1

of the right Cauchy-Green
strain tensor C, which is defined in (2.13) and serves as a measure of deformation in (6.1).
Throughout this work the constitutive model defined through (6.1) will be referred to as Ragha-
van & Vorp (R&V) material model, though a slightly different formulation is used. Modified to
near incompressibility through an isochoric-volumetric split of the strain-energy function, the
version of the R&V material used for all AAA finite element simulations in this work reads:
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where ¯I
1

is the first invariant of the isochoric Right-Cauchy-Green strain tensor and J = detF

is the determinant of the deformation gradient. The bulk modulus  was set to  =

2↵

1�2⌫

using ⌫ = 0.49, and the parameter ⌘ is set to �2. Since its introduction the model has been
adopted by many researchers and is still widely used in computational studies of AAA to date
[92, 102, 103, 151, 204, 213, 273, 312].

Although some more recent studies based on biaxial tensile test have indicated that the consti-
tutive behavior might be better captured with an anisotropic material model [241, 329, 338], the
isotropic material law proposed by Raghavan and Vorp is used throughout this work for reasons
elaborated in the following.

First of all the main goal of the present work is not the computation of rupture risk for AAA
but the development of an efficient UQ framework which allows the consideration of complex
mechanical models. Clearly, further research and development is needed until clinically relevant
questions can be answered. In addition, the UQ framework developed in this work is by no
means limited to isotropic material models and can readily be used in combination with complex
anisotropic constitutive laws where, e.g., the fiber directions are modeled as random variable or
random field.

Moreover, over the course of the past years a very large and unique experimental dataset
has been collected at the Institute for Computational Mechanics. The dataset is comprised of
uniaxial tensile test data of more than 200 specimens harvested from 80 patients. In addition,
detailed patient information is available about the patients medical history, blood analysis data,
and CT images, making it one of very few datasets of this kind and size world wide. Albeit
the uniaxial tensile tests basically limit evaluation of the data to isotropic constitutive laws,
having access to the raw experimental data including supplementary data on the patients medical
history, blood analysis data, and CT image data, is considered a major benefit which is hard to
neglect.

In addition to the arguments made above, biaxial tensile tests carried out with anisotropic
porcine aorta by Trübswetter [330] revealed that the isotropic R&V material law performed
only marginally worse in reproducing the constitutive behavior than a more complex anisotropic
material law.

Lastly, while the reported average preferential stiffening direction is reported to be the circum-
ferential direction, a closer look at the results from the biaxial tests in the study of Vande Geest
et al. [338] and O’Leary et al. [241] reveals that only 17 of 26 and 20 of 28 tensile test specimens
show this preferential stiffening direction, respectively. Biaxial tensile test were also conducted
by Tong et al. [329]; however, they do not report results of individual specimens. These results
indicate that the preferential stiffening direction and the corresponding fiber directions in the
tissue exhibit a significant amount of variability and consequently would have to be consid-
ered uncertain in a numerical model. In addition, even if biaxial experimental data is available,
the identification of the parameters of complex anisotropic constitutive laws through an opti-
mization procedure is difficult. In fact, it becomes increasingly difficult the more parameters
the constitutive model has. Without detailed a priori knowledge about the fiber direction it is
difficult to determine contributions of the different components, i.e., isotropic contribution ver-
sus contribution of the fiber families, to the overall mechanical response of the tissue. Hence,
even if biaxial tensile test are available, the parameters obtained from a parameter identification
procedure will be afflicted with considerable uncertainty.
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6.1 Mechanical modeling of AAA wall

Aside from the choice of the particular constitutive model, the more fundamental problem
is that tensile tests with AAA tissue require invasive excision of tissue samples and are thus
only possible during elective repair or post mortem. Hence, for simulations performed with the
goal to determine whether surgery is necessary or not, tensile test data is not available and thus
the parameters of the used constitutive model, be it isotropic or anisotropic, will be uncertain.
There has been some progress regarding in vivo characterization of constitutive properties based
on pulse wave velocity or local changes in diameter of the aorta [16, 291, 342]. However, cur-
rent in vivo approaches are not yet able to detect short scale spatial variations, nor has any of
these approaches been successfully applied and validated for AAA or human aorta by tensile
tests. In conclusion, patient-specific constitutive parameters cannot be accurately determined
in a clinical setting. Taking population averaged parameters is also problematic since all stud-
ies that have been conducted to determine constitutive parameters found that these parameters
vary significantly from patient to patient. Furthermore, the parameters exhibit spatial variations
within a single patient as well [206, 241, 267–269, 274, 325, 329, 334, 338, 340]. In light of
these arguments, the benefit of using anisotropic constitutive models seems questionable at this
point.

6.1.3 Failure measures

In addition to wall thickness and constitutive properties, failure measures are needed to assess
AAA rupture risk. Although stress based failure models might not be optimal to describe soft
tissue damage and failure [206, 345], stress based failure measures are still widely used. A typ-
ical failure measure which can be derived from destructive tensile testing is the failure strength
often also referred to as wall strength �max. It is usually determined as maximum first Piola-
Kirchhoff stress during the destructive test

�max =

Fmax

A
0

. (6.3)

Here Fmax is the maximum recorded force in the corresponding tensile test and A
0

is the initial
cross-sectional area of the specimen. As this measure for wall strength is only useful in com-
bination with knowledge about the wall thickness, or at least a model thereof, Raghavan et al.
[268] introduced the failure tension Tmax as a second failure measure for AAA wall. This failure
measure is independent of the wall thickness, which is generally unavailable in clinical practice
due to the aforementioned limitation of standard clinical image data. The failure tension can be
computed as

Tmax =

Fmax

b
0

, (6.4)

where b
0

is the specimen width in the undeformed configuration.
As with the constitutive parameters, the failure strength or the failure tension cannot be de-

termined in a non-invasive fashion prior to surgery. Again population averaged values are un-
reliable due to the drastic variation between and also within patients [268, 269, 325]. This also
pertains to the failure tension and it is not clear, at least from the dataset used in this study, that
the failure tension can offer a more reliable prediction as compared to the wall strength.
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(a) (b)

Figure 6.1 Histogram of thickness measurements from tensile test specimens (a) and stiffness parameter � de-
termined from tensile test (b). Intra-patient variability is shown by squares in the same color, which indicate
measurements from specimens which were excised from the same patient.

6.2 Probabilistic models for uncertain patient-specific
AAA wall parameters

In face of non determinable and hence uncertain patient-specific parameters the use of proba-
bilistic models instead of using population averaged mean values is advocated in this work. Un-
certain physical parameters such as the wall thickness can be modeled either as random variable
or as a random field. In case the thickness is modeled as a random variable, the wall thickness of
an AAA will be spatially constant. If the wall thickness is modeled as a random field, a spatially
varying wall thickness will be obtained for each realization of the field. Hence, by represent-
ing an uncertain model parameter as a random field, the spatial, intra-patient variations of this
quantity can be captured in a stochastic sense as well. Figure 6.1 depicts histograms of mea-
sured AAA wall thickness and the constitutive parameter � (R&V constitutive model, see (6.1)),
which was obtained by fitting the R&V model to experimentally obtained stretch-stress curves.
Squares with the same color indicate measurements taken from the same patient. Clearly, the
intra-patient variations in these two parameters is significant and will have a considerable effect
on the spatial distribution of computed mechanical quantities such as strains or stresses.

Before discussing the means by which probabilistic descriptions for the aforementioned wall
parameters are estimated in this work, the requirements for the two different probabilistic model
choices are briefly discussed, along with the assumptions to be made and the additional model
parameters that have to be estimated.
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6.2.1 Random variable models
Although the random variable model cannot capture intra-patient variations, the model is ap-
pealing due to its simplicity. A simple probability distribution, e.g., in form of a PDF, is used to
describe the random behavior of the parameter. In the context of sampling based UQ schemes
it thereby suffices that samples can be drawn form the distribution, and a closed form expres-
sion is not essential. Assuming that some measurements of the quantities to be described by a
random variable are available, a PDF can be obtained either by fitting a parametric distribution
such as a normal or a log-normal distribution to the data, or by using kernel density estimation.
Through usage of specific types of distributions, constraints on the possible parameter range can
be readily accounted for. For instance, all uncertain parameters studied in this work are positive
by definition and hence the Gaussian distribution is not a suitable probabilistic model for these
parameters. Distributions with a strictly positive support, such as the log-normal distribution,
are often a more suitable choice.

6.2.2 Random field models
As discussed above for the random variable case, the Gaussian distribution is often not appro-
priate to describe uncertain physical parameters. Hence, non-Gaussian random fields are used
within the scope of this work to describe uncertain wall parameters. Evidently, there is not
enough data to fully infer the complete family of finite-dimensional probability distributions
to describe a general non-Gaussian field in any practical setting. By making a number of as-
sumptions about the properties of the field, the number of required parameters can be drastically
reduced. In this work translation fields (cf. Section 3.3.2) are used for parameters that do not
abide by a Gaussian distribution. In contrast to the covariance structure, which is assumed
to be an isotropic, homogenous squared exponential covariance function, the mean function
of the underlying Gaussian field is assumed to depend on the location in some cases. Based
on these premises, the parameters of the first-order probability distribution, e.g., a log-normal
distribution, as well as the correlation length parameter of the covariance function have to be
estimated. Other more elaborate correlation structures are, in principle, also valid choices and
might describe the actual spatial correlation of the parameters more accurately; however, it is
very difficult to estimate the parameters of these covariance functions, especially in biomedical
applications where experimental data is extremely scarce. Moreover, it would be interesting to
compare several first-order distributions in addition to the log-normal one. This comparison,
however, is too beyond the scope of this thesis and will likely be addressed in future work.

6.3 Inference of probability distributions for wall
parameters

This section covers the estimation of probability distributions for the AAA wall’s constitutive
parameters, thickness, and failure probabilities based on experimental data. This problem can be
interpreted as a prediction problem in the sense that the goal is to make probabilistic predictions
about the wall properties, ideally on a patient-specific basis. These probabilistic predictions can
be based on, e.g., previous measurements of these wall properties or on regression techniques,
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which in combination with non-invasively available patient-specific data, provide a predictive
distribution for the respective wall property of interest. Thereby, the aim is to minimize the pre-
dictive error and to reduce the remaining uncertainty about the patient-specific wall properties.

A multitude of other patient-specific parameters, such as blood analysis data, the patients
medical history, and geometric features of the AAA are non-invasively assessable. If these pa-
rameters contain statistical information about, e.g., the wall strength or the wall thickness, it
can be exploited using regression analysis. The idea is to use statistical tools to exploit non-
invasively available information in order to infer patient-specific parameters that are needed for
a more accurate patient-specific finite element model of an AAA, e.g., for the computational
assessment of AAA rupture risk. This idea has been previously pursued by Vande Geest et al.
[340] who suggested the use of linear regression to obtain a more accurate patient-specific pre-
diction for the wall strength based on several non-invasively assessable parameters. By incorpo-
rating local thrombus thickness and normalized local AAA diameter in their statistical model,
also regional variations of the wall strength can be captured and predicted. Along those lines,
Maier [202] used regression for the construction of statistical models for other AAA wall pa-
rameters as well. A related approach was also recently proposed in [292], where the goal of the
authors was the inference of parameter distributions of a constraint mixture model for the aortic
wall based on measurement fitted values of these parameters and patient age. Here, a similar
approach is followed and probabilistic models for the prediction of the aforementioned patient-
specific parameters are created. However, in contrast to the studies by Vande Geest et al. [340]
and Maier [202], a Bayesian viewpoint is adopted, resulting in probabilistic predictions allow-
ing the computation of a confidence interval for all predictions, instead of a single deterministic
number. This is considered a major advantage. Moreover, more advanced regression techniques
are employed and a significantly larger patient population is considered. An extensive dataset
based on 80 patients and 218 tensile test specimens was collected. In addition, 28 non-invasively
assessable parameters, which can be used as explanatory variables in a regression model have
been gathered.

After briefly reporting the results of 218 tensile tests with AAA wall specimens, the two main
purposes of this section are as follows. First, it is shown that it is possible to exploit the statistical
information which is encoded in the non-invasively accessible parameters to make probabilistic
predictions for patient-specific constitutive parameters, wall thickness, failure tension, and wall
strength using regression models. By comparison it is shown that linear regression, the often
used and standard approach in biomedical engineering, is outperformed by the more elaborate
Gaussian process regression. On average, the predictions for the patient-specific quantities ob-
tained by Gaussian processes regression are more accurate as compared to predictions based on
population average, as well as compared to the linear regression case. In addition, the variance
of the predictive distribution obtained with the regression models is typically smaller compared
to the parameter’s variance of the study population, which implies that the uncertainty about
these parameters is effectively reduced. The second goal is the replication of the findings from
Vande Geest et al. [340]. Using the dataset collected at the Institute for Computational Mechan-
ics predictions based on the model from [340] are computed. The results show that this model
poorly predicts the data measured by the group of the author. The ensuing subsections and
paragraphs contain a brief summary of the employed experimental methods, an overview of the
study population, and a short description of the available explanatory parameters. The Results
obtained with the regression techniques, which are described in Section 3.5, are presented in
Section 6.3.3.
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No. patients 80

No. tissue samples 132

No. tensile test specimens 218

No. experimentally determined parameters 5

No. potential explanatory parameters 28

Table 6.1 Summary of the size of experimental dataset. Taken from [33].

6.3.1 Experimental methods
6.3.1.1 Study population and tissue sampling

218 tensile tests were performed with samples from 80 AAA patients who underwent open re-
pair. An overview of the study population size is given in Table 6.1 and a summary of the popu-
lation characteristics is provided in Table 6.2. Complete blood analysis data and CT images were
obtained as routine part of the preoperative preparation for 78 and 80 patients, respectively. The
CT data was utilized as described in [273, 274] to create 3D reconstructions and finite element
models of the AAA geometry including intraluminal thrombus (ILT). Orientation and location of
the samples were indicated by the surgeon and recorded on images of 3D reconstructions or CT
images of the AAA directly during surgery. In total, 132 tissue samples from different excision
sites were obtained. For tensile testing, these samples were subdivided into 218 test specimens.
The spatial position of an individual specimen was determined from its location within the tissue
sample and the position of the sample which was recorded during surgery. Samples intended for
mechanical evaluation were stored in lactated Ringers solution (130 mmol/l sodium chloride,
5 mmol/l potassium chloride, 2 mmol/l calcium chloride, 3 mmol/l sodium lactate) at 4

�
C and

underwent mechanical testing at room temperature within 24 h after surgery. The study was ap-
proved by the ethics committee of the university hospital rechts der Isar, Technische Universität
München, Germany.

6.3.1.2 Mechanical testing

All harvested samples of AAA wall were excised during open surgery and later subdivided into
rectangular tensile test specimens with a length of 20-30 mm and a width of 8-10 mm. Prior
to testing, the thickness of each specimen was measured using a Mitutoyo ”Quick-Mini Series
700” digital thickness gauge (Mitutoyo, Kawasaki, Japan. Part-No. 700-118. Constant measur-
ing force=0.5 N, measuring platen diameter=5 mm, accuracy = 20 µm) and averaged over five
measuring points. Tensile tests were performed using either an ElectroForce 3100 (Bose Corpo-
ration, Eden Prairie, USA) or a Zwick/Roell mediX0.1 (Messphysik Materials Testing, Fürsten-
ried Austria) tensile test machine. In both cases the same test protocol, which is described in
[274], was used to determine elastic properties in a cyclic test. Subsequently, a destructive test
was performed until failure. The failure load was thereby defined as maximum tensile force
measured in this experiment. Specimens that slipped from the clamps during testing were ex-
cluded from the study, resulting in a total of 176 successful destructive tests.
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From To Mean±sd Median

Age [years] 48 90 68.8±8.1 69
Max. AAA diameter [mm] 43 110 64.5±14.8 59
Max. ILT thickness1 [mm] 0 46.2 22.8±9.77 22.4
Subrenal aortic diameter [mm] 28 82.6 45.8±10.3 43.4

Medical history Yes No Unknown

Ruptured AAA 13 63 4
Chronic kidney disease (CKD)2 13 63 4
Diabetes mellitus (DM)3 8 67 5
Hypertension 52 23 5
Smoking status4 34 41 5
Coronary heart disease (CHD) 15 59 6
Peripheral vascular disease (PVD) 4 70 6

Table 6.2 Main characteristics of study population. No patient had known connective tissue disease. 178 AAAs
had ILT. 2Grouping for CKD was based on an estimated glomerular filtration rate (EGFR) according to the Kidney
Disease Improving Global Outcomes (KDIGO) [331]: patients with EGFR<60ml/min (stage 3, 4 and 5) were
considered as patients with CKD [328]. 3Patients suffering from diabetes mellitus (DM) were defined by a fasting
plasma glucose >126 mg/dl, or use of oral hypoglycemic agents or insulin [9]. 4Patients were considered as
smokers if they were active smokers or stopped smoking less than ten years ago [105]. Taken from Biehler et al.
[33].

6.3.1.3 Evaluation of tensile tests

The stretch-stress curves obtained from cyclic testing were fitted to the hyperelastic, incom-
pressible, isotropic R&V material model defined by the strain energy function given in (6.1).
For each of the tested specimens the parameters ↵ and � were determined from the measured
force-displacement curves using a Levenberg-Marquardt curve fitting algorithm. The procedure
is described in detail in [274]. In addition to the elastic properties, the two failure measures wall
strength and failure tension defined in (6.3) and (6.4) were derived from destructive testing.

6.3.1.4 Non-invasively accessible explanatory parameters

A total of 28 non-invasively accessible parameters, which could potentially provide statistical
information about the AAA wall properties, were considered. The parameters are shown in
Table 6.3 and can be categorized into patient characteristics and spatially distributed quantities
determined from medical images at the sample excision site. Patient characteristics include
general patient information, the patient’s medical history, and laboratory parameters obtained
from blood analysis. Parameters from the latter category which vary spatially across the surface
of the AAA are, e.g., the local ILT thickness and the euclidian distance to the bifurcation, as
illustrated in Figure 6.2. All parameters are available either preoperatively in a clinical setting
and hence can be collected with negligible additional costs or effort, or they can be obtained
from a computer model of the AAA.
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6.3.2 Regression models
In contrast to other studies employing regression models, the aim here is not information in
the sense that the goal is to uncover a relationship between the explanatory variables and the
ex vivo measured quantities, but rather prediction. The concern is not so much finding poten-
tial relationships - meaning which of the predictor variables explains or could cause a specific
observable phenomenon - but rather to use the regression models to predict the quantities of
interest for new unseen patients.

Based on the nomenclature defined in the Sections 3.4 and 3.5, the starting point for the
regression analysis is the training data set D with n observations D = {x(i), y(i)}n

i=1

= (X,y),
where the input vector x 2 Rd contains d explanatory variables. Specifically, x contains the
parameters, or a subset thereof, which are summarized in Table 6.3. The variable y denotes the
measured output or target variable which we wish to predict, e.g., the wall thickness.

Patient characteristics
general medical history

sex f=0, m=1 chronic kidney disease (CKD) no=0, yes=1
age [years] diabetes mellitus (DM) no=0, yes=1
AAA-status ele.=0, rpt.=1 hypertension no=0, yes=1
max AAA diameter [mm] smoking status no=0, yes=1
subrenal aortic diameter1 [mm] Coronary heart disease (CHD) no=0, yes=1

Peripheral vascular disease (PVD) no=0, yes=1

laboratory parameters

creatinine2 mg/dl sodium [mmol/l]
erythrocytes [Mio/µl] urea [mg/dl]
thrombocytes [1000/µl] mean corpuscular hemoglobin (MCH) [pg/cell]
leukocytes [1000/µl] mean corpuscular
hsCRP [mg/l] hemoglobin concentration (MCHC) [gHb/100ml]
potassium [mmol/l] mean corpuscular volume (MCV) [fl]

Spatially distributed quantities at the sample excision site3

local geometrical data

distance to bifurcation (see Figure 6.2) [mm] relative axial position (dist. to bi- [-]
local thrombus thickness (see Figure 6.2) [mm] furcation divided by AAA length)
local diameter [mm] relative thrombus thickness [-]
local normalized diameter (NORD) [-] (local thrombus thickness divided
(local ø divided by subrenal aortic ø) by max thrombus thickness)

Table 6.3 Categorized non-invasively accessible explanatory parameters used for statistical evaluation of AAA
wall properties. Parameters are listed together with their unit or the statistical coding, e.g., no = 0; yes = 1. 1If
the aneurysm reached the renal arteries, the aortic diameter between the celiac artery and the superior mesenteric
artery minus 2.5mm was used instead [203]. 2Values from patients on dialysis (stage 5, EGFR<15 ml/min) were
excluded. 3All values at sample excision sites were automatically assessed from 3D reconstructed AAA. Taken
from Biehler et al. [33]
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Figure 6.2 Reconstructed AAA geometry showing local thrombus thickness tILT and distance to the aortic bifur-
cation dbif. Taken from Biehler et al. [33]

The goal is to make inference about the relationship between explanatory variables and tar-
get values. Typically, this relationship is not deterministic but can be characterized through a
conditional probability distribution. In accordance to the Bayesian paradigm we do not only
compute point estimates such as the mean value for the target variable, but rather consider prob-
ability distributions which reflect the remaining uncertainty in the target variable. Therefore, we
assume that the explanatory variables can be related to the target variable via an additive error
model

y = f(x) + ✏, (6.5)

where the random error ✏ contains not only the measurement error but also the contribution
of other unknown or unmeasured variables to the target variable y. After the inference of a not
necessarily deterministic function f and the magnitude of the error, we can make predictions for
a new yet unseen test case x

⇤ and compute the predictive, conditional distribution p(y⇤|x⇤, D).
If the explanatory variables provide sufficient information about the target values, the variance
of the predictive distribution will be small and the mean of the predictive distribution ȳ⇤ will be
close to the true value y of the target variable. If, on the other hand, y is significantly influenced
by some other unknown parameter not included in x, the predictions of the regression model
will be poor, i.e., the error between predicted mean and true value will be large. Furthermore, the
lack of predictive capability will be reflected by a large variance of the predictive distribution
p(y⇤|x⇤, D). Note that all quantities that are assessed in this work are strictly positive and
hence a logarithmic transformation, i.e., for the thickness t: y = log(t), is made to ensure that
predictions are also strictly positive.

6.3.2.1 Linear regression

Linear regression is probably the most common regression technique in biomedical engineering
and has been used previously to create a statistical model for the strength of AAA wall [340].
In contrast to Vande Geest et al. [340], a Bayesian viewpoint is adopted for linear regression
here as well. The predictive distribution for a new test input x⇤ based on a training dataset

118



6.3 Inference of probability distributions for wall parameters

D has been derived in Section 3.5.1.1 along with the basics of this methodology. The mean
is given in (3.121) while the squared scaled parameter of the predictive t�distribution and the
corresponding 95% confidence interval is given in (3.122) and (3.124), respectively. However,
for the sample size in this study F

(�1)

T (0.025, n � d), where F
(�1)

T denotes the inverse CDF of
the t-distribution with n � d degrees of freedom, is very close to 1.96; and hence the predictive
distribution can be considered Gaussian with minimal error.

6.3.2.2 Gaussian process regression

As for linear regression, the basics of Gaussian process regression have been covered previously
in Section 3.5.2. The mean, variance, and confidence interval of the Gaussian predictive distri-
bution can be computed using (3.135), (3.136), and (3.142), respectively. For the purpose of es-
timating wall properties the combination of a linear ansatz for the mean function m(x) = ✓

T

m

x

and a covariance function from the Matérn family [209] as given in (3.65) is used here. All
hyper-parameters and the variance of the noise are estimated based on maximizing the marginal
likelihood as described in Section 3.5.2.1.

6.3.2.3 Assessment of predictive capabilities

The predictive error of the regression models is assessed by the standardized mean square error
(SMSE), which is defined as the squared error between the mean prediction ¯f ⇤ and the measured
target value ỹ⇤ averaged over all test cases n⇤ and normalized by the target variance

SMSE =

1

n

⇤

P

n⇤
i=1

(ỹ⇤ (i) � ¯f ⇤ (i)

))

2

P

n

j=1

1

n

(y(j) � ȳ)

2

, (6.6)

where ȳ is the average of all target values in the training set. Using this error measure it is easy
to see if a regression model performs better than simply using ȳ as a guess for all test cases,
in which case the SMSE is approximately one. Confidence regions for the predictions can be
readily computed using (3.124) and (3.142) based on the predictive variance. Hence, in addition
to the SMSE the standardized mean predictive variance

�⇤ 2

s =
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n

⇤

P

n⇤
i=1

(�⇤ (i)

)

2

P

n

j=1

1

n

(y(j) � ȳ)

2

, (6.7)

is used to quantify the uncertainty in the predictions. Obviously, the standardized mean predic-
tive variance should be smaller than one, indicating a narrower confidence region around the
predictive mean than the one obtained directly from the target values y(i).

In order to compare the predictive capabilities of the two regression models a variant of
leave-one-out cross-validation (LOOCV) is applied. All tensile test specimens from a single
patient are used as test inputs or validation set, while the regression model is fitted to the data
of the remaining patients. The standardized mean square error SMSE and standardized mean
predictive variance are computed based on all specimens from the validation patient. Thus,
these quantities are hereafter referred to as patient standardized mean square error (PSMSE)
and patient standardized mean predictive variance �⇤ 2

P,s , respectively.
After performing the LOOCV scheme and having computed PSMSE and �⇤ 2

P,s for every test
patient, the arithmetic mean of these two quantities is computed. As the mean of the PSMSE
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6 Elicitation of probabilistic models for AAA wall properties based on experimental data

(E[PSMSE]) is prone to distortion by one or two particular bad cases, the median of this quantity
(MD[PSMSE]) is also reported. Furthermore, the percentage of the predictions that lie within
the 95% confidence region is also reported. The true predictive root mean square error (RMSE),
which is computed after the data has been transformed back to its original space, is also given to
provide the reader with a sense of the true magnitude of the average predictive error. By fitting
a normal distribution to the logarithm of the measured quantities, the trivial constant prediction
model is obtained, which provides a constant prediction based on study population average, as
well as an estimate for the variance of the measured parameters. In order to assess the benefit of
the regression models over this constant prediction model, the error measures described above
were computed for this approach as well, by applying the same LOOCV scheme.

6.3.2.4 Data selection and outliers

Amongst all potential explanatory variables a subset is chosen using a sequential forward feature
selection algorithm. Starting from an empty set of explanatory variables, one predictor variable
is added to the subset in each step until no further improvement, based on SMSE, in prediction
of the dependent variable y is achieved. Feature selection was performed solely using standard
linear regression; however, the same features were used to train the Gaussian process model
in order to ensure comparability. Note that this comparison is not entirely fair. Maximizing
the marginal likelihood can result in explanatory variables being effectively removed from the
inference if a covariance function that implements automatic relevance determination, such as
(3.65), is used [360]. While several other methods to determine a suitable subset of predictor
variables were tried, the forward selection algorithm delivered the best results for the dataset and
both regression methodologies. The full feature set was also used to train a Gaussian process
model. The resulting predictions, however, were in general less accurate. For some of the
patients in the database a subset of potential explanatory variables is missing for various reasons.
Assuming that the data is missing at random, the corresponding specimens were excluded from
the dataset (list wise deletion) for specimens with more than four missing entries. If fewer
entries were missing, these were imputed with the population mean value of the respective
variable. Moreover, severe y-space outliers were identified by a studentized residual larger than
F

(�1)

T (0.0005, n � d) and excluded from the model.

6.3.3 Results
Before discussing the results obtained with the different regression models, the statistics of the
tensile test results and the parameters of the fitted log-normal distributions are briefly reported.
While the parameters ↵, �, and the thickness could be successfully measured for all 218 AAA
wall specimens, the failure tension and the wall strength could only be determined for 176
specimens since some specimens slipped from the clamps. Thus, the statistics of the study
population given below are based on 218 and 176 measurements, respectively. The experimental
results are also summarized in Figure 6.3. Wall thickness ranged from 0.59 to 3.46 mm with a
median of 1.56 mm and a mean ± SD of 1.65 ± 0.55 mm. The stiffness parameter ↵ ranged
from 0.00015 to 0.83323 MPa with a median of 0.079 MPa and a mean ± SD of 0.121 ± 0.128
MPa. The stiffness parameter � varied from 0.1 to 19.13 MPa with a median of 2.049 MPa
and a mean ± SD of 2.985 ± 2.848 MPa. Failure tension varied from 0.54 to 2.63 N/mm with
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6.3 Inference of probability distributions for wall parameters

(a) wall thickness (b) ↵-stiffness (c) �-stiffness (d) failure tension (e) strength

Figure 6.3 Box-and-whisker plots summarizing experimentally measured wall thickness, ↵-stiffness, �-stiffness,
failure tension and strength. Plots are based on 218 specimens for thickness, ↵-stiffness, �-stiffness; and 176
specimens for failure tension and strength. Taken from Biehler et al. [33].

quantity µ �

↵ -2.6031 1.1688
� 0.6724 0.9976
t 0.4434 0.3338
Tmax -0.1326 0.4151
�max 0.2821 0.3487

Table 6.4 Parameters of log-normal distribution fitted to tensile test data. Tmax and �max denote failure tension
and wall strength, respectively.

a median of 1.34 N/mm and a mean ± SD of 1.41 ± 0.49 N/mm. Wall strength ranged from
0.307 to 3.197 MPa, with a median of 0.835 MPa and a mean ± SD of 0.959 ± 0.46 MPa. The
parameter estimates of log-normal distributions fitted to the data are summarized in Table 6.4.

In the following, the results of the regression analysis for each of the five measured quantities
are reported and the predictive capabilities of linear regression and Gaussian process regression
are compared. In addition, both approaches are compared with the trivial model which predicts
based on mean and variance fitted to the log of the data directly. For each quantity, Tables 6.5
to 6.9 provide an overview of the computed error measures, allowing a quantitative comparison
between the models. In the tables the abbreviations lognfit, lin, and gp, correspond to the con-
stant prediction model, linear regression, and Gaussian process regression, respectively. Figures
6.4 to 6.8 show the model predictions as well as the measured values of the respective quantity
of interest. It is important to emphasize that the patient for which predictions are made was
not included in the training data set of the regression model. In other words, the data shown in
the Figures arose not from one but multiple regression models. The mean value and the 95%
confidence interval of the predictive distribution provided by the regression models are shown
in the plots, visualizing the uncertainty in the predictions. For comparison, the mean and 95%
confidence interval of the constant mean prediction model, fitted to all specimens, are given as
well. Note that due to list wise deletion, the number of tensile test specimens included in the
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6 Elicitation of probabilistic models for AAA wall properties based on experimental data

regression analysis is reduced to 163 specimens from 55 patients for the elastic properties and
131 specimens from 53 patients for the failure measures, respectively.

The following paragraphs contain a detailed description of the results for: thickness, ↵-
stiffness, �-stiffness, strength �max, and failure tension Tmax. In Section 6.3.3.6 the wall strength
model developed by Vande Geest et al. [340] is applied to the dataset of the Institute for Compu-
tational Mechanics and the results are compared with those from the regression models obtained
in this work.

6.3.3.1 Thickness

Using the feature selection approach described above, the following features were included in
the regression models: sex, age, ruptured, subrenal diameter, CKD, DM, creatinin, erythro-
cytes,thrombocytes, sodium, urea, MCH, MCHC, distance to bifurcation, thrombus thickness,
and NORD. The units or the statistical encoding of these features is given in Table 6.3 Through
dependence on thrombus thickness, distance to bifurcation, and NORD the predicted wall thick-
ness will not be constant across the aneurysm, but will, as expected, feature regional variations.

reg.
model

E[PSMSE] MD[PSMSE] E[�⇤ 2

P,s ] in conf. reg. RMSE [mm]

lognfit 1.000 0.716 1.000 0.909 0.577
lin 0.875 0.640 0.703 0.925 0.532
gp 0.719 0.421 0.521 0.906 0.486

Table 6.5 Comparison of regression models for the wall thickness. lognfit: constant prediction model; lin: linear
regression; gp gaussian process regression; E[PSMSE], MD[PSMSE]: mean and median of patient standardized mean
square error, respectively; E[�⇤ 2

P,s ]: mean value of patient standardized mean predictive variance. In confidence
region (conf. reg.) is the fraction of measurements that fall in the 95% confidence area of the regression model.
RSME: root mean square error. Reproduced from Biehler et al. [33].

A visual comparison between model predicted and measured values is provided in Figure 6.4.
Therein, two different representations of the same data are shown. In Figure 6.4a the individual
specimens are sorted in ascending order according to the predicted thickness value. Figure 6.4b
depicts the same data, but the specimens are ordered based on the measured thickness. Both of
these representations are displayed because each of them conveys different information about
the respective regression approach.

The order in Figure 6.4a provides a clearer visual illustration of the confidence area, which
is shown in light red. The 95% confidence area obtained with Gaussian process regression is
noticeably smaller than the light blue confidence region of the constant prediction model and the
confidence region obtained with linear regression, shown in Figure 6.4c for comparison. Fur-
thermore, the specimens with a measured thickness outside of the predicted confidence bounds
can be easily identified at first glance in this figure.

In contrast, if the specimens are sorted in ascending order according to their measured thick-
ness, a clearer picture of the predictive capability in terms of mean value is provided, cf. Figure
6.4b. If the curves for prediction average (red curve) and measured values (black dots) show the
same trend, the selected features in combination with the chosen regression approach provide
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6.3 Inference of probability distributions for wall parameters

information about the quantity of interest. However, due to the rather noisy data it cannot be
expected that the average prediction curve matches the slope of the measured data exactly. This
is especially true for values close to either the lower or the upper limit.

In addition to the qualitative assessment, a quantitative comparison of all error measures,
shown in Table 6.5, indicates that both regression approaches result in superior predictions com-
pared to the trivial constant prediction model. Thereby Gaussian process regression yields better
results than linear regression. By using Gaussian process regression the median of the PSMSE
is reduced from 0.716 to 0.421. The mean of �⇤ 2

P,s , a measure for the predictive uncertainty, is
also considerably smaller in the Gaussian process case. In comparison to the constant predic-
tion model, the mean of �⇤ 2

P,s obtained with Gaussian process regression is approximately half as
large. The fraction of measurements that lie outside of the 95% confidence interval, however, is
almost the same for all cases.

(a) Gaussian process regression (b) Gaussian process regression

(c) Linear regression (d) Linear regression

Figure 6.4 Model predicted vs. measured wall thickness. Top row: Gaussian process regression. Bottom row:
linear regression. Taken from Biehler et al. [33].
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6 Elicitation of probabilistic models for AAA wall properties based on experimental data

6.3.3.2 Stiffness parameter ↵

As a result of the used feature selection procedure the following features were taken into account
in the regression models: age, ruptured, subrenal diameter, hypertension, smoking status, CHD,
erythrocytes, hsCRP, sodium, urea, and MCV. Although experimental results show spatial vari-
ations of ↵ within the same aneurysm, the features listed above indicate that these intra-patient
variations are random in the sense that they are not interrelated to one of the available spatially
varying explanatory parameters.

Figure 6.5 shows the predicted and measured values for ↵-stiffness for both regression tech-
niques. Again, the two sortings are provided to enable a quick visual comparison. Leaving very
high values of ↵ aside, the predictions capture the trend in the data well. A summary of the
computed error measures is shown in Table 6.6. Based on mean value as well as on predictive
variance, both regression techniques offer better predictive capabilities than the constant pre-
diction model. Thereby, the Gaussian process approach performs better than linear regression.
Using Gaussian process regression, the median of the PSMSE is 0.461 and the mean of �⇤ 2

P,s is
0.688. An improvement, considering that the respective values for the constant prediction model
are 0.492 and 1, respectively.

(a) Gaussian process regression (b) Gaussian process regression

(c) Linear regression (d) Linear regression

Figure 6.5 Model predicted vs. measured ↵-stiffness. Top row: Gaussian process regression. Bottom row: linear
regression. Taken from Biehler et al. [33].
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6.3 Inference of probability distributions for wall parameters

reg.
model

E[PSMSE] MD[PSMSE] E[�⇤ 2

P,s ] in conf. reg. RMSE [MPa]

lognfit 1.060 0.492 1.000 0.937 0.137
lin 0.914 0.549 0.810 0.937 0.111
gp 0.779 0.461 0.688 0.937 0.107

Table 6.6 Comparison of regression models for ↵-stiffness. Reproduced from Biehler et al. [33].

(a) Gaussian process regression (b) Gaussian process regression

(c) Linear regression (d) Linear regression

Figure 6.6 Model predicted vs. measured �-stiffness. Top row: Gaussian process regression. Bottom row: linear
regression. Taken from Biehler et al. [33].
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6 Elicitation of probabilistic models for AAA wall properties based on experimental data

6.3.3.3 Stiffness parameter �

Based on the feature selection approach the following features were included in the regression
models: age, ruptured, smoking status, CHD, PVD, erythrocytes, thrombocytes, urea, MCH,
MCV, and relative thrombus thickness. In contrast to ↵-stiffness, the predictions for �-stiffness
depend on the relative thrombus thickness and thus show spatial variations across the geom-
etry of the aneurysm. However, while the predictions for � using regression still offer some
improvement in terms of error and predictive variance, the improvement is small and the error
between predicted and measured � remains relatively large. As can be seen in Figure 6.6b and
6.6d both regression techniques fail in following the trend of the measured curve, indicating that
the information in the explanatory variables is not sufficient to make accurate predictions.

reg.
model

E[PSMSE] MD[PSMSE] E[�⇤ 2

P,s ] in conf. reg. RMSE [MPa]

lognfit 0.984 0.757 1.000 0.925 3.25
lin 0.934 0.710 0.983 0.931 3.07
gp 0.882 0.568 0.835 0.899 3.11

Table 6.7 Comparison of regression models for �-stiffness. Reproduced from Biehler et al. [33].

6.3.3.4 Failure tension

For the assessment of the failure tension the following features are considered: ruptured, sub-
renal diameter, CHD, erythrocytes, leukocytes, and potassium. Hence, the obtained regression
models will predict a spatially constant tension because the explanatory variables included in
the regression analysis do not depend on location.

A summary of the results and corresponding error measures is given in Figure 6.7 and Table
6.8. The mean of the PSMSE is smaller in the Gaussian process case; 0.920 compared to 1.030
for the constant prediction model. Again, linear regression performs not as well by a small
margin. The predictive capability is also reflected by the increasing trend in the predictions in
Figure 6.7b and Figure 6.7d. The biggest improvement, however, is achieved for the predictive
variance, which is reduced to 0.722 in case of Gaussian process regression.

reg.
model

E[PSMSE] MD[PSMSE] E[�⇤ 2

P,s ] in conf. reg. RMSE [N/mm]

lognfit 1.030 0.591 1.000 0.932 0.494
lin 0.956 0.621 0.804 0.947 0.448
gp 0.920 0.679 0.722 0.931 0.450

Table 6.8 Comparison of regression models for failure tension. Reproduced from Biehler et al. [33].
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6.3 Inference of probability distributions for wall parameters

(a) Gaussian process regression (b) Gaussian process regression

(c) Linear regression (d) Linear regression

Figure 6.7 Model predicted vs. measured failure tension. Top row: Gaussian process regression. Bottom row:
linear regression.Taken from Biehler et al. [33].

6.3.3.5 Strength

Based on the described feature selection approach the following parameters were considered
in regression analysis to predict the strength of the AAA wall: age, CKD, hypertension, ery-
throcytes, potassium, MCH, thrombus thickness, and NORD. Note that thrombus thickness and
NORD vary across the geometry of the aneurysm and hence spatially varying strength estimates
are obtained with the regression models. In case of estimating wall strength, both regression
models offer a significant improvement in accuracy compared to the constant prediction model,
cf. Table 6.9 and Figure 6.8, respectively. Mean and median of the PSMSE are significantly
reduced when using a regression technique to predict wall strength. Furthermore, the uncer-
tainty in the predictions is reduced, as indicated by an average �⇤ 2

P,s of 0.663 in the Gaussian
process case. As in all other considered cases Gaussian process regression is superior to linear
regression.
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6 Elicitation of probabilistic models for AAA wall properties based on experimental data

reg.
model

E[PSMSE] MD[PSMSE] E[�⇤ 2

P,s ] in conf. reg. RMSE

lognfit 1.030 0.593 1.000 0.897 0.492
lin 0.905 0.418 0.825 0.916 0.464
gp 0.799 0.371 0.663 0.893 0.424

Table 6.9 Comparison of regression models for strength. Reproduced from Biehler et al. [33].

(a) Gaussian process regression (b) Gaussian processes regression

(c) Linear regression (d) Linear regression

Figure 6.8 Model predicted vs. measured strength. Top row: Gaussian process regression. Bottom row: linear
regression. Taken from Biehler et al. [33].
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6.3 Inference of probability distributions for wall parameters

6.3.3.6 Comparison to literature

Vande Geest et al. [340] used linear regression to predict the strength of aneurysmatic arterial
wall based on their experimental results and patient database. They reported an estimate for
the weights ˆ

w of their linear model. Furthermore, all explanatory variables considered in their
model are also available for the study population considered here. Hence, their model, which is
referred to as Vande Geest model from here on, can be used to predict the wall strength for the
patient cohort and data studied in this work. The quality of the predictions made by the Vande
Geest model is evaluated using experimental data from this study and the error measures defined
above.

Since the full dataset that was used by Vande Geest et al. [340] is not available, only the mean
of the predictive distribution can be computed. The comparison is thus limited to the PSMSE
and RMSE. Of course, it would be interesting to try the predictive models developed in this
work with the dataset that was used in [340] to enable a fair comparison. However, since the
raw data is not available, such a comparison could not be performed.

According to the analysis in Vande Geest et al. [340] the following explanatory parameters
are statistically linked to wall strength: sex, thrombus thickness, NORD, and family history of
AAA. The last parameter is a binary variable providing information about previous incidence
of AAA in at least one first degree family member of the patient. It is important to note that
while this information is available for all our patients we chose not to include this parameter in
the regression analysis because only one of our patients exhibits such a familial tendency. The
two parameters thrombus thickness and NORD were found to be statistically linked to the wall
strength in our regression analysis as well, indicating a potential relationship between those two
parameters and the wall strength.

Table 6.10 shows the computed error statistics for predictions made by the Vande Geest model
and the data set from the Institute of Computational Mechanics. For comparison the errors
obtained with the trivial constant prediction model are repeated therein as well. The strength
predictions obtained with the Vande Geest model for the patient database considered in this work
are significantly worse than the predictions obtained with any of the other employed approaches.
Even prediction based on mean value of the study population results in a more accurate estimate
of the wall strength. The lack of an overall increasing trend for the predicted wall strength in
Figure 6.9 also reveals the poor performance of the Vande Geest model on the dataset of the
author’s group.

reg.
model

E[PSMSE] MD[PSMSE] E[�⇤ 2

P,s ] in conf. reg. RMSE [MPa]

lognfit 1.030 0.593 1.000 0.910 0.492
vdg 1.720 0.828 - - 0.557

Table 6.10 Comparison of Vande Geest (vdg) model and lognfit model for the wall strength. Reproduced from
Biehler et al. [33].
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6 Elicitation of probabilistic models for AAA wall properties based on experimental data

(a) Vande Geest model (b) Vande Geest model

Figure 6.9 Model predicted vs. measured strength using the model proposed by Vande Geest et al. [340]. Taken
from Biehler et al. [33].

6.4 Estimating spatial correlation

So far the estimation of probability distributions for several wall parameters using different
methods has been the focus of this chapter. These probability distribution can serve as estimate
for the first-order probability distribution of a random field model of these quantities. Because
these distributions originate from the predictive distribution of regression models which also
take into account spatially varying quantities, the estimated probability distribution implicitly
depends on the spatial location on the AAA surface through the local ILT thickness or the
distance to the bifurcation. However, since a constant variance of the Gaussian error term is
assumed, the variance on the log scale is constant and only the mean of the predictive distribution
depends on the spatial location.

A random field model for these quantities requires specification of the spatial correlation
structure. A data-driven estimate for the correlation length is missing thus far. Based on the
assumption that the uncertain parameters vary smoothly in space, a squared exponential covari-
ance function is deemed adequate throughout this work. In order to obtain an estimate of the
correlation length, it is assumed that the spatial distribution of the logarithm of the relevant wall
quantities are realizations of a GP with squared exponential covariance structure and that fur-
thermore, the parameters of this process are the same for all patients in the studied dataset. Upon
these assumptions, an estimate for the correlation length based on the correlation coefficient of
measurements from adjacent test specimens from the same tissue sample can be obtained.

The following paragraphs describe the procedure used to obtain an estimate of the correlation
length for ↵, �, and the wall thickness t, based on the dataset described in the previous section.
In contrast to the regression models only data obtained by direct thickness measurements or
tensile testing is needed. Missing non-invasively assessable parameters are no longer an issue
and hence experimental data from all 80 patients, i.e.,132 tissue samples and 218 test specimens,
comprise the initial dataset used in this case. Out of the 132 samples, 49 were large enough
to supply more than one specimen, resulting in 135 specimens from 41 patients for which at

130



6.4 Estimating spatial correlation

least one other specimen from the same sample was available. Measurements from all those
specimens were sorted into a two row matrix such that each column contained measurements
from two adjacent specimens. Subsequently, the correlation coefficient between the rows of the
matrix was computed to obtain an estimate for the correlation coefficient of log ↵, log �, and
log t between adjacent tissue specimens.

Assuming the same isotropic squared exponential auto-covariance function for all patients,
the correlation length, being the only parameter, can be computed if the value of auto-covariance
function can be estimated for a particular distance between points as explained in the following.

The functional form of the squared exponential auto-covariance is given in (3.60) and re-
peated here to facilitate the ensuing discussion

k(x,x0
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For a stationary field, the corresponding correlation coefficient function as defined in (3.53)
becomes
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where ⌧ is the lag vector, i.e., distance between two points x and x
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then the correlation length of the process can be easily inferred. First taking the logarithm on
both sides yields

log(⇢̃) = �(

k˜

⌧k
`

)

2. (6.11)

Algebraic rearrangement results in the following expression for `:

` =

k˜

⌧k
p� log(⇢̃)

. (6.12)

Here, ⇢̃ is the correlation coefficient computed based on all adjacent tissue specimens in
the dataset, and ˜

⌧ is an estimate for the distance between adjacent specimens. Based on the
dimensions of the tensile test specimens with a length of 20-30 mm and a width of 8-10 mm, two
estimates, 10 and 15 mm, for the average distance between two adjacent specimens were used
to compute a correlation length according to (6.12). The resulting estimates for the different
wall parameters are summarized in Table 6.11.
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quantity ˜

⌧ [mm] ` [mm]

log ↵ 10 13.66
log ↵ 15 20.49
log � 10 11.33
log � 15 17.00
log t 10 20.07
log t 15 30.10

Table 6.11 Estimated correlation lengths for stochastic processes of different quantities.

It is important to stress that the estimates of the correlation length given in Table 6.11 are
based on several simplifying assumptions and should be considered rough estimates rather than
absolute values. However, often even less information about the correlation structure and its
parameters is known due to lack of data, and investigations are often restricted to parameter
studies or parameter estimates based on educated guesses [58].

If more measurements from individual patients spread across the AAA were available, corre-
lation length estimates could be determined by performing GP regression or interpolation solely
with spatial location as ”explanatory variable”. A procedure frequently used in geostatistics to
estimate soil properties based on several measurements at a set of locations, see, e.g., [316] for
a more detailed discussion. Alas, in case of estimating AAA wall properties the available data
is too sparse to apply this procedure and one has to resort to estimation based on the correlation
coefficient between adjacent specimens to obtain an estimate for the correlation length.

6.5 Discussion and conclusions
The obtained results demonstrate that information encoded in non-invasively available data can
be exploited by regression models to achieve a more accurate prediction of patient-specific
parameters such as constitutive parameters, thickness, failure tension, and strength. Moreover,
by employing the proposed regression models, the predictive uncertainty in these parameters
can be reduced. Linear and Gaussian process regression were used and the results of both
methodologies were compared to the simplest model, which makes predictions based on the
mean value and the variance of the data. The results show that both regression approaches
are able to predict the respective quantities of interest more accurately, especially in case of
wall thickness, ↵-stiffness, and strength. Thereby, Gaussian process regression consistently
outperformed the simple linear regression approach, indicating that a simple linear model is not
flexible enough to represent the data.

Although predictions based on the mean value of the respective predictive distribution are
more accurate than the prediction based on the population mean, it is crucial to reemphasize the
importance of the probabilistic interpretation of the regression analysis at this point. The vari-
ance of the error in (6.5) cannot just be ascribed to measurement error, but has to be considered
as margin of uncertainty, which originates from the influence of other unknown parameters or
random fluctuations in the quantity of interest. Regression can provide a probability distribution
for the quantity of interest, e.g., the wall thickness from which a confidence interval can be com-
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puted. According to the obtained results this interval most likely contains the true value of the
thickness. It was found that the confidence intervals obtained with Gaussian process regression
are in general tighter than the ones obtained with the other prediction approaches. The benefit of
using Gaussian process regression is thus not only a more accurate point estimate for the respec-
tive quantity of interest, but, more importantly, also a reduction in predictive uncertainty. The
improvement in predictive accuracy offered by regression models depends on the quantity that
one wishes to predict. For the constitutive parameter � and the failure tension the improvement
is not as significant as for the other parameters.

The spatial correlation of quantities measured at different locations was estimated using mea-
surements from adjacent tissue specimens. In combination with the obtained predictive distri-
butions, random field models for the studied wall parameters can be specified. Resulting in
data-driven, patient-specific, stochastic models for several mechanical wall parameters, which
can be used in computational UQ studies with patient-specific AAA models.

It is important to note that although the uncertainty in some of the patient-specific param-
eters can be reduced using elaborate regression techniques in combination with other non-in-
vasively accessible, patient-specific parameters, the remaining uncertainty is not negligible. In
the opinion of the author, a meaningful computational assessment of AAA rupture risk based
on mechanical failure criteria such as peak wall stress is only possible if these uncertainties are
considered in the computational model and thorough UQ is performed.

The probabilistic output of the regression model is considered the starting point for a prob-
abilistic description of the input parameters, e.g, the wall thickness in a finite element model.
Reduced uncertainty in model input parameters will translate to tighter confidence intervals in
computed model output. Hence, mechanical quantities which are related to AAA rupture risk,
such as peak wall stress, can be predicted with less uncertainty. In the following chapter patient-
specific finite element models of AAAs with uncertainty in the input parameters are investigated.
Different stochastic models are examined and the influence of several parameters, e.g., correla-
tion length on the computed results is studied. Moreover, several stochastic thickness models
based on the findings in this chapter are compared

The study by Vande Geest et al. [340] provides the only other published statistical model for
the strength of the AAA wall. Their model was applied to the dataset of the Institute of Com-
putational Mechanics and used to obtain wall strength predictions which were then compared
to wall strength measurements. Overall, the predictive capability of the Vande Geest model
could not be replicated with the database used in this work. This can have several reasons, such
as differing experimental setup, slightly different methods to determine NORD and thrombus
thickness, and the relatively small number of tissue samples used to set up the regression model.
For further improvement of these kinds of statistical models a large database would be a plus,
and likely produce more accurate and reliable predictions.

As in the study conducted by Vande Geest et al. [340], the tissue samples that were used in
this study have been excised during open surgical repair. Hence, most of the samples originate
from the anterior region of the aneurysm. A limitation that has to be kept in mind.
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In the context of computational cardiovascular modeling the problem of missing or uncertain
patient-specific model input parameters is generally recognized. Nevertheless, very few re-
searchers have addressed this problem by applying uncertainty quantification methods to inves-
tigate the impact of uncertain input parameters on the quantities of interest in computational
models of the cardiovascular system or components thereof. In addition, existing research re-
garding UQ in cardiovascular mechanics is limited to either idealized geometries or uncertain-
ties modeled as independent random variables as opposed to correlated random fields.

So far the study of uncertain parameters in reduced dimensional models of arteries and arterial
networks has attracted the most attention amongst researchers [61, 96, 136, 157, 158, 192, 367].
Osnes and Sundnes [244] investigated the influence of uncertain material properties in a simpli-
fied generic heart model, while uncertainty in blood viscosity and its impact on, e.g., wall shear
stress in an idealized portal vein model was investigated by Pereira et al. [252]. Regarding AAA,
Sankaran and Marsden [289] investigated idealized geometries of AAAs considering paramet-
ric uncertainties such as the radius, and [253] examined patient-specific AAA geometries with
a random variable model for the wall thickness.

To the knowledge of the author, the study by Biehler et al. [32] was the first to perform
UQ in combination with 3D nonlinear patient-specific finite element models of AAAs and is
also the only one considering spatially correlated random quantities. Based in parts on the
work presented in [32], the BMFMC approach is applied here to large-scale, nonlinear, patient-
specific models of AAAs. Thereby, uncertainties in constitutive parameters as well as the wall
thickness are considered and the impact of these uncertainties on mechanical quantities usually
related to AAA rupture potential, such as von Mises stress, strain or strain energy density is
studied. To this end data-driven probabilistic models based on the findings presented in the
previous chapter are employed. In particular for the wall thickness several different probabilistic
models are compared. To capture intra- as well is inter-patient variations these quantities are
modeled as random fields, a comparison to a simpler random variable model is provided for the
wall thickness as well. The use of random field models for uncertain model input parameters
leads to systems with very high stochastic dimension, rendering surrogate based UQ techniques
inapplicable. It is shown that the BMFMC approach is able to reproduce the MC reference
solution at a fraction of the computational costs and delivers accurate results even if strongly
simplified low-fidelity models are used. Thereby, the computational costs of UQ can be reduced
to an acceptable level even for large-scale, nonlinear, and complex biomechanical problems with
uncertainties modeled as random fields.

Thus, the purpose of this Chapter is twofold. On the one hand, the efficiency and accuracy of
the novel BMFMC approach is shown for large-scale nonlinear models. On the other hand, in
addition to the methodological aspects presented in this chapter, the uncertainties in the simu-
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lation results of patient-specific AAA models are quantified, and the possible ramifications for
patient-specific computational assessment of AAA rupture potential are discussed. Although
patient-specific models of AAA are considered here, it is stressed that the approach is very gen-
eral and can be applied to a wide range of problems and is by no means limited to this particular
application. For instance, the use of the BMFMC approach for UQ in reduced dimensional
models of the human respiratory system is shown in Chapter 8.

The outline of the present chapter is as follows. First, a brief description of the process used
to generate and setup patient-specific AAA finite element models is given in Section 7.1. The
proposed BMFMC approach is applied to several large-scale, nonlinear, patient-specific finite
element models of AAAs. First models with an uncertain constitutive parameter are considered
in Section 7.2, then the impact of an uncertain wall thickness is studied in Section 7.3. A
demonstration that the proposed approach can also handle models with multiple sources of
uncertainties is given in Section 7.4. Based on the obtained results, the implications regarding
computational rupture risk assessment of AAAs are discussed in Section 7.5.1, followed by
some remarks on methodological aspects in Section 7.5.2.

7.1 From imaging to simulation

Based on CT image data, AAA finite element models with patient-specific geometries are cre-
ated using an existing workflow which has been previously described in detail by Maier et al.
[203] and Reeps et al. [273]. Briefly, the first step of the process entails segmentation of the
blood lumen and, if present, ILT in the CT images to generate a 3D reconstruction of the ge-
ometry of the aneurysm. Using these reconstructions, a finite element mesh is generated using
either Harpoon (Sharc Ltd, Manchester, UK) or CUBIT (Sandia National Laboratories, Albu-
querque, NM, USA). Since the arterial wall thickness cannot be clearly identified in the images
due to resolution limitations, a spatially constant wall thickness is initially extruded from the
abluminal surface of the ILT.

Simple clamped boundary conditions are used at the inlet and the outlets of the aneurysms. To
mimic the load exerted by the blood pressure an orthogonal pressure follower load is imposed
on the luminal surface of the ILT. If no ILT is present, pressure is applied on the luminal surface
of the vessel wall. The shear stresses induced by the blood flow are negligible compared to the
pressure load and a full fluid-structure-interaction simulation is not required.

Since the geometries of the aneurysms are obtained from in vivo CT images, the imaged
configuration is not stress free but represents a loaded spatial configuration. In order to obtain
meaningful results this prestressed state has to be accounted for. To imprint the stresses from an
assumed diastolic pressure of 87 mmHg in the in vivo imaged state, the MULF scheme described
in Section 2.2.2 is used. The obtained prestressed state implicitly defines a stress free reference
geometry, while neglecting growth and remodeling processes in the wall. This implicitly defined
geometry of course depends on the properties of the arterial wall and the ILT. Hence, if some of
the wall properties are considered random, this geometry depends on the particular realization
of the random quantities. After the prestressing phase the luminal pressure is increased to a
systolic pressure of 121 mmHg, thereby taking into account the imprinted stresses and strains
acting on the imaged configuration. Throughout this work the blood pressure is considered to be
known and any uncertainties regarding patient specific blood pressure are neglected. In future
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work, the model could be refined by using patient-specific measured blood pressure values. In
addition, fluctuations in blood pressure could be considered in an uncertainty analysis as well.

Lastly, constitutive properties have to be assigned to the ILT and the arterial wall. The
ILT forms through the coagulation of blood and is present in the vast majority of aneurysms
[137, 143]. In literature it is predominantly described as heterogenous, isotropic hyper-elastic
material. It was found that the stiffness of ILT varies regionally with respect to radial position
[108, 242, 329, 339, 353]; however, ventral to dorsal regional variations have been reported
as well [56]. If modeled as hyper-elastic continuum, a two-fold stress shielding effect can be
ascribed to the ILT. Because its presence results in a reduced lumen with a smaller radius, the
resulting load exerted by the intraluminal pressure is smaller as compared to an aneurysm with
the same shape but without ILT. Secondly, it has a load bearing capacity which further reduces
the load on the wall. Several constitutive laws have been proposed to model ILT behaviour, see
[202] for a comparison. In this work the constitutive model proposed by Gasser et al. [108] was
chosen, which written in invariants and modified to slight compressibility reads

 (
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, ¯I
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, J) = c( ¯I
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2 � 2
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� 3) +



⌘2

(⌘ ln J + J�⌘ � 1). (7.1)

Although the constitutive parameters of the ILT are afflicted with uncertainty and usually not
exactly known in clinical practice, deterministic but spatially varying constitutive parameters are
used in the AAA models considered in this work. Gasser et al. [108] distinguishes three layers of
ILT for which the material parameter c is reported. Here the value of the material parameter c is
continuously interpolated from the luminal to the abluminal surface of the thrombus as described
by Maier [202], using the values reported in [108] for luminal (clum = 2.62 kPa), medial (cmed =

1.98 kPa), and abluminal (cablum = 1.73 kPa) layer. The values for the parameters  = 8

c

1�2⌫

,
⌫ = 0.48, and ⌘ = �2 were also chosen according to Maier [202].

Constitutive models for AAA wall have been previously discussed in Section 6.1.2 and the
SEF given in (6.2), which is repeated here for convenience, is used throughout this work as
constitutive model for aneurysmatic arterial wall
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For this material a bulk modulus  =

2↵

1�2⌫

with ⌫ = 0.49 was used throughout this work and
⌘ = �2. While the material parameters of ILT are also afflicted with considerable uncertainties,
the restriction to uncertain wall parameters is made in this work for ease of exposition. Future
research will likely encompass uncertain ILT parameters as well.

After the reconstruction of the AAA geometry, generation of a finite element mesh and def-
inition of boundary conditions as well as constitutive properties, all necessary components for
the deterministic boundary value problem described in Section 2.1.4 are defined.

7.2 AAA models with uncertain constitutive parameters
As demonstration of the capabilities of the BMFMC approach, UQ is performed using two
realistic AAA models with patient-specific geometries from the database of the Institute of
Computational Mechanics. These AAA models serve as showcase examples for large-scale
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(a) (b) (c) (d) (e) (f)

Figure 7.1 High-fidelity and corresponding low-fidelity AAA finite element models based on patient-specific
geometries. (a) Male67 high-fidelity model. (b) Male67 low-fidelity model. (c) Male71 high-fidelity model. (d)
Male71 low-fidelity model. (e) Cross-sectional view of male71 low-fidelity model with ILT. (f) Cross-sectional
view of male71 low-fidelity model without ILT. Reproduced from [32].

nonlinear solid mechanics problems with uncertain constitutive properties. The properties of the
two models, which are referred to as male67 and male71 in the following, are described in the
next section, along with the generation of suitable low-fidelity versions of these models. In order
to obtain a reference solution for comparison to the proposed BMFMC approach, direct MC is
performed with all high-fidelity finite element models with a sample size of NSAM = 50000.

7.2.1 Patient-specific finite element models
As described above, the geometry of the lumen and, if present, the ILT were reconstructed from
CT data. The model male71 exhibits ILT while male67 does not. The wall thickness is consid-
ered to be deterministic and set to 1.57 mm, constant throughout the models. High-fidelity finite
element models are generated with a mesh size of roughly 1mm. These hybrid finite element
discretizations are shown in Figure 7.1a and 7.1c and consist of 15228 (male67) and 169791
(male71) linear hexahedra-, wedge- and tetrahedra-shaped elements. Resulting in a problem
size of 61674 and 292044 degrees of freedom, respectively. For the aneurysm male67, a low-
fidelity model, which is shown in Figure 7.1b, is constructed by coarsening the discretization.
Using an element size of approximately 3 mm, the resulting coarser model has 2670 elements
and 8679 degrees of freedom. For the aneurysm male71 two low-fidelity models were created.
For the first low-fidelity model a coarser discretization and a truncated geometry was used as de-
picted in Figure 7.1d and 7.1e. This simplification results in a finite element model with 19579
elements and 25875 degrees of freedom. Secondly, to further reduce the computational effort,
another approximate model was created using model reduction in the sense that the ILT was
omitted entirely in addition to a coarser discretization and geometric truncation, see Figure 7.1d
and 7.1f. Therein, the size reduces to 3164 elements and 10320 degrees of freedom. The reduc-
tion in model size and complexity yields a tremendous reduction in computational costs. For
the aneurysms male67 and male71 coarsening of the discretization and model reduction yield a
low-fidelity model that is between 10 and 50 times cheaper than the original high-fidelity model.
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model solution time (CPU seconds) degrees of freedom

male67 high-fidelity 2000 61674
male67 low-fidelity 195 8679
male71 high-fidelity 10800 292044
male71 low-fidelity with ILT 400 25875
male71 low-fidelity without ILT 215 10320

Table 7.1 Size of studied AAA finite element models and computing times for the evaluation of the models.
Reproduced from [32].

The CPU time required to compute one sample of the different models along with the numbers
of degrees of freedom are summarized in Table 7.1. A 6 core Intel Xeon 3.2 GHz workstation
with 12 GB memory was used to establish the solution times of the different models. The simu-
lations were computed on one core, except the high-fidelity model of the male71 aneurysm, for
the solution of which four cores were used.

7.2.2 Stochastic models for constitutive parameters
As discussed in Chapter 6 the material properties of AAAs are subject to large inter- and intra-
patient variations in all of the material properties. Hence, a random field approach to formulate
a stochastic material law for the aneurysmatic arterial wall is deemed more adequate than a
random variable model. A homogenous, univariate, log-normal three-dimensional random field
is used to describe the inter- and intra-patient variations of the constitutive parameter � of the
constitutive law for the AAA wall given in (7.2). The parameter � was chosen because it was
found that � exhibits a larger variance as well as a greater variation between individual patients
as compared to ↵. Hence, as a first step towards a fully probabilistic constitutive framework,
the parameter � was chosen to be modeled as a random field and the remaining constitutive
parameters are set to deterministic population averaged mean values.

Using a sampling based UQ approach requires the generation of realizations of the random
field. Here the spectral representation method is used in combination with translation process
theory to generate realizations of a log-normal three-dimensional random field. First, a realiza-
tion of a Gaussian random field is created using (3.85), which is then mapped into a realization
of a non-Gaussian field using (3.90) and the spectral matching procedure described in Section
3.3.4.

The spectral representation method requires two probabilistic characteristics of the random
field the first-order probability distribution and the covariance function. Based on the consid-
eration in Chapter 6 and on the reasonable assumption that the constitutive parameter � varies
smoothly in space, a squared exponential covariance function was chosen for the underlying
Gaussian process

k(⌧ ) = exp

h

��k⌧k
`

�

2

i

. (7.3)

In addition, a log-normal distribution is used as first-order probability distribution, i.e., p(�) =

log N (µ
�

, �
�

) with the parameters µ
�

= 1.0857 and �
�

= 0.9205. The remaining parameters of
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the constitutive model are set to ↵ = 0.059 MPa and  = 5.9 MPa, respectively. These values
are parameter estimates obtained by fitting a log-normal distribution to experimentally obtained
data as described in Chapter 6. However, because a preliminary dataset, which differs from
the one used in Chapter 6 and contains fewer patients, was available at the time this particular
work was done, the parameters µ

�

, �
�

, and ↵ are slightly different from the values reported in
Chapter 6 in Table 6.4. The simulations which are discussed in the following could, of course,
be repeated with the updated values. However, in the opinion of the author the fundamental
conclusions drawn from the results will remain the same and the enormous computational costs
associated with repeating the MC simulation to obtain another reference solution cannot be
justified.

To study the sensitivity with respect to the unknown correlation length ` in (7.3), three random
field models with different correlation lengths ` = 12.5 mm, ` = 25 mm and ` = 50 mm are
investigated. The chosen range covers random fields which exhibit rather short scale fluctuations
as well as highly correlated random fields with a correlation length in the range of the diameter
of a typical aneurysm. Moreover, the chosen values cover the range that was estimated based
on experimental data in Section 6.4.

With the non-Gaussian random field defined above, the constitutive law for the aneurysmatic
arterial wall is extended to incorporate the uncertainty in the parameter � = �(x, z). The con-
stitutive parameter is a function of spatial location x and the realizations of the random phase
angles z( j ). Once a sample of random phase angles is drawn, a realization of the three dimen-
sional random field is computed and the constitutive parameter �(x, z( j )

) can be evaluated at the
midpoint of each element in the AAA wall. This value is then assigned to the element as local
constitutive parameter. Note that other possibilities to obtain an element based constitutive pa-
rameter exist. For instance, one could also compute some form of average based on evaluations
at the nodes or the Gauss points of an element. However, for the considered examples the ratio
between element size and correlation length is small enough to warrant the chosen approach.
The full stochastic version of the strain-energy function, which now depends on the location x

as well as on the vector of random phase angles z then reads
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7.2.3 Results
In this section the impact of the uncertain constitutive parameter � on the relevant mechani-
cal quantities such as Cauchy von Mises stress (�

vM

), Euler-Almansi von Mises strain (e
vM

),
and strain energy  is first discussed on the basis of MC reference simulations. Thereby, the
influence of the correlation length on the distributions of these quantities is investigated. Subse-
quently, in Section 7.2.3.2 the results of the employed BMFMC approach are compared to the
MC reference solution and the accuracy and efficiency of the multi-fidelity approach is exam-
ined.

7.2.3.1 Monte Carlo reference solution

As expected, in spite of drastic variations in the wall stiffness the overall spatial pattern of the
von Mises stress is still largely determined by the geometry of the aneurysm and rather insen-
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sitive to variations in �. Nevertheless, a slight dependency on the correlation length was found,
where a smaller correlation length leads to greater variations in the overall stress pattern. Figure
7.2 shows the von Mises stress and strain resulting from five different showcase realizations of
the stochastic constitutive law for the male71 aneurysm. The samples in Figure 7.2 were com-
puted with a correlation length of ` = 12.5 mm for which the resulting stress pattern exhibits
the largest variations. However, the overall spatial pattern of the stress remains remarkably sim-
ilar for all depicted realizations of the random field. Moreover, if the correlation length of the
random field is increased, the variations in the spatial stress pattern become even less signifi-
cant. This is in agreement with theoretical mechanical considerations, as the stress state in the
aneurysm wall is dominated by in plane membrane stress, which is determined mostly by the
overall geometry of the aneurysm and the traction boundary conditions.

In contrast to the spatial stress pattern the spatial strain pattern of the samples very signifi-
cantly indicate a strong dependency between local stiffness of the wall and local strain. Unlike
in the stress pattern, regions with high strain are not determined by the overall shape or the ge-
ometry of the aneurysm but rather by regions with low wall stiffness, as shown in Figure 7.2c.
The male67 aneurysm shows similar behavior and is hence not shown here.

In addition to this qualitative assessment the empirical probability distributions of the stress
obtained through MC were examined at several locations across the aneurysms, see Figure 7.3.
The mechanical quantities of interest were evaluated at single elements at these specific loca-
tions. Figure 7.4 shows the empirical probability densities of the von Mises stress, von Mises
strain, and strain-energy at two locations on the male67 aneurysm. Location 1, shown in Figure
7.3a, is located in the neck of the aneurysm above the sack. Location 2 is at the right lateral,
distal end of the AAA sack, see Figure 7.3a. Both locations are in regions that exhibit high wall
stress. For the other aneurysm male71, Figure 7.5 shows the probability densities evaluated at
location 3, located at the center of the dorsal side of the aneurysm sack in the high stress region,
and at location 4, located at the ventral side of the aneurysm sack in a low stress region with
thick ILT underneath the AAA wall, see Figure 7.3b and 7.3c. All empirical densities are plotted
for the different correlation lengths of the random field in the stochastic constitutive model. In
addition to the mean and COV, the 95% quantiles are provided for each of the distributions in
Figures 7.4 and 7.5.

The obtained distributions for the stresses confirm the qualitative assessment that the stresses
are only mildly affected by the local stiffness of the wall. The COVs of the stress distributions
are below 0.12. If only the locations 1, 2, and 3, which all lie in high stress regions of the respec-
tive AAAs, are considered, the maximum COV of the stress distribution is 0.07. In addition,
these three elements show smaller COVs of the stress with increasing correlation length of the
random field. In contrast to this, the COV of the stress at location 4, which lies in a region with
thick ILT and low wall stress, is less influenced by the correlation length. The 95% quantile of
the stress distributions, as a ”worst case” estimate, is approximately 2%-19% higher than the
respective mean value, see Figure 7.4a, 7.4b, 7.5a and 7.5b. This provides further evidence that
uncertainties in the constitutive parameter � result in only moderate uncertainty in the computed
stresses.
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(a)

(b)

(c)

Figure 7.2 Simulation results of male71 aneurysm for five different realizations of the random field with a corre-
lation length of ` = 12.5 mm. Realizations of random field describing � [MPa] are shown in (a) and the resulting
von Mises stresses [MPa] and von Mises strains are shown in (b) and (c), respectively. Taken from [32].

142



7.2 AAA models with uncertain constitutive parameters

(a) (b) (c)

Figure 7.3 Locations within AAA wall at which mechanical quantities are evaluated. (a) Shows locations 1 and
2 in anterior view of male67 patient, while (b) shows location 3 in posterior view of the male71 patient. Location
4 is shown in (c) in anterior view of the male71 aneurysm. Taken from [32].

While this appears to be consistent with the findings from Raghavan and Vorp [266] it should
be stressed that Raghavan and Vorp only considered mild parameter variations within the 95%
confidence interval of their estimated mean value and not within the complete range of measured
values. Furthermore, they did not consider spatial intra-patient variations of the constitutive pa-
rameters nor did they consider the prestressed state of the aneurysm or ILT. Findings that are
similar to the ones discussed above have also been reported for intracranial aneurysms by Ma
et al. [198] and Miller and Lu [216]. These two studies also indicate only a mild dependence of
the wall stresses on the constitutive parameters, however, only spatially homogenous parameters
were considered therein as well. The results show that the wall stresses are only mildly sensi-
tive to variations in the constitutive parameter �. This holds especially for the rather long scale
spatial heterogeneity obtained with the longer correlations lengths of the random field, see Fig-
ure 7.4a. The sensitivity of the stress state on the material properties typically increases as the
random field exhibits strong spatial gradients in the parameter field as one moves to smaller cor-
relation lengths indicating, that only strongly localized variations in this parameter have a signif-
icant effect on the stresses. This insensitivity, in spite of strongly localized variations in �, can
be ascribed to the prestressed state of the imaged geometry. The prestress in the in vivo imaged
configuration of cardiovascular structures has to be accounted for in order to obtain meaningful
simulation results, as has been pointed out in numerous publications [111, 112, 216, 311]. All
techniques to account for this essentially approximate a stress state that equilibrates with the ex-
ternal load given the spatial configuration. The boundary conditions in a typical cardiovascular
problem resemble those termed statically determinate. Dominated by traction boundary con-
ditions emulating luminal blood pressure, the Dirichlet boundary conditions applied far away
from the region of interest have only minor influence. Thus, in prestressed cardiovascular struc-
tures which are predominantly loaded by traction boundary conditions the overall stress state,
which is largely determined by the prestress, is governed by simple equilibrium of internal stress
with the external loading and therefore is relatively insensitive to variations in the constitutive
parameters.
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Figure 7.4 MC reference solution for male67 aneurysm. Reproduced from [32].
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50 0.052482 0.11542 0.062647

(b) Von Mises stress at location 4
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` [mm] Mean [MPa] COV [-] 95% q. [MPa]

12.5 0.16404 0.2601 0.24097
25 0.16412 0.26746 0.24324
50 0.16387 0.26948 0.24422

(c) Von Mises strain at location 3
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` [mm] Mean [MPa] COV [-] 95% q. [MPa]

12.5 0.10335 0.21759 0.14183
25 0.10307 0.21143 0.14039
50 0.10237 0.19122 0.13486

(d) Von Mises strain at location 4
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` [mm] Mean [MPa] COV [-] 95% q. [MPa]

12.5 0.0068995 0.47871 0.013142
25 0.0069712 0.51633 0.013604
50 0.0069634 0.5216 0.01371

(e) Strain-energy at location 3
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ℓ = 12.5mm
ℓ = 25mm
ℓ = 50mm

` [mm] Mean [MPa] COV [-] 95% q. [MPa]

12.5 0.0018184 0.24358 0.0026554
25 0.0018084 0.23154 0.0026
50 0.0017859 0.18306 0.0023953

(f) Strain-energy at location 4

Figure 7.5 MC reference solution for male71 aneurysm. Reproduced from [32].
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7 The impact of uncertainties in computational models of AAAs

In contrast to the stresses, the strain and strain-energy exhibit large COVs and are therefore
drastically affected by the constitutive parameter �. The probability distributions depicted in
Figure 7.4c-7.4f and Figure 7.5c-7.5f reveal the large variations in local strain and strain-energy.
With COVs up to 0.28 and 0.6, respectively, the strains and strain-energy exhibit significantly
larger COVs than the stresses, rendering a statement about the true strain state of the aneurysm
difficult when facing uncertain constitutive parameters. Whereas the distributions of the stresses
are symmetric, both, strains and strain energy exhibit skewed distributions. The contour plots in
Figure 7.2c reveal a close dependence between low � value and high local strain and vice versa
and the overall spatial pattern of the strain depends mostly on the realization of the random
field and not on the geometry of the aneurysm. Since the local stress state is mostly dictated
by the given spatial configuration and external load, local strains depend predominantly on the
local stiffness. The softer the wall, the higher the strains need to be in order to reach a certain
”predetermined” stress level.

Comparing the probability densities of the strain and strain-energy at different correlation
lengths in Figures 7.4c-7.4f and Figure 7.5c-7.5f, respectively, there is no noticeable difference
between the three assumed correlation lengths. The variance of these probability distributions
is virtually independent from the chosen correlation length for both, strains and strain-energy.
If the 95% quantiles are used as an estimate for a worst case scenario and compared to the mean
values, it becomes evident that strain is potentially 60-70% higher than the mean value and
thus could be dramatically underestimated in deterministic models with population averaged
constitutive parameters. In case of the strain-energy, the margin of uncertainty is even larger
with a COV of typically more than 0.5, which results in a 95% quantile that is more than twice
as high as the mean value.

The explanation for these very large COVs is once again the non-stress-free in vivo imaged
configuration of the aneurysm. The combination of a known deformed configuration and the
load case leading to this configuration results in a computed stress state which is only mildly
sensitive to variations and uncertainties in the constitutive parameter �. This is not the case for
the computation of the strain state. With a stress state that is to a large extent determined by the
geometry of the aneurysm the strains become very sensitive to the local stiffness of the AAA
wall. Assuming that the local stress state is dictated by the geometry and hence more or less
fixed, the strain state that corresponds to this stress state depends on �. Low local stiffness will
result in very high local strains and vice versa. Thus, any uncertainty in � directly translates to
uncertainty in the strain state, inhibiting an accurate prediction of the strains if the stress free
geometry and the constitutive properties are unknown or uncertain. The same argument holds if
the strain-energy is considered as quantity of interest. As a result, the distributions of the strains
and strain energy, evaluated at specific locations in the wall, exhibit very high COVs.

7.2.3.2 Bayesian multi-fidelity Monte Carlo

To demonstrate the efficiency and accuracy of the proposed BMFMC framework, a subset of
the results from the previous section is chosen. Four examples which are summarized in Table
7.2 are considered, examining von Mises stress and strain at distinct locations of the two AAA
models as quantities of interest. Moreover, different correlation lengths of the random field
are taken into account, and different approximation schemes for the low-fidelity models are
considered as well.
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7.2 AAA models with uncertain constitutive parameters

example patient quantity location ` approximation scheme

1 male67 �vM 2 25 mm coarsening
2 male71 �vM 3 25 mm coarsening
3 male71 �vM 3 12.5 mm coarsening & no ILT
4 male71 evM 4 25 mm coarsening & no ILT

Table 7.2 Examples considered to demonstrate capabilities of BMFMC approach. Reproduced from [32].
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(a) Example 1: low-fidelity vs. high-fidelity solution,
male67 aneurysm, ` = 25 mm, �vM at location 2.
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(b) Example 2: low-fidelity vs. high-fidelity solution,
male71 aneurysm, ` = 25 mm, �vM at location 3.
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(d) Example 4: low-fidelity vs. high-fidelity solution,
male71 aneurysm, ` = 25 mm, evM at location 4.

Figure 7.6 Comparison between low-fidelity solution and high-fidelity solution. In addition to the posterior mean
and the 1% and 99% quantiles of p(yhi-fi|ylo-fi) the figures show the used training samples (black dots) as well as all
50000 samples as color-coded 2d histogram. Reproduced from [32].
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7 The impact of uncertainties in computational models of AAAs

MC reference posterior mean BMFMC relative error [%]

mean COV 95% q. mean COV 95% q. mean COV 95% q.
Ex. 1 0.1932 0.0239 0.1983 0.1928 0.0259 0.2012 0.21 8.26 1.45
Ex. 2 0.1874 0.0217 0.1939 0.1872 0.0223 0.1940 0.12 2.70 0.05
Ex. 3 0.1872 0.0648 0.2073 0.1871 0.0653 0.2080 0.10 0.86 0.34
Ex. 4 0.1030 0.2114 0.1430 0.1023 0.2139 0.1395 0.71 1.20 2.44

Table 7.3 Comparison between MC reference solution and posterior mean BMFMC solution. Taken from [32].

After computing 50000 MC samples using the low-fidelity models, 200 of those were selected
and the corresponding high-fidelity samples were taken from the MC reference solution. The
200 samples were selected such that they evenly cover the entire support of the particulate
approximation of p(ylo-fi), as described in Section 5.2.1. This set of training samples was used
to determine the posterior density ⇡(✓, �2

✏

) of the parameters of the Koutsourelakis regression
model and the variance of the noise term. Subsequently, this distribution is used to compute
the conditional probability distribution p(yhi-fi|ylo-fi). Figure 7.6 shows a comparison between
the solution of the low-fidelity model and the high-fidelity solution for all four examples. The
color coded 2D histograms, based on all 50000 MC samples show the interrelation between the
quantity of interest computed on the approximate and the high-fidelity model, respectively. The
training samples that were used to infer the parameters of the regression model are shown in
Figure 7.6 as black dots. The obtained posterior mean as well as the 1% and 99% quantiles of
p(yhi-fi|ylo-fi) are also depicted in Figure 7.6.

In all four cases the posterior mean of p(yhi-fi|ylo-fi) captures the interrelation between the ap-
proximate and high-fidelity solution very well. Furthermore, the computed quantiles readily
provide confidence intervals, which contain virtually all MC samples with very few exceptions.
The reason for the noisy relationship between ylo-fi and yhi-fi is that the coarsening of the dis-
cretization yields larger discretization errors and therefore spurious effects due to the coarser
discretization appear. Moreover, the coarser mesh is unable to resolve the finer details of the
random field which results in a smeared, less detailed solution. It was found that these effects
are more distinct if the quantity of interest is the von Mises stress as compared to von Mises
strain.

While the first two examples show an almost linear relation between low-fidelity and high-
fidelity solution, example three and particularly example four exhibit a distinct nonlinear depen-
dency. The nonparametric Bayesian regression model is able to capture these nonlinear interre-
lations as well. It also can be seen in Figure 7.6, especially for the latter two examples, that the
lack of ILT in the low-fidelity model leads to significant differences in the overall magnitude
between the stresses computed with the approximate and the high-fidelity model, respectively.
In fact, the stress and strain are considerably higher in the low-fidelity model, due to the lack of
ILT. By comparing the two densities p(ylo-fi) and p(yhi-fi), as shown in Figure 7.7, this difference
becomes even more apparent.

The posterior mean approximation ⇡̂(yhi-fi) is computed for all examples using (5.4) and de-
picted in Figure 7.7 together with p(ylo-fi) and the MC reference solutions of the high-fidelity
model p(yhi-fi). Despite the differences between p(ylo-fi) and p(yhi-fi), the posterior mean approx-
imation ⇡̂(yhi-fi) is in excellent agreement with the MC reference solution for all examples.
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7.2 AAA models with uncertain constitutive parameters

example patient approximation scheme cost MC cost BMFMC

1 male67 coarsening 50000 5075
2 male71 coarsening 50000 2051
3 male71 coarsening & no ILT 50000 1195
4 male71 coarsening & no ILT 50000 1195

Table 7.4 Comparison of computational costs between direct MC and BMFMC approach. Costs are given as
equivalent number of calls to the respective high-fidelity model. Taken from [32].

Table 7.3 lists the mean, COV and 95% quantile for both the MC reference p(yhi-fi) and
the posterior mean approximation ⇡̂(yhi-fi). Additionally, the relative error between the MC
reference and the BMFMC approach is given, thus allowing a quantitative assessment of the
accuracy. For the mean value a relative error below 1% is achieved for all examples. The error
of the estimation of the COV and the 95% quantile is slightly higher. However, considering the
crude low-fidelity models and the gain in computational efficiency, the accuracy is more than
sufficient for biomedical applications.

The ability to obtain an accurate estimate for the complete PDF, rather than just the first
moments is a major advantage, because the probability that the quantity of interest exceeds a
certain threshold y

0

can be computed. Although the exact definition of a failure threshold can be
difficult in biomechanical systems, such a failure probability is a valuable tool in many applica-
tions including rupture risk stratification of AAAs. Under the assumption that a suitable failure
threshold y

0

can be defined, the probability that a threshold y
0

is exceeded, is computed using
(5.10). Figure 7.8 depicts the posterior mean failure probability computed for a range of failure
thresholds y

0

for the chosen examples. Again an excellent agreement with the MC reference
solution is achieved, at a fraction of the computational cost, see Table 7.4. In addition, credible
intervals which are also shown in Figure 7.8 can be computed using (5.11). The intervals are
an indicator for the accuracy of the computed failure probability estimate based on the training
data. As depicted in Figure 7.8, the provided bounds contain the MC reference solution.

The computational efficiency of the method depends on the ability to create cheap low-fidelity
models which still provide ”enough” relevant information. In the examples considered here the
ratio of computational effort required to compute one sample of the accurate and the low-fidelity
model, respectively is between 10.2 and 50. A ratio of 50, accomplished by using a coarser
discretization and omitting the ILT in the low-fidelity model, results in a tremendous reduction
of the computational effort, see Table 7.4. Compared to direct MC using the high-fidelity model
the total computational effort is reduced by a factor of 42. As the male67 patient does not
exhibit ILT and merely a coarser discretization was used to create the low-fidelity model, the
computational cost for the male67 aneurysm is reduced by a factor of 10 compared to direct
MC. However, the vast majority of AAAs in the patient database exhibit ILT and especially for
large AAA, which are computationally expensive, being able to omit the ILT in the model will
result in even greater savings. However, it is pointed out that omitting the ILT in the low-fidelity
model is obviously only a viable option as long as no uncertainties in the ILT properties itself
are considered in the UQ analysis.

149



7 The impact of uncertainties in computational models of AAAs
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(d) Example 4: male71, ` = 25, evM at location 4.

Figure 7.7 Exemplary comparison of empirical densities from low-fidelity model p(ylo-fi), high-fidelity model
p(yhi-fi) and posterior mean BMFMC approximation ⇡̂(yhi-fi). Reproduced from [32].

It is important to stress the fact that the low-fidelity model does not have to be accurate, as
in deterministic multi-level or multi-grid schemes. As shown in Figure 7.7, low-fidelity models
without ILT yield significantly higher values for strain and stress due to the missing support
of ILT for the AAA wall. Additionally, no restrictions to the interrelation between the low-
fidelity and high-fidelity model apply. Even highly nonlinear interrelations are detected and
accurately reproduced by the Koutsourelakis regression model, the complexity of which is de-
termined by the information provided by the training samples. Whereas inaccurate low-fidelity
models and nonlinear interrelations do not adversely affect the accuracy of the approach per se,
coarsening of the discretization yields less detailed smeared out results due to the coarser rep-
resentation of the random field, a larger discretization error, and potentially aggravates spurious
numerical effects such as volumetric locking. This results in a noisier relationship between the
low-fidelity and the accurate model, i.e., a higher variance of the conditional probability distri-
bution p(yhi-fi|ylo-fi). As the variance increases, the credible intervals of the regression function
f(ylo-fi,✓) will become larger too. Thus, the accurate prediction of the quantity of interest on the
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(a) Example 1: male67, ` = 25, �vM at location 2.
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(b) Example 2: male71, ` = 25, �vM at location 3.
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(c) Example 3: male71 ` = 12.5, �vM at location 3.
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(d) Example 4: male71 ` = 25, evM at location 4.

Figure 7.8 Probability of exceeding a local failure threshold y

0

for a given quantity of interest. Comparison of
MC reference solution to posterior mean approximation and posterior quantiles. Reproduced from [32].

high-fidelity model becomes more difficult. While a set of 200 training samples was used here
and with that excellent agreement with the MC reference solution was achieved, the amount
of training data needed depends on a number of factors, i.e., the required accuracy, the em-
ployed low-fidelity model, the quantity of interest, and the statistic to be estimated. Hence, it
is difficult to provide an a priori estimates of how many samples are needed to achieve a given
accuracy. However, monitoring the credible intervals of f(ylo-fi,✓) while more training points
are added can aid in deciding whether adding more training samples, which entails evaluating
the high-fidelity model, justifies the additional effort associated with evaluation of the forward
model.

Efficiency gains through parameter continuation Using the continuation scheme for
elastic properties described in Section 5.2.5 the computational costs can be further decreased.
For instance, for the high-fidelity model of the male71 patient the computational cost for one
forward model evaluation can be reduced roughly by a factor of 3 to an average of 3800 CPU
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7 The impact of uncertainties in computational models of AAAs

seconds. The computational cost for one evaluation of the low-fidelity model (version without
ILT) reduces to a mere 95 CPU seconds. Of those 95 s 75 s are spent computing the realization
of the random field using the spectral representation method. As a result the total computational
cost for the BMFMC scheme add up to 1531 CPU hours which is equivalent to 510 full evalu-
ations of the full high-fidelity forward model. Thus the BMFMC scheme is about a 100 times
cheaper than MC without parameter continuation. Due to the comparatively large effort to com-
pute realizations of the random field, the one way to achieve an additional speedup is the use of
a faster approach for the computation of random field realizations. It was found that the compu-
tation of realizations based on the Fourier series expansion of random fields described in Section
3.3.3.3 is significantly faster and thus this approach is mostly used in examples considered in
the following sections.

7.3 AAA models with uncertain wall thickness

The present section shows that the BMFMC approach can also be used to investigate the impact
of an uncertain wall thickness. Moreover, a global quantity - the peak wall stress - instead
of a local quantity of interest is investigated here. As in the previous section, two patient-
specific geometries of real AAAs are used to demonstrate the capabilities of the method with real
world examples. Another major focus of this section is the comparison of different data-driven
stochastic wall thickness models. Three probabilistic wall thickness models with different levels
of sophistication are investigated here and the resulting probability distribution for the peak
wall stress is computed for both patients. Thereby, the data-driven probabilistic wall models
are based on experimental data and the obtained results in Chapter 6. More specifically, two
probabilistic wall models, a random variable and a random field model, whose parameters are
based on study population measurements of the wall thickness are used. In addition, a second
random field model, which takes non-invasively available predictors for the wall thickness into
account, is also included. Because some of these predictor variables are not available for the
patients investigated in the last section, two different AAA geometries are considered here.

The probability distribution of the peak wall stress in each AAA model is computed using the
BMFMC approach in case the wall thickness is described by a random field and a MC reference
solution with 20000 samples is provided for comparison. If the wall thickness is described by a
simple random variable, the stochastic dimension of the problem is one and hence a surrogate
model will need fewer model evaluations than the BMFMC approach. For this reason a GP
based surrogate was used to perform UQ for the simpler random variable case. The used GP
surrogate approach is described in detail in Section 4.6.2. For the example considered here, a
GP with a squared exponential covariance function was used, the hyper-parameters of which are
determined by marginal likelihood maximization.

In contrast to the previous section where the Koutsourelakis regression approach was used, a
GP based regression model as described in Section 3.5.2 was used here to compute the necessary
conditional probability distribution p(yhi-fi|ylo-fi). The GP based regression model is significantly
easier to implement and thus presented here as an alternative. Nevertheless, it is acknowledged
that further research should include a more detailed comparison between different regression
approaches.
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7.3 AAA models with uncertain wall thickness

(a) (b) (c) (d)

Figure 7.9 Discretization and geometry of high-fidelity patient-specific AAA models of patients female48 (a)
and male65 (c). Both AAA feature ILT which is shown in blue in the cross-sectional views for patient female48
(b) and patient male65 (d).

7.3.1 Patient-specific finite element models

Two finite element models, which are referred to from here on as female48 and male65, were
created using the process described in Section 7.1. The resulting high-fidelity versions of the
models are depicted in Figure 7.9. As can be seen in the cross-sectional views provided in Fig-
ure 7.9, both AAAs exhibit ILT. The models consist of 124962 (female48) and 111442 (male65)
linear hexahedral and tetrahedral elements, resulting in a problem size of 374886 and 334326
degrees of freedom, respectively. The ILT is meshed exclusively using tetrahedral elements,
whereas the wall consists of three layers of hexahedral elements. Because the nodes at the in-
terface match exactly, the two triangular surface elements belonging to two tetrahedral volume
elements can be directly tied to one quadrilateral surface element, which belongs to one hexahe-
dral volume element of the wall. This direct mesh tying approach introduces a small error since
the discretizations do not match at this artificial interface. To ensure that this error is insignifi-
cant, this direct mesh tying approach was compared to a consistent mortar mesh tying approach
[97] to couple ILT and wall together. The differences were found to be negligible.

If the wall thickness is modeled by a discretized random field, the thickness tstoch(x, z) be-
comes a function of location x and a number of random variables collectively denoted as z.
Using the geometry adjustment algorithm described in Section 5.2.5 realizations of the random
geometry are generated at runtime. Once a realization tstoch(x, z(i)

) of the random field describ-
ing the wall thickness is computed and evaluated at the nodes on the outer surface of the AAA,
the positions of all nodes in the wall are adjusted accordingly.

At this point it is important to note that the wall thickness is not altered at the bifurcation of the
AAAs nor in its direct vicinity. The wall thickness is considered constant up to approximately 15
mm above the bifurcation point, because geometry alterations in the vicinity of the bifurcation
could not be performed without resulting in self-intersecting geometries. Kinks in the geometry
are avoided by gradually blending between constant wall thickness and stochastic wall thickness
in a transition zone above the bifurcation.
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7 The impact of uncertainties in computational models of AAAs

model solution time (CPU seconds) degrees of freedom

female48 high-fidelity 24100 374886
female48 low-fidelity 27 -
male65 high-fidelity 19716 334326
male65 low-fidelity 18 -

Table 7.5 Size of female48 and male65 AAA finite element models and solution times for one solve of the
forward model. The computational for the high-fidelity model also includes the additional effort for the geometry
adjustment step.

After the geometry adjustment step, the actual boundary value problem of interest is solved
and the von Mises stress field �

(i)

tstoch
(x) corresponding to a particular realization of the thickness

tstoch(x, z(i)

) can be computed subsequently. The boundary conditions described in the previous
Section were used for the AAAs considered here as well. The quantity of interest studied in the
following examples is the maximum von Mises stress. In order to avoid numerical artefacts, the
99 % quantile of the von Mises stress of all wall elements is taken instead of the true maximum
in all following simulations.

Regarding the low-fidelity versions of the model, a different approach as compared to the
one described in Section 7.2 was taken. Instead of using a coarser discretization, essentially the
simple rule of thumb - that the stress in the wall is roughly inversely proportional to the local
wall thickness - is used for the construction of a low-fidelity solution. In order to compute a low-
fidelity approximation to the von Mises stresses in the AAA wall for a realization tstoch(x, z(i)

),
the von Mises stress �

tconst(x), which is computed based on a simulation with spatially uniform
wall thickness tconst, is simply multiplied with the local ratio between tconst and tstoch(x, z(i)

)

�

tstoch(x, z(i)

) = �

tconst(x)

tconst

tstoch(x, z(i)

)

. (7.5)

Thus, after the high-fidelity model is solved once to compute the von Mises stress for all ele-
ments in the AAA wall based on a uniform wall thickness, (7.5) is used to compute a low-fidelity
approximation for the von Mises stress. The computational cost associated with the evaluation
of this low-fidelity ”model” are close to zero, since computing one sample only requires the gen-
eration of a realization of the random field describing the wall thickness tstoch(x, z(i)

) and one
scalar multiplication for each element within the wall using (7.5). Doing so not even requires an
update of the geometry of the model and the geometry adjustment step can be omitted as well.
Details about the computational effort for each model are given in Table 7.5. The described pro-
cedure, which is referred to as scaled-thickness approach from here on, results in low-fidelity
”models” which are approximately 993 and 1095 times cheaper then the corresponding high-
fidelity version of the model. The stated solution times are averaged values obtained using a
computing platform with Intel Xeon E5-2680 processors. For all models considered in this
section, 8 cores were used for the evaluation of the forward models.

While uncertainty in the wall thickness is considered in this section, the constitutive properties
are considered to be deterministic and study population average values according to the results
in Chapter 6 were chosen for the constitutive parameters, i.e, ↵ = 0.121 MPa and � = 2.98

MPa.
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7.3 AAA models with uncertain wall thickness

7.3.2 Stochastic models for the wall thickness
In Chapter 6 the construction of data-driven, predictive models for several mechanical param-
eters, which govern the mechanical behaviour of the AAA wall, have been constructed and
discussed. It has been shown that the predictive uncertainty can be reduced by taking non-
invasively assessable, patient-specific parameters into account. In this section different stochas-
tic models based on the findings in Chapter 6 for the wall thickness are investigated and the
impact on the probability distribution of the peak wall stress within the AAA wall is studied.
Three different probabilistic wall thickness models are considered here, two random field mod-
els and one random variable model. Thereby, all models are based on a log-normal distribution
for the wall thickness. For both random field models, a squared exponential covariance function
is employed. Based on the results in Section 6.4 the correlation length ` was set to 25 mm, the
average of the two estimates provided in Table 6.11. A sensitivity study regarding the correlation
length is beyond the scope of this work but should be subject of future research. The correlation
lengths given in Table 6.11 were estimated based on a logarithmic transformation of the data.
Hence, the probabilistic models for the thickness are simply based on a Gaussian random field
model for the logarithm of the thickness. Consequently, the first-order probability distribution
of random field describing the thickness is log-normal. While the type of (first-order) prob-
ability distribution is the same for all probabilistic models, the parameters of the log-normal
probability distribution are not. Based on the results presented and discussed in Chapter 6, the
different model versions along with the respective parameter choices are given in the following.

• Model A: Log-normal random field model based on fitting a Gaussian distribution to
study population measurements of the logarithm of the wall thickness. The resulting log-
normal random field has a spatially constant mean and the parameters of the log-normal
distribution are µ

t

= 0.4434 and �
t

= 0.3338, respectively.

• Model B: Random field model based on the predictive distribution of the GP based
Bayesian regression model discussed in Chapter 6, which takes into account non-inva-
sively available information. The parameter µ

t

(x) of the first-order log-normal distribu-
tion thereby depends on the spatial location through several spatially varying, non-inva-
sively assessable parameters. Thus, a closed form expression is not provided. The second
parameter was set to �

t

= 0.246, according to the obtained results in Chapter 6.

• Model C: Random variable model based on the study population measurements of the
wall thickness using the same distribution parameters as in model A. However, since
model C is based on a random variable, the resulting wall thickness will be spatially con-
stant across the AAA, thus neglecting a spatial, intra-patient variations in wall thickness.

As discussed in Section 6.3.3.1, the predictive distribution for the wall thickness provided by
the regression model is more accurate and the predictive variance, i.e., the predictive uncertainty,
is smaller as compared to the variance estimated directly from study population measurements.
By conducting an UQ analysis using both model A and model B, the benefit of using regression
model based probabilistic predictions for the wall thickness can be assessed. Although the data
indicates that random variable models are overly simplistic, as they cannot capture intra-patient
variations of the wall thickness, a random variable model is included for comparison with the
more complex random field models. Through comparison with the results obtained with the
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7 The impact of uncertainties in computational models of AAAs

probabilistic model C, the necessity of the more complex random field models A and B can be
judged.

It is noted that the particular choice of random field models is based on the assumption that
the amount of intra-patient variations or uncertainty is equal to the total amount of variability.
Other models are, of course, conceivable, such as a mixture between a random field with smaller
variance capturing the intra-patient variability in combination with a random variable for the
mean to model inter-patient variations.

To generate realizations of the random field, the Fourier series expansion given in (3.79) was
used. Compared to the spectral representation method, a major advantage of this approach is
that realizations of random fields can be computed much faster. The truncation threshold in
(3.80) was set to 250, resulting in a stochastic dimension of the UQ problem of 5112. Using
this truncation threshold approximately 95% of the variability of the field is retained by the
expansion.

7.3.3 Results
Using the two patient-specific AAA models female48 and male65, the impact of an uncertain
wall thickness on the peak wall stress is investigated and the results obtained with three different
probabilistic wall models are compared. For wall thickness model A and B the uncertainty
is propagated using BMFMC and for wall thickness model C a GP based surrogate is used.
The discussion of the results is divided into three parts. First, the solution obtained with the
proposed BMFMC is compared to a MC reference solution and the accuracy and efficiency
of the BMFMC approach is discussed. Then, the results computed with the GP surrogate are
provided and advantages of the method are illustrated. This discussion of the methodological
aspects is followed by a comparison of peak wall stress distributions computed based on all
three probabilistic wall models and both patients.

7.3.3.1 Bayesian multi-fidelity Monte Carlo

The two random field based probabilistic wall models A and B in combination with two patient-
specific AAA geometries yield four different model variants. UQ was performed with all of
these four model versions using both MC and the Bayesian multi-fidelity approach. A brief
summary of the accuracy of BMFMC for all four model versions is provided in Table 7.6. In all
cases an excellent agreement with the MC reference solution is achieved. The posterior mean
approximation reproduces the MC reference with very small error in all examined quantities.

In Table 7.6 estimates for mean, COV, and 95% quantile of the peak wall stress based on the
high-fidelity MC reference p(yhi-fi) and posterior mean approximation ⇡̂(yhi-fi) of the BMFMC
scheme are provided for all four examples under investigation. A relative error significantly
below 1% is achieved in most cases.

Because the BMFMC approach performs very similar with all four model versions only two
showcase examples are discussed in more detail. The female48 aneurysm with stochastic wall
model A and the male65 aneurysm with wall model B are considered in the following. The
low-fidelity version of all models is based on the scaled thickness approach described above.
For all versions 20000 samples were computed for the high-fidelity and the low-fidelity model,
respectively. As described in Section 5.2.1 200 informative training samples were selected to
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Figure 7.10 Comparison between low-fidelity solution and high-fidelity solution. In addition to the posterior
mean and the confidence region of the predictive distribution p(yhi-fi|ylo-fi), the figures show the used training
samples as black dots.

MC reference posterior mean BMFMC relative error [%]

mean COV 95% q. mean COV 95% q. mean COV 95% q.
female48 m. A 0.3323 0.2917 0.5168 0.3324 0.2929 0.5191 0.036 0.358 0.445
female48 m. B 0.2142 0.2144 0.2977 0.2147 0.2113 0.2979 0.244 1.446 0.035
male65 m. A 0.2043 0.2951 0.3202 0.2037 0.2926 0.3207 0.297 0.844 0.151
male65 m. B 0.1350 0.2015 0.1857 0.1351 0.2004 0.1857 0.028 0.515 0.027

Table 7.6 Comparison between MC reference solution and BMFMC approximation for the two considered pa-
tients and both random field based probabilistic wall models (m.).

train a GP based regression model, which then provides the conditional probability distribution
p(yhi-fi|ylo-fi). In Figure 7.10 a comparison between the solution of the high-fidelity and the
low-fidelity model is shown for both examples. The training samples that were used to setup
the regression model are shown as black dots in the plots and show interrelation between low-
fidelity and high-fidelity model output. This interrelation is well captured by the conditional
distribution provided by the GP regression model, the posterior mean prediction of which is
shown in blue in Figures 7.10a and 7.10b. Moreover, the confidence interval of p(yhi-fi|ylo-fi) is
shown in addition to the mean.

The noise level is noticeably smaller as compared to the examples with an uncertain consti-
tutive parameter studied in Section 7.2. Moreover, the relationship between low-fidelity and
high-fidelity solution is very close to linear, except for the areas corresponding to the tails of the
distribution, where a slight deviation from an otherwise linear relation is discernible. In addi-
tion, the slope of the interrelation is close to one, indicating that the chosen low-fidelity model
yields indeed very accurate results by itself.

157



7 The impact of uncertainties in computational models of AAAs

σmax[MPa]

re
la
ti
ve

fr
eq
ue
nc
y

 

 

0.10 0.22 0.33 0.45 0.57 0.68 0.80
0.00

1.25

2.50

3.75

5.00
BMFMC post. mean
MC hi-fi
MC lo-fi

(a) PDF estimates: female48 aneurysm, wall model A.

σmax[MPa]

re
la
ti
ve

fr
eq
ue
nc
y

 

 

0.05 0.11 0.17 0.23 0.28 0.34 0.40
0.00

5.00

10.00

15.00

20.00
BMFMC post. mean
MC hi-fi
MC lo-fi

(b) PDF estimates: male65 aneurysm, wall model B.

σfail[MPa]

P
ro
ba
bi
li
ty

[σ
m
ax

>
σ
fa
il
]

 

 

0.13 0.22 0.32 0.42 0.52 0.61 0.71
10

−2

10
−1

10
0

MC hi-fi
MC lo-fi
BMFMC post. mean
BMFMC conf. reg.

(c) Failure probability: female48 aneurysm, wall model
A.

σfail[MPa]

P
ro
ba
bi
li
ty

[σ
m
ax

>
σ
fa
il
]

 

 

0.08 0.12 0.16 0.20 0.24 0.28 0.32
10

−2

10
−1

10
0

MC hi-fi
MC lo-fi
BMFMC post. mean
BMFMC conf. reg.

(d) Failure probability: male65 aneurysm, wall model
B.

Figure 7.11 Exemplary comparison between high-fidelity MC solution (red), low-fidelity MC solution (yellow),
and BMFMC solution (blue) for female48 aneurysm with wall model A and male65 aneurysm with wall model B.
Top: estimated PDFs for peak wall stress. Bottom: failure probability based on peak wall stress.

In fact, at first glance one might argue that the chosen examples are not the best showcase
for the BMFMC method because the peak wall stress computed with the low-fidelity model is
so accurate that statistics based on the low-fidelity solution alone might be sufficient. How-
ever, comparing the plots in Figure 7.10a and 7.10b it becomes evident that the accuracy of
the low-fidelity models varies and depends on the examined example. Without having an ac-
curate high-fidelity solution for comparison, it is difficult to provide an a priori estimate of the
error introduced by the low-fidelity model. Moreover, while the differences seem small in the
representation in Figure 7.10, the discrepancy in accuracy between low-fidelity model and high-
fidelity model is more pronounced if the probability distributions are compared. Figure 7.11
depicts the estimated densities p(yhi-fi) and p(ylo-fi) for both the high-fidelity solution and the
corresponding low-fidelity solution. Especially for the first example, the error in statistical sum-
maries estimated directly from low-fidelity model output are significant. Using BMFMC the
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example patient low-fidelity model cost MC cost BMFMC

1 female48 scaled thickness 20000 222
2 male65 scaled thickness 20000 218

Table 7.7 Comparison of computational costs between direct MC and Bayesian multi fidelity MC approach.
Costs are given as equivalent number of evaluations of the respective high-fidelity model.

discrepancy between low-fidelity and high-fidelity model can be accounted for, and the proba-
bility distribution estimates obtained with BMFMC, which are also shown in Figure 7.11, match
the MC high-fidelity reference extremely well.

Under the assumption that a failure threshold �fail can be specified, the failure probability
P (�max > �fail) can be computed. Figure 7.11 depicts the posterior mean BMFMC failure
probability computed for a range of failure thresholds �fail for the studied examples. Again, an
excellent agreement with the MC reference solution is achieved. In addition, credible intervals
are also shown in Figure 7.11. Due to the low noise level in the interrelation between the low-
fidelity solution and the high-fidelity solution, these credible intervals are very tight. The failure
probabilities based on the low-fidelity solution alone are also shown in Figure 7.11. In particular
for the female48 aneurysm with wall model A, the failure probability computed based on the
low-fidelity solution alone differs markedly from the MC reference.

While the BMFMC solution matches the high-fidelity MC reference solution very well, the
computational savings achieved by using the BMFMC solution are enormous, as can be seen
in Table 7.7, which provides a summary of the computational cost. The low-fidelity model of
the male65 patient is about 1095 times cheaper than the high-fidelity model. The result is an
overall cost for UQ using BMFMC which is equivalent to a mere 222 evaluations of the forward
model, as compared to 20000 for a regular MC scheme. Thus, the proposed BMFMC scheme
is about 90 times cheaper, while delivering results that match those of standard MC. As can be
inferred from Table 7.7, the computational savings obtained for the second patient are similar.
The overall efficiency of the scheme could be further improved if the parameter continuation
scheme described in Section 5.2.5 would be extended to cope uncertain geometries as well.
Moreover, the use of fewer training samples would further reduce the computational cost. It is
noted that the construction of low-fidelity models which are a 1000 times cheaper to evaluate
and at the same time are almost as accurate as the high-fidelity model is probably an exception,
rather than the norm.

7.3.3.2 Gaussian process surrogate model

In case the wall thickness is modeled as random variable, the stochastic problem at hand only has
one stochastic dimension and hence surrogate models present the more efficient UQ approach,
compared to MC or BMFMC. In one dimension it is very easy to create a surrogate model to
mimic the behavior of the finite element model of the AAA. Thereby it is important to note that
the surrogate only needs to capture the dependence between peak wall stress and wall thickness.
The finite element models of the patients female48 and male65 were evaluated using 25 different
uniform wall thicknesses ranging from 0.57 mm to 4.45 mm, thereby covering the range of all
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Figure 7.12 Gaussian process based surrogate model for �
max

in male65 model with uncertain wall thickness,
based on 17 design points. (a) Relationship between wall thickness and peak wall stress. (b) Estimated CDF. (c)
Estimated failure probability. (b) Estimated PDF.

experimentally measured values and more than 99% of the support of the log-normal distribution
describing the random fluctuations in wall thickness.

Based on these 25 design points, a GP was fitted to the data, linking wall thickness to peak
wall stress in the AAA models. This GP was then used to obtain a reference solution for the
probability distribution of �max using the procedures described in Section 4.6.2. Without con-
ducting a rigorous convergence analysis, the accuracy of GP surrogates constructed with fewer
design points were investigated by comparison to this reference solution in order to estimate the
number of design points necessary for an accurate, yet efficient, UQ analysis.

Starting with only three design points, the GP surrogate was trained based on these points and
estimates for CDF and PDF were computed. Then additional design points were added incre-
mentally. It was found that the use of 17 design points in the setup phase of the GP surrogate
produced results that are in excellent agreement with the reference solution and no significant
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7.3 AAA models with uncertain wall thickness

improvement could be achieved through the addition of more design points. Consequently 17
design points were considered sufficient for the examples considered in this work.

Figure 7.12 shows the GP surrogate for the male65 aneurysm based on 17 design points as
well as the resulting estimates for CDF, PDF, and failure probability, i.e., P (�

max

> �
fail

). The
mean estimate is provided along with 95% confidence regions, respectively. In addition the ref-
erence solution based on 25 design points is provided as well. The design points which were
used to train the GP are shown as red crosses in Figure 7.12 and the resulting posterior mean
and 95% confidence region are shown in blue and light blue, respectively. For wall thickness
values smaller than 4.5 mm the confidence region is so small that it is barely visible in the plot,
indicating that the addition of further design points is unnecessary. Although the predictive
uncertainty for thickness values larger than 4.5 mm is significant, the studied probability distri-
bution assigns virtually zero mass to values greater than 4.5 and hence adding design points in
this domain would not alter the results. Nevertheless, it is important to note that the provision of
a confidence measure is one of the major advantages of GP based surrogate approaches, because
many other surrogate models do not provide estimates of their accuracy.

As shown in Figure 7.12 the mean estimates for CDF, PDF, and failure probability are vir-
tually indistinguishable from the reference solution. Moreover, the 95% confidence regions for
all computed summaries are very small, indicating that 17 design points are sufficient for the
examined example.

The results for the second example, the female48 aneurysm, are similar and hence a detailed
discussion is omitted here for the sake of brevity. A summary of the results for the female48
aneurysm along with a comparison to other wall thickness models is provided in the next section.

Although 17 model evaluations do not pose a significant computational burden for the patient-
specific AAA models considered in this section, it is noted that several ways to further reduce
the computational effort without compromising accuracy exist. One way is the use of infor-
mation from low-fidelity models as outlined in Section 5.3.4. Another option would be to use
a formulation which admits the incorporation of gradient information as described in [73, 95].
The implementation of a parameter continuation scheme would also further expedite the com-
putation of multiple realizations of the wall thickness.

7.3.3.3 Comparison of different stochastic thickness models

Having discussed the methodological aspects in the previous two sections, the present section
addresses the comparison of the different probabilistic stochastic wall thickness models from a
mechanical point of view. First, the results obtained with the simplest stochastic wall model C
are discussed. As expected and shown in Figure 7.13, the magnitude of the wall stress decreases
with increasing wall thickness. The clearly nonlinear relationship between the peak stress and
the wall thickness can also be seen in Figure 7.12a. Since the simple random variable model re-
sults in a spatially constant wall thickness across the geometry of the aneurysm, the spatial stress
pattern remains similar for different values of the wall thickness. This pattern is determined by
the overall geometry of the AAA with the local ILT thickness also having a significant impact
on wall stress. While only the stress pattern of the male65 aneurysm is shown in Figure 7.13,
the female48 aneurysm behaves in the same fashion and hence a contour plot of the stresses is
omitted.
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(a) t = 4.45 mm (b) t = 3.44 mm (c) t = 2.43 mm (d) t = 1.41 mm

Figure 7.13 Computed von Mises stresses for different uniform wall thickness values for male65 aneurysm.
Stresses are shown in MPa.

Figure 7.14 Von Mises stresses in female48 aneurysm wall for eight MC samples based on stochastic wall model
B. Stresses are shown in MPa.
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Figure 7.15 Von Mises stresses in male65 aneurysm wall for eight MC samples based on stochastic wall model
B. Stresses are shown in MPa.

In contrast, if the uncertain wall thickness is modeled by a random field, the spatial stress pat-
tern is, in addition to the geometry of arterial wall and ILT, drastically influenced by the spatial
wall thickness distribution of the realization of the random field describing the wall thickness.
The spatial stress pattern varies significantly between realizations, as shown in Figures 7.14
and 7.15, which depict the von Mises stress for eight different realizations of the stochastic wall
thickness for both studied patients. In both Figures the realizations are based on the probabilistic
wall model B. Based on this qualitative comparison alone, the differences between an uncertain
but spatially constant wall thickness and an uncertain wall thickness model which takes into
account spatial variation, i.e., intra-patient variations, as well, become apparent.

Qualitatively, stochastic wall model A and B yield similar results, in the sense that both
stochastic wall models result in an overall wall stress pattern that is heavily influenced by the
particular realization of the wall thickness. Quantitatively though, the results for model A and B
are different. Figure 7.16 shows a comparison between the computed probability distributions of
�

max

for all three wall models and for both patients. In the left column of Figure 7.16 estimates
of the PDFs are shown and in the right column failure probabilities are plotted. In addition, Table
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Figure 7.16 Comparison of distribution of �max for the three considered stochastic wall models. PDFs and failure
probability for female48 aneurysm are shown in the top row. PDFs and failure probability for male65 aneurysm
are shown in the bottom row.

7.8 provides a summary of computed mean, variance, and 95% quantile of all distributions. In
comparison with wall model A, wall model B yields lower mean values for the peak wall stress.
The expected value of the peak wall stress is reduced from 0.332 MPa (model A) to 0.215
MPa (model B) for the female48 aneurysm and from 0.204 MPa to 0.135 MPa for the male65
aneurysm, cf. Table 7.8. Moreover, the variance of the peak wall stress, in other words the
uncertainty about the peak wall stress, is markedly smaller if the simulations are performed
with wall model B as compared to model A. In face of an uncertain wall thickness the 95%
quantile of the peak wall stress could serve as a worst case estimate. As can be seen in Table
7.8 these values are significantly higher than the expected value. Also regarding this metric,
wall model B leads to significantly lower values. Under the assumption that a failure threshold
�fail can be specified, an exceedance probability, which is shown for a range of thresholds in
Figure 7.16, can be computed. As can be seen in Figure 7.16, the wall thickness model has a
drastic influence on the computed failure probability as well. The reduced output uncertainty
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patient model E[�
max

] [MPa] V[�
max

] [MPa2] 95% quantile of �
max

[MPa]
female48 model A 0.332 0.0094 0.519
female48 model B 0.215 0.0021 0.298
female48 model C 0.259 0.0069 0.412

male65 model A 0.204 0.0036 0.321
male65 model B 0.135 0.0007 0.186
male65 model C 0.161 0.0024 0.254

Table 7.8 Comparison of mean value, variance, and 95% quantile of peak wall stress for different stochastic wall
thickness models.

of the stress is the result of a reduced uncertainty in wall thickness, highlighting the benefit and
potential of the data-driven stochastic wall model B developed in Chapter 6. The lower expected
value of �

max

can also be attributed to the improved stochastic wall thickness model. For the
studied patients, the predictive distribution of the regression models has a higher mean value
across the whole geometry of the AAAs, compared to study population average predictions.
However, results might be different for other AAAs.

Regarding a comparison between random variable model A and the random field model C
it is noted that, although the variance of the thickness is the same in model A and model C,
the random field model results in greater expected values, variance and 95% quantile of the
peak wall stress, cf. Table 7.8. This effect occurs in both of the studied patients. Despite the
fact that model A and model C have the same variance, the probability for a region with very
thin wall thickness, which in turn results in high stresses, is much higher in the random field
case (model A). As a result, the computed peak wall stress is, on average, higher. Neglecting
intra-patient variations in thickness and opting for the random variable model in an UQ analysis
seems questionable in light of these results.

Finally, it is important to reemphasize, although this result was expected, that the peak wall
stress is very sensitive to variations in wall thickness. Hence, uncertainty in wall thickness
translates to a considerable uncertainty in computed wall peak stress. Reliable simulation results
and computational AAA rupture risk stratification consequently require a consideration of these
uncertainties.

7.4 Models with multiple sources of uncertainties
Although the stochastic dimension in the examples considered this far was very high, all ex-
amples were limited to one uncertain physical parameter. The aim of the present section is to
demonstrate in a proof of concept fashion that problems with more than one uncertain phys-
ical parameter, all of which are modeled as random fields, can be tackled with the BMFMC
approach.

In case of multiple uncertain model parameters, each of those can be modeled individually
as random field using the approaches for the generation of realizations described in Section
3.3.3 if the parameters are uncorrelated. If these parameter are correlated, cross-correlated
random vector fields should be used as a probabilistic model. However, the generation of non-
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Gaussian cross-correlated random vector fields is more involved and an area of ongoing and
vivid research. In this work a restriction to random fields which are not cross-correlated is
made for ease of exposition and to avoid speculation about potential cross-correlation structures
between different model parameters. Nevertheless, references to the literature regarding the
generation of non-Gaussian cross-correlated random vector fields can be found in Section 3.3.5.
While sample generation certainly will be more involved in the cross-correlated random vector
field case, the author does not see a reason why the proposed BMFMC should not work in this
case as well.

7.4.1 Examples
Generic artery In addition to the uncertain constitutive parameter � an uncertain wall thick-
ness is considered as well. Therefore, the model of a hollow cylinder with a radius of 15 mm
and a length of 200 mm that can be interpreted as a model of a generic artery is exemplarily con-
sidered here. As with the patient-specific AAA models simple clamped boundary conditions are
applied at the in- and outlets of the artery segment and a traction orthogonal to the deformed
configuration is imposed, to mimic a luminal blood pressure of 160 mmHg on the inner surface
of the cylinder. To reduce the computational burden only the upper half of the cylinder is con-
sidered and symmetry boundary conditions are applied on the cut surfaces. Note that due to the
asymmetric spatial distribution of the uncertain properties the deformation of the full cylinder
will in general not be symmetric and computing only half the model will introduce an error.
However, as this example is shown here in a mere proof of concept fashion, this sacrifice is
made for the benefit of shorter computation times. The stochastic constitutive law described
in Section 7.2.2 is used as stochastic material model for the wall of the cylinder. The wall
thickness of the cylinder is also modeled by a log-normal random field, realizations of which
are also computed using (3.85) and (3.90). For the sake of brevity a restriction to one variant
of this example is made, i.e., for both fields a squared exponential covariance function with a
correlation length of ` = 25 mm is considered. The parameters of the marginal log-normal dis-
tribution of the random field describing the wall thickness are set to µ

t

= 0.447 and �
t

= 0.333,
respectively. These parameters result in a spatially varying wall thickness that covers roughly
the range between 0.5 and 4 mm. In this example, it is assumed that the two fields describing
the constitutive parameter � and the wall thickness, respectively, are not cross-correlated.

As before two models of different fidelity are created. A high-fidelity model, a realization
of which is shown in the left part of Figure 7.17, with 24000 elements and 98532 degrees of
freedom, and a low-fidelity approximate model, shown in the right part of Figure 7.17. The
low-fidelity model consists of 300 elements and 2046 degrees of freedom. To further reduce
the computational cost of the low-fidelity model only a reduced luminal pressure is applied. By
applying only half the load, the number of necessary load steps in the nonlinear solution scheme
is cut in half as well. The result is a low-fidelity model which is approximately 120 times
cheaper to evaluate than the corresponding high-fidelity model. Of course, the reduced load
will result in a dramatic underestimation of, e.g., the wall stress computed with the low-fidelity
model. The resulting CPU times required for one model evaluation along with the numbers of
degrees of freedom are summarized in Table 7.9 for the two models. Simulations of the low-
fidelity model were computed on one core, whereas for the high-fidelity model four cores were
used.
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7.4 Models with multiple sources of uncertainties

Figure 7.17 One realization of high-fidelity (left) and low-fidelity (right) finite element model of the generic
artery example.

model version solution time (CPU seconds) dofs

high-fidelity 4800 98532
low-fidelity 42 2046

Table 7.9 Generic artery example: size of studied finite element models in degrees of freedom (dof) and solution
times for one sample.

For the sake of brevity the results of the BMFMC approach are discussed based on one quan-
tity of interest. Here the von Mises stress at a specific location was chosen. The location is
indicated in Figure 7.17 as location 5 and will be referred to as such from here on. The overall
procedure is the same as described before for the patient-specific examples. A MC reference
solution for the low and high-fidelity model was computed using 50000 samples. Then, as
described previously, 200 samples from both models are used as training data to infer the condi-
tional probability distribution p(yhi-fi|ylo-fi), which then allows us to compute the approximation
⇡̂(yhi-fi).

Patient-specific example As showcase patient-specific example the male71 patient is con-
sidered here. The model setup for the high-fidelity as well as the low-fidelity model is the same
as described in Section 7.2. For maximum efficiency the low-fidelity model obtained through
coarsening of the discretization and omitting the ILT is used here. The difference here is that
both constitutive parameters ↵ and � are considered uncertain and are modeled by random
fields. The parameters provided in Table 6.4 are used for mean and standard deviation for a
Gaussian random field for the log of both parameters, resulting in a log-normal random field
for both material parameters. For both fields a correlation length of 12.5 mm was chosen and
the two random fields are considered to be independent. Realizations are computed using the
Fourier series expansion given in 3.79. The truncation threshold n

k

was set to 220, such that the
truncated expansion accounts for more than 90% of the variability of the fields. 20000 samples
were computed for both models to obtain a MC reference solution in addition to the BMFMC
solution for comparison. To further reduce the computational costs the parameter continuation
scheme described in Section 5.2.5 was used in the computation.
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(b) Empirical PDFs of �vM at location 5.

Figure 7.18 BMFMC results for generic artery with uncertain constitutive parameter and wall thickness. (a)
Comparison between low-fidelity solution and high-fidelity solution at location 5. (b) Comparison between com-
puted densities for �vM at location 5 from low-fidelity model p(ylo-fi), high-fidelity model p(yhi-fi) and posterior
mean approximation ⇡̂(yhi-fi).

7.4.2 Results
Generic artery The plots in Figure 7.18 provide a summary of the results. In Figure 7.18a a
comparison between the solution of the low-fidelity model and the corresponding solution of the
high-fidelity model is shown. In this example the relationship is essentially linear. Furthermore,
it can be seen that the stress values computed by the low-fidelity model are obviously consid-
erably lower than the ones computed with the high-fidelity model due to the reduced pressure
which is applied to the low-fidelity model. This difference is also evident in the computed his-
tograms which are shown in Figure 7.18b. The distribution of the stress computed with the
coarse model is shifted to the left compared to the MC reference solution. However, the magni-
tude of the stress is mainly determined by the local wall thickness and this dependency can also
be captured by the coarser model with reduced load. Hence, the posterior mean approximation
⇡̂(yhi-fi), computed using the BMFMC approach, matches the MC reference solution p(yhi-fi)

very well. The relative errors in mean, COV, and 95% quantile are 0.059%, 1.44%, and 0.63%,
respectively. Using the BMFMC approach the computational costs can be reduced to the equiv-
alent of approximately 640 full evaluations of the high-fidelity model. As expected, the results
show a high variability of the stress at the evaluated location (COV = 0.369) due to the variable
wall thickness.

Patient-specific example For the comparison between MC reference and BMFMC the von
Mises stress at location 4 (see Figure 7.3) and the peak von Mises stress occurring within the
AAA wall are evaluated. Again, note that the 99% quantile instead of the true maximum was
used. The relationship between low-fidelity and high-fidelity model, the probability densities,
and failure probabilities are shown in Figure 7.19. The left column shows the results for the von
Mises stress at location 4 while the right column shows the results for the maximum von Mises
stress.
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(a) low-fidelity vs. high-fidelity solution �vM at loca-
tion 4.
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(e) Failure probability based on �vM at location 4.
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(f) Failure probability based on �max.

Figure 7.19 BMFMC results for male71 patient with uncertainty in both constitutive parameters. Top row:
Comparison between low-fidelity solution and high-fidelity solution of �vM at location 4 (a) and �vM,max (b). Middle
row: Comparison between densities from low-fidelity model p(ylo-fi), high-fidelity model p(yhi-fi), and posterior
mean approximation ⇡̂(yhi-fi) for �vM at location 4 (c) and �vM,max (d). Bottom row: probability of exceeding a
failure threshold. Comparison of MC reference solution to BMFMC posterior mean approximation and posterior
quantiles for �vM at location 4 shown in (e) and �vM,max (f).

169



7 The impact of uncertainties in computational models of AAAs

In both cases the relationship between low-fidelity model and high-fidelity model is essen-
tially linear with a considerable amount of noise. On average the results obtained with the
low-fidelity model show higher values due to the omitted ILT in the low-fidelity model. Espe-
cially for the von Mises stress at location 4, the agreement between the MC and the BMFMC
solution is excellent, as can be seen by comparing the probability densities in Figure 7.19c.

For the peak wall stress the results are still good, but there exists a noticeable difference be-
tween the MC reference solution and the BMFMC estimate. The difference in the distributions
can be also seen when comparing failure probability in Figure 7.19e and 7.19f. The BMFMC
deviates from the MC reference solution and the computed confidence interval does not contain
the MC reference solution for a considerable range of failure thresholds y

0

. Table 7.10 shows
a comparison of mean, COV, and 95% quantile of the respective quantity of interest computed
with both MC and BMFMC. The relative error between the two solution methods is also pro-
vided. For the von Mises stress at location 4, the small relative errors reported in Table 7.10
confirm the previous visual assessment of an excellent agreement between MC reference and
BMFMC solution. For the peak wall stress, the mean and 95% quantile show a very small er-
ror with 0.142 % and 1.115 %, respectively. The COV, however, shows a larger error and the
BMFMC estimate deviates perceptively (18.1%) from the MC reference solution.

An explanation for the impaired performance can be found through a closer examination
of the relationship between low-fidelity and high-fidelity model output in Figure 7.19b. In
addition to the used training samples, posterior mean and quantiles of the regression model a
2D color coded histogram depicts the relation between low-fidelity and high-fidelity model. The
histogram reveals that the conditional distribution p(yhi-fi|ylo-fi) is not symmetric but skewed and
that the variance of the distribution is not constant but varies with ylo-fi.

The inference of the parameters of the regression is based on a Gaussian likelihood with a
constant variance, in the sense that it does not depend on ylo-fi. In other words, the regression
approach is based on the assumption of a homoscedastic and Gaussian error or noise term. Both
of the assumptions are clearly not fulfilled in the peak wall stress example given here leading to
an impaired performance of the method. In the absence of a reference solution examination of
the regression residuals can provide insights regarding the validity of the made assumptions. The
residual, i.e., the difference between actual (y(i)

hi-fi) and corresponding posterior mean prediction
(ŷ(i)

hi-fi) can be readily computed for each of the training samples. If the noise is Gaussian, the
residuals will also approximately follow a Gaussian distribution which can be visually assessed
in a so called normal probability plot.

QOI MC reference posterior mean BMFMC relative error [%]

mean COV 95% q. mean COV 95% q. mean COV 95% q.
�vM at loc. 4 0.0500 0.1626 0.0644 0.0500 0.1675 0.0643 0.074 2.985 0.190
�vM,max 0.1876 0.0549 0.2068 0.1880 0.0649 0.2091 0.142 18.072 1.153

Table 7.10 Comparison between MC reference solution and BMFMC approach.
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Figure 7.20 Normal probability plot of residuals between posterior mean prediction of high-fidelity result by
regression model and actual high-fidelity results. Plot in (a) shows residuals of �vM at location 4, whereas (b)
shows residuals for peak wall stress �max.

Normal probability plots for the residuals of the two examples studied here are shown in
Figure 7.20. The normal probability plot of the residuals of the von Mises stress at location 4
resembles a straight line, indicating approximately Gaussian distributed residuals. In contrast,
residuals obtained for the peak wall stress example deviate substantially from a straight line
suggesting a departure from normality. It is emphasized that the training samples alone are
sufficient for this assessment and a MC reference solution is not needed. This is important
because it means that problematic cases with, e.g., highly skewed noise can be detected without
having a high-fidelity Monte Carlo reference solution. Consequently, the low-fidelity model
could be discarded or another likelihood function could be used. Another option is to choose to
use current setup nonetheless, while being aware of the limitations and the possibility that the
method will not provide optimal results.

Regarding the computational costs, the solution time for one sample of the low-fidelity model
could be reduced to a mere 32 CPU seconds using the parameter continuation scheme. The
generation of random field realizations is significantly cheaper if the Fourier expansion is used
and hence the solution time for the low-fidelity model could be further reduced. In combination
with the high-fidelity model the simple parameter continuation scheme used here sometimes
needed more continuation steps to converge because the solution of the different realizations of
the problem were ”further apart” from the initial solution. Roughly a factor of 2.7 compared
to the computational effort associated with the regular nonlinear solution scheme was achieved.
More elaborate, truly adaptive continuation schemes could perhaps improve the performance
and should be investigated in the future. The computational cost of the BMFMC scheme for
this example are approximately 217 CPU hours for the 200 high-fidelity solutions plus 178
CPU hours for the 20000 low-fidelity examples, resulting in less than 400 CPU hours in total.
Compared with the computational cost of 60000 CPU hours of a standard MC scheme without
parameter continuation, the employed BMFMC scheme is roughly 150 times cheaper and the
total computational cost amounts to 134 evaluations of the high-fidelity model.
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7 The impact of uncertainties in computational models of AAAs

7.5 Concluding remarks
In this chapter the BMFMC framework was applied to complex nonlinear biomechanical models
with patient-specific geometries and uncertain constitutive parameters or geometry. Thereby,
uncertain parameters were modeled as three dimensional non-Gaussian random field, leading to
a high stochastic dimension of the problem at hand. By combining multi-fidelity sampling with
non-parametric Bayesian regression the full probability distribution function of the quantities
of interest can be approximated at a fraction of the computational costs, compared to direct
sampling of the accurate, high-fidelity model. It was shown that the BMFMC approach achieves
an excellent agreement with MC reference solutions. In addition, the remarkable efficiency
of the BMFMC approach can, for certain types of problems, be further improved if parameter
continuation schemes are used. In this case, the computational costs of UQ can often be reduced
to the equivalent of a few hundred runs of the high-fidelity model. This renders UQ for complex
biomechanical problems feasible on standard computing platforms.

All further conclusions derived from the results in this chapter are subdivided into two parts.
First, the implications of the obtained results for computational rupture risk assessment of AAAs
are discussed in the next section. Then, conclusions regarding the methodological aspects of
BMFMC are drawn.

7.5.1 Implications for computational rupture risk assessment of
AAAs

Considering the above results with regard to reliable AAA rupture risk assessment, it is con-
cluded that purely deterministic models are not sufficient for the accurate patient-specific as-
sessment of AAA rupture potential. While stress based failure or rupture models [100, 109,
203, 337] are rather insensitive to uncertainties in constitutive parameters, uncertainty in wall
thickness severely affects the spatial stress pattern and the peak wall stress.

By comparing a random variable with random field wall thickness models it could be shown
that neglecting intra-patient variations leads to different results and that the variability is po-
tentially underestimated when using a random variable model. Furthermore, the comparison
of different data-driven random field wall thickness models has shown that harnessing all non-
invasively available data for the construction of patient-specific stochastic wall thickness mod-
els results in reduced uncertainty of the computed peak wall stress for the examples considered
here. The utilization of these types of probabilistic model should be extended to other uncertain
parameters as well. First and foremost, a probabilistic wall strength model should be consid-
ered. In combination with stochastic wall strength models a stochastic failure measure could
be defined, which could in turn result in a more reliable estimate of AAA rupture risk. A first
step in this direction was recently done by Polzer and Gasser [253], who combined the prob-
ability distribution of the peak wall stress and a probability distribution of the wall strength to
compute a probabilistic failure measure. However, both the wall thickness and the wall strength
were modeled as random variable and the wall thickness was considered as the only source of
uncertainty.

While only isotropic constitutive laws were considered in this work, it should be pointed out
that the proposed approach can of course also be applied if more complex, e.g. anisotropic,
constitutive models are used. Although many of the conducted studies assess rupture potential
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by computing wall stresses based on an elastic model, including anisotropic ones, it has been
pointed out previously that the damage and failure process of soft tissue is more involved and
cannot be captured with purely elastic models employing a von Mises stress based failure cri-
terion [107, 206, 251, 278, 345, 347]. These advanced tissue damage and failure models, e.g.,
based on the evolution of the isochoric stored strain-energy of the material, as proposed by Simo
[303] and applied to AAAs by Marini et al. [206] require accurate prediction of the prevailing
strain and strain-energy. Thus, constitutive properties will have a greater influence on the results
as compared to the situtations where the wall stress is the only quantity of interest.

However, regarding mechanical properties of the AAA wall, the more important limitation
which has to be pointed out is that it is well known that several growth and remodeling pro-
cesses constantly rebuild and transform the tissue in the arterial wall. Hence, cardiovascular
structures such as AAAs are subject to ongoing growth and remodeling processes. Therefore,
localized areas with high strain or stress are likely to be remodeled diminishing such peaks in
the tissue. However, the issue of uncertain model input parameters persists if growth and re-
modeling processes are considered and uncertainty quantification remains essential in order to
provide reliable results and confidence bounds.

Therefore, detailed statistical and probabilistic models based on empirical data and rigorous
UQ is the only way to obtain meaningful and reliable results in lack of truly patient-specific
parameters Future research should include studies in which all uncertain model input parameters
are taken into account. Aside from uncertainties in constitutive properties of the wall and the
wall thickness, this includes uncertainties regarding the ILT as well as boundary conditions.
Cross correlations between different parameters should, of course, be considered as well.

7.5.2 Methodological aspects

It has been shown that the BMFMC approach yields accurate results at drastically reduced costs
for various examples. One of the major advantages of the approach is the tremendous flexibility
regarding the construction of low-fidelity models. In this chapter low-fidelity models based on a
coarser discretization, model reduction, and a quasi analytic scaled-thickness model have been
used to demonstrate this capability. It was shown that the method yields accurate results even
if the low-fidelity model provides only a very poor approximation and the difference between
low-fidelity solution and high-fidelity solution is large.

Although it is difficult to judge a priori whether a low-fidelity model is suitable for use within
the BMFMC approach, it is crucial to stress that the adequacy of the model can be judged with-
out having a full MC reference solution of the high-fidelity model. While a clear interrelation
between low-fidelity and high-fidelity model existed in all examples shown in this work this
might not always be the case. However, the full statistical toolkit can be utilized to assess the
validity and quality of the chosen regression approach in combination with the available training
data. The definition of a full set of validation steps and heuristics should be considered in future
research to provide guidelines or threshold for the acceptance or rejection of a specific low-
fidelity in the BMFMC scheme. In addition, more detailed guidelines or an adaptive scheme to
determine the number of necessary training samples based on the statistical summary of interest
and on the strength of the correlation between low-fidelity and high-fidelity solution would be
beneficial in order to maximize the efficiency of the BMFMC approach.
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For the examples studied in this chapter, both of the employed regression approaches inves-
tigated in combination with the BMFMC scheme generally provided very good results. An ex-
ception was the example where the conditional probability distribution p(yhi-fi|ylo-fi) was highly
skewed and the magnitude of the variance term was dependent on ylo-fi. In these cases the as-
sumption of a Gaussian likelihood with input independent variance, which is made in both the
GP regression and the Koutsourelakis regression approach, can result in impaired performance
of the BMFMC approach because the conditional distribution cannot be accurately captured.
For these scenarios different regression approaches with a more flexible error term to allow for
skewed distributions and variable variance have to be investigated. Several formulations and
concept for this task have been proposed in literature, see, e.g., [181, 248, 321, 351, 352, 371].
The investigation and comparison of these approaches is, however, beyond the scope of this
work but should be considered in future research.

Aside from exploiting cheap low-fidelity models, it was demonstrated that exploiting the
problem structure and using continuation in material properties further expedite the solution of
a UQ problem. It is noted that this strategy could be applied in many UQ schemes and is not
limited to the presented multi-fidelity approach advocated here. The performance of the contin-
uation scheme depends on the difference between the solution for the different realizations and
the used reference solution. The greater the difference the more continuation steps are required.
The use of more elaborate continuation schemes would likely further reduce the computational
effort compared to the relatively simple approach employed here.

Lastly, it is emphazised that the developed geometry adjustment algorithm is crucial for the
study of uncertain geometries. Generating realizations of the random geometry in a separate
preprocessing step and having separate input files for each realization would be impractical even
if only a moderate number of samples are needed. Moreover, it is stressed that the actual time
to solution is drastically reduced due to ability to compute samples, i.e., to solve the forward
problem, in a concurrent fashion on high performance computing platforms. While plain MC
sampling can be parallelized simply by running multiple instances of the code, this is no longer
the case for advanced sampling schemes such as SMC, which requires some communication
between strands to perform, e.g., resampling steps. This is important as SMC schemes present
another option to further improve the efficiency of the developed framework [183], especially if
one is interested in estimating very small failure probabilities.
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8 Uncertainty quantification in
reduced order lung models

Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) are both life threat-
ening diseases. Their treatment requires mechanical ventilation, which can lead to further dam-
age of the lung due to overinflation, barotrauma, and cyclic closing and reopening of the alveoli
[265]. The damage caused by mechanical ventilation is generally referred to as Ventilatory
Associated Lung Injury (VILI). Mortality rates as high as 49% and 59% for ALI and ARDS,
respectively [332], have spurred a tremendous amount of research to enhance the understanding
of the nature of the lung damage and to improve mechanical ventilation protocols. Besides in
vivo and ex vivo experiments, computational studies based on numerical models of the entire
lung or parts thereof have contributed to a deeper understanding of the underlying phenomena
which govern the onset of VILI.

Research indicates that amongst other factors the amount and rate of local mechanical de-
formation, i.e., strain in the tissue plays a major role in inflammatory processes and ultimately
tissue damage [229, 259]. A recently developed comprehensive computational model of the en-
tire human lung allows the computation of these mechanical quantities based on patient-specific
lung models [162, 163, 282]. This model can reproduce patient-specific pulmonary physiology
and capture local and global pulmonary phenomena and quantities and therefore can be used
to study both spontaneous breathing and mechanical ventilation. One of the long term goals
of this research aims at the optimization of mechanical ventilation protocols to minimize tissue
damage and improve mortality rates. One of the remaining challenges is the personalization of
these models regarding, for instance, constitutive parameters. Estimates for these parameters
are available from calibrating the model to experimentally measured pressure-volume curves
while the patient undergoes mechanical ventilation [281]. Moreover, the relative stiffness of
the lung tissue in different regions of the lung can be estimated from CT image data based on
the Hounsfields scale or from ex vivo uniaxial tensile tests [28, 272]. However, with regard to a
particular patient undergoing mechanical ventilation, no exact data is available and considerable
uncertainty remains.

In this chapter, the sensitivity of the simulation results with respect to uncertainties in one con-
stitutive parameter is investigated based on a patient-specific, reduced dimensional lung model
in a mechanical ventilation scenario. Aside from quantifying the impact of an uncertain stiffness
parameter on local and maximum occurring strain within the lung, another major goal of this
chapter is to demonstrate that the BMFMC approach can be applied in many circumstances and
is not tailored or limited to nonlinear solid mechanics applications.

The remainder of this chapter is as follows. First the anatomy of the lung and the model
building process from imaging to simulation model is briefly described in Sections 8.1 and 8.2,
respectively. Then, the reduced dimensional lung model is introduced in Section 8.3, followed
by the chosen patient-specific example and the description of the stochastic constitutive law in
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2.2. Conductive airways

5. The centroids of the two sub-volumes (x
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) are evaluated using eq (2.1). The two
daughter airway branches are grown from the end of the parent airway in the direction of
the centroids, i.e. along the vectors n
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. The length of each daughter airway is
set to be 40% of the distance between the centroid of the sub-volumes and the starting
point of the daughter branches, i.e. first branch is extended with 0.4kn
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whereas the
second branch is extended with 0.4kn

br

2
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(see Figure 2.2(a)). Daughter airways that
ended outside the sub volume are trimmed such that they do not grow outside the sub-
region.

6. In each sub-volume a new splitting plane, for example SP

1

and SP

2

in Figure 2.2(b,c), is
evaluated using three points: (i) The parent volume centroid, (ii) the parent airway distal
point, and (iii) the sub-volume’s centroid (see Figure 2.2(b) and (c)).

7. The process is repeated from Step 4 until one of the termination criteria is met.

2.2. Conductive airways

Figure 2.3.: 3D representation of a tree of 16 generations of conducting airways

The termination criteria used in this work are an airway length (l
t

= 1.2 mm), airway radius
(r

t

= 0.2 mm) or node termination criteria (no nodes left for sub-division). The daughter to
parent branch scaling of the radii for the left and right branches of the tree are 0.876 and 0.686,
respectively; these values are based on the morphologically measured values in human lungs
as reported in [91]. Figure 2.3 shows the patient’s generated tree of conducting airways. Fig-
ure 2.4(a) shows the amount of all airways in each generation. Figure 2.4(b) shows the number
of terminal airways for different generations. The statistical values of the diameter, length and
length-to-radius ratios are detailed in Figure 2.5. Furthermore, the airway diameters and lengths
in Figure 2.5(a) and (b) show a very good match between the generated bronchial tree and the
morphological measurements of [154]. The length-to-radius ratio in Figure 2.5(c) is only 15%
off the one measured by [154]. Table 2.1 shows the volumetric details of the segmented lobes and
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(a) (b)

Figure 8.1 Airways of the human lung (a) 3D representation of a 16 generation airway tree of conducting air-
ways, taken from [162]. (b) Human airways according to Weibel’s model, adopted from [354]. Abbreviations:
Z=airway generation; BR = bronchus; BL=bronchiole; TBL = terminal bronchiole; RBL= respiratory bronchiole;
AD= alveolar duct; AS = alveolar sac.

Section 8.4. Therein, the used high- and low-fidelity models are described as well. The results
of the performed UQ analysis are reported and discussed in Section 8.5. Conclusions are drawn
in Section 8.6.

8.1 Anatomy of the human lung
An extensive introduction and overview of the anatomy and physiology is beyond the scope of
this work and the inclined reader is referred to, e.g., [313, 354], for a thorough introduction
to the topic. However, the most important aspects of the anatomy of the lung along with the
nomenclature necessary to understand the ensuing description of the computational model, are
briefly introduced in this section.

The two human lungs with the right and the left lung are composed of three and two lobes,
respectively. Both lungs are encapsulated by a thin fluid-filled space called pleural space. A thin
two-layered membrane structure, called pleura encapsulates the pleural space and is attached
to the lung on the proximal side of the fluid and to the chest wall on the other, distal side
of the pleural space. At the bottom the lungs are constrained by the diaphragm. While it is
usually distinguished between upper and lower respiratory tract, only the lower tract will be
described in the following. The lower respiratory tract is comprised of a tree of conducting
and respiratory airways and a 3D representation of such a tree is depicted in Figure 8.1. The
figure also shows a detailed schematic of the different generations within the lower respiratory
tract. The conducting airways, starting with the trachea, ramify into smaller airways and the
1st through 16th generation of these airways form the dead zone in which no gas exchange
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8.2 From imaging to simulation — reduced order model of the respiratory system

(a) (b) (c)

Figure 8.2 From CT scan to simulation model: (a) Exemplary slice of end-expiratory CT data and (b) segmented
3D lung geometry from CT data. (c) Segmented lower generations and space-filling higher generations of conduct-
ing airway. Taken from [281].

occurs [141]. The respiratory zone, where the gas exchange occurs, consists of up to another
7 generation of respiratory airways referred to as acini. The acini are composed of terminal
bronchioles, alveolar ducts, and alveoli, as shown in Figure 8.1b.

8.2 From imaging to simulation — reduced order model
of the respiratory system

The computational models used here are built for the purpose of simulating mechanical venti-
lation. Thereby, the goal is to obtain detailed information about the local mechanical state of
the lung tissue based on a prescribed pressure at the tracheal inlet. Therefore, the air flow in
the conducting airways and the deformation of the acini resulting from the inflow of air has to
be modelled. For this, the geometry of the airway tree and a mathematical model for the flow
in the airways is needed. The overall geometry of the lung models considered in this study are
based on segmented 3D lung geometries from patient-specific CT scans as shown in Figure 8.2.
While the lobes and lower generation airways can be segmented from the image data, higher
generation airways and acini cannot. The higher generation airways are generated using a space
filling tree algorithm described in [163, 323]. The airways are generated recursively by splitting
each parent branch into two daughter branches until the peripheral airways reach either a length
below 1.2 mm, a radius below 0.2 mm, or the 17th generation. Thereby, the radii of the two
daughter branches is not the same but a scaling of the radius for the left and right branch of the
tree is 0.876 and 0.686 with respect to the radius of the parent branch. This ratio was chosen
according to [205] based on observation in the human body. An example of an airway tree gen-
erated with the algorithm is shown in Figure 8.2. For further details regarding the generation of
conducting airways trees using space filling algorithms the reader is referred to [163, 323].

With the geometry set up, a flow model is needed. Fully resolved 3D flow models based on the
Navier-Stokes equations could be applied; however, their evaluation is to expensive. Moreover,
it has been shown that state-of-the-art reduced 0D models for the flow within the airway tree
can provide accurate results in these scenarios. Using a reduced dimensional flow model, the
desired insight into, e.g., local strain distribution, or over-straining of the acini can be obtained
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8 Uncertainty quantification in reduced order lung models

at an acceptable computational cost. The 0D models for the airways and the acini which are
used in this work and briefly described in the following are based on [162, 163, 282]. Therein,
the employed model is described in more detail.

8.3 Mathematical model of the human lung

8.3.1 Reduced dimensional airway model
A reduced dimensional model based on the integration of the Navier-Stokes equations can be
derived if some assumptions about the geometry of the airways and about the flow in the airways
can be made. Specifically, it is assumed that that airways have axis-symmetric cross-sections
and negligible curvature. In addition, it is assumed that the flow in the airways has an axis-
symmetric velocity profile and that the compliance of the airway wall can be described by a
linear elastic constitutive model. Reduced dimensional models can then be obtained by first
integrating along the radial direction of the airways and subsequently along the axial direction
of the airways as well. For further details on the derivation of the reduced dimensional problem
the reader is referred to, e.g, [8, 162]. The resulting equations for the 0D airway according to
[163, 281, 282] are given as

C
dP

in

dt
+ Q

out

� Q
in

= 0,

I
dQ

out

dt
+ RQ

out

+ P
out

� P
in

= 0.

(8.1)

In analogy to components in an electric circuit, C denotes the capacitive, I the inductive, and
R the resistive part of the system. The pressure and flow rate at the in and outlets are denoted
by P

in

,P
out

and Q
in

,Q
out

, respectively. The capacitive part represents the effects of airways
compliance and the inductive term is used to take inertial effects of both the air and the airway
wall into account. The resistive term is used to model dissipative effects that occur to due air
viscosity. A suitable nonlinear resistance model that takes into account turbulent as well as
geometric losses within the airway tree, was developed in [249] later and refined in [336] and is
used in this work.

8.3.2 Acinar model
A reduced model for the acinus is attached at all terminal ends of the airway tree. The acinar
model is based on a four-element Maxwell model, which has been developed in [163] and is
shown in Figure 8.3b. The model links the flow rate of air into an alveolar duct model, shown
in Figure 8.3a, to the prevailing pressure difference between acinar pressure (P

a

) and pleural
or inter-acinar pressure (P

pl/intr

) through several maxwell elements consisting of springs and
dashpots, cf. Figure 8.3b. Each acinus is assumed to be comprised of a tree of alveolar ducts as
shown in Figure 8.3c.

The chosen Maxwell model corresponds to a visco-elastic material model for the acinar tissue.
Thereby, nonlinear constitutive behavior of the tissue can be captured by using a nonlinear
model for the spring E

1

[282]. An Ogden-type material was chosen here because it can capture
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8.3 Mathematical model of the human lung

(a) (b)

Q

(c)

Figure 8.3 Acinus model (a) schematic of an alveolar duct; (b) four element Maxwell model of an alveolar duct,
with acinar pressure (P

a

), pleural/inter-acinar pressure (P
pl/intr), and flow rate (Qi); (c) schematic of an acinus

filled with a tree of alveolar ducts. Taken from [282].

the volumetric part of the nonlinear constitutive behavior of lung tissue well [28, 272]. Based
on an Ogden-type [236] strain-energy function

 

ogd

=



⌘2

(⌘ ln(J) + J�⌘ � 1), (8.2)

which depends on the Jacobian J of the deformation gradient F and has two constitutive param-
eters  and ⌘, the following relation between volumetric deformation of the acini and pressure
can be derived

P
a
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. (8.3)

Therein, P
a

and P
pl/intr

denote alveolar pressure and the ambient pressure outside the aveolar
duct, respectively. The volumetric deformation is given by the quotient between initial volume
of the acinus V

a,0

and the current volume of the acinus V
a

, i.e., "
vol

= V
a

/V
a,0

.

8.3.3 Inter-acinar dependencies
Within the lung, neighbouring alveoli and acini cannot deform independent of each other. Since
the walls of adjacent alveoli are attached to each other, the individual alveoli and hence also
the acini compete essentially for the same volume during expansion and the dynamics of an
alveolus is affected by those in its vicinity. Taking this interplay into account is important, in
particular for lungs which are heterogeneously distended due to gravitational effects, dynamic
non-uniformity of ventilation, or locally varying tissue stiffness. An approach to emulate this
behaviour in pure reduced dimensional models was recently described by Roth et al. [282], who
suggested the use of inter-acinar linker elements to capture the interactions between adjacent
acini. The approach, which is also used in this work, is based on creating a inter-acinar linker
element between all neighbouring acini pairs whose distance between their respective centers
of gravity is smaller than 1.2 times the sum of their radii. In a second step, the outermost acini
interacting with the pleural space are detected in order to be able to prescribe suitable boundary
conditions for the problem which mimics the ribcage. This way interactions between adjacent
acini can be modelled and their combined volume can be constrained. As explained in detail
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8 Uncertainty quantification in reduced order lung models

in [282], the acini are coupled together based on the balance of forces at their interface, which
leads to the following interdependence model for an individual acinus i

P
intr,i

� P
pl

N
adj,i

�
X P

intr,j

N
adj,i

= 0, (8.4)

where N
adj,i

is the number of adjacent acini or pleural spaces for acinus i.

8.3.4 Pleural pressure
A lung volume dependent pleural pressure model is used to replicate the constraining effect of
the ribcage. Here the following pleural pressure model according to Harris [144] is used:

P
pl

= P 0

pl

+ b
p

V
CP

p

+ c
p

e(d

p

V

CP

p

). (8.5)

Therein V
CP

p

= (V �V
R

)/(V
TLC

�V
R

) denotes the percentile vital capacitance. The parameters
V

TLC

= 6.95 l and V
R

= 1.95 l denote the so-called total lung capacitance and residual volume,
respectively. The remaining model parameters of the pleural pressure model were obtained by
fitting (8.5) to the measurements given in [144] and were accordingly set to P 0

pl

= �9.772

cmH
2

O, b
p

= 20.435 cmH
2

O, c
p

= �33.383 cmH
2

O, and d
p

= �7.686.

8.4 Patient-specific lung model
Based on the process outlined above, a patient-specific lung model is constructed based on CT
image data. The CT scans were taken at a predefined positive end-expiratory pressure (PEEP),
which corresponds to an end-expiratory lung volume (EELV). In order to apply the BMFMC
scheme for UQ, two versions of the model are created. A physiological high-fidelity model with
16 airway generations and 31975 acini. A 3D visualization of the model is depicted in Figures
8.4a and 8.4b. For the low-fidelity version of the model, which is shown in Figure 8.4c and
8.4d, the last five airway generations were omitted and acini are attached at the 12th airway
generation. This results in a model with 2039 acini. In order to obtain the same acinar volume,
the acini in the low-fidelity model are significantly larger than in the high-fidelity model, cf.
Figure 8.4, and no longer have a physiological size.

Mechanical ventilation is simulated by prescribing a pressure P
t

at the tracheal inlet. The
prescribed curve is based on a real mechanical ventilation protocol, which is depicted in Figure
8.5. Before the periodic ventilation pressure curve can be applied, the pleural pressure P

pl

and the PEEP are ramped up to physiological conditions, which is also shown in Figure 8.5.
Usually, to account for transient effects due to the viscosity of the system two breathing cycles
are simulated. One ventilation cycle takes 3.1s, which together with the ramp up phase results
in a total simulated time of 9.3 s for two simulated ventilation cycles.

The maximum pressure of 25 cmH
2

O at the tracheal inlet is reached at 4.4 s and 7.5 s, respec-
tively. For all simulations a time step size of 0.01s was used, which results in 930 time steps for
one complete simulation of two ventilation cycles. For the high-fidelity model the computation
of 930 time steps requires a total of 98 CPU hours, whereas the low-fidelity model can be solved
in a mere 1.1 CPU hours, cf. Table 8.1. Furthermore, the since BMFMC scheme permits the
use of very approximate solutions, simulations with the low-fidelity model up to t = 3.5s were
found to be sufficient. This further reduces the computational effort to 0.38 CPU hours.
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8.3 Mathematical model of the human lung

(a) (b) (c) (d)

Figure 8.4 High-fidelity and low-fidelity version of the studied patient-specific lung model. (a) shows a 16
generation airway tree and (b) the corresponding acini. (c) shows a reduced 12 generation airway tree and (c) the
acini of the low-fidelity model.

No. No. No. No. Total CPU
generations elements nodes of procs hours

17 280263 107527 6 98 h
12 19241 7376 2 1.1 h
12 up to time step 350 19241 7376 2 0.38 h

Table 8.1 Comparison of model size and corresponding CPU time for the lung models with different number of
airway generations.
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Figure 8.5 Applied boundary conditions in the lung model. (a) Schematic of applied tracheal P
t

and pleural
P

pl

pressure boundary conditions. (b) Temporal development of applied tracheal pressure and resulting pleural
pressure. Additionally, the resulting time dependent lung volume is show. The curve is based on a deterministic
simulation with average value for .
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8 Uncertainty quantification in reduced order lung models

Probabilistic constitutive parameter As proposed in [281], a heterogenous tissue stiff-
ness is used in the lung model considered here. Based on the Hounsfield units (HU) in the
corresponding CT image data, the acinar stiffness parameter  is set according to the HU of
voxel the acinus falls into, using

 = 
0

(1 +

HU
HU

avg

). (8.6)

Here, HU
avg

denotes the average HU for lung tissue (in the scan used here, HU
avg

= �597)
and 

0

denotes the baseline tissue stiffness. By using this approach, collapsed regions of the
lung or areas with accumulated fluid are assigned a higher tissue stiffness due to higher HU
values. For the second constitutive parameter ⌘ a spatially constant value was assumed. In
order to obtain physiological results, patient-specific values for the two parameters 

0

and ⌘ are
estimated. Given that a four quasi-static measurements of the patient’s P-V curve are available,
patient-specific values for the two parameters can be calculated, such that the applied tracheal
pressure and resulting volume of the lung in the model match the actual measurements, see
[281] for a more detailed description. For the patient considered here, this led to the parameter
estimates 

0

= 1900 Pa and ⌘ = �5.0. The remaining parameters of the Maxwell model are
chosen according to [163].

One cannot expect that the heterogenous acinar stiffness distribution obtained with the simple
HU mapping procedure described in (8.6) exactly represents the ground truth. Using UQ it is
possible to investigate the sensitivity of the reduced lung model output to variations in acinar
stiffness. Thereby, the difference in acinar stiffness between healthy and collapsed regions of the
lung as well as local variations can be investigated. Here, the heterogenous acinar stiffness ob-
tained with (8.6) is superimposed with a random field, which describes local spatial fluctuations
in acinar stiffness. In future research uncertainty with respect to stiffness differences between
healthy and diseased tissue or other model parameters could be considered as well.

In any case, for the model under investigation in this work, a nonlinear acinar stiffness pa-
rameter  is modelled as a three dimensional log-normal random field, with a spatially variable
median µ



obtained from (8.6) and a scale parameter �


. Realizations of the field are obtained
by computing a realization of a Gaussian random field for the logarithm of  using (3.79) under
the assumption of a squared exponential covariance function as given in (3.60) and a correlation
length of ` = 50 mm. The truncation threshold in (3.79) is set to n

k

= 250, resulting in 13704
terms in the expansion accounting for more than 95% of the total variability of the random field.
Two variants of the stochastic stiffness model were investigated, model A where �



= 0.025

and model B where �


= 0.15. Both models are also summarized in Table 8.2. Detailed data
regarding variability of lung tissue stiffness is extremely scarce and the employed scale parame-
ters, which are based on the variability of existing preliminary experimental data [28, 272], have
thus to be considered a rough first estimate.

model variant correlation length µ


�


model A 50 mm HU dependent 0.025
model B 50 mm HU dependent 0.15

Table 8.2 Parameters of random field model for different model variants of patient-specific lung model.

182



8.5 Results

8.5 Results

In this Section the impact of an uncertain acinar stiffness parameter  on the maximum acinar
strain and the tidal volume is investigated for both of the described model variants. As in the
previous Chapter, the results are presented and discussed in two parts. First, the results are
presented from a mechanical point of view on the basis of a Monte Carlo analysis. Then, results
obtained with the BMFMC approach are discussed.

Due to the extremely high cost of the high-fidelity lung model Monte Carlo solution is limited
to 1000 samples of the high-fidelity model, which is not sufficient to accurately estimate small
exceedance or failure probabilities. However, a 1000 samples are sufficient to obtain an initial
estimate of the variability of the results and, most importantly, to demonstrate that the BMFMC
approach is also applicable to reduced order models of the lung.

8.5.1 Monte Carlo Solution

Figure 8.6 depicts a few example realizations of the random field describing  (model B) and
the corresponding volumetric acinar strain at maximum inspiration, i.e., at P

t

= 25 cmH
2

O
and t = 7.5s. It can be seen that local acinar strain is clearly interrelated with local stiffness
parameter . Thereby, areas with a low  value correspond to areas with high volumetric strain.
In spite this clear connection between local  and local strain values, the maximum occurring
strain within the model does not always occur at the location where the stiffness parameter 
is minimal. This can be seen in Figure 8.7, in which the maximum occurring strain is plotted
against the strain at the acinus with minimum . If the location of the maximum strain were to
correspond to the location with minimum , the two plots would show a straight line. As can
be seen in Figure 8.7 this is not the case. Especially for model A, the maximum strain does
frequently not occur at the location with the lowest stiffness.

The reason for that is a combination of airway dynamics, inter-acinar dependencies, and
gravitational effects. These characteristics essentially damp the dependence of local strain on
local stiffness. In particular gravity seems to have a shifting effect on the location of the maxi-
mum strain. In virtually all cases where maximum strain does not correspond to the location of
minimum , the location of the maximum occurring strain is located above the location of the
minimum of . Moreover, it has been observed that the location of the maximum strain jumps
over the course of a simulation. Future research will have to clarify whether the use of different
ventilation manoeuvres, e.g., high-frequency oscillatory ventilation, can alter either the location
or the magnitude of the maximum occurring strain or both.

Figure 8.8b and 8.9b show a histogram of the maximum strain, for model A and model B,
respectively. In particular for model A, where the variance of the random field describing 
is small, the variability of maximum occurring strain is also very small. The maximum strain
obtained with a deterministic , obtained by using (8.6) without added random fluctuations,
is very close to the mean value of the uncertainty distribution obtained with the probabilistic
stiffness model A. As could be expected, the variability of the maximum strain is larger if
probabilistic stiffness model B is used. Here, the difference between maximum strain obtained
using a deterministic  ("

vol,max

= 1.7982) is significantly lower than the mean value of the
distribution of the maximum strain (E["

vol,max

] = 1.9033).
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8 Uncertainty quantification in reduced order lung models

Figure 8.6 Six sample realizations of probabilistic stiffness model B and corresponding acinar strain at maximum
inspiration at t = 7.5. First and third row show spatial  distribution (color scale in Pa). Second and forth row
show the corresponding strain distributions.
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Figure 8.7 Comparison of maximum occurring acinar strain and acinar at the location of minimum .
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Figure 8.8 Histograms of tidal volume (a) and maximum acinar strain (b) for acinar stiffness model B.
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Figure 8.9 Histograms of tidal volume (a) and maximum acinar strain (b) for acinar stiffness model B.
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MC reference BMFMC posterior mean relative error [%]

mean COV 95% q. mean COV 95% q. mean COV 95% q.
model A 1.8052 0.0048 1.8204 1.8055 0.0045 1.8192 0.0195 6.9039 0.0670
model B 1.9033 0.0205 1.9696 1.9045 0.0215 1.9787 0.0657 4.6866 0.4589

Table 8.3 Comparison between MC reference solution and BMFMC approximation for the considered example
model and both random field based probabilistic acinar stiffness models.

The tidal volume V
tidal

shows a similar behavior and is relatively insensitive to fluctuations
in acinar stiffness. Moreover, the mean value of the tidal volume is very close the tidal volume
obtained in a deterministic simulation even if acinar stiffness model B is used.

It is important to emphasize that the locally occurring maximum strain values, computed with
the finite element model, are different from maximum volume averaged strain values which are
computable in an usual clinical setting based on tidal volume and functional residual capac-
ity. For the model under investigation here, the maximum occurring volume averaged strain is
"
avg,max

= 1.48, which is significantly lower than the values for local strain reported here. Note
that this value for the volume averaged strain corresponds to an average, deterministic .

8.5.2 Bayesian multi-fidelity Monte Carlo

In order to demonstrate that the BMFMC framework is indeed a very general approach, it is
applied here to estimate the distribution of the maximum strain in combination with both proba-
bilistic stiffness models A and B. The highest strain values occur at maximum inspiration which
corresponds to t = 4.4 s and t = 7.5 s for the first and second breath, respectively. To ensure
that the true maximum is used the maximal occurring strain value in time and space is taken
as maximum strain in the high-fidelity solution. The low-fidelity model is only simulated up to
t = 3.5 s and the maximum strain is evaluated at this point in time, to further reduce the compu-
tational effort. As a result the maximum strain values computed with the low-fidelity model are
significantly lower than the corresponding values computed with the high-fidelity model. This
is shown in Figure 8.10, which depicts the correlation between high-fidelity and low-fidelity
solution for the two considered model variants A and B as two-dimensional histogram. In ad-
dition, the posterior mean prediction and the 1% and 99% quantiles of the regression model
are shown in Figure 8.10. Here a GP based regression approach was used. Due to the high
computational costs associated with the evaluation of the high-fidelity model and to show that
the BMFMC method can also be used if only few evaluations of the high-fidelity model are
available, a subset of only 50 training samples was used to train the GP regression model.

In Figure 8.11 a comparison of estimated PDFs for high-fidelity, low-fidelity, and posterior
mean BMFMC approximation shown for the two model variants. Failure probabilities are shown
as well. Thereby, it is important to keep in mind that the MC reference is based on only 1000
samples. The BMFMC approach matches the MC reference solution rather well. This can also
be seen by comparison of mean and COVs as given in Table 8.3. The agreement of the estimated
mean values is excellent while the estimated COVs show somewhat larger errors compared to
the MC reference.
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Figure 8.10 Comparison between low-fidelity solution and high-fidelity solution. In addition to the posterior
mean and confidence region of the predictive distribution p(yhi-fi|ylo-fi) the figures show the used training samples
as black dots.
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Figure 8.11 Exemplary comparison between high-fidelity Monte Carlo solution (red), low-fidelity Monte Carlo
solution(yellow), and BMFMC solution (blue) for patient-specific lung model with acinar stiffness model A and
model B. Top: estimated PDFs for maximum acinar strain. Bottom: failure probability based on maximum acinar
strain threshold.
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As can be seen in Figure 8.11a and 8.11b the confidence regions of the BMFMC approach
are also rather large as a result of the noisy relationship and the few training samples used. The
variance of the conditional probability distribution p(yhi-fi|ylo-fi) compared to the total variability
of the high-fidelity solution is high compared to previous examples in the preceding chapter.
One reason for high amount of noise, which has a detrimental effect on the accuracy of the
BMFMC method, is the overall very low variability of the solution. Another factor might be
the way the low-fidelity model is constructed and the random field is evaluated. Reducing the
number of airway generations leads to larger acini. In addition, this truncation of the tree results
in acini being at different locations than in the high-fidelity model. Evaluating the random field
and assigning a value to each acinus based on averaging over the acinus volume instead of
assigning a value based on evaluation of the field at a single point, as it is done in the considered
examples, could help to reduce the noise.

Regarding the computational costs, the BMFMC scheme with 50 training sample is roughly
19 times cheaper than the direct MC with 1000 samples. The cost of BMFMC is the equivalent
to 54 high-fidelity model evaluations, which amounts to saving more than 90000 CPU hours.

8.6 Concluding remarks
UQ was performed using a state of the art, patient-specific, reduced order model the lung.
Thereby, one stiffness parameter was considered uncertain and modelled as three dimensional
random field. The maximum acinar strain was found to be not very sensitive with respect to
the considered uncertain stiffness model because inter-acinar linkers, adequate boundary con-
ditions to model the rib-cage, and gravitational effects damp the effect of local variations in
acinar stiffness. Nevertheless, the deterministic model tends to underestimate the maximum
strain compared to the mean value obtained with UQ.

Future work should include further investigations regarding the most suitable probabilistic
model for the stiffness parameter , as well as other uncertain parameters. Moreover, the lung
model should be extended to include reopening effects of the collapsed lung regions.

Most importatnly, it was demonstrated that the developed BMFMC framework is applicable
to various types of problems and not limited to solid mechanics problems. In order to be used
efficiently BMFMC requires that a cheap to evaluate low-fidelity model can be created, which
has a similar stochastic structure. The presented examples show that a suitable cheap low-
fidelity model can also be constructed for reduced dimensional models of the human respiratory
system, which demonstrates the general applicability of the proposed BMFMC approach.
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Within the scope of this work a framework for UQ in large-scale, nonlinear models with high-
stochastic dimension could be successfully developed and implemented. The main focus of
this work was the independent conception and implementation of a UQ framework, as well as
a subsequent application to exemplary biomedical problems. The present summary wraps up
the methodic and scientific progress and provides a glimpse into one scenario of the uncertain
future that lies ahead.

9.1 Conclusions
One major goal, the development of a general, efficient UQ framework for complex models, this
work set out to achieve, was accomplished. Two components comprise this framework. The
first component admits a mathematical description of uncertainty in form of random variables
or random fields. It is thereby emphasized, that uncertain parameters can be modelled by three-
dimensional, non-Gaussian random fields within the developed framework. The use of random
field models, especially if these fields are multi-dimensional, leads to a high stochastic dimen-
sion of the problem, which precludes the application of surrogate techniques. Hence, other tech-
niques to propagate the uncertainties through the computational models have to be used. To this
end, a novel and efficient multi-fidelity sampling scheme was adopted and a framework based
on this approach was implemented. By combining multi-fidelity sampling with non-parametric
Bayesian regression, it was possible to approximate the full probability distribution function of
the respective quantities of interest at a fraction of the computational costs as compared to di-
rect sampling of the accurate high-fidelity model. Furthermore, is was shown that the presented
approach achieves an excellent agreement with MC reference solutions. To further reduce the
computational burden, a parameter continuation scheme was developed which enables the ex-
ploitation of the typical sampling problem structure, i.e., the repeated simulation of very similar
problems. The sampling procedures were implemented allowing simultaneous solution of mul-
tiple instances of the forward model within the same instance of the software, thus allowing for
an easy extension to more advanced sampling schemes. Furthermore, the developed Bayesian
multi-fidelity Monte Carlo (BMFMC) framework is complemented with a surrogate modelling
approach based on GPs for problems with low stochastic dimension.

The exemplary application of the developed framework to computational models of AAAs
goes well beyond showcase numerical examples but rather aims to provide the first steps to-
wards a fully probabilistic treatment of computational models of AAAs. In the opinion of the
author rigorous UQ regarding the multitude of uncertain model input parameters provides a way
to further strengthen the trust in computational models of AAAs for the purpose of assessing
AAA rupture potential. Within the scope of this work, multiple approaches to obtain patient-
specific probabilistic models for several of the mechanical input parameters were developed and
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applied. For instance, harnessing a large database of experimental data, which was in part gath-
ered during this work, and using state of the art Bayesian regression approaches to make use
of non-invasively available factors resulted in superior probabilistic predictions for several un-
certain mechanical quantities. It could be shown that the predictions using this novel approach
were more accurate than predictions based on population averages and, more importantly, that
the probabilistic predictions based on the Bayesian regression models, taking non-invasively
assessable parameters into account, resulted in reduced uncertainty about several mechanical
quantities as compared to their assessment based on measurements of these mechanical quanti-
ties alone.

Using the obtained probabilistic models, realistic simulations of several patient-specific AAAs
with uncertain input parameters were set up and the impact of several uncertain input parame-
ters, such as constitutive parameters and wall thickness, on mechanical quantities that are typ-
ically related to AAA rupture risk could be quantified. The results showed that the impact on
these quantities can be dramatic, highlighting, once more, the need for rigorous UQ. Several dif-
ferent probabilistic models were compared, e.g., to gauge the need for random field models to
capture intra-patient variations of the uncertain model input parameters. The results showed that
a simple random variable model for the wall thickness leads to a different peak wall stress dis-
tribution, compared to a random field thickness model, indicating that a simple random variable
model is not sufficient.

The examples showed that the developed BMFMC approach can be used to assess local quan-
tities, e.g., stresses at specific locations as well as global quantities, e.g., the maximum von
Mises stress. Furthermore, it was shown that the BMFMC approach is very versatile and that it
can be employed in complex scenarios making use of a variety of low-fidelity approximations
of the high-fidelity model. Moreover, it was shown that low-fidelity models are by no means
limited to coarser discretizations. In addition, the application to a completely different physical
problem, the reduced dimensional modelling of the human lung, underscores once more the
generality of the approach.

9.2 Outlook
Overall, the results obtained with BMFMC approach are very promising and in the opinion
of the author, the approach has the potential to enable and facilitate UQ for a broad range of
problems. However, there are some open questions which have to be pointed out and should be
addressed in future work. This is the aim of the present section. In addition, this section provides
an outlook on possible directions of future research. An outlook for the general methodology
will be provided first, followed by some ideas regarding the computational rupture risk assess-
ment of AAAs.

9.2.1 Methods
While the results obtained with the BMFMC approach presented in the examples throughout
this work show generally a very good agreement with direct MC, it is important to point out
that further research is needed to determine the optimal ratio between high-fidelity and low-
fidelity samples. In others words, given a certain amount of computational resources, what is
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the optimal number of samples on each level to get the most accurate result? The answer to this
question will of course depend on the chosen low-fidelity model and the desired statistic.

Regarding the probabilistic models of the uncertain input parameters an obvious step to ex-
tent the current framework is the consideration of cross-correlated non-Gaussian random vector
fields, e.g., following the ideas recently described in [63, 101, 296]. Often, when multiple
uncertain physical parameters are considered, these parameters exhibit some degree of spatial
correlation as well as cross-correlation between different parameters. This correlation should be
reflected by the probabilistic models of uncertain input parameters in an UQ framework.

The sampling procedure itself could be improved by employing more advanced sampling
schemes, e.g., LHS or quasi Monte Carlo. On the other hand, the cost for the evaluation of a
forward model likely could be reduced by extending and improving the parameter continuation
scheme used in the present work.

Regarding the used regression models to compute the conditional probability distribution
between low-fidelity and high-fidelity model only models based on a Gaussian likelihood, i.e.,
a Gaussian error term have been investigated. Future research should include investigation of
more elaborate non-Gaussian and also non-symmetric noise models to improve the accuracy of
the approach and make it more robust against outliers. Multiple regression models could be
trained and subsequently compared to evaluate their performance. The model yielding the best
results should then be used in the BMFMC scheme to compute the desired high-fidelity solution
statistic.

The extension of the BMFMC scheme to compute sensitivity measures is also in interesting
direction of future research. The computational savings are likely even greater than in the case
where one is interest just in the probability distribution of the quantity of interest. Thereby,
the computation of sensitivity measures regarding multiple uncertain parameters modelled as
random fields or a combination of random fields and random variables would be of particular
interest.

Based on preliminary investigations, the use of multiple low-fidelity models or the briefly
mentioned combination or hybrid (cf. Section 5.3.5) between a multi-fidelity and a surro-
gate approach, presents, in the opinion of the author, another promising direction of future
research. Thereby, a low-fidelity model would provide only incomplete information about the
high-fidelity model masking all mathematical dimensions of the problem belonging to the ran-
dom field representation of one or more physical parameters. The low-fidelity model would
effectively lump all random variables describing the variation of one physical parameter into a
single dimension represented by the output of a low-fidelity model. Other random dimensions
could be directly captured by the surrogate model. One of the benefits of this approach would
be the ability to compute sensitivity measures with respect to the different uncertain physical
parameters based on existing ideas for the efficient computation of sensitivity measures for GP
based surrogates [235].

9.2.2 Applications
Regarding the computational assessment of AAA rupture potential, the logical next steps in-
clude an extension of the presented simulations to include uncertainties in all constitutive pa-
rameters, including the parameters of the ILT as well as the wall thickness. Possible correla-
tions between the parameters should also be considered. Moreover, a probabilistic wall strength
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model should be used. This would then allow for the computation of an actual rupture risk,
similar to the probabilistic rupture risk index recently proposed in [253]. Of course this risk has
to be understood as conditional on the assumption that the mechanical behaviour of the AAA
can be accurately described with an elastic model. This, however, might not be the case. Aside
from more elaborate elastic models, which, e.g., includes anisotropic materials, research includ-
ing growth and remodelling effects presents another possible avenue of future research. The
problem of uncertain model input parameters, however, persist when growth and remodelling
approaches are used.

Apart from AAA models, the BMFMC methodology has, in the opinion of the author, a
tremendous potential in many biomedical or general engineering applications. Consider for
instance computational models of arterial blood flow. Due to the high costs associated with
a full three-dimensional treatment of these kinds of problems researchers frequently employ
reduced dimensional models, which have shown good performance in many cases at a fraction
of the computational costs. Grinberg et al. [136] reports a ratio of computational effort of 18000
between 3D and 1D models This enormous difference in computational cost could likely be
exploited in a BMFMC based UQ scheme, allowing accurate UQ with respect to quantities
which can only be accurately assessed using the full 3D model.

They same rationale of course applies to other applications of UQ in computational fluid
dynamics. If simplified flow models, e.g. potential flow, can be successfully used as low-fidelity
approximation for the instationary solution of the Navier-Stokes equations, the cost for UQ in
computational fluid dynamics problems could be potentially reduced by orders of magnitude.
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A Probability distributions

Distribution Notation Parameters

Uniform x ⇠ U(a, b)
p
x

(x) = U(x|a, b)
boundaries a, b, with b > a

Normal x ⇠ N (µ, �2

)

p
x

(x) = N (x|µ, �2

)

mean µ
standard deviation � > 0

Multivariate
Normal

x ⇠ N (µ,⌃)

p
x

(x) = N (x|µ,⌃)

(implicit dimension d)

mean µ

symmetric, pos. semidefinite d ⇥ d
covariance matrix ⌃

log-Normal x ⇠ logN (µ, �2

)

p
x

(x) = logN (x|µ, �2

)

location µ, scale � > 0

of associated normal

Gamma x ⇠ Gamma(a, b)
p
x

(x) = Gamma(x|a, b)
shape a > 0

inverse scale b > 0

Inverse-
Gamma

x ⇠ Inv-Gamma(a, b)(a, b)
p
x

(x) = Inv-Gamma(a, b)(x|a, b)
shape a > 0

scale b > 0

Scaled
inverse-
chi-square

x ⇠ Inv-�2

(⌫, s2

)

p
x

(x) = Inv-�2

(x|⌫, s2

)

degrees of freedom ⌫ > 0

scale s > 0

Exponential x ⇠ Expon(b)
p
x

(x) = Expon(x|b) inverse scale b > 0

t
x ⇠ T (⌫, µ, �2

)

p
x

(x) = T (x|⌫, µ, �2

)

degrees of freedom ⌫ > 0

location µ, scale � > 0

Poisson x ⇠ Poisson(�)

p
x

(x) = Poisson(x|�)

’rate’ � > 0

Table A.1 Probability distributions used in this work. Table adopted from [115].
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Density function Mean and Variance

p
x

(x) =

1

b�a

, x 2 [a, b]
E[x] =

a+b

2

V[x] = (b � a)

2/12

p
x

(x) =

1

(2⇡�

2

)

1/2

exp(� 1

2�

2

(x � µ)

2

)

E[x] = µ
V[x] = �2

p
x

(x) =

1

(2⇡)

d/2

1

|⌃|1/2
exp(�1

2

(x � µ)

T⌃�1

(x � µ))

E[x] = µ

V[x] = ⌃

p
x

(x) = 1/(x�
p

2⇡) exp(� (log x�µ)

2

2�

2

)

E[x] = exp(µ + �2/2)

V[x] = (exp(�2 � 1)) exp(2µ + �2

)

p
x

(x) =

b

a

�(a)

xa�1e�bx , x > 0

E[x] =

a

b

V[x] =

a

b

2

p
x

(x) =

b

a

�(a)

x�(a+1)e�b/x , x > 0

E[x] = b/(a � 1)

V[x] = (b2

)/((a � 1)

2

(a � 2))

p
x

(x) =

(⌫/2)

�⌫/2

�(⌫/2)

s⌫x�(⌫/2+1)e⌫s
2

/(2x) , x > 0

E[x] =

⌫

⌫�2

s2

V[x] =

2⌫

2

(⌫�2)

2

(⌫�4)

p
x

(x) = be�bx , x > 0

E[x] =

1

b

V[x] =

1

b

2

p
x

(x) =

�((⌫+1)/2)

�(⌫/2)

p
⇡⌫�2

⇣

1 +

1

⌫

(x�µ)

2

�

2

⌘�(⌫+1)/2 E[x] = µ, for ⌫ > 1

V[x] =

⌫

⌫�2

�2, for ⌫ > 2

p
x

(x) =

1

x!

�x

exp(��)

x = 0, 1, 2, ..., n
E[x] = �
E[x] = �
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[170] K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Annales
Academiae Scientiarum Fennicae Series A. 1 37, 3–79, 1947.

[171] L. S. Katafygiotis and K. M. Zuev, Geometric insight into the challenges of solving
high-dimensional reliability problems, Probabilistic Engineering Mechanics 23, 208–
218, 2008.

[172] M. C. Kennedy, Bayesian quadrature with non-normal approximating functions, Statistics
and Computing 8, 365–375, 1998.

[173] M. C. Kennedy and A. O’Hagan, Predicting the output from a complex computer code
when fast approximations are available, Biometrika 87, 1–13, 2000.

[174] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 63, 425–464, 2001.

[175] P. Kersaudy, B. Sudret, N. Varsier, O. Picon, and J. Wiart, A new surrogate modeling tech-
nique combining Kriging and polynomial chaos expansions – Application to uncertainty
analysis in computational dosimetry, Journal of Computational Physics 286, 103–117,
2015.

[176] A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse, Mathematis-
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[218] S. Mishra, C. Schwab, and J. Šukys, Multi-level Monte Carlo finite volume methods for
nonlinear systems of conservation laws in multi-dimensions, Journal of Computational
Physics 231, 3365–3388, 2012.

[219] S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods
for hyperbolic conservation laws with random initial data, Mathematics of Computation
81, 1979–2018, 2012.
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