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Abstract

Object recognition and 6-DoF pose estimation play an important role in many
robotic applications. They make it possible to identify objects in the environment
and accurately estimate their pose in the space.
In this report, a new feature descriptor that combines geometry and color informa-
tion for object recognition and 6-DoF pose estimation is presented. The training
database is obtained by generating synthetic views of the 3D object models. At
recognition stage, a segmentation of the scene is performed and the objects and
their poses are recognized by searching the k-nearest neighbours in the database.
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Chapter 1

Introduction

Object recognition and 6-DoF pose estimation has gained an increasing interest
in recent years. In many robotic applications, such as object grasping, tracking
and occlusion handling, the robotic perception should be able to correctly identify
objects and accurately estimate their 6-DoF pose in real time. The methods for
object recognition can be classified into two main categories: 2D-based methods
and 3D-based methods. The 2D-based methods require to first extract keypoints
from an image. Then, a descriptor is evaluated for each keypoint, usually based on
its surrounding pixels, and the descriptors are saved in a database. The 3D-based
methods came to overcome the limits of the 2D-based methods which can not fully
represent spatial information. With the advent of low-cost RGB devices such as the
Kinect introduced by Microsoft, studying 3D-based techniques has become a more
interesting research area.

In order to achieve 3D-object recognition, many feature descriptors were developed.
There are two main kinds of descriptors: local descriptors and global descriptors.
Like 2D-based methods, local descriptors are also based on extracting keypoints
from the 3D-object model. Each local descriptor corresponds to one keypoint and
therefore there are as many local descriptors as extracted keypoints. On the other
hand, by using a global descriptor, a whole partial view of an object corresponds
to one single descriptor. Unlike local descriptors, global descriptors do not require
keypoints detection. This results in reduced computational cost compared with lo-
cal descriptors especially in the matching stage. Therefore, we chose to develop a
global descriptor for object recognition and pose estimation because they are faster,
more robust against noise and more suitable for real-time applications than local
descriptors.

The pipeline of object recognition and pose estimation with global descriptors is
presented in Fig. 1.1. The first step of the object recognition pipeline begins with
object modelling. In this step, the 3D object models are build. Then, a large amount
of synthetic views are generated for each object model. Since we want to be able
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to recognize each object with different poses and that each viewpoint corresponds
to a unique object pose with respect to the camera, we need to generate as many
viewpoints as possible in order to provide a more accurate pose estimation. For our
experiments, we used 1260 generated synthetic views for each object. After that, a
global descriptor is estimated for each synthetic view in the feature extraction step
and then stored with the object pose label into a database. For the the testing stage,

Figure 1.1: Pipeline of object recognition and pose estimation with global descriptors

we consider a real color point cloud scene and the aim is to identify the different
objects in the scene and estimate their poses. In order to achieve this aim, a segmen-
tation of the scene should be first performed in order to filter the horizontal surface,
on which the objects are supposed to be lying from the scene. The remaining points
in the scene should correspond to the different objects.Then, a clustering of these
objects is performed based on Euclidean distance, so that each cluster corresponds
to one object to be recognized. After that, a global feature descriptor is estimated
for each cluster and is compared to the descriptors of the training data. The object
recognition and its pose estimation results from finding the best matching i.e. the
nearest neighbour in the database with respect to a certain metric.Finally, the pose
estimation can be optimized by using an optimization technique such as Iterative
Closest Point (ICP).

Our work focused mainly on the feature extraction part. We developed a global
descriptor that combines geometry and colour information. Our motivation behind
this work was that, in many 2D-based and 3D-based recognition approaches, colour
information was proven to improve the recognition rate and and solve the problem of
identifying objects having similar shapes but different colours. Logically, this should
also stand in the case of global descriptors. However, most of the global descriptors
from the state of art use only geometric information and ignore colour information.
Therefore , we try to efficiently include colour information in our global descriptor
in order to improve the recognition rate and pose estimation accuracy. For this pur-
pose, the Point Cloud Library (PCL), an open-source library that allows 3D point
cloud processing [RC11] was used.
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This report is organized as follows. In Chapter 2, two global descriptors from the
state of art are presented. In Chapter 3, we describe the object modelling of the
training data. Our global descriptor and the feature extraction process are both pre-
sented in Chapter 4. Object Recognition and pose estimation steps are described in
Chapter 5. In Chapter 6, we present our experiment set-up and the experimental
results. Finally, we conclude our work in Chapter 7.
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Chapter 2

Related Work

In this section, we present two global descriptors from the state-of-the-art which
enable to achieve real-time object recognition and pose estimation and explain the
underlying principles of each descriptor. Our descriptor was inspired in some aspects
by these two descriptors and we aimed at overcoming some of their drawbacks which
will be further explained in this section.

2.1 The Viewpoint Feature Histogram

The Viewpoint Feature Histogram (VFH) is a global descriptor which is based on
the surflet-pair relation. The surflet-pair relation [WHH03] encodes the geometric
properties of the surface of an object by using the surface normals. Let pi and
pj be two arbitrary points of an object and ni and nj their corresponding surface
normals. The surflet-pair relation describes the Euclidean distance between pi and
pj, as well as the angles between each surface normal and the connecting line of
the two points as shown in Fig. 2.1. There are many local and global descriptors
which use the surflet-point-pair relation such as the Point Feature Histogram (PFH)
[Rus09], the Fast Point Feature Histogram (FPFH) [RBB09] and the Ensemble of
Shape Functions (ESF) [WV11]. The Viewpoint Feature Histogram calculates the

Figure 2.1: Surflet-pair relation between two points pi and pj

surflet-point-pair relation between each point and the centroid of an object. Then, it
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accumulates the estimated point pair features into a single histogram. The size of the
VFH’s descriptor is 308 which enables to achieve real time performance in object
recognition applications. However the VFH descriptor includes only geometrical
information and does not take into account color information. Therefore, it can not
distinguish between two objects which have the same shape but different colors such
as the two cans in Fig. 2.2. An other issue related to VFH descriptor is that its
accuracy is closely related to the estimation of the centroid’s position. Therefore,
in case the object is partly occluded, the centroid is not correctly estimated, which
may affect the recognition results.

Figure 2.2: An example of two objects with same shape but different colors: a sprite
can and a mezzomix can

2.2 The Viewpoint oriented Colour-Shape Histogram

The Viewpoint oriented Colour-Shape Histogram (VCSH) [Li12] is a global descrip-
tor which includes both geometric and color information. It also uses the surflet-
point-pair relation for estimating the geometrical feature of the object and adds
color information by using a smoothed color ranging method. The geometric part
is obtained by calculating four features for each point pi of the object: the distance
between the point pi and the centroid, the angle between the surface normal at pi

and the viewpoint direction, the angle between the viewpoint direction and the line
connecting pi to the centroid and the distance between the centroid and its projec-
tion on the surface tangent in pi. For the color information, VCSH uses HSV color
space. Unlike RGB color space, HSV is invariant to illumination changes because
it separates color from intensity information. The descriptor defines 8 color ranges
and in each color range, each of the four geometrical features is encoded in 30 bins.
Therefore, the total size of VCSH is 960. Although the correlation between color
and geometry in this descriptor allows a more accurate object recognition and pose
estimation. However, the large size of the descriptor increases the computational
cost especially in the matching stage. Besides, the color histogram used in VCSH
considers only the total distribution of colors in the object and does not take into
the spatial location of the colors. However, it is possible that two objects have
the same color distribution but are perceptually different such as in Fig. 2.3. Our
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Figure 2.3: Two perceptually different objects with same color distributions.

descriptor aims at overcoming this problem by dividing the object into subregions
based on the distance to the centroid and estimating a color histogram for each
subregion. For the color histogram, CIELab color space is used. Like HSV, CIELab
separates color components from intensity components which makes it invariant to
illumination changes. Moreover, CIELab is more numerically stable than HSV at
low illumination intensity and is therefore chosen to be used in our work.
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Chapter 3

Scene segmentation and Object

Modelling

In this section, we describe the preprocessing of testing data by scene segmentation
and object clustering and the object modelling of the training data. In the training
dataset, the object models are already clustered, so that each point cloud object
corresponds to a single object captured from a known viewpoint. A descriptor is
then calculated for each object model and stored in the database with the object
identity and pose labels. However, in the testing dataset, the objects to be recog-
nized are parts of a complicated real world scene. The objects are not separated
beforehand from the background or from other objects like in the case of training
data. Therefore, we first need to perform a segmentation of the scene in order to
extract the horizontal plane (table, floor ...), on which our objects are supposed to
be lying. Then, we cluster the remaining point clouds in the scene so that each clus-
ter should correspond to a single object to be recognized. After that, we estimate a
feature descriptor for each object and compare it to the descriptors in the training
dataset in order to recognize the object and extract its initial pose estimation.

3.1 Plane Segmentation and object clustering

Plane segmentation consists in identifying the horizontal plane on which the objects
lie and extracting this plane from the point cloud in order to facilitate the clustering
of the remaining objects. Fig. 3.1 shows an example of a real world scene taken with
a Kinect. The scene contains not only the objects that need to be recognized, but
also an horizontal white plane which corresponds to a table on which the objects
lie. In order to extract the horizontal plane from the scene, Random Sample Con-
sensus (RANSAC) method is used. This method allows the estimation of the plane
parameters. If we denote by P the scene point cloud, a plane H can be described
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Figure 3.1: An example of a real world scene before segmentation

using four parameters {a,b,c,d} and is defined as follows:

H = {(x, y, z)T ∈ P |ax+ by + cz + d = 0} (3.1)

To estimate the parameters {a,b,c,d}, RANSAC algorithm first selects three random
points from the point cloud P and calculates the four parameters of the plane P1

defined by the three points. Then the algorithm calculates the Euclidean distances
of all points p ∈ P to the plane P1. A point p of P is considered to be a point of
P1 if its distance d to P1 satisfies the condition : d < dlim where dlim was set in our
experiments to the value 0.01. The algorithm then determines the total number of
points that belong to P1. This process is repeated 100 times. And the plane model
Pi, i ∈ [1, 100] that contains a maximum number of points is considered as the plane
to be extracted and is filtered from the scene.

Once the horizontal plane is eliminated from the scene, the remaining points are
clustered into different clusters. The first step of the clustering algorithm is based
on a k-d tree search. A k-d tree [Ben75] of a point cloud P is a binary tree, where
each node is a k-dimensional point. Every non-leaf node defines a splitting hyper-
plane that divides the space into two parts based on a specific dimension among the
k dimensions. The steps of the clustering algorithm [Rus09] are as follows:

1) Generate a k-d tree representation of the input point cloud P .
2) Set up an empty list of clusters C and a queue of points that need to be checked
Q.
3) For every point pi ∈ P perform the following steps:

1.Add pi to the current queue Q
2.For every point pi ∈ Q do:

• Search for the set P i of point neighbours of pi in a sphere with a
radius r to be fixed.
• For every point in P i, check if the point has already been processed,
and if not add it to Q.

3.When all points in Q have been processed, add Q to the list of clusters
C, and reset Q to an empty list.
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4) The algorithm is repeated until all points in P have been processed and have
become part of the list of point clusters C.
The result of the algorithm should be the different clusters, where each cluster cor-
responds to an individual point cloud object to be recognized. Fig. 3.2 shows an
example of two objects obtained after plane segmentation and object clustering of
the scene shown in Fig. 3.1.

Figure 3.2: An example of two teabags obtained after plane segmentation and object
clustering of the scene shown in Fig. 3.1

3.2 Object Modelling

3.2.1 Näıve Sampling

For our experiments, we used the training dataset provided by [Li12]. The object
models which form the training dataset are obtained by generating synthetic views
from different viewpoints for each 3D object point cloud. To generate the 3D object
models, a rotated plane was used on which the objects were put for modelling.
Point clouds corresponding to different viewpoints were captured using a Kinect
sensor. Once the 3D object models are formed, the synthetic views generation
phase begins. A synthetic view means the projection of the 3D object model from
a certain viewpoint on a 2D plane. Since each viewpoint corresponds to a certain
object pose, the more viewpoints we have, the more accurate the pose estimation
will be. For each object model, 1260 synthetic views were generated and stored
in a database with the object identity and pose labels. The method of sampling
used for synthetic views generation in [Li12] is called näıve sampling [J.K04]. It
is based on uniformly sampling each one of the Euler angles independently to get
the different rotations of the 3D object. Once the object is rotated, a projection
on a 2D plane is performed in order to get the genrated view. The synthetic view
generation rate was: every 10◦ in elevation and every 2◦ in azimuth. Fig. 3.3 shows
an example of some object models which were used for the training dataset. As
shown in this figure, some objects have the same shape but different colours and
others have similar colours but different shapes. Therefore, these objects are suitable
for evaluating the performance of our descriptor in combining colour and geometry
information for object recognition and pose estimation.



16 CHAPTER 3. SCENE SEGMENTATION AND OBJECT MODELLING

Figure 3.3: An example of object models used for the training dataset

(a) Näıve Sampling (b) Uniform Sampling

Figure 3.4: Generation of 1260 samples using (a)näıve sampling and (b)uniform
sampling. Both figures are shown from an upper view.

3.2.2 Uniform Sampling

The previous approach was based on uniformly sampling each of the elevation and
azimuth angles independently. However, this approach does not result in a uniform
distribution of the generated viewpoints. In fact, the näıve sampling method pre-
sented in the previous paragraph results in a distribution that is heavily concentrated
in polar regions [J.K04]. This sampling is therefore inefficient because it results in
more samples towards the poles that is needed for the recognition. Moreover, it
results in a sparser distribution near the equator which affects the recognition of
viewpoints taken at a low elevation angle. Fig. 3.4a shows an upper view of a näıve
sampling of a sphere using elevation and azimuth angles for generating 1260 samples
as explained in the previous paragraph. A better method of sampling is called uni-
form sampling [J.K04]. This method allows us to generate a uniformly distributed
sampling of rotations. It is based on generating uniform distributions in the range
[−π, π] for the pitch angle, and using the inverse cosine relationship to generate the
yaw angle in the range [0, π/2]. The use of the inverse cosine allows us to avoid
oversampling the polar regions. The steps of the uniform sampling algorithm for a
single viewpoint generation are given in the following pseudocode:
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1) Choose the pitch angle θ as follows: θ = 2 ∗ π ∗ rand()− π.
2) Choose the yaw angle φ as follows:φ = arccos(rand()).

Fig. 3.4b shows an upper view of the result of a uniform sampling of a sphere
using pitch and yaw angles for generating 1260 synthetic views. It is clear that the
problem of oversampling near polar regions is solved with this method resulting in
a uniform distribution of sampling rotations.
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Chapter 4

Feature Extraction

In this section, we describe our global feature descriptor. Our feature descriptor is
composed of two parts. The first part contains merely geometric information and
is inspired from the surflet-pair relation. This part is more robust against occlu-
sions than VFH or VCSH descriptors because it is not based on calculating the
surflet-pair relation between the centroid and other points of the object. Instead,
it calculates the surflet-pair relation by using randomly chosen point pairs. In the
second part, colour and geometry information are correlated by dividing the object
into subregions and estimating the colour histogram for each subregion. By this
way, the colour locations are better taken into account than in VCSH which only
calculates the total color distribution within the object.

Let’s consider a point cloud P , which corresponds to an object and contains n
points pi, with i ∈ [0, n]. To calculate the first part of the descriptor, we start by
choosing random point pairs (pi,pj) from the point cloud object a certain number
of times and calculate their normals (ni,nj) each time. For each randomly cho-
sen point pair , three geometric features inspired from the surflet-pair relation are
evaluated. These features were proven to effectively encode geometric information
of point cloud surfaces, especially when these point clouds contain many surface
variations [WHH03]. The first feature consists in the Euclidean distance d(pi,pj)
between the two random points:

d(pi,pj) = ||pi − pj|| (4.1)

The distance feature is encoded in a 30-bin histogram. To define the limits of each
bin, we first calculate the maximum distance dmax between two points within the
object:

dmax = max{d(pi,pj);pi ∈ P,pj ∈ P} (4.2)

Then, we normalize the bins with respect to the maximum distance dmax. An
example of calculation of the distance histogram is shown in Fig. 4.1. For each
two random points chosen in the object, the distance between them is calculated
and the corresponding bin is incremented by 1. The second feature consists of the
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angle between each of the two normals and the connecting line of the two points.
Therefore for each point pair (pi,pj), we evaluate two angles a1 and a2 as follows:

a1 = 6 (ni,pipj)

a2 = 6 (nj,pipj) (4.3)

The angles are also encoded in a 30-bin histogram. The third geometric feature

Figure 4.1: Estimation of the distance histogram for a point cloud object. The
distance between each randomly chosen point pair is classified into one bin among
30 bins.

corresponds to the angle a3 between the viewpoint direction v and the connecting
line of the two points:

a3 = 6 (v,pipj) (4.4)

The viewpoint direction v is defined as the line connecting the origin of the camera
to the centroid of the object pi. This feature is also encoded in a 30-bin histogram.
Therefore, the size of the first part of the descriptor is 30 · 3 = 90.

The second part of our descriptor includes both colour and geometric information.
For this part, we need to divide the object into 10 regions, based on the distance to
the centroid. In order to achieve this, we start by calculating the maximum distance
d′max to the centroid c:

d′max = max{d(c,pi);pi ∈ P} (4.5)

Then, for each random point pi, we calculate its distance to the centroid d(c,pi).
The region number Rn ∈ [1, 10] to which the point pi belongs is determined as
follows:

Rn = ceil(d(c,pi) · 10/d′max) (4.6)
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Figure 4.2: Definition of 6 regions for an object characterized by its centroid c and
the maximum distance to the centroid d′max

Fig. 4.2 shows an example of the definition of regions for an object characterized
by its centroid c and the maximum distance to the centroid d′max. For the purpose
of simplification, we divided the object into 6 regions only. Once we classified the
point pi into one region between 1 and 10, we convert its RGB colour to CIELab
colour space. CIELab is a three dimensional colour space, which was introduced by
the Commission Internationale de l’Eclairage (CIE) and adopted in 1970. Unlike
RGB, CIELab is device independent. This means that it is not related to a specific
device such as camera, scanner, etc. An other advantage of CIELab compared with
other color spaces such as RGB or HSV is that it is perceptually uniform. This
means that in this color space, the distance between points is directly proportional
to color difference perceived by the human eye [CF97]. CIELab color space can
be represented in 3 dimensional space by a sphere with three coordinates designed
by L∗, a∗ and b∗ as shown in Fig. 4.3. The vertical L∗ axis represents lightness
or gray scale and ranges from 0 to 100. The horizontal a∗ and b∗ axes represent
the chroma and cross each other in the center of the sphere. The a∗ axis is green
at one extremity, and red at the other.The b∗ axis is blue at one extremity, and
yellow at the other. The choice of the axes a∗ and b∗ is based on the color opponent
process, which suggests that there are three opponent channels in the human vision
system: red versus green, blue versus yellow, and black versus white [CIE04]. If we
move horizontally away from the L∗ axis, the color saturation increases gradually.In
theory there are no maximum values of a∗ and b∗ but in practice, a∗ values range in
[−500, 500] and b∗ values in [−200, 200]. The transformation from RGB color space
to CIELab color space is a non-linear transformation. The RGB values are first
normalized to the range [0, 1] and then transformed to an intermediate space called
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Figure 4.3: CIELab color space.

CIEXYZ color space [CF97] as follows:

X = R ∗ 0.4124 +G ∗ 0.3576 +B ∗ 0.1805
Y = R ∗ 0.2126 +G ∗ 0.7152 +B ∗ 0.0722
Z = R ∗ 0.0193 +G ∗ 0.1192 +B ∗ 0.9505

(4.7)

After that, the XYZ values are transformed to CIELab colour space using the fol-
lowing equations:

L∗ = 116f(Y/Y0)− 16

a∗ = 500[f(X/X0)− f(Y/Y0)]

b∗ = 500[f(Y/Y0)− f(Z/Z0)]

(4.8)

where X0 = 95.047 , Y0 = 100.000 and Z0 = 108.883. The function f is defined as
follows:

f(x) =

{

3
√
x if x > 0.008856

7.787x+ 0.138 else
.

For each of the ten regions, we define a color histogram of size 30 bins, where each of
the 3 CIELab values is encoded into 10 bins. Therefore the size of the second part of
our descriptor is 30 · 10 = 300 and the total size of the descriptor is 90 + 300 = 390.
Fig. 4.4 shows how our descriptor is divided. The first part contains three geo-
metric features: The distance d between two random points, the angle between a
segment connecting two random points and their normals and the angle between
the viewpoint direction and a segment connecting two random points. The second
part of the descriptor allows a correlation between colour ang geometry information
since each random point is first classified into a region based on its distance to the
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Figure 4.4: Structre of the feature descriptor

centroid and then the colour histogram corresponding to its region is incremented
based on its CIELab values.
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Chapter 5

Recognition and Pose Estimation

In this section, the object recognition and pose estimation phases are described.
The goal of object recognition is to provide a set of candidates from the training
dataset that could correspond to an object taken from a real world scene. The 6-DoF
pose associated to each candidate is also retrieved from the training data and given
as the initial pose estimation of the object. This initial pose estimation can be im-
proved by using an optimization technique such as the Iterative Closest Point (ICP).

5.1 Object Recognition

The recognition problem can be seen as a nearest neighbour estimation problem.
To achieve the nearest neighbour search, a k-d tree structure of all the descriptors
of the training dataset was used. Then, given a feature descriptor f of an object
to be recognized, the k-nearest descriptors are searched in the k-d tree structure
and sorted according to their distances to f . Chi-Squared distance was used for the
nearest neighbours search. If f = (f1, f2, ..., f390)

T , and g = (g1, g2, ..., g390)
T are two

descriptors, the Chi-Squared distance d(f , g) between f and g is defined by :

d(f , g) =

390
∑

k=1

(fk − gk)
2

fk + gk
. (5.1)

Once the k-nearest neighbours i.e descriptors having the k minimal distances to f

are found, their corresponding pose estimations are retrieved from the database.
In our case, we take k=1 and therefore we consider only the nearest neighbour for
object recognition and pose estimation. The initial pose estimation gives us an
initial guess of the transformation matrix Tinit from the object-coordinate-system to
the camera-coordinate-system.
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5.2 Pose Estimation

The initial pose estimation of a recognized object can be optimized using Itera-
tive Closest Point (ICP) algorithm [Zha94]. ICP is used to minimize the difference
between two point clouds. One point cloud, known as the reference or target, is
kept fixed, while the other point cloud, known as the source, is transformed to best
match the reference. The algorithm iteratively changes the geometric transforma-
tion, which is a combination of translation and rotation applied on the source, in
order to minimize the distance from the source to the reference point cloud. In our
case, the reference point cloud is the object in the testing data and the source is the
recognized object in the training data taken from a certain viewpoint. After iterat-
ing a certain number of times, the transformation matrix T icp calculated using ICP
is estimated. The final transformation matrix from the camera-coordinate-system
to the object-coordinate-system is therefore obtained as follows:

Tfinal = Ticp · Tinit. (5.2)

Once we estimate Tfinal, we can apply the final geometric transformation on the
3D model of the recognized object, visualize the object in its estimated pose and
compare the estimated pose with the real pose of the object.
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Chapter 6

Experimental Results

In this chapter, we present the results of some experiments that we have conducted
to evaluate the performance of our descriptor. Our experimental setting consists
of a Kinect sensor and an horizontal plane (floor or table) on which the objects to
be recognized lie as shown in Fig. 6.1. Our code was implemented using the open
source point cloud library (PCL) and was integrated into a ROS node. This allowed
us to receive online frames from Kinect and to publish in real time the identities
and pose estimations of the recognized objects. Our experimental results take into

Figure 6.1: Experimental setting

consideration three main aspects: recognition rate, pose accuracy and occlusion
handling. We show here that our descriptor is able in most cases to correctly identify
objects and estimate their poses, even if they are partially occluded by other objects.

6.1 Recognition rate

In order to estimate the ability of our descriptor to correctly identify an object,
we consider for each testing object its nearest neighbour in the training data. we
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(a) (b)

Figure 6.2: Original object (a) and superposition of the recognized object in its
estimated pose with the real scene (b).

compare the label of the nearest neighbour to the real label of the object and if
the nearest neighbour is misidentified, we consider the recognition to be wrong,
otherwise we consider the recognition to be correct. An other possible option was
to take several nearest neighbours and to perform a voting process to decide the
identity of the object. We took 20 different random partial views of each of the the
objects that we want to recognize in real scene. We obtain a recognition rate of
94% which confirms the liability of our descriptor in correctly recognizing objects.
We also evaluated the recognition rate using 100 random synthetic viewpoints taken
from the training data. We obtain a recognition rate of 100%. We recall that our
descriptor is not deterministic since it is based on the choice of N random points
from the point cloud object, with N being the total number of points in the object.
Therefore, the feature vector obtained from the application of our descriptor to a
same object taken from a fixed viewpoint is not constant.

6.2 Pose accuracy

One of the main aims of our descriptor is to give a good estimation of the pose of the
object to be recognized. In order to evaluate the accuracy of the pose estimation, we
superpose the reconstructed 3D object model in its estimated pose with the object in
its real pose as captured in the scene. We compare the superposition of objects with
the eye and deduce if the pose is estimated accurately. Fig. 6.2 shows an example of
the original object taken in a real scene (Fig. 6.2a) and the superposition between
the original object and the recognized object in its estimated pose (Fig. 6.2b). As
we can notice from the superposition of the two objects, the estimated pose is very
close to the real pose. In most cases our descriptor was able to give a very accurate
estimation of the object.

Fig. 6.3 shows an example of object recognition and pose estimation of different
objects. Here, the estimated poses are used for the reconstruction of the 3D models.
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(a) (b)

Figure 6.3: Original camera view (a) and reconstructed 3D models based on the
estimated poses of the recognized objects (b).

(a) (b)

Figure 6.4: Original camera view (a) and reconstructed 3D models based on the
estimated poses of the recognized objects in case of partial occlusion (b).

6.3 Occlusion handling

An other feature of our descriptor is its ability to handle partial occlusions. In fact
the choice of random points to evaluate the feature vector makes our descriptor
more robust against missing points which may result from occlusions or from sensor
inaccuracy. In order to estimate the performance of our descriptor in handling par-
tial occlusions, we realized many experiments in which some objects were partially
occluded by other objects. Our descriptor was able in most cases to correctly rec-
ognize the objects. The estimated poses are less accurate than without occlusions
but are still acceptable. Fig.6.4 shows an example of object recognition and pose
estimation in case of a partial occlusion.
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Chapter 7

Conclusion and future work

In this report, our global feature descriptor that combines color and geometry in-
formation for object recognition and pose estimation is presented. Our descriptor
is composed of two main parts: the first part is based on the extraction of geomet-
ric properties using random point pairs. The second part is based on a correlation
between color and geometry information using also random points from the object.
Experiments show the ability of our descriptor to recognize and estimate accurately
the pose of objects having different shapes and colors. The integration of color infor-
mation makes our descriptor capable of distinguishing objects having similar shapes
but different colours. Moreover, the choice of random points makes our descriptor
more robust against occlusions which was also shown in our experiments.

In future work, the occlusion handling could be further improved, mainly by mak-
ing the second part of our descriptor independent of the centroid estimation. An
other possible solution for better occlusion handling is to apply the first part of
our descriptor independently to estimate the position of the centroid and use the
estimated position in the second part to include the colour information. An other
possible improvement for our work is to use Locality-Sensitive Hashing (LSH) algo-
rithm instead of kd-tree structure for the nearest neighbours search. In fact, LSH
was proven to be more efficient than kd-tree for high dimensional vectors which is
the case for our descriptor.
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