
v5.7 CADiSP - A GRAPHICAL COMPILER FOR THE PROGRAMMING
OF DSP IN A COMPLETELY SYMBOLIC WAY

Alois Knoll and Rupert Nieberle

Technische Universitaet Berlin
Sekr. FR 2-2

D-1000 Berlin 12
West Germany

ABSTRACT

The CADiSP system is an experimental software development
environment for digital signal processing. It has been designed
in an attempt to provide an engineering oriented tool for the
development of algorithms and efficient code generation for
DSP applications. Following the rules of modern software
engineering it supports object oriented techniques and symbolic
programming. This paper discusses the approach of using an
interactive graphical editor for specifying systems by inter-
connecting black boxes hierarchically on different levels of
abstraction and then automatically translate the block diagram
into executable code. Basic building blocks for the most
frequently used DSP functions are supplied in a library but the
programmer may freely define new functions using a specially
designed new language for expressing DSP algorithms. He may
also use the assembler language of the target processor which is
ameliorated by graphical elements to support structured
programming even on this level. On all levels of abstraction the
graphical specification is complete and thus may also serve as
documentation. Possible extensions of the system are briefly
discussed.

INTRODUCTION

The design goals for a flexible and powerful development
system covering a broad range of applications are manifold.
First of all, the system should be based on an extensible pro-
gramming language suitable for the notation of DSP-algorithms.
Secondly, it must be easy and intuitive to work with so as to
make program development a rapid process. Therefore,
compilers for the compilation of block diagrams as well as for
the compilation of the underlying algorithmic language, a
graphical interface for interactive entry of block diagrams, a
simulator and a debugger are major components. The system
must provide mechanisms to support the efficient reuse of
software. Finally, it must be modular in order to be easily
extensible, e.g. to support programming of multiprocessor
systems.

The aim is to make program development painless even for a
user unfamiliar with specific implementation details of the
development system and only interested in his own application.
We present an outline of our experimental system being
designed following the guidelines of other systems that evolved
in recent years [l ... 31 but stressing the issue of easy extension
of functionality, integrating aspects of modem software
engineering and in particular generating efficient code (the
system performs code generation primarily for the DSP 56000).

LEVELS OF ABSTRACTION

The system is divided into three main levels of abstraction:

a) the problem-oriented level III on which applications are built
using powerful modules

b) the level of primitives (level 11) on which the sophisticated
modules available on level I11 are defined using primitives
like multiplication, addition, etc. and

c) the processor level I on which primitive functions are defined
for use on level II.

By employing the same or similar graphical methods and rules
on three levels of abstraction, the user may seamlessly integrate
software specific to his application into predefined modules on
each of these levels.

The Application-Oriented Level 111

On the problem-oriented top level (level 111), processing
entities may be picked from a library of powerful building
blocks, e.g. samplers, convolvers, signal-generators or filters.
These entities can be “plugged together” by placing a labelled
arc between any two of them (see fig. 1). The direction of the
arc linking two processing entities indicates the direction of the
data-token flow. The labels of the arcs denote the data type of
each element of the stream of data-tokens. The data flow
conforms to the synchronous data flow model [4] which
essentially implies that the number of data tokens processed by
each building block on its invocation is known and fixed.
Therefore, finite buffers between entities will suffice. The data
types of input/output data streams of connected entities must
match and they must be defined at compile-time, nevertheless
generic definitions of processing entities accepting different
kinds of input/output streams are possible. In the case of a
generic definition, the graphical compiler will decide at compile-
time which instance of the processing element to choose. This
mechanism simplifies the reuse of software modules in different
processing contexts without sacrificing the benefits of strong
typing.

If a user wishes, one or more of the building blocks of level I11
may form the basis for even more powerful building blocks, the
latter inheriting the properties of the former and thus constituing
an even higher level of abstraction. Building blocks on all levels
may be copied and renamed to exclude them from changes made
to the original prototype of the class.

An Attribute and a Specification field characterize the building
block in full detail. If activated (“clicked on”), the attribute
window displays parameters necessary for tailoring the function

1077

CH2847-2/90/0000-1077 $1.00 0 1990 IEEE

Spec (A t t r i b
. .

I

Fig. 1: Program Generation on Level 111

to the specific needs of the environment it is used in. All of
these parameters may be changed upon activation of the attribute
window. The activation of the specification window reveals the
interconnection of level II blocks that realize the services of the
level I11 block. This specification is depicted graphically in
terms of the graphical data-flow language of level 11 (see fig. 2).

Level II: Building Blocks from DSP-Primitives

On level 11, common DSP-primitives are predefined. As was
the case on level ID, these primitives are visualized graphically.
Plugging together these primitives, the functionality of the
blocks of level III is obtained (fig. 2). DSP-primitives available
on this level are addition, multiplication, shifts, FFTs, etc. over
predefined or user-specified data types. Obviously, the
separation between levels I1 and I11 is not always clear cut: It
might be argued, that an FFT is a top-level operation. However,
if the user wishes to make this operation available on the top
level, it may easily be “wrapped” into a building block of that
level.

Down to and including level 11, all building blocks are strictly
processor-independent. Nothing has been said about the
architecture of the processor nor the language the algorithm was
written in. Therefore, a simulation of the final application is
easy in principle (not yet implemented) and straightforward if
the primitives are implemented to run on the host computer of
the development system: Apart from temporal behaviour and
possible numerical differences due to integer arithmetic, the
application will run on a dedicated signal processor in exactly
the same way as on the host computer. After the algorithm
proves to work correctly, the primitives running on the host can
be replaced with the primitives executable on the DSP.

Level I: Program Code

The realization of the primitives of level I1 reveals upon
activation of the “Spec” field (fig. 2). On the lowest level I, the
user has access to the program code realizing the functions of
level 11. Even on this processor-dependent level, all
programming can be done in a way comparable to the higher
levels but more textual entry is necessary. Block diagram and
related graphical techniques are perfectly adequate for
representing the interconnection of system building blocks and
data flow, but for expressing algorithms they have not proven to

\ ,
I 2: C o n v o l v e r - F U N C T I O N A L I T Y

C o m m e n t s : P e r f o r m s c y c l l c c o n v o l u t l o n v i a F - T r a n s f o r m s

Fig. 2: Level 11 - DSP-Primitives

be useful tools [5] and are certainly inferior to programming
languages. It is possible to do all the programming graphically
by introducing icons representing data, control flow, a register
model of the processor and addressing modes. This does have
advantages pertaining to readability and self documentation [6].
However, when organizing programs this way, it tums out that
even moderately complex programs rapidly need much more
space than can be handled comfortably. It is more promising to
use only a few graphical elements to indicate control flow and
possible parallel operations (e.g. data moves) or to resort to a
powerful programming language permitting compact notation of
algorithms. This is the main reason why programming on this
lowest level can be done using ImDiSP, a high-level language
specifically designed for digital signal processing and control
systems applications. Alternatively, the functionality of blocks
may be specified using the assembler language of the target
processor. As will be shown below, the introduction of
graphical elements on the assembler level may reduce textual
entry to a minimum.

A) The programming language ImDiSP

The imperative language ImDiSP has been designed with two
goals in mink
- The special functionality of widespread digital signal

processor architectures should be accessible to the high-
level language programmer.
The language should provide constructs that permit the
specification of typical DSP algorithms without sacrificing
potential inherent parallelism of calculations, i.e. without
having to sequentialize them because of constraints imposed
by the language (as is usually the case with programs
written in C or Pascal).

Like every modem imperative language ImDiSP is strongly
typed and offers all the control constructs necessary for
structured programming (sequence, iteration, selection) as well
as procedures and blocks as basic means for structuring
program text. Basic data types are boolean, integer, real and
complex. These types may be used to form arrays and records.
The expressive power of the language is based on its set of
operators manipulating array structures, the predominant data
type in DSP applications.

All standard arithmetic operators are overloaded: They do not
only operate on integers and reals but also on complex numbers,

-

1078

arrays, slices (sub-arrays) and matrices composed of the base
types. A simple example is the multiplication of two vectors: Let
a and b be vectors of the same dimension. Then, c := a*b
multiplies these vectors element by element creating a new
vector which is assigned to the variable c (also of type vector).

Like in APL, it is possible to combine “inner“ and “outer“
operations using a dot notation. For example, the dyadic
operator +.* applied to two vectors (as in c := a +.* b) will first
multiply the vectors element by element and subsequently sum
up the products to yield a result of the base type of the vectors.
Using this technique of combining operators, an expression like

i=O

is easily translated into the following code segment:

y := x [~ .. 01 +.* h

where ‘IA’’ used as an array subscript denotes the upper bound
of the array. The difference equation of a recursive filter

v=o p=l

with coefficient vectors a (dimension N+1) and b (dimension
M) can be realized in just a few lines of code:

loop
XI^] := input;
y[^] := a +.* x [~ .. 01 - b +.* y[̂ - 1 .. 01;

delay (x, 1) ;
delay (y, 1);

-- get input value
-- do the filter
-- output result output := y[^];

-- shift contents of array x by one element
-- shift contents of array y by one element

end loop;

where input and output are I/O port addresses.

The standard procedure delay pushes the contents of an array
down by an arbitrary number of elements leaving the top
elements (high index) undefined. This procedure is normally
applied to objects of a special one dimensional array type circular
array that implements circular buffers of any base type. If certain
conditions are met, the compiler makes use of the modulo-n
addressing mode (a feature available on most signal processors)
when delaying the array contents. This results in very low
overhead code. Other standard procedures of the language are
biquad, used for realizing cascade filters and the procedure
buttelfly that implements DIT/DIF butterflies and the necessary
address calculations.

Processor features directly accessible to the ImDiSP
programmer are saturation arithmetic which may be turned on
and off before and after any instruction by means of a pragma
(metacommand) and hardware do-loops. Bit-reversed
addressing of array elements is possible. Operators are provided
that permit the uniform application of a certain operation to all
elements of an array, the extraction of matrix diagonals and the
determination of the smallest or greatest element of an array.

To allow procedures to have state, all variables declared local to
a procedure are static by default, i.e. their value does not change
between calls. A pragrna exists that can make them volatile
which means that they become undefined upon exit of the
procedure. Volatile variables can be held in registers which
removes the need for memory fetches thus making execution
much faster.

A future extension of the language will be representation clauses
of data types that direct the compiler to internally represent data
types according to the specification of the programmer. If it
turns out to be necessary, pointer types and associated operators
will be added to the language. It is not intended to introduce
language constructs supporting programming in the large
(module, import, export statements, etc.). As ImDiSP is
primarily intended for defining algorithms “behind” level I1
building blocks, program size should always remain on a
relatively small scale and procedures are sufficient for
structuring the program. All aspects of modularization and
information hiding are realized by the higher CADiSP levels.

Using ImDiSP, it is possible to specify algorithms involving
structured data in a very compact form leaving it to the compiler
to serialize the code as far as necessary. This way it is obviously
much easier to generate efficient code than based on a notation
that forces the programmer to write down sequential steps and
then try to re-parallelize them.

B) Structured Assembler

The basic routines of the CADiSP library are based on standard
subroutines as furnished by the manufacturer of the processor.
Combining them on levels I1 and 111 and adding user-supplied
routines written in ImDiSP where necessary should cover most
potential applications. Nevertheless, when a user needs a certain
function not available in the library and hard limits are imposed
on the execution time, he may wish to implement his own
routine in assembler. To facilitate this task, graphical elements
resembling those of flow charts are used. The purpose of these
elements is twofold They are used to express control flow and
force the programmer to declare which resources of the machine
are used by his routine in a structured way.

A sample program composed of these graphical elements
available on this level is shown in fig. 3: Each of the blocks
contains an instruction; control flows along the lines. Lines may
be drawn that are expanded to unconditional jumps auto-
matically. Loops are denoted by arrows and a loop count. When
programming, the user picks instructions from a menu of
available instructions and then is prompted for the operands.
Upon completion of programming the procedure he must enter
all the information required by scheduler (registers used,
entry/exit/main procedure names, amount of buffer memory,
etc.) into a predefined table (not shown in fig. 3).

Our experiments exploring the benefits of this support of
assembler programming are still of a very preliminary nature.
However, the experiments indicate that it may be of some help
for the novice programmer, certainly improves clarity of
documentation and helps to prevent unstructured coding.

1079

1-

MOVE 'INP-A, RO

MOVE 'INP-B, R 4

MOVE 'INP-C-I, R I

MOVE

n O V E

(RO),XI (R4),VO

(R l) , A

MOVE *INP-A,RO

MOVE *INP_B,R4

MOVE *INP-C,RI

(RO)+,XO MOVE

I D i n I I n p v XO,XI,A I I I

(R4)t.VO

A A R 1)+

MPVR X0,VO.A (RO)+,XO

SCHEDULING

(R 4 b . V O

Scheduling, i.e. the determination of the order and frequency in
which subroutines representing building blocks are called, is
done completely at compile time. No dynamic scheduling, as
necessary with asynchronous data flow models, takes place.
The approach we have taken is simple: The scheduler examines
the topography of the network and the number of data tokens
that are produced/consumed on invocation of each block. Based
on this input it creates a calling scheme for the subroutines and
allocates memory space for circular buffers if necessary.
InpuUOutput will be interrupt or event driven in most cases; no
scheduling is necessary here.

n p v Vo,XI ,B (R4)t.XO

MACR X0.V 1.B A,(R I)+

CONCLUSION

(RO)*,VI

We have outlined a system for programming DSP applications.
With this system, most of the programming can be done
graphically, the user may fully concentrate on the solution of his
problem. He will not find himself fiddling around with
parameter passing mechanisms, register allocation schemes and
other issues not related to his signal processing problem.
Moreover, this approach results in a natural way of mo-
dularization: All building blocks of level III and all primitives of
level 11 are completely isolated from each other. Each of these
instances has its own data-space, there are no common variables
and consequently no undesired side-effects. Data and code of
the instances are firmly encapsulated within the module with no
access possible from the outside.

MACR -VO,VI,A (RO).XI

A S R I)

(R4).VO

J C L R '2 I a RETURN

Fig. 3: Level I - Programming
the processor

The graphic layout provides for complete documentation: It
represents specification, program and comments, all rolled into
a single compact document. Possible future extensions of the
system are better scheduling algorithms, a postoptimizer to
improve efficiency of the generated code, placement of
processes on multiprocessor networks, addition of simulation
facilities and the integration of a debugger.

REFERENCES

Kopec, G.
The Integrated Signal Processing System ISP
Trans. IEEE ASSP-32, No. 4, 1984
Karjalainen, M. et al.
QuickSig - An Object Oriented Signal Processing
Environment
Proc. ICASSP-88, New York, 1988
Lee, E.
Programmable DSP Architectures: Part II.
IEEE ASSP Magazine, Vo1.6, No. 1, January 1989.
Lee, E. et al.
Synchronous Data Flow
Proc. IEEE, Vol. 75, No. 9, Sep. 1987
Shu, N.
Visual Programming
Van Nostrand Reinhold, NewYork 1988
Nieberle, R. and Knoll, A.
CADiSP - An Approach for the Integration of
Interactive, Real-Time and Distributed Features in an
Environment for the Development of DSP-Programs
89th Convention of the AES, New York, 1989

1080

