
Design and Implementation

of a

Partial Evaluation�Based Compiler

for an

Asynchronous Realtime Programming Language

Markus Freericks

May ��� ����

Abstract

This thesis describes a compiler for the asynchronous real�time programming language ALDiSP� Though
the language has a complex semantics not suited for easy compilation� the compiler has to generate code
for target platforms that have stringent space limitations� and for target applications that have to satisfy
hard real�time requirements� To accomplish this feat� the compiler is based upon an abstract interpreter that
simulates all possible evaluation paths of the program� In a reconstruction phase� the program is then totally
re�created from the information gained during this simulation� The abstract interpreter is an extension of
the formal semantics of ALDiSP�

Diese Dissertation beschreibt einen Compiler f�ur die asynchrone Echtzeit�Programmiersprache ALDiSP� Ob�
wohl diese Sprache eine komplexe Semantik hat� die eine direkte �Ubersetzung ausschlie�t� soll der Compiler
Code f�ur Zielarchitekturen erzeugen� die starken Speicherplatz�Restriktionen unterliegen� und f�ur Applikatio�
nen� die harte Echtzeitanforderungen erf�ullen m�ussen� Um dieses Ziel zu erreichen� enth�alt der Compiler als
zentrale Komponente einen abstrakten Interpreter� der s�amtliche m�oglichen Ausf�uhrungspfade eines Quell�
programms analysiert� In einer Rekonstruktionsphase wird das Programm aus den vom Interpreter erzeugten
Annotationen vollst�andig neu aufbaut� Der abstrakte Interpreter ist eine Erweiterung der formalen Semantik
von ALDiSP�

Contents

� Introduction �

��� Real�Time Digital Signal Processing � 	

��
 Application Areas for ALDiSP �

��� Overview of Compiler and Thesis �

��� Goals and Results ��

��� Related Work � Languages ��

��� Related Work � Partial Evaluation ��

��	 Related Work � Partial Evaluation for Numerics and DSP ��

��� Stylistic Questions� Thanks� �c� �

� ALDiSP � A Primer ��

��� Lexical Structure ��

��
 Overall Structure ��

��� Evaluation Strategy ��

��� Basic Types ��

��� Auto�Mapping ��

��� Suspensions ��

��	 Blocking Access ��

��� Sequences �	

��
 Multiple Return Values �	

���� Conditionals �	

���� Local De�nitions ��

���
 Checking and Casting Types ��

���� Exceptions ��

���� Lists� Streams� Pipes �

���� Declarations �
�

���� Modules �
�

���	 Functions �
�

�

CONTENTS

� The Parser ��

�� Overview �
�

�
 Lexical Analysis �
�

�� Preprocessing �
�

�� The Parser �
�

�� Blind Alleys �
	
����� Representation of Literals ��
����� Implementing The Preprocessor ��
����� Error Handling ��
����� Line Numbers and File Names ��
����� CPS Intermediate Form ��
����� CPS Transformation� The Morale ��

� The Lambda Form ��

��� Semantic Domains ��
����� Conventions and Notation ��
����� Data Domains �	
����� Results ��
����� Evaluation Functions� an Overview ��

������� evalexpr ��
������� apply ��
������� evaldecl ��
������� evalprogram ��

����� State ��

��
 Auxiliary Semantic Functions ��
����� evalexprs ��
����� derefobjs ��
����� block ��
����� strict	 strictexprs ��
����� evalthunk	 normresult ��

��� Evaluating Expressions �

����� Lambda� Closure Creation ��
����� Lvar� Variable Look
Up ��
����� Lit� Literal Values ��
����� Lapp� Function Application ��
����� Lcheck� Asserting Types ��
����� Lcast� Casting Types �	
����� Lcond� Two
Way Conditional �

����� Lselect� N
Way Conditional �

����
 Lseq� Sequences of Expressions ��
������ Lcatch� Handling Exceptions ��
������ Let� Local De�nitions ��

��� Evaluating Declarations ��
����� Ldecl� The Simple Declarations ��
����� Lpard� Parallel Declarations ��
����� Lseqd� Sequential Declarations ��
����� Lfixd� Recursive Declarations ��

��� Application Rules �

����� applyclosure � 	�
����� applyoverloaded � 	�
����� applyprimitive � 	�
����� applyarray � 	�
����� applytype � 	�

��� Auto�Mapping ��
����� applymappable � 		

��	 Top�Level Evaluation �	
����� evalprogram � 	�
����� schedule � 	�

��� Discussion of Selected Problems �

����� Macros � 	�
����� Auto
Mapping �
�
����� Blocking �
�
����� Implementing Recursion �
�

CONTENTS �

� Transformation of the AST into Lambda Form 	�

��� Transforming Programs� Tprogram ��

��
 Transforming Declarations� Tdecl ��
����� Asimpledecl �
�
����� Aparamdecl �
�
����� Amultidecl �
	
����� Amoduledecl �

����� Aimportdecl �

����� Aabstypedecl �
�

������� Parameters �
�
������� An Example Transformation �
�
������� The Rules �
�

����� Arecdecl �
�

��� Transforming Type Expressions� Ttype � 	�
����� Afunctype ��
����� Aexprtype ��

��� Transforming Expressions� Texpr � 	�
����� Avar ��
����� Aapp	 Acond	 Acheck ��
����� Acast ��
����� Adelay ��
����� Asuspend ��
����� Atuple ��
����� Aseq ��
����� Astring	 Aint	 Afloat	 Aconst ��
����
 Aguard ��
������ Areturn ��
������ Alocal ��

��� Post�processing Passes � 	�
����� Implementation of post
processing steps ��
����� Expanding Macros ��
����� Declaration Simpli�cation ��
����� Removing unnecessary Checks and Casts �

����� �
Conversion �

����� Problems with Rearranging Expressions �

����� Lambda Hoisting �

����� Transforming Free Variables into Parameters ��
����
 Strictness Analysis ��

 Partial Evaluation � De�nitions and Known Results ��

��� De�nitions � 	

��
 Partial Evaluation� Residual Program � 	

��� Self�Application and the Futamura Projections ��

��� Internal Specialization ��

��� On�line�O��line Partial Evaluation ��

��� Static and Dynamic Binding Times ��

��	 Partially Static Values �

��� Specialization �

��
 Generalization �

���� Folding�Unfolding �

���� Fixed Points ��

���
 Applying the Techniques of Abstract Interpretation to ALDiSP � � � � � � � � � � � � � � � � � ��

CONTENTS �

	 Abstract Interpretation of LF Expressions

��� Goals of Abstract Interpretation ��

��
 Abstract Values ��
����� General Remarks �

����� Domains ��

����� Basic Domain Constructions ��

����� Basic Examples ��

����� Union of Domains ��

����� The Ideal Abstract Domain and its Subsets ��

����� Size of Domains ��

����� Sources of Abstract Values ��

��� An Example �
�
����� Abstract Conditionals ��

����� Loop Detection � Finding Fixed Points ��

����� Speed �	

����� Generalizing the Argument Lists �	

����� Conclusion of the Example �

��� Implementing the Loop Detector �
�
����� Na��ve Loop Detection Schemes ��

����� Problems with the Na��ve Scheme ��

������� Not Enough Generalization ��

������� Too much Generalization ��

������� Mutual Recursion ��

������� Multivariant Specialization ���

������� Restarting Approximations ���

����� Generalizing Loop Detection ���

����� Concrete Arguments ���

����� Evaluation
Order E�ects ���

��� ALDiSP�speci�c Problems ���
����� State and Side E�ects ���

����� Promises ��	

����� Recursive De�nitions ��	

����� Exceptions ��

����� Function Values ��

����� Generalizing Numeric Types ���

����� Raising and Catching Exceptions ���

� The Abstract Scheduler ���

	�� Suspensions and other Schedulable Entities ���

	�
 Non�Determinism ��

	�� Sequentializing the Schedule ��

	�� Garbage Collection ���

	�� Finding Loops ���

	�� Alternative States ���

	�	 Blocking ���

CONTENTS �

 Execution Trace Reconstruction ���

��� The Code Form �
�
����� Di�erences between CF and LF ���
����� Abstract Syntax of CF ���
����� Notation ���
����� Closures	 Tuples	 Combinators ���
����� Top
Level Bindings ���
����� Semantics of the Code Form ���

������� Programs ��	
������� Atoms ��

������� Primitives ��

������� Conditionals ���
������� Function Application ���
������� Throwing and Catching Exceptions ���
������� Evaluating Declarations ���
������� Evaluating Code expressions ���

��
 Relation between Abstract Results and Code Attributes �
�
����� The Treatment of State ���
����� atom� a Code Attribute for Obj s ���

��� Example� Straight�Line Code �

��� Inter�Function Optimizations ���
����� Inlining ���
����� Grouping ��	
����� Tabulation and Caching ��	
����� Elimination of Parameters and Return Values ��

����� Variable Splitting ��

��� Basic Optimizations ��	
����� Variable Propagation ���
����� Dead
Code Removal ���
����� Reference Tracing ���
����� Tuple Tracing ���

��� Example� Blocking Code ��

����� What�s in a Block ���

������� Alternatives to Blocks� CPS ���
������� Alternatives to Blocks� Syntax Transformations ���

����� The Blocking Example ���

��	 Speci�cation of Code Generation ���
����� evalexprs ��

����� derefobjs ��

����� block ��

����� strict and strictexprs ��

����� evalthunk and normresult ��

����� Lit ��

����� Lexical Lvars ���
����� Dynamic Lvars ���
����
 Lambda ���
������ Lcheck ���
������ Lcast ���
������ Lcond ���
������ Lselect ���
������ Lseq ���
������ apply ���
������ applytype ���
������ applyprimitive ���
������ applyclosure �	�

��� Related Work ���

CONTENTS �

� The Back�End �
�

�� Di�erences between M and CF ���

���� Disjoint Address Space	 Index Types	 and Hardware Loops �	�

���� Data Formats	 Special Instructions	 and the ALDiSP Library �	�

���� No Implicit State �		

�
 Semantic Entities of M ���

���� Function De�nitions �	

�� Structure of M ��	

�� Transforming CF into M ��

�� The C back�end ���

�� The Future� Automatic Back�End Generation ���

�� Conclusions and Outlook �	�

���� Development History ��

���
 Design Alternatives ��

������ Explicit State Passing �
�

������ Continuation
Passing Style �
�

������ Compilation by Graph Reduction �
�

���� Redesigning ALDiSP ���

A Literature �	

B Index ���

Chapter �

Introduction

Whenever anyone says� �theoretically�� they really mean� �not really��
� Dave Parnas

This work describes the overall design and the internal structure of ac� the �rst compiler for the ALDiSP

programming language� ALDiSP was developed by the author and Alois Knoll in �
�
�
� at TU Berlin
within the context of the CADiSP �	�� project� The goal was to create an interactive� visually oriented
system for the development of digital signal processing �DSP� algorithms based on a data�ow paradigm�
In such a system� the user describes the algorithms by connecting parameterizable �black boxes � These
basic components were to be described in ALDiSP �which� in turn� should be compiled into the imperative
language ImDiSP �	�� which now has a life � and a compiler � of its own��

It soon became clear� however� that the issues concerning the compilation of both applicative and imperative
languages into high quality code for real�time applications were much more interesting than the original
project goal� This also applies to the adaptation of those languages both to the requirements of real�time
processing and e!cient compilation� For this reason� the whole project was retargetted to the development
of ALDiSP and ImDiSP�

��� Real�Time Digital Signal Processing

Digital signal processing �DSP� is concerned with the generation� transformation and analysis of �physically
interpreted� signals� e�g� in audio applications� Typical DSP algorithms are

� �lters with constant coe�cients with �nite or in�nite response behaviour �FIR and IIR��

� adaptive �lters used to cope with time�varying input signal characteristics�

� signal transforms� especially the family of fast Fourier transformations �FFT� algorithms� which are
used to convert signals into the frequency�phase domain and back�

� correlation functions with tabulated sample signals� and

� detection and estimation of statistical signals�spectra�

These algorithms are usually de�ned as functions of equitemporally sampled signals� Their overall structure
tends to be synchronous and quite simple� Algorithms working with asynchronous signals or with signals of
di�erent or varying sample rates are usually a lot more complex to describe� implement and analyze�

	

Chapter �� Introduction �

Another important application �eld of DSP techniques is image processing �computer vision� CV�� i�e� the
analysis and transformation of video signals� CV algorithms usually need so much computing power and
memory bandwidth that real�time applications must be implemented using dedicated hardware�

ALDiSP was designed as a language especially suited for the functional speci�cation of DSP applications�

ALDiSP is described in full detail in ���� and �less detailed� in ��
�� Chapter � will explain the essentials
necessary for understanding the special problems encountered in compiling this language�

ALDiSP provides all the constructs necessary for real�time programming �RTP�� In particular� I�O transac�
tions and time constraints can be speci�ed� We consider the domain of real�time DSP the most demanding
case of RTP� not only does it have all the problems of general DSP �number crunching on minimal� specialized
target hardware platforms�� it also has to cope with severe limits on timing�

In many respects� ALDiSP is an �open language� as de�ned� there is a �basic kernel that has to be provided by
any implementation" a lot of additional data types �e�g�� complex numbers and higher�dimensional matrices�
and functions are de�ned� but do not have to be provided by every implementation� since they may not be
needed in some of the possible application �elds�

Conversely� each implementation will have to provide extra functions and objects not de�ned by the standard
� namely those necessary for real�time I�O� Because it is impossible to de�ne a uniform I�O interface that
is optimally suited for all possible applications of ALDiSP� only the basic entities �synchronous and asyn�
chronous I�O objects� and their behaviour are described in the standard" everything else is implementation�
dependent�

Finally� it must be emphasized that not every ALDiSP program can be compiled for every target architecture�
As the language allows for the speci�cation of real�time behaviour� it is possible to write programs that need
more computation power than can be provided by a given machine�

In theory� an ALDiSP compiler should verify that compiled programs conform to their timing speci�cation"
in practice� this is not done� Computing the timing behaviour needs a very precise machine model and can
only be done for fully synchronous programs� For most practical programs� a simple test run should provide
su!cient information as to whether or not a compiled program is fast enough�

��� Application Areas for ALDiSP

There are two more or less distinct areas where a language like ALDiSP can be employed�

� Speci�cation and Simulation�
During algorithm development� speci�cations are intended to be as succinct and precise as possible�
At this stage of its life�cycle� the algorithm itself may still be little optimized and the simulation
process is primarily concerned with correctness �especially concerning the numerical behaviour�� not
with speed� Signals are represented in �oating point� so that rounding and cut�o� errors need not be
considered� Then� the cost�error tradeo�s of various �xed�point implementations are studied� To make
this possible� the development system has to provide facilities for �bit�true� simulation of algorithms
on the development hardware� usually some kind of workstation�

� Code Generation�
Real�Time DSP applications are often implemented using �o��the�shelf� DSP hardware� These are
processors adapted to a wide variety of DSP algorithms� but generally built around a MAC �multiply
with a coe!cient and add the result to an accumulator� datapath� Examples of these are the Motorola
����x and
���x and the Texas Instruments �
�xx families of processors�

When generating code for such processors� the output of a compiler must be of comparable quality
to that a human programmer would write� As common C compilers do not generate code that meets

Chapter �� Introduction

the speed requirements� most DSP programming is still done directly in assembly language� usually
supported by large libraries of macro de�nitions��

The ALDiSP compiler� ac� is therefore targetted at low� to medium�throughput algorithms� as they are em�
ployed in typical telecommunications� audio� and control applications�� Such systems are often implemented
on a basis of commercial DSP processors� or customized programmable cores�

The ac compiler can be used for both bit�true simulation and e!cient compilation �which is� of course�
the main goal of the compiler�� because the central transformation and optimization phase of the compiler
consists of a partial evaluator based on an abstract interpreter� The latter is� for all practical purposes� a full
interpreter for ALDiSP� Enhanced with a user interface and a simulation environment that provides an I�O
model� this interpreter can be used as the core of a simulation engine��

��� Overview of Compiler and Thesis

The compiler consists of the following phases� each of which is described in one or more chapters of the
thesis�

� Parsing� An ALDiSP program is parsed into an abstract syntax tree �AST�� No optimizations or
simpli�cations are done at this level" AST syntax exactly mirrors the ALDiSP syntax� Chapter

describes the internals of the parser and how it interfaces with the following compilation stages�

� Conversion into Lambda Form� The Lambda Form �LF� is the intermediate representation employed
throughout most of the following stages of compilation� LF is more general than the AST� and employs
fewer syntactic forms� A formal semantics for LF is given in chapter �" the semantics of ALDiSP itself is
given indirectly by the transformation rules in chapter �� These rules specify how an AST is translated
into an LF program of equivalent semantics� The LF semantics employs a state that is passed around
as a parameter of the evaluation functions� This state contains the current de�nitions of all references�

� Simpli�cation of the LF Program� A set of semantics�preserving transformations is presented in the
second half of chapter �� Some of these transformation are applied to the initial LF program� others
are used during various stages of the partial evaluation process�

� Abstract Interpretation� The abstract interpreter �AI� is a generalization of the standard interpreter�
which in turn is the direct implementation of the formal semantics�� The AI executes the program on
abstract input� and � together with an abstract scheduler �AS� � generates the set of all states that
can be encountered when the program is run on actual data�

� Re�writing the Program� During its run� the AI has accumulated information about all function ap�
plications in a call cache" the AS has likewise created a graph that contains all possible states� Using
this state graph as a skeleton� the program is �re�created�� The call cache provides the information

�Due to the presence of aliasing problems �unrestricted pointers�
� C is a language very ill�suited for the e�cient compilation
of DSP algorithms� single�assignment languages like SILAGE ����� ����� SISAL ����� or the functional subset of FORTRAN ��
are much better equipped for this task�

�Typical low�throughput algorithms are speech�processing tasks that have to cope with sampling rates of �kHz or less� and
� or �
 bit words� Typical medium�throughput algorithms work on high�quality sound signals� CD�quality sound needs ����
kHz� �
 bit words� Everything in the megahertz range is considered high�throughput�

�Such an interpreter would be too slow for practical simulation work� since it still has to lug around the extra load of internal
book�keeping needed for code generation and recursion detection�

�Both �abstract interpretation�and �abstract interpreter�will be abbreviatedas �AI�� this should not cause undue confusion�

Chapter �� Introduction ��

necessary to create specialized function de�nitions� The program is re�written in a new intermediate
representation� the Code Form�� Chapter � explains the Code Form and how it is generated�

� Dumping the Program� Finally� the Code Form program is transformed into the back�end format �M�
that represents an abstract machine language� The state variables of the Code Form are absent from
the M program" M uses only basic data types �integers and �oating points�" compound data structures
are either atomized or globalized� A prototypical implementation of an M�to�C back�end �rather� a
virtual M machine written in C� is used to test the M programs� Chapter
 gives an overview of M
and the M�to�C back�end�

The combination of abstract interpretation� abstract scheduling and re�writing is an instance of Partial
Evaluation �PE�� It makes up the majority of the compiler� Chapter � presents a general overview of PE
techniques� Chapter � gives an introduction into abstract interpretation and explains the algorithms used
for loop detection and generalization� Chapter 	 shows the integration of state into the AI� and how the
abstract scheduler works�

��� Goals and Results

This work was undertaken with a number of goals in mind�

� There was the very practical need of having available a stable ALDiSP compiler that works correctly
and adequately fast�� This goal was not be fully reached� since the current compiler is still too slow
for interactive work�

� It should be shown that a language like ALDiSP � i�e�� a functional language with many �inherently
slow� features� a complex evaluation mechanism� and real�time constructs � can be compiled into
e!cient code� This goal was fully reached" all of the advanced language features can be removed�
albeit at high costs in compilation resources and compiler complexity�

� The feasibility of partial evaluation as a fully automatic centerpiece of an optimizing compiler should
be explored� The literature on AI and PE ��	� ���� presents many cases where these techniques are used
to realize very speci�c optimizations such as compile�time garbage collection� deforestation� strictness
analysis� and numerical optimizations� Some of these are restricted in their applicability� others are not
fully automated� i�e� need the support of additional annotations that guide the specializing process� It
was found that partial evaluation is an enable technology for languages like ALDiSP� since it is probably
impossible to compile a language with a complex semantics into e!cient code without a large amount
of compile�time reduction� Still� PE is no magic bullet� the design of the abstract domain directly
mirrors the optimizations that can be achieved� and the common optimizations �inlining etc�� still
have to be done� albeit at a later stage of the compiler��

�This Code Form started out as a restricted Lambda Form� i�e� a proper syntactical and semantical subset of LF� but it
underwent major modi�cations during the actual implementation of the code re�writing phase� One major di�erence between
the Lambda Form and the Code Formis that the latter supports explicit state� state variables are threaded throughout Code
Form expressions�

�A previous simulator� was written in C and Scheme� It did no pre�compilation� i�e� was written to implement a �direct
semantics� for ALDiSP� The negative experiences made with this simulator � it was both buggy and horribly slow � served as
impetus to introduce the Lambda Form that is central to ac�

�This might have been avoided by using a graph�basedintermediate representation� but the ensuing tasks related to linearizing
the graph would have solved the same problems in a di�erent guise�

Chapter �� Introduction ��

��� Related Work 	 Languages

In the industrial �eld� many DSP programs are still hand�crafted in assembly languages� Third�generation
languages like C and ADA have been adapted to some DSP architectures by adding new keywords �e�g�� mem�
ory layout directives� and�or restricting the languages by banning pointers� recursion� and sometimes even
data�dependent loops� Many special�purpose DSP languages are described in literature ��
� ���
�� ���� ��	�"
most of them are based on the synchronous stream�processing model� There is also some overlap with hard�
ware description languages �	�� ���� since the synchronous data��ow model is also a natural description of
clocked digital cicuits� Only few approaches are based upon asynchronous data��ow concepts ����� Theoret�
ical foundations in data��ow languages are based upon languages like Lucid �
� that have been developed
independently from the DSP application area� One of today s most common DSP languages is SILAGE
����� ���� �and its commercialized successor� DFL�� It is characteristic for a class of languages that o�er sim�
ple translation into e!cient code at the cost of reduced linguistic abstractions� no recursion� no overloaded or
polymorphic function de�nitions� constant or constant�bound loop ranges� synchronous base model with up�
and down�sampling extensions and �sampled asynchronicity� �asynchronous events modelled by synchronous
streams using �no data� tokens��

��
 Related Work 	 Partial Evaluation

Partial Evaluation �PE� is not a new invention" the term was coined in �
�� in the context of coping with
�incomplete information� in LISP evaluation ����� First PE�like optimizations can be traced back to the
REFAL compiler ���� and Turchin s supercompiler ����� ����" one theoretical milestone was the de�nition of
the Futamura projections ��
� �cf� section ����� Due to its origins in LISP evaluation� most early PE systems
were based on the on�line principle� i�e� they reconstructed the program during its execution� An example
is the REDFUN system ���� ���� On�line PE is slow and error�prone" most of the later research went into
the direction of o��line PE� which is based upon a few transformations �the two transformations �fold and
�unfold are su!cient �

�
��� that are guided by a binding time analysis �BTA� ��	� �
�

�� O��line PE
is vastly superior in terms of speed and simplicity of the partial evaluator itself" o��line systems also were
the �rst to implement non�trivial self�application� which is an important theoretical goal� It is� however� not
possible for o��line PE to achieve the level of optimizations that are possible in on�line PE� Multivariant
o��line PE tries to reclaim some ground� but involves more complicated BTA schemes�	 Current research is
mostly concerned with improving the speed� robustness and precision of BTA schemes� most of which are
based upon abstract interpretation�

��� Related Work 	 Partial Evaluation for Numerics and DSP

Berlin s articles ���� ��� are the �rst widely known references that describe the application of PE methods
to the area of scienti�c programming� They describe a LISP framework in which PE is mainly employed
to unroll loops and introduce software pipelining� The application is an n�body simulator that is partially
applied to the known number and masses of the bodies�
 By concentrating on the �inner loops� that are
typical for numerically intensive programs� impressive performance increases are achieved�

Meyer ���� applies PE to an imperative language targeted at DSP applications� The language is Pascal�like�
but restricted in the usual problem areas� namely recursion and pointer handling�

	The distinction between o��line and on�line PE blurs when multivarianto��line PE is considered� the BTA and multi�variant
generation part of the o��line PE can become as complex and time�consuming as a full on�line PE�

The n�body problem is to predict the vector and position of n masses at a time t� k� when their positions and vectors at
time t are known�

Chapter �� Introduction �

��� Stylistic Questions
 Thanks
 �c�

Never express yourself more clearly than you think�
� Niels Bohr

I have tried to make this text as readable as possible� To this extent� many examples and explanatory
footnotes are provided� I am indebted to the people that helped in proofreading �in alphabetic order�
Guido Dunker� Andreas Fauth� Alois Knoll� Carsten M�uller� Susan Wegner� for pointing out many typos�
misleading details and taken�for�granted assumptions� Special thanks to Carsten for mentioning the A�
normal form� without it� I would have re�invented a minor wheel another time" to Guido� for providing a
�na�#ve reader�" to Andreas for patiently listening to my ramblings" and to Alois for the initial project idea
and the �real�world� point of view� None of the remaining factual or stylistic errors are theirs�

This work was supported by an Ernst�von�Siemens stipend� Special thanks to Dr� Andreas von Zitzewitz
for helping to provide this funding� and Dr� Gross for extending it another year�

Chapter �

ALDiSP � A Primer

A language that doesn t have everything is actually easier to program in than some that do�
� Dennis M� Ritchie

In this chapter� the most important syntactic and semantic features of ALDiSP are described� An extensive
suite of �typical example programs can be found in ����� The original ALDiSP de�nition and report are ����
and ��
��

��� Lexical Structure

An ALDiSP program is a single ASCII �le� Comments start with ���� and end with the �newline� symbol�

Preprocessor declarations start with a percent symbol ����� in column � and include operator symbol syntax
declarations like �INFIX and a �le inclusion directive �INCLUDE��

Identi�ers are alphanumeric or �symbolic �strings consisting of ������	�
���� An identi�er in single quotes
��� loses its in�x status" any sequence of characters between backquotes �
� is a symbolic constant of unde�ned
semantics��

All identi�ers are case�sensitive� while keywords are not��

��� Overall Structure

An ALDiSP program consists of an arbitrary number of sequential de�nitions� followed by a net list �a
recursive set of de�nitions�� followed by an initializing statement�

� � � de�nitions � � �
net

� � � de�nition of a data �ow net � � �
in

expression

�The �INCLUDE directive is new� i�e� not mentioned in ���� ���� it turned out to be convenient for implementing libraries�
Restricting parser declarations to start in column � makes it possible to use � as the modulo�operator�

�The concept of symbolic literals is also new� It is used by the systems implementor as a means of communication between
library functions and the compiler�interpreter� For example� primitive functions are denoted by such literals�

�This feature is unique to ALDiSP� no other language known to the author behaves this way� While keywords can be written
uppercase� lowercase� or mixed� all identi�ers have to be written the way there were de�ned�

��

Chapter �� ALDiSP � A Primer ��

Evaluating the de�nitions that precede the net may not change the state" the net list and the initializing
expressions can have side�e�ects�� This guarantees that the sequential de�nitions can be compiled indepen�
dently��

��� Evaluation Strategy

The evaluation of function applications is performed call�by�value" the arguments are evaluated left�to�right��

The special operator delay has the same functionality as the delay in Scheme �
	�� it freezes the evaluation
of its argument expression and creates a placeholder object �called a promise�� While� in Scheme� a special
primitive force is required to access the value of the promise �i�e�� to initiate the evaluation�� in ALDiSP

the evaluation is started automatically the �rst time a strict primitive is applied to the promise�� Upon
completion of the evaluation� the result replaces the promise�

��� Basic Types

ALDiSP provides a variety of built�in types and type constructors�

� signed and unsigned integers� �oating point� �xed point� and complex numbers� All numeric types can
be parameterized by size�	

� two di�erent kinds of arrays� vectors �one�dimensional arrays� and matrices �two�dimensional arrays��
Arrays may contain elements of arbitrary types� including other arrays� Vector literals are written as
	�x� � � � � � xn��

� �nite lists that may contain elements of arbitrary type� List literals are written as 	�x� � � � � � xn�� Basic
list operations are �head�� �tail�� and �cons��

� in�nite lists that may contain elements of arbitrary �nite types� Input�driven in�nite lists are called
�pipes�� output�driven in�nite lists are �streams��

��� Auto�Mapping

When a function of type ��� � � � �n � �� is applied to an argument list of type ��� list � � ��n list�� the
function is automatically mapped to the lists �with type � list resulting�� For this to work correctly� the
lists must be of equal length�

�Side�e�ects are changes to the state� The concept of �state� is explained in section ��
� Examples for such changes are the
creation of suspensions and all I�O operations�

�Such a separate compilation is not implemented in the current compiler�
�The alternative� call�by�need �lazy evaluation
was considered harmful� because the presence of side e�ects makes an explicit

ordering mandatory� While it is possible to mix lazy evaluation and side e�ects� we consider such a mixture to be extremely
confusing to the programmer� In addition� common wisdom is that strict �i�e�� call�by�value
 languages are easier to compile
e�ciently than lazy ones� Compilation of lazy languages tends to be based on a graph reduction model that is extremely
unsuited for realization on DSP hardware� since it relies on the presence of a large heap and an e�cient garbage collection
scheme�

�Some Scheme implementations do so� since ���� allows it� It is� however� a nonstandard behaviour on which the programmer
can�t rely�

	All object �sizes� are measured in the number of bits used to represent an object�

This restriction creates a small problem when in�nite lists are considered� It is neither possible to check the length of such

a list nor �in general
 to prove that it is in�nite� The semantics takes a practical stance� Each list that contains a suspension or
promise in tail position is assumed to be an in�nite pipe or stream� If� in the course of further evaluation� an end is encountered�
this is considered a runtime error�

Chapter �� ALDiSP � A Primer ��

If only some arguments are lists �of equal length�� then the non�list arguments are �expanded� to lists� i�e�
�in LISP notation� 	�� � ������ evaluates to 	���� ��� �����

The same mechanism applies when the arguments are arrays �vectors or matrices�" the arrays must be of
equal size�

The original ALDiSP de�nition did provide for nested auto�mapping" i�e� things like

	�	�������� � �� �	�	������������

This turned out to be too confusing" detecting programming errors became much harder because too many
erroneous programs were accepted by the compiler�

��
 Suspensions

The suspension is ALDiSP s sole all�encompassing real�time construct� It plays a central r$ole in the language�
enabling call�by�availability �input�driven computation�� asynchronous event handling� and timing behaviour
to be modelled�

An expression of the form

suspend expr until cond within lower � limit � upper � limit end

evaluates to a placeholder object �the suspension�� When� after some time has elapsed� the cond becomes
true �conds are usually tests depending upon global state� tests for the evaluation status of other suspensions�
or the literal true�� the expression will be evaluated within the time range de�ned by the limits� The time
range is taken relative to the point of time when cond becomes true" if it is true to start with� this is the
time the suspension is created� After the evaluation of expr� the result replaces the placeholder �just like a
promise is replaced by its value��

The evaluation model of the program as a whole is depicted in �g����� The �current state� is made up from

?

Waiting for
Condition

Waiting for
Time

Evaluate Finished

Figure ���� suspension state model

three pools containing suspensions� with one currently executing suspension� Newly created suspensions are
placed in the �waiting� pool� When their cond becomes true� they are transferred to the �ready� pool" a
timing counter is attached to each of the �ready� suspensions and initialized with an arbitrary point of time
within the time range of its suspension�

When the expression of the current suspension is �nished �a process in which many new suspensions may
have been created and put into the �waiting� pool�� the result is placed in the �result� pool� and some

Chapter �� ALDiSP � A Primer ��

arbitrary suspension whose timing counter is � is selected from the �ready� pool to be evaluated next� If
there is no such suspension� the time is advanced� the counters of the waiting suspensions are decremented�
and the conditions are tested��� Also� all I�O is performed during the time�advance� The whole program
stops when the �rst two pools are empty and the evaluation of the current suspension terminates� Most
real�time programs never terminate�

If this description seems to evince a very ine!cient evaluation mechanism� it should be remembered that
a suspension is roughly equivalent to an interrupt handler� creating the suspension installs an �interrupt
vector�� evaluating it means that the interrupt is raised and handled� Suspensions that wait upon I�O events
can indeed be implemented as interrupt handlers�

��� Blocking Access

Whenever a strict primitive function accesses an unevaluated suspension� the �current process� is suspended
until the data dependence can be resolved� While there is no such notion as �process� in ALDiSP� the net
e�ect of cascaded blocking amounts to the same� This blocking access property of primitives can be modelled
as a textual transformation�

prim�obj� � suspend prim�obj� until is�available�obj� within ��� ms� ��� ms end

Here� is�available is the primitive function that tests whether an object is accessible or an unevaluated
suspension��� As an example for how this mechanism works� imagine the following program fragment�

let a � suspend f�x� until g�� within ��� ms� ���� ms end

b � �a������

c � a�b

d � ���

in

c�d

end

This evaluates as follows� a evaluates to a suspension s�" this shall be written a � s�� The expression a��

evaluates to a suspension s� that waits for s� to complete" this shall be written a�� � s� � s� � s�� The
whole evalution proceeds as follows�

a � s�
a�� � s��� � s� � s� � s�
�a������ � s���� � s� � s� � s�
b � s�
a�b � s� � s� � s� � s� � �s� � s��

c � s�
d � ���

c�d � s� � ��� � s� � s� � s�

��The �virtual time advance� of the evaluation model is implemented as �waiting for the next clock tick�� It depends upon
the speed of the compiled program whether this virtual time can be as fast as the real time�

��In a way� is�available is the �non�deterministic� primitive � without it� there would be no way to implement the infamous
�fair merge� function�
merge�sig��sig�� 	

suspend if is�available�sig�� then hd�sig��

 merge�sig��tl�sig���

else hd�sig��

 merge�sig��tl�sig���

end

until is�available�sig�� or is�available�sig��

within � ms� � ms end

Chapter �� ALDiSP � A Primer �	

The end result is a chain �to be precise� a directed acyclic graph� of suspensions� If the ��rst� suspension
�s�� is resolved� the rest up to s� will follow sequentially� This behaviour of �blocking chains� resembles
that of a process�

��� Sequences

A sequence contains a list of declarations and�or expressions that are evaluated in sequential order� Its main
use is in state�changing code� because there is a synchronization mechanism built in� If an expression in
a sequence returns a suspension� the rest of the sequences is blocked until the suspension is resolved� An
exemplary sequence is�
seq

xxx�handle�open�file��xxx���

x�read�from�file�xxx�handle��

close�file�xxx�handle��

x

endseq

The statements are evaluated sequentially" the result of the last expression is returned� The close�file

line will probably evaluate to a suspension that is resolved when the �le is closed�

��� Multiple Return Values

Functions may have more than one return value� Multiple return values are not �tuples� �which would be
values of their own�� Instead� each function can return any number of result values� A function that returns
more than one value can only be used in a multiple variable de�nition�

That is� in the following example

func divmod�a�b� � � �a div b� a mod b� �

�x�y� � divmod����� �� OK

����divmod������ �� ERROR
 NOT �� div ����� mod ��

xy � divmod����� �� ERROR

the last two lines are erroneous�

���� Conditionals

ALDiSP supports the traditional conditional construct �if�� The �elsif� symbol is written as ��" the else

clause is not optional� since if is an expression� not a statement� The syntax is

if cond� then expr�
�� cond� then expr�
���
�� condn then exprn
else expr�
endif

The conditions are evaluated from top to bottom" if a condition evaluates to a suspended value� the whole
expression behaves as a primitive function� i�e� forces an evaluation or blocks�

Chapter �� ALDiSP � A Primer ��

���� Local De�nitions

The local de�nition construct �let� has the syntax

let decl� � � � decln
in expr
end

Declarations are evaluated sequentially from left to right� They cannot block" if in the course of the evalu�
atiuon of a declaration

let var � expr�
in expr�
end

the expr� blocks� the var has as its value the resulting suspension� The expression expr� will only block if
its evaluation contains a strict use of var �

���� Checking and Casting Types

ALDiSP supports a �run�time� type�checking model that allows veri�cation and testing of arbitrary values
and types� An expression

� typ� expr

is a type declaration� in which the programmer describes the type of the object that results from the evaluation
of the expression� If the object is not of the declared type� a run�time error should be signalled �if an
interpretation�simulation is in progress� or the program may behave unde�ned �if the program is compiled
with the respective checks turned o��� Type checking can also be used to reduce the domain of functions by
giving them a restricted type�

�
typ�expr

is a type cast or conversion� E�g� �
Real��� converts the integer �� to the �semantically equivalent� �oat�
ing point representation� Additional conversion functions may be installed by the user by declaring the
overloaded function cast�general�� with one argument�

Checks and casts are strict� if a type check�cast is applied to a promise� it is forced" if it is applied to a
suspension� the whole operation blocks���

���� Exceptions

Like many other programming languages� ALDiSP provides constructs to cope with exceptional behaviour�
In addition to this purpose� exceptions are used to model locally deviating numerical behaviour� This means

��There exists quite a notational confusion in this area� it is by no means obvious what the di�erences between �conversion��
�coercion�� and �casting� are� Usually� �casting� is the re�typing of a value by giving its representation a new interpretation�
while �conversion���coercing� actually implements some kind of value�preserving function that changes the representation of a
value and its type�

��As an exception� checking and casting against �Obj�� i�e� the type of all possible objects� is a no�op�

Chapter �� ALDiSP � A Primer �

that not only error conditions �division by zero etc�� are handled by exceptions� but that the same language
construct also handles rounding modes and over�ow handling��� For example�

guard a�b�c

on Round�x�n� � x

on AdditionOverflow�x� � �writeToPort�stderr��Overflow
���

return�MaxInt��

end

evaluates a�b�cwith a �cuto� rounding mode and a signalling over�ow handler��� While the Round exception
returns to the place where it was called� the Overflow exception aborts the evaluation of a�b�c and returns
MaxInt as the total result of the guard form���

There is no special syntax for raising an exception" it is called like any other function�

���� Lists
 Streams
 Pipes

The basic abstraction in any DSP�oriented language is the signal� �synchronous� languages like Silage��

����� ���� use �current sample� and �k�th previous sample� signal variables" ALDiSP uses the list abstraction�
the head of the list is the �current sample�� the following element is the �next� one� and so forth�

As lists are usually �nite objects� some imagination is necessary to understand the notion of lazy in�nite
lists�

ALDiSP has borrowed from other functional languages the stream approach to implement in�nite lists� a
stream is a �potentially in�nite� list whose �rst k elements are explicitly present" the rest are modelled by
a generator function that can deliver any number of additional elements�
A simple example is a sine generator�

func sinus�n�delta� �

let newval � n�delta

in

sin�n� sinus�if newval!���Pi then newval���Pi else newval end�

delta�

end

sin� � sinus��������

Here � is a lazy list constructor� with its second argument delayed� The operator � is de�ned in terms
of delay and the primitive list constructor cons�

�R�INFIX � � �� infix� right associative

macro a b � cons�a�delay b�

��Rounding and over�ow handling is of paramount importance in DSP� especially in maximizing output accuracy of the
system� One of the most frequently used modes �besides simple cut�o�
 is �saturation� arithmetic� where the deleterious e�ects
of an over�ow are reduced by causing the output value to saturate at the maximum positive�negative value� The ALDiSP library
also provides �round to zero�� �round to even�� etc� To our knowledge� ALDiSP is the �rst language that uses exceptions to
implement di�erent rounding modes� Usually� some global state parameters or parameterized numeric functions are needed to
model di�erent behaviours�

��Round is the prede�ned exception to be called when a result cannot be represented exactly within the speci�ed precision�
its arguments are the expressible part of the result number plus the �rst following bit� In the example� this bit �n
 is simply
ignored�

��There is a change from the original ALDiSP de�nition where return marked the returning case and the jump back to the
guard was the default�

��Version ��� of Silage handles multi�rate and asynchronous systems by introducing explicit �upsampling� and �downsam�
pling� facilities�

Chapter �� ALDiSP � A Primer
�

It is necessary to de�ne � as a macro because function calls are by value� A call�by�value operator would
of course defeat the whole idea of a lazy datatype constructor%�	

For asynchronous real�time applications� streams provide insu!cient expressive power� input� �or data��
driven applications cannot be implemented using them�
� so pipes were introduced� Pipes are input�driven
streams implemented as chains of suspensions� For example�

proc pipeFromRegister�reg�interval� �

suspend cons�readFromRegister�reg�

pipeFromRegister�reg�interval��

until true

within interval�interval end

net

input � pipeFromRegister�reg������ ms�

output� some�filter�input�

in

writeToRegister�reg���output�

pipeFromRegister delivers a pipe generated by sampling the contents of a register reg�� at de�ned points
in time" some �lter function is then applied to this stream before it is written back to an output register
reg���

Due to the blocking properties of pipes �which are basically a consequence of the blocking properties of
the suspensions that implement them�� they can be used both syntactically and semantically like streams�
This similarity makes it possible for the programmer to subsitute stream�generating functions for real�time
inputs� which can be very convenient when testing algorithms�

���� Declarations

Declarations can be used to introduce arbitrary values� abstract datatypes� exceptions� new functions� and
general types�

max�int � ����"��

abstype Nat � Null # Succ�Pred Nat�

abstype ListOf�x� � Empty # Cons�Car x�Cdr ListOf�x��

exception Overflow�x� � �error��overflow��� max�int�

func multOf�n��x� � Int�x� and x mod n �� �

type multOf� � multOf���

The last lines of the example present one of the most unique �and irritating to implement� features of ALDiSP�
Just as every type can serve as the predicate that detects the objects of this type �this is used in the Int�x�

expression�� any predicate can be used as a type�

Combined with the type declaration construct� this duality makes it possible to introduce arbitrary assertions
into the program� These can be used both during simulation as a testing tool and during compilation as a
source of hints to the compiler���

�	Indeed� macros were only introduced to make it possible to abstract from non�strict expressions�
�
They can� but only with one of the following �hacks��

� special �non�input� values can be provided � this amounts to busy waiting�

� an explicit global scheduler that emits a stream of �there is input on port x� information can be installed

Both approaches cannot provide acceptable performance in systems consisting of many asynchronous signal sources that are
triggered with a low probability� A typical example for such a system is a telephone exchange�

��The current implementation does not utilize type annotations in this way�

Chapter �� ALDiSP � A Primer
�

���
 Modules

ALDiSP supports a simple module facility as illustrated by the following example�

module xx

export a Int �! Int�

b�

c as d

func a�n� � n��

b � ��

c � a

endmodule xx

import a Card �! Card from xx

import b as bb from xx

y � xx�d�bb� �� y � ��

When an object are imported and exported� it can be given a new name� or it can be re�typed� Re�typing
amounts to type checking using the �type� operator�

���� Functions

We have already seen how function symbols can be de�ned as in�x�operators� which is a purely syntactic
feature�

Functions can also be overloaded�

import ��������������� from Integers

overloaded import ��������������� from Floats

import overloaded ���� PointInfinity from Complex

An �overloaded import� overloads all values that are imported� while an �overloaded� marker in the
import list overloads only the immediately following object�

Overloaded functions need not have the same arity �number of parameters��

func map�f�a� � �� map��

let func loop�a� � if a is null then null

else f�head a� loop�tail a� end

in loop�a�

end

overloaded func map�f�a�b� � �� map��

let func loop�a�b� �

if a is null or b is null

then null

else f�head a�head b� loop�tail a�tail b� end

in loop�a�b�

end

The code shown above uses the prede�ned operator is to test whether its �rst argument was generated using
the datatype constructor that is its second argument� head and tail are the usual list selectors�

Overloaded functions are nonrecursive� As a consequence� map�� has to be de�ned in terms of an ancillary
loop function� because the only map visible in the scope of map�� is the �old� map�����

��I had de�ned a semantics for overloaded recursive functions� but it got too complicated for practical use� The restriction
shouldn�t cause any practical problems�

Chapter �

The Parser

A formal parsing algorithm should not always be used�
� D� Gries

Implementing the front�end �scanner and parser� of a compiler is usually considered a more or less trivial
task� Looking at the issue in greater depth� though� scanners and parsers are found to be full of details
that tend to be managed by introducing ad�hoc solutions� the scanner � and� at the other end of the
compilation trajectory� the code generator � is one of the few parts of a compiler that has to interact directly
with the operating system" scanner and parser have to provide essential information for error diagnostics"
many languages have �dark corners� in their lexical or syntactical structure that make trouble when using
automatic front�end generators like lex and yacc" lastly� those tools often tend not to be rich enough in
their functionality so that hacks are needed to reach the desired goals�

The development of the parser described here was in�uenced by the �rst ALDiSP parser that was developed
in �

� using lex and yacc in C� That parser created a textual output representing the syntax tree in
LISP�like notation" for example�

net

in

a�if b�c�d� then e�f�g�

�� h then ��

else $$

endif�

endnet

was transformed into
�PROGRAM ����

�LOCAL ��

�APPLY �ID �a��

�IF ��APPLY �ID �b�� �ID �c�� �ID�d����

��APPLY �ID �e�� �ID �f�� �ID �g����

��IF ��ID �h���

��CONST ����

��CONST $$��������

This tree was used as input to an ALDiSP�simulator� written in Scheme �
	��

�This simulator was a very complex a�air because the abstract syntax was not simpli�ed prior to simulation � the goal was
to write a �direct� ALDiSP evaluator� The simulator worked� and was used to test the interaction of the basic language features�
but its slowness rendered it impractical for interesting programs� When using it� Turner�s apocryphal comment about an early
version of Miranda executing �with the speed of continental drift� came to mind�

Chapter �� The Parser
�

In the next sections� this �rst parser will be mentioned whenever a design decision was made because of
experiences with it�

��� Overview

The ac compiler is implemented entirely in Standard ML ��	� and has thus a well�de�ned behaviour � except
in the area of I�O� which is system�dependent��

The front�end was developed using the sml�lex and sml�yacc tools" these have speci�cation languages
similar to their C counterparts� but their implementation interfaces are quite di�erent� UNIX lex and yacc

generate two main functions� yylex and yyparse� which deliver� respectively� the next token �coded as a
small integer� or the next parse result� Their SML counterparts communicate via token streams� A great deal
of time was spent in learning how to manage this interface" especially� how to implement the preprocessor
as a �lter function for these streams��

The parser consists of three parts� lexical analysis� preprocessing� and parsing� A symbol table is maintained
by the preprocessing phase� which also handles the preprocessor declarations �these are the �xity declarations
�infix� prefix and postfix� and the �le inclusion directive�� An overview is given in �gure
���

ASCII
program

text
lexer

token
stream

preprocessor
token
stream

parser
abstract
syntax
tree

symbol table

Figure
��� Parser Submodules

��� Lexical Analysis

Lexical analysis is trivial" preprocessing declarations like �infix are tokenized� but otherwise ignored� The
resulting token data type is

datatype lexresult �

STRING of string

CONST of string

FLOAT of real

INT of int

ID of string

QID of string

SEP of string

ELIF # TYPDECL # VECTORCONST # LISTCONST

INFIX # PREFIX # POSTFIX # RINFIX # INCLUDE

IGNORED # NEWLINE # EOF

�The implementation used is SML�NJ� those few additions to the standard that it o�ers � and are used by ac � concern
the array interface and conform with an uno�cial agreement of all major SML implementors today� ac should therefore be
perfectly portable�

�The designers of sml�lex and sml�yacc seem to have missed the necessity of putting a �lter between these two tools� and
therefore forgot to better document this interface� Some experimentation was needed to create a type�safe solution that did
not violate the complex module interface�

Chapter �� The Parser
�

�term INFIX�L� of Symbol�T # � � � # INFIX�R% of Symbol�T

PREFIX of Symbol�T # POSTFIX of Symbol�T

ID of Symbol�T

CONST of string

STRING of string

INT of int

FLOAT of real

NET # IN # ENDNET # LET # WHERE # ENDLET # MODULE

ENDMODULE # IF # THEN # ELSE # ELIF # ENDIF # DELAY # SUSPEND

UNTIL # WITHIN # ENDSUSPEND # IMPORT # FROM # AS # EXPORT

GUARD # ON # ENDGUARD # SEQ # ENDSEQ # RETURN # VAL

FUNC # PROC # TYPE # EXCEPTION # ABSTYPE # OVERLOADED

MACRO # REC # END # ENDREC # TYPCAST # VECTORCONST

LISTCONST # TYPDECL # ARROW # BRACKCL # PARCL

BRACEOP # BRACECL # BAR # PAROP # COMMA # EQUAL

COLON # DOT # SEMI # EOF

Figure
�
� Parser Input Token Type

All separators �comma� semicolon� etc�� are represented as SEP tokens� Tabs and spaces are absorbed� New�
lines are passed along as tokens because they might terminate lines that contain preprocessing declarations�

A QID is an identi�er enclosed in single quotes� which dissociates it from any �xity attribute� The token
stream that enters the preprocessor knows no tokens that represent keywords� as keywords are recognized
during preprocessing� A CONST is a �symbolic constant � i�e� a string enclosed in backquotes�

Any input line that starts with a �� which is not followed by one of the known preprocessor declaration
keywords is ignored" an IGNORED token is passed along instead� and the rest of the line is skipped� The lexer
does not generate error messages" only the preprocessor and parser do so�

��� Preprocessing

The main function of the preprocessor is the analysis of preprocessor declarations� of which there are currently
two kinds� textual �le inclusion ��include� and symbol �xity declarations ��infix� �prefix� �postfix��
The �include directive is easy to implement� The preprocessor �nds� opens and closes all �les" it calls the
lexer with the opened �le handles and transforms the resulting token stream into the token stream suitable
for the sml�yacc parser� To include another �le� a new incarnation of the scanner is applied to a character
stream representing the included �le" the resulting token stream is then inserted into the original token
stream� replacing the �include directive�

The �xity declarations de�ne the associativity and precedence of tokens that can be used as unary and
binary operators� The sml�yacc�generated parser needs distinct tokens for the separators and the keywords"
it cannot cope with literal strings like standard C yacc can� The type of tokens �cf� �g�
�
� suitable as
input to the parser is generated by the following rules�

� SEP����� �� COMMA� SEP����� �� SEMI etc�� for all �punctuation� characters�

� ID��net�� �� NET� ID��if�� �� IF etc�" these string comparisons are case�insensitive �cf� chapter
�����

Chapter �� The Parser
�

� ID�x� �� ID�Symbol�intern�x��� if there is no �xity declaration for x� The structure Symbol

implements the global symbol table�" Symbol�intern enters a string into the table�

� ID�x� �� INFIX�L��x�� if the preprocessor has encountered a �xity declaration �in this case left�
associative� binding strength �� for x�

� Fixity declarations are parsed �by hand � Error�handling is unsophisticated" in case of an unexpected
token� an error message is emitted� and everything up to the next NEWLINE is discarded� The �xity
information is stored in the symbol table�

� A few tokens are passed along as they are� TYPDECL stands for ���� TYPCAST for ��
�� VECTORCONST
for �	�� and LISTCONST for �	���

The handling of preprocessing directives does not employ any formal method" it is written as a functional
automaton� i�e� a set of tail recursive functions� The standard action is to copy input to output� element�wise
applying the transformations� Only when encountering a preprocessing directive� the arguments are parsed
upto the next newline� The �xity declarations are stored as �ags in the symbol table�

��� The Parser

The parser directly models the grammar as it is presented in ���� and ��
�� The grammar is alse reprinted in
appendix B� Each nonterminal rule returns an abstract syntax tree �AST� expression� The abstract syntax�
modelled as a set of recursively de�ned data types� is given in �g�
�� in the form of an SML data type
declaration��

The parser converts the concrete syntax into the abstract syntax without performing any signi�cant trans�
formations� There is only one nontrivial transformation performed by the parser� which is connectedd with
the treatment of typed in�x function declarations�

When a function declaration is parsed that is written in in�x form and contains an explicit typing annotation�
the parser is in trouble� The abstract syntax for function declarations mirrors the concrete syntax of the
standard �non�in�x� function declaration� which has the general form

�overloaded� func name�arg� typ�� � � �� � � � typ��expr

Note that typ� is the result type of the function� i�e� the type of values that result from evaluating expr� The
generated term models this form directly�

Aparamdecl�pos�isOverloaded�Afunc����arg��typ�� � � �� � � ���name�expr�

In contrast� an in�x declaration has the form

�overloaded� arg� op arg� typ � expr

Notice that typ denotes the type of the function as a whole� The problem results from the choice of distinct
argument and result type expressions in the abstract syntax� how can the separated types typ� � � � typn be
generated from this one type expression& After all� typ can be an arbitrary expression%

�This table is a very non�functional thing� but passing it along as an extra parameter would have complicated the imple�
mentation of the parser� without gaining much in abstraction�

�For those unfamiliar with SML� a short example� datatype A 	 B�C�
 D declares a type A to have two constructors� B is
a unary constructor with an argument of type C� while D is a nullary constructor�

Chapter �� The Parser
�

datatype Aprogram �

Aprogram of Adecl list � Adecl list � Aexpr

and Adecl

� Asimpledecl of pos � bool � id � Aexpr

� Aparamdecl of pos � bool � Aheader � Aparam list list � id � Aexpr

� Amultidecl of pos � id list � Aexpr

� Amoduledecl of pos � id � Aexport list � Adecl list

� Aimportdecl of pos � id � Aexport list

� Aabstypedecl of pos � Aparam list list � id � Aconstructor list

� Arecdecl of pos � Adecl list

and Aparam

� Aparam of id � Atype

and Aexport

� Aexport of pos � bool � id � id � Atype

and Atype

� Afunctype of Atype list � Atype list

� Aexprtype of Aexpr

and Aexpr

� Aapp of pos � Aexpr list

� Aseq of pos � Astmt list

� Atupel of pos � Aexpr list

� Acond of pos � Aexpr � Aexpr � Aexpr

� Avar of pos � id

� Asymbolic of pos � string

� Aconst of pos � string

� Aint of pos � IntRepr�T

� Afloat of pos � FloatRepr�T

� Astring of pos � string

� Acast of pos � Atype � Aexpr

� Acheck of pos � Atype � Aexpr

� Adelay of pos � Aexpr

� Asuspend of pos � Aexpr � Aexpr � Aexpr � Aexpr

� Aguard of pos � Aexpr � Adecl list

� Alocal of pos � Aexpr � Adecl list

� Areturn of pos � Aexpr list

and Astmt

� Aexpr of Aexpr

� Adecl of Adecl

and Aconstructor

� Aconstructor of id � Aparam list

and Aheader

� Afunc � Aproc � Atype � Aexception � Amacro

Figure
��� The AST Data Type

Chapter �� The Parser
	

The solution as implemented by the parser is somewhat inelegant� but correct� The parser generates the
abstract equivalent of the following expression�

�overloaded� op �

let func tmp�arg��arg��� expr
in �typ�tmp
end

This is correct since the semantics of an �external type declaration ��typ�expr� is the same as that of an
internal one �func name type�expr���

��� Blind Alleys

During the development of the front�end� quite a few design errors were made� detected� and corrected� Some
of these were detected later� when scanner and parser had to be integrated into the compiler s framework�

����� Representation of Literals

How are literals �especially numbers� represented internally& This question seems trivial� but it has far�
reaching consequences� since many phases of a compiler have to deal with literal values�

In most compilers� literals are transformed to an internal representation in the lexer� strings stay strings�
numbers are transformed to machine form� booleans are transformed into references to global variables�
enumeration literals or numeric representations� Especially when semantic actions are performed on the
parse tree� it is handy to have numbers available in a format that corresponds to the one used within the
compiler itself�

This approach leads to problems if a cross�compiler is written �as is the case with ac�� On any given machine�
most programming languages support the same numeric formats � those directly supported by the hardware�
Usually it is only in cross�compilers that the implementation language provides a numeric format di�ering
from that of the object language�

ALDiSP allows very large and precise numbers" declarations like

large�const � ���%"����$&"%����&"�&���%�&��"%�&%��"%��&��%"�

pi � �����%$�"%�%&$�$���&�"�"���&���$%��&&��$��"$�$$��%�

are allowed and well�de�ned� If only those numeric representations were used that are provided by the
language the compiler is implemented in �in this case� SML�NJ�� precision would be restricted to �
�bit
integers and standard �IEEE� �oating�point numbers�

Alternatively� literals can be represented as strings� i�e� the way they were written in the program� This strat�
egy� while being �safe�� turns out to be quite annoying when transformation rules need to be implemented�
when a lot of integer constants are created and parsed in the transformation phase� calls to stringToInt

and intToString crop up everywhere� Both for e!ciency and legibility reasons� this is an unsatisfactory
solution�

In ac� the right way turns out to be the usage of the abstract interpreter s semantic value representation
�cf� chapter ����
�� The abstract interpreter �AI� implements a generalization of the standard semantics�
and provides the back�bone for code generation� Because the AI has to be able to deal with these values
anyway�� it will know how to represent literals and how to apply the primitive operators to them�

�An untyped declaration is the same as a declaration of Obj �the type of all objects
�
�The AI should at least be able to do correct constant folding� for which it has to be able to represent all values that can

occur in literals�

Chapter �� The Parser
�

In the current implementation� the semantic values de�ned in the AI do not directly represent multi�precision
integer and �xpoint numbers� Instead� the employ value data type de�ned by separate libraries �one each
for integer and �oating�point multi�precision values�� The parser passes the input strings to these libraries�
which transform them into their internal format� The resultant values are stored in the parse tree�	

����� Implementing The Preprocessor

The �rst parser had no separate preprocessor" preprocessing was done using lex states� This approach
proved to be complicated� The essential part was quite hard to understand �cf� �g�
����

���� 	BEGIN parserline
�

�parserline
�INFIX�	iws� �

�parserline
�L�INFIX�	iws� 	base�type�BINOPL�
cnt�fix��
BEGIN firstname
�

�parserline
�R�INFIX�	iws� 	base�type�BINOPR�
cnt�fix��
BEGIN firstname
�

�parserline
�PREFIX�	iws� 	base�type�PREOP
cnt�fix��
BEGIN firstname
�

�parserline
�POSTFIX�	iws� 	base�type�POSTOP
cnt�fix��
BEGIN firstname
�

�parserline
�INCLUDE�	iws� 	BEGIN includefile
�

�includefile
�� �n�t�� 	strncpy�filenamebuffer�yytext�yyleng�

filenamebuffer�yyleng������

includeFile�filenamebuffer�

BEGIN �
�

�firstname�nextname
	id� 	fixes�cnt�fix����intern�yytext�yyleng�

BEGIN nextname�
�

�firstname�nextname
���������	fixes�cnt�fix����intern�yytext���yyleng���

BEGIN nextname�
�

�firstname�nextname
���������	fixes�cnt�fix����intern�yytext���yyleng���

BEGIN nextname�
�

�nextname�
��� 	BEGIN nextname
�

�nextname
����� 	if �base�type��PREOP �� base�type��POSTOP�	

yyerror��No precedence for Pre� � Postfix���

� else 	base�type��yytext�������
�

	int i
 for�i��
i�cnt�fix
i���

	checkToken�fixes�i��base�type�

token�type�fixes�i���base�type
��

BEGIN �
�

�nextname�
	ioptws��n 		int i

for�i��
i�cnt�fix
i���

	checkToken�fixes�i��base�type�

token�type�fixes�i���base�type
��

BEGIN �
�

Figure
��� An early combined lexer�preprocessor

The current implementation of ac employs a separate preprocessor� which is a �lter between the lexical
analyzer and the �real� parser� This approach turns out to be more �exible and easier on modi�cations�
As an extra bene�t� the preprocessor can handle the keyword recognition task� which earlier was done by

	In an earlier version� AI semantic values were generated and incorporated into the AST� This incurred a problem of
modularity� since function closures are amongst the values modelled by the AI value data type� it has to have access to the
Lambda Form data structures� These� in turn� are generated from the abstract syntax tree� Since SML does not allow recursive
module de�nitions� this cyclic dependency had to be broken� One possible solution was to implement closures as �integer
 tags
to a global closure table� thus voiding the need for explicit references to the Lambda Form type� The separation which is now
employed is more elegant� since it employs a hierarchy of modules� at the lowest level are the modules that provide for literal
values and operations on them� the AST data type uses these values� as does the AI value data type�

Chapter �� The Parser

priming the symbol table � a method which was complicated by the case�insensitive comparison for keywords�
because the knowledge about this oddity had to be buried in the intern function of the symbol table�

����� Error Handling

The �rst parser had extra grammar rules to support error recovery" e�g� instead of the simple grammar
fragment

if IF exprs THEN stmts else ENDIF �

else ELSE stmts

ELIF exprs THEN stmts else

�

some error productions were introduced�

if IF exprsTHEN stmts elseENDIF �

exprsTHEN exprs THEN

error THEN

�

elseENDIF ELSE stmts ENDIF

ELSE error ENDIF

ENDIF

ELIF stmts THEN stmts elseENDIF

�

Theses error rules bloated the whole grammar and made it harder to understand and modify�

Luckily� sml�yacc supports its own error�detection mechanism that is at least as good as the hand�written
error rules used in the �rst parser� The grammar could therefore be implemented directly without any
changes�

����� Line Numbers and File Names

The �rst abstract syntax tree did not contain any references to line numbers� First experiences with the
abstract interpreter showed that it was quite a chore to locate errors in the source program�

Surprisingly� it took only two days to add line numbers to the parser and all subsequent modules �at that
time� CPS conversion and abstract interpretation�� Each node of the AST has now an additional attribute
of type Pos�T� which contains two line numbers that name the �span� of a construct� and the source �le
name� The latter is necessary since practical ALDiSP programs tend to �include many library �les� directly
and indirectly�

The biggest practical implementation problem was the inability to access a �current line number� of non�
terminals within sml�yacc semantic rules� It was known that the parser keeps track of positions� but it was
not documented how they can be accessed� Some poking in the generated code showed what variable names
were generated by sml�yacc� To pick an arbitrary example� the typCast rule is now de�ned as�

YtypCast TYPCAST Ytype ECKZU YcExpr

� A�Acast�mkPos�TYPCAST�left�YcExpr�right�� Ytype�YcExpr� �

The �rst line represents the grammar rule

typCast � 	� type � Exprclosed

The second line contains the SML code that creates an Acast node out of three arguments� The second
and third arguments are the cast s type and expression" the �rst argument represents the current position�

Chapter �� The Parser ��

The constructor mkPos takes two line numbers as arguments� these are the line at which the ��� starts
�TYPCAST�left� and the line at which the YcExpr ends �YcExpr�right�� The mkPos constructor takes the
current �le name from a global variable�

����� CPS Intermediate Form

In the beginning� the parser was intended to create code in continuation�passing style �CPS�� All necessary
simpli�cation should be done in the parser� i�e� the CPS�transformation should be distributed over the
semantic actions of the grammar rules�

This approach seemed to have quite a few advantages� At that stage� I thought that a CPS form would be
the only intermediate representation throughout all symbolic evaluation and code generation� Because each
new data structure requires its own debugging support �at least a print function�� I planned to use only one
data representation� which was to be generated directly in the parser� The alternative � which is now used �
leads to the creation of a whole data type �ALDiSP AST� that is used only for communication between the
parser and the succeeding module� That module s only task is to simplifying the AST and it into Lambda
Form" it is described in chapter ��

CPS is a form of ��calculus in which functions never return to their call site� Instead� each function is given
an explicit continuation� which is called with the result of the function� As an output language for a parser�
CPS has distinct advantages�

� continuations�
Using a CPS form allows to explicitly represent nearly all possible kinds of control �ow" especially� the
continuation capture needed to model the behaviour of the di�erent exception handling and exception
raising scenarios���

� multiple outputs�
Using a CPS� many�valued functions can be represented easily� where usually a continuation function
of one argument is called� an n�ary continuation can also be used� This approach to handling multiple
return values avoids introducing a �tuple�type� if it is not present in the language itself�

Implementing the transformation rules in the parser is straightforward if they can be speci�ed as attribute�
grammar rules with recursive�descent evaluation order� since such attribute grammars can be implemented
very nicely in SML using the �named struct� facilities o�ered by the language� For example� a set of equations

expr ' app�expr� � � � exprn ��� def � � use� � tree�
def ' � def
use ' expr� �use � � � � � exprn �use
tree ' app�node�expr� �tree� � � � exprn �tree�

with inherited attributes def and synthesized attributes use and tree can be implemented using a func�
tion that takes the inherited attributes and returns the synthesized attributes �each wrapped up in a data
structure��

There are many possibilities to specify and implement a CPS transformation� cf� ���� for a discussion�
��The exception handler �a guard expression
 has to capture the �current continuation�� which is called when an exception

is raised and returns�

Chapter �� The Parser ��

app expr ��� exprs ��� �

fn �IN �def SymbolSet�� �!

let val func�out � �expr IN

val args�out � map �exprs IN

in

�use � reduce union �map 	use �func�out args�out���

tree � app��	tree func�out� �map 	tree args�out��

�

end

�

In this code� �expr is the value of the expr that was matched by the parser� This value is itself an attribute�
transforming function� Applying the �expr and �exprs functions to IN amounts to �passing� the inherited
attributes �down�" func�out and args�out are the resulting �bundles of� synthesized attributes that were
�passed up�� Using 	use and 	tree� speci�c attributes can be selected from these bundles�

To implement a CPS transformation� only a single extra attribute is needed�

the current continuation expression� usually a simple variable� But na�#ve CPS transformation algorithms
generate bloated code� A trivial expression like

��a

might be transformed to

��lambda �tmp��� � tmp�� � �

��lambda �tmp��� � tmp�� � �

��lambda �tmp��� � tmp�� � a

�tmp�� tmp�� tmp�� K�

a�

��

��

�where K is the �surrounding continuation�� A more sophisticated algorithm knows the di�erence be�
tween �atomic� and �non�atomic� expressions �and generates �� � a K�� as it should be�� To imple�
ment such a more re�ned CPS conversion on a �distributed level �while parsing is done�� a new data type
AtomicOrComplex must be introduced � and the code for the transformation rules doubles �in some cases
even quadruples� in size�

����� CPS Transformation� The Morale

The CPS transformer worked" and it was buggy� The generated output was too big to check by manual
inspection�

The generation of source code for the parser with sml�yacc was quite fast" it took less than a minute to
compile the parser speci�cation� Compilation time for the generated parser took about � minutes �Sun Sparc
II� �
Mb�� The modify�compile�test cycle was therefore in the order of �� minutes�

Hence the �rst parser was a complex� incorrect piece of software that took a long time to compile and that
was very hard to test�

After two weeks of ���minute turn�around times� a complete re�write was done in three days� one day for the
data structure and support functions� one day for the parser� and one day for implementing a compilation
into Lambda Form� A LF�to�CPS transformer took an additional three days�

The major morale is therefore� one should try to keep the compile�link�test cycle as low as possible� and
split the modules accordingly�

�CPS as an intermediate form was later abandoned��

Chapter �

The Lambda Form

����Then anyone who leaves behind him a written manual� and likewise
anyone who receives it� in the belief that such writing will be clear

and certain� must be exceedingly simple�minded����
� Plato� Phaedrus

This chapter and the following one formally de�ne the semantics of ALDiSP programs� Since ALDiSP is
much too complex to describe in a �direct� way� an intermediate representation� the Lambda Form �LF�� is
introduced� This chapter describes the semantics of LF programs" the next chapter shows the set of functions
that transform abstract ALDiSP programs� as generated by the parser� into LF programs�

The syntactic� de�nition of LF programs is given by a set of SML data�type declarations�

datatype Lprog � Lprog of Ldecl � Lexpr

datatype Ldecl

� Ldecl of bool � Var � Lexpr

Lpard of Ldecl list

Lseqd of Ldecl list

Lfixd of Ldecl list

datatype Lexpr

� Lambda of int � �Var � Lexpr� list � Lexpr

Lvar of Var

Lit of SemVals�T

Lapp of Lexpr list

Lcast of Lexpr � Lexpr � Lexpr � Lexpr

Lcheck of Lexpr � Lexpr

Lcond of Lexpr � Lexpr � Lexpr

Lselect of Lexpr � �Lexpr � Lexpr� list � Lexpr

Lcatch of string list � Lexpr

Let of Lexpr � Ldecl

Lseq of Lexpr list

The semantics are de�ned in the denotational semantics style�� A denotational semantics is based on the idea
that each entity of the language that is to be described denotes a mathematical entity� e�g�� numeric values

�This is the �abstract� syntax� given in the form of an SML data type declaration� Concrete examples will be in a hybrid
syntax consisting of ALDiSP�� abstract LF�� and �semantic�level� expressions� The actual data structures employed in the
compiler also contain source �le positioning information� this detail has been omitted from most of the following material�

�A detailed introduction into denotational semantics of programming languages is given by Schmidt ���
��

�

Chapter �� The Lambda Form ��

denote numbers� and procedures denote continuous functions on domains� A special trick �introduction of
bottom elements� is used to make the functions de�ned in the face of non�termination� In practice� many
denotational de�nitions look like functional interpreters� and can be directly implemented as such in any
functional programming language� One of the best�known denotational de�nitions is given in the Scheme
report" the authors felt con�dent in its correctness since �the semantics in this section was translated by
machine from an executable version of the semantics written in Scheme itself� �
	��

The ac semantics does not fully conform to �proper� denotational semantics style� it contains some �global
data structures� and models LF functions as explicit �inert� closures instead of semantics�level functions�

Many languages for which denotational semantics are written are statically typed� and have two semantics�
the �static� or �type� semantics de�nes the types of expressions� while the �dynamic� or �run�time� se�
mantics de�nes the execution behaviour� The dynamic semantics is only de�ned on well�typed programs�
i�e� programs for which the static semantics has found correct types� An example for such a language is SML
��	� ����

Since there are no static typing rules for ALDiSP� only an execution semantics exists� This semantics contains
explicit and implicit tests for well�typedness�

To keep the semantics legible� it is written in the style of an SML program� It is not directly executable�
since it sometimes employs �non�constructive� notation such as quantors� and meta�syntax such as ������

In the �rst section� the domains used by the semantics will be presented� In the following sections� evaluation
functions are de�ned for all syntactic forms� In speci�c cases� there will be discussions concerning some of
the more di!cult points like automatic dereferencing� blocking suspensions and automatic mapping�

The semantics was developed in parallel with an interpreter" thus they are both �tested�� In form and
contents� the current semantics are a major revision of the semantics published in ����� which was done prior
to the interpreter implementation� The most important changes are�

� The Result type has been simpli�ed" the earlier version had four kinds of results �simple results�
multiple�value results� exceptions� and mismatches�� the current one only two �results and exceptions��

� Tuples have been introduced� to remove the need for multiple�value results�

� Generalized arrays have replaced the vectors and matrices�

� The representation of the semantic equations has been converted from the usual �mathematical� style
to the SML�like style�

��� Semantic Domains

In denotational semantics� the elements of computation �what we usually call �values�� do not form a simple
set� but rather a domain� A domain is a set with an internal structure given by a partial ordering relation
and a least element �� Together� they de�ne a complete partial order 	CPO
� The domain of �all ALDiSP
values� is called Obj � It is a �at domain� i�e� all �data� elements are uncomparable under the ordering
relation� and �bigger� than the bottom element�

	 x
 Obj � x w �

�In a statically typed language� each expression has a unique type that can be computed without actually running the
program�

Chapter �� The Lambda Form ��

����� Conventions and Notation

A homogenous list type using SML notation is assumed" the type �list of x� is notated as �x list�� List
literals are written as �x� � � � � � xn�" the n�th element of a list x is denoted as nth�x�n�" the length of x
is #x#� A list can be constructed element�wise using the list�constructor� i�e� ������� can be written as
� � � ���

Environment substitution is written as Env�symbol�value�� environment lookup is Env�symbol�� Looking up
unde�ned names returns ��

�Unimportant� semantic domains and primitive functions � those that play no r$ole in the evaluation process
� are not described" e�g�� the existence of �oating point numbers is mentioned� but not their semantics�

For many purposes� unique tags are needed� These are drawn from a set Tags that remains unspeci�ed" the
only operation de�ned on tags is comparison for equality��

Whenever an error situation occurs� an error is �returned�� An erroneous program will deliver an un�
de�ned result" the error pseudo�function generates �� Sometimes� the error is attributed with a cause�
e�g� error��mismatch��" this is for documentation purposes only�

Variable naming conventions are that E represents environments� S states� and o or obj objects� If some
value is incrementally changed� this is usually denoted by �ticking� the successive values� e�g�� S � S �� S ��� � � ��
The symbol K is used for continuation functions�

If a set consists of one constructor only� the constructor will have the same name of the set� but in lowercase�

Conditional de�nitions have the form

if � � � then � � �
�� � � � then � � �
���
�� � � � then � � �
else � � �

The case conditional destructures values�

case expr
of pattern� �! expr�
�� pattern� �! expr�
���

else exprelse

The lambda symbol ��� is used in modeling functions� The expression

� x y z � expr

denotes a function of three arguments� that� when applied� evaluates by substituting the arguments in the
expression� That is� the � operator denotes anonymous functions much like the lambda special form in
Scheme or the fn of SML� Because the ��operator is lexically scoped� parameter names do not matter� i�e�

� x �x (� � � y �y (�

�For practical reasons� tags can be thought of as mapped to the integers� In chapter
� tags are needed that are ordered by
�creation date��

Chapter �� The Lambda Form ��

Usually� though� the names are chosen to have mnemonic value�

Whenever an expression like

� �x� � � � � � xn � � expr

is encountered� it is assumed that the function de�ned by the lambda is only de�ned on lists" names of the
form xi occuring in expr refer to the i�th element of the list� and n is the size of the list�

����� Data Domains

The basic data domain is that of Objects�

Obj ' �Bools � Numbers � Arrays � Tuples � References � Functions � Types� � f�g

It consists of a number of standard and some ALDiSP�speci�c sets� and is made into a partially ordered
domain by introducing a bottom element� The abstract semantics �cf� chapter �� will introduce another
such value� �top� ���� which is �more de�ned� than any other object�

Bools ' ftrue� falseg
Numbers ' Scalars � Complices
Complices ' Scalars
 Scalars
Scalars ' Integers � Floats � Times � Durations
Integers ' FiniteIntegers � In�niteIntegers
In�niteIntegers ' f�� �� ��� �� ��� � � �g
FiniteIntegers ' fint�n� size� j n
 In�niteIntegers� size
 �� � � �MAXINTWIDTH � g
Floats ' �IEEE
�� �oating point numbers�
Times ' ftime�n� j n
 In�niteIntegersg
Durations ' fduration�n� j n
 In�niteIntegersg

These are the standard data domains� There are two kinds of integers� �nite and in�nite ones� In�nite
integers are provided as a semantic base on which �nite integers can be de�ned� A �nite integer is an integer
with a size� The size determines the rounding and over�ow behaviour" a size of n implies a representation
as an n�bit twos�complement number� Floating�point numbers can be de�ned analogously" details can be
found in �����

A special problem is posed by the existence of numeric literals� in an expression like ��x� the � does not
have a unique type� This fact is modelled by representing it as an InfiniteInteger��

Types Times and Durations are needed to represent points in time and durations between such points� Both
are isomorphic to the positive integers" a program s execution starts at a time ��� and advances in time in
time steps��

Arrays ' farray��s� � � � � � sdim�� �e� � � � � � es������sdim�� �� j si
 �� ��MAXSIZE �� 	 i � ei
 Objg

�In the compiler� in�nite integers are represented as �nite integers with a zero size� Thus� any operation that has a literal
as one of its arguments will have the type of the non�literal arguments as result type� following the �result type biggest
argument type� convention�

�The time steps are supposed to be evenly spaced� This only matters when the scheduler is implemented� i�e� when a
correlation between Times and some physical time is made� To the semantic functions� time is a black box�

Chapter �� The Lambda Form ��

Arrays may be of arbitrary dimension�� There is a maximum size for each dimension� Zero�width dimensions
are not allowed� All elements of an array should be of the same type�	 The semantics does not de�ne the
physical placement of elements in an array� it treats an array as a bag of values accessible via index tuples�

Tuples ' ftuple�tag � v� � � � � � vi� j tag
 Tags� 	 i � vi
 Objg

A tuple is a record� i�e� a set of values that may be of di�erent types� and are accessed by a ��eld name�
�which is represented by its position� when written down as a list�� All tuples sharing the same tag should
have the same number of elements�

Tuples are primarily employed in modelling abstract data type constructors� As a side bene�t� they are
used to implement multiple�valued functions and exceptions� Later in the compiler� they are also used to
explicitly represent environments�

References ' fref�tag� j tag
 Tagsg
Tags ' unspeci�ed " source of unique tags

References are placeholders that refer to promises �pending call�by�need computations� and suspensions�
Suspensions are held in the global state �more about the state in section ������� This �non�functional�
behaviour is necessary because promises are cached and suspensions have side�e�ects� so all accesses to them
have to be coordinated�

Functions ' Primitives � Closures � Overloadeds
Primitives ' fint�add� int�sub� � � � � overload� � � �g
Closures ' fclosure�tagc� tagl � env � vars� types� body� j tagc � tagl
 Tags"

env
 Env "
vars
 Var list
types
 Obj list "
body
 Exprg

Overloadeds ' foverloaded�xs� j xs
 Closures listg

There are three types of functions� primitives� closures� and overloaded functions� While primitives are not
explicitly typed� closures are� Closures are �rst�order functions with a lexical scope� There is no special
object type for Pascal�like �stack functions� �closures that are not exported from their lexical scope�� An
overloaded function is just an ordered collection of closures� Closures are used to model modules �cf� section
��
���� so no special module data type exists�

Closures consist of a tagc which makes them unique� a tagl that identi�es the Lambda expression of which
they are an instance� an expression that de�nes the body of the function� an environment holding the static
bindings of the free variables occuring in the body� and a list of types that de�ne the acceptable arguments�

Type ' f Obj� Bool� Tuple�tag � types�� Time� Duration� Int�n�� Float�m� n�� String�
Array��size� � � � � � sizedim��type�� Proc�types�type�� Closure�tag�� Pred�obj�
j n�m� size� � � � � � sizedim
 Int " type
 Type" types
 Type list " obj
 Obj " tag
 Tag
g

Types denote sets of semantic values� There is a �xed set of primitive types� which correspond to the
semantic value sets presented here� Some of the types are parameterized� Int�n� describes the set of all

�At the surface� ALDiSP supports only one� and two�dimensional arrays� The introduction of a general array concept proved
to be a simpli�cation�

	This requirement can lead to problems when numeric values of di�erent types are concerned� It might not be sensible to
force the user to write �������������� instead of �����������

Chapter �� The Lambda Form �	

�twos�complement� integers that can be encoded in n binary digits" Tuple�tag�types� is the set of all tuples
having the tag tag and elements conforming to types� and Closure�n� is the set of all simple functions with
a tag equivalent to n�

The type Pred is special" it introduces arbitrary predicates into the set of types� It is syntactically necessary
since types such as Tuple or Proc have sub�types� which may be user�de�ned�

Due to the presence of Pred� type checking is a non�atomic operation� and type�inference is generally im�
possible� when two given types t� and t� contain Pred terms� one cannot even determine whether they are
in a sub�type relationship� Sub�typing for atomic types is well�de�ned and re�ects the usual arithmetic type
hierarchy�

����� Results

The evaluation of an expression leads to a Result � which can be of two kinds�

Result ' Exception � SimpleResult
Exception ' fexception�tag � obj � state� j tag
 Tags� obj
 Obj � state
 Stateg
SimpleResult ' fresult�obj � state� j obj
 Obj � state
 Stateg

Their respective usage is�

� exception�tag � obj � state� is returned by aborting exceptions� It acts as a bottom value� which forces
most semantic functions to abort any any further computation once an exception was generated� The
exception thus �travels up the return stack� to the point of the innermost guard that can handle it�
Exceptions are identi�ed by their tag���

� result�obj � state� represents the normal case where a single value is returned�

The internals of State are discussed in section ������ The syntactic domains �expressions� declarations�
programs� are denoted by their implementation data�type names �Lexpr � Ldecl � Lprog��

����� Evaluation Functions� an Overview

The semantics of LF is presented as a set of semantic functions� These can be understood as �evaluation
functions��

Originally ��	�� there were two additional result types� mismatch was returned by mis�typed function applications� and
results�objs� was returned by multiple�valued functions� The removal of these two simpli�ed the semantics signi�cantly�

��The �rst intermediate representation �i�e�� the precursor of the Lambda Form
 used a continuation�passing style� Because
this made exception handling easier to formalize� the return jump of an aborting exception was a simple function call� This
approach was abandoned for a number of reasons�

� The resulting code was bloated and hard to read� transformations were error�prone� since each function had to be
transformed so as to accept and pass along two extra continuation parameters�

� I was not sure whether e�cient code could be generated for this�

� At one place in the semantics �evaluation of promises and suspensions
 it is necessary to implement a �catch�all� for
exceptions� and it is not clear how to express this in a CPS�evaluator�

Lastly� the semantics are more �natural� using the present approach� though this is a subjective observation�

Chapter �� The Lambda Form ��

������� evalexpr

The main evaluation function is

evalexpr � Lexpr
 Context � Result

The Context is composed of three parts�

Context ' Envstatic
 Envdynamic
 State

There is an important convention� if a semantic equation contains a context C�� then references to Env�static�
Env�dynamic� and S� will refer to the parts of this context� Likewise� the expression C�S� means that the
state of context C is replaced by S��

The static environment contains lexical bindings" the dynamic environment contains exception bindings� The
di�erence between the two is that Envdynamic is passed on to a function when it is applied" while Envstatic is
encapsulated in the functions closure�

Environments are mappings from variables to objects�

Env ' Var � Obj

������� apply

Function application is the most complex part of the language" the large number of auxiliary functions that
surround the apply re�ects this� The signature of the core apply is

apply � Obj
 Obj list
 Context � Result

������� evaldecl

The evaluation of declarations results in two new environments�

evaldecl � �Ldecl
 Context� � �Envstatic
 Envdynamic
 Context � Result� � Result

The third argument to evaldecl is an explicit continuation function called with the newly created environ�
ments� This is necessary so that exceptions occurring during the evaluation of the declaration can be handled
correctly�

������� evalprogram

At the program level� the evaluation semantics entails additional complexities� because side e�ects and the
progression of suspensions in time have to be modelled�

While the evaluation of an expression is deterministic with regard to the current state� the execution of the
program as a whole may be non�deterministic� Even when all wait times are points �i�e� not really intervals��
the order of execution of �concurrent� suspensions is unde�ned�

Chapter �� The Lambda Form �

The semantic function that models the scheduler exhibits this by being explicitly non�deterministic���

evalprogram � Lprog � State list

Program evaluation consists of two phases� First� the program installs a set of suspensions� Simply evaluating
the program as a declaration and an initial expression results in some �return value� �which is of no further
interest� and a changed state containing suspensions waiting for time to pass and�or input to occur� This
state is then handed over to the scheduler which controls the further execution of the program� abstract time
elapses� I�O transactions are performed� suspensions are evaluated and new suspensions are installed� Each
suspension s evaluation is purely functional in its context� but creates a modi�ed state that may contain
events and new suspensions�

schedule � State � State list

This is the point where non�determinism occurs� since pending suspensions have no �natural� order of
execution that could be used to de�ne such an ordering�

����� State

At this point� the concept of �state� should be clari�ed� Conceptually� �state� describes

� the current time �Clock�

� the two sets of non�evaluable and waiting suspensions �Ususps and Wsusps�

� the set of unevaluated promises �Uproms�

� the set of evaluated references �EvRefs�

� the set of I�O events �Events�

The previous semantics ������ further contained an �I�O state� component� The actual implementation has
shown that no such thing is needed" instead� I�O can be modelled via �faked� suspensions called �events��
a writing I�O primitive will create an event that contains the information what and where to write" and the
scheduler will execute the output operation at some point of time� Likewise� input operations will create
suspensions that are transformed into EvRefs by the scheduler when data arrives� Events can be treated like
opaque Ususps with a time frame of zero� only the scheduler knows when an event might be performed" if
it is performed� it is transformed into an EvRef that holds some unspeci�ed value�

State ' RefDefs
 Clock
RefDefs ' tag � �Ususps � Blocks � Wsusps � EvRefs � Uproms � Events�
Ususps ' fUsusp�cond � expr � t� � t�� j cond � expr
 Closures"

t� � t�
 Durationsg
Wsusps ' fWsusp�expr � t� � t�� j expr
 Closures"

t� � t�
 Durationsg
Blocks ' fBlock�tagwait � f � j tagwait
 Tags� f � State � Result g
EvRefs ' fEvRef�obj� j obj
 Objg
Uproms ' fUprom�obj�j obj
 Closuresg
Events ' fEvent�u� j u
 implementation speci�c event descriptiong
Clock ' Times

��In the semantics of ��	�� the semantic function returns a set of possible state sequences� The current semantics does not do
so since the use of explicit non�determinism makes the semantics shorter and easier to read� Besides� the all�state approach is
practically non�implementable�

Chapter �� The Lambda Form ��

Ususp terms represent unevaluated suspensions" Wsusps are suspensions with an condition that is true� and
EvRefs represent evaluated suspensions or promises��� Uproms are unevaluated promises�

The Blocks are special�cased Ususps� whenever the interpreter blocks� it generates a Block reference de�ni�
tion that contains the blocked interpreter as a function from State to Result � The second parameter is the
tag that caused the block� The blocked evaluation can continue when the suspension associated with the
blocking tag has been evaluated�

The State can be accessed like an environment� S �t � gets the de�nition associated with the tag t " S �t�v �
introduces or rede�nes a de�nition�

��� Auxiliary Semantic Functions

This section lists some auxiliary functions that will be employed all over the rest of the semantics�

����� evalexprs

evalexprs evaluates a list of expressions� carrying along the context C and a continuation function K� K is
called with the resulting object list and context when the last expression of the list has been evaluated���

evalexprs����C� K � K����C�

evalexprs�expr exprs�C� K �

case evalexpr�expr�C�

of exception�x�o�S�� �! exception�x�o�S��

�� result�obj�S�� �! if obj � �
then result���S��

else

evalexprs�exprs�C�S��

��objs�C��� K�obj objs�C��

evalexprs takes care of exceptions and � values� if an exception or a bottom is encountered� it is propagated
upward��" in this case� the continuation function is never called� In the case of �� this is necessary to
guarantee the strict behaviour of the language�

����� derefobjs

derefobjs takes an object list and delivers an object list of equal length that is guaranteed not to contain
references� Since derefobjs can block� it calls a continuation argument with the result instead of simply
returning it� The parameter C holds the context �remember that the state S is de�ned implicitly as a
component of the context C� so that S�tag� refers to the value of tag in the context C��

derefobjs����C� K � K����C�

derefobjs�obj objs�C� K �

case obj

��In the �rst drafts of the semantics� there were no Wsusps� but that implied that the schedule had to traverse all Ususps to
look for the evaluable subset� Also� there is the possibility of a once true expression becoming false again during the waiting
time� without an extra �waiting pool� it would have been impossible to correctly execute such suspensions� Of course� �correct�
here means� intuitively� without there being any prior formal de�nition�

��For those readers who have no experience with CPS�semantics� it should be noted that the ��expression denotes �or creates

the continuation function� It corresponds to an explicit reference to the �stack position� at which the �local variable� obj is
stored�

��I�e�� the evaluation aborts and returns the exception value�

Chapter �� The Lambda Form ��

of ref�tag� �!

case S�tag�

of EvRef�x� �! derefobjs�x objs�C� K

�� Uprom�x� �!

case evalthunk�x�S�

of �x�S�� �!

derefobjs�x objs�C�S�tag�EvRef�x��� K

else

block�tag�C�

��S�� derefobjs�obj objs�C�S� K

else

derefobjs�objs�C�

��objs��C��� K�obj objs��C��

When derefobjs dereferences an EvRef� it calls itself with the dereferenced value� This loop is necessary to
correctly cope with nested suspensions or delays�

When derefobjs encounters an unevaluated promise �Uprom�� its value is computed by evalthunk� The state
is updated� i�e� the Uprom is replaced by an EvRef containing the result value�

When derefobjs encounters a reference that points to a unevaluated suspension� it blocks the current process
by calling block with the current continuation� The blocked continuation captures the current context and
uses it to provide the lexical and dynamical environments needed to continue the evaluation�

����� block

block generates a Block de�nition that encapsulates the continuation K� installs it in the state� and returns
a reference to the block�

block�tagwait�C� K �

result�ref�tagnew��

S�tagnew � Block�tagwait�K���

����� strict	 strictexprs

A variation of evalexprs is strictexprs� which extends the functionality of evalexprs by asserting that none
of the resultant objects is a reference� It dereferences all EvRefs� forces all Uproms� and blocks when there
are suspended arguments�

strictexprs�exprs�C� K �

evalexprs�exprs�C�

��objs�C���
derefobjs�objs�C�� K

The simple strict takes a result� a context and a continuation" it calls the continuation with the unpacked
and dereferenced object and state�

strict res C K �

case res of

result�x�S�� �! derefobjs��x��C�S�� ����x���C��� � K�x��C����

else res

Chapter �� The Lambda Form �

����� evalthunk	 normresult

A thunk is a parameterless function� Thunks are employed to �freeze� the evaluation of expressions that are
suspended or delayed�

evalthunk�x�S� �

normresult�derefobjs��x�������S�� � �x��C��� apply�x��C���

normresult�res�

case res

of result�x�S�� �! �x�S��

�� exception�x�o�S�� �! ���S��

A thunk is expected to return a result� therefore all exception results are caught and replaced by �� The
function normresult performs this �normalization�" it transforms a result into an object and a state� The
tuple �����S� is a context that contains a state� but no variable bindings�

��� Evaluating Expressions

����� Lambda� Closure Creation

A Lambda expression creates a closure with a typed argument list� The closure represents a function that�
when applied to an argument list� con�rms that each arguement matches its corresponding type� and evalu�
ates the function body within the current lexical environment updated with the argument bindings�

The transformation phase creates Lambda expressions when it encounters ALDiSP function de�nitions �cf� sec�
tion ��
�
�� module de�nitions �cf� section ��
��� and abstract data type de�nitions �cf� section ��
���
�� Fur�
thermore� they are used to implement the thunks in delay and suspend expressions �cf� sections ����� and
������� The semantics itself creates new Lambdas on the �y as expands auto�mapped applications to nested
standard applications �cf� section �����

evalexpr�Lambda�taglambda���v��p���� � ���vn�pn���expr��C� �

evalexprs��p��� � ��pn��C�
���t��� � ��tn��C���

result�closure�tagclosure�taglambda�Estatic�C�� freevars�expr��

�v��� � ��vn���t��� � ��tn��expr��S��

tagclosure is a freshly allocated tag that uniquely identi�es each closure generated at run�time�

freevars�expr� denotes the set of syntactically free variables in expr� The static environment which is
encapsulated in the closure is restricted to this set" it is not necessary to put bindings of variables into the
closure that do not occur in the code that it closes over�

The argument types p� � � � � � pn are evaluated at closure creation time" the resulting type objects t� � � � � � tn
are made part of the closure�

����� Lvar� Variable Look
Up

Evaluation of variables is performed by looking them up in the static or dynamic environments� These
environemnts are part of the evaluation context�

evalexpr�Lvar�var��C� �

case Estatic�C��var�

Chapter �� The Lambda Form ��

of � �! case Edynamic�C��var�

of � �! error��undefined variable��

�� x �! result�x�S�

�� x �! result�x�S�

Only if a variable name is not de�ned in the lexical environment� it is looked for in the exception environment�
If it is not found there either� this is an error� Some of these errors can not be detected statically" the
implemented transformation phase looks for statically unbound variables that are never bound dynamically"
this check can cheaply be done as part of the ��conversion �cf� section ������� It cannot be statically
guaranteed that dynamically bound variables are present in the environment���

����� Lit� Literal Values

evalexpr�Lit�x��C� � result�injectobj x�S�

The Lit construct directly represents a semantic value��� A value has to be �injected� into the Obj

domain" this is done by the �otherwise unspeci�ed� injectobj function� While this function looks like a
mere techniciality in the semantics� it becomes a real operation in the actual abstract interpreter� where the
domain of abstract values may di�er greatly from the domains of the semantics�

����� Lapp� Function Application

To evaluate a function application� the function and all its arguments must �rst be evaluated in some order�
This order is rather arbitrary in principle" here it speci�ed as left�to�right� but any sequential order would
su!ce��� Then the application itself is performed��	

applymappable handles all details of application � it con�rms that the function can be applied at all to these
arguments� and calls the �real� apply" if there is an argument type mismatch� auto�mapping is tried�

evalexpr�Lapp�exprs��C� �

if #exprs# � �

then error��empty application��

else evalexprs�exprs�C�

��objfunc objargs�C���
derefobjs��objfunc��C��

���objfunc���C����

��This can be shown by example�
func needs�f�b� 	 f�b�

func might�crash�x� 	

if complex�predicate�x� then needs�f�x�

else guard needs�f�x�

on f�a� 	 a

end

end
If f is not de�ned in the lexical context or in the dynamic environmentwhich is active when might�crash is called� a semantic

error will occur if complex�predicate is false for x�
��Such constructs are often called �constants�� which is totally wrong� A constant is an expression guaranteed to have the

same value in all evaluation contexts� a literal is the �textual� representation of a value� Of course� all literals are constants
�except in old FORTRANs
� but not all constants need be literals� Most programming languages allow only literals as constants�
but that should not obscure the terminology�

��It is not only bad practice to rely on order of evaluation in function application� such practises also make parallelization
nearly impossible� It would be a nice frill if the compiler could �nd any such dependencies�

�	 Macros can be incorporated as an evaluation mechanism by �rst evaluating the functional position� and� if it turns out to
be a macro� substituting the expressions and evaluating the result� The reason why this strategy was not adopted is elaborated
in section ������

Chapter �� The Lambda Form ��

applymappable�objfunc��objargs�C���

The object that represents the function is piped through derefobjs to ensure that it is not a reference� If the
other objects were also dereferenced prior to application� the execution behaviour would change drastically�
it would be impossible to pass pending suspensions to functions��

����� Lcheck� Asserting Types

Lcast and Lcheck are the LF equivalents of ALDiSP type�casts and type�checks�

In ALDiSP� a type check is intended to make an assertion� �type�expr asserts that expr is of type type� If
this assertion is violated� the further execution of the program is unde�ned� An interpreter should convert
all Lchecks into tests" a compiler can assume that the type given in a Lcheck is correct�

If expr denotes a �data� value� checking amounts to simple function application� Since types are inter�
changeable with the predicates that de�ne them� the type can be applied to the expr " if the result is true�
everything is �ne� otherwise there is an error�

If expr denotes a function and type a function type� the situation is di�erent� It is in general impossible
to assert that a given function f has some requested type� For a number of reasons �predicates�as�types�
overloading� etc��� ALDiSP does not support type inference� It is therefore impossible to implement an
Lcheck as a compile�time veri�cation���

The only safe way of implementing type checks on functions works as follows� an expression �a �! b�f

�Casting �f� to the type �function from a to b�� is transformed to lambda�tmp a����b��f tmp��� A new
function of argument type �a� is constructed that� when called� executes �f� and veri�es that the result is
of type �b�� By using this transformation strategy� the argument and result type checks are deferred to the
function s application time� Furthermore� the domain of the function is now guaranteed not to exceed the
type speci�cation���

evalexpr�Lcheck�exprt�expre��C� �

evalexprs��exprt�expre��C�

���objt�obje��C���
derefobjs��objt��C��

���objt���C����
case objt�

of Proc��a��� � ��ai��r� �! checkproc��a��� � ��ai��r�obje�C���
�� Obj �! result�obje�S���

else

strict apply�objt���obje��C��� C��

��x�C�����
if x � true

then

result�obje�S����

else

error��type mismatch��

checkproc��a��� � ��ai��r�obje�C� �

result�closure�tagclosure�new�taglambda�new����v��� � ��vi���a��� � ��ai��

�
Dereferenced application is a possible optimization� comparable to call�by�value in a lazy language� The strictness analysis
outlined in chapter ��	�� could be used to generate annotations to guide such a behaviour�

��Most Lchecks are nevertheless eliminated at compile time� since manys types are veri�ed by the abstract interpreter� and
the partial evaluator removes the matching Lchecks as dead code�

��This is important� since a type check can change the behaviour of a checked value� if that value is a function that is later
overloaded� and the checked type denotes a function of reduced domain�

Chapter �� The Lambda Form ��

Lcheck�Lit�objr��Lapp��Lit�obje��Lvar�v���� � ��Lvar�vi�����
�S�

The type has to be dereferenced� since its type must be known� The obj to test is not dereferenced� since
this would destroy the semantics of

�Obj� suspend ��� end

This should not block� since any possible result is an object�

����� Lcast� Casting Types

The Lcast form tries to force �or coerce� an expr to a type type� For example� the ALDiSP expression
�
Real���� which translates to an Lcast� should result in the �oating point number ����� In other words�
the Lcast form is a general way to specify an �appropriate� conversion function�

The two pre�de�ned variables� coerce and coerce�base implement the underlying functionality� Both can
be rede�ned by the user� They are given to the Lcast form as third and fourth parameters� This explicit
treatment is necessary since the transformation phase reorders all declarations in the program" if no explicit
connection between the �magic� cast function variables and the Lcast forms would be made� a declaration
involving an Lcast could be moved to a position where the casting function is not yet de�ned���

While coerce has to be bound to an overloaded function that takes one argument �the object to coerce��
coerce�base should be bound to a function of two arguments �the object and the goal type��

If Lcast is called with a basic �non�user�de�ned� type as goal� coerce�base is called with the objtype and
objexpr as arguments� The standard environment has to provide appropriate functions to convert between
base types� Since the set of base types is implementation�dependent �to provide for application�speci�c
numeric or I�O types�� the library writer may need this extra �exibility�

If Lcast is called with a predicate as goal type� the overloaded coerce function is dismantled into its closures�
and each of those in turn is applied to the obje� The �rst such application that delivers a result that tests
true under the type is returned as the value of the Lcast��� The applications are ordered according to the
overload speci�cation" i�e� the most recently de�ned coerce functions are tried �rst�

evalexpr�Lcast�exprt�expre�ecf�ecbf��C��

evalexprs��exprt�expre�ecf�ecbf��C�

���objt�obje�objcf�objcbf��C���
derefobjs��objt�objcf�objcbf��C��

���objt��objcf��objcbf���C����
if objt� � Obj then result�obje�S���

�� objt�
 TypesBasic then castbase�objt��obje�objcbf��C���

else castgeneral�objt��obje�objcf��C���

castbase�objt�obje�objcbf�C� �

apply�objcbf��objt�obje��C�

castgeneral�objt�obje�objcf�C� �

case objcf
of overloaded�c��� � ��cn� �!

let

��Exactly this was the problem with an earlier approach� in which coerce and coerce�base were �magic� variable names
that were picked out of the static environment by the semantic function� A �rst try to �repair� the semantics by moving these
variables into the dynamic environmentworked� in that it protected them from unwanted ��conversion and other transformation
rules� The �nal� current model of a four�parameter cast simpli�es things a lot�

��This rather ine�cient mechanism is the only way to cope with the existence of arbitrary predicate types�

Chapter �� The Lambda Form ��

	 i
 �� � �n
�tryi�Si� � norm�apply�ci��obje��C��

testi � check�objt�tryi�C�Si����ok�C���ok�
in

if � k testk � �true�s� � 	 � ' j ' k testj �' �true�s�

then tryi
else

error��no cast found��

The castgeneral function creates two families of indexed temporaries� namely tryi and testi� Their order of
execution is not important� since each application is done in a �clean� context� and only the return state of
the result that is �nally chosen is returned���

The check auxiliary function applies a predicate to an object and returns a boolean value� It is de�ned in
section ������

����� Lcond� Two
Way Conditional

Lcond models the standard if operator� It is not auto�mapped� therefore the ALDiSP expression

if 	�true�false� then � else � end

is erroneous� and does not evaluate to 	������ The �rst expression �i�e�� the condition� must be available as
a basic value and is therefore passed through strictexprs� This will block the whole Lcond if e� is a pending
suspension�

evalexpr�Lcond�e��e��e���C� �

strictexprs��e���C�

���o���C���
case o�
of true �! evalexpr�e��C��

�� false �! evalexpr�e��C��

else error��non�boolean argument��

����� Lselect� N
Way Conditional

Lselect operates in a similar manner to the switch of C or the case in Scheme� a selection value �esel� is
evaluated� the result is taken as index into a list of expressions� each of which is tagged by a key value� The
�rst �matching case� is chosen for evaluation" if no case matches� the default edefault is taken� Lselect is
strict in the selection value�

evalexpr�Lselect�esel���c��e���� � ���cn�en���edefault��C� �

strictexprs��esel�c��� � ��cn��C�
���osel�o��� � ��on��C���

if � i osel � oi � 	 j'i osel �' oj
then

evalexpr�ei�C��

else

evalexpr�edefault�C��

��This �forgetting� of state changes can be very hard to implement in an interpreter that maintains the state via side e�ects�

Chapter �� The Lambda Form �	

����
 Lseq� Sequences of Expressions

Lseq�expressions model expression sequences with automatic synchronization� Expressions are evaluated
from left to right" the value of the last expression is the value of the sequence� If an expression returns �a
reference to� an unevaluated suspension� the execution of the rest sequence blocks�

evalexpr�Lseq�exprs��C� �

case exprs

of �� �! error��empty sequence��

�expr� �! evalexpr�expr�C�

expr exprs �!

strictexprs��expr��C�

���obj���C���
evalexpr�Lseq��expr��� � ��exprn���C��

In order to avoid an unnecessary auxiliary function� the rest of the sequence is packed up in a new Lseq and
evaluated�

������ Lcatch� Handling Exceptions

An Lcatch catches exceptions� The Lcatch contains one sub�expression and a list of exception tags� The
sub�expression is evaluated" if it generates an exception that is listed amon)gst the tags� the exception is
unpacked and its value is returned as an ordinary result� Otherwise� the value �be it result or unmatched
exception� is returned unchanged�

evalexpr�Lcatch��tag��� � ��tagn��expr��C� �

case evalexpr�expr�C�

of result�x�S�� �! result�x�S��

�� exception�tag�obj�S�� �!

if tag
 �tag��� � ��tagn�
then

result�obj�S��

else

exception�tag�obj�S��

������ Let� Local De�nitions

The evaluation of local de�nitions is modelled by the evaluation rules for declarations� evaldecl� evaldecl
evaluates a de�nition� which might consist of sub�de�nitions� and calls its continuation with two sets of
bindings �one for Envstatic� one for Envdynamic� and a new context� That context contains state changes only"
the environments are merged with the root environment when the expr is applied�

Like evalexprs� evaldecl takes a continuation argument in order to be able to handle exceptions� when one
of the declarations raises an exception� evaluation aborts�

evalexpr�Let�expr�decl��C� �

evaldecl�decl�C�

��Es�Ed�C���
evalexpr�expr�C��Es�Ed�

Chapter �� The Lambda Form ��

��� Evaluating Declarations

����� Ldecl� The Simple Declarations

An Ldecl is the �atomic� declaration� An expression is evaluated" the result is bound to a name� If the
expression evaluates to an exception or �� further evaluation is aborted" otherwise� the continuation function
K is called with the generated environments and the updated context� The boolean parameter determines
whether the generated binding shall be part of the static or the dynamic environment�

evaldecl�Ldecl�var�static�expr��C� K �

evalexprs��expr��C�

���obj��C���
let

env � � x � if x � var then obj else �
in

if static

then

K�env���C��
else

K���env�C��

����� Lpard� Parallel Declarations

A Lpard is a declaration consisting of a list of declarations to be evaluated in parallel� �In parallel� means
that the de�nitions are evaluated in the same environment" the declarations are ordered in time so that side
e�ects can accumulate�

evaldecl�Lpard�decls��C� K �

evalpard�decls�C����� K

evalpard����C�Es�Ed� K � K�Es�Ed�C�

evalpard�decl decls�C�Es�Ed� K �

evaldecl�decl�C�

��Es��Ed��C���
evalpard�decls�C��Es�Es��Ed�Ed�� K

The � indicates that the environments are added� not replaced� No order is implied" a parallel de�nition
par

x � �

x � %

end

creates a lexical environment with an unde�ned value of x �either � or �����

����� Lseqd� Sequential Declarations

A Lseqd is a declaration consisting of a list of declarations to be evaluated sequentially� i�e� each declaration
can access the variables de�ned in the preceding declarations�

evaldecl�Lseqd�decls��C� K �

evalseqd�decls�C����� K

��Such situations cannot occur in ac� since ALDiSP programs contain only sequential de�nitions� and the transformation rules
would not parallelize de�nitions of the same variable�

Chapter �� The Lambda Form �

evalseqd����C�Es�Ed� K � K�Es�Ed�C�

evalseqd�decl decls�C�Es�Ed� K �

evaldecl�decl�C�Es�Ed�

��C���
evalseqd�decls�C � S�� K

One small problem is the accumulation of environments in the context� In a sequence of declarations� the
visibility of a new declaration starts with the next declaration in the sequence� This is modelled by adding
the new declarations to the context before evaluating each new declaration� However� the continuation must
be called with the unchanged context� so the added bindings have to be removed before continuing with the
rest sequence� This is modelled by the recursive call with C � S�� i�e� only the changed state is carried over�

����� Lfixd� Recursive Declarations

A Lfixd is a recursive ��xpoint� declaration� The sub�declarations are evaluated in their own visibility scope�

evaldecl�Lfixd�decls��C� K �

let

�C��Es��Ed�� � fix ��C���Es�Ed��
evalpard�decls�C���Es�Ed�

��C����Es��Ed���
�C����Es��Ed��

in

K�C��Es��Ed��

The new environment is de�ned to be the �xpoint under the parallel declaration� i�e� the environment that
does not change when the bindings of the declaration are added� This implies that it already contains said
bindings� and is therefore recursive�

The fix operator can either be taken as primitive� or de�ned as an iterative approximation process���

fix f �

let

approx�x� �

let

x� � f x

in

if x� � x then x else approx�x��

in

approx���

The actual interpreter may employ a di�erent method �cf� section �������

��� Application Rules

The main bulk of the apply function comprises the auto�mapping mechanism treated later� The core apply is
a dispatch rule that divides the domain of apply into manageable portions� each of which has quite distinct
behaviour�

apply�func�args�C� �

if func
 Closures then applyclosure�func�args�C�

��Formally� fix computes the �xpoint of a function of one argument� To apply it to a function of n arguments� these can be
treated as tuples� with � � �x��� � ��xn� �

Chapter �� The Lambda Form ��

�� func
 Overloadeds then applyoverloaded�func�args�C�

�� func
 Primitives then applyprimitive�func�args�C�

�� func
 Arrays then applyarray�func�args�C�

�� func
 Type then applytype�func�args�C�

else error��is no function��

It is important to note that the core apply is unchecked� The test for applicability is isolated in an extra
function� testapply �

testapply�func�args�C� K �

if func
 Closures then testapply�closure�func�args�C� K

�� func
 Overloadeds then testapply�overloaded�func�args�C� K

�� func
 Primitives then testapply�primitive�func�args�C� K

�� func
 Arrays then testapply�array�func�args�C� K

�� func
 Type then testapply�type�func�args�C� K

The test functions cannot generate errors� they are total� They are isolated from the apply because the auto�
mapping mechanism has to search for mapping possibilities by speculatively disassembling data structures
and applying the results to functions� By de�ning an extra test function tree� tests can be done without
causing unnecessary errors� In the following� test functions are presented next to the apply functions they
guard�

����� applyclosure

A closure is applied by adding the argument bindings to the static environment that is part of the closure�
and evaluating the body of the closure in the updated environment�

applyclosure�closure�tagclosure�taglambda�env��v��� � ��vn���t��� � ��tn��expr��
�a��� � ��an��C� �

evalexpr�expr�C�Estatic��env�v� � a��� � ��vn � an����

A closure can be applied to an argument list if all arguments match�

testapply�closure�closure�tagclosure�taglambda�E��v��� � ��vn���t��� � ��tn��expr��
�a��� � ��ak��C� K �

if n � k

then

checklist ��t��a���� � ���tn�an�� C K

else

K�false�C�

checklist tests C K �

case tests

of �� �! K�true�C�

�t�a� rest �! check�t�a�C�

� �ok�C�� �

if ok

then

checklist rest C� K

else

K�false�C��

check�objtype�objarg�C� K �

derefobjs��objtype��C�

���objtype���C���

Chapter �� The Lambda Form ��

strict apply�objtype��objarg��C�� C�

��res�C����
case res

of true �! K�true�C���

false �! K�false�C���

else �warning��is no type��� true�

The check function will be used again in the auto�mapping section� If one of the parameter types cannot
be applied to its arguments� a warning should be given� It might as well be an error� This is one of the
situations where an error is signalled much too late" it should have been given when the closure was created�

The call to apply poses a small problem� since even this simple ALDiSP function drives the interpreter into
a loop�

func semanticKiller�x semanticKiller� � ��

Another� very similar problem stems from the recursive dereferencing�

rec

x � delay�x�

end

In the current implementation of ac� these problems are considered so absurd that no provisions are made
to catch them as errors�

����� applyoverloaded

An overloaded function is applied to the �rst member closure that matches the arguments�

applyoverloaded�overloaded��c��� � ��ck���args�C� �

matchoverload�overloaded��c��� � ��ck���args�C�
��index�C���

applyclosure�cindex�args�C��

matchoverload �nds the �rst matching closure and returns its index� or � if there is none� The latter behaviour
is needed for the test function" when applyoverload is called� a preceding testoverload has veri�ed that a valid
index �� �� exists�

matchoverload�overloaded��c��� � ��ck���args�C� K �

find�rst��c��� � ��ck����C� K

find�rst�closures�index�args�C� K �

case closures

of �� �! K���C�

c cs �! testapply�closure�c�args�C�

��ok�C�� �

if ok

then

K�index�C��

else

find�rst�cs�index���args�C��

testapply�overload�func�args�C� K �

matchoverload�func�args�C�

��index�C�� �! K�index!��C��

Chapter �� The Lambda Form �

����� applyprimitive

There are two kinds of primitives� those that are internal to the interpreter and may access and change
the state" and those that perform side�e�ect free operations on semantic values� The latter ones share the
common property that they are strict� i�e� access the values of all their arguments� They are of no further
interest to this semantics� since strict primitives are �atomic� and cannot raise exceptions or otherwise
disturb the �ow of control�

There are only a few non�strict primitives� namely those needed to access and test references� to create
tuples� and to create arrays�

applyprimitive�p�args�C� �

if p
 Primitivesstrict
then

derefobjs�args�C�

��args��C���
result�applyprimitive�strict�p�args���S��

else

applyprimitive�nonstrict�p�args��C�

applyprimitive�strict�p�args� �

case �p�args�

of �overload��closure�x��closure�y��� �! overloaded��closure�x��closure�y���

�� �overload��closure�x��overloaded��y��� � ��yn����
�! overloaded��closure�x��y��� � ��yn��

�� �select��index�tuple�tag�x��� � ��xn�� �!

if index �
 Integers � index'� � index!n then error��

�� index � � then tagx
else xindex

�� �or��bool��� � ��booln�� �! bool� � � � � � booln
�� �and��bool��� � ��booln�� �! bool� � � � � � booln
�� �tuple�type��tag�type��� � ��typen�� �! Tuple�tag�type��� � ��typen�
�� �func�type��type��� � ��typen�type��� �!

Proc��type��� � ��typen��type��
�� �is��tuple�tagtuple�args��closure�tagclosure�taglambda�� � ���� �!

if �taglambda�tagtuple�
 list�of�constructors

then true

else false

�� �is��tuple�tagtuple�����tuple�tagtuple������� �!

if tagtuple � tagtuple�

then true

else false

�� �io�op�parameters� �!

result�ref�tagio�� S�tagio�Event�parameters���

where

tagio � �a new reference tag�

�� ����int�n�sn��int�m�sm��� �! int�n�m�max�sn�sm��

�� � � �many more� � �
else error��primitive unknown or does not match��

applyprimitive�nonstrict�p�args�C� �

case �p�args�

of ��deref��ref�tag��� �! case S�tag�

of EvRef�x� �! result�x�S�

Chapter �� The Lambda Form ��

else error��

�� ��is�avail��ref�tag��� �! case S�tag�

of EvRef�x� �! result�true�S�

�� Uprom�x� �! result�true�S�

else result�false�S�

�� ��is�avail�nonReferenceValue� �! result�true�S�

�� ��tuple��tag�v��� � ��vn� �! result�Tuple�tag�v��� � ��vn��S�
�� ��delay��closure�x��� �!

result�ref�tagdelay��

S�tagdelay�Uprom�closure�x���

where

tagdelay � �a new reference tag�

�� ��suspend��closure�x��closure�y���t��t��� �!

result�ref�tagsusp��

S�tagsusp�Ususp�closure�x��closure�y��t��t���

where

tagsusp � �a new reference tag�

�� ��mk�exc��tag�value�� �! exception�tag�value�S�

�� error��primitive unknown or does not match��

Primitivesstrict is the implementation�dependent set of primitive function names� For all primitives that
are not listed in the semantics� behaviour is unspeci�ed� In particular� it is not guaranteed that all primitives
are total�

The is primitive provides type testing of constructed values� A global �list of constructors� is created by the
transformation phase �cf� section ��
������ It associates each tuple tag with the lambda tag of the constructor
that was used to create it�

The io�op primitive creates an I�O event� The arguments to io�op are implementation�dependent� as are
the parameters stored in the Event reference de�nition�

testapply�primitive�func�args�C� K � K�true�C�

Primitives are inherently untyped" they are not to be used directly by the programmer� It is the responsibility
of the libraries to provide type�secure interfaces to the primitives� For example� the int�add primitive should
be employed in a context like

func ��a Integer�b Integer� �
int�add
�a�b�

����� applyarray

ALDiSP has no operator or special syntax for array lookup� Instead� an array is treated like a function� when
it is applied to appropriate indices� it delivers the indexed object�

applyarray�array��size��� � ��sizedim��elements���arg��� � ��argn��C� �

derefobjs��arg��� � ��argn��C�
���i��� � ��idim���C���

elements�i��� � ��idim�

The internal row�column structure of two� or more�dimensional arrays is not speci�ed� The de�nition models
an array as a bag of indexed elements that can somehow be looked up� Correct typing of the arguments
�integers in the range of the array� is guaranteed by the test function�

testapply�array�array��size��� � ��sizedim��elements���arg��� � ��argn��C� �

derefobjs��arg��� � ��argn��C�

Chapter �� The Lambda Form ��

���arg���� � ��argn����
dim � n � 	 i
 �� � �dim argi
 Int � argi� � � � argi� ' sizei

An array is applicable to an argument list if all arguments are positive integers in the range of the array���

����� applytype

The application of basic types is hard�wired into the semantics� One special case is the type Obj� which is
true for all arguments� Due to this fact� there is no need to dereference the argument if the type is Obj� This
special case treatment is more than a mere optimization� since all arguments to functions are typed� and an
object s type is tested by applying the type to the object� default dereferencing would make it impossible to
write functions that accept pending suspensions as their arguments�

applytype�type��obj��C� �

if type � Obj then true

�� type � Pred�t� then check�t�obj�C�

else

derefobjs��obj��C�

���obj���C���
isbase�obj��type�

isbase�true�Bool� � true

isbase�false�Bool� � true

isbase�tuple�tagx�v��� � ��vn��Tuple�tagy�t��� � �tm�� �

tagx � tagy � n � m � check�t��v��C� � � � � � check�tn�vn�C�

isbase�time�x��Time� � true

isbase�int�x�s��Int�n�� � s � n

isbase�float�x�sm�sn��Float�m�n�� � sm � m � sn � n

isbase��� � ���String� � true

isbase�array�� � ���Array� � true

isbase�x�Proc�types�t�� � true

isbase�closure�tagx�� � ���Closure�tagy�� � ��� � tagx � tagy
isbase�x�Pred�obj�x� � check�obj�x�C�

Application of a type is handled by listing the possible cases� One type warrants special treatment� Proc�
It is forbidden to apply function types� since they are undecidable��	 The sole function of them is therefore
to declare a function s type� not to check it�

testapply�type�type�args�C� K �

K�#args# � ��C�

All types are applicable to all singleton argument lists�

��
 Auto�Mapping

The auto�mapping mechanism is the most complex part of the semantics� The general idea behind auto�
mapping is this� There exist a number of �auto�mappable homogenous collection� types� namely di�erent
kinds of lists and arrays� When a function not de�ned on these types is applied to one of them� it is mapped
to each of the components� A simple example is the application ������� � ����������� which results in
����������� Though a simple paradigm� the concepts can be extended to more complex examples�

��The actual implementation employs slightly di�erent means� applyarray generates code for a �lookup�array primitive�
�	The current implementation of ac emits a warning when a Proc is applied to an object� and approximates it safely� for

function�typed arguments� true is returned� for non�function�typed arguments� false is returned� If aBool were returned� the
reconstruction phase would try to implement a run�time type from the Proc�

Chapter �� The Lambda Form ��

� If one argument is of a non�mapped type� it is �extended��
������� � ��� � ������� � �������������� �������������

� Auto�mapping may be nested�
������������� � ������������������ �����������������

The extension rule still applies�
������������� � ��� � ���������������������

� There is one precedence rule� Lists map before arrays� That is�
������� � �������� ������������������������ �����������������������

This precedence was chosen because lists of arrays are a more natural data type in DSP applications
than arrays of lists�

There are a few restrictions� lists have to be of equal length� and arrays have to be of same rank and size�
i�e�� adding a three�element list to a two�element list is not permitted� Similarly� vectors cannot be added to
matrices�

The auto�mapping semantics is de�ned via �code generation�� A function application is mapped by rewriting
it and evaluating the generated LF code� A few examples for the kind of generated code are�

�����������%�"� �� map�array���v� � v� ���v��v� �� �����������%�"��
����������� �� map�array���v� ���v������� ��������
�����������%�"� �� map�list���w� ���map�array���v� ��v��w� �� ��������� ���%�"��

The existence of primitive functions map�array and map�list is assumed� Their implementation is somewhat
machine�dependent� since the layout of arrays is not speci�ed in the semantics� and will depend on the target
architecture�

����� applymappable

The entry point to the apply complex is applymappable" it is called by evalexpr�Lapp�� � ����

applymappable checks the arguments and determines whether a simple application is present or not� In the
latter case� it attempts to �nd a way of mapping the function to its arguments�

The testapply function and all its sub�functions have to take explicit continuations� since they may force the
arguments in the process of testing them� i�e� they can block�

applymappable�func�args�C� �

testapply�func�args�C�

��ok�C���
if ok then

apply�func�args�C��

else

automap�func�args�C��

The automap function needs to inspect the args in order to recognize mappable types� hence it �rst removes
any references�

automap�func�args�C� �

derefobjs�args�C�

��args��C���
automaplist�args��C��

Chapter �� The Lambda Form ��

There are only two basic mappable types� Lists and arrays� This is re�ected by the fact that there are two
automap functions� one for lists and one for arrays� Each searches for occurrences of �its� mappable types" if
it �nds any� it generates a mapping function with appropriate types and tests this function for applicability�
If the test succeeds� an auto�mapping is found" if it fails� a recursive call to applymappable is tried �there may
be another nesting level to un�map�" if that fails� the function application is erroneous�

automaplist�func��arg��� � ��argn��C� �

if � i
 �� � �n argi � pair�headi�taili�

� 	 i�j i �' j � argi
 List � argj
 List � #argi# � #argj#

then

let

loop���� � ����������

loop�arg args� �

let

paramsinner�vars�types�paramsouter � loop�args�

in

if arg � pair�head�tail�

then

Lvar�vartmp� paramsinner�

vartmp vars�

Obj types�

arg paramsouter
else

Lit�arg� paramsinner�

vars�

types�

paramsouter

paramsinner�vars�types�paramsouter � loop�args�

c � closure�tagclosure�new�taglambda�new���vars�types�Lapp�Lit�func� inners��
in

applymappable�maplist�closure paramsouter�C�

else

automaparray�func��arg��� � ��argn��C�

The transformation loop traverses the arguments and creates four lists from it� the inner arguments� the
outer arguments� the types and the parameters� The outer arguments are those arguments that are to be
mapped" there is one parameter for each of the outer variables� The inner arguments are made up from the
original arguments� with the mapped arguments replaced by their corresponding parameters� The types are
the parameter types of the generated lambda expression�

automaparray�func��arg��� � ��argn��C� �

if � i
 �� � �n argi � array�sizesi�elemsi�

� 	 j
 �� � �n if argj � array�sizesj�elemsj� � sizesi � sizesj
then

let

loop���� � ����������

loop�arg args� �

let

paramsinner�vars�types�paramsouter � loop�args�

in

if arg � pair�head�tail�

then

Lvar�vartmp� paramsinner�

Chapter �� The Lambda Form �	

vartmp vars�

Obj types�

arg paramsouter
else

Lit�arg� paramsinner�

vars�

types�

paramsouter

paramsinner�vars�types�paramsouter � loop�args�

c � closure�tagclosure�new�taglambda�new���vars�types�Lapp�Lit�func� inners��
in

applymappable�maplist�closure paramsouter�C�

else

error��function arguments do not match��

The automaparray function works nearly exactly like its counterpart for lists" only dimension checking is
added�

��� Top�Level Evaluation

The �top level� evaluation of a program proceeds in two steps� �rst� the program is evaluated within an
initial context� then the scheduler is applied to the resulting state� The scheduler loops and generates a
sequence of states as its output� terminating when there are no possible successor states�

����� evalprogram

evalprogram�Lprog�decl�expr�� �

let

S� � ��� ���

C� � ��� �� S��

resinit �

evaldecl�decl�C��

��Es�Ed�C��
evalexpr�expr�C�Es�Ed�time��

�res�S�� � normresult�resinit�

in

S� schedule�S��

S� is the initial empty state� It contains no reference de�nitions" its time is set to an invalid value� This
helps to implement a restriction outlined in the informal language de�nition that is not explicitly modelled
in the semantics� the decl should not change the state� i�e�� S��S�� modulo non�run�time de�nitions�

Before the expr can be evaluated� a valid initial time� is added to the context� From that moment on�
suspensions can be created�

����� schedule

The scheduler is the entity that �drives� the evaluation once the initial suspensions have been created�
The scheduler generates a list of states� There is some non�determinism involved" this is modelled in the
�probability� of Wsusp�selection�

Chapter �� The Lambda Form ��

The timing model of the scheduler is a quasi�statical one� It is assumed that all expressions evaluation in
zero time" the scheduler manages a �virtual clock� that is incremented stepwise �by advancetime� at certain
points in the schedule��
 In the generated code� an increment in time corresponds to a synchronization�
i�e� waiting for that time� It cannot be guaranteed that the real execution timing will adhere to the idealized
timing presupposed by the scheduler�

The idealization of zero�time evaluation is a necessity" the alternative would need some �real� execution
time model� Instead� the ordering of suspensions is chosen in such a way that there is a maximum of �slack�
between suspensions of di�erent time� when more than one suspension can be evaluated at a certain point
of time� the suspension with the least slack is done �rst�

The semantic function schedule does not represent this strategy explicitly" it rather gives a non�deterministic
description of all possible schedule sequences� i�e� all sequences that adhere to the timing speci�cation of the
user program� By weighting the speci�cations with a probability� the scheduling strategy is implied�

schedule�S� �

if � � tag S�tag�
 Ususps � S�tag�
 Wsusps � S�tag�
 Blocks

then

�S�

�� � tag S�tag� � Block�tag��contblocked� � S�tag�� � EvRef�v�

then

case normresult�contblocked�S��

of �obj�S�� �! S schedule�S��tag�EvRef�obj���

�� � tag S�tag� � Wsusp�expr�time�t���time�t��� � t�� �

then with a probability of ���t����

case evalthunk�expr�S�

of �obj�S�� �! S schedule�S��tag�EvRef�obj���

�� � tag S�tag� � Ususp�expr�cond�time�t���time�t���

� evalthunk�expr�S� � �true�S��

then

S schedule�S�tag�Wsusp�expr�time�t���time�t�����

else

S advancetime�S�

advancetime�S� �

decrement all time values in Wsusp

and increment the system time� generating S��

performio�S��

performio�S�

	 tag S�tag� � Event�parameters� � Oracle�parameters�

S� � S�tag�EvRef�ValueOfIO�parameters���

schedule�S��

The �rst case handles termination� which happens when there are no suspensions or blocks left� The second
case looks for evaluable blocked processes and� if it �nds some� chooses one to evaluate� The third case
looks for waiting suspensions that may be evaluated in the current time frame� From the set of possible
Wsusps� one is chosen with a probability that is inverse to its �slack�� i�e� the time range in which evaluation
has to take place� If the slack is zero� the suspension will de�nitely be evaluated� The last case looks for
suspensions that have become evaluable in the current time frame" it promotes them to Wsusp status� If
none of the cases match� time is advanced� As a side�e�ect of advancetime� the time ranges of Wsusps are
decremented� and some pending I�O operations are performed� I�O is implementation�dependent" this is

�
The �step size� is arbitrary� it is an artefact of the speci�cation that needs discrete time� Each actual implementation will
declare a smallest possible time unit�

Chapter �� The Lambda Form �

modelled by an oracle function that chooses the I�O events that are to be performed� and by the unspeci�ed
function ValueOfIO that determines the value of the EvRef that replaces an Event�

Suspensions become evaluable if their time ranges are shifted into the �now� point� or if blocks are resolved
that were caused by I�O events�

The ordering of cases introduces some sequentiality that is not strictly necessary� The Block case precedes
the general Wsusp case� since blocking suspensions are implicitly timed as �immediate�� i�e� have to be
executed in any case�

By permitting I�O only on time advances� it can be guaranteed that the set of operations accessing a single
I�O device can be controlled� The natural semantics of I�O devices is that they can �at most� produce
or consume one value per time unit" it is therefore an error if more than one value is written to a device
simultaneously" likewise� all read accesses performed at one point of time should return the same value�
These conditions are not explicitly tested for� though�

��� Discussion of Selected Problems

This section shows the problems associated with selected parts of the semantics�

����� Macros

The exact semantics of macros was not mentioned in the previous sections� In the current combination
of transformation�rules and semantic functions� macros are eliminated during the transformation from the
abstract ALDiSP program tree to the LF� As already mentioned� it would be easy to introduce a semantic
type that denotes �macro objects� as �call�by�name closures� and a primitive mk�macro that transforms a
closure into a macro� The evaluation mechanism could be modi�ed so that the functional position of an
application is evaluated �rst� In fact� such an experimental change was made to the reference implementation
of the standard semantics� Some annoying problems came up�

� What is the type of a macro�object& It is not a procedure�

� Can macros be overloaded&

� Are macro parameters typed&

� Is a macro closed over its environment& Consider the following fragment� in which the � operator is
rede�ned�
macro f�a�b� � �a�b���a�b�

func a�b � a�b

func g�x� � f�x���x���

Now� using textual expansion for macros� these de�nitions are equivalent to

func a�b � a�b

func g�x� � ��x�����x�������x�����x����

Under a macro�as�run�time�object implementation of macros� which of the ��� will be applied to the
arguments& The macro�closure will provide one de�nition for ��� �and � and ��" the closure of g will
provide a di�erent de�nition� It seems �natural� to use the g�de�nition" but then the other horn of the
dilemma presents itself� where does the de�nition of ��� come from& Since a closure environment holds
only bindings for those variables occuring free in the closure body� no binding for ��� will be found�
A static search for macro applications in the body of a closure is also impossible� because the macro
may have been given to the function as a parameter% The consequence would be that closures must

Chapter �� The Lambda Form ��

save their total creation�time environment� For a variety of reasons� not the least being the problem
of garbage collection��� this approach is unsatisfactory�

To obviate these problems� all macro occurrences are resolved by textual substitution during the transfor�
mation phase�

����� Auto
Mapping

The auto�mapping semantics in the current semantics is much simpler than the one employed in earlier
de�nitions� since it is not as general as possible� It does not include �retrys�� i�e� occurrences of more than
one mappable type amongst the arguments� when only one combination is correct� An example expression
that demonstrates such behaviour is�

let

func t�v List�x Integer� � length�v� � x

in

t�	��������	�����&��

Here� automaplist will generate a mapping

map�list���w�� map�vector���v�� t�w�v�� 	�����&��� 	��������

and fail� Under a general auto�mapping de�nition� a mapping would be found�

map�vector���v�� t�	��������v�� 	�����&��

Under the current implementation� the example expression is erroneous� This is considered a feature� Auto�
mapping incurs the pragmatic problem that it might �nd an interpretation for an application that was never
intended by the programmer��� If auto�mapping were to go to all lengths to �nd a mapping� this problem
would grow beyond need�

����� Blocking

A related problem arises from the combination of automatic dereferencing and blocking� The semantics
is infested with occurrences of deref�objs and related functions that ensue the dereferencing of strict
parameters� On the other hand� there are special case treatments for situations in which said dereferencing
is to be avoided �type�checking against Obj� for example�� The semantics would be much simpli�ed if the
programmer had to call a function �deref� whenever the value of a suspension or promises was needed�

The real problem behind the dereferencing is the blocking behaviour that follows an access to an unevaluated
suspension� For this to work� an explicit continuation of the current interpreter state has to be created and
rei�ed� Rei�cation is the process of lifting semantics�level objects into the object language� It creates a
serious follow�up problem� because there is no way to �look into� the rei�ed continuation function� it not
possible to compare two such continuation functions� and they cannot be traversed by a garbage collector�
The consequences of this problem are are expounded in section 	���

Earlier semantics did not use a rei�cation mechanism� but created suitable LF expressions that represented
the continuation expression� While that approach solved the comparability and GC problems� it blew up
the size and complexity of the semantics� and was hard to debug�

��Each closure would then bind a large number of �junk� items which the garbage collector could not dispose of�
��This might be called the �TECO problem�� when nearly any string of characters is a valid command sequence� the compiler

will not catch many errors�

Chapter �� The Lambda Form ��

����� Implementing Recursion

The de�nition of the recursion primitive fix as given be the semantics is not very e!cient� There exists a
�cheap� alterative that employs the existence of state�

evaldecl�Lfixd�decls��C� K �

let

�v��� � ��vn� � varsde�ned�decls�

�t��� � ��tn� � fresh tags
C� � C�	 i
��� � �n� ti � EvRef����

�	 i
��� � �n� vi � Ref�ti��

in

evalpard�decls�C��

��C���Es��Ed���
K�C����	 i
��� � �n� ti � EvRef��Es�� Ed��vi���

Es��Ed��

Each variable de�ned in the recursive context is given a reference as its de�nition� The reference is initially
de�ned to be �" if there is an access to it during the evaluation of the declarations� this is erroneous� Then�
all declarations are evaluated in parallel� The resulting values are then stored in the references as the �nal
values� This method has two disadvantages� Each successive access to one of the recursive values is indirected
via the reference" this costs time� A bigger problem is the increased size of the state" the state comparison
that is an expensive part of the abstract scheduler might be slowed down�

Chapter �

Transformation of the AST into Lambda Form

This chapter shows how the abstract syntax tree �AST� that is generated by the parser is transformed into
an LF program� This transformation provides for an indirect semantics of ALDiSP� since LF programs have
a de�ned meaning� and the transformation rules are total and unique�

The transformation is partitioned into one one major transformation function that generates a �rough trans�
lation�� followed by a sequence of small local transformation rules that �polish� the LF program�

The three main transformation functions Tprogram� Tdecl� Texpr and Ttype are of type

Tprogram Aprogram � Lprog

Tdecl Adecl � Ldecl

Texpr Aexpr � Lexpr

Ttype Atype � Lexpr

The transformations are speci�ed to be context�insensitive" they translate AST expressions �generated by
the parser� cf� �gure
��� into equivalent LF expressions without referring to their lexical context or other
�compile state�� This approach was chosen for simplicity� but incurs some ine!ciencies� These ine!ciencies
are removed by the post�processing phases�

These transformation functions do not take as parameters any kind of environment� continuation expressions�
or other �compile state�� Since some amount of �global� data must be collected �e�g�� the tags that identify
abstract data type constructors�� a global data base is used to store such information��

The most important post�processing step is macro expansion� It is performed by a LF tree traversal that
collects all macro de�nitions and removes them from the LF program" then all macro occurrences are
substituted� To minimize scoping problems� this happens after ��conversion� In the LF program generated
from Tprogram� all ALDiSP macro declarations have been �agged with a mk�macro primitive" each de�nition
of the form

macro a�x�y� � ���

has been transformed into

a � mk�macro�lambda�x�y�����

This intermediate representation was chosen to simplify post�processing� which has to �nd all macro de�ni�
tions� and expand all macro applications�

�This does not violate the compositional structure of the transformation� since these global information are all either sources
of unique names� or single�de�nition associative arrays�

�

Chapter �� Transformation of the AST into Lambda Form ��

Most post�processing transformations are semantic�preserving LF�to�LFfunctions� Some of them �dead�code
removal� ��conversion� detecting unnecessary casts and checks� are local clean�up optimizations that can
also be applied later in the compiler" others �lambda hoisting� macro substitution� are more expensive global
optimizations that need to be performed only once�

��� Transforming Programs� Tprogram

The top�level transformation rule is Tprogram�

Tprogram�Aprogram��ds��� � ��dsn���dr��� � ��drm��expr�� �

Lprog�Lseqd��Tdecl ds��� � ��Tdecl dsn���

Let�Texpr expr�

Lfixd��Tdecl dr��� � ��Tdecl drm����

The two declaration lists have to be treated di�erently� the �rst is to be interpreted sequentially� the second
one �representing the net declarations� is recursive� The distinction is made explicit by encapsulating
the declarations within Lseqd and Lfixd declarations� respectively� Since recursive de�nitions are more
�expensive� at the implementation level� all Lfixd de�nitions are �sequentialized� in a post�processing step�

��� Transforming Declarations� Tdecl

In ALDiSP� everything of interest is a declaration� The Lambda Form needs only one basic declaration form�
plus three declaration combinators �sequential� parallel� and recursive combination�� The Tdecl functions
have to decompose the sometimes baroque ALDiSP declaration syntax into these four declaration forms� plus
lambda and type�checking nodes� At the ALDiSP level� lexical and exception bindings are distinct forms" at
the LF level� a boolean �ag distinguishes between them� Since only two ALDiSP forms introduce exceptions
�guard bindings and parameter declaration that are quali�ed with an explicit exception keyword�� most
transformation rules set the �rst parameter of Ldecl forms to true�

����� Asimpledecl

There are basically two cases of simple declarations� overloaded and non�overloaded� To implement over�
loading� a primitive function overload is employed� overload takes two arguments that must be closures
or overloaded functions and creates a new overloaded function from them�

Tdecl�Asimpledecl�overloaded�var�expr�� �

if overloaded

then

Ldecl�true�var�Lapp��Lit�overload��

Texpr expr�

Lvar�var����

else

Ldecl�true�var�Texpr expr�

����� Aparamdecl

Declarations with parameters are hard to transform� especially in the context of recs�

Chapter �� Transformation of the AST into Lambda Form ��

At the AST level� the concept of �parametric declaration� is somewhat confused� each declaration that is
preceded by a type keyword �func� proc� type� exception� or macro� is parsed as an Aparamdecl� There is
no requirement for the declaration to have a parameter list�

An example of such a �degenerated declaration� is

func add �
�

The type keyword forces a type check" the declaration shown above is equivalent to

add � �Function�
�

A second problem area is recursion� At the ALDiSP level� a special rec � � � end construct marks mutually
recursive de�nitions� rec is only needed for mutually recursive functions� since all functions are supposed
to be recursive �in themselves�� This does not have to be handled by the Tdecl" the parser has already
encapsulated simple non�degenerate Aparamdecls into a recs�

A post�processing stage is necessary to rename �old� de�nitions of overloaded variables� Consider the case
of a simple overloaded recursive de�nition� A de�nition of the form

overloaded func f�� � �� � � � �f�� � ��� � �

has to be transformed into a cluster of de�nitions

Lseqd�� fold � f�

Lfixd��

f � overload�fold���� � �� � � �f�� � ��� � ��
��

��

so that the old name is not shadowed by the recursive de�nition� This transformation cannot be done at the
Aparamdecl level� since it depends on the context� the enclosing Lfixd can be many nesting levels removed�

The transformation rule for Aparamdecl na�#vely applies the overload primitive if the �ag is set� and oth�
erwise cares only about transforming the parameter lists into nested Lambda forms� The rule is somewhat
complicated by the fact that ALDiSP syntax allows for multiple argument lists" a Aparamdecl therefore has
as its primary argument a list of parameter lists� The auxiliary function Tparams creates one nested Lambda

expression for each parameter list�

Tdecl�Aparamdecl�overloaded�header��params��� � ��paramsn��var�expr�� �

let

�static�type�macro� �

case header

of Afunc �! �true �TypeFunction �false�

�� Aproc �! �true �TypeProcedure�false�

�� Atype �! �true �TypeType �false�

�� Aexception �! �false�TypeObj �false�

�� Amacro �! �true �TypeObj �true�

expr� � Tparams��params��� � ��paramsn��expr�
expr�� � Lcast�Lit�type��expr��Lvar�cast�general��Lvar�cast�base��

expr���� if macro

then

Lapp��Lit�mk�macro��expr����

else

expr��

in

Ldecl�static�var�

if overloaded

Chapter �� Transformation of the AST into Lambda Form ��

then

Lapp��Lit�overload��

expr����

Lvar�id���

else

expr���

Tparams����expr� � expr

Tparams��Aparam�p��t���� � ��Aparam�pn�tn�� params�expr� �

Lambda�tagnew���p��Ttype t���� � ���pn�Ttype tn���

Tparams�params�expr��

The list of header cases �lters out the type of the declared object� whether it is a macro or not� and whether
it is to be bound dynamically or lexically�

The type is used to generate an Lcheck that encapsulates the expression� If the expression is a macro� a
primitive macro is applied to the type�checked expression� The types TypeFunction � TypeProcedure and TypeType
are not mentioned explicitly in the previous chapter" it is assumed that they are present as primitive functions�
The type TypeObj is the same as Obj�

����� Amultidecl

Multiple�valued declarations are modelled via tuples that are explicitly dismembered" a declaration of the
form

�v��� � ��vn� � expr

is translated into LF code of the form
vartmp � expr

v� � select���vartmp�
���

vn � select�n�vartmp�

One new temporary variable �vartmp� is introduced for each Amultidecl binding�

Tdecl�Amultidecl�overloaded��var��� � ��varn��expr�� �

let

	 i
 ���n

selecti � Lapp��Lit�select��Lit�i��Lvar�vartmp���

decli � Ldecl�true�vari�

if overloaded

then

Lapp��Lit�overload��selecti�Lvar�vari���

else

selecti�

in

Lseqd��Ldecl�true�vartmp�Texpr expr��

decl��� � ��decln��

The select�n� t� primitive extracts the n�th element from a tuple t� selecti is the expression that extracts
the i�th element from expr� and decli is the declaration for vari�

Chapter �� Transformation of the AST into Lambda Form ��

����� Amoduledecl

Modules are implemented as functions that enclose a name space�� The encapsulated values are accessed via
an Lselect expression that uses string representation of the exported names to �nd the matching object�

The �exporti � Aexport�� � ��� phrase is used to decompose the i�th export clause�

Tdecl�Amoduledecl�varmodule��export��� � ��exportk���decl��� � ��decln�� �

let

	 i
 ���k

exporti � Aexport�oldi�newi�typei�

exprselect �

Lselect�Lvar�varnew��

��Lit�string�new����Lcheck�Ttype type��Lvar�old����
���
�Lit�string�newk���Lcheck�Ttype typek�Lvar�oldk���

��

Lit����
in

Ldecl�true�varmodule�

Lambda�tagnew��varnew�Lit�String���

exprselect�

Let�Lseqd��Tdecl decl��� � ��Tdecl decln�����

The list of exported names is transformed into a list of alternatives of an Lselect� An export declaration
Aexport�old � new � typed� exports the object declared originally as old under the new name new and imposes
the type on it� If no value is matched� � is returned�

The function string converts a variable name into its string representation�

����� Aimportdecl

An object is extracted from a module by application of its name string to the module function� i�e�

import A as B from X end

is translated into code that corresponds to

B � X��A��

An Aimportdecl is transformed into a sequence of declarations� The only complexity is the added type�
checking and the ubiquitous handling of overloading�

The �importi � Aimport�� � ��� phrase is used to decompose the i�th import clause�

Tdecl�Aimportdecl�varmodule��import��� � ��importn��� �

let

	 i
 �� � �n
importi � Aimport�overloadedi�oldi�newi�typei�

accessi � Lcheck�Ttype typei�

Lapp��Lvar�varmodule��

Lit�string�oldi�����

�An alternative method would be the use of some textual means to distinguish module scopes� Such a method is considered
for the next implementation� since it is expected that it lowers the costs and simpli�es some analyses�

Chapter �� Transformation of the AST into Lambda Form �	

accessi�� if overloadedi
then

Lapp��Lit�overload��accessi�Lvar�newi���

else

accessi
decli � Ldecl�true�newi�accessi��

in

Lpard�decl��� � ��decln�

The clauses of an import declaration are grouped into a set of parallel declarations� If the declarations were
sequentialized� no warning could be given if a name is multiply de�ned�

����� Aabstypedecl

Each datatype declaration is translated into a set of functions to create tagged tuples� to access their contents�
and to check their types� A declaration like

abstype BinTree � Leaf # ValuedLeaf�value�

Node�left BinTree�right BinTree�

introduces a set of names and objects�

� constructors Leaf� ValuedLeaf and Node

� selectors value� left and right

� a type BinTree� implemented as a predicate

In addition� the range of the is predicate has to be extended to recognize the data objects created by the
constructors� as in

func countLeafs�x BinTree� �

if x is Leaf then �

�� x is ValuedLeaf then �

else countLeafs�left�x���countLeafs�right�x��

end

This is handled via a global list of constructors that associates constructor functions with tuple tags� To make
this comparison �secure�� it becomes necessary to uniquely identify the constructors� While it is possible to
identify constructors by comparing their bodies� this is both ine!cient and error�prone� since later phases
of the compiler change the de�nitions of functions� Instead� the constructors are identi�ed with their tags �
indeed� this is the very reason for the introduction of these tags in the �rst place��

������� Parameters

A translation problem comes when constructor parameters typed� The abstype declaration can take arbi�
trary parameters� as in

abstype BinTreeOf�X� � Leaf�value X�

Node�left BinTree�X��right BinTree�X��

type IntTree � BinTreeOf�Integer�

type BoolTree� BinTreeOf�Bool�

�Once lambda� and closure�tags are introduced� they prove to be convenient in a number of places where objects have to be
sorted� compared� and cached�

Chapter �� Transformation of the AST into Lambda Form ��

How are constructors and type tests to behave& Imagine a context where the above given declarations are
visible� and the following constructors applications are executed�

x � Leaf����

y � Leaf�true�

z � Leaf������ �� error(

There are two issues here�

� is the third applications an error& There is no �instantiated type� corresponding to the constructor�
On the other hand� the type BinTreeOf�Float� can be created somewhere else �i�e�� later� in the
program�

� Should the �type� of x be di�erent from the �type� of y& That is� should the Leaf constructor be
sensitive to the type of its argument and incorporate them into the tuple tag&

If this is not done� a type test like IntTree�x� will have to traverse the entire tree to look at the types
of all nodes%

On the other hand� the Leaf constructor cannot know all possible types it will applied to later in the
program� This is especially true when predicate types occur�

In the current version of the transformation rules� the following strategy is employed�

� If a constructor takes an argument that is restricted to be of type exprT� and exprT contains one of
the parameters to the type declaration� no type restriction is built into the constructor�

� For each constructor� a test function is created that is parameterized by an argument list identical to
that of the abstype� This test function will check the types of all constructor arguments that were
dismissed due to the previous rule�

������� An Example Transformation

What follows is an example translation� in which all problem cases that might occur in am abstype decla�
ration are exempli�ed�

abstype TestType�P� � ALeaf�p� foo�P��

BLeaf�q� int�p��

The declarations generated are� in pseudo�code�

ALeaf � ��p� Obj�� �tuple�tagA�p��

BLeaf � ��q� int�p� Obj�� �tuple�tagB�q��p��

p� � ��x Tuple�tagA�Obj�� � select���x�

q� � ��x Tuple�tagB�Obj�Obj�� � select���x�

p� � overload���x Tuple�tagB�Obj�Obj�� � select���x��

p��

is�ALeaf�P��x� � x is ALeaf � foo�P��p��x��

is�BLeaf�P��x� � x is BLeaf

TestType�P��x� � is�ALeaf�P��x� � is�BLeaf�P��x�

The is function will transform into a simple tag check� e�g�

x is ALeaf

translates into

Tuple�tagA�Obj��x�

Since the constructor parameter of is does not have to be known at translation time� a global list is
maintained that associates constructor tags with their tuple types� Tuple�tag�t��� � ��tn� is the type of all
n�tuples with tag tag and component types �t��� � ��tn��

Chapter �� Transformation of the AST into Lambda Form �

������� The Rules

Tdecl�Aabstypedecl��params��� � ��paramsp��vartype��constructor��� � ��constructorn���
let

varsparams��Aparams�v��t���� � ��Aparams�vn�tn��� � �v��� � ��vn�
vars � varsparams�params�� � � � � � varsparams�paramsi�

	 i
 �� � �n
constructori � Aconstructor�idi���p��t��� � ���pk�tk���
	 *
 �� � �k

typej � Ttype tj
typeintrinsic�j�� if free�typej� � vars �' �

then

Lit�Obj�

else

typej�

typeparametric�j � if free�typej� � vars �' �
then

typej�

else

Lit�Obj�

selj � Lambda�tagnew���varsel�exprtype�tuple���

Lapp��Lit�select��Lit�j��Lvar�varsel����

declsel�j � Ldecl�true�pj�selj�

exprtype�tuple � Lapp��Lit�tupletype��Lit�tagi��typeintrinsic����� � ��typeintrinsic�n���
declsels�i � Lpard��declsel���� � ��declsel�k��
consi � Lambda�tagcons�i���p��typeintrinsic������ � ���pk�typeintrinsic�k����

Lapp��Lit��tuple��Lit�tagi��Lvar�p���� � ��Lvar�pl����
declcons�i � Ldecl�true�idi�consi�

testi � Lapp��Lapp��Lit�mk�tuple�type��Lit�tagi��

testparametric���� � ��testparametric�k���

Lvar�vartest���

�side effect add �tagcons�i�tagi� to the list�of�constructors�

testtype � Tparams��params��� � ��paramsp��
Lambda�tagnew���vartest�Lit�Obj����

Lapp��Lit�or�� test��� � ��testn����

in

Lseqd��Lpard��declcons���� � ��declcons�n�
declsels���� � ��declsels�n���

Ldecl�true�vartype�testtype���

The Tparams transformation is de�ned in the context of the Aparamdecl transformation� The primitive or is
the logic �or� function� extended to an arbitrary number of arguments�

The �list of params� is the aforementioned global structure that implements the is primitive�

����� Arecdecl

Recursive declarations can be turned directly into Lfixd forms�

Tdecl�Arecdecl��decl��� � ��decln����
Lfixd��Tdecl decl��� � ��Tdecl decln��

Chapter �� Transformation of the AST into Lambda Form 	�

In a post�processing step� recursive declarations are simpli�ed further �cf� section �������

��� Transforming Type Expressions� Ttype

Transforming a type results in an expression denoting a predicate� There are two kinds of type expressions�
function types and �everything else�� ALDiSP does not support special syntax to distinguish between type
expressions and �value� expressions" the Aexprtype is therefore needed to lift ordinary expressions into the
syntactic type domain�

����� Afunctype

This special expression models the special syntactic form �t��t� �! t��t�� that expresses the types of
functions� The transformation generates a call to the primitive mk�proctype that creates a Proc type
object�

Ttype�Afunctype��a��� � ��an���r��� � ��rm��� �

Lapp��Lit�mk�proctype��Ttype a��� � ��Ttype an�Ttypes�r��� � ��rn���

Since there are no multiple�valued functions at the LF level� a tuple type has to be created for m � ��

Ttypes��x��� Ttype x

Ttypes��x��� � ��xn�� �

Lapp��Lit�tuple�type��tagmulti�Ttype x��� � ��Ttype xn��

A special tag tagmulti is reserved for multi�return values�

����� Aexprtype

An �expression type� is an ordinary expression�

Ttype�Aexprtype�expr�� � Texpr�expr�

No check is made the expr really denotes a type value or a predicate�

��� Transforming Expressions� Texpr

The next few transformations model one�to�one correspondences between ALDiSP� and LF�expressions�

����� Avar

Texpr�Avar�var�� � Lvar�var�

No distinction is made between dynamic and lexical variable lookup at either the ALDiSP or the LF level�

����� Aapp	 Acond	 Acheck

Texpr�Aapp��expr��� � ��exprn��� �

Lapp��Texpr expr��� � ��Texpr exprn��

Texpr�Acond�expr��expr��expr��� �

Lcond�Texpr expr��Texpr expr��Texpr expr��

Texpr�Acheck�type�expr�� �

Lcheck�Ttype type�Texpr expr�

Chapter �� Transformation of the AST into Lambda Form 	�

����� Acast

Texpr�Acast�type�expr�� �

Lcast�Ttype type�Texpr expr�Lvar�cast�general��Lvar�cast�base��

The cast expression has two �invisible� parameters cast�general and cast�base� These variables de�ne
overloaded functions that implement the cast functionality� They are provided by a system library and can
be modi�ed by the user� The cast only serves as a generalized �dispatch� so that the programmer does not
have to remember the names of dozens of conversion functions�

����� Adelay

Texpr�Adelay�expr�� �

Lapp��Lit��delay��Lambda�tagnew����Texpr expr���

The primitive function �delay transforms a thunk� into a Ususp� A new� parameterless lambda expression
is generated to encapsule the delayed expression�

����� Asuspend

Texpr�Asuspend�expr�cond�t��t��� �

Lapp��Lit��suspend��Lambda�tagnew����Texpr expr��

Lambda�tagnew����Texpr expr��

Texpr t��Texpr t���

This works analogously to the delay transformation� The two tags are distinct� Both the suspended
expression and the conditional expression have to be converted into thunks� There is no syntactic check for
the types of t� and t� �they should be of type �Duration��" such tests are deferred to run time�

����� Atuple

Texpr�Atuple��expr��� � ��exprn��� �

Lapp��Lit�tuple��Lit�tagmulti��Texpr expr��� � ��Texpr exprn��

Here� the tagmulti mentioned in section ����� resurfaces�

����� Aseq

Texpr�Aseq�stmts�� � Tstmts�stmts�

ALDiSP sequences can contain both declarations and statements� Statements �i�e�� expressions� are synchro�
nized" if a statement evaluates to a suspension� further evaluation blocks until this suspension is available�

Sequences are translate into nested declarations and LF sequences�

Tstmts���� � error��empty sequence��

Tstmts�Adecl�decl� stmts� �

Let�Tdecl decl�

�Traditionally� a function that takes no arguments and is used to delay the evaluation of an expression is called a �thunk��
The origin of the term is obscure� it was possibly coined when thunks were �rst used to implement call�by�name in ALGOL�
�
�cf� ����� p� ���
�

Chapter �� Transformation of the AST into Lambda Form 	

Tstmts stmts�

Tstmts��Aexpr�expr��� � Texpr expr

Tstmts�Aexpr�expr� stmts� � Lseq��Texpr expr�

Tstmts stmts��

An alternative translation might do away with LF�level sequences and sequentialize the statements using
explicit suspensions� This was not done in ac because there are situations in which it is convenient to
generate LF sequences� In e�ect� this transformation is now done by the semantics�

����� Astring	 Aint	 Afloat	 Aconst

Texpr�Astring�x�� � Lit�x�

Texpr�Aint�x�� � Lit�x�

Texpr�Afloat�x�� � Lit�x�

Texpr�Aconst�x�� � Lit�lookupconst x�

These transformation rules do not convey the exact transformation� The string�int��oat values are injected
into the �Obj� domain� Aconst values �which are symbols just like variables� are looked up in a table of
literals� This table contains such values as �Obj� and �true�� i�e� the names of basic objects that are not
best described as primitives�

If a constant is not found in the table� it is considered to be the name of a primitive� The set of primi�
tive operations is not �xed" primitives are only looked up by the semantic function that implements their
application behaviour�

����
 Aguard

A Aguard expression has two purposes� it introduces a set of dynamic bindings� and it catches exceptions�
The bindings are modelled using normal declaration transformations� The Lcatch form models exception
handling�

To construct the Lcatch expression� the list of exception tags that can be caught is needed� This list
is extracted from the Aguard expression by searching the exception declarations for occurrences of the
application sequence generated by the return statement ��mk�exc�tag�� � ����

Texpr�Aguard��decl��� � ��decln��expr�� �

let

	 i
���n
di � Tdecl decli

tags � collect��d��� � �dn��
in

Let�Lpard��d��� � ��dn���
Lcatch�tags�Texpr expr��

collect���� � ��

collect�decl decls� �

if Lapp��Lit��mk�exc��Lit�tag��� � ���
 decl

then

tag collect�decls�

else

collect�decls�

Chapter �� Transformation of the AST into Lambda Form 	�

������ Areturn

The Areturn aborts the current evaluation and raises an exception� The exception can be parameterized with
arbitrary data values� In the semantics� exceptions are a special result type" the LF code that implements
the Areturn therefore only constructs such a value� No control �ow manipulation is needed�

Texpr�Areturn�expr��� � ��exprn�� �

Lapp��Lit��mk�exc��Lit�tagnew��Texpr expr��� � ��Texpr exprn��

The primitive �mk�exc constructs an exception value�

������ Alocal

A local declaration in ALDiSP has exactly the same semantics as a Let expression in LF� The declarations
are implicitly ordered sequentially�

Texpr�Alocal�expr��decl��� � ��decln�� �

Let�Texpr expr�

Lseqd��Tdecl decl��� � ��Tdecl decln���

��� Post�processing Passes

After Tprogram has been applied to the abstract syntax tree� a number of post�processing passes make small
changes to the LF program� Some of these passes are needed to �x problems that were not treated correctly by
the transformation rules" others are classical compiler transformations that remove nodes from the program
tree or re�arranges them to minimize execution characteristics such as time and space consumption� Not all
of these optimizations are implemented in the current version of the compiler�

There is no real �need� for optimizations at this point of the compilation trajectory� as the partial evaluator
can work on the un�optimized programs and should generate functionally equivalent code� but there are
some practical reasons for including them�

� Since abstract interpretation is much slower than standard interpretation� it is advantageous if the
program tree is pruned by removing all excess operations as early as possible�

� Debugging the later stages of the compiler is much simpler if the programs are small�

����� Implementation of post
processing steps

A general tree�walker has been written that collects the lexical environments for all variables while walking
the tree" the post�processing transformations are instantiations of this walker� A transformation rule is
applied at each matching node in bottom�up order" the current static environment is given as a parameter�
In the environment� each variable is either de�ned in terms of some expression� or marked as bound in a
Lambda parameter list�

����� Expanding Macros

After the main transformation rules have been applied to the abstract syntax tree� all macro declarations are
collected and removed from the programs� and the macros are replaced by textual substitution everywhere�
No attention is paid to name clashes� i�e�� the fragment

Chapter �� Transformation of the AST into Lambda Form 	�

g � g�

macro f�a�b� � let tmp � g�a�delay b� in h�g�a�b� end

g � g�

tmp � ��

f�x�tmp�

will be transformed into

g � g�

g � g�

tmp � ��

let tmp � g�x�delay tmp� in h�g�x�tmp� end

with all problems involved� ALDiSP macros are not meant to provide hygienic �	��
�� macro expansion�

The expansion function can be described by the local transformation function

transformmacro�node�env� �

case node of

Lapp��Lvar�x��arg��� � ��argn�� �!

if env�x� � Lapp��Lit�mk�macro��Lambda�tag���p��t���� � ���pm�tm���body���
then

retaglambdas�body�p��arg��� � ��pn�argn��
else

node

else

node

One nasty problem is solved by the retaglambdas function� if the body contains Lambda expressions and the
macro is instantiated more than once� the �nal program will contain multiple Lambda expressions with the
same tag� retaglambdas walks a tree and gives a new tag to each Lambda expression it encounters��

����� Declaration Simpli�cation

The Lambda Form has three forms of compound declarations� parallel� sequential and recursive� From
these building blocks� deeply nested declaration structures can be built� The transformation rules generate
many such �groups� that contain only one declaration" the macro�expansion even generates empty groups
�to remove a macro declaration by a local transformation� it is replaced by an empty declaration group��
One pass therefore compacts declarations" the transformation rule is as follows�

simplifydeclaration decl �

case decl of

Ldecl�s�v�e� �! x

Lpard�decls� �! simplifypard�traversepard �� decls�

Lseqd�decls� �! simplifyseqd�traverseseqd �� decls�

Lfixd�decls� �! simplify�xd�traverse�xd �� decls�

The three traverse functions merge nested declarations of the same type�

traversepard done todo �

case todo of

�� �! done

�decl todo� �!

�This approach could cause real problems if there are references to speci�c tags� but luckily these occur only in abstype

declarations� Putting such a declaration into a macro does not make much sense� since this would introduce constructors with
multiple de�nitions� These would not have a well�de�ned semantics� anyway�

Chapter �� Transformation of the AST into Lambda Form 	�

case decl

of Lpard�decls� �! traversepard �done) decls� todo

Lfixd���� �! traversepard done todo

Lseqd���� �! traversepard done todo

else traversepard �decl done� todo

traverseseqd done todo �

case todo of

�� �! done

�decl todo� �!

case decl

of Lseqd�decls� �! traverseseqd �done) decls� todo

Lfixd���� �! traverseseqd done todo

Lpard���� �! traverseseqd done todo

else traverseseqd �done)�decl�� todo

traverse�xd done todo �

case todo of

�� �! done

�decl todo� �!

case decl

of Lfixd�decls� �! traverse�xd �done) decls� todo

Lpard���� �! traverse�xd done todo

Lseqd���� �! traverse�xd done todo

else traverse�xd �done)�decl�� todo

simplify�xd views the decls as a set of declarations" it tries to separate it into two independent subsets� If
they are found� a parallel declaration consisting of two recursive declarations is created�

simplify�xd�decls� �

if � decls��decls� decls� � decls� � decls � #decls�# ! � � #decls�#!�

� def�decls�� � use�decls�� � �
� use�decls�� � def�decls�� � �

then

Lpard��simplify�xd decls�� simplify�xd decls���

else

if #decls#�� then decl�
else Lfixd�decls�

simplifyseqd looks for declarations that can be �lifted� from the sequential contexts because they do not
refer to previous de�nitions or provide de�nitions needed by the following de�nitions�

simplifyseqd��decl��� � ��decln�� �

if � i�k �'i'k'n

� def��decl��� � ��decli���� � use��decli�� � ��declk�� � �
� def��decli�� � ��declk�� � use��declk
��� � ��decln�� � �

then

Lpard��simplifyseqd��decl��� � ��decli���declk
��� � ��decln���
simplifyseqd��decli�� � ��declk����

else

if n�� then decl�
else Lseqd��decl��� � ��decln��

simplifyrecd replaces one�element Lrecd nodes by their contents�

fun simplifypard�decls� �

case decls

Chapter �� Transformation of the AST into Lambda Form 	�

of �x� �! x

else Lpard�decls�

����� Removing unnecessary Checks and Casts

During the transformation phase� some Lcheck and Lcast operations were introduced that have Obj as their
type� They can be removed safely�

removecast expr �

case expr

of Lcast�Lit�Obj��x�cgeneral�cbase� �! x

Lcheck�Lit�Obj��x� �! x

else expr

����� �
Conversion

��Conversion is the process of giving each statically bound variable a unique name� Once this property has
been achieved� it is much easier to rearrange parts of the program� since name clashes are now impossible�

Implementing the � conversion is trivially achieved by an LF syntax tree traversal that keeps track of the
lexical environment and introduces appropriate renamings� As a side e�ect� lexically unbound variables are
found� and appropropriate warnings issued when no matching exception de�nition exists�

����� Problems with Rearranging Expressions

It would be nice if preprocessing steps would be allowed to rearrange function applications� e�g� to hoist them
out of loops� to merge common subexpressions� and to remove dead code� But such transformations are not
secure� since in ALDiSP function application may have side e�ects � it would certainly be deleterious to a
program s semantics if an application of write would be optimized away or hoisted from a loop� because the
result was ignored% Likewise� rearranging the order of side�e�ects has to be avoided�

Therefore� only those changes to the program are allowed that are guaranteed not to change any side�e�ects�
Amongst the allowed transformations are�

� moving Lit expressions�

� moving Lambda expressions� they only capture parts of the lexical environment� and can otherwise be
treated as literals� i�e�� no �action� is involved in their evaluation�

� application of known side�e�ect�free primitives to arguments that are guaranteed not to be suspended�
Every other application may invoke the creation of a direct side e�ect or a Block� and

� moving declarations that contain only side�e�ect�secure expressions�

����� Lambda Hoisting

This optimization tries to move each Lambda expressions �up� to the point where it is nearest to the de�nition
of its free variables�

One place where this optimization helps is module declarations � since the declarations do not depend upon
the selector variable� they can be hoisted to the global level� More opportunities for lambda hoisting will be
mentioned in chapter ��

Chapter �� Transformation of the AST into Lambda Form 		

The implementation of lambda hoisting is much simpli�ed by the preceding � conversion�

hoist expr �

case expr

of Lambda�tag�params�expr� �!

let

lambdas � collect�lambda�expressions�expr�

defs � collect�Ldecls�expr�

varsroot � params � params�lambdas�

needsvars�vars� � �d # d
 defs� free�d� � vars �' ��
defsneed � hulltransitive�needsvars�varsroot�

defshoist� defs � defsneed
in

Let�Lambda�tag�params�removedefs�expr�defshoist��

Lfixd�defshoist��

else expr

This transformation is local to each Lambda expression� First� all occurrences of Ldecl nodes are extracted
from the body of the Lambda� Then� the set of all declarations that refer to the Lambdas parameters is
enumerated� The hulltransitive function extends the needs function so that both direct and indirect variable
dependencies will be found� The root of the dependency search consists of the variables de�ned in the current
Lambda node and those de�ned by all Lambda nodes found within the expression�

Finally� all declarations that are found to be independent from the parameters can be hoisted� The hoisting
itself is implemented by introducing a new Let node that contains a recursive sub�declaration that surrounds
the hoisted declarations� The recursivity is introduced since it is not known whether the declarations come
from a recursive context or not" due to the � conversion� the Lfixd will not �clobber names��

Further simpli�cation transformations will remove unnecessary Lfixd decls and empty Let nodes �which
occur when no hoistable declarations are found��

����� Transforming Free Variables into Parameters

If a function a has a free variable x� and each call site of a is statically known� x can be passed as an
additional parameter to a� This is possible since all call sites of a are only known when it does not �escape�
the local scope� which implies that x is visible wherever a is visible� For example� in

func b�x�y� �

let

func loop�z� � � � � x � � � loop�z�� � � �
in

loop�y�

end

the variable loop cannot escape� since it is not returned as a result� Therefore� the fragment can be rewritten
as

func b�x�y� �

let

func loop��x�z� � � � � x � � �loop��x�z��� � �
in

loop��x�y�

end

This transformation �which might or might not be an optimization� is not implemented in the current
compiler�

Chapter �� Transformation of the AST into Lambda Form 	�

����
 Strictness Analysis

Finally� there is a very ALDiSP�speci�c use of strictness analysis �SA�� SA tries to determine� for each
parameter of a function� if the parameter is accessed in all execution paths of the function� If this is the
case� the function is said to be strict in this parameter�

SA is mostly employed in lazy languages to �nd applications that can be called by value without risking
nontermination� In ALDiSP� the goal of SA is to avoid blocking� If a function is strict in all its arguments�
any suspended argument will block the function eventually� Consider

func f�a�b�c� � a����b���c�

� � �
f�����suspend � � � end�

According to the semantics� a chain of blocks will be created�

block� � ��c

block� � b�block�
block� � ��block�
block� � a�block�

Strictness analysis would infer that f is strict in all its arguments� and would represent this by introducing
types�

func f�a Strict�Obj��b Strict�Obj��c Strict�Obj�� � a����b���c�

Any application of f with a reference argument would then directly force the block�

block� � f�����suspend � � � end�

In typical DSP applications� nearly all functions are strict�

By avoiding blocks� the state space created by the abstract scheduler is minimized in advance� which reduces
both the run time and the memory consumption of the compiler�

Due to correctness problems� this optimization is not implemented in the current compiler� even if a function
is strict in an argument� it might have side e�ects before that argument is accessed�

Chapter �

Partial Evaluation � De�nitions and Known Results

Before looking into the implementation of the combined abstract interpreter and partial evaluator �AI�PE�
that is incorporated in the ac compiler� the theoretical underpinnings of PE shall be sketched out� A good
summary of the state of the art ��
��� can be found in the proceedings of the �rst workshop on partial
evaluation and mixed computation ��	�� Recent literature can be found in the proceedings of the Partial
Evaluation and Semantics�Based Program Manipulation workshops ������

The �rst comprehensive �textbook� on PE is ��	�� It is mostly concerned with self�applicable o��line partial
evaluators� These consist of extensive binding time analyses that annotate the program text with �dy�
namic�static� tags� These tags guide the following text rewriting phase that inlines and specializes function
de�nitions�

A number of de�nitions presented in the following pages are quoted from the terminology chapter of ��	��

��� De�nitions

In the following� the semantics of a language L is considered a function

L � programL � inputprogram � outputprogram

where programL is the set of L�programs� A language is therefore identi�ed with its interpreter� The
semantics of any program is given by its functional behaviour" the semantics of p �p
 programL� can be
derived by the application L p�

��� Partial Evaluation
 Residual Program

To quote from ��	��

Partial Evaluation� A process that given a program and part of its input will produce a residual
program which when executed with the remaining input of the original program will give the
same result as the original program would if it was executed with the complete input� Partial
evaluation is also called projection� Partial evaluation can be expressed by the equation

L �L mix � program� v� � � � � � vn �� � vn
� � � � � � vm � ' L program � v� � � � �vn � vn
� � � � � � vm �

where mix is a partial evaluator for the language L� A di�erent way of stating the same is that

	

Chapter 	� Partial Evaluation � Definitions and Known Results ��

resid ' L mix � program� v� � � � � � vn �

implies

L resid � vn
� � � �vm � ' L program � v� � � � �vn � vn
� � � � � � vm � �

In analogy to the residual program� there are residual functions created by specializing single functions with
respect to some parameters�

De�ned in this way� PE is a program�to�program transformation that does not change the language of
the transformed program� but only its eventual run�time costs �and the number of parameters it takes at
run�time�� Neither time nor space optimization is promised�

The most trivial partial evaluator is the identity function�

mixid � program� � v� � � � � � vn �� ' ��vn
� � � � � � vm��program � v� � � � �vn � vn
� � � � � � vm � �

��� Self�Application and the Futamura Projections

To quote from ��	��

Self�Applicable Partial Evaluator� A partial evaluator that is written in the same language that
it processes� giving the possibility of applying it to itself� Also called an autoprojector�

There are three interesting cases of self�application in PE� First described in ��
�� they are commonly known
as Futamura projections� Given a partial evaluator mixL �written in L and transforming L programs�� an
interpreter intL written in L and interpreting some arbitrary language� and a programint written in the
language that intL interprets� Then the �rst projection

L mixL intL programint ' programL

is the specialization of an interpreter with regard to the program� This equation does not mention the
run�time inputs of the interpreter �or the interpreted program��

L �L mixL intL programint� inputs ' L programL inputs

That is� an interpreter takes two inputs� a program that has to be interpreted and a set of input data for
that program��

The result of the PE is a program that has the same semantics as the original interpreted program� but is
written in L instead of the int�language� A translation has taken place� Again� it shall be mentioned that this
translation need not in any way improve the e!ciency of the translated program" this equation holds for the
identity�PE� too� It just has the opportunity to be e!cient" i�e� it is possible� but not necessary that the run�
time cost of �L programL inputs� are� for some or all inputs� lower than those of �L intL programint inputs��
Even if some costs are lower �most likely time�� others may well be higher �usually space��

The next projection is

L mixL mixL intL ' compilerL

Now� the mix specializes itself with regard to the interpreter� The result is a compiler� i�e�

L compilerL programint ' programL

where the programL is functionally identical to the one generated by the mixL intL combination� Just as the
�rst projection has the potential of optimizing the cost of running programint � this second projection can

�Formally speaking� applying the interpreter intL to a program programint results in a function that takes inputs�

Chapter 	� Partial Evaluation � Definitions and Known Results ��

optimize the cost of running the compiler� The partial evaluator specializes itself to the task of compiling
int�programs�

The third and last projection is

L mixL mixL mixL ' compiler�L

The result is a compiler�compiler� That is�

L compiler�L intL ' compilerL

Here mixL is specialized to the task of compiler�generation� There are no more projections� because a ��xed
point� is reached� Further self�applications results in the same compiler�L ��

��� Internal Specialization

ac is an application of the �rst Futamura projection� There is no separate PE and interpreter" instead�
interpreter and PE are mixed into one program� The technical details �and the motivation behind this
design decision� are explicated in the following chapters�

The PE employed in ac does not implement full partial evaluation� but merely internal specialization� as
de�ned in ��	��

Internal Specialization� Specialization of components of a system to exploit their internal contexts
of use while preserving overall system functionality�

��� On�line�O��line Partial Evaluation

Partial evaluators can be di�erentiated into on�line and o��line PEs� An o��line PE transforms a given
program without actually running it� i�e� it transforms a �passive� program image� On�line PE works by
running the program �or simulating its execution� and emitting residual code while doing so� On�line PE is
thus a special kind of abstract interpretation where abstract values are generated that contain both value
descriptors and program code� O��line PEs usually consist of two distinct phases� a binding�time analysis
�BTA�� and a specialization phase�

��
 Static and Dynamic Binding Times

To quote from ��	��

Binding Time� The time at which a variable�expression is bound to a de�nite value� In partial
evaluation variables bound �known� at partial evaluation time are called static as opposed to
dynamic� �Alternatively the terms known and unknown are used�

Binding Time Analysis� An algorithmic analysis that �nds approximations of the binding times
of variables�expressions in a program�

A simple BTA can be implemented using an abstract interpretation on a two�element data domain f�� �g�
� models the values that are statically known� � those that are dynamic� BTA becomes interesting when
partially static values have to be considered�

�Repeated self�application is indeed a measure for the quality of a PE system� An �optimal� PE should generate identical
copies of itself �modulo renaming
 upon self�application�

Chapter 	� Partial Evaluation � Definitions and Known Results �

��� Partially Static Values

To quote from ��	��

Partially Static Value� A structured value that contains both static and dynamic parts�

In ALDiSP� these structured values are mostly lists and higher�order functions� Functions are �data struc�
tures� in that they consist of �constant� code and an environment� These environments will contain bindings
to static and dynamic values� and to other functions� Annoying problems occur if partially static values can
be of potentially in�nite size �streams� recursive procedures�� Important special cases of partially static data
structures are streams� In many stream applications� constant pre�xes occur� If these are treated specially�
unwanted loop unwinding for the �rst k might occur� The opposite e�ect can also create problems� certain
optimizations might be impossible when a partially static value is approximated as totally dynamic�

��� Specialization

The specialization phase of an o��line PE surveys all function de�nitions and their call sites and either

� expands �unfolds�inlines� the function applications� i�e� substitutes a call site with the function s de��
nition�

� specializes a function� i�e� removes a parameter that is bound to a static value in an application� and
generates a residual function in which that parameter is replaced by that value� or

� leaves the function call interface as it is�

Both excessive unfolding and specialization can result in code explosion� in the worst case nontermination of
the PE�

��� Generalization

A generalization step is often performed to avoid over�specialization� the abstract values encountered in
di�erent call sites of the function will be merged so that a more general call interface is found that still leads
to the same specialized function body� The main goal here is the minimization of code space�

���� Folding�Unfolding

To quote from ��	��

Unfolding� The substitution of a name by the structure it denotes� Most often used to describe
the substitution of a function call with an instance of the de�nition of the function�

Folding� Upon recognizing that a con�guration is similar to a previous con�guration� a recursive
de�nition can be made by de�ning a function or predicate denoting the previous con�guration and
making the new con�guration into a call or reference to that de�nition� If the two con�gurations
are not exactly identical a generalized de�nition encompassing both con�gurations can be made�

Chapter 	� Partial Evaluation � Definitions and Known Results ��

While both de�nitions are formulated in a general way� the �structure� or �con�guration� nearly always
refers to functions and expressions containing function calls� They could as well refer to data structures� but
those are usually directly speci�ed by the user and less malleable��

A program transformation system written by Burstall and Darlington �

�
�� was the �rst to use the
fold�unfold operations as primitives to perform extensive program manipulation� This system established
the fact that these two transformations� together with 	�reduction �i�e� application of primitive functions��
can be combined to accomplish all possible program transformations�

Unfolding is a generalization of function inlining� Most compilers that perform inlining restrict it to very
simple functions� e�g� functions that comprise one basic block�

Folding is a generalization of common subexpression elimination �CSE�� Here� the �con�gurations� are
expressions� and the �de�nition� is the introduction of a new variable holding the value of the multiply
used de�nition� While CSE can be done in near�linear time by employing hash�consing strategies ��
���
generalized folding has a much higher complexity�

���� Fixed Points

One of the central problems of AI is the computation of �xed points �or �xpoints� of recursive functions� In
the context of PE this means the modelling of possibly nonterminating executions traces� i�e� dynamically
bound loops and recursive function calls� Since an abstract interpreter should terminate for all programs
�even programs that are nonterminating for all inputs�� a na�#ve simulation has to be aborted by a time�out
mechanism� returning an approximation to the real semantics�

The �xed point theorem suggests a direct way to compute the FP� namely o return � the �rst time a function
is called recursively� and to iterate with the result thus obtained until it does not change anymore�

Finding a �xpoint is a very time�consuming process" the worst�case complexity for �rst�order functions is
exponential in the �depth� of the abstract domain �
�� ����

���� Applying the Techniques of Abstract Interpretation to ALDiSP

The next chapters will present each of these steps� abstract interpretation� abstract scheduling� code recon�
struction� and machine code generation�

At the core of the ALDiSP compiler lies an abstract interpreter for the LF language� This abstract interpreter
works on a domain that is detailed enough for constant folding� yet abstract enough to terminate on all input
programs� The abstract interpreter is derived from the standard semantics�

The AI consists of two� largely independent� modules� To separate the �pure functional� subset of the
language from the �realtime� parts� an abstract scheduler handles the set of possible states a program can
encounter� To the scheduler� the abstract interpreter is essentially a black�box subroutine that transforms one
state into another by evaluating one suspension� The scheduler chooses which suspension when to evaluate�
and how to merge states that are similar�

To generate code� the abstract values �which are generated within the abstract interpreter� are given code
attributes� The idea is that every output value generated by the AI process has a �computational history�
attached to it� from which the code necessary to compute it can be generated� These code attributes are not
visible to the AI or the AS� i�e� they have no semantic relevance�

�In many languages� e�g� C� data structure de�nitions may not be re�arranged or otherwise changed by the compiler at all�

Chapter 	� Partial Evaluation � Definitions and Known Results ��

Based on the code attribute is the code generation� which reconstructs the program from the code attribute of
the abstract results� The reconstruction phase takes the graph of states which was generated by the abstract
scheduler� and generates� for each transformation between two states� a piece of code that implements that
transformation at run�time� This code �the Code Form� or CF is wholly disjoint from the LF code on which
the AI was run� It mostly resembles single�assignment data�ow languagess like SILAGE ����� ���� or SISAL
�����

Finally� this CF program is converted into a assembly�level output format �the Machine Language or M��
which can be translated into any imperative code needed� A sample C back�end has been written�

Chapter �

Abstract Interpretation of LF Expressions

This chapter introduces the basic mechanisms of abstract interpretation �AI�� Using an example� some
problems are discussed in detail� The example uses standard functional language notation that corresponds
to a functional subset of the Lambda Form� The example is interpreted in an abstract data domain that
utilizes interval arithmetic�

In the following� all problems related to the treatment of �state� are ignored� Chapter 	 will show how the
abstract scheduler �AS� manages the set of possible states a program can encounter� The abstract scheduler
provides the �superstructure� of the compiler" the AI is a �subroutine� of the AS� The AI can ignore the
state� since the abstract interpreter is always invoked in a context where the state is �xed� The loop detection
�cf� section ����
� ignores functions that change the state" loops that go �across states� are handled by the
state loop detection scheme that is part of the abstract scheduler �cf� section 	����

�� Goals of Abstract Interpretation

The goal of AI is� generally speaking� to acquire information about functions by executing them on abstract
data�� Information can be gathered both during the execution or afterwards� by analyzing the results�
Furthermore� both �forward� and �backward� AI is possible� forward analysis mimics the normal evaluation
function" backward evaluation starts with a result and recreates the possible execution traces that might
have generated it� Forward AI is the more �natural� approach� since it closely corresponds to normal
interpretation� Some analyses are most naturally implemented in a �backward� framework ������ The AI
employed in ac is of the �forward� kind� since it has been developed by evolutionary means� i�e� by extending
the standard semantics� Necessary �backward� optimizations are performed in separate optimization steps
�cf� section �����

Di�erent kinds of information can be obtained by AI�

� How often is a function called&

� What are its arguments&

�In �
��� the term �program point� is used for those programming constructs that are analyzed by an AI� Program points
must have a de�ned argument�result interface� For example� the entry point of a loop construct in an imperative language
�ts into this category� and an AI could determine how often a loop is entered� or which invariants hold for all loop entries�
In ALDiSP� as in most functional languages� user�level functions provide the only program points of interest� since loops are
expressed by tail�recursive function application�

�Typical �backward applications� are dead�code elimination� the related strictness analysis �
�� ����� and compile�time
garbage collection �
���

��

Chapter
� Abstract Interpretation of LF Expressions ��

� What does the call stack look like at each invocation&

� How are the arguments used& Is the function strict in all its parameters& Are some arguments never
used� or only rarely&

� How much time�space does the function s execution consume&

� Is the function recursive& If yes� is there a bound to the recursion depth&

In general� AI does not guarantee to deliver exact results� to do so would require excessive �or even in�nite�
run time� since all possible combinations of arguments to a given function would have to be simulated�
Especially in the presence of recursion� AI faces the problem of non�termination� If a possibly non�terminating
execution has to be simulated� the abstract interpreter will choose some appropriate approximation �or
generalization� to ensue termination� Such generalizations can be guaranteed to be correct� but are usually
imprecise� information will be lost�

In the context of ac� the abstract interpreter has the additional task of �computing code�� parts of the
partial evaluator are implemented within the AI framework� and each abstract value has a code component
that denotes the CF code needed to compute it at run�time �chapter � gives the details��

�� Abstract Values

����� General Remarks

Probably the most important issue in designing an abstract interpretation scheme is the choice of an abstract
value domain� There are two con�icting goals in choosing this domain�

� The size and run time complexity of the AI will be adversely a�ected by a highly re�ned abstract value
domain� It is also more work to correctly implement it�

� The precision of analysis will su�er if the abstraction is too coarse�

Each abstract value represents a set of concrete values� One method to characterize an abstract domain is
by de�ning two functions� the abstraction function and a concretization function� The abstraction function
maps the standard data domain to its abstract counterpart� the concretization function does the opposite�
The concretization function is usually a relation" i�e� abstract data objects typically represent more than one
concrete object�

The abstraction�concretization approach does not take into account that there may be �orthogonal� at�
tributes attached to the abstract value� i�e� attributes that leave the evaluation semantics of the value
unchanged� but convey �extra� information� These attributes are often inserted by primitives and�or syn�
thesized by the abstract interpreter� One example at hand is the code attribute used in ac" other possible
uses of such attributes are encoding�� storage arena�� reference count� or strictness�annotations� In the
following discussion� such attributes can be ignored�

The most simple kind of abstract value is a non�abstract value� an abstract value domain can be constructed
�on top of� the standard value domain� This approach avoids loss of information� since all completely
determined computations� i�e� all computations involving only standard values� will deliver concrete results�

The most precise abstract value domain is one that employs abstract values that represent arbitrary sets of
standard values� The standard semantics can then be directly extended to abstract values��

�Each function on abstract values can be reduced to its counterpart on non�standard values by enumerating the possible
argument sets represented by an abstract argument list� applying the standard function to each of these lists� and merging the
standard result to one abstract result�

Chapter
� Abstract Interpretation of LF Expressions �	

The problem with this general abstract value type are its implementation cost� Especially when the concrete
data domain contains non��nite types such as data structures and functions� arbitrary sets of these cannot
be represented extensionally" even �nite concrete types incur prohibitive costs �exponential in the bit�width
needed to represent an instance of the concrete type�� The run time of the primitive functions grows even
worse� since argument combinations are to be considered�

Instead of implementing all subsets of a standard domain� most AI systems employ a predetermined set
of subsets� One obvious choice for such subsets are the data types� for each type� one abstract value is
introduced to model the set of all values of this type� In the current version of ac� �general set� abstract
values are not supported�� and all abstract values either model one concrete value or all values of a data
type�

����� Domains

A domain is a set with an internal structure given by an partial ordering relation ��v��� i�e� a relation that
is re�exive� antisymmetric� and transitive� A domain is a complete partial order 	CPO
 if there is a smallest
element �� For the purposes of abstract interpretation� the data domains of a programming language must
be CPOs��

The ordering relation is conventionally interpreted as �a v b� i� �a is less de�ned than b�� The �most
de�ned� value �if it exists� is denoted by the symbol � ��top��� the �least de�ned� value is � ��bottom���

Abstract interpretation is a process in which the least upper value for an expression is computed� If the
expression is recursive �as in the case of a recursive function application�� an iterative process is needed
to approximate the value� Starting with a ��rst guess� of bottom� each iteration step will improve the
approximation� Formally speaking� �improving� means that each new approximation is �at least as de�ned
as� the previous one� The top element� if it exists� is a trivial solution for each expression �with no information
content whatsoever��

Such an approximation process will be shown in the example of section ��� in detail�

����� Basic Domain Constructions

Any set S can be interpreted as a domain having the minimal ordering relation �'� �the equality relation
is also called the discrete ordering��

Any domain S can be turned into the CPO S� by providing a distinct element �S and de�ning the ordering
as

	 x � y
 S� � x vS� y � x vS y � x ' �S �

I�e�� in addition to the ordering derived from S� each element is less than the newly introduced �S� Such a
S� de�nition is known as lifting the domain S� If S is a set� S� is called a �at domain�

Analogously� the domain S� has the extra element �S with

	 x � y
 S� � x vS� y � x vS y � y ' �S �

Combining these two constructions� S�� can be de�ned as

	 x � y
 S�� � x v y � x vS y � x ' � � y ' �S �

In many abstract interpretation applications� �at domains are all that is needed� In denotational semantics
for programming languages� domains with more internal structure are necessary �e�g�� to represent �rst�order
functions or recursive data structures��

�An earlier version provided them only for very small sets �less than four elements
 and for sets that could not be generalized
to a common data type more speci�c than ��

�The restriction to CPOs is only necessary if recursive structures have to be given a semantics�

Chapter
� Abstract Interpretation of LF Expressions ��

����� Basic Examples

There is some confusion as to the interpretation of semantic domains in terms of sets� especially where the
top and bottom elements are concerned� Some of this can be cleared up by looking at some simple domains�
and by considering the rules used to combine domains�

�

�

�a�

�

T F

�

�b�

�

� � � � � � MAXCARD

�

�c�

Figure ���� �a�
�point domain �� �b� ��point domain Bool� �c� �MAXCARD(
��point�domain Card

The most trivial useful domain �depicted in �g� ��� �a�� consists of just two values� � and �� This domain
is simply called ��� The domain � is often employed when only one relevant characteristic of each construct
is of interest �e�g� in data��ow analyses such as strictness analysis��

The simplest domain that includes �real� values and the complete set of � and � elements is the boolean
value domain

Bool ' fT �Fg�
�

' f��T �F ��g

�cf� �g� ��� �b��� In the approximation process of the abstract interpreter� these values are used as follows�

� � � bottom� a value without any properties�

� T � this is the value of an expression that� if it terminates� evaluates to T �true��

� F � this is the value of an expression that� if it terminates� evaluates to F �false��

� � � top� a value that means �both T and F��

That is� � combines all properties of the values �below� it" in contrast� � has none of the properties of the
values �above� it� It is important to note that during a �xpoint computation� all approximation steps go
�upward� �toward top�� but never �downward� �toward bottom���

Practically speaking� � and � convey about the same amount of information �we don t know what the actual
value is�� but due to this directedness of values� a bottom�valued expression still holds the promise of �nally
being approximated to a distinct value �T or F �� In contrast� a top�valued expression cannot be �lowered�
anymore�

�The domains � �the empty set
 and � �containing only �
 are quite useless�
�This is really the basic idea of the �xpoint theorem� If the domain of values is of �nite height �the longest ��path between

bottom and top is of �nite length
� and all functions are monotone� a �xpoint for any value exists and can be found in a �nite
number of steps�

Chapter
� Abstract Interpretation of LF Expressions �

To use a di�erent example� we can re�interpret the Bool domain� instead of boolean values� T and F can
be used to model even and odd numbers� Then � is a number which is �neither even nor odd�� T describes
any number that is even� F describes any number that is odd� and � describes any number that is �both
even and odd��

Domains can often be interpreted as �power�sets� Under such an interpretation� � is the empty set� T the
set of even numbers� F the set of odd numbers� and � the set of all numbers�

The last example is Card� a �at cardinal domain consisting of a set of numbers ���MAXCARD� together
with � and � �cf� �gure ��� �c��� It is explicated just like the boolean domain� � stands for the number
without any properties �i�e�� the empty set�� each number stands for itself �i�e�� a singleton set�� and � stands
for the number that merges the properties of all other numbers �i�e�� the set of numbers�� If we interpret
each element as a set� the partial ordering is nothing but the subset�relation�

����� Union of Domains

Two or more domains D����Dn can be �merged� to a domain C by de�ning new top and bottom elements
�C and �C� and by de�ning�

	 x
 Di �i � � n� � x vC �C � �C v x
	 x � y
 Di �i � � n� � x vDi

y � x vC y

This corresponds to the union operations on sets� The de�nedness�relations within the Ci domains are left
untouched� and values from Ci are incomparible with values from Cj �assuming i �' j��

In such a hierarchic domain structure� the di�erent top� and bottom�values appropriate a meaning with �ner
distinctions� Now� each �Di

conveys some �type information� which �C doesn t contain� Likewise� �C has
lost the �type� that each �Bi

contains�

�int

� � � � � � MAXCARD

�int

�bool

T F

�bool

�

�

Figure ��
� Union Domain Bool(Card

Figure ��
 depicts the merging of the domains Bool and Card�

����� The Ideal Abstract Domain and its Subsets

Assuming a given data domain Obj taken from a language semantics� the ideal abstract object domain AObj

is de�ned as the powerset of Obj � i�e� AObj ' �Obj � Because jObj j tends to be quite large �often even in�nite�

Chapter
� Abstract Interpretation of LF Expressions
�

for nontrivial type systems� AObj is even more so" thus it is generally impossible to represent all possible
elements of AObj � either explicitly or implicitly� A simpli�ed abstract object domain AObj

simpl has to be used

instead� Having this in mind� all abstract domains can be viewed as predetermined subsets of AObj �

Figure ��� shows an ideal abstract domain structure for the ��value data domain Card���� The top element
corresponds to the set f�� ��
� �g� the bottom elemeent to the empty set� Elements of this domain could be
represented by ��bit bitvectors�

Note that there are no distinctions made at the level �below� the one�element abstract values� While it
is possible to mirror the structure �above� the one�element level� there is no need for it� The two basic
operations that create abstract values are

� injection of data values �this creates one�element abstract values�� and

� �nding the least upper bound of two or more values �this �merges� the arguments into a value �higher
up� in the hierarchy��

The bottom value itself is sometimes injected as a special� unique constant that initializes approximation
chains �and serves as a default value for erroneous computations��

For larger data domains� the ideal abstract domain cannot be e!ciently represented� In the case of ���bit
numbers� each abstract value would be represented a �kbyte bitvector� Even worse� arithmetic primitives
would take a time at best proportional to the number of bits� at worst proportional to the squared number
of bits �in the case of binary operations��

Obviously� non�trivial data domains call for simpli�ed abstract domains�

�

����� ����� ����� �����

��� ��� ��� ��� ��� ���

� � � �

�

Figure ���� Ideal Abstract Domain �Card�� �

One practical approximation employs ranges�

AInt
range ' f�a� b�ja� b
 Int � a � bg � f���g�

A range object �a� b� is interpreted as the set fx jx � a � x � bg� An integer n is represented as �n� n��
� and � need not be extra elements� � can be interpreted as the �unique� empty interval� and � as the
interval �MinInt �MaxInt ��

Chapter
� Abstract Interpretation of LF Expressions
�

Likewise� an abstract representation of the IEEE�	�� real numbers

Float ' fm � � n j m
 Intmantwidth� n
 Intexpwidthg � f(������� �NaN g

could be made using values from the domain

AFloat
range ' f�a��b� j a� b
 Float � a � bg � f���g�

This direct range domain has some small problems� namely ranges involving the �unreal� numbers f(��
��� �� � NaN g� It might be better to split up the Float domain and de�ne

Float � ' fm � � n j m
 Intmantwidth� n
 Intexpwidthg

AFloat �

range ' f�a��b� j a� b
 Float � � a � bg � f(������� �NaN g � f���g

There is a pitfall in designing abstract domains� especially when numbers are involved� one could argue that
there are values of special interest that ought to be handled separately� e�g� the set

Frac ' f n
m
j n�m
 Intg

or even things like

Frace ' f n
m
e j n�m
 Intg

Frac� ' f n
m

 j n�m
 Intg

By adding such abstract values� though� one can easily create situations in which the abstract interpretation
will show a di�erent behaviour than the standard interpretation due to di�erences of rounding and precision�	

Using AObj
ranges instead of AObj s results in a loss of precision� but one can usually adapt the approximation to

the needs of the application� In the context of abstract interpretation� such a loss takes the form that the
actual result is less precise than the optimal result� i�e� resoptimum v resactual�

����� Size of Domains

Many applications� most notably strictness analysis and binding time analysis �mentioned in ����� can achieve
signi�cant results using only the most primitive of domains� the
�point domain ��

One motivation behind keeping domains small is the expense incurred by complex abstract domains� imple�
menting the primitive functions becomes an arduous and error�prone task� and the time needed to compute
�xpoints may grow exponentially in the �depth� of the domain�
 �Depth� here means the length of the
longest ����chain of abstract values� For example� the AInt��

range�domain of ranges over ���bit�values has a
depth of � �� � since

�� � � � � ��� � � � � ��� � � � � � � � � ��� �� � � � � ��� �� � � � � � � � � ��� �� � � �� � � �

	Similar problems occur whenever �oating�point expressions are reordered or otherwise �optimized� at compile time� Only
a few of the standard algebraic transformations are valid on �oating�point numbers�

Most functions that occur in practical programs do not behave exponentially under iterative approximation� On the other
hand� even linear growth can be quite su�cient to make AI impractical�

Chapter
� Abstract Interpretation of LF Expressions

The most simple abstract value domain in which sensible computations can be performed is probably that
of basic types� for each distinct type in the domain� one abstract value is introduced� For the following
examples� we could de�ne

Bool ' fTrue� Falseg
Int ' f MININT � � � � �� � � � � � � � � MAXINT g
Obj ' Bool (Int

AObj
basic ' Obj � fanInt� aBoolg � f���g

Here� the depth of the domain is ��

	 x
 Objint � � � x � anInt � �
	 x
 Objbool � � � x � aBool � �

A more precise approximation could be one oriented along machine types�

AObj
machine ' Obj � fBit� Byte� Word� Long����g

with Bit � aBool and a depth of 	�

	 x
 f� � �g � � � x � Bit � Byte � Word � Long � �

A good compromise between e!ciency and precision� and the one employed by the abstract interpreter in
ac� is a domain built around the bit�widths of numeric values�

AObj
width

' Obj � fInt�n�jn
 � � � � maxwidthg � fCard�n�jn
 � � � � maxwidthg � faBool����g

����� Sources of Abstract Values

Where do the abstract values come from& It is certainly impossible for a source program to contain abstract
literals� and all non�side�e�ect operations taking concrete arguments deliver concrete results���

There are three sources of abstract values�

� Side�e�ecting operations� especially input functions� In ALDiSP� a primitive function like read� applied
to� e�g�� a Cardinal��"��port� will return an abstract value representing all possible unsigned ���bit
values���

� Type annotations� If a function is annotated with explicit argument types� that information can be
used to synthesize abstract values� This approach is used when abstract interpretation is done on a
function�by�function basis� i�e� when not all call points are known in advance� In a framework that
supports separate compilation� an abstract interpreter will have to use such a strategy for all functions
that are �exported��

��With the possible exception of non�deterministic functions like random�� or choose��� Since no such function is part of the
ALDiSP de�nition� this can be ignored�

��For the purpose of equality tests� such a value should be annotated with a �source� attribute� e�g� �the value of input port
x at time t�� In ac� this is implied by the atom�code attribute �cf� section ���
�

Chapter
� Abstract Interpretation of LF Expressions
�

� Manually inserted values� Some experimental partial evaluators are targeted at manual intervention"
a lot of the published work belongs to this class�

In ac� input primitives are the sole initial source of abstract values� The program is abstractly interpreted as
a whole" libraries are �linked� by textual inclusion of their source� so the possible call points for all functions
are known at compile time� The abstract interpreter is not visible to the programmer��� therefore manual
intervention is not needed�

�� An Example

Consider the well�known example function

func fak�n� �

if n��� then �

else n�fak�n���

end

and how the AI may process it� For a start we assume that the AI works with an abstract domain of booleans
and integer intervals�

Aexample ' f�a� b� j a � b � a� b
 Intg � ffalse� true� aBoolg � f���g

Let fak be called with the argument �������� i�e� some unknown value between � and ���� inclusive�
Evaluation starts o� with the comparison ����������� which reduces to aBool� What is the if to do&

����� Abstract Conditionals

When the test of a conditional expression does not evaluate to a concrete result� all possible branches covered
by the abstract selector must be evaluated� and the results must be merged��� Abstract values are merged by
applying the concretization function to them� building the union of the resulting sets� and �nding the �best
approximation� from the domain of abstract values� i�e� that abstract value which maps to the smallest set
of standard values of which that union is a subset� For example� merging ���
� and ���� ��� would result in
��� ���� Other values� e�g� ���
� 	
� or �� would be as �correct�� but needlessly imprecise� In the context of
the partial order of the domain� the merge operation corresponds to the least upper bound �lub� on domains�
i�e� the least de�ned value from which ���
� and ���� ��� are specializations� The least upper bound is denoted
by the in�x operator �t��

While the basic idea behind the treatment of conditionals is obvious� there are a number of practical problems�

In the example� both branches of the if must be evaluated� � evaluates to the singleton interval ��� ��� and
n�� evaluates to ����

��

Here� the �rst problem emerges� In real execution� n�� can never evaluate to ��" this is consequence of the
test n��� being false in the else path� The abstract interpreter has ignored this precondition� What are
the consequences of this �loss of information� &

fak will be called recursively with arguments

����

�� ��
�
��� ���� ������ ��� ���������� ����
��
�� ���

��It might� however� be visible to the library writer� The library can communicate with the compiler by employing primitive
functions that directly manipulate the abstract interpreter heuristics� or that depend upon the compilation state�

��While determining the set of possible branches is trivial in �Lcond� expressions� it becomes interesting in the case of
�Lselect� expressions and numeric range abstract values�

Chapter
� Abstract Interpretation of LF Expressions
�

When evaluating ������������ �and all following comparisons�� the result will be false� the AI will not
terminate on fak���� ������� while the standard interpretation of fak terminates after a maximum of ���
recursive calls�

This is one consequence of information loss� terminating loops may become non�terminating�

What happens if the abstract interpreter is smart enough to �split� the abstract value of n in the di�erent
execution paths of the if& The initial value of ��� ���� can be split into ��� �� and ��� ���� so that fak is
called with ���

�� ���� ������ ��� �� and safely terminates� Now the merging starts� because for all n� ��� n�
merged with ��� �� is ��� n�� the merges with ��� �� can be ignored� The result of the call chain will be
��� ������
����� ���������� ����� i�e� ��%� ���%�� This is� indeed� a perfect result � not quite as good as possible�
because the range representation denotes
���
�
 � ����� numbers while there are but ��� possible �real�
results� but the best we can hope for within the context of the chosen abstract domain�

A �splitting� mechanism would thus be a very good thing to incorporate in the AI" its implementation�
though� is � in general � impossible� There are two reasons for this� �rst� the inverse function of a predicate
has to be computed� If we allow arbitrary recursive predicates and in�nite domains� this is impossible� If
we restrict ourselves to �nite domains� the inverses can be computed� but not necessarily represented� an
ideal abstract domain would be needed for this� In practice� this second problem is far worse than the �rst
one� at least in DSP programming� conditions tend to be simple comparisons and non�recursive predicates�
But even the most trivial predicate �comparison against a literal� can easily create splittings that cannot be
represented by an abstract domain of consecutive subranges�

It can therefore not be assumed that a splitting device exists� Since an abstract interpreter will always
need some safety mechanism to stop runaway loops � after all� a source program may contain a �genuine�
nonterminating function� and an AI should terminate on any input �� we assume that some kind of loop
detector guards all function calls�

����� Loop Detection � Finding Fixed Points

In ALDiSP and most other functional languages� loops can only occur through recursive function calls�
It is therefore guaranteed that any looping path of control has to pass at least one function application�
A loop detector installed at the �apply� point can therefore preempt all nonterminating behaviour� thus
guaranteeing the termination of the abstract interpreter�

We assume that the loop detector decides that fak�����

�� is su!ciently �similar� to the still un�nished
evaluation of fak���� ����� to call it a loop�

The abstract interpreter therefore aborts the further evaluation of fak���� � �� �� and returns at once with
a �faked� return value� �� the empty result set� � is chosen as the initial value� since it is the �weakest� or
�least de�ned� approximation to the real� as yet unknown� result�

Evaluation continues with the � operator� ��� ���� � � is de�ned as �� This bottom�preserving behaviour
is one of the foundations of the semantic machinery" it can also be derived from the de�nition of abstract
values via sets�

The evaluation of both arms of the if is now �nished� the results are combined� �t ��� �� ' ��� ��� since �
is the neutral element for t�

Thus ends the �rst attempt to determine the value of fak���� ������ The result� ��� ��� is somewhat dis�
appointing� But the process can be iterated% The crucial step� returning � as the value of fak�����

���
was only a �rst approximation � now� ��� �� can be returned �since we think that ��� ���� is �similar� to
����

�� we assume that fak���� ����� is also similar to fak�����

���" this is still not the �correct� result�
but better than �� ��� ������ ���� is ��� ����� The approximation continues� the next cycle delivers ��� ����
as result of fak�����

��� ��� �������� ���� is ��� ������� Now we see why the �depth� of the abstract value

Chapter
� Abstract Interpretation of LF Expressions
�

domain must be �nite� if there is no upper bound to the size of an integer �and thus to the depth of the
domain�� the approximation will not terminate� The domain can be restricted to �nite depth by a number
of means� As far as numeric representations are concerned� the base domains are �nite in practice� so the
introduction of an upper limit �MaxInt� makes sense� Any �left or right side of an� abstract result exceed�
ing this is transformed to �an interval containing� MaxInt� Primitive operations are closed over this system�
e�g� ���MaxInt�����MaxInt� is ���MaxInt�� The fak example would then return an abstract result of ���MaxInt��

The result ���MaxInt� is a �xed point of the fak function� assuming

	 x
 Int�� � f �x � �' �� � MaxInt �

it can be veri�ed that

	 x
 Int�� � �if x ' � then � else n � f �x � � � end� � �� �MaxInt �

If there are only �nite approximation chains� approximation by iteration is guaranteed to �nd a �xed point
in �nite time�

����� Speed

The mere existence of a �xed point does not help very much if the approximation takes a long time because
it consists of too many steps � say� ��� ��� ���
�� ������ � � �� ��� MaxInt�� While it is encouraging to know that
the partial evaluator will eventually stop� it is pragmatically unsatisfactory if there is no small upper bound
to the number of iterations it takes�

The computation of �xed points is of a complexity exponential in the depth of the abstract domain����
Methods of speeding up the iteration process are described in the literature� It is usually quite easy to �nd
a safe approximation to the �xed point" if the domain contains a top element ���� this element is such an
approximation� But of course� no knowledge at all is gained by this approximation� � models �any result��

A practical way to compute the �xed point of a function � indeed� the approach taken by ac � is to switch
to a �coarse� abstraction when too much time has been spent on a call� The �coarsest useful� abstraction
level is that of �implementation types�� i�e�� the types that correspond to basic machine representation
categories�

The heuristic that is implemented in current interpreter �to be more speci�c� in the similargroup function"
it de�nes the similarity measure and generalization of groups of argument lists� works as follows� if a certain
depth of the call stack is exceeded� the argument lists are generalized to their basic types� This threshold
is usually set to values between � and
�� If all arguments are already at the level of basic types� or if a
second threshold �usually set to ���� is exceeded� the arguments are generalized to �� Thus termination is
enforced�

����� Generalizing the Argument Lists

The example� as explained above� did include some hand�waving� what is the legitimation of using the result
of fak���� ����� as an approximation for the result of fak�����

��& There is none� because a crucial step
has been left out of the example� namely argument generalization� The loop detector believes to have found
a loop when there is a call to a function f with an argument list �a� � � � � � an �� when another call to f with a

��The exponential worst�case complexity is for �rst�order functions ���� �

�� the situation for higher�order functions is even
worse�

Chapter
� Abstract Interpretation of LF Expressions
�

similar argument list �a �� � � � � � a
�
n� is already on the call stack� The approximation process returns an answer

for

f �a� t a�� � � � � � an t a�n �

i�e� for both calls� the one at hand and the one in the call stack� Since it is always correct to replace an
abstract value a by an abstract value a� if a v a�� it is correct to re�run the approximation process� On
each run� the argument domain may become less speci�c �since the initial argument list is generalized each
time�� but a �xed point will eventually be found�

����� Conclusion of the Example

These two mechanisms� handling of conditionals and �nding �xed points through iterative approximation
and generalization� are su!cient to convert a standard semantics interpreter for a �rst�order language into
an abstract interpreter� Sections ������� will show special problems that do not emerge in a �rst�order�
statically�bound function like fak���

�� Implementing the Loop Detector

The presence of a loop detection scheme is probably the most important di�erence between a simple and an
abstract interpreter� As already mentioned� such a scheme is based on a function application cache���

The call cache keeps track of all applications of closures� Only closures have to be considered� since appli�
cations of primitive functions and arrays cannot give rise to looping behaviour� and overloaded functions
are eventually reduced to closures� For each application� the call cache has to know the argument list� the
current state and the exception environment� State and exception environment can be handled as �implicit
arguments� to a function call�

Each call in the cache is marked as either �open�� �closed�� or �approximated�� The call cache can be
described as a partial function

CallCache � func
 args
 context � status

with

status ' fundefined� open� closed�result�� approx�result�g

The undefined status is only needed to make the CallCache function total�

When a function is �rst called with a given list of arguments� it is marked �open�� The call is �closed�
upon return from the function" the return value can� but need not be� memoized� A loop is detected
whenever a function is called with a set of arguments for which it is marked open� The call cache can either
be implemented as a global data structure maintained by side�e�ects� or in a more functional manner by
keeping track of the �current call stack� in the interpreter� The latter approach� while being more elegant
and general� has some drawbacks�

��In typicalDSP programs� nearly all of the programcode consists of �rst�order function de�nitions� and all but an insigni�cant
amount of the actual run time is spent in these functions� The example can therefore be treated as representative�

��It is interesting to ponder a design that lives without such a cache� One viable alternative is to integrate the �xpoint
operator �cf� sec� �����
 into the loop detection scheme� The �xpoint operator is usually considered as a device that �ties a
knot� into the environment structure� It can also be understood and implemented as a function that generates new incarnations
of a recursive function by need� A �xpoint function that knows about the argument and result types and keeps track of its the
previously generated sibling incarnations can then replace the actual code of the function body with a call to a matching� already
generated incarnation� There is still a small residue of the call stack� but it can be localized in each function�s �xpoint operator
incarnation� An implementation with known and �xed strategies and heuristics might employ such a integrated approach to
semantics� loop detection� and code generation� For the present implementation� which is rather experimental and open with
respect to new heuristics and strategies� this approach was considered too complex and not �modular� enough�

Chapter
� Abstract Interpretation of LF Expressions
	

� each interpreter function has to be extended to handle an extra parameter �but that can be incorporated
into the catch�all �Context��

� there is the danger of a �space leak�� the call cache is easily the biggest data structure constructed
during the AI� If it is kept functional� old copies of it might be kept around far beyond their needed
lifetime� Even with call cache implemented by side�e�ects� the AI consumes vast amounts of space
�single runs easily allocate �� Mbyte�" a functional cache could only worsen allocation behaviour�

Since most of the contents of the call cache are needed anyway by the code reconstruction phase �cf� chapter
��� the cache can as well be held as a global data structure�

����� Na��ve Loop Detection Schemes

First a �na�#ve� loop detection scheme is presented� It is capable of handling direct loops correctly and
e!ciently�

The call cache is assumed to be globally accessible and modi�able with the � operator� The iteration control
is given as an extension to the standard semantics� The function applyclosure of the standard semantics is
renamed to applyclosure�standard� and a new applyclosure is de�ned to be

applyclosure�f�args�C� �

case CallCache�f�args�C�

of open �! CallCache�f�args�C� � approx����
result���S�

approx�r�

closed�r� �! r

undefined �! CallCache�f�args�C� � open�

applyapprox�f�args�c�

applyapprox�f�args�C� �

r � applyclosure�standard�f�args�C��

case CallCache�f�args�C�

of open �! CallCache�f�args�C� � closed�r��

r

approx�a�� a � r �! CallCache�f�args�C� � closed�r��

a

approx�a�� a �' r �! CallCache�f�args�C� � approx�r t a��

applyapprox�f�args�C�

When a looping function is called the �rst time with a new set of arguments� its call cache entry is unde�ned�
A new entry is marked as open� and the standard application is computed� If a second call with the same
arguments happens during this �open� state� an initial approximation ��� is entered into the cache� and the
evaluation aborts with this value� All succeeding looping calls will directly return the approximation value�
without changing the cache�

Upon return from applyclosure�standard� the call cache status is inspected� If there is no change �i�e�� the
entry is still marked �open��� no loop has been detected during the application� and no approximation is
necessary� the cache can be closed� the result memoized and returned�

If there is an approx entry� that entry has to be compared with the actual result �r�� If they are identical�
the approximation is stable� and the entry can again be closed� If the approximation is not stable� the
new approximation is merged with the old one� and applyapprox is called again� No generalization of the
arguments lists �as described in section ������ is necessary� since a loop is only detected upon total argument
matches�

Chapter
� Abstract Interpretation of LF Expressions
�

����� Problems with the Na��ve Scheme

For several reasons� the recursion approximation scheme presented in the previous section is unable to cope
with all programs�

������� Not Enough Generalization

The biggest problem is the treatment of �near misses�� i�e� small variations in the argument lists� Take� for
example� the �FindFirst� function� which �nds the index of the �rst occurrence of a value in a vector�

func FindFirst�obj Sample�vec Vector�Sample�� � �� this aldisp function

let �� will really tax a

func loop�i Card� � �� naive loop scheme

if i !� sizeOf�vec� then ��

�� vec�i� �� obj then i

else loop�i���

end

in

loop���

end

Assume that the size of the vector is not known at compile time� i�e� that it is input dependent" then
i !� sizeOf�vec� will evaluate to �aBool� every time� Under the na�#ve scheme� the abstract interpretation
of the loop function will never terminate� since loop is called with a di�erent argument �����
�� � � � each
time%��

If the vector size is statically known� the na�#ve scheme will lead to a total unrolling��	

A simple solution to this problem consists of performing a �generalized comparison�� i�e� to replace the

case CallCache�f�args�C�

of � � �

in applyclosure with a

if � args� similar�args��args� � CallCache�f�args��C� � � � � then � � �

The similarity relation can be de�ned in terms of a generalization function�

similar�args�args�� �

#args# � #args�# � 	 i
 ���#args# generalize�argsi� � generalize�args�i�

One obvious choice for a generalization function is the �base type� function� Two argument lists would then
be considered similar when their corresponding elements are of the same base type�

������� Too much Generalization

But it is not enough to replace the equality test with a similarity relation� after all� we want some level of
loop unrolling in the abstract interpreter% Consider the function

��The interpretation will not even stop at ��� or ���� since the literal ��� is not typed� the counting will therefore be done
in in�nite�precision arithmetic�

�	This proves to be catastrophical in practice� since the abstract interpreter will most likely exceed the resource limitations
of the system it runs on� if not in time� then in space� In ac� unrolling up to � or � iterations seems to be reasonable�

Chapter
� Abstract Interpretation of LF Expressions

func pow�x�n� �

if n �� � then �

�� n �� � then x

else

let

pow�xx � pow�x�x�n div ��

in

if n mod � �� � then pow�xx

else pow�xx � x

end

end

end

A function like pow is a prime target for inlining� since the second argument is often known at compile time�
and unrolling removes most of the �expensive� code �division and modulo� comparison and conditional��

A call to pow with known second argument� e�g� pow�x�%�� should later expand to CF code �cf� chapter ��

� pow�xx�� � x � x

pow�xx�� � pow�xx�� � pow�xx��

pow�xx�� � pox�xx�� � x

pow�xx�� �

but under a similarity relation based on generalization to base types� no such unrolling would occur� On most
target architectures� the generalized code will be much more expensive than the unrolled �i�e�� specialized�
version� To facilitate unrolling� the loop detector should only be triggered when some depth of recursion is
exceeded� To accommodate this� the applyclosure function has to be extended to handle groups of arguments
lists�

if � args��� � ��argsn 	 i
 �� � �n CallCache�f�argsi�C� � open

� similargroup��args�args��� � ��argsi�� ! match�threshold then � � �

similargroup can be built as an extension of the similar predicate" it should take into account the size of
the set to be compared� On a large set� the pressure to �nd a loop is bigger� and a more general similarity
predicate can be used than on a small set� As a limit� if an exact match is found� a set of size
 is large enough
for the similarity to become ���� If the set is beyond a certain size �say� ����� strong generalization �up to ��
can be allowed� While no realistic program will have a need for ��generalization �i�e�� generalization beyond
the basic�type level�� its presence guarantees that AI eventually �nds a loop in all recursive functions��

������� Mutual Recursion

What happens if two or more functions call each other recursively& Consider the case of simple mutual
recursion� as exempli�ed by the even�odd example�

func even�n�� if n �� � then true

else odd�n���

end

func odd�n� � if n �� � then false

else even�n���

end

When even is called with an abstract argument� the ensuing call stack will consist of alternating applications
of even and odd� The �xed point �nding mechanism may be triggered at the k�th call to even� for some

�
This is not a guarantee that the AI as a whole terminates� since the set of possible functions is not �nite� By generating
new functions �i�e�� closures
 on the �y� nontermination is still possible� A second source of nontermination lurks in the implicit
de�referencing� which can cause loops not caused by recursive function applications�

Chapter
� Abstract Interpretation of LF Expressions ���

k depending upon the internal structure of the abstract value bound to n and the heuristics employed by
the similarity predicate� In each iteration of the �xed point �nder� odd will be called� and a value will be
returned� Since that value will only be an approximation� it would be erroneous to store it in a �closed� call
cache entry �CCE� for odd" if this were done� following iterations might be aborted before encountering the
new approximation� It is therefore necessary to ��ush� the call cache of all entries that were constructed
during an approximation iteration�

After the iterations have found a �xed point� the CCE for even will be closed" its code attribute will refer
to a CCE for odd� which is also closed� and which is de�ned in terms of the �recursive� CCE of even� odd

might even be inlined� since it does not refer to itself� but only to even�

������� Multivariant Specialization

Some functions can have two or more specializations� A specialization is characterized by an argument set
for which more e!cient code can be generated than for other argument sets� Consider this transformation
of the even�odd example into one function with a boolean parameter��

func eo�n�eflag� �

if eflag then if n �� � then true else eo�n���false� end

else if n �� � then false else eo�n���true� end

func even��n� � eo�n�true�

func odd��n� � eo�n�false�

An application of even� or odd� to an unknown n will result in recursive calls that can be specialized in
two distinct ways� since eflag is always known� code has to be generated for only one of the forks of the
if eflag condition� That is� specialization should generate the original even�odd function pair� since the
eflag parameter can then be dropped� To facilitate such multivariant specialization� the generalization
strategy must avoid merging the eflag position of a generalized argument list to aBool� In an abstract
domain that consists only of literals and base type values� this would be no problem� since every third
recursive call to eo would be an exact match in any case" but in a generalization that employs a more
detailed abstract value hierarchy �e�g� interval arithmetic�� a match might occur only after a recursion depth
� ��

Since the similaritypredicate employs the generalization function anyway� it makes sense that it also generates
the appropriate generalized argument lists� similargroup is then of type

similargroup �Argument list� Set �! Similarity � �Argument list�

Similarity � ��� � ���

The similarity relation might then detect that the elements of a subgroup of the argument lists are more
similar to each other than to the other argument lists on the stack is� and return generalized arguments for
that subgroup only�

������� Restarting Approximations

In the na�#ve loop detector described in section ������ the �rst iteration started on the �way back� from the
point where the loop was detected� This is not possible in a generalized scheme� since an arbitrary number
of recursion steps� some of them unrelated �e�g� through multivariant specialization� to the looping function�
may reside on the call stack� The generalized scheme therefore does a restart from the beginning each time

��This example is obviously ine�cient� When the loop detector is applied to the optimized variation
if n		� then eflag else eo�n���not eflag� end� multivariant specialization does not gain anything� The example was cho�
sen for its simplicity only� As for most �optimizing� program transformations� there is no guaranteed win in multivariant
specialization� In �real�world� cases� candidates for multivariant specialization can often be found by looking for array index
parameters used with a constant stride or o�set�

Chapter
� Abstract Interpretation of LF Expressions ���

a loop is detected� Also� all open calls that are �between� the entry point of the loop and the point where
the loop was detected have to be removed� since they would only pollute the cache� and misguide the loop
approximation of other functions�

How can the �restart� be implemented& One possibility is to store the continuation of each application in
the open call cache entry� Restarting can then directly be modelled and implemented as call to the �restart
continuation�� This approach has two problems�

� Memory consumption� each open entry would contain the whole state of the abstract interpreter at
the point of applyclosure� Garbage collection �of the underlying SML run�time system that supports
the data structures of the abstract interpreter implemented for ac� would be unable to remove such
old interpreter state� Manual removal of �dead� open entries would become necessary� since in many
ALDiSP programs� functions change state between loop iterations� For such functions� apply loop
detection is subsumed by the state loop detection implemented in the scheduler�

� How is the �current continuation� accessed& The whole semantics would have to be re�written if the
applyclosure needs an explicit continuation parameter� Implicit continuations are not supported by
the semantics� Even if they were� SML�NJ has a call�cc primitive� but it is not part of the SML
standard� and would render the compiler non�portable�

To circumvent these problems� ac resorts to a strategy dubbed in�band signalling� since the �control infor�
mation� is encoded within the �data stream�� upon encountering a loop� computation is aborted and a loop
exception is returned� Each CCE is now uniquely tagged and the loop exception contains the tag of the CCE
from which the loop originates� The originating CCE is determined by looking for the �earliest� entry among
those that are found to be similar� To make this operation possible� the CCE tags are time�stamped� Each
apply function� upon recognizing the loop exception value� either invalidates its CCE �if the tag doesn t
match�� or restarts the computation �if it does match��

����� Generalizing Loop Detection

The following loop detection semantics contains all the changes described in the previous sections� The
similarity relation is assumed to be speci�ed in terms of the generalization function� No assumptions are
made about the generalization function�

The call cache is now indexed by tags" it is of type

CallCache � Tag � �Function
 Arguments
 Context
 Status� � fundefinedg
Status ' fopen� closed�Result�� approx�Result�g

The applyclosure�standard function is now supplied as an extra parameter to the loop detector� which has been
renamed call� The new de�nition of applyclosure function �which models the actual implementation used
in the compiler� is�

apply�f�args�C� � call�f�args�C�applyclosure�standard�

By providing the actual �primitive� application function as a parameter to the call and loopapprox functions�
the loop detector can be speci�ed and implemented within a separate module� This enhances modularity
and simpli�es testing� since di�erent �strategies� can be attached to the same abstract semantics�

Chapter
� Abstract Interpretation of LF Expressions ��

call�f�args�C�applyfn� �

if � tagapprox CallCache�tagapprox� � �f�argsapprox�C�approx�r��

� similar�argsapprox� args�

then

CallCache�tagapprox� � �f�argsapprox t args�C�approx�r���

r

else

if matchdegree ' matchthreshold then

tagnew � newtag���

CallCache�tagnew� � �f�args�C�open��

res � applyfn�f�args�C�

case res

of exceptionloop�tag�argsgeneralized� �!

if tag � tagnew then

loopapprox�applyfn�f�tag�C�argsgeneralized���
else

CallCache�tagnew� � undefined�

res

else

CallCache�tagnew� � �f�args�C�closed�res���

res

else

exceptionloop�Min�Tbestmatch��argsgeneralized�

where

�matchdegree� argsgeneralized� � similargroup�args� argss��� � ��argssk�
Tbestmatch � �tb��� � ��tbj� � Maxsimset��

T�

T��tag��� � ��tagn�
where

	 i
 �� � �n CallCache�tagi� � �f�argsi�C�open�

simset��ts��� � ��tsk�� � simdegree
where

�simdegree� argsgeneralized� � similargroup�args�argss��� � ��argssk�

The call function �rst looks for call cache entries that match the function to be applied and the current
context �state and exception environment�� If there is such an entry� and it contains an �approx�result��
value� evaluation aborts with the stored approximation result � The approx value is compared to the current
argument list using the simple similarity relation� If the application is aborted� the argument list of the
approximation is generalized by being merged with the current argument list �cf� section �������

If no approximation is in progress� the matchdegree is computed� First� the set T of all �tags of� call cache
entries that might be part of a loop is determined� This set consists of all open applications of the current
function within the current context� For each subset of T� i�e� for each element of �T� the simdegree is
determined" the details are deferred to the similargroup function� The subset with the best �'highest�
degree of similarity is chosen as Tbestmatch� If this maximum similarity exceeds the matchthreshold� a loop is
detected� and the exceptionloop is returned� This exception contains two values� the generalized argument
list of argsgeneralized and the CCE tag that corresponds to the loop entry point� To determine this tag� the
CCE tags have to be ordered in �time�� i�e� in order of their generation� The �earliest� tag in Tbestmatch

corresponds to the entry point�

If no approximation is in progress and no loop is detected� a new CCE tag is allocated� the current arguments
and context are entered into the call cache� and the function is applied using the applyfn� If the result is
not exceptionloop� the call cache entry can be closed�

If the application s result is of the form exceptionloop�tagentry�args�� a loop has been detected further

Chapter
� Abstract Interpretation of LF Expressions ���

�down� the call cache� and tagentry denotes the �CCE tag of the� loop entry point� If tagentry does not
match the current tag� the current entry must be discarded� and the exception handed up as result� If the
tag matches� the iterative approximation process as speci�ed by loopapprox starts�

loopapprox�applyfn�f�tag�C�argscurrent�rescurrent� �

let

	 t
 Tags�CallCache�

if t ! tag then CallCache�t� � undefined�

CallCache�tag� � �f�argscurrent�C�approx�rescurrent���

resnew � applyfn�f�argscurrent�C�

�f�argsnew�C�approx�rescurrent�� � CallCache�tag�

in

if argscurrent �value argsnew
� rescurrent �value resnew
then

CallCache�tag� � �f�args�C�closed�resnew�� �

resnew
else

loopapprox�applyfn�f�tag�C�argsnew�resnew�

loopapprox takes �ve paramters�

� the semantic function that implements the application �applyfn��

� the LF function for which an approximation is to be found �f��

� the tag that identi�es the call cache entry which is the �root� of the approximation process �i�e�� the
�rst application of the function with the generalizable argument set��

� the current evaluation context �C��

� the argument list that was used to compute the last approximation �argscurrent�� and

� the result value that was generated by the last approximation �rescurrent��

The behaviour of the approximation loop is determined by the convergence of argument list and result
approximation during the iterations� If the results of two successive iterations have the same semantic value�
and if the argument lists have not been generalized by that last iteration� a �xed point has been found�
and the call cache entry can be closed� Note that the abstract values will not be identical� since non�value�
bearing attributes like atom�code may change" only the semantic contents of the values and argument lists
are compared� This is indicated by the �value comparison operator�

����� Concrete Arguments

Calls containing only concrete arguments deserve special attention� Especially in the context of numerical
applications� optimal compilation requires large amounts of compile�time computations� The FFT algorithm
provides a good example� it employs twiddle factors �complex roots of �� that are input�invariant and should
therefore be tabulated in advance� A typical �speci�cation�style� algorithm of an FFT algorithm might not
describe the twiddle factors as a table of literals� but will simply employ the arithmetic expressions that
de�ne them� It is up to the compiler to decide which values can and should be tabulated in advance� and
how to organize them�

Especially when computing the trigonometric� exponential and special functions� standard methods heavily
depend on iterations to re�ne their approximate results� The similarity predicate used by the loop detector

Chapter
� Abstract Interpretation of LF Expressions ���

func fragment��� � func fragment��� �

let let

x� � fak���� x� � fak����

x� � fak���� x� � fak����

x� � fak���� x� � fak����

in in

x��x��x� x��x��x�

end end

Figure ���� Two program fragments

should not consider these loops as �similar�" otherwise one of the main goals of the compiler �freeing the
user from explicit loop unrolling� will not be met�

The similargroup function employed in ac is tuned to avoid these problem� It di�erentiates between concrete
and abstract values� When comparing small groups� non�equal concrete values are treated as being di�erent"
only in larger groups� comparison is done by base type�

����� Evaluation
Order E�ects

Due to the stack depth limit�triggered generalization process� a new phenomenon occurs� the evaluation
order in�uences the precision of the abstract interpreter�

Consider the approximation behaviour of the function fragment� from �g� ��� in the context of a loop
detector that aborts after a recursion depth of
� �which just happens to be the generalization threshold��

The computation of x� would be approximated� since the call depth of �� exceeds the loop limit� The result
would be anInt � and a call cache entry mapping fak�anInt� � anInt would be established� The subsequent
calls to fak would therefore hit the cache and return anInt � too�

Now consider the re�ordered sequence in fragment��

The computation of x� has a depth �
� and will therefore terminate with a concrete value� Furthermore� ��
call slots will be �lled with the results for fak������fak����� The computation of fak���� will therefore hit
the cache at fak���� and terminate� Likewise� the computation of fak���� will hit the cache at fak�����
and deliver a concrete result�

As the example shows� both the precision and run time of the abstract interpreter depend upon details of
the evaluation history� This is not a problem that concerns the correctness of the abstract interpreter� but
its e�ciency and precision � and the e!ciency of the �nal generated code�

�� ALDiSP�speci�c Problems

����� State and Side E�ects

A problem that has been ignored up to now is the state� While the matching of calls against call�cache entries
is determined by an arbitrary similarity function for the argument lists� exact matches are required for the
function and context� What happens when a recursive function changes the context �either by performing a
side e�ect� or by changing the exception environment�& This happens rather often� e�g� in stream�processing
functions�

func streamFromPort�p aPort� � read�p� streamFromPort�p�

Chapter
� Abstract Interpretation of LF Expressions ���

which� by auto�mapping� expands to the equivalent of

func streamFromPort�p aPort� �

let

x � read�p�

in

suspend x streamFromPort�p�

until isAvailable�x�

within ��� ms� ��� ms

end

The answer is that this function is not considered recursive at all% That is� it does not call �itself�� since it
only returns a closure that contains a reference to it� After all� the suspend form expands to a �suspend

primitive function� which installs a closure as a suspension �cf� sections ����� and ������� To totally mix up
ALDiSP� LF� and the semantics�

func streamFromPort�p aPort� �

let

x � read�p�

in

applyprimitive��suspend�

�� ��� x streamFromPort�p�

� ��� isAvailable�x��

��� ms� ��� ms��

end

Equivalent things happen to all side�e�ecting functions� since each side�e�ect results in a synchronization�

����� Promises

Still there are the �non�real� side e�ects� namely promise evaluation and reference lookups� which must be
coped with� Accessing previously evaluated references is a side e�ect that does not modify the state and
can therefore be ignored safely� Evaluating promises is somewhat problematic� since a promise should only
be evaluated once� The brute�force method of guaranteeing this is to treat a promise like a specialized
suspension� i�e� to block the evaluation until the promise is available� The scheduler is then extended to
handle promises specially� by preferring them and not advancing the time� The actual implementation
employs explicit update and dereference primitives to model promises" this is explained in detail in chapter
����

����� Recursive De�nitions

Fixpoint detection happens at two places in the abstract interpreter� The preceding discussion described
the actual application of a recursive function object to a given set of abstract argument values� A di�erent
problem is the creation of the recursive function in the �rst place% The semantics �cf� section ������ assumes
a semantic primitive fix that computes the �xpoint of any function� This fix is then applied to the
semantic function that computes an environment from a set of declarations� The direct iterative approach
of implementing fix has a severe performance problem� even in the best possible case� the evaluation of the
declaration set takes place at least twice� In worst cases� fix can cycle forever � e�g�� when encountering a
de�nition without a �nite �xed point� such as
rec

ones � cons���ones�

end

Even some simple cases for which a �xed point exist can cause problems� For example� the evaluation of

Chapter
� Abstract Interpretation of LF Expressions ���

rec

ones � cons����delay�lambda��� ones��

end
does not terminate� each incarnation of the lambda�� will have a di�erent lexical environment� i�e� the
variable ones will be bound �rst to �� then to the pair ���Promise�n�� � then to the pair ���Promise�n(
��� � and so on� Since unique promises are generated in each iteration� equality can not be guaranteed by
the �value comparison employed in loopapprox�

This e�ect is circumvented if the �tag counter� of promises is reset on each iteration of the fix function�
since the same unique tags will be allocated for new promises �if the iterations are structurally equivalent�
i�e� if promise and suspension tags are allocated in the same order�� The need to explicitly reset the counter
is a consequence of the side�e�ecting nature of tags" if the tag counter would be carried along as a part of
the context� it would be reset automatically� since the context of the iterated applications stays the same�

There exists an alternative method of implementing recursive environments� which is based on mutable
cells��� In the semantics of LF reference values can provide this service� A de�nition like that of ones would
then be evaluated as if it were of the form
n � fresh�tag�� �� allocate tag

updatetag�n��� �� define reference n with some initial value

ones � ref�n� �� preliminary value of
ones�

ones � cons���ones� �� i�e�� cons���ref�n��

updatetag�n�ones� �� final value of reference n

����� Exceptions

The exception environment is part of the context of evaluation� Most functions do not re�de�ne any excep�
tions� but at least in theory� it is possible to change the values of exceptions within loops� Currently� no
special treatment for such cases exists" i�e� the loop detector detects changes in the exception environments
and treats them as unequal values� but it does not attempt them���

����� Function Values

Higher�order languages pose a special problem for an abstract interpreter� they allow treating functions as
values� Function values are notoriously hard to handle� since even the most basic operations are not de�ned
on them� for example� it is � in general � impossible to compare functions for equality�

The most immediate problem is exempli�ed by the following example�

func f�x��y� � x�y

func g�x��y� � x�y

func h�x� � if x!�� then f�x����

else g�x��%�

endif
The if expression delivers a value that denotes one of two functions� When called with a non�concrete
argument for x� the abstract interpreter has to �nd the least upper bound of two functions� In the ALDiSP
type hierarchy� there is a type �aFunction� that denotes all functions� but an abstract value that would
denote only �any function� cannot be considered precise enough� since any application of it would have to
return a � result� including a �top state� � something which the current abstract interpreter is unable to
handle���

��It is not necessary that the cells be arbitrarily mutable� it is enough that they can be updated once� The cells have an
initial value of �� which is then replaced by a more speci�c value� I know of no language that supports such an update concept�

��This is another possibility to drive ac into non�termination�
��The state is not a data object� but a heterogenous collection of data objects maintaind in semantics�level data structures�

To allow abstract states �and� much more useful� partially abstract states
� a type �State�Obj� would have to be introduced�
While possible in theory� this was considered too much trouble�

Chapter
� Abstract Interpretation of LF Expressions ��	

There are a few approaches to merging function�valued objects�

� Arbitrary sets� as explained in the beginning� the most general abstract value concept is that of sets
of arbitrary values� As long as these sets stay small� using them is possible� Nothing forbids sets of
function�typed values�

� On�the��y code generation� when the functions that are to be merged take the same number of
arguments� a new function can be generated� In our example� this would correspond to a transformation
of the function h into�
func h�x� � ���tmp��

�if x!�� then f�x����

else g�x��%� endif��tmp��

If the functions do not take the same number of arguments� as in

func a�x� � � � �
func b�x�y� � � � �
� � � if � � � then a else b endif � � �
they can be overloaded�

func a�x� � � � �
func b�x�y� � � � �
� � � �overload�a�b� � � �

A conditional is not necessary to distinguish between the di�erent cases" the di�erent arities are
su!cient to disambiguate any application of the overloaded result function�

� Closure generalization� if the functions that are to be merged are di�erent closures derived from the
same lambda expression� only their environments di�er� Since environments are bindings of variables
to abstract values� they can be merged� A new closure tag has to be allocated for this merged function�
so that the components can be specialized separately� A problem of this approach is that code has to
be generated that implements the operation

closurenew � if cond then closuretrue
else closurefalse

end

This cannot be directly represented in the back�end representation� since closures are not represented
as �rst�class values� They are instead modelled as environment tuples held in a global table� and
indexed by the closure tag� To model the conditional closure assignment� a new primitive must be
introduced� for example

�conditional�copy�closure�tagnew�tagt�tagf�cond�

� Preprocessing� purely syntactical local transformations can remove some occurrences of this problem
in advance� This amounts to recognizing some typical special cases�

As there exist only a �nite number of lambda expressions in each program� the �closure generalization�
approach can be taken to its extreme by writing an �over�function� that encompasses all other functions�
Its �rst argument would be a selector that indicates the function to be computed� For an example� consider
the three functions

func f�a� � g�a����

func g�b� � h�b����

func h�c� � c���

They can be merged into one function that takes an extra selection parameter�

Chapter
� Abstract Interpretation of LF Expressions ���

func fgh�x��abc� �

if x���f� then fgh��g���abc����

�� x���g� then fgh��h���abc����

�� x���h� then abc���
���

There are some problems due to the handling of di�erent arities� but these can be avoided by using tuple
values instead of argument lists� or by �lling up all argument lists with dummy arguments�

The implementation of ac implements function merging by on�the��y code generation� Attempts to merge
functions of di�erent arity are �agged as errors�

����� Generalizing Numeric Types

In ALDiSP� numeric types are parameterized with their width� A consequence of this is that the �base
type� of a numeric literal is not unique� For example� ��	� can be an nBitInteger of any width � �� or
an nBitCardinal of any width � �� For the similarity measure that is built into the loop detector� this
raises the question whether type matches have to be exact or not� For example� are nBitInteger�%� and
nBitInteger�"� to be considered �nearly the same�& If this is the case� is nBitInteger�%� �nearly the
same� as nBitInteger������& The current implementation demands exact matches on numeric types� but
has special provisions for literals �cf� section �������

����� Raising and Catching Exceptions

Exception values in ALDiSP are bound dynamically� When an exception is raised and returns� it �travels
up the call stack� and is caught at the �rst matching guard declaration� Since there is no explicit call stack
in the semantics� the diverse semantic functions have to cooperate to achieve this e�ect� At the LF level�
the ALDiSP guard construct has been separated into an exception�environment declaration and an Lcatch

expression�

While it is easy to implement the exception binding behaviour � it su!ces to introduce an extra environment
component into the context� together with the appropriate primitive functions � the raising and catching of
exceptions creates some problems�

In the standard semantics� raised exceptions are modelled by exception�tag � obj � state� tuples� All semantic
rules cooperate by checking all sub�results for exception�ness� These checks are implemented in the derefobj
function� Only the Lcatch form can transform exception tuples into �real� results�

In the abstract interpreter� these exception tuples cannot be treated like ordinary values� Extending the
abstract value domain with special forms exceptionOrValue�tag � obj � state� realValue� would indirectl re�
introduce �general set� abstract domains with all the related e!ciency and termination problems� since
multiple exceptions require exception value sets� An expression such as

switch��Int���� c �

of case � ����

case � raise Overflow����

case � raise Round��$�����

case � raise StupidExample��Gotcha
��

end
would have to be represented by listing all three possible suspension tags� plus their di�erently typed and
sized tuples�

It hardly makes sense to complicate the very basics of the abstract interpreter just to guarantee a correct
handling of exceptions��� Instead� a �hack� is used�

��Exceptions will hardly occur in the inner loops of realistic real�time code anyway� they are mostly needed to deal with
one�time initialization and I�O problems�

Chapter
� Abstract Interpretation of LF Expressions ��

First� whenever an exception value is merged with a �real� result value� it is treated like � and completely
ignored�

A �catch� expression is treated almost like an identity function by the abstract interpreter� but the return
value is generalized to its base type� This follows from the premise that an exception handler will return a
value of the same type as that which would be returned if no exception had occured�

The abstract interpreter thus behaves as if dynamic occurence of an Lcatchmight actually catch an exception�
The result is generalized� since there is no information available about the caught object� It can be assumed
that the caught object has the same basic type as the �regular result�� so a simple generalization up to the
base type su!ces� The generalization is needed for correctness� as can be seen from the following example�

guard if x'!� then stop�x� else �� end

in stop�x� � return x

end

If the guard were treated as an identity function� the result would be �� regardless of the value of x� Because
of the generalization� an Integer��� is returned���

A more sophisticated strategy can be implented by keeping track of a global �exception state� indexed by
the exception tags� Upon encountering an Lcatch� the respective slots �of the exceptions that can be caught
by it� would be cleared" the �mk�exc primitive would store the state and object of the exception in its slot� so
that a type�safe merge can be done upon return to the Lcatch� In the case where no exception has occured�
no generalization is necessary� If more than one exception for a given slot occurs� the respective objects have
to be merged�

��There is a small problem in this example� the type of x should be used to determine the type of ��� since the latter is a
literal and therefore of �malleable� type�

Chapter 	

The Abstract Scheduler

The �imperative� aspects of ALDiSP programs are de�ned in terms of a state model in which a global
scheduler controls which suspensions to evaluate and when� The scheduler also controls all I�O operations�
It determines the order of suspension evaluation as well as the relation of this order to the virtual time� The
scheduler is part of the compiler" it has no access to the actual execution times�

The scheduler exerts its control of time by issuing time�advance state transitions� In the code that is later
emitted� each time�advance is translated into a wait instruction that is intended to synchronize the instruction
stream with a real time clock� All I�O operations are performed at points of time�advance � i�e� all I�O
events that have accumulated between two time�advances are performed simultaneously at the latter one�
Each time�advance is therefore a synchronization point�

The abstract scheduler di�ers from the standard semantic scheduler in in that it also introduces renamings
between similar states at di�erent points of time� and thus collapses the tree of all possible state transitions
into a �nite graph� The set of state transitions that form the edges in this graph is later used to provide the
�skeleton� of the emitted code �cf� chapter ���

��� Suspensions and other Schedulable Entities

The standard semantics of the scheduler is given in section ��	�
� as part of the de�nition of evalprogram�
Here� its implementation shall be outlined�

In the ALDiSP language model� suspensions themselves do not occur as semantic entities of computation�
Instead� references to suspensions are employed� References �or reference objects� for they form a subset of
the domain of values Obj � have multiple uses� they may also refer to blocks� promises� and events� The state
consists of a set of de�nitions for these references� In the current implementation� there are the following
types of reference de�nitions �semantic domain RefDef ��

� An Ususp is an unevaluated suspension� The evaluation of a suspend form �in LF the �suspend

primitive function� generates a reference that has a Ususp de�nition�

� A Wsusp is a waiting suspension� It contains a �time frame�� i�e� information about the interval of
time during which it has to be executed� When the scheduler determines that the condition part of an
Ususp has become true� it is transformed into a Wsusp� Each following time�advance decrements the
�time frame counters� in all Wsusps�

� An EvRef is an evaluated reference� i�e� a value� After a Wsusp �or an Uprom� has been evaluated� an
EvRef holds the result�

���

Chapter �� The Abstract Scheduler ���

� A Block is the result of a blocking access to a reference� Blocks can be treated as special cases of Ususps
that have a condition of the form isAvailable�x� and a time frame of ������ Blocks di�er from all
other reference de�nitions in that they contain semantics�level continuations instead of parameterless
closure objects�

� A Uprom is an unevaluated promise� The �rst access to it forces its evaluation� generating an EvRef�

Besides these �computational� reference values� there are pseudo�suspensions used to model I�O� These have
the form Event�device� kind � obj�� The device names the register or port that is accessed by the event� The
obj is the object to be written� or �in case of a read or test operation� a dummy� There are three kinds of
event�

� An Input event is generated from primitive functions like readPort� If the input device is a register�
the input is performed at the next time�advance" inputs from a port device are performed at arbitrary
times�� After the event has been performed� the Input is replaced by an �EvRef pointing to an�
abstract input value� Until then� all accesses to the �reference pointing to the� Input will block�

� An Output event likewise models an output� i�e� a true side e�ect� Output to registers is performed at
the next time�advance" output to ports may wait for an arbitrary amount of time� The return value of
an Output event is a dummy" it can be used �using the isAvailable primitive� to detect whether the
output transaction has been performed or not�

� A Test event tests the accessibility of a port" it evaluates to either true or false without blocking�
While such a test could be modelled by a non�blocking primitive �since the accessibility of an I�O port
is a property of a given state�� it is better modelled as an event so that the decision is lifted to the
scheduler level�� In the abstract scheduler� such a decision will �fork� the set of successors to a state
into those in which the test return true and those in which it returns false�

The core of both the standard and the abstract scheduler is the succs function that� given a state A�
computes the set of all its successor states�

Depending upon the contents of a state� none� one� or a large number of the following state transitions may
be used to derive a valid successor state�

� An Ususp with condition evaluating to true can be advanced to a Wsusp�

� An Ususp with condition evaluating to aBool can be assumed to return either true or false�

� A Wsusp with a timing interval that includes the current point of virtual time can be evaluated� If the
upper limit of its timing interval is �� it must be evaluated before the next time�advance� since �now�
is that last chance to evaluate it�

� Time can be advanced" all pending Input� Output� and Test events are then performed� This may
generate more than one result state� if there are asynchronous events present� for which the actual
execution time can not be determined at compile time�

The only real restrictions imposed on the scheduler are that Ususps should be advanced to Wsusp status
as early as possible �otherwise� the speci�ed timing interval starts too late�� and that no time�advance is
possible when there is a Wsusp that must be scheduled at the current point of time�

��Arbitrary� means that the programmer has no guarantee about when the event is performed� I�O that employs asyn�
chronous registers is transformed into non�deterministic state transitions� when a state contains k asynchronous events at the
moment of its time�advance� there will be �k successor states with all di�erent combinations of performed�still pending events�

�Otherwise� each abstract time�advance would have to create �n successor states� where n is the number of I�O ports that
are referenced anywhere in the program� With Test events� these states are constructed on�demand�

Chapter �� The Abstract Scheduler ��

��� Non�Determinism

There is a lot of non�determinism in the abstract scheduler� especially where the evaluation of Wsusps is
concerned� When a Wsusp has a non�point range� i�e� a range of the form �m � � �n��m � n� it may be
evaluated at n�m

�t
points of virtual time �where the time is assumed to be quantized by some duration 	t��

Furthermore� even if all ranges in a program are point�like� there may be situations in which more than one
Wsusp can be evaluated at one point in time� so that the scheduler has to choose an order�

It would be nice if a program that has a well�de�ned I�O behaviour� i�e� in which no to output operations
have overlapping performance intervals� would act the same regardless of the ordering that the scheduler
imposes on it� Non�deterministic programs that do not employ I�O are however simple to write� Consider
the following expression� which may return either � or ��

let

s� � suspend � until true within ��� ms� ��� ms end

s� � suspend � until true within ��� ms� ��� ms end

in

suspend if isAvailable�s�� then s� else s� end

until isAvailable�s�� or isAvailable�s��

within ��� ms� ��� ms

end

end
It would be possible to let the scheduler enumerate all possible states� A later phase could then� guided by
a cost function� choose a particular execution path� and warn the user about non�deterministic behaviour�

The problem with such an exhaustive approach to non�determinism is the size of the state space� it would
grow rapidly� If the program is I�O deterministic� the growth is less than exponential� since there are
�synchronization points� at which similar states will be merged together again�

An example is shown in �g� 	��� which graphically represents the state graph of the following program��

func demo�� �

let

s� � suspend � until true within %�� ms� ���� ms end

s� � suspend � until true within %�� ms� ���� ms end

s� � suspend � until true within %�� ms� ���� ms end

in

suspend

demo��

until isAvailable�s��

or isAvailable�s��

or isAvailable�s��

within %�� ms� ���� ms end

end
The scheduler can choose between any of the suspensions s�"s�"s� at �rst and any of the remaining three
afterwards� Scheduling sequences like s�"s� and s�"s� lead to the same result � s� and s� evaluated� the
others not evaluated � and can be shared� This sharing is expressed via a renaming ��loop�� transition�

��� Sequentializing the Schedule

A lot of the non�determinism can be eliminated at compile�time by choosing an �arbitrary� scheduling order�
This early ordering minimizes the �fan�out� of states� and thus cuts down the size of the state graph� The

�The state space diagram was generated directly by ac via the �graph option� The output is a graph description that was
layed out afterwards by the GraphEd tool with minimal manual intervention�

Chapter �� The Abstract Scheduler ���

state1

state0

state18

state17

state16

state6

state8

state7

state5

state10

state9

state4

state12

state11

state3

state2

state14

state15

state13

root

updt

loop

eval/15

adva

eval/13

eval/14

loop

loop

eval/12

eval/14

eval/14

loop

eval/12

eval/13eval/13

eval/12

eval/12

eval/13

eval/14

advaloop

updt

loop

Figure 	��� Non�Determinism and Merging in a State Graph

Chapter �� The Abstract Scheduler ���

state graph takes on a more linear form� and contains only those forks that are a semantical necessity�

In the current implementation� the transitions are sequentialized by the following rules�

� If there are evaluable Blocks� they are evaluated� Otherwise�

� If there are advanceable Ususps� one is choosen and advanced� Otherwise�

� If there are evaluable Wsusps� one is chosen to be evaluated�� Otherwise�

� If there are assumable Ususps� one is assumed �with two result states�� Otherwise�

� If there are no Ususps or Wsusps at all� there are no successors �and this part of the state tree termi�
nates�� Otherwise�

� Time is advanced�

The only non�determinism left is in the �assumptions� of Ususps with an unknown condition� and the I�O
assumptions that are introduced when asynchronous I�O is performed during the time�advance�

��� Garbage Collection

States can be garbage�collected at compile time� Garbage collection �GC� disposes of objects that are guar�
anteed not to be used by any future computation� GC does this by computing a conservative approximation
to this set of �unneeded objects�� it enumerates all objects that are structurally accessible ��alive�� from
a known set of �roots� which are part of the current program state� and eliminates all objects that are
inaccessible ��dead��� The objects of interest when garbage collecting an ALDiSP state are the reference
de�nitions�

The roots� i�e� the references that are assumed to be �alive�� are

� all Input�Output�Test events

� all Ususps�

� all Wsusps

The only references that may be removed by the garbage collection because they can become inaccessible
are thus EvRefs and Uproms�

Garbage collection is a necessary prerequisite for successfully �nding loops� since it removes �old� EvRefs
that would� without GC� accumulate� Without this trimming� states would grow over time� and never be
considered similar by the state loop detector� since the no structural correspondence would be found for the
�dead� EvRefs�

States that contain Blocks cannot be garbage collected� since a block encloses an opaque interpreter state�
which may address arbitrary references� This is another reason to minimize the number of Blocks generated
by the abstract interpreter�

�This greedy scheduling of Wsusps can be replaced by a randomized placement strategy with a command�line option�
�Only Ususps that have a condition that can possibly evaluate to true at some time are really roots� Since this condition

cannot be tested� it is ignored� One way to bring ac to its knees is therefore to produce suspensions with a false condition�
these will never be advanced to Wsusp status� nor removed by the garbage collector� It might be possible to determine whether
a condition depends upon the current state� but such an analysis is probably not worth the complexity�

Chapter �� The Abstract Scheduler ���

The garbage collector is implemented using a straight�forward mark�and�sweep algorithm� beginning with
the roots� all reachable objects are enumerated� All references that were not reached are removed� Since
the garbage collection happens at compile time only� no special tricks are needed to speed it up�� To �nd
the references reachable from a given root� a function has been written that enumerates all sub�values of a
value� While this is easily done in the non�abstract value domain� abstract values pose some slight technical
challenges� Abstract values can contain attributes that are themselves values� or contain references to values�
For example� the atom and code attribute introduced in chapter � may contain literal values� which can be
reference objects� A code walker is needed to �nd these references�� Also� the compiler phase that generates
these code fragments �which is mostly the reconstruction phase� cf� chapter � ought to minimize the amount
of objects that are �touched� in a piece of code�

Garbage collection is a time�consuming process� To minimize these compile�time costs� collections are only
performed after each time�advance�

��� Finding Loops

Beginning with the initial state� a tree of states will be enumerated by successive application of the succs

function� For most DSP applications� this tree will be of unbounded size� representing a nonterminating
program behaviour�

To create a �nite schedule� a loop detection scheme is employed that �nds similar states� There is a re�
semblance between the state loop detector and the function loop detector that approximates �xpoints in
the abstract interpreter� but it is only super�cial� The current state loop detector does not involve any
approximation� hence needs no iteration steps�	

A state A is �similar� to a state B if there is a valid renaming that maps A to B � A renaming between two
states establishes a structural correspondence between all the data structures that make up the states� To
represent such a mapping� data objects must have a unique identity� Only closures and references have such
identities" the state mapping is therefore represented as a mapping from tags to tags� A renaming is valid if
each value is mapped onto a value that is structurally equal� Scalar values are considered structurally equal if
they have the same base type" non�scalar values �i�e� data structures� must also have the same �shape� and
structurally equal components� Determining structural equality thus becomes non�trivial when recursive
structures �such as function environments� are considered� Functions are considered structurally equal if
they are derived from the same function de�nition �this is easily determined by comparing their Lambda

expression tag�� and their environments contain structurally similar values�

The abstract scheduler enumerates the state tree in a lazy manner� It maintains a list of �front� states�
which initially contains only the start state� Each scheduling step consists of computing the set succ�front�
of all possible successor states of all front states� These successors are the new front of the state space�
The new front is simpli�ed by searching for similar states within the front and amongst the previous states�
When a number of states in the front are found to be similar� one is chosen as representative� and the others
are mapped to it�
 If a similar state is found that is not in the front� a mapping to the earliest state is
introduced��� This corresponds to �nding a loop in the program�

�A large body of literature describes tricks and techniques to increase the speed and decrease the memory consumption of
runtime systems and runtime data encodings that support garbage collection or one of its alternatives� like reference counting
or linear logic�

�In general� a traversal scheme for each attribute is needed� in the actual ac� only code�atom attributes may contain values�
	A later version might incorporate a state generalization scheme as a means to further reduce the state space�

This amounts to partitioning the front set into a set of equivalence sets�
��There may be more than one such state in the history of the graph� in which case the �in�between� states will already be

connected to the earliest similar state� Looping back to the earliest state �instead of an arbitrary earlier state
 removes �jump
chains��

Chapter �� The Abstract Scheduler ���

Each time a mapping is found� one entry is deleted from the front� When the front �nally becomes empty�
the abstract scheduler terminates� There is no guarantee for this to happen� so maximum sizes can be
introduced for the state space and the current front to force a termination��� Such a size limitation has been
proven to be a necessary debugging aid�

After the scheduler has terminated� the state graph is given to the reconstruction phase �cf� chapter ���
which recreates the program in the form of executable code�

As with garbage collection� loop detection does not work on states that contain Blocks� A state space in
which all states contain one or more Blocks can therefore not be transformed into a �nite graph�

��
 Alternative States

To simplify the abstract interpreter� the design decision was made that each run of the interpreter must
produce exactly one new state� This is important if one considers how to treat an expression like

let runTimeVal � read�inPort�

in

if runTimeVal!�� then suspend � � � until � � � within � � � end
else suspend � � � until � � � within � � � end

end

end

Depending upon the run�time value of �runTimeVal!���� which is an aBool in the abstract interpreter� one
suspension or the other is to be evaluated� Quite di�erently shaped states may emerge from such a situation�
There is no obvious way to create an �abstract state value� that describes these alternative� The place to
handle this decision is the scheduler� which is already equipped to handle assumptions�

Therefore� a new reference type IfSusp is introduced that models this behaviour� an

IfSusp�cond�exprtrue�exprfalse�

will be returned to the scheduler level� The two exprs are ad�hoc closures that encode the alternatives of the
conditional� The modi�cations to the scheduler are minimal" only the succs function has to be extended
with a rule similar to that needed for assumable Ususps�

��� Blocking

One all�pervading behaviour of ALDiSP is the automatic dereferencing of references� and the resulting �block�
ing� behaviour that occurs every time an unavailable reference is accessed� For example�

������%�suspend " until true within ��� ms� ��� ms end��

will create � suspensions that are linearly dependent upon the innermost expression� The resulting state
space� and the generated code� are equivalent to that which would be generated for the explicit variation�

��On a Sparc�� with ��M memory� a run that enumerates 	� states can easily �ll up all the core memory� It would be useless
to proceed after this happens� as thrashing reduces the performance to an unacceptable level�

Chapter �� The Abstract Scheduler ��	

let

tmp� � suspend " until true within ��� ms� ��� ms end

in

let

tmp� � suspend % � �deref�tmp��

until isAvailable�tmp�� within ��� ms� ��� ms end

in

let

tmp� � suspend � � �deref�tmp��

until isAvailable�tmp�� within ��� ms� ��� ms end

in

suspend � � �deref�tmp��

until isAvailable�tmp�� within ��� ms� ��� ms end

end

end

end

While this behaviour is �ne for speci�cation purposes� it uses a lot of resources� At the scheduler level� there
will be four states involved in the evaluation of this expression� the evaluation of each suspension necessitates
one state transfer� Each of these states will be compared with previous states to �nd loops� and will be the
target of comparisons with all future states�

It is clearly necessary to minimize the impact on blocking behaviour on the abstract interpreter by reducing
such chains of blocks� For example� transformation of the example expression to

let

tmp� � suspend " until true within ��� ms� ��� ms end

in

suspend ������%��deref�tmp����

until isAvailable�tmp�� within ��� ms� ��� ms end

end

would approximately halve the evaluation costs� The current interpreter contains two ad�hoc optimizations
that will catch some situations like these� The �rst optimization is located at the top of the evalexpr function�
Whenever an evalexpr�e�C� evaluates to a block that waits for a suspension already present in C � the result
is discarded� and an explicit suspension is created instead� The second optimization does essentially the
same for sequences�

At the interpreter level� the problem is one of software complexity and modularity� the need for �forced�
values� i�e� values that are guaranteed not to be references� occurs frequently�

� When applying strict primitive functions �some functions� like isSuspended or cons� are nonstrict�

� When applying a function � the function itself has to be known to be applied�

� when testing the condition of an if expression

� when testing for a type� especially when resolving an overloaded function application

So as to centralize the handling of blocking behaviour in the interpreter� it would be nice to have a function
force that is guaranteed to returns a �real� value� Force will have to introduce a call to �deref if the
value is a reference to an EvRef �this is the simple part�� and it will evaluate Ususps and replace them by
EvRefs� But what is to happen if the reference points to a real suspension��& Luckily� the interpreter is
implemented in SML� which support exceptions� force will raise an exception and abort� and the exception

��That also includes I�O events�

Chapter �� The Abstract Scheduler ���

will be handled �as late as possible�� i�e� at the earliest point of time possible� What is this earliest point of
time& Obviously� it should be a point where it is reasonably easy to insert a suspension" best a point where
it is done anyway� One of these points is the if handler� which will have to raise a IfSusp if the states
that result from the arms of the if di�er� Another place has to be the point where the suspension �that
causes the blocking� is de�ned� i�e� the piece of code that models function application� Indeed� the blocking
exception may not backtrack beyond any point where the state has been changed� since then the state that
surrounds the block would be di�erent from the state in which the block is handled� which could make it
useless�

The correct handling of blocks can be developed by looking at all possible cases�

� Lsimpledecl�pos� symbols� expr�� Here� the block can occur when evaluating the expression� The fact
that the block occurs here implies that the evaluation of the expression did not introduce a side e�ect�
Therefore� the block exception can be passed on" i�e� nothing has to be done at all�

� Llocal�pos� decls�� this is translated into Let�Lsimpledecl combinations�

� Lambda�pos� tag � params� body�� in a naive interpreter� no suspensions can occur here� De facto� they
can� since the type expressions in the parameter declaration list are evaluated at this time� so as to
prevent unnecessary multiple evaluation� Type expressions are restricted to be side�e�ect free� so it is
an error if a Block occurs here�

� Lvar�pos� sym�� Variable access cannot block�

� Lit�value�� Literal access cannot block�

� Lapp�pos� �expr� � � � � � exprn ��� if one of the expressions blocks� the application is translated into the
canonical form
let tmp� � expr�

���
tmpn � exprn

in

tmp��tmp�� � ��tmpn�
end

� Lcc�pos� exprtype� exprvalue�� if the exprtype evaluates to �Obj�� nothing happens at all �this is a
consequence of the semantics and guarantees that null�Lccs do not change the evaluation order� Again�
the expr�type itself is not allowed to block or to change the state� If the expr�value blocks� the block
can be passed along� since the Lcc would not change the state�

� Lcond�pos� expr� � expr� � expr��� if expr� blocks� the block can safely passed up� If the result is of
expr� is true or false� expr� or expr� can be evaluated in isolation� the if can be ignored� If expr�
is aBool� both alternatives have to be evaluated and merged� If the alternatives return with di�ering
states� an IfSusp will be returned �that was already mentioned�� If one alternative blocks� and the
other not� this is considered to indicate �di�erent states�� too� If both alternatives block� the if is
translated into be the canonical form
let

tmp � expr�
in

if tmp then expr�
else expr�

end

end

and the whole if is considered to block�

Chapter �� The Abstract Scheduler ��

� Lselect�pos� expr � alternatives� default�� this is considered equivalent to a set of nested ifs�

� Lcatch�pos� strings� expr�� this can simply pass the block on�

� Let�pos� expr � �decl� � � � � � decln ��� There may be two situations� one of the decl�i may block� or the
expr may block� A blocking decl�i may not block the whole Let� since it in �naive� interpretation�
the resulting suspension would be bound to a variable� not blocking the further evaluation at all� Ergo�
such a suspension has to be created and assigned to the respective variable� before proceeding�

The other possibility is that of a blocking expr� If the evaluation of the decls did not change the state�
the block can be passed on� Otherwise� if one decli did change the state �here� state changes due to
the introduction of blocks do not count%�� the Let can be splitted as

let decl�
���
decli��

decli
in

let

decli
�
���

decln
in

expr

end

end

and a suspension can be wrapped around the inner Let� This way� a minimum of work is done beyond
the last state change� and blocks that might have occured in decli
� � � � decln may be deferred�

Lastly� if the expr blocks and all state�changes done in the decls are due to blocks� the block can be
passed up�

� Lseq�pos� expr� � � � � � exprn�� Sequences are used especially for the modelling of blocking behaviour�
if an expri returns a suspension� the rest sequence has to wait for its evaluation� Since the very
introduction of a suspension will have changed the state� this has to be implemented faithfully� as
equivalent to

let

tmp � expr�
in

suspend seq expr� � � � exprnd
until isAvailable tmp

end

end

If a block occurs during the computation of an expr �usually the �rst expression� since all but the
last one will return suspensions anyway� and thus be removed from the head of the expression list�� a
suspension has to be introduced to model it�

Chapter

Execution Trace Reconstruction

This chapter describes how the program is reconstructed once abstract scheduling and interpretation have
�nished�

The abstract scheduler has generated a state graph" the abstract interpreter has written a call cache� The
state graph consists of state descriptions and annotated transitions between states" the call cache contains
an entry for every function call made during the AI� Each state of the state graph is characterized by a set
of reference de�nitions� Each call cache entry contains the arguments to the function and the residual code
that was generated by its execution�

Starting with state graph and call cache� the reconstruction phase re�creates the program� The reconstruced
program is represented in Code Form� The Code Form �CF� started out as a subset of the Lambda Form�
but evolved into a separate intermediate representation� The Code Form is designed to make data��ow
properties of the program explicit� and to introduce names for all temporaries�

The �shape� of the reconstructed program is determined by the state graph� Each state and state�transition
is modelled by a function" a state transition function sx�!sy that leads from state sx to state sy is called
within the function that represents sx and ends with a tail�recursive call to the function that implements
sy�� The program as whole is the set of state� �and state�transfer� function de�nitions� amongst which is
one distinct initial state��

There are di�erent kinds of state transitions �cf� chapter 	���� and a di�erent kind of code is generated for
each of them� Transitions can be purely administrative �Ususp to Wsusp advancement� no code involved��
branches �Ususp assumptions and IfSusps� a conditional is generated�� evaluations of lambda closures �for
which a function application is generated�� or continuations of Blocks�

The application of a function closure �caused by a Wsusp evaluation� may introduce many reference de�nition
updates as a �side e�ect�� Reference de�nitions are initially modelled by modi�cations of one state variable
that is passed around as argument to the state functions" eventually� this one variable is split up into a
separate variable for each reference de�nition�

Most of the reconstruction e�ort takes place during the abstract interpretation phase of the compiler� The
abstract Result type used by the AI is extended with a code attribute� This attribute contains a Code
Form fragment which� when executed at run�time� will compute the concrete value which the abstract result
approximates�

�Later optimizations merge state� and state�transition functions by including the body of each state�transition function
sx��sy in the code of the state function sx that calls it� Also� linear sequences of state functions are collapsed into one function�
Conceptually� it is simpler to consider the state� and state�transition functions separated�

�There is also one distinct exit state generated for programs that have terminating state paths�

�
�

Chapter �� Execution Trace Reconstruction �
�

Since design considerations of the reconstruction stage determine the restrictions and conventions of the
Code Form� and thus those parts of the semantic functions that generate the code attribute� these have
not been mentioned during previous chapters� Code generation is orthogonal to the �standard or abstract�
semantics� since it does not change the execution behaviour�

This chapter starts o� by explaining the Code Form� and the conventions regarding closure and state repre�
sentation� A formal semantics is given� An example follows that exercises the code generator on a variety of
tasks� The resulting code will contain many ine!ciencies� A set of inter�function transformations �inlining�
grouping and tabulating� and basic block optimizations �copy propagation� reference� and tuple�tracing� are
explained next� All transformations are applied to the code that was generated in the example�

A second example tackles the speci�c problems of code generation for Blocks� and explains some heuristics
that minimize the costs of resuming a blocked computation�

The two examples cover all major aspects of code generation as performed during the abstract interpretation�
A description of the state�functions follows" these are not generated during AI� but from the state graph
that is generated by the abstract scheduler�

A concluding section contains a semi�formal description of the code generation tasks that are performed by
the semantic functions in the abtract interpreter�

��� The Code Form

The Code Form �CF� has some properties similar to the �A�Normal Form� described in ����� Both forms
have many characteristics of continuation�passing style �CPS�� but avoid the use of explicit continuations
whenever possible� In the �rst few incarnations of the back�end of the compiler� a subset of the Lambda
Form was employed in the reconstruction and code generation phase� This made it necessary to distribute
many semantic validity checks over the whole code generation phase� It was also cumbersome to express
some concepts �notably multiple�output expressions and the explicit state variables� in the context of LF�
The introduction of a new intermediate representation made it possible to encode the semantic restrictions
of the post�AI program directly into the structure of its data type�

����� Di�erences between CF and LF

When compared to the Lambda Form� the main properties of Code Form expressions are�

� The CF has no expressions to denote type�casting �Lcast� or type�checking �Lcheck��

� The CF has no �sequential statement� expressions �Lseq��

� All arguments to function applications� and the conditions of conditionals� are atomic� As a result�

� all intermediate results are bound to variables� and

� all variables are of a known type�

� The intermediate results are bound by declaration sequences that correspond to Let�Lseq�� � ��� � ��
combinations in LF��

�This is the most important di�erence to CPS� where intermediates are passed on as arguments of continuation functions�

Chapter �� Execution Trace Reconstruction �

� State is made explicit by passing �state variables� to those function that access reference values� and
by returning a new state from those functions that modify it�� The state variables are single�threaded�
there exists only one living state variable at any point of time� Once a new state variable has been
introduced� the preceding one is never again referenced� The primitive that implements reference
lookup takes the current state variable as argument" the primitive that implements reference update
takes the current state variable as argument� and generate a new state that is immediately bound to
a fresh variable�

� All declarations are lexical�

� Those dynamic �exception� declarations that cannot be modelled by function specialization are passed
around as part of the state�

� The Code Form does not contain any equivalent for Lambda expressions� All function de�nitions are
installed at the top level� i�e� their free variables must be part of the top level� The evaluation of a
Lambda expression is modelled by the creation of a tuple that holds the lexical variables needed when
the function will be applied� To apply a function� both this tuple and the name of the global function
are needed�

The de�nition of �atomicity� is based on the number of reduction steps needed to evaluate an expression�� If�
for a given expression� the number of reduction steps is guaranteed to be less than k� that expression is called
k�reducible� Variables and literals are ��reducible� Primitive function calls with n ��reducible arguments are
considered n(
�reducible� Applications are estimated to be n(m(� reducible� where n is the reducibility
of the arguments� and m the reducibility of the called function�� The reducibility of a conditional statement
is the maximum reducibility of each of its paths� All expressions that contain no function applications have
a �nite reducibility� If an expression contains an application� reducibility cannot �in general� be statically
determined� since the evaluation may not terminate� A nonterminating expression would have evaluation
time ��

In ac� terms are deemed atomic if they are ��reducible��

����� Abstract Syntax of CF

The abstract syntax of the Code Form is as follows� The code attribute of each abstract result contains a
Code expression�	

datatype Code � Code of �decls Decl list�

exprs Atom list�

state StateBehaviour�

A Code expression consists of a list of declarations� a list of atomic return values� and a description of the
�state behaviour�� A Code expression is the direct equivalent to a LF Let expression�

datatype StateBehaviour

� SB�NIX

SB�USE of Var

SB�DEF of Var � Var

�Since it is not known in advance whether a given function modi�es the state� the code of all functions is initially generated
with state arguments and state results� A later post�processing optimization removes all unnecessary function parameters�

�A reduction step is de�ned as one application of evalexpr�
�The �� was chosen because� under most function call conventions� a call involves at least a jump� a local register setup

�push
� a local register restore �pop
� and a return jump�
�Using this extreme de�nition� syntactical means can be employed to guarantee that all primitive and function arguments

are atomic� The other extreme would be to consider all expressions of �nite reducibility atomic� this would only prohibit nested
function applications� but allow all other kinds of nested constructs�

	Again� an abstract syntax is identi�ed with its SML data type de�nition�

Chapter �� Execution Trace Reconstruction �
�

The compiler employs auxiliary functions to safely nest� compose� and locally optimize code expressions�
To simplify these tasks� some additional bookkeeping information is provided to remember the name of the
�input state� variable and the �output state� variable of each piece of Code�
 A Code expressions either
ignores the current state �SB�NIX�� reads it �SB�USE�� or reads and modi�es it �SB�DEF��

datatype Atom �

AVar of Var

ALit of SV�T

Atomic expressions are either variable lookups or literal values� SV�T is the type of �semantic values�� which
corresponds to the domain Obj of the standard semantics �cf� section �����

datatype Expr �

Atom of Atom

Prim of string � Atom list

Select of Atom � �SV�T � Code� list � Code Option

App of Var � Atom list

Throw of int � Atom list

Catch of int list � Code

Func of Var list � Code

Expressions are either atomic� conditional� or function calls� Exception handling is modelled using explicit
catch�throw forms� There are two di�erent types of applications� Prim applications apply primitives �iden�
ti�ed by strings� to argument lists" closures are applied using App� For the code of the called closure�
App expressions do not belong to the LF expressions associated with closure objects� but to the CF Code

expressions associated with the call cache entries �CCEs� maintained by the abstract interpreter� Each CCE
is identi�ed by a tag" this tag is referred to by the integer argument of the App���

Finally� there are function expressions� These correspond to Lambda expressions in LF� but are restricted in
that they may not contain non�global free variables�
datatype Decl

� Decl of �vars Var list� expr Expr�

A declaration binds the return values of an expression to a list of variables�

CF variables are typed to facilitate certain post�processing optimizations� especially variable splitting�compound
breakup �cf� section ������� The types form a subset of the �basic types� of the semantics� from the code�
generation point of view� the types are generated automatically� each CF variable is created within a context
in which the abstract value it is to hold is known" the ac procedure that allocates �fresh� variables generates
a type annotation out of this abstract object� The types will not be mentioned in the further exposition of
code generation�

����� Notation

In the following examples� an abbreviated notation for Code fragments is used� Instead of

Code�decls��d��� � ��dn��exprs��v��� � ��vk��state�SBsomething�

a declaration list is written� followed by list of return values" the two elements are separated by a vertical
line and enlosed in brackets�
� d�

���
dn

v�� � � � vk �

The state behaviour is not explicitly noted�

This information could also be extracted by data��ow analysis from the declarations� The explicit form was chosen both
to speed up common operations� and to simplify debugging�

��All tags are implemented as integers� so that unique tags can cheaply be generated by counters�

Chapter �� Execution Trace Reconstruction �
�

����� Closures	 Tuples	 Combinators

LF function closures consist of three elements� a lexical variable environment� a list of typed parameters� and
a �body� expression� From a given function �i�e�� LF Lambda expression�� any number of di�erent closures
can be instantiated� The only di�erence between these instances is the variable environment" parameter list
and body expression are �xed��� It is therefore sensible to separate the run�time representation of closures
into two parts� a closure tuple and a combinator�

Tuples are data�structures with a �xed number of components of arbitrary type� In the following� a convenient
notation for component access will be employed� a closure tuple is created using the application of the
mk�tuple primitive to a list of variable names� i�e� mk�tuple�name� � � � � � namen�" if t is bound to a tuple�
t��namei�� retrieves the value of namei � In the actual code� the names are replaced by indices� and a
lookup function lookup�tuple�tuple� index� accesses the tuple �elds�

Combinators are functions that do not contain free variables" they are pure functions that can only combine
their arguments� A combinator can be transformed into a sequence of machine instructions" applying the
combinator corresponds to calling these instructions as as subroutine��� To translate a function into a
combinator� its parameter list is extended by a formal parameter that will be bound to the tuple that
represents the lexical environment �i�e�� the closure�� All occurrences of free variables in the body of the
function are then mapped to lookup�tuple operations on this tuple parameter�

An alternative way to convert functions into combinators is to provide each needed lexical variable as an
explicit parameter� instead of bundling them all together in one tuple� This is not done in ac� because it
would greatly increase the bookkeeping e�ort in the AI phase of compilation" it is both easier to implement
and faster to split the tuples later on� when the resident program is created and other optimizations have
already minimized the code size�

����� Top
Level Bindings

Most programming languages make a distinction between top�level declarations �or global variables� and
local declarations� Languages like C do not even allow local declarations for some entities �functions� type
declarations�� Even Scheme �
	�
�� �
� makes a distinction between top�level bindings and other bindings
�define and set
 are indistinguishable at the top level��

What makes top�level objects interesting is that they can be assumed to be ��xed�� i�e� they do not change
their address� In pure functional languages� top�level objects are also constant� i�e� they do not change their
content� In contrast� local bindings usually exist in the context of functions" their lifetime is restricted to
one invocation of this function� and they have a new value and �stack� address upon each new invocation�
Top�level bindings can be allocated statically at compile time" they need not be deallocated� Global variables
can be treated as literals in most of the code� since they are bound to an unchanging value� It is therefore
not necessary to include them in closure tuples� Program analysis and implementation is simpli�ed to a
great extent if all functions reside at the top level�

All CF function declarations generated from call cache entries are located at the top level� Also� literals that
are too big to be implemented as immediate values will be represented under top�level variable bindings�
Array� and list�valued literals fall under this ruling�

����� Semantics of the Code Form

The formal semantics for the Code Form is much simpler then its Lambda Form equivalent� The most im�
portant di�erence between them is that the Code Form semantics models exceptions by failure continuations�

��The types of the parameter list may also change� they are not restricted to be �xed� Apart from overloading considerations�
types can be considered part from the body � they can be converted into Lchecks�

��If the combinators are in CPS form� applying a combinator corresponds to jumping to the start of its instruction sequence�

Chapter �� Execution Trace Reconstruction �
�

This makes it possible to specify exceptions in a �localized� fashion� in the Lambda Form semantics� each
semantic function has to verify that the results of its sub�functions are �true values�" if they are not �i�e��
they are exceptional�� the semantic function needs to be aborted� These details were partially hidden by the
�dereference� rules that were needed to cope with reference objects� Since dereferencing is made explicit in
the Code Form� exception checking would surface in the semantics if modelled in the old way���

Each semantic function takes two continuation functions� the �success continuation� is called with the normal
result of the semantic function" the �failure continuation� is called when an exception occurs�

The second di�erence between the Code Form semantics and the Lambda Form semantics is the treatment
of state� Code Form expressions treat the state like any other data object" coding convention guarantees
that state usage is single�threaded� All computations are done on the semantic set ObjCF� which includes
state �values��

ObjCF � Obj � StateCF � FunctionsCF
StateCF � tag � RefDef

FunctionsCF � function�Var list� Code� EnvCF�

EnvCF � Var � ObjCF

The Obj and RefDef types are borrowed from the Lambda Form semantics �cf� chapter ������� Instead of
Lambda Form closure objects� function objects are used�

The semantics of a CF program is determined by the semantic function evalCF�program� which is of type

evalCF�program Decl list �! State

The evaluation functions evalCF�expr� evalCF�decl and evalCF�code describe the semantics of Code Form
expressions� declarations and Code pieces� respectively� They are of type

evalCF�expr EnvCF
 ContFail
 �ObjCF list � State�
 Expr � State

evalCF�code EnvCF
 ContFail
 �ObjCF list � State�
 Code � State

evalCF�decl EnvCF
 ContFail
 �EnvCF � State�
 Decl � State

All evaluation functions take a lexical environment and two continuation functions as context parameters�
All failure continuation are of the same type

Contfail � tag
 ObjCF list � State

Success continuations are of type �x � State�� where x is the result of the evaluation function" the success
continuation is called with this result when no exception is raised� Expressions and Code pieces evaluate to
object lists� while declarations evaluate to environments�

Since the exceptions have been isolated� all evaluation functions return �or pass on� valid object lists instead
of Results���

In the following� semantic environments are named E� success continuations are denoted K� and failure
continuations are named F�

	������ Programs

A CF program is a list of declarations� one of which must de�ne a function called �init��

��An alternative semantic model that was considered employed the notion of explicit stacks� instead of continuations� stack
positions would then be recorded� raising an exception would correspond to �jumping up the stack�� Such a model re�ects
actual implementation practice� but does not simplify formal reasoning� Like the continuation�passing semantics that is now
employed� a stack model needs to introduce �labels� �i�e� continuation functions
 to put on the control stack� so the semantics
wouldn�t be any smaller�

��If they return at all� that is� The Code Form cannot guarantee termination� even though the abstract interpreter must
terminate to generate the Code Form program�

Chapter �� Execution Trace Reconstruction �
�

evalCF�program ��decl��� � ��decln�� �

evalCF�expr�Eglobal� Failglobal� Termglobal� App��init�� closureinit� stateinit�

where

Eglobal � Efuncts � Estatic
Efuncts � � �name�function�params�code�Eglobal��

� i decli � Decl��vars��name��expr�Func�params�code��� �

Estatic � � �name�value�

� i decli � Decl��vars��name��expr�ALit�value��� �

Failglobal � � args � error��uncatched exception��

Termglobal � � state � state

closureinit � Efuncts��init��

stateinit � �

The global �or static� values must be literals such as tables� The static values and the functions comprise the
global environment" each function has the global environment as its �closure�� The actual program is run
by invoking the �init� function with the initial state �an empty reference de�nition set�� Upon successful
termination� the Termglobal continuation will be called with the result state�

	������ Atoms

The de�nition of evalCF�expr employs an auxiliary function evalCF�atom for atomic sub�expressions�

evalCF�expr�E�K�F�Atom�a�� � K�evalCF�atom�E�a��

evalCF�atom�E�AVar�var�� � E�var�

evalCF�atom�E�ALit�lit�� � lit

There is no need to pass continuation functions to evalCF�atom� since atomic expressions cannot raise ex�
ceptions� It can be syntactically guaranteed that that all variables are bound" therefore the variable lookup
E�var� cannot fail�

	������ Primitives

The behaviour of primitives shall not be de�ned here �i�e�� appyCF�prim is left unspeci�ed�� it su!ces to say
that all primitives are pure functions� it is not possible to access the call cache or modify global state using
a primitive� The essential primitives �without which execution would be impossible� are described in the
examples� when they occur for the �rst time�

Most of the other primitives have the same semantics as under applyprimitive�strict �cf� chapter �������

evalCF�expr�E�K�F�Prim�s�arg��� � ��argn�� �

K�applyCF�prim�s�evalCF�atom�E�arg���� � ��evalCF�atom�E�argn���

Note that there is no order of argument evaluation implied� Atomic expressions cannot generate side e�ects"
therefore the order of their evaluation need not be speci�ed�

Note also that primitives cannot fail" there is no possibility to raise an exception from �within� a primitive���

��This begs the question of how to model arithmetic primitives that can raise exceptions� such as division �which can
raise exceptions on under�ow� over�ow� or division�by�zero
� In the ALDiSP arithmetic standard library� such operations are
implemented by explicit tests� To keep with the division example� each use of the primitive division operator is preceded by tests
for possible under�ows� over�ows� and zero�ness of the second argument� In any such case� an exception is raised excplicitly�
The reconstruction process will re�create these tests in the Code Form�if the abstract interpreter has not been able to remove
them as dead code
� If the target machine supports an operation that performs a division and generates extra �exception
�ags�� the back�end code generator �cf� chapter �
 has to detect the opportunity to utilize this operation to implement the more
general approach� This is an instance of an idiom detection technique�

Chapter �� Execution Trace Reconstruction �
	

	������ Conditionals

The Code Form supports only one� very general� conditional� It resembles the �Lselect� of the Lambda
Form�
evalCF�expr�E�K�F�Select�a���key��code���� � ���keyn�coden���codedefault�� �

if � i keyi � keyval then evalCF�code�E�K�F�codei�

else if codedefault �' NONE then evalCF�code�E�K�F�codedefault�

else error��

where

keyval � evalCF�atom�E�a�

The default is optional so that no �dummy code� is needed if the compiler knows that the keys are exhaus�
tive���

No ordering is implied in the Select form" if two keys are identical� either can be chosen���

	������ Function Application

Function applications follow some conventions� The �rst argument is the function s closure� the last argument
is the state variable �if the function takes a state argument�� In between are the �real� arguments� If the
function returns an altered state� it will be the last element in the return value list�

The closures have the same form as in the Lambda Form semantics" a closure consists of a lexical environment
and a Lambda Form expression� This expression is ignored" instead� the integer index that is part of the
App node is used to look up a Code expression in the call cache��	

The closure need not be analyzed by the semantics at all" at the Code Form level� all functions are combinators
�i�e�� have no state�� The semantics only binds the arguments to the formal parameters" this gives the
environment in which the function s body is evaluated�

evalCF�expr�E�K�F�App�name�arg��� � �argn�� �

let

func��v��� � ��vn��codefunc�Eglobal� � E�name�

	 i
 ���n vali � evalCF�atom�E�argi�

in

evalCF�code�Eglobal���v��val���� � ���vn�valn���K�F�codefunc�

	������ Throwing and Catching Exceptions

Throwing an exception is performed by calling the failure continuation with the supplied arguments�

evalCF�expr�E�K�F�Throw�tag�arg��� � ��argn�� �

F�tag�evalCF�atom�E�arg���� � ��evalCF�atom�E�argn��

The tag identi�es the exception that was thrown� Catching exceptions involves the creation of a new failure
continuation� When called �by a Throw�� this function tests the tag that was thrown" if it is not part of the
list of tags to be catched� the exception is re�thrown��

evalCF�expr�E�K�F�Catch��tag��� � ��tagk��code�� �

evalCF�code�E�K�F��code�

where

F� � ��tag��v��� � ��vn���
if � i tagi � tag then K��v��� � ��vn��

else F�tag��v��� � ��vn��

��In SML� the type �a Default is de�ned as NONE
 SOME��a�� The semantics is written in a meta�SML� in which the SOME
can be dropped�

��In practice� this should never happen�
�	For all practical purposes� the closure�� type can be remodelled by a tagged tuple� i�e� closureCF�tagc�tagl�env��

Chapter �� Execution Trace Reconstruction �
�

	�����
 Evaluating Declarations

Evaluating a declaration involves evaluating the expression of the declaration with a new success continuation�

evalCF�decl�E�K�F�Decl��vars��var��� � ��varn��expr�e��� �

evalCF�expr�E�K��F�e�

where

K� � ���v��� � ��vn���
K�E � �var��v��� � ��varn�vn ��

When called with the results� the success continuation will update the old environment with the new bindings�
and call its continuation with this new environment�

	�����	 Evaluating Code expressions

A Code expression is evaluated in two stages� �rst� the declarations are sequentially evaluated� resulting in
a �nal environment� Then� using this environment� the atoms are evaluated that make up the return values�

evalCF�code�E�K�F��decl� � � � decln # atom� � � � atomk�� �

if n�� then

K��evalCF�atom�E�atom���� � ��evalCF�atom�E�atomk���
else

evalCF�decl�E�K��F�decl��

where

K� � ��E���
evalCF�code�E��K�F��decl� � � � decln # atom� � � � atomk��

This concludes the semantics of Code Form expressions�

��� Relation between Abstract Results and Code Attributes

This section discusses how and why each abstract Result gets its code attribute� and what the semantic link
between them is�

The approach to code representation and generation that is taken in the development of ac is an evolutionary
one� Beginning with a standard semantics� an abstract semantics is designed and implemented in the form of
an interpreter� Code generation is then added to this interpreter� The basic restriction on code representation
and code generation is therefore the fact that the abstract interpreter does not know about them%

To achieve this goal� i�e� to work within the boundaries of the abstract semantics� attributes are attached
to the abstract semantic values� Attributes must be orthogonal to the abstract value model" the evaluation
model totally ignores them� The attributes contain not only the code fragments themselves� but also all
information needed to keep the generated code pieces coherent�

During the abstract evaluation of the original LF program� abstract Results are generated� It was already
mentioned in section ��
�� that any domain of abstract values can be extended with arbitrary orthogonal
attributes� In the case of the ac abstract Results� there is such an attribute called code� which carries a
value of type Code� For a given abstract Result � this attribute represents the code that has to be executed
at run time to generate the concrete result� A second attribute atom �which has an Atom as its value� is
attached to each abstract Object�

����� The Treatment of State

The biggest conceptual problem in generating the code attribute is the treatment of state� In the standard
semantics� most evaluation functions return Results that consist of an object and a state� Often� the state

Chapter �� Execution Trace Reconstruction �

will be identical to the state that was passed to the semantic function as part of the evaluation context"
sometimes� the state has changed� For the purpose of this discussion� a �state� is a set of reference value
de�nitions� similar to an environment or a tuple of values� There are only a few possible transformations that
can change a state during evaluation� a new reference may be added �by a suspension or promise creation��
or an existing reference may be updated �by forcing a promise�� Removing references and changing the
status of suspensions is performed by the scheduler�

The code attribute is intended to model the computation process necessary to produce a run�time Result �
An alternative approach is to attach a code attribute to each value �in our semantics� to each Obj �� As
a major consequence of the per�Result attribution� only one code fragment is generated by each abstract
semantic function��

The �current state� is treated as a variable that denotes a set of tagged values� A reference can be accessed
via special primitives �deref and �update� �deref�state� ref � returns the value associated with ref � where
ref is a currently de�ned element of the set of reference tags� and state is the �current state� variable"
�update�state� ref � val� creates or updates a reference value��� The result of �update is a new state�

The state is supposed to be single�threaded" it is illegal to �update a state twice� or to �deref a state that
has already been updated� If a Code fragment does not contain �update applications and does not call
side�e�ecting functions� it is side�e�ect free�

����� atom� a Code Attribute for Obj s

The atom attribute was introduced to solve the problem of identifying values� In the context of abstract
interpretation� it is possible to generate values that are equal� but not identical� For example� if a is bound to
anInteger� a�� and a�� are both anInteger� but they are di�erent� When generating code� it is necessary
to know the expression a given object is bound to� Therefore� a second Code attribute has to be introduced�
the atom� Each Obj has an atom attribute which describes the atomic expression that will denote the Obj
at run�time� The standard and abstract operations on Obj s do not change" they ignore the atom���

The atom attribute is only useful when seen in the context of a code fragment� One can visualize the relation
between atom and code as that of a pointer to a node in a directed graph� most atoms will be variable lookups�
which refer to their de�nitions in the code� The code can be viewed as a graph� since the declaration list
of a Code fragment can be arbitrarily reordered� as long as the def�use relationships between the de�nitions
are ful�lled� Since there are no implicit def�use relationships between declarations� the declaration list can
be assumed to be unordered�

��� Example� Straight�Line Code

In the following� code generation shall be traced step�by�step for the following ALDiSP program fragment�

let

x � delay���y�

in

�y � x� � x

end

�
This design decision was not taken lightly� It took me quite some time to recognize that it is the Results that have state and
must therefore be annotated with the code attribute� not the Obj ects� Most published literature annotes the values � because
literature does not describe partial evaluators that have to cope with state� exceptions� and multiple results�

��There is no practical di�erence between creating and updating a reference� There is only a �xed set of reference tags� no
new references can be generated at run�time� The storage for reference de�nitions is therefore allocated statically at compile
time�

��The precision of the abstract equality test can be improved� since objects with identical atom must be identical�

Chapter �� Execution Trace Reconstruction ���

This example� while rather tiny� exercises code generation for literals� primitive applications� a function
application� tuple creation� all operations related to references� and the handling of declarations�

We assume that y is a variable de�ned in some outer scope and bound to a non�literal value� This value
has an atom attribute� which shall be called atomy� Let the initial state be bound to the CF variable
state�initial�

The ALDiSP�to�Lambda Form transformation �cf� chapter ������ will have generated an LF expression��

let

x � �delay�lambdatag�����y��

in

�y � x� � x

end

Evaluation starts with evalexpr�Let�
�� which calls evaldecl to evaluate the declaration of x� evaldecl calls

evalexpr on the �delay application��� evalexpr�Lapp calls evalexprs to evaluate �delay and its one argument�
the Lambda expression� evalexpr�Lit��delay�� gives rise to the �rst Result �

� # �delay �

The atom attribute of the returned �delay object is the CF atom literal ALit��delay� �or simply� �delay��

evalexpr�Lambda gives rise to a closure containing the binding of its free variables� y and �� The semantics
mentions an auxiliary function free that determines what variables are closed over� free does not know that
y is a global function� and will include it in the closure� For code generation purposes� a di�erent function
free�codegen determines the variables bound in the code expression� Since the Lambda has no arguments�
the evalexprs application that evaluates the argument types calls its continuation immediately� and creates
no code� The code associated with the Result is mk�tuple�atomy�" since tuple creation is not atomic� a
variable tmp� is introduced� The full code is

� tmp� � mk�tuple�atomy�

tmp� �

The Closure object has tmp� as its atom attribute� Note that there is no connection between this code and
the code generated earlier for the �delay primitive� The di�erent code attributes have to be combined later
on�

Now evalexprs �nishes and calls its continuation function� which points back into evalexpr�Lapp� Here�
derefobjs is �rst applied to the function argument� Since �delay is not a reference� evalexpr calls applymappable

to do the actual application�

applymappable��delay�� � �� calls testapply to determine whether the application has to be mapped� testapply
decides that �delay is a primitive and calls testapplyprimitive � which returns true �since all primitives are
assumed to be de�ned on all arguments�� applymappable then calls apply� which in turn calls applyprimitive �
which locates �delay in its list of non�strict primitives and calls applyprimitive�nonstrict � Finally� the semantic
action associated with �delay is performed� a new reference is allocated in the current state" an Uprom

�cf� chapters ����� and 	��� containing the closure is stored in that reference" the tag that addresses the

��Without syntactic sugar� the transformed expression looks like this�
Let�Lapp��Lprim����

Lapp��Lprim����Lvar�y��Lvar�x����

Lvar�x����

Ldecl�true� x� Lapp��Lprim��delay�

Lambda�tag����Lapp��Lprim����Lit����Lvar�y���������
This is hard to read and adds no relevant information� In all following examples� a hybrid syntax will therefore be employed�
��As a convention� large semantic functions like evalexpr are grouped into �rule sets� relating to the kind of expression they

take as their �rst argument
��evaldecl calls evalexpr indirectly via evalexprs� Such small evaluation steps and indirection will often be omitted in the

future discussion�

Chapter �� Execution Trace Reconstruction ���

reference in the state is returned as Result � The tag �in the following called tagdelay� is a literal and has as
itself as atom�

For each primitive function application� a corresponding Code object is created� The �delay function emits
code that consists of an �update primitive� The result of the �update is a new state� for which a new
variable has to be introduced�

� statenew� �update�stateinitial�tagdelay�tmp��

tmp� �

Note the missing declaration for tmp�� which is currently not visible� The �update re�ects the fact that the
closure �tmp�� has been stored in the state" it does not make explicit that it is stored in an Uprom� This
information is not needed at the code generation level� Likewise� the allocation of a reference tag is not made
explicit� because the tag is not an entity that changes at run�time�

applyprimitive�nonstrict returns its result �via applyprimitive � apply� and applymappable� to the second contin�
uation of evalexpr�Lapp� This continuation returns to derefobjs� which returns to the �rst continuation of
evalexpr�Lapp� which returns to evalexprs�

At this point� code fragments are combined for the �rst time� The necessity for this can be seen by looking
at the type of evalexprs� it evaluates expressions to results� but calls its continuation function with a list
of objects� Since results carry a code attribute� which objects don t have� there is a loss of information in
passing along the objects to the continuation� When the continuation returns� this information has to be
added again to the �nal result �otherwise� the code would be lost%��

This is done by concatenating the declaration lists of the code attributes of the Results that were computed�
and pre�xing them to the result that is passed back� evalexprs calls itself recursively for each element in
the expression list it evaluates" each of these calls strips the Obj from one Result � and puts the Result s
declaration list back upon return� In our example� evalexprs has evaluated two expressions� of which the
�rst ��delay� has an empty declaration list" the second �the Lambda� contains one declaration� evalexprs
returns its Result �still the reference tag that denotes the Ususp� with the code attribute

� tmp� � mk�tuple�atomy�

statenew� �update�stateinitial�tagdelay�tmp��

tmp� �

to evalexpr�Lapp� which returns to the evalexprs that was called from evaldecl� Again� the object is stripped
from the result and passed along to the �rst continuation of evaldecl� This continuation creates a singleton
environment in which the variable x �not the atom of the object to be bound� but the ALDiSP�level variable%�
is bound to the tmp� object� evaldecl then calls that continuation that was passed down to it� which is the
�rst continuation evalexpr�Let�

We now start to evaluate the �y�x��x expression by calling evalexpr with it�

evalexpr�Lapp calls evalexprs for its three arguments ��� �y�x�� and x�� evalexprs calls evalexpr�Lit� which
returns a Result that denotes the primitive ���� evalexprs strips the Obj from this Result � and recurs� The
next incarnation of evalexprs invokes evalexpr�Lapp �on the y�x expression�� which calls evalexprs with the
function�argument list ����y�x��� The second � evaluates identical to the �rst�

When applied to y� evalexpr�Lvar accesses the value of y and generates code for it� This code is simply �#y�

�we assume that the object to which y is bound has y as its atom�� The atom attribute of the Obj is therefore
y�

Evaluating Lvar�x� works identical to Lvar�y�� and returns the reference tag object that denotes the Ususp

that was constructed earlier on� evalexprs calls the continuation of evalexpr�Lapp� which calls derefobjs with
the function ���� which calls applymappable� which calls apply� which calls applyprimitive �

��In real life� � is overloaded� for pedagogical purposes� this example sticks to primitives� Following the execution trace
through the convoluted hierarchy of apply functions is bad enough�

Chapter �� Execution Trace Reconstruction ��

Since � is a strict primitive� derefobjs is called with the values of y and x� Since the value of x is refers
to a Uprom� derefobjs calls evalthunk with the closure of the Uprom and the current state� Just to be sure�
evalthunk �rst pipes the closure through another instance of derefobjs �this is needed to cope with nested
references�� A CF declaration is generated to model the state lookup�

� tmp� � �deref�statenew�tagdelay�

tmp� �

Then it calls apply with an empty argument list� Without any testing� apply calls applyclosure� There is no
call cache entry that corresponds to the closure� therefore a new one is introduced� The closure s environment
is extended with the �empty� parameter binding list� and evalexpr is applied to the body expression� y���
Skipping over evaluation steps �that would be similar to the evaluation of the �delay�� the result is an
abstract value with code

� tmpy � lookup�tuple�tmptuple��y��

tmp� � tmpy��

tmp��stateinput �

Parameters tmptuple and stateinput are a newly generated upon each closure application and introduced into
the parameter list at the �rst and last position� respectively� It is assumed that each function can modify the
state� therefore a state parameter and return value is always generated� Also� it is assumed that all function
take a closure argumet� If a function turns out to be a combinator� or to not access any of its lexically bound
variables� the tuple parameter is removed by a later optimization� as is the state parameter�argument when
the function is side�e�ect free�

This Result and its code is memoized in the call cache entry" applyclosure generates a new code fragment
that represents the call�

� tmp�� statenewer � App�tagcce�tmp��statenew�

tmp� �

The tagcce is the call cache entry tag of the application� This is later needed to retrieve the code� It is not
possible to inline the code yet� since recursion might be involved�

While applyclosure knows that no state change has happened� it has to create a new state variable and bind
it� The same function might� after all� change the state when called in another context%

applyclosure also introduces a new variable tmp� to hold the result of the application� and changes the atom

of the result object to tmp�� The state is passed into the application� and the right side of the application
contains a multiple de�nition for both a fresh state variable and the result� Control returns from applyclosure
to applythunk� which pipes the result through normresult to asserts that it is not an exception���

normresult returns the Result to the derefobjs that had initiated the Uprom evaluation� The Uprom is replaced
by an EvRef in the current state� The state lookup code is added at the beginning� and the state update
code is added at the end of the Uprom code�

� tmp� � �deref�statenew�tagdelay�

tmp��statenewer � App�tagcce�tmp��statenew�

statenewest � �update�statenewer�tagdelay�tmp��

tmp� �

normresult then calls its continuation with the normalized Obj list� whose atoms are �y�tmp�� � That contin�
uation proceeds with applying � to the normalized arguments� apply and evalexprs return with the code

� tmp� � atomy � tmp�
tmp� �

��Here� a small change to the semantics is in order� normresult returns a �Obj �State
 tuple instead of a result� i�e� it strips
a Result � It is not possible to re�attach the stripped declarations to the atom of the Obj � since normresult does not take a
continuation� By changing the range of normresult to Result� this problem disappears� normresult occurs three times in the
semantics��� each of these is easily �repaired�� This change in the semantics does not change its behaviour� It is still regrettable
that the semantics had to be changed to accomodate the code generator�

Chapter �� Execution Trace Reconstruction ���

The second pending invocation of derefobjs attaches the dereference�apply�updating code to the result and
returns" the �rst pending invocation passes the result directly back�

This �nishes the eval�expr�Lapp of the inner addition� Control returns to the outer addition s evalexprs�
which encounters the variable x and evaluates it to its reference value� Skipping the next few steps� evaluation
arrives at the next apply�primitive�strict� Again� derefobjs is called with two arguments� of which the
second is a reference with x as its atom� This time however� the reference is bound to an EvRef � The code
that models the lookup is generated�

� tmp� � �deref�statenewest�tagdelay�

tmp��

and the Obj that was stored in the state gets tmp� as its new atom �the old one� tmp�� is still visible in the
current context� but the code generator can t know this�� derefobjs calls its continuation� which �nishes the
application and generates the code fragment

� tmp� � tmp� � tmp�
tmp� �

Control returns to derefobjs� which attaches the deref preamble� and returns the code

� tmp� � �deref�statenewest�tagdelay�

tmp� � tmp� � tmp�
tmp� �

to the enclosing second continuation of evalexpr�Lapp� This returns through derefobjs� which attaches the
force�apply�update code� generating

� tmp� � �deref�statenew�tagdelay�

tmp��statenewer � App�tagcce�tmp��statenew�

statenewest � �update�statenewer�tagdelay�tmp��

tmp� � atomy � tmp�
tmp� � �deref�statenewest�tagdelay�

tmp� � tmp� � tmp�
tmp� �

Finally� control returns to the continuation of evalexprs�Let� which returns �through evaldecl�Ldecl� to
evalexprs� where the missing declaration for tmp� is pre�xed� Evaluation �nishes with a code attribute
that is

� tmp� � mk�tuple�atomy�

statenew� �update�stateinitial�tagdelay�tmp��

tmp� � �deref�statenew�tagdelay�

tmp��statenewer � App�tagcce�tmp��statenew�

statenewest � �update�statenewer�tagdelay�tmp��

tmp� � atomy � tmp�
tmp� � �deref�statenewest�tagdelay�

tmp� � tmp� � tmp�
tmp� �

This concludes the �rst example� The code that was generated is somewhat ine!cient� giving ample moti�
vation for the optimizations that are presented next�

��� Inter�Function Optimizations

The �rst group of optimizations that shall be considered is concerned with optimizing function calls �i�e��
Apps�� by either modifying a function s call�return interface� or by outright eliminating the application�

Chapter �� Execution Trace Reconstruction ���

����� Inlining

Inlining of CF function applications is an obvious optimization� The decision to inline a speci�c function
application is deferred to the reconstruction phase� Too much inlining can lead to code explosion� accompa�
nied by an increase in compilation time that is more than linear in the code size� There exists no �optimal�
inlining strategy� since there is no direct space�time trade�o�� once a function application has been inlined
�which will have increased the code size�� many other optimizations �which might reduce the �nal code size�
become possible� The heuristics that decide upon inlining in ac are fairly obvious�

� All applications to trivial functions are inlined� An application is deemed trivial if the inlined code is
of the same size or smaller than the code which it replaces� i�e� the function application��	 The �size�
of a piece of code is measured by its reducibility��

� If a function is applied only once� it is inlined�

� If a function is applied only once in a given execution path� and if its size is less than ��� it is inlined���

� If a function is applied in the lexical context of its closure tuple s creation� and if its size is less than
����� it should be inlined� This avoids unneccessary tuple creation and lookup operations�

The mechanism of inlining is trivial� given a call cache entry

CallCache�tagf� � ��decl��� � ��declj # expr��� � �exprk�� �p��� � ��pn��

and a function application

res��� � ��resk � App�tagf�a��� � �an�

Then the application can be inlined as

p� � a�
���

pn � an
decl�

���
declj
res� � expr�

���
resk � exprk

The inlining mechanism does not substitute an ai for each occurrence of a pi� Eliminating the pi�ai decla�
rations is considered to be a separate optimization� implemented as a post�pass�

As part of the inlining� all variable names that are local to the residual code �this includes the parameter
names� are mapped to new unique names� This guarantees that no name�clashes can occur when a function
is inlined more than once in the same code expression�

Assuming that the App in the example is inlined� the code will be�

�	That is� a function is trivial if its body has a reducibility� ��
�
The reducibility does not necessarily correspond to the �nal assembly code size� For example� replacing a variable with a

literal value might largely increase the size of a program if the literal is not atomic �e�g�� if it is an array
� The current back�end
folds multiple copies of the same literal into on representation� so that this speci�c e�ect can be ignored in the reconstruction
phase�

��The number �	�� is an obviously arbitrary heuristic� it can be changed at any time�
��Again� an arbitrary heuristic�

Chapter �� Execution Trace Reconstruction ���

� tmp� � mk�tuple�atomy�

statenew� �update�stateinitial�tagdelay�tmp��

tmp� � �deref�statenew�tagdelay�

stateinput� � statenew
tmptuple� � tmp�
tmpy� � tmptuple���y��

tmp�� � tmpy���

statenewer � stateinput�

tmp� � tmp��

statenewest � �update�statenewer�tagdelay�tmp��

tmp� � atomy � tmp�
tmp� � �deref�statenewest�tagdelay�

tmp� � tmp� � tmp�
tmp� �

The renaming of variables is indicated by the tick symbol� i�e� tmp� has been renamed into tmp���

The example presumes that the transformation which introduces the explicit tuple closure parameter �cf� sec�
tion ������ has already been applied to both the example code and the call cache entry� The tmptuple variable
holds the tuple" tmpy holds the value from y that is extracted from the tuple�

����� Grouping

A problem closely related to inlining is the �grouping� of functions in the call cache� Given a function f that
is called �� times during the execution of the program� how many instances of the function shall exist in the
�nal code& In the call cache� there will exist a distinct residual code attribute for each of these calls��� It
is often possible to share one code representation for a group of these residuals� This does not improve the
code �quality� �i�e�� it does not increase the run time speed�� but it decreases the global code size� Since code
explosion is one of the gravest concerns of partial evaluation� the grouping of residuals is very important�
Grouping can be much improved if small changes to the residuals are allowed�

Again� some heuristics are used�

� If a subset of the applications generate the same �modulo renaming� residual code� this subset can be
trivially grouped�

� If there is a set X of applications that di�er only in the values of a literal c� which has the same basic
type in all residuals in X� then c can be replaced by a variable� which is added as an extra parameter
to the function interface� No e!ciency is lost� since there exists no possibility for value�dependent
optimizations � all such optimizations have already been performed by the abstract interpreter�

����� Tabulation and Caching

Functions can be represented by tables when their domain is known at compile time and they perform no
side e�ects� The most natural candidates for such a representation are functions of one or two arguments�
when the arguments are known to be restricted to a small enumerable type� Such functions correspond to
vectors and matrices� Tabulation is only useful if the tabulated function perform a non�trivial computation�
The time needed to compute a functions must be compared with the size of the �nal table and the time for a
lookup operation� In the case of connected argument sets �ranges of integers with no �holes��� cost of lookup
can be approximated as one multiplication and one addition for each argument� plus a memory lookup�

Heuristics guiding tabulation are

��The di�erent calls might have been mapped together if they have exactly the same arguments� but even so simple a di�erence
as that between f�anInt��� and f�anInt���might cause the creation of di�erent entries�

Chapter �� Execution Trace Reconstruction ���

� If the index set has more than
�� elements� no tabulation should take place�

� If the computed function is k�reducible� with k � 	� no tabulation takes place� �	� is of course an
arbitrary choice" reducibility might be weighted for the di�erent costs of primitive functions�

� If the index set is not a numeric type� a lookup function has to be generated that either performs
a structural search or employs some kind of hashing� This increases the cost of tabulation� to a
logarithmic number of comparison operations and Lcond�Lselect nodes� if timing is considered� and
is linear in code size���

� If the index set is very small �� ��� tabulation should always be done�

A function is tabulated by replacing its body with a Select expression� Each table entry corresponds to one
arm of the Select" there is no default case� This table representation gives the back�end the most �exibility
in representing the table���

����� Elimination of Parameters and Return Values

Parameter elimination removes parameters of a function de�nition if these are never used in its body� Such
parameters may occur due to function specialization� i�e� whenever a parameter is only used in a conditional
branch that was removed because the condition was known� To be correct� all calling sites of the function
must be identi�ed� and the arguments that match the eliminated parameter must be removed� This may
introduce new dead code in the calling sites�

If a function returns a value that is statically known� either because it is a parameter to the function or
because it is a literal� said value can be eliminated from the function s expression list" the variables that
are bound to this parameter at the calling sites have to be re�bound to the statically known value� This
optimization speci�cally addresses state variables that are passed through functions unchanged� As a side
e�ect� this may remove the last use of a parameter� thus making it eligible for parameter elimination� Return
values can also be removed if they are never used�

����� Variable Splitting

If a function accepts a parameter that is bound to a compound value �i�e�� a tuple or the state�� and this
function does �consume� the parameter without passing it on� and if only a subset of the element of the
compound are accessed� then it is an optimization to break the compound into its parts and transform
the compound parameter into a set of part parameters� The generalized application of this transformation
amounts to �splitting� variables that hold compound values into groups of variables� each of which holds a
sub�value of an atomic type�

This optimization is targetted at functions that access reference values from a state� but do not change the
state� It also serves to break up closure tuples� thus avoiding the mk�tuple creation� If the lifetimes of
compound parameters di�er� breaking them up may optimize their allocation behaviour� since a compound
has the lifetime of its longest�living component�

Compound breakup for state variables does not gain as much from a variable�passing point of view� since
the back�end will implement reference variables in terms of imperative variables �this is made possible by
the single�threaded�ness of the state�� However� the �function sharing� optimization becomes feasible�

��In any case� generating such code is non�trivial and possibly not worth the e�ort� ac does not consider generating code for
non�integer index sets�

��The alternative would be a �direct� implementation as a global array literal�

Chapter �� Execution Trace Reconstruction ��	

��� Basic Optimizations

The code that was generated for the example su�ers from obvious ine!ciencies� This section shows some
analysis and transformation steps that will remove most of them� Most of these steps are part of the
�real� reconstruction phase" they cannot be performed ere the full program has been interpreted� These
optimizations are called �basic� because they work on the level of the Code expression� i�e� they do not
consider the interface between functions���

����� Variable Propagation

The example code shows many occurrences of variable renamings� i�e� de�nitions of the form x � y� Such a
de�nition can be transformed by changing every succeeding use of x into a use of y� Due to this change� x
will become a �dead� variable� and its de�nition dead code� Variable propagation may have to be iterated�
since successive renamings of the same value have to be considered�

In the inlined example� variable propagation applies to the set �stateinput�� tmptuple�� statenewer� tmp���
The variable statenewer gives an example for iterated renaming� After propagation� the code is

� tmp� � mk�tuple�atomy�

statenew� �update�stateinitial�tagdelay�tmp��

tmp� � �deref�statenew�tagdelay�

stateinput� � statenew
tmptuple� � tmp�
tmpy� � tmp���y��

tmp�� � tmpy���

statenewer � statenew
tmp� � tmp��

statenewest � �update�statenew�tagdelay�tmp���

tmp� � atomy � tmp��

tmp� � �deref�statenewest�tagdelay�

tmp� � tmp� � tmp�
tmp� �

����� Dead
Code Removal

For each Code Form code fragment� the �output� consists of the set of expressions plus the �last� state� Any
variable binding that does not contribute to the output is not �alive�� it can be eliminated as dead code�
The sole exception to this is the state variable� which is an considered an implicit output value�

The most simple of data��ow analyses can be performed to compute the set of living variables� if a variable
occurs in the output list� it is alive� If a variable is part of an expression that de�nes a alive variable� it is
alive itself�

For the example in its inlined and forwarded form� dead�code analysis shows that the variable set ftmptuple�
tmp�� stateinput�� statenewerg is not alive any more" therefore their de�ning declaration can be removed�
resulting in the code

���Basic� does not refer to �basic blocks��

Chapter �� Execution Trace Reconstruction ���

� tmp� � mk�tuple�atomy�

statenew� �update�stateinitial�tagdelay�tmp��

tmp� � �deref�statenew�tagdelay�

tmpy� � tmp���y��

tmp�� � tmpy���

statenewest � �update�statenew�tagdelay�tmp���

tmp� � atomy � tmp��

tmp� � �deref�statenewest�tagdelay�

tmp� � tmp� � tmp�
tmp� �

Later transformation steps might create new dead code and variable renamings" these two steps have to be
repeated a few times� Since they are cheap to run �mostly linear�� this does not impose any costs�

����� Reference Tracing

A special�purpose optimization can be used to trace �update��deref calls� a �deref can be removed �i�e��
replaced by an identity for the updated atom� if the matching�� previous �update is visible�

An �update can be removed �i�e�� replaced by an identity for the state� if there is no following �deref� and
a following �update on the same reference tag is visible�

These analyses will remove the �rst �update and both �derefs from the example code� which then is�

� tmp� � mk�tuple�atomy�

statenew� stateinitial
tmp� � tmp�
tmpy� � tmp���y��

tmp�� � tmpy���

statenewest � �update�statenew�tagdelay�tmp���

tmp� � atomy � tmp��

tmp� � tmp��

tmp� � tmp� � tmp�
tmp� �

Many new variable identities are introduced during this step� propagation and dead�code elimination leads
to

� tmp� � mk�tuple�atomy�

tmpy� � tmp���y��

tmp�� � tmpy���

statenewest � �update�stateinitial�tagdelay�tmp���

tmp� � atomy � tmp��

tmp� � tmp� � tmp��

tmp� �

����� Tuple Tracing

In analogy to reference tracing� tuple lookups can be removed if the matching mk�tuple creation is visible�
Since most tuples are generated by lambda applications� tuple tracing is really an analysis of static variable
binding times� This process removes references to the tuple and may lead to them becoming dead� Removing
tuple lookups from the example changes the de�nition

���Matching� means �referring to the same reference��

Chapter �� Execution Trace Reconstruction ��

tmpy� � tmp���y��

into

tmpy� � atomy

This introduces another variable renaming" it also removes the last use of tmp�� Propagation and dead�code
removal leads to

� tmp�� � atomy��

statenewest � �update�stateinitial�tagdelay�tmp���

tmp� � atomy � tmp��

tmp� � tmp� � tmp��

tmp� �

A formal framework for reference� and tuple�tracing that goes beyond mere local scope optimizations can be
found in the path semantics of Bloss �
��� which is employed in ���� �
�
�� and ���
� to gain usage information
allowing safe destructive updates for arrays �or other structures��

This concludes the optimizations that are implemented in ac and apply to the example� To free the example
from its last unnecessary �update� a non�local analysis is needed� since the reference tagdelay might be used
somewhere else in the program� This is impossible in the example �since x� to which the reference was bound�
is not bound to a suspension and was never exported from its de�ning scope�� but that information is lost
at this stage of reconstruction� If x were bound to a suspension instead of a promise� removing its de�nition
would change the semantics� since suspensions might wake up even when there are no references to them"
this is not true for promises�

��
 Example� Blocking Code

When a strict primitive encounters a reference argument that points to an unevaluated suspension� the
computation blocks� a Block is created and a reference to it is returned��� The handling of Blocks is one of
the more complex tasks of the reconstruction phase� since it involves knowledge about the internal structure
of the semantic functions� Since the treatment of Blocks is so di�erent from the treatment of the other
suspensions �Ususps� Wsusps� etc��� an extra example is needed to demonstrate the generation of code for
Blocks� First however� an in�depth discussion of Blocks is in order�

����� What�s in a Block

A Block is a reference object similar to a pending suspensios �i�e�� a Ususp�Wsusp�� Blocks are simpler
than an ordinary suspension in that their condition is not an arbitrary closure" instead� it is �xed to
isAvailable�ref � � a Block expresses a directly data�dependency" some expression has blocked because
it needed access to a pending suspension� Blocks also introduce extra complications since they allows no
introspection� while ordinary suspensions contain Lambda closures� Blocks contain �semantic continuations��
i�e� a closure of an interpreter function�

The LF semantics is denotational by de�nition� but not in its spirit� the idea behind a denotational semantics
�DS� is the association of language�level concept with their �intuitive� mathematical counterparts� For
example� numeric objects should be modelled by �real or rational� numbers � and functions by �continuous�

��Some other expression contexts also enforce strictness� the condition of a Lcond or Lselect is strict� as are the types in
function argument lists and Lcheck�Lcast nodes� Also� function arguments are strict if they are needed to resolve overloading�
It might have simpli�ed the semantics if the transformation phase had introduced a strict�identity primitive into the Lcond
and Lselect nodes� Such an approach could� however� not be used to cope with the selective strictness needed for function
arguments and parameter types�

Chapter �� Execution Trace Reconstruction ���

functions� This is a �ne approach to language modelling� since the whole power of standard mathematical
notation can be employed in describing language features� but it creates a problem when e!cient code has
to be generated� In e�ect� a code generator for the mathematical theory that underlies the denotational
semantics has to be written% Denotational semantics is� for all practical purposes� a typed lazy functional
programming language� Much of the power of DS stems from the data types it provides� �rst amongst them
�in�nite�precision� numbers� �possibly in�nite� sets and functions that need not be de�ned constructively�
It may be harder to create a correct DS�based code generator than it would be to directly translate the
language which is modelled by the DS��	 While numbers and other �transparent� objects do not cause
great problems� functions cannot be directly mapped to most machines� Amongst other things� functions
are �opaque� semantic object type � if a function s domain is not �nite� there exists no guaranteed way
to describe a function using �nite methods � it is not even possible to compare them for equality% While
programming language functions are build from discrete components� mathematical functions can be de�ned
in any number of ways�

The LF semantics tries to avoid opaque objects whenever possible� Functions are therefore modelled as
code�environment tuples� in which the �active� part �applyclosure� is implicit and the same for each function�
Suspensions are not modelled as pending continuations of the semantics� but as user functions� The only
exception to this are the Blocks� Sections ������� and ������
 show two alternative strategies of implementing
Blocks that avoid semantic continuations� and give the reasons why they were not chosen��

What exactly is a Block& First and foremost� the encapsulation of a semantic function continuation� There
are about �� occurrences of � in the semantics" most ���� of them are motivated by the possibility of a Block�
i�e� these are the possible �entry points� for a Block� Just like LF closures� semantic closures contain lexical
variable binding� The �variables� are the parameters given to semantic functions� and the intermediate
de�nitions used within the functions� A typical example for such a value is the partially�dereferenced list
that is bound in the continuation of derefobjs�

	������ Alternatives to Blocks� CPS

The �rst alternative to the current Block implementation is the adoption of continuation�passing�style �CPS��
This approach also solves all problems related to exception raising� A CPS semantics was considered� but
is not used� because code generation for such a semantics does face an entirely new problem� In a CPS
semantics� there exist one explicit continuation function for �nearly� every non�atomic expression� During
execution� this leads to the creation of zillions of closures� one for each continuation function� Indeed�
CPS closures represent ��rst�class stack frames� of non�CPS implementations� The di�erence to ordinary
��second class�� stack frames is that the latter have to be allocated and de�allocated in stacked order� while
closures can be kept around for an arbitrary amount of time� Therefore� closures must be allocated on the
heap� instead of on a stack���

Mainly for this reason SML�NJ� which is based upon a CPS execution model� allocates about � word ��
bytes� every ��	 instructions executed ����� pp��
��� SML�NJ achieves acceptable performance only due to
its aggressive garbage collection scheme� which requires an amount of memory at least � times the size of
the active set� When not simulating on a workstation� ALDiSP programs have to run on specialized DSP
hardware in real�time" such an environment cannot support garbage collection� It might be possible to

�	Of course� only one code generator has to be written for the DS� so the time needed to write a code generator for the
target language has to be compared to the time needed to set up the DS of the target language� Literature describes some
compiler�compilers that directly try to generate code from the DS� most of these can only generate adequate code when provided
with a DS that employs tool�speci�c conventions �cf� ����
�

�
Besides the problems related to code generation for Block creation and resumption that will be discussed now� there are
consequences of the current Block implementation for the scheduler �these are described in section ���
� For these reasons�
blocking computations are to be considered the biggest mis�feature of the language�

��Many CPS run�time systems store closures on the stack and only export them to the heap when they escape their lexical
scope� Such an optimization is suitable whenever most closures behave like ordinary stack frames�

Chapter �� Execution Trace Reconstruction ���

eliminate the need for run�time creation of most closures by compile�time allocation�reclamation schemes
�this is already done in ac�� but I am not sure whether all closures introduced by a CPS�semantics can thus
be eliminated�

	������ Alternatives to Blocks� Syntax Transformations

The second approach to avoid Blocks consists of a global syntactic transformation� any possibly blocking
expression is transformed� e�g� any conditional

if x then y else z end

would be transformed into

let tmpcond � x

in

if isAvailable�tmpcond� then

if tmpcond then y else z end

else

suspend

if tmpcond then y else z end

until isAvailable�tmpcond�

within ��� ms� ��� ms

end

or� to reduce the code size if y or z are huge expressions�

let tmpcond � x

tmpexpr ��delay�lambda���if tmpcond then y else z end��

in

if isAvailable�tmpcond� then �deref�tmpexpr�

else

suspend �deref�tmpexpr�

until isAvailable�tmpcond�

within ��� ms� ��� ms

end

There is also the possibility of a �direct� transformation without an extra isAvailable test�

let tmpcond � x

in

suspend

if tmpcond then y else z end

until isAvailable�tmpcond�

within ��� ms� ��� ms

end

This is however incorrect in that it introduces extra indeterminism" the expression

let x � if true then �� else ��

in

if isAvailable�x� then �

else �

end

evaluates deterministically to � under the standard interpretation� but could deliver � or � after the trans�
formation into���

��We assume that a translator would not be so brain�dead as to ask isAvailable�true�

Chapter �� Execution Trace Reconstruction ��

let tmpcond � true

x � suspend

if tmpcond then �� else ��

until isAvailable�tmpcond�

within � ms� � ms

in

if isAvailable�x� then �

else �

end

The correct transformations� if performed naively� would blow up the size of every program by a factor of ��
or more" if done �intelligently�� e�g� by avoiding repeated availability tests for the same variable� this could
be reduced to a mere ���
�+� However� it still smells of syntactic overkill�

There are also some cases that cannot be transformed correctly by syntactic means in a preprocessing phase�
namely those that are data�dependent� To pick just one example� the types of arguments to a function must
be known whenever the function is overloaded� since overload resolution works by testing argument types�
Hence� some arguments of some functions can block applications� When functions are passed around as
arguments� it is not possible to statically determine whether a variable is bound to an overloaded function
or not�

����� The Blocking Example

Since the interior of a Block cannot be accessed� it is not possible to directly synthesize a reasonable code
attribute for it� Instead� some �dummy code� is generated and re�ned in a post�processing step� The
following example shall demonstrate this� This example is not explained in the detail of the �rst one" the
exposition concentrates on the �problem areas��

Consider the ALDiSP program fragment

let

x � suspend y�� until true within ���� ms� ���� ms

in

�x�����y

end

which translates to the LF code
let

x � �suspend�Lambda����y����

Lambda����true��

ms�������ms�������

in

�x�����y

end

the �rst part up to the x��� will translate into the declaration fragments���

� tupleexpr � mk�tuple�atomy�

tuplecond � mk�tuple��

tmpsusp � �suspend�tupleexpr�tuplecond���ms���ms�

statenew � �update�stateold�refsusp�tmpsusp�

� � � �

After evaluating the literal �� the �rst reference to x and the literal ��� evalexpr�Lapp calls applyprimitives to
apply the �� applyprimitives invokes deref�objs to reduce its arguments to normal form� since � is strict�

��As the �rst example has shown� these declarations are distributed over many pending instantiations of evalexprs and
derefobjs� For didactic purposes� we consider them as a whole set of already generated code pieces�

Chapter �� Execution Trace Reconstruction ���

Now the reference refsusp �the result of evaluating x� is encountered� derefobjs blocks" the return value is
a new reference �refblock� bound to a Block�refsusp�fmagic� suspension� The function fmagic encapsulated
in the Block is a continuation of the semantic function apparatus itself� and cannot be further analyzed� It
can� however� be modelled as if it were an ordinary� if unknown� Lambda expression%

When� later on� the blocked evaluation thread continues� this takes place in an evaluation context similar to
the current one �basically� it is the same context� but with the then�current state�� Any code that will be
generated for the continuation will therefore need the current context� Code that models the preservation of
the current context must therefore be created� In analogy to the standard closure creation� this is modelled
by a mk�tuple application that binds the current lexical context� In analogy to �suspend� a �block primitive
models the creation of a �block object� that is stored in the state�

� tupleexpr � mk�tuple�atomy�

tuplecond � mk�tuple��

tmpsusp � �suspend�tupleexpr�tuplecond���ms���ms�

statenew � �update�stateold�refsusp�tmpsusp�

tupblk� � mk�tuple��

tmpblk� � �block�refsusp�tupblk��

statenewer� �update�statenew�refblk��tmpblk��

refblk� �

The problem is to determine the set of variables that have to be captured in the mk�tuple� At the point
where it is generated �i�e�� in the semantic functions block and derefobjs�� no information is available about
the variables captured in the Block� The only �upper limit� is set by the fact that the captured variables
must come from the current Code Form context� The set of lexical variables is determined syntactically
by collecting all free variables of the Code expression up to the point of the �block� This list of bound
variables is not readily accessible at the point where the Block is created" therefore a hack is employed� the
mk�tuple�� application is initially left empty" whenever a Code object is �passed upward� and recombined
with other Code objects� any mk�tuple that serves a �block is patched with the CF variables that become
visible through the recombination�

Evaluation continues with the evaluation of y� followed by the application of �� Skipping details� derefobjs
will encounter the reference argument that points to tmpblk�� This gives rise to a second Block� bound to a
new reference �refblk�� and with code

� tupleexpr � mk�tuple�atomy�

tuplecond � mk�tuple��

tmpsusp � �suspend�tupleexpr�tuplecond���ms���ms�

statenew � �update�stateold�refsusp�tmpsusp�

tupblk� � mk�tuple��

tmpblk� � �block�refsusp�tupblk��

statenewer� �update�statenew�refblk��tmpblk��

tupblk� � mk�tuple��

tmpblk� � �block�refblk��tupblk��

statenewest��update�statenewer�refblk��tmpblk��

refblk� �

Evaluation control returns to evalexpr�let� which creates no code of its own and simply terminates� When
the enclosing function� of which the example is a sub�expression� terminates� the two mk�tuple creations are
updated to

Chapter �� Execution Trace Reconstruction ���

� � � �
tupblk� � mk�tuple�tupleexpr�tuplecond�tmpsusp�

tmpblk� � �block�refsusp�tupblk��

statenewer� �update�statenew�refblk��tmpblk��

tupblk� � mk�tuple�tupleexpr�tuplecond�tmpsusp�tupblk��tmpblk��

� � �
� � � �

When abstract time will have advanced by �� milliseconds� the abstract scheduler decides to evaluate the
Ususp bound to refsusp� This happens at the state�function level� i�e� the evaluation and the following
update make up a state transformation� It is guaranteed that all suspensions are only evaluated once� so the
code generated for suspension evaluations and block continuations can be inlined� and makes up the entire
state transition function�

evalthunk is called with the LF function ����y and the arguments tupleexpr and statelater �the then�current
state�� The tupleexpr was found by looking up the refsusp in the state� The optimized �inlined etc�� result
has as code

� tupsusp � �lookup�statelater�refsusp�

tmpy � tupsusp��y��

tmpy �

The atom that was associated with the abstract object bound to y is discarded��� An �update is generated
for the refsusp" due to the inlining it can be directly appended to the thunk code�

� tupsusp � �lookup�statelater�refsusp�

tmpy � tupsusp��y��

statelater� � �update�statelater�refsusp�tmpy�

statelater� �

The result of the state transforming function is speci�ed is the new state�

The abstract scheduler can now evaluate the �rst Block� It does so by creating a preamble that sets up the
variables caught in the tupleblock�� and calling the semantic continuation with the current state �statelater���
The continuation incorporates this state into the context that was active at the blocking point� and continues
evaluation of the blocked semantic function� in this case derefobjs of the refsusp� as if nothing had happened�
This reference is now bound to the abstract object of the original y" the application of � can continue� The
continuation function terminates with the return from evalexpr�Lapp� and with the code

� tmpx � �lookup�statelater��refsusp�

tmpr � tmpx � ��

tmpr �

After the preamble and the update to refblock� are added to this� the code of the Block is

� tupblock � �lookup�statelater��refblk��

� � �
namevar � tupblock��namevar�� ��� for all variables catched in tupblock
� � �
tupleexpr� tupblock��tupleexpr��

tuplecond� tupblock��tuplecond��

tmpsusp � tupblock��tmpsusp��

tmpx � �lookup�statelater��refsusp�

tmpr � tmpx � ��

statelater�� � �update�statelater��refblk��tmpr�

statelater�� �

��If the de�nition of said atom is visible in the scope where the result of the tuple is used� reference� and tuple�tracing will
�nd it�

Chapter �� Execution Trace Reconstruction ���

This is the complete code to be included in the state transformation function for the �rst block�

Evaluation of the second Block proceeds in the same manner� resulting in code

� tupblock� � �lookup�statelater���refblk��

� � �
namevar � tupblock���namevar�� ��� for all variables catched in tupblock�
� � �
tupleexpr� tupblock���tupleexpr��

tuplecond� tupblock���tuplecond��

tmpsusp � tupblock���tmpsusp��

tupblk� � tupblock���tupblk���

tmpblk� � tupblock���tmpblk���

tmpres� � �lookup�statelater���refblk��

tmpr � tmpx � y

statelatest � �update�statelater���refblk��tmpr�

statelatest �

The code attributes that are generated for the Block continuations are quite ine!cient due to the unnecessary
tuple�� � �� applications� It is especially important to notice that many blocks will be directly dependent
upon other blocks� and thus be evaluated in sequence� When the two state�transition functions that model
the blocks evaluation are inlined��� dead�code� and parameter�elimination will take care of most of these
ine!ciencies�

An important optimization that simpli�es the generation of code both for the Block tuple creation� and for
the tuple �unpacking� that takes places as preamble to the continuations code sequences� is the lazy variable
capture� After a Block s transition function has been created� the variables that were needed from the lexical
environment of the Block creating site can be deduced from the code� since these will be those variables
that are referenced� but unde�ned� It is possible to �patch� the original mk�tuple and the preamble at
this point� since now it is now longer necessary to put a conservative approximation of the current context
into the Block tuple� but only those variables actually needed� This optimization can greatly decrease the
intermediate code size�

��� Speci�cation of Code Generation

To specify the code generation semantics of the compiler� it is necessary to extend the de�nitions of the
semantic functions �evalexpr� evaldecl� apply etc�� This e�ort can be minimized by employing the fact that
only a few clauses of the semantic functions are responsible for generating new abstract results� and hence
new code� Also� whenever the semantics employs a literal result �e�g�� �true� or �false��� the code attribute
is trivially de�ned by an ALit�� atomic expression�

All functions that isolate Obj s from Results and pass on the Obj s to continuation functions must re�attach
the original Results code s declaration list to the code of the Result that is returned by the continuation
function�

The only �complex� code generation is related to the application of closures and primitives�

All other clauses �i�e�� those that just inspect Results and pass them through unchanged� can ignore the code
attribute� In the following� extensions for the semantic functions derefobj� evalexpr� apply� and evaldecl
are given� Most extensions are speci�ed informally�

��Since the �rst transition function pass its results to a state function that directly calls the second transition function�
inlining will merge direct sequences of Blocks�

Chapter �� Execution Trace Reconstruction ���

����� evalexprs

This auxiliary function repeatedly calls evalexprs� strips the objects from the results� and passes the object
list to a continuation� Since it has also stripped the code attribute from the results� evalexprs is responsible
for appending the results CF declaration lists to the code of the result that is returned from the continuation�
If no lazy Block code generation is used� evalexprs is also responsible for patching any mk�tuple applications
that are used to create blocks�

����� derefobjs

The derefobjs function directly analyzes the types of objects� If an object is a reference� the referenced value
is substituted� The code fragment for this case is simply a �deref primitive application� If the referenced
value is a unevaluated promise� the thunk has to be evaluated and the result value to be stored�

� tmpthunk � �deref�statecurrent�ref�

tmpresult� tmpcombinator�tmpthunk�

statenew � �update�statecurrent�ref�tmpresult�

tmpresult �

The tmpthunk is represent the closure tuple of the promise� It has to be passed explicitly to the promise s
combinator� as the �rst �and sole� argument� The �code�� i�e� the combinator� is treated like a literal or a
top�level de�nition�

����� block

Most of the behaviour of the block function has already been described in the second example �section �����
Block dumps the initially empty tuple creation code and the de�nition of the reference that points to the
block�

� tmptuple � mk�tuple��

tmpblock � �block�refpending�tmptuple�

statenew � �update�stateold�refblock�tmpblock�

refblock �

The reference refpending is the one that caused the block refblock is the one that denotes the block�

����� strict and strictexprs

strictexprs just combine evalexprs and derefobjs� strict extracts an object from a result and passes it on
to a continuation function" it therefore has the responsibility to re�attach the stripped CF declarations to
the result that is passed back�

����� evalthunk and normresult

evalthunk combines normresult and derefobjs� As already been mentioned in section ���� normresult has been
modi�ed to return a true Result�typed result" therefore no code generation takes place�

����� Lit

The code for a Lit expression is an emplty declaration sequence with an ALit return expression�

� # ALit�value� �

Chapter �� Execution Trace Reconstruction ��	

����� Lexical Lvars

A lexical Lvar expression has as its code the atom that was bound to the value of the lexical variable� This
atom has been set up when the variable was de�ned�

There are three di�erent �places of origin� of lexical LF variables�

� Lambda parameters�

� variables bound with Ldecl�Lpard�Lseqd�Lfixd� and

� variables from an enclosing scope� which are extracted from the closure tuple�

Lambda parameters and closure tuple variables are routineley given fresh names in each function s preamble�
if only to simplify inlining� LF declarations are e�ectively ignored at the CF level� since they are kept track
of by the compile�time environment�

����� Dynamic Lvars

In general� dynamic variables are either passed to the function �that encloses the Lvar expression� as
an additional parameter �hidden in the state variable�� The generated code employs a special primitive
�lookup�dynamic that accesses the current state�

� vardyn � �lookup�dynamic�statecurrent��namedyn��

vardyn �

When a dynamic variable is bound to a literal value� i�e� either a �true� literal or a combinator function�
function specialization can take place� The dynamic variable essentially disappears� at the possible cost of
an additional function specialization�

����
 Lambda

The evaluation of a Lambda expression creates a closure object" its run�time equivalent is a closure tuple�
This tuple is created using a mk�tuple application that binds all currently visible variables that will be used
in the tuple s body�

� tup � mk�tuple�atomfree���� � ���atomfree�n�
tup �

Each atomfree�i is the atom attached to varfree�i� the ith free variable in the Lambda expression�

The set of free variables in the body of the Lambda expression that can be determined statically is a conser�
vative approximation� it may contain variables that are never used by the actual execution��� One useful
optimization of the code generator is therefore the deferral of actual tuple creation to the point where all
applications of the tuple are known" then the worst�case variable set can be deteremined and used to patch
up the tuple creation code�

������ Lcheck

Lcheck forms reduce to a either a function application� or to the creation of a new Lambda expression� i�e� a
tuple �if a function�type is checked for�� If the Lcheck reduces to a function application that generates a
non�abstract value� no code is generated at all� if the result is true� the Lcheck is replaced by its argument
expression�" if the result is false� a compile�time error is issued� If the result is an abstract value �i�e��
aBool�� a runtime test may be generated� The current ac does not generate run�time tests" this is correct�
since the outcome of an unsuccessfull test is unde�ned�

��Actually� if the closure is never applied at all� no variable is used or need be captured�

Chapter �� Execution Trace Reconstruction ���

������ Lcast

Evaluation of an Lcast will lead to an application of one of the user�de�ned cast functions� If a cast to
a general type is needed� and no unique matching type can be found� because there are type predicates
that return aBool� nested run�time conditionals have to be generated� one for each possibly applicable cast
function that precedes the �rst guaranteed applicable cast function�

������ Lcond

A conditional that evaluates to true or false will be replaced by the chosen alternative� If the condition is
undetermined� both alternatives are evaluated� and a Select node with two forks is created from the code
of the condition and the alternatives�

� � � �code that computes the atomcond � � �
�result�state�� � Select�atomcond�

��ALit�true�� �� � � declstrue � � � # resulttrue�statetrue���

�ALit�false���� � � declsfalse � � � # resultfalse�statefalse����

NONE�

result �

������ Lselect

The only Lselect nodes that appear in practical programs are generated in module selection functions� In
this context� it is an error if no compile�time selection can be determined� Therefore� no Select code must
be generated� since one of the selection cases� or the default� will be chosen�

������ Lseq

The evaluation of a sequence is for its side�e�ects only� The strict function implements the evaluation of
�and therefore also the code generation for� the expression list" the eval�Lseq� � � ��� merely discards all
but the last result" the nested strict applications will pre�x all the code generated for the sequence� Any
unnecessary code will have to be removed by post�processing optimizations�

������ apply

Most of the sub�functions of apply do not generate code� they just decide which of the many applyxxx
function is to be used� At the bottom� there are three di�erent functions that implement the application�

� applytype� with a type argument that is one of the basic types�

� applyprimitive � and

� applyclosure�

Only one of the �distribution� functions can generate code� namely applyoverloaded� While the actual applica�
tion of applyoverloaded reduces to an applyclosure �since the overloaded function is just a collection of ordinary
closures�� the selection of the closure might be deferred to run�time� In this case� a nested conditional is
created� In the semantics� the checklist function is used to determine the index of the �rst matching closure

Chapter �� Execution Trace Reconstruction ��

of an overloaded function� This function has to be modi�ed upon abstraction� since it can only return true

or false in its original form���

Some code has to be generated for overloaded function applications� namely the selection of the closure
that is to be applied� The runtime model of an overloaded function is a tupel that contains closures� The
primitive overload models the creations of such a tuple� and overload�selectmodels the closure selection�

������ applytype

Code generation for applytype �or rather� isbase� is trivial� since the results must be either true or false� if
the type that is tested for is a base type� The runtime system does not know data polymorphism� i�e� every
variable in the compiled CF program is of a known and �xed base type� All polymorphic values are split up
as a side e�ect of function specialization�

When applytype is used to test for a predicate type� it reduces to a closure application�

������ applyprimitive

Primitive function applications fall into two categories�

� the �simple� primitives are strict and side�e�ect free" examples of these primtives are the arithmetic
primitives� and the tuple accessor and creator primitives� Code generation for these primitives is trivial�
applyprimitive�strict looks at the result value" if it can be encoded as a literal� the result code is this
literal" if it is a non�literal� the code is

� result � Prim�primitive�name��atomarg���� � ��atomarg�N��
result �

� the �complicated� primitives are non�strict and�or have side e�ects� In general� code generation for
these works as in the �simple� case� but some of the side�e�ecting primitives have special�case code
generation rules�

� mk�exc is translated into a Throw expression� mk�exc takes an arbitrary number of argument" the
corresponding Throw has one additional argument atom� namely the current state �which is the
�rst argument�� The result of the Throw is a new state���

� suspend and delay primitives are translated into sequences of a �suspend��delay that creates a
suspension�promise object� and an �update that installs the newly created object in the current
state� and creates a new state� �This has been shown in the examples��

��In the current implementation� code generation for the generalized applyoverloaded is not implemented� and an error message
is issued when an overloaded function application cannot be resolved at compile time� In practice� most of these re�ect
programming errors anyhow�

��This is really a pseudo�result� since the Throw does not return� but jumps to the last �Catch� on the call stack� There is an
additional problem with Throw� which is exempli�ed by the common idiom
� t 	 eq�b���

S���q 	 if t then � S� 	 Throw�S�DivZero�a�
 S� �

else � r 	 div�a�b�
 S�r �

 q �
There is an obvious mismatch here� Semantically� mk�exc and Throw return exception objects� which can be treated like

any other bottom�valued object� At the CF level� there is no bottom� and variables are restricted to known �base
 types� To
guarantee a type� and arity�correct CF program� each Throw therefore returns an extra dummy�value that is typed accordingly
to the needs of the context� These needs become obvious the �rst time the object is merged with other �non�bottom
 objects
in a conditional� The correct code is therefore
� t 	 eq�b���

S���q 	 if t then � S��dummy 	 Throw�S�DivZero�a�
 S��dummy �

else � r 	 div�a�b�
 S�r �

 q �

Chapter �� Execution Trace Reconstruction ���

� the map�array and map�list primitives are translated into library function calls�

� the io�op primitive is translated into an �update� io�op is a general I�O operation that can
be parameterized to e�ect input� output� and test operations� In any of these cases� reference
de�nitions have to be created or updated�

������ applyclosure

When a closure is applied� a lot of code has to be created� Each closure application is assumed to create a
new call cache entry �CCE�� Each CCE will either be inlined� or projected to a CF function� Code generation
assumes the latter�

Code generation consists of two tasks� the atom attributes of the values held in the �updated� environment
have to be modi�ed� and a preamble �that implements these modi�cations� has to be prepended to the �nal
code of the function s result� To pick an example function
c � � � �
func f�a�b� � a�b�c

� � �
f�x�y�

The closure f contains one value� namely c� Upon application of f� code for three bindings �x�y� and c� must
be created� The application takes the form

r � App�tagcce�atomf�atomx�atomy�

where tagcce is the tag that denotes the call cache entry in which the code for this particular application of
f will be stored� and atomf � atomx and atomy are the atom attributes of the variables f� x and y�

For the CCE code� four new variables are introduced� tmptuple� tmpa� tmpb� and tmpc� Of these� all but tmpc
are parameters to the function� tmptuple is the parameter to which f s closure tuple is bound� and tmpa�tmpb
are the two �ordinary� parameters��	 The preamble is such quite small� namely

� tmpc � lookup�tuple�tmptuple���

� � � rest of the code � � �
� � � results � � � �

The names of the newly introduced parameters are stored as attributes of the CCE� since they will be needed
when the CCE is later inlined or translated into a function de�nition�

Again� no code has to be generated at all if the result is a literal value� In such a case� the call cache entry
is reclaimed�

��� Related Work

This section gives a short comparison with the approaches to residual code generation and representation
that are presented in the literature� Since most published work describes o��line PE systems� these shall be
presented �rst�

O��line partial evaluation is usually speci�ed as a source�to�source transformation that is guided by anno�
tations generated in a binding�time analysis �BTA� phase� These annotations typically take the form of a
two�level syntax��
 The essential fold�unfold transformations �

�
��� together with typical ��calculus iden�
tities like ��conversion� form a su!cient base for all modi�cations encountered in o��line PE" i�e� all �higher

�	These parameters do not have the names a and b� since inlining would be complicated by such a renaming� Besides�
debugging is kept simpler if there are no common names between the LF and CF domains�

�
In a two�level syntax� there are two variants for each �original� syntactic construct� In BTA� these variants denote the
�static�dynamic� distinction �cf� section 	�

�

Chapter �� Execution Trace Reconstruction ���

level� optimizations can be speci�ed and implemented in terms of these basic transformations��� Most of the
complexity of o��line PE is isolated in the BTA� and program representation doesn t become an issue at all�
This is indeed one of the strengths of the o��line approach� the separation of BTA and rewriting makes it
possible to simplify both phases" BTA can be implemented using simple�minded� but still useful data models
�e�g�� AI on two�point domains�� and the rewriting phase needs nothing more then �� and ��conversion
�renaming and instantiation��

In on�line systems� the program is re�written while it is executed� An on�line PE must therefore consist of
at least a full interpreter" usually even an �abstracted� version of the standard interpreter���

Code generation in on�line PE also poses a challenge to software engineering because of is distributed nature�
While the object program is executed� either code fragments are generated� or the object program is locally
rewritten� In both cases� there is not much information available about the �whole� program� especially
about the execution of things that are still in the �future�� This is a marked contrast to o��line PE� where it
is known by syntactical means whether a variable is used once or many times� passed upward or downward�
or stored in a data�structure� For each of these situations� a di�erent code generation approach can be
employed� In on�line PE� nothing is known about the future of locally computed values� and the code
generation strategy must therefore assume a worst�case context�

There are two essential approaches to code representation that can be characterized as being based on
program texts versus program graphs� A �text representation� shares all the properties of a program in the
source language� or its abstract syntax tree equivalent" it obeys the normal scoping and life�time rules� and it
is implicitly sequentialized� Graph�based program representations tend to resemble data��ow graphs and are
usually taken to be demand�driven" some graph representations allow explicit cycles� others forbid them or
allow only directed acyclic graphs �DAGs�� Graph representations have no natural scoping and sequencing
rules" that makes them particularly suited for parallel applications ��
���

Berlin ���� ��� employs a DAG representation for his LISP�based PE� The graph is then scheduled for
optimized utilization on pipelined architectures� Berlin considers typical �scienti�c� applications that have
a �xed recursion structure dominated by numeric computations" he essentially optimizes inner loops�

The FUSE system of Weise et�al� ����� �
�� �
�� �

� employs a graph representation that allows cycles�
FUSE is partly o��line and partly on�line� During abstract interpretation� a data�program graph is created"
each data object is attributed with the code that generates it� The graph structure emerges as a natural
consequence of these attributes� The reduce�residualize decisions are delayed to the partial evaluation phase
that occurs after the abstract interpretation� In this phase� those applications that ful�ll certain heuristically
determined quali�cations are reduced� This phase is simpli�ed by the graph representation� since scoping can
be ignored� Since source and target language are the same in FUSE� scoping has to be re�created� and the
operations in the program graph have to be sequentialized� This is done by computing a def�point tree for the
whole graph� from which scope information for each node is inferred� This scoped graph is then translated
into a text representation �a Scheme program�� Alternatively� the scoped graph can be translated into C�
These tasks are not simpli�ed by the possible need for nested and local higher�order function de�nitions�

In ��
��� Weise et�al� apply a similar representation to C programs� Loops and labels are translated into
Lambda entry points� Since C does not provide nested �rst�order functions� the scoping structure is easier
to reconstruct than in FUSE� The main goal in this work is to extract parallelism by removing implicit
sequencing� To do this� the store is split up and some pointer analysis is performed�

Haraldsson ���� was one of the �rst to build an on�line partial evaluator as an extension to an interpreter� In
the REDFUN�
 system� he introduces �q�tuples�� which ��hold� the reduced form and information extracted

��O��line PE can thus be characterized as an approach which tries to solve the problem of what to transform� not how�
��On�line PE using a standard interpreter is nothing more or less than run�time code generation �RTCG
� RTCG is feasible

for some specialized applications such as sound and image decompression or BITBLT operations �cf� Keppel et al� �
�� for
examples
� It is however hard to justify run�time code generation as a general strategy for the compilation of whole programs�
since the increase in runtime e�ciency that is achieved by the PE must compensate for the memory and time consumption of
the partial evaluator � costs that can be ignored when run�time and compile�time are di�erent�

Chapter �� Execution Trace Reconstruction ��

from it ������� REDFUN�
 is implemented in the context and as an extension of an existing LISP system� and
the �reduced form� is a simple LISP expression" the �information� consists of a side�e�ect �ag� true� and false�
context information� and an �assignment information�� The reduced forms are to be placed in PROGN contexts"
hence variable de�nitions will be visible to all subsequent reduced forms� Inlining is performed ad�hoc and
locally� guided by heuristics� Since REDFUN is embedded in a LISP environment� the user can extend and
change the behaviour of many parts of the partial evaluation functions by adding properties to symbols� Using
such explicit modi�cations of the partial evaluator� particularly bad specialization� and inlining�decisions can
be avoided on an ad�hoc basis� and heuristics can be adapted to speci�c target programs�

Chapter �

The Back�End

This chapter describes syntax and semantics of the generalized machine language M that is the �nal output
of the compiler� M is a low�level language designed to be easily translatable to the assembler languages
of current DSP processors� The current implementation of ac does not generate code for a speci�c target
architecture" instead� the user can request the generation of either an M code program� or a portable C

program that corresponds to it��

��� Di�erences between M and CF

Why is it necessary to have yet another intermediate form& The Code Form representation is still too �high
level� in that it is based on the applicative paradigm� The control �ow of CF programs is based on tail�
recursive function calls instead of jumps� loops� and stack�based subroutine calls� All CF data structures�
including tuples� arrays� and the state� are �rst�class values� they can be passed around as function arguments
and result values� On a real machine� only �atomic� values small enough to �t into registers have this �rst�
class status�

The M form is de�ned in terms of a machine model that allows easy translation to most currently known DSP
and general purpose processor architectures� To achieve this goal� the abstract target machine is restricted
in a number of a ways�

� No �at address space is assumed� i�e� there is no general pointer concept�

� A special index type is used to access vector elements�

� A special loop construct is provided�

� There is no unique data size�

� There is no implicit control state�

In the next sections� these points will be elucidated�

�It is also possible to generate a dump of the �nal call cache contents in Code Form� and a graphical rendering of the state
graph in GraphEd format �for an example� see �g� ���
�

���

Chapter
� The Back�End ���

���� Disjoint Address Space	 Index Types	 and Hardware Loops

Many DSP architectures� e�g� the DSP��k family of processors� have the capability of addressing two or
more separate memory banks� This makes it possible to access more than one memory location in one cycle�
Many common DSP operations �e�g� most �lters� have a core of multiply�add loops� in which one word
from the coe!cient table and one word from the input stream are multiplied per iteration step� and the
result added to an accumulator� Having two or more memory banks available in parallel makes it possible
to implement one such MAC �multiply�accumulate� step per cycle� Languages such as �C� which depend
upon a �at memory model with unrestricted pointers are not easily adapted to such architectures�

M supports target architectures with separate memory banks by not providing a general pointer type� As
far as M is concerned� each vector �and each global scalar� can be part of a separate memory bank� accessed
by distinct instruction addressing modes�

Since M shuns pointers� there are no alias�problems" all accesses to a given vector can be found by static
analysis� Thus� it is simple to distribute the vectors over the memory banks�

A related problem is that of index ranges� M does not allow the indexing of arrays by ordinary unrestricted
integers� Instead� it is possible to de�ne a variable as being an �index into� one or more speci�c vectors�
Such an index can only be used to access the vectors over which it is declared� and a vector can only be
accessed by an appropriate index�

It is allowed to copy index values into �ordinary� integer variables of appropriate size� and vice versa" index
values can also be incremented and decremented by integer amounts to give new index values� It is thus
possible to directly map �index variables� onto target hardware index registers� if such exist�

Many DSP processors support �hardware loops�� i�e� e!cient increment�compare�jump combinations" some�
times there are even advanced features such as modulo�addressing� Such loop instructions are usually re�
stricted to situations in which the number of loops and the �rst index are known in advance� and the step
size is a small constant� To support such instructions� M contains a loop construct that is restricted in such
a way that hardware loops for most DSPs can be generated without undue contortions�

���� Data Formats	 Special Instructions	 and the ALDiSP Library

The size of integer� and �oating�point numbers is not standardized for all target architectures� Especially
on DSPs� word sizes such as �
� ��� or �� bit are not uncommon� No e!cient code for such machines could
be generated for an intermediate language that enforced one standard size such as �� or �
 bit� On the
other hand� if one �machine int� of unspeci�ed length is used� the code would have no de�ned semantics�
and machines supporting more than one integer or �oating�point format could not be utilized� M therefore
allows the speci�cation of arbitrary integer and �oating point formats�

The ALDiSP library is responsible for breaking the arithmetic primitives down to those sizes that are sup�
ported by the target architecture� This approach also uni�es multiple�precision arithmetics with �ordinary�
arithmetics�

A set of ALDiSP primitives de�nes the arithmetic capabilities of a machine�� This way� even user�written
�library or program� functions can inquire about machine characteristics� Much of the complexity of a typical
back�end and run�time support system is thus delegated to the library�

The ALDiSP library is required to only generate calls to primitives with arguments that are supported by
the hardware" this guarantees that the generated M program is semantically sound�

If the target machine supports special instructions such as multiply�and�accumulate� or implements ALDiSP
primitives as combinations of multiple machine instructions �e�g� multiplication as sequence of booth steps��

�Two primitives su�ce� �is�mach�type asks whether a type is supported by a given target architecture� and
�nearest�mach�type gives the target�type that is �nearest� a given type�

Chapter
� The Back�End ���

the ALDiSP library can be re�written to support those� The M language treats the primitive functions as
�black box� pure functions� It is assumed that the back�end supports all instructions generated by the
front�end� i�e� that the front�end knows what primitives are available on the target�

���� No Implicit State

Because M supports multiple output operations� there is no need for implicit state in form of status �ags
or the like� This simpli�es M�level program transformation� instructions can be moved around as long as
all data dependencies are maintained� M primitives are fully �functional� � they e�ect nothing beside their
explicit output values� This is very important for instruction scheduling� which depends on the ability to
freely move code around in the program��

��� Semantic Entities of M

M assumes a machine with a main memory consisting of arbitrary many �but compile�time constant bound�
disjoint vectors of scalar elements� A stack of known maximum size is supported� Program memory is
separated from data memory� There is an unbound but �xed number of registers referred to implicitly� Basic
scalar types supported are

int�n� for n � MaxIntSize� where MaxIntSize is a machine speci�c constant� These are the twos�complement
integers of size n�

card�n� for n �MaxCardSize �which usually coincides with MaxIntSize�� These are the unsigned integers
of size n�

float�n�m� where �n�m� are drawn from a machine speci�c set of known �oat formats� Usually� the
formats f���� ��� ��
� ��� ���� ���g are supported� An encoding in IEEE�	�� �oating point format is
assumed�

bool is the standard boolean type�

index�names� is the type of array indices� An index is restricted to point into the arrays enumerated in its
declaration� There are no pointers into arrays� Index variable may not point outside arrays� Not all
indices need be of the same size� thus they are not assignment�compatible� An assignment i� � i� is
allowed if the set of arrays i� may point to is a subset of the set of arrays i� may point to �that is�
every valid i� is also a valid i���

There are the following basic kinds of instructions�

� Declarations introduce I�O objects� functions� and global variables� Within functions� they introduce
stack variables and temporaries�

� Assignments move scalar values between locations� Assignments are instantaneous� Multiple assign�
ments are simultaneous ��a�b���b�a� is a correct swap��

� Primitives can be called with any number of arguments� returning any number of arguments�

� Jumps can move between labels of the same function�

�The task of instruction scheduling is to �nd an ordering for the instructions that minimizes register spilling and optimizes
the use of memory accesses and delay slots� this is quite important if the machine supports �parallel moves�� as the 	
k��
k
processors do� The current ac considers instruction scheduling a machine�speci�c �back end� issue�

Chapter
� The Back�End ���

� Calls are used to enter another function�

� a Return exits from a called function� destroying all stack variables de�ned in that function�

Both jumps and calls allow argument and result parameter transfer �by value��

���� Function De�nitions

A function is a piece of code containing at least one return statement� A function s de�nition ends with the
header of the next function s de�nition� The header argument list is empty� Following the function header�
and preceding the �rst executable statement or label� are declarations of local stack variables� Whenever the
function is entered with call� a stack frame containing these variables is allocated� but not initialized� The
call may or may not initialize some of these variables �namely� those mentioned in the parameter list��

A temporary variable is introduced by a temp declaration� The lifetime of the variable is up to its last use� It
is illegal to use temporary variables in recursive code� Temporary variables are intended to model registers"
the reconstruction phase tries to honor this intention by preferring temporary to stack variables�

A function can have arbitrary many labels� Labels have argument lists containing only the names of locally
visible stack or temporary variables�

Control �ow within a function is done via combinations of the if and jump directives�

As examples� here are two implementations of a well�known algorithm�

func fak��n� �� recursive fak

stack int��"� �n� �� n has to be on the stack

temp int���� res �� the result need not be on the stack

temp bool �r� �� holds the comparison result flag

temp int��"� n�� �� holds the n�� value

r � �!� �n���

if �r�

n�� � ��� �n���

res � call fak��n���

res � ��� �res�n�

return �res�

else

return ���

endif

func fak��n� �� iterative fak

temp int��"� �n� �� input and loop counter

temp int���� �res� �� accumulator and result

temp bool r �� for the comparison result flag

res � �

label loop��

r � �!��n���

if �r�

return�res�

else

res � ����res�n�

n � ����n���

jump loop��

endif

Chapter
� The Back�End ��	

It is important to understand why the �n� variable of the fak� function must be of type �stack� instead of
�temp�� temporary variables are not reentrant� After the call fak�� the values of n�r� and n�� are therefore
unde�ned�

The next example shows the use of vectors� A function that computes a vector product is shown�

vector int��"� ��� �v��v�� �� all vectors are global

func v��times�v���

temp index�v��v�� i

temp int���� �sum�prod�

sum � �

loop i ���������

prod � ��� �v��i��v��i��

sum � ��� �prod�sum�

endloop

return �sum�

The loop form is a built�in primitive with the three parameters ��rst index�� �number of steps�� and �step
size�� The variable i should be of type index or integer�

It is not possible to parameterize a vector�manipulating function like v��times�v�� since there are no vector
pointers� This may seem wasteful and overly restrictive� but has its reason� Especially in DSP processors�
disjoint memory banks and hardware loop support are often found� A general vector�prod function could
prove hard to realize on such chips� because vector sizes and alignments may have to be hard�coded into the
loop instructions�

By disallowing general pointers to vectors� it is guaranteed that all vector index ranges can be computed
and veri�ed at assembly�time�

Vectors are accessed using a hard�wired subscript form� Subscripting is not modelled as a primitive� but as
a built�in syntax form� since it is easier to expand a subscript operator that cannot be implemented as an
addressing mode into a sequence of access computations than to do the converse�

��� Structure of M

The abstract data type of M types is�

datatype Mtype �

Mt�int of int

Mt�float of int � int

Mt�index of string list

Mt�bool

Mt�string

M programs distinguish between local and global declarations� Functions and vectors can only be de�ned
globally� A program consists of a series of global declarations �the order is not important��

datatype Mprogram �

Mprog of Mfunc list � Mglob list

Besides functions� there are two kinds of global declarations� those for scalars �arbitrary atomic values�� and
those for vectors� Both kinds of declarations can declare a whole bunch of values of the same type�� Instead
of a separate identi�er type� the M abstract syntax employs simple strings��

�The presence of multiple declarations simpli�es some of the transformation rules that generate the M programs�
�Using strings instead of the symbols employed by the rest of the compiler makes it possible to separate any assembly�

generation back�end totally from the rest of the compiler� As usual� the speci�cation shown here exactly mirrors the current
implementation�

Chapter
� The Back�End ���

datatype Mglob �

Mscalar of string list � Mtype

Mvector of string list � int � Mtype

A function declaration consists of a list of formal parameters� a set of local variable declarations� and a
sequence of statements� The parameters and local variables have a scope and lifetime of the statements" it
is not possible to declare function�local static variables�

datatype Mfunc �

Mfunc of string � Mres list � Mdecl list � Mstmt list

Each Mdecl corrsponds to an invocation�local ��stack� or �auto�� variable� When a function is called� its
statements are executed sequentially� The two kinds of Mdecl di�er in their stack behaviour� when a Mapp

statement ��function call�� is executed� the Mstck variables are saved on the stack� and restored upon return�
The Mtemp variables are not saved" they are unde�ned after a function call�

datatype Mdecl �

Mstck of string list � Mtype �� name� type ��

Mtemp of string list � Mtype �� name� type ��

L�expressions �aka� locations� are modelled by Mres expressions� There are only two kinds of Mres expres�
sions� variable names and vector locations� A variable name may only be used in a context in which it is
de�ned �either via Mdecl or via Mglob�� A vector location is denoted by the name of the vector and an
arbitrary atomic expression �Marg� that computes to an index value of appropriate type�

datatype Mres � �� result �l�expr� is ��

Mr�id of string �� identifier ��

Mr�index of string � Marg �� vector store ��

Margs denote atomic values� Of the six Marg constructors� four denote literals" the other two denote the
content of a variable �that has to be visible in the current context� and the content of a vector location�
Note that vector access can be nested��

datatype Marg � �� argument �atomic expr� is ��

Mint of int �� integer literal ��

Mfloat of real �� fp literal ��

Mbool of bool �� boolean literal ��

Mstring of string �� string literal ��

Mid of string �� content of a variable ��

Mindex of string � Marg �� content of a vector element ��

Finally� there are statements� Mapp and Mreturn implement function call and return" Mcall invokes primi�
tives" Mjump and Mlabel allow non�sequential control �ow within a function �Mjump can pass arguments to
the Mlabel�" Mif is the standard if operator" Mloop is a hard�wired loop construct�

datatype Mstmt � �� statement is ��

Mreturn of Marg list �� return �with results� ��

Mapp of string � Marg list � Mres list �� call a function �Mfunc� ��

Mcall of string � Marg list � Mres list �� call a primitive ��

Mjump of string � Marg list �� goto label ��

Mlabel of string � Mres list �� name � arguments passed ��

Mif of Marg � Mstmt list � Mstmt list �� if arg then ��� else ��� ��

# Mloop of string � Marg � Marg � Marg � Mstmt list �� loopvar�init�	steps�incr ��

An invocation of Mloop�var�init�steps�incr�statements� corresponds to

�Allowing nested vector addressing such as Mindex��a��Mindex��b��Mid��c���� simpli�es the grammar and cuts down the
number of temporary variables in the generated M�code� it is trivial to atomize complex addressing modes when generating
code for machines that do not provide such addressing modes�

Chapter
� The Back�End ��

var � init � tmp � ��

while tmp ' steps do

� � �statements� � �
var � var � incr�

tmp � tmp � ��

od

where tmp is an appropriate variable� This kind of loop description was chosen because it is most easily
analyzed and transformed into equivalent forms�

��� Transforming CF into M

The transformations needed to generate M code from the reconstructed Code Form program are mostly
trivial�

� State Globalization� One global variable is created for each distinct reference in the state� and reference
lookups and de�nitions are translated in equivalent accesses to these globals� This can be done without
further analysis because it is known that the state is single�threaded�

� Tuple Atomization� Non�atomic variables �i�e�� tuples� are split up into sub�variables of atomic type�

� Vector Globalization� All Vector�typed variables are translated into global variables�

Of these points� only the last one is complicated� There are actually three transformations involved�

� Introducing In�Place Primitives� Some vector�creating primitives ��update�vector� �map�vector� are
replaced by vector�modifying counterparts ��update�vector�inplace� �map�vector�inplace�� This
can be done in a correct way by �rst introducing copies�

v� � updating�primitive�����v������

will be transformed into
v� � copy�vector�v��

v� � updating�primitive�inplace�����v������

� Dead�Vector Elimination� Whenever a vector variable becomes unused� its last copy operation can be
eliminated�
v� � copy�vector�v�� �� v� unused after this

v� � updating�primitive�inplace�����v������

can be replaced by

v� � updating�primitive�inplace�����v������

� Removing Vector�Typed Function Arguments� Functions that take vectors as arguments are copied" a
di�erent instance is created for every vector they might be applied to�� When this transformation has
been performed successfully� all vectors are e�ectively single�threaded� and can be made global�

Finally� all occurences �lookup�vector and �update�vector�inplace are replaced by their M coun�
terparts �Mindex and Mrindex�� and calls to �map�vector�inplace are replaced by Mloop invocations�

Much energy can be spent into providing further optimizations to minimize the number of �scratch vectors��
The current ac only implements the most basic heuristic� it tries to move all non�modifying accesses to a
vector before the �rst modifying access�

�In typical DSP code� this should not pose any code�size problems� since such applications usually employ a small number
of �xed vectors� The current CF�to�M translator uses a primitive clone�vector that creates a dynamic� garbage�collected copy
of a vector for functions that introduce vectors on the �y� or within recursive functions� The C backend might implement this
with malloc and reference counting�

Chapter
� The Back�End ���

��� The C back�end

The only back�end currently implemented for M generates C code� The resultant code is quite ine!cient�
since C is not especially suited as a low�level assembler�

� There is no possibility to get �ne control over stack allocation behaviour� Thus� the temp variables
employed in M cannot be correctly represented�

� C functions cannot have multiple output values� It is possible to use structures for this purpose� but
those are not held in registers by most compilers�

The M�to�C translater generates one big switch statement� in which labels and function heads are represented
as cases� The stack is held explicitly� and the arguments that are passed along by each jump or call are
modelled via global transfer registers�

��
 The Future� Automatic Back�End Generation

A more ambitious approach to machine code generation is the automatic generation of back�ends� Languages
like nML ���� ��� give a full instruction�level register�transfer semantics for a target architecture� together
with information about the assembly language syntax and bit�level code representation� In a framework like
CBC ���� �
�� such a target description is transformed into a hardware�model suited as input language for
a CDFG �Control�Data�Flow Graph� code generator� By providing CDFG output� ac can be retargetted
to arbitrary target architectures� It is also possible to transform the description into a simulation tool �����
which allows target�instruction level debugging of programs�

Chapter ��

Conclusions and Outlook

The goal of this work was to establish a compilation technique able to cope with �rich� languages like ALDiSP�
which have both a complex semantics and stringent requirements in regard to space and time e!ciency� but
which do not have to be compiled with a fast turn�around time� since actual software development occurs in
an interpreter environment� and cross�compilation is the order�

ALDiSP is un�compilable with the methods used to compile other classes of languages�

� Third�Generation Languages �Fortran� Pascal� Modula�
� C� C((� are based on the assumption that
each source language construct can be modelled e�ectively by a �small� chunk of machine code� The
data types provided as primitive and operations on them are essentially the atomic types and operations
of the target hardware �numbers� characters� addresses�� Code generation for such languages can be
achieved by mapping each construct to its target code sequence" optimization mostly consists of register
allocation and instruction scheduling�

� Functional and Logic Programming Languages �Haskell� SML� Prolog� are based upon abstract ma�
chines and runtime systems that implement e!cient garbage collected heaps for many small objects�
Code generation consists of creating e!cient code sequences that work as new operators �supercom�
binators� of these abstract machines� Typical applications of such languages need to represent and
work upon large and complex heterogenous data structures �list� graphs� knowledge bases�� Dynami�
cally typed languages �LISP� Scheme� are often not compiled down to the level of machine data types
��unboxed values��� but only to that of the abstract machine ��boxed values�� so that some degree of
interpretation takes place at run�time�

� Signal�Flow Languages �Silage� Signal� essentially describe arithmetic expressions� and can be compiled
as basic blocks� each signal value can be represented as a variable� and each operation as a hardware
instruction� The only optimizations left to the compiler are register allocation� memory layout� and
instruction scheduling�

As a language� ALDiSP violates the assumptions behind the aforementioned compilation methods�

� The control �ow is not made explicit� but emerges from the interaction of data types �vectors� streams�
overloaded functions� and generic rules �automapping� overload resolution� blocking and forcing��

� ALDiSP has no static type system�

� The target architectures for which ALDiSP is intended do not provide large memories� and run�time
garbage collection is out of the question�

���

Chapter ��� Conclusions and Outlook ��

� ALDiSP supports data types and operations on them that are not primitive machine types and opera�
tions �whole arrays� higher�order functions��

The DSP algorithms to which ALDiSP is typically applied are� however� simple and highly regular� The
idea behind ac was therefore to write a compiler that �ltered this speci�c regular structure out of ALDiSP
programs that are composed from very generic building blocks� Online partial evaluation promised to provide
a method for this�

���� Development History

Early work on ac was guided by a paper ��
�� describing Fuse� an online partial evaluator for Scheme� The
�rst attempts at writing ac were based on extensions to a na�#ve ALDiSP interpreter written in Scheme�
While Scheme is a �ne language for experimental programming� language extensions and meta�interpreters�
it lacks in some respects� Especially the need for static type checking motivated the complete re�write into
SML�

In parallel to the compiler� a �rst complete semantics was written� An earlier attempt to write a �direct�
ALDiSP semantics didn t succeed� since the semantics got too complex� Thus� the Lambda Form was born�
In retrospect� the Lambda Form is still too complex" it might have been better to transform ALDiSP directly
into what is now the Code Form� At that time� I considered such a decomposition� but was afraid that the
intermediate code size would explode if the Lambda Form got too basic�

The basic idea of Fuse� namely the graph�based representation� was mostly lost in ac� since ALDiSP features
such as the suspension state and full higher�order functions are not considered by Fuse� and cause quite some
problems when a ��at� program is to be reconstructed from a graph� The major conceptual breakthrough
in the reconstruction phase consisted of the idea to separate the code and atom attributes� and to use the
abstract state graph as the skeleton of the reconstructed program� The Code Form language changed a lot
over the time" it was originally a strict subset of the Lambda Form�

The current implementation of ac is not very stable and cannot be used to compile large programs� since
its resource consumption is too high� As a proof�of�concept� it shows that ALDiSP can be compiled into
e!cent code� It is probably impossible to speed up the compiler by a signi�cant amount without redesigning
it completely" a supercombinator�based compiler that has a powerful abstract graph reduction machine as
its target �cf� section ���
��� combined with a partial evaluator for said machine appears to be a viable
approach�

���� Design Alternatives

There are some major and many minor design alternatives that might have been chosen during the devel�
opment of the ALDiSP compiler� Some of them occurred to me too late� others involved too many unknown
factors�

������ Explicit State Passing

A central part of the current compiler is the abstract scheduler� which tries to enumerate all possible �states�
the program under compilation can encounter� If this scheduler fails� no compilation is possible� If it succeeds�
garbage collection can be done at compile�time� and a �xed memory�layout is guaranteed�

Many real programs have a very large state space� or no static schedule at all �i�e�� an in�nite state space��
Programs that create dynamic data structures whose �form� depends upon the input fall under this category"

Chapter ��� Conclusions and Outlook ���

�form� here refers to the comparison function employed by the abstract scheduler that tells whether two
states can be mapped together" to have a similar form� two data structures must have the same structure
and size�

The current compiler does not treat states as �rst�class values and part of the domain hierarchy on which
the abstract interpreter is based� As a consequence� there are no �fully abstract� states� only states that
may contain references with abstract de�nitions� It might be interesting to remove the abstract scheduler
as a separate entity by transforming the intermediate representation into a form that explicitly passes the
state around�

Such an approach would however need a more sophisticated loop detection scheme� since the abstract inter�
preter would now have the additional task of creating the �state automaton��

������ Continuation
Passing Style

Early in the development of the ALDiSP semantics and compiler� I considered a continuation�passing style
�CPS� intermediate form� Such a form goes beyond explicit state passing� in that it also makes control
�ow explicit� CPS is not based upon the �function call stack� paradigm of �ow control� but on explicit
continuation functions which provide return addresses and stack frames� CPS would have simpli�ed the
modelling of exceptions to some degree� I abandoned this approach because I felt uneasy with an intermediate
representation that involves the heavy use of higher�order functions� Abstract interpreters� especially the
loop detection heuristics� have problems with higher�order function arguments� since the �similarity� of
such is hard to determine� It is much easier to inspect a classical call stack� since terms like �call depth�
are naturally expressed in such a framework� whereas they are� in a CPS setting� structural properties of
anonymous functions� My experiments with CPS representation also generated intermediate programs that
were exceedingly hard to understand� a property that is not at all wished for in an experimental compiler�

������ Compilation by Graph Reduction

An entirely di�erent approach to the whole compilation process is based upon the graph reduction model
������ Graph reduction is based upon an rewriting engine that reduces a program graph into a normal
form� The graph is a representation of combinators" any functional program can be translated into a set
of combinators by a process called bracket abstraction� Both program and data have a common form" the
�result� of a program is its normal form� Graph reduction is especially suited for lazy languages� since there
are no �pure data� nodes" the simplest node is the �quote� or �identity� node that corresponds to the Lit of
LF� A strict primitive function is reducible if all its input arcs are connected to these identity nodes�� This
can be exploited by lazy languages� in which argument passing is done by�name" in ALDiSP terms� every
expression is wrapped by a delay� Due to this characteristic� each access to a value must �rst check its
value�ness� i�e� whether it has already been forced or not� By providing �identity� nodes� this information is
encoded in the value s node type �an unevaluated value is a non�identity node��

While ALDiSP is not per se lazy� it does share some properties with lazy languages� This is due to the simi�
larity of suspensions and promises" i�e� to the �blocking� and �forcing�� The graph�reduction correspondence
to blocking is the inability to evaluate a graph while its arguments are not yet in normal form" the equivalent
to forcing is the standard action of graph reduction � in graph reduction� an argument s value is accessed by
forcing its node� The most important optimization for lazy languages is strictness analysis" an argument to a
function is strict if its value is accessed in every possible evaluation of the function� Strict arguments can be
passed by�value� Finding strict function arguments amounts to �nding �connected groups� of expressions"
if any member of such a group has to be evaluated� all members have to be evaluated� In ALDiSP strictness

�And if they are of the right type � all graph�reduction systems I know of work only on statically well�typed programs� but
this is mostly for speed�up�

Chapter ��� Conclusions and Outlook ���

analysis can be used to force promises and� more important� to block a function application when one of the
arguments is an unevaluated suspension�

Th alternative approach to ALDiSP compilation would use a new semantics� built from quite a di�erent set of
primitives� If the �abstract machine� provides for automatic blocking and forcing� the most onerous parts of
ALDiSP� namely the details related to promises and suspensions� would be delegated to the abstract machine�
which would also provide for memory allocation and garbage collection� The compiler would consist of a
fairly standard type inference system� or a primitive abstract interpretation that ignores delays and promises�
and tries to �nd the type of every function application so as to resolve auto�mapping and overloading at
compile time� The compiled program would be a set of type�correct supercombinators� which could be
translated one�to�one to graph code� The graph reduction machine would correspond to one of the standard
architectures� e�g� the G�machine ��
� and its derivates ����
�� �	� �� ���� which has to be extended by an
I�O and time manager that corresponds to� from the machine s perspective� a non�deterministic evaluator
of suspension nodes�

Such a graph reduction ALDiSP would have a very poor performance when compared with the output of ac�
especially when memory consumption is considered� The trick would be to perform a partial evaluation of
the graph reduction engine and the program �or parts of it�� In a graph context� the problems of program
representation �cf� chapter ���� would be minimized" also� some optimizations due to partial evaluation could
be applied even to those programs that cannot be compiled by ac because they have no static schedule�

���� Redesigning ALDiSP

The experiences made during the implementation of the ALDiSP compiler showed up some weaknesses in the
language� and provided the motivation for the design of a successor language� AL�
� AL�
 is designed with
reasonably fast and simple compilation in mind" it is described in detail in ��	�� Here is the list of major
di�erences to ALDiSP�

� AL�
 was co�designed with its semantics� which therefore is much simpler and smaller than ALDiSP s�

� AL�
 allows static typing� An advanced type system akin to Haskell s ���� type classes ���
� provides
most of the freedom available to ALDiSP s numerical expressions� while giving much better protection
against unreasonable type errors�

� A specialized signal type is introduced� A signal is a sequence of data objects� each of which has
associated timing information� Signals replace ALDiSP s streams and pipes� A set of synchronization
primitives on signals replace most uses of the suspend and delay constructs� Most of the run�time
complexity associated with promises and suspensions essentially vanishes" �promise returning �� and
�suspension returning �� become compile�time types�

� AL�
 is speci�ed as a core language with extensions� The core language can be implemented without
any sophisticated compilation techniques" most of the extensions can be realized as preprocessors that
generate core language programs�

� Amongst the extensions are the module system and the macro processor� The macros can be typed�

� As an extension to the type system� equational assertions replace the predicate types of ALDiSP�

Once a working AL�
 compiler exists� it might be interesting to write a converter that transforms old ALDiSP
programs into AL�
�

Bibliography

��� S� Abramsky� C� Hankin �eds�� Abstract Interpretation of Declarative Languages� Ellis Norwood Ltd�
�
�	

�
� ACM� Proc� Third Workshop on the Mathematical Foundations of Programming Languages Semantics�
Springer LNCS

�� April �
�	

��� F� Allen� J� Cocke� A catalogue of optimizing transformations� in� R� Rustin �ed��� Design and Opti�
mization of Compilers� Prentice�Hall� �
	

��� A� W� Appel� Compiling with Continuations� Cambridge University Press� �

��� A� W� Appel� T� Jim� Continuation�passing� closure�passing style� in� �
	�� pp�

����

��� G� Argo� Improving the Three Instruction Machine� in� ����

�	� J� Armstrong� R� Virding� M� Williams� Concurrent Programming in Erlang� Prentice�Hall� �

�

��� J�L� Armstrong� B�O� D�acker� S�R� Virding� M�C� Williams� Implementing a Functional Language for
Highly Parallel Real Time Applications� published in SETSS

� �����������

� Florence" available via
ftp ��euagate�eua�ericsson�se�pub�eua�erlang�info�implem�ps�Z

�
� E�A� Ashcroft� Lucid� a Nonprocedural Language with Iteration� in� CACM
�� No� 	� July �
		� pp�
��
��
�

���� L� Beckman� A� Haraldson� �O� Oskarsson� E� Sandewall� A Partial Evaluator and its Use as a Program�
ming Tool� in� Arti�cial Intelligence Journal 	 ��
	��� pp� ��
���	

���� P� Bellot� Graal� A functional programming system with uncurry�ed combinators and its reduction
machine� in� ����

��
� A� Benveniste� P� Bournai� T� Gautier� P� Le Guernic� SIGNAL� A Data Flow Oriented Language for
Signal Processing� INRIA Rapports de Recherche No� �	�� INRIA Centre de Rennes IRISA

���� A� Berlin� A Compilation Strategy for Numerical Programs Based on Partial Evaluation� MIT Technical
Report AI�TR ����� 	� pp�" MIT AI Lab� �
�

���� A� Berlin� D� Weise� Compiling Scienti�c Code Using Partial Evaluation� in� IEEE Computer� Vol�
��
No� �
� Dec �

�� pp� pp�
���	

���� V� Berzins� Semantics of a Real�Time Language� in� Proc� IEEE Symp� on Real�Time Systems� Dec�
�
��� pp� �������

���� V� Berzins� Execution of a High Level Real�Time Language� in� Proc� IEEE Symp� on Real�Time Sys�
tems� Dec� �
��� pp� �
�	�

���

BIBLIOGRAPHY ���

��	� D� Bj,rner� A�P� Ershov� N�D� Jones� Partial Evaluation and Mixed Computation� Proc� of the IFIP
TC
 Workshop on Partial Evaluation and Mixed Computation� Gammel Avern-s� Denmark� ���
� Oct�
�
�	� North�Holland� �
��

���� A� Bloss� Update Analysis and the E�cient Implementation of Functional Aggregates� in� ����

��
� A� Bloss� Path Analysis and the Optimization of Non�Strict Functional Languages� Ph�D� thesis� Yale
University� Dept� of Computer Science� �
�
� Available as research report YALEU�DCS�RR�	��

�
�� A� Bloss� P� Hudak� Path Semantics� in� �
�

�
�� A� Bloss� P� Hudak� J� Young� An optimizing compiler for a modern functional langauge� in� The
Computer Journal� Vol� ��� No� �� pp� ��
����� �
��

�

� R�M� Burstall� J� Darlington� Some transformations for developing recursive programs� in� �
��

�
�� R�M� Burstall� J� Darlington� A transformation system for developing recursive programs� in� Journal
of the ACM�
����� pp� ����	� January �
		

�
�� L� Cardelli� The Amber Machine� in� �
��� pp� ���	�

�
�� G� Cousineau� P��L� Curien� B� Robinet� Combinators and Functional Programming� Springer LNCS

�

�
�� P� Caspi� N� Halbwachs� D� Pilaud� J�A� Plaice� LUSTRE� a declarative language for programming
synchronous systems� in� �
�� and as Report L��� Project SPECTRE Groupe Spe.eci�cation et Analyse
des System/es� Laboratoire de G.enie Informatique de Grenoble

�
	� W� Clinger� J� Rees �eds��� Revised� Report on the Algorithmic Language Scheme� in� SIGPLAN Notices�

���
�� Dec� �
�� and as MIT AI Memo ���a� Sept� �
��

�
�� W� Clinger� J� Rees �eds��� Revised� Report on the Algorithmic Language Scheme� University of Oregon
Technical Report CIS�TR�
���

�

� C� Consel� O� Danvy� From Interpreting to Compiling Binding Times� in� ����

���� C� Consel� S�C� Khoo� Parameterized Partial Evaluation� in� ACM Trans� on Programming Languages
and Systems� Vol� ��� No� �� July �

�� pp� �����
�

���� J� Darlington� A semantic approach to automatic program improvement� Experimental Programming
Reports� No�
	� School of Arti�cial Intelligence� University of Edinburgh� �
	

��
� J� Darlington� R�M� Burstall� A system which automatically improves programs� in� Proc� of the Third
International Joint Conference on Arti�cial Intelligence� Stanford� Calif�� �
	�

���� A�P� Ershov� V�V� Grushetsky� An Implementation�Oriented Method for Describing Algorithmic Lan�
guages� in� B� Gilchrist �ed��� Information Processing 		� Toronto� Canada" North�Holland� �
		" pp�
��	��

���� B� Robinet� R� Williams �eds�� ESOP ��� � �st European Symposium on Programming� Springer LNCS

��

���� �EN� Jones �ed� ESOP ��� � �rd European Symposium on Programming� Springer LNCS ��

���� B� Krieg�Br�uckner �ed��� ESOP ��� � �th European Symposium on Programming� Rennes� France� Febru�
ary �

� Springer� LNCS ��

��	� J� Fairbairn� S� Wray� Tim� A Simple� Lazy Abstract Machine to Execute Supercombinators� in� �����
pp� �����

BIBLIOGRAPHY ��	

���� A� Fauth� M� Freericks� A� Knoll� Generation of Hardware Machine Models from Instruction Set De�
scriptions� in� VLSI Signal Processing VI� Eggermont et�al� �eds�� IEEE Signal Processing Society�
�

�

��
� A� Fauth� The CBC Compiler Generator� The Final Report� Forschungsberichte des Fachbereichs In�
formatik Nr� �

����� TU Berlin

���� C� Flanagan� A� Sabry� B�F� Duba� M� Felleisen� The Essence of Compiling with Continuations� in� �����

���� M� Freericks� Entwurf und Spezi�kation einer funktionalen Programmiersprache f�ur die speziellen Er�
fordernisse der digitalen Signalverarbeitung� Diplomarbeit� TU Berlin� �

�

��
� M� Freericks� A� Knoll� ALDiSP � eine applikative Programmiersprache f�ur Anwendungen in der digitalen
Signalverarbeitung� Forschungsberichte des Fachbereichs Informatik Nr� �

��
� TU Berlin

���� M� Freericks� The nML Machine Description Formalism� Forschungsberichte des Fachbereichs Infor�
matik Nr�
����� TU Berlin� �

�

���� M� Freericks� The nML Machine Description Formalism 	updated Version ���
� in� ESPRIT�II Project

�� SPRITE Progress Report for Period June �

�November �

� Report No� PR���
� �� Dec� �

�
Editor� Patrick Pype

���� M� Freericks� A� Knoll� L� Dooley� The Real�Time Programming Language ALDiSP��� Informal Intro�
duction and Formal Semantics� Forschungsberichte des Fachbereichs Informatik Nr�

�
�

���� M� Freericks� A� Fauth� A� Knoll� A Basic Semantics for Computer Arithmetic� Technischer Bericht

���� Technische Fakult�at� Universit�at Bielefeld

��	� M� Freericks� A� Knoll� The AL�� Signal Processing Language� A Successor to ALDiSP� Technischer
Bericht� Technische Fakult�at� Universit�at Bielefeld �to appear�

���� Daniel P� Friedman� Mitchell Wand� Christopher T� Haynes� Essentials of Programming Languages�
MIT Press� �

��
� J��P� Jouannaud �ed��� Functional Programming Languages and Computer Architecture� Nancy� France�
�
��" Springer� LNCS
��

���� Proc� IFIP Symposium on Functional Programming Languages and Computer Architecture� Portland�
Oregon� September �
�	

���� ACM SIGPLAN��SIGACT� IFIP� Functional Programming Languages and Computer Architecture� Im�
perial College� London� Sept� ������ �
�

��
� Y� Futamura� Partial Evaluation of Computation Process � An Approach to a Compiler�Compiler� in�
Systems� Computers� Controls�
���� �
	�� pp� �����

���� Y� Futamura� K� Nogi� Generalized Partial Computation� in� ��	�� pp� ������

���� T� Gautier� P� Le Guernic� O� Ma�e�#s� For a New Real�Time Methodology� IRISA Publication Interne
No� �	�� October �

�

���� N� Halbwachs� D� Pilaud� F� Ouabdesselam� A�C� Glory� Specifying� Programming and Verifying Real�
Time Systems using a Synchronous Declarative Language� Report L��� Project SPECTRE Groupe
Spe.eci�cation et Analyse des System/es� Laboratoire de G.enie Informatique de Grenoble

���� A� Haraldsson� A program manipulation system based on partial evaluation� Ph�D� thesis� Link�oping
Univerity� Sweden� �
		�� Link�oping Studies in Science and Technology Dissertations ��

BIBLIOGRAPHY ���

��	� P�G� Harrison� Function Inversion� in� ��	�� pp� �������

���� P� Hudak� S�P� Jones� P� Wadler �eds�� Report on the Programming Language Haskell 	version ���
� �st
March �

� available via ftp from numerous sites

��
� P� Hudak� A semantic model of reference counting and its abstraction� in� ���

���� J� Hughes� Analysing Strictness by Abstract Interpretation of Continuations� in� ���

���� J� Hughes� Backwards Analysis of Functional Programs�� in� ��	� pp� ��	�
�

��
� Institute of Electrical and Electronics Engineers� Inc�� Draft Standard for the Scheme Programming
Language� P��	��D�� March 	� �

�

���� T�P� Jensen� T� 0� Mogensen� A Backwards Analysis for Compile�Time Garbage Collection� in� �����
pp�

	�
�

���� T� Johnsson� Lambda Lifting� Transforming Programs to Recursive Equations� in� ��
�� pp� �
��
��

���� S� L� Peyton Jones� J� Salkind� The Spineless Tagless G�Machine� in� ����

���� S�P� Jones and C� Clack� Finding �xpoints in abstract interpretation� in� ���� pp�
���
��

��	� Neil D� Jones� Carsten K� Gomard� Peter Sestoft� Partial Evaluation and Automatic Program Genera�
tion� Prentice�Hall� �

�

���� D� Keppel� S� J� Eggers� R� R� Henry� A Case for Runtime Code Generation� University of Washington
Department of Computer Science and Engineering� UWCSE
�������� November �

�

��
� R�B� Kieburtz� The G�machine� A fast� graph�reduction evaluator� in� ��
�� pp� �������

�	�� C�D� Kloos� STREAM� A Scheme Language for Formally Describing Digital Circuits� in� PARLE �
Parallel Architectures and Languages Europe� Vol� II� Parallel Languages� Eindhoven� The Netherlands�
June ����
� �
�	

�	�� Alois Knoll� Markus Freericks� An applicative real�time language for DSP�programming supporting asyn�
chronous data��ow concepts� in� Microprocessing and Microprogramming� Vol� �
� No� ��� �August �

�
� Proceedings Euromicro
��� pp� �������

�	
� A� Knoll� A� Schweikard� M� Freericks� Eine daten�u�orientierte� funktionale Programmiersprache f�ur
die Echtzeitdatenverarbeitung� in� Proze�rechensysteme
�� Proceedings� Belin� Februar �

� Springer
Informatik�Fachberichte
�

�	�� Alois Knoll� Rupert C� Nieberle� CADiSP � A Graphical Compiler for the Programming of DSP in a
Completely Symbolic Way� Proc� Int� Conf� on Acoustics� Speech and Signal Processing� April �

�

�	�� E�E� Kohlbecker Jr� Syntactic Extensions in the Programming Language Lisp� Ph�D� thesis� Indiana
University� August �
��

�	�� D� Kranz� R� Kelsey� J� Rees� P� Hudak� J� Philbin and N� Adams� ORBIT� An optimizing compiler for
Scheme� Proc� Sigplan �� Symp� on Compiler Construction� published as� SIGPLAN Notices
��	��
pp�
�
�
��� July �
��

�	�� V� Kruckemeyer� A� Knoll� Eine imperative Sprache zur Programmierung digitaler Signalprozessoren�
Forschungsberichte des Fachbereichs Informatik Nr� �

����� TU Berlin

�		� L� Lamport� What It Means for a Concurrent Program to Satisfy a Speci�cation� Why No One Has
Speci�ed Priority� in� �
��� pp� 	����

BIBLIOGRAPHY ��

�	�� P� Lee� Realistic Compiler Generation� Cambridge� MA� MIT Press� �
�

�	
� Proc� of the ���� Conference on Lisp and Functional Programming� Nice� France� June �

�

���� F� L�ohr� A� Fauth� M� Freericks� SIGH�SIM � An Environment for Retargetable Instruction Set Simu�
lation� Forschungsberichte des Fachbereichs Informatik Nr�
����� TU Berlin� �

�

���� L�A� Lombardi�B� Raphael� Lisp as the Language for an Incremental Computer� in� E�C� Berkeley and
D�G� Bobrow �eds��� The Programming Language Lisp� Its Operation and Applications" MIT Press�
Cambridge� Massachusetts� �
��" pp�
���
�

��
� D�B� Loveman� Program improvements by source to source transformations� in� �
��

���� J� McCarthy� P�W� Abrahams� D�J� Edwards� T�P� Hart� M�I� Levin� LISP ��� Programmer�s Manual�
The Computation Center and Research Laboratory of Electronics� Massachusetts Institute of Technol�
ogy� MIT Press� �
��

���� J� McGraw� Parallel Functional Programming in Sisal� Fictions� Facts� and Future� UCRL�LC��������
June �

�

���� R� McConnell� Prototyping of VLSI Components from a Formal Speci�cation� IRISA Publication Interne
No� ���� Septembre �

�

���� U� Meyer� Techniques for Partial Evaluation of Imperative Languages� in� ������ pp�
�����

��	� R� Milner� M� Tofte� R�Harper� The De�nition of Standard ML� MIT Press� �

�

���� R� Milner� M� Tofte� Commentary on Standard ML� MIT Press� �

�

��
� T� Mogensen� Binding time aspects of partial evaluation� Ph�D� thesis� DIKU� University of Copenhagen�
Denmark� March �
�

�
�� Joel Moses� The Function of FUNCTION in LISP or Why the FUNARG Problem Should be Called
the Environment Problem� in�
nd Symposium on Symbolic and Algebraic Manipulation� Los Angeles�
�
	�" published in SIGSAM Bulletin No� ��� July �
	�� pp� ���
	

�
�� Hanne Riis Nielson� Flemming Nielson� Bounded Fixed Point Iteration 	Extended Abstract
� in� �
���
pp� 	���

�

� V� Nirkhe� W� Pugh� Partial Evaluation of High�Level Imperative Programming Languages with Appli�
cations in Hard Real�Time Systems� in� �
��� pp�
�
�
��

�
�� Alan V� Oppenheim� Ronald W� Schafer� Discrete�Time Signal Processing� Prentice�Hall� �
�

�
�� ACM� �rd ACM Symposium on Principles of Programming Languages 	POPL�
�
� Atlanta� Georgia"
January �
�
�� �
	�

�
�� ACM� ��th ACM Symposium on Principles of Programming Languages 	POPL���
� New Orleans� Lou�
siana" January ������ �
��

�
�� ACM� ��th ACM Symposium on Principles of Programming Languages 	POPL��

� Munich� Germany"
January
��
�� �
�	

�
	� ACM� ��th Conf� on Principles of Programming Languages 	POPL���
� Austin� Texas" January ������
�
�

�
�� ACM� ��th Conf� on Principles of Programming Languages 	POPL���
� Albuquerque� New Mexico"
January �
�

� �
�

BIBLIOGRAPHY �	�

�

� ACM� ��st Conf� on Principles of Programming Languages 	POPL���
� Portland� Oregon" January �

�

����� ACM� Programming Language Design and Implementations 	PLDI� ��
� Albuquerqe� NM" June
��
��
�

�" published as SIGPLAN Notices Vol�
�� No� �� June �

�

����� H� John Reekie� Realtime Signal Processing � Data�ow� Visual� and Functional Programming� �PhD
thesis� School of Electrical Engineering� University of Technology� Sydney" �

�

���
� E� Ruf� D� Weise� Opportunities for online partial evaluation� Stanford University� California� April
�

" technical report CSL�TR�

���

����� E� Ruf� D� Weise� Preserving Information during Onling Partial Evaluation� Stanford University� Cal�
ifornia� April �

" technical report CSL�TR�

���	

����� E� Ruf� Topics in online partial evaluation� Ph�D� thesis� Stanford University� California� February
�

�" published as technical report CSL�TR�
�����

����� P�B� Schenk� E� Angel� A FORTRAN to FORTRAN optimizing compiler� in� The Computer Journal�
Vol� ��� No� �� �
	

����� D� A� Schmidt� Denotational Semantics� Allyn and Bacon Inc� �
��

���	� E� Schoen�� The CAOS System� Stanford University Report No� STAN�CS������
�� �
��

����� A� Schwarte� H� Hanselmann� The Programming Language DSPL� PCIM
�� M�unchen

���
� P� Sestoft� Replacing Function Parameters by Global Variables� in� ����� pp� �
���

����� EDC�Silage Reference Manual� European Development Center� �
�

����� Silage User�s and Reference Manual� prepared by Mentor Graphics�EDC� June �

�� �describes version

���

���
� Guy L� Steele� jr�� Rabbit� a compiler for Scheme� Tech� Report AI�TR��	�� MIT� Cambridge� �
	�

����� Symposium on Partial Evaluation and Semantics�Based Program Manipulation� Yale Univ�� June �	��
�
�

�� published as� SIGPLAN Notices� Vol�
�� No�
� Sept� �

�

����� V�F� Turchin� The concept of a supercompiler� in� ACM Transactions on Programming Languages and
Systems� ����� July �
��� pp�

��
�

����� V�F� Turchin� The algorithm of generalization in the supercompiler� in� ��	�� pp� ������

����� D�A� Turner� A New Implementation Technique for Applicative Languages� Software�Practice and
Experience� Vol�
��
	
�� pp� ����

���	� P� Wadler�� Comprehending Monads� LFP
� �	
�� pp� ���	�

����� P� Wadler� J� Hughes� Projections for Strictness Analysis� in� ����

���
� P� Wadler� S� Blott� How to make ad�hoc polymoprhism less ad�hoc� in� �
	�

��
�� D� Weise� Graphs as Intermediate Representations for Partial Evaluation� Stanford University� Cali�
fornia� March �

�� technical report CSL�TR�
���
�

��
�� D� Weise� R� Conybeare� R� Ruf� S� Seligman� Automatic online partial evaluation� in� Symposium on
Partial Evaluation and Semantics�Based Program Manipulation �New Haven� Conn�� June �

��� pp�
����

BIBLIOGRAPHY �	�

��

� D� Weise� E� Ruf� Computing types during program specialization� Stanford University� California�
August �

�� technical report CSL�TR�
�����

��
�� D� Weise� R�F� Crew� M� Ernst� B� Steensgaard� Value Depence Graphs� Representation without Tax�
ation� Microsoft Research� available via ftp ��research�microsoft�com�pub�papers�vdg�ps� �

�"
revised version of a paper that appeared in �

�� pp�

	����

��
�� W� Wulf� R�K� Johnson� C�B� Weinstock� S�O� Hobbs� C�M� Geschke� The Design of an Optimizing
Compiler� American Elsevier� �
	�

Index

is� ��

abstract
reference counts� �

CADiSP�

CPS� �

details
implementation speci�c�

DSP
applications of� �

kernel
of ALDiSP�

open language
why ALDiSP is one�

order of execution� �

piece de resistance� �
prede�ned

Obj� ��
false� ��
is� ��
true� ��
�cast� ��� ��
�checkfunctype� ��� ��
�closure� ��� ��
�delay� ��� ��
�is� ��
�overload� ������ ��
�return� ��� ��
�suspend� ��� ��
�testfunctype� �
� ��
�tupel� ��� ��� ��
�unit� ��� ��

static
memory layout� �

tail recursivity� �

�	

