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Abstract

A common way to obtain the functional time series is to break the records made over a
continuous time interval into several natural consecutive time intervals, e.g. days. Provid-
ing reliable predictions for functional time series is an important goal. Since we still lack
advanced functional time series methodology, we often assume the functional time series
to follow the first-order functional autoregressive model (FAR(1)).

In recent years, functional data analysis (FDA) has been widely applied in functional
time series analysis. Aue et al. [2015] proposed a prediction algorithm which combines
the idea of FDA and functional time series analysis. And the prediction algorithm is not
restricted to FAR structure. They reduced the dimension of the data and tranformed the
issue of predicting functional time series to predicting multivariate time series.

In this thesis, we will first give an overview of the basic theory of functional data
analysis, functional time series analysis and the prediction algorithm by Aue et al. [2015].
Then we will focus on studying the functional ARMA(p, 1) process and its corresponding
truncated vector process. We will figure out the structure of the truncated vector process
and try to find out a condition under which both the functional and vector processes are
stationary. Then based on the truncated vector process, we will compute the one-step
(functional) predictor for functional ARMA(1, 1) process. Furthermore, we will compare
(functional) predictor with the functional best linear predictor proposed by Bosq [2000].
To verify the results of our study, we conduct a simulation study in Chapter 5.

We finish this thesis by applying the theory of FDA in analysing the highway traffic
data provided by Autobahndirektion Südbayern. Our goal is to model and predict the
traffic data.
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Chapter 1

Introduction

Suppose we have observations X1, . . . , XN , where X1, . . . , XN can be scalars, vectors
or other objects. Functional data analysis (FDA) is concerned with observations which
are functions. We assume these functional observations X1, . . . , XN are in some Hilbert
function space H, e.g. the space of square-integrable functions L2([0, 1]), then we call
X1, . . . , XN H-valued data or H-valued functional observations. X1, . . . , XN are realiza-
tions of H-valued random functions defined on some common probability space (Ω,A, P ) .
Functional data analysis (FDA) focuses on analysing such H-valued random functions and
observations.

Functional principal component analysis (FPCA) plays a central role in the FDA. The
basic idea of FPCA is to represent the H-valued random function X with the eigenfunc-
tions of the covariace operator of X, which is known as Karhunen-Loéve representation.
Then X is truncated just with a fixed number d of eigenfunctions, where these d eigen-
functions can explain most of the variability of X.

At an early stage of development, FDA focused mainly on i.i.d functional data. In
recent years, FDA has also been widely applied in functional time series analysis (e.g. see
Hörmann and Kokoszka [2010] and Hörmann and Kokoszka [2012]).

In Hörmann and Kokoszka [2010], they proposed the notion of Lp-m-approximability,
which can be used to quantify the temporal dependence of functional time series. It is
an extension of m-dependence in scalar and multivariate time series analysis. Based on
the work of Hörmann and Kokoszka [2010], the ideas of time series analysis and FDA
have been merged and many results in FDA under the assumption of i.i.d have been
extented to Lp-m-approximable functional time series (e.g. see Hörmann and Kokoszka
[2010], Hörmann and Kokoszka [2012]) and Horváth et al. [2013a]).

Providing reliable predictions is one of the most important goals of functional time
series analysis. Bosq [2000] has studied the functional best linear predictor for (stationary)
functional linear process. But the problem is, we do not know the exact math formula
of the functional best linear predictor, so in fact it is difficult to implement. Since we
still lack advanced functional time series methodology, we often assume the functional
time series to follow the first-order functional autoregressive model (FAR(1)). And the
prediction is also based on the assumption of FAR(1) structure (e.g. see Chapter 3 of
Bosq [2000]). Aue et al. [2015] proposed a prediction algorithm which combines the idea
of FDA and functional time series analysis. And the prediction algorithm is not restricted
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CHAPTER 1. INTRODUCTION 2

to FAR structure. The basic idea is to use FPCA to reduce the infinite-dimensional data to
finite-dimensional data. Then the issue of predicting functional time series is transformed
to the prediction of multivariate time series.

In Chapter 2 we will give an overview of the existing results of the studies on FDA
and functional time series analysis. In Chapter 3, we will introduce two hypothesis tests
for functional data. One is the Portmanteau test of independence proposed by Gabrys
and Kokoszka [2007]. The other one is the test of stationarity of functional time series,
which was proposed by Horváth et al. [2013b]. We will apply these two tests in the real
data analysis in Chapter 6, to check whether our dataset is properly transformed.

In Chapter 4, after the brief overview of the work by Bosq [2000] (functional best linear
predictor) and Aue et al. [2015] (the prediction algorithm for functional time series), we
will focus on the prediction of functional ARMA(p, 1) process. In Section 4.3, we will
first propose a sufficient condition for stationarity of functional ARMA(p, 1) process.
Then we will have a closer look on the vector process truncated from the functional
process (by FPCA). We will show that, the vector process “approximately” follows the
vector ARMA(p, 1) structure. And under some further constraints, the vector process is
rigorously a stationary vector ARMA(p, 1) process. In Section 4.4, based on the truncated
vector observations, we will compute the one-step predictor for the functional ARMA(p, 1)
process and compare it with the functional best linear predictor (by Bosq [2000]). In
Section 4.5, we will bound the prediction error when applying the prediction algorithm
by Aue et al. [2015] to functional ARMA(p, 1) process.

To verify the results of our study in Chapter 4, we conduct simulation studies in
Chapter 5. Firstly we will simulate FARMA(p, 1) processes. Then we fit different vector
ARMA models (with different orders) to the truncatd vector process and compare the
goodness of fit. Finally we compute the functional predictors based on these vector ARMA
models and compare the prediction errors.

In Chapter 6, we apply the theory of FDA in the real data analysis. We obtained the
dataset from Autobahndirektion Südbayern which describes the traffic conditions from
01/01/2014 to 30/06/2014 on a highway in Southern Bavaria, Germany. We will first try
to describe and transform the data properly, then we will try to model and predict the
traffic data.

1.1 Examples of functional time series

A functional time series is a sequence of (random) functions. These functions can arise
from successive measurements made over a time interval, which is divided into several
consecutive time intervals with equal length, e.g. days. In our real data analysis (details see
Chapter 6), our observations are highway traffic records provided by Autobahndirektion
Südbayern. The car velocity and the traffic volume (or flow) are recorded every one minute
(1440 minutes in one day) during the period 1/1/2014 0:00 to 30/6/2014 23:59. We use

Sn = (Sn(t1), . . . , Sn(t1440))
T (1.1)

and

Cn = (Cn(t1), . . . , Cn(t1440))
T (1.2)
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to represent the velocity and the traffic volume recorded on day n. Sn and Cn belong to
the class of high-dimensional data.

A macroscopic traffic model involves velocity, flow and density. Density is defined as

Density :=
Flow

Velocity
, (1.3)

and it can reveal the number of vehicles in a unit of length.
The relation among these three variables can be shown with the diagrams of “Velocity-

Flow relation” and “Flow-Density relation”. The diagram of “Flow-Density relation” is
also called fundamental diagram of traffic flow. It can be used to predict the capacity of
a road system and give guidance for inflow regulations or speed limits.

Figure 1.1 and 1.2 depict the “velocity-flow relation” and “flow-density relation”. At
a critical traffic density, the state of flow will change from stable to unstable. In Figure
1.2, the critical density is about 0.45. Combining Figure 1.1 and 1.2, the corresponding
flow and velocity of the critical density is around 285 veh/3 minutes and 80 km/h.

Figure 1.1: Velocity-flow relation on a highway in Southern Bavaria. Depicted are average
velocities per 3 minutes versus the number of vehicles (flow) within these 3 minutes
during the period 01/01/2014 0:00 to 30/06/2014 23:59. Source: Autobahndirektion
Südbayern

Now let us view the velocity and the volume records directly. Figure 1.3 and Figure 1.4
depict the velocity and the volume (1440-dimensional) record on several selected weeks.
In these two figures, the initial day in each row (week) is a Sunday.

As can be seen from Figure 1.3 and Figure 1.4, both the velocity and the traffic volume
records show weekly periodicity. And the periodicity of the traffic volume data is even
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Figure 1.2: Flow-density for the data from Figure 1.1. Source: Autobahndirektion
Südbayern

more obvious. But note that, e.g see the curves on 21/4 and 9/6 in Figure 1.3 and 1.4,
the shape of the curves are apparently different from the curves on the other “normal”
Mondays. We checked the calander and found that these two days are public holidays in
Germany in 2014. In fact, during 1/1/2014 to 30/6/2014, there are 10 public holidays in
Germany: 1/1(Wednesday), 6/1(Monday), 18/4(Friday), 20/4(Sunday), 21/4(Monday),
1/5(Thursday), 29/5(Thursday), 8/6(Sunday), 9/6(Monday) and 19/6(Thursday). Due
to the limit of the size of the page, Figure 1.3 and Figure 1.4 just contain the follow-
ing 7 holidays: 6/1(Monday), 18/4(Friday), 20/4(Sunday), 21/4(Monday), 8/6(Sunday),
9/6(Monday), 19/6(Thursday).

As can be seen from Figure 1.3 and 1.4, besides the curves on 21/4(Monday) and
9/6(Monday) mentioned above, the curves on 6/1(Monday), 18/4(Friday), 1/5(Thursday)
and 19/6(Thursday), i.e the holidays falling on a weekday, differ apparently from the other
corresponding “normal” weekday curves. Furthermore, the volume curves on these days
seem to be lower than those on the other normal weekdays. In Chapter 6, we will exclude
these days out of the group Workingdays and categorize them into the group Holidays.
In other words, when we model the traffic data on workingdays, the data on these days
will not be considered.

In contrast, on 20/4(Sunday) and 8/6(Sunday), both the velocity and the volume
curves do not differ obviously from those on the other normal Sundays. But on 8/6(Sun-
day), the velocity curve seems to be lower than those on the other normal Sundays. In
Chapter 6, we will treat these two days as normal Sundays instead of categorizing them
into the group Holidays.
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Figure 1.3: Highway velocity records on several weeks. In this figure, 01-06, 04-18, 04-20,
04-21, 06-08, 06-09, 06-19 are public holidays. Source: Autobahndirektion Südbayern
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Figure 1.4: Highway traffic volume records on several weeks. In this figure, 01-06, 04-
18, 04-20, 04-21, 06-08, 06-09, 06-19 are public holidays. Source: Autobahndirektion
Südbayern
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In functional data analysis, our observations are functions. Especially, we prefer smooth
functions. Note that S1, . . . , SN in (1.1) are high-diemsional data. When we have such kind
of data, we need to smooth the data, i.e. to transform the vector data to smooth functions.

The first step of smoothing is to specify a series of basis functions, e.g. Fourier basis
functions and B-spline basis functions. Usually Fourier basis functions are utilized when
the data are periodic or without strong local features, while B-splines basis functions are
fit for the data with strong local features (more details see Ramsay and Silverman [2002]
and Ramsay and Silverman [2005]).

Once we determine the basis functions(we denote them by F1, . . . , FM), the vector
data can be approximated by

Sn(tj) ≈
M∑
m=1

cnmFm(tj), j = 1, . . . , 1440, n = 1, . . . , N.

The coefficients cnm are determined by the least square criterion (details see Chapter 5).
After the coefficients are determined, we can smooth the vector data by

Sn(t) :=
M∑
m=1

cnmFm(t), n = 1 . . . , N.

In Chapter 6, we choose M = 29 Fourier basis functions to smooth the 178 vector
velocity observations (we will show why we choose Fourier basis functions instead of
Bspline basis, and why to choose M = 29 basis functions in details in Section 6.1.3).
Figure 1.5 depicts 21 vector observations (in 3 weeks) and their corresponding functional
data. As can be seen from Figure 1.5, the functional velocity curves do not lose the main
“shape” of the vector velocity curves.
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Figure 1.5: N = 178 vector observations are smoothed by M = 29 Fourier basis functions.
Depicted are the vector velocity data versus the corresponding functional data on three
weeks. Source: Autobahndirektion Südbayern



Chapter 2

Some basics

In this chapter we give an overview of the existing results of the studies on FDA and
functional time series analysis. To make this part more understandable, we will start with
the mathematical framework required in FDA.

This chapter is mainly based on Chapter 2 and 3 of Horváth and Kokoszka [2012],
Hörmann and Kokoszka [2010] and Horváth et al. [2013a].

2.1 Mathematical framework required in FDA

2.1.1 Operators in Hilbert space

We consider a separable Hilbert space H (with a countable orthonormal basis), e.g.
L2([0, 1]). H is equipped with the inner product 〈·, ·〉 (and the corresponding norm ‖ · ‖).
We denote by L the space of bounded operators acting on H, then the norm of a bounded
opearator Ψ ∈ L is defined by

‖Ψ‖L := sup{‖Ψ(x)‖ : ‖x‖ ≤ 1, x ∈ H}.

A bounded operator Ψ is said to be compact if there exist two orthonormal bases {νj}
and {fj} of H, and a real sequence {λj} converging to zero, such that

Ψ(x) =
∞∑
j=1

λj 〈x, νj〉 fj, x ∈ H. (2.1)

We always assume λj are positive, because fj can be replaced by −fj if needed.
A compact operator Ψ is said to be a Hilbert-Schmidt operator, if

∞∑
i=1

‖Ψ(ei)‖2 <∞,

where {ei} is an arbitrary orthonormal basis of H. We denote by S the space of Hilbert-
Schmidt operators acting on H. S is a separable Hilbert space equipped with the following

9
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inner product and the corresponding Hilbert-Schmidt norm,

〈Ψ1,Ψ2〉S :=
∞∑
i=1

〈Ψ1(ei),Ψ2(ei)〉 ,

‖Ψ‖S :=
√
〈Ψ,Ψ〉S =

√√√√ ∞∑
i=1

‖Ψ(ei)‖2 <∞. (2.2)

If Ψ is a Hilbert-Schmidt operator, then ‖Ψ‖L ≤ ‖Ψ‖S . Furthermore, (2.2) implies
∞∑
i=1

λ2i <∞ in (2.1). This holds since

‖Ψ‖2S =
∞∑
i=1

〈Ψ(ei),Ψ(ei)〉

by(2.1)
=

∞∑
i=1

〈
∞∑
j=1

λj 〈ei, νj〉 fj,
∞∑
k=1

λk 〈ei, νk〉 fk

〉

=
∞∑
j=1

∞∑
i=1

λ2j 〈ei, νj〉
2 =

∞∑
j=1

λ2j <∞. (2.3)

We call an operator Ψ ∈ L symmetric if

〈Ψ(x), y〉 = 〈x,Ψ(y)〉 , ∀x, y ∈ H, (2.4)

and non-negative definite if
〈Ψ(x), x〉 ≥ 0, ∀x ∈ H. (2.5)

A symmetric non-negative definite Hilbert Schmidt operator Ψ admits the decomposition

Ψ(x) =
∞∑
j=1

λj 〈x, νj〉 νj, ∀x ∈ H, (2.6)

where νj are the orthonormal eigenfunctions of Ψ, i.e Ψ(νj) = λjνj, ‖νj‖ = 1,∀j ∈ Z.
From the theory of linear algebra, (νj, j ∈ Z) in (2.6) forms a basis of H.

2.1.2 The space of square integrable functions

A real-valued measurable function f defined on [0, 1] is said to be square-integrable, if∫ 1

0

f 2(t)dt <∞.

We denote by L2 ([0, 1]) the space of square integrable functions on [0, 1]. L2 ([0, 1]) is a
separable Hilbert space with the inner product

〈x, y〉 :=

∫ 1

0

x(t)y(t)dt, x, y ∈ L2 ([0, 1]) . (2.7)

For x, y ∈ L2 ([0, 1]), x = y means
∫ 1

0
[x(t)− y(t)]2 = 0.
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2.1.3 Hilbert-Schmidt integral operators

Now we introduce an important class of Hilbert Schmidt operators: Hilbert-Schmidt inte-
gral operators, which we will utilize in our simulation studies in Chapter 5.

Φ is said to be an integral operator acting on L2 ([0, 1]), if Φ has the form of

Φ(x)(t) =

∫ 1

0

φ(t, s)x(s)ds, t ∈ [0, 1], x ∈ L2 ([0, 1]) . (2.8)

The φ(·, ·) in (2.8) is called the integral kernel of Φ.
An integral operator Φ in (2.8) is Hilbert-Schmidt if and only if∫∫

φ2(t, s)dtds <∞. (2.9)

In this case,

‖Φ‖2S =

∫∫
φ2(t, s)dtds <∞. (2.10)

We call the integral operators which satisfy (2.10) Hilbert-Schmidt integral operators.

Remark 1. If φ(·, ·) in (2.8) is a symmetric kernel, i.e φ(t, s) = φ(s, t) for ∀t, s ∈ [0, 1],
then the corresponding integral operator Φ is symmetric (see (2.4)).

Proof.

〈Φ(x), y〉 =

∫∫
[φ(t, s)x(s)ds] y(t)dt

=

∫∫
[φ(s, t)y(t)dt]x(s)ds

= 〈 x,Φ(y)〉 , ∀x, y ∈ L2([0, 1]).

The following theorem, known as Mercer’s theorem, list some properties of the integral
kernel φ(t, s).

Theorem 2.1 (Mercer’s theorem). Suppose φ(t, s) is a continuous, symmetric and non-
negative definite integral kernel, and Φ is its corresponding integral operator defined in
(2.8). Then there is an orthonormal basis (νi, i ∈ Z) of L2([0, 1]) consisting of eigenfunc-
tions of Φ such that the corresponding eigenvalues (λi, i ∈ Z) are non-negative. (νi, i ∈ Z)
and the corresponding (λi, i ∈ Z) are defined by

λiνi(t) = Φ(νi)(t) =

∫ 1

0

φ(t, s)νi(s)ds, ∀t ∈ [0, 1], ∀i ∈ Z.

Furthermore, (νi, i ∈ Z) are continuous on [0, 1] and φ(t, s) has the representation

φ(t, s) =
∞∑
i=1

λiνi(t)νj(s),

where the convergence is absolute and uniform.



CHAPTER 2. SOME BASICS 12

In the following we introduce a special integral kernel, Gausian kernel. In Chapter 5
we will use Gaussian kernel to simulate functional ARMA(p, 1) process.

Example 1. An integral kernel φ(t, s) is said to be a Gaussian kernel, if it has the form
of

φ(t, s) = C exp

(
t2 + s2

2

)
, t, s ∈ [0, 1], C <∞ is a constant. (2.11)

2.2 Functional principal components analysis

From now on, if there is no other particular illustration, when we mention a Hilbert space
H, we mean H = L2([0, 1]).

Suppose our observationsX1, . . . , XN are square integrable functions, i.e.X1, . . . , XN ∈
H = L2([0, 1]). X1, . . . , XN are called H-valued observations. Suppose these observations
are realizations of some random function X = {X(t, ω) : t ∈ [0, 1], ω ∈ Ω} which is de-
fined on some common probability space (Ω,A, P ). It means, for ∀ω ∈ Ω, X(·, ω) ∈ H =
L2([0, 1]). And X is called an H-valued random function.

In this section, Section 2.2, we will introduce functional principal components analysis
(FPCA). FPCA plays a central role in FDA. The basic idea is to represent the H-valued
random function X with the eigenfunctions of the covariace operator of X, which is known
as Karhunen-Loéve representation. Then X is truncated just with a fixed number d of
eigenfunctions, where these d eigenfunctions can explain most of the variability of X.

2.2.1 Functional mean and covariance operator

Suppose X is an H-valued random function. We say X ∈ L2
H , if

E‖X‖2 = E [〈X,X〉]

= E

[∫ 1

0

X2(t)dt

]
<∞. (2.12)

Generally, we say X ∈ LpH , if

E‖X‖p = E
[
〈X,X〉

p
2

]
= E

[(∫
X2(t)dt

) p
2

]
<∞. (2.13)

Remark 2. ‖ · ‖ is the norm equipped in H = L2([0, 1]), thus ‖X‖p means “‖X‖ to the
power p”. Do not confuses with the norm ‖.‖p in Lp([0, 1]), i.e.

‖y‖p :=

(∫ 1

0

| y(t) |p dt

) 1
p

, y ∈ Lp([0, 1]).
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For X ∈ L2
H , we define the functional mean and the covariance operator of X in the

following.

• The functional mean of X is defined as

µ(t) := E[X(t)], t ∈ [0, 1]. (2.14)

The expectation commutes with bounded operators, i.e if Ψ ∈ L , E[Ψ(X)] =
Ψ(EX).

• The covariance operator C of X is defined as

C : H → H

x 7→ E [〈X − µ, x〉 (X − µ)] , x ∈ H. (2.15)

Thus,

C(x)(t) = E

[∫ 1

0

[(X(s)− µ(s))x(s)ds] · (X(t)− µ(t))

]
=

∫ 1

0

E [(X(t)− µ(t)) (X(s)− µ(s))]︸ ︷︷ ︸
:=c(t,s)

x(s)ds

:=

∫ 1

0

c(t, s)x(s)ds, t ∈ [0, 1], x ∈ H. (2.16)

Note that C is an integral operator defined in (2.8) and c(t, s) is its corresponding
integral kernel.

In the following we gather the properties of the covariance operator C defined in (2.16)
into a theorem. Without loss of generity, we assume µ = EX = 0.

Theorem 2.2. Suppose X ∈ L2
H and EX = 0, then the covariance operator C of X

defined in (2.16) is a symmetric non-negative definite Hilbert-Schmidt integral operator.

Proof. (i) Symmetric:

c(t, s) = E[X(t)X(s)] = E[X(s)X(t)] = c(s, t), ∀t, s ∈ [0, 1],

Thus C is symmetric by Remark 1.

(ii) Non-negative definite:

〈C(x), x〉 by (2.16)
=

∫∫
c(t, s)x(t)x(s)dtds

=

∫∫
E[X(t)X(s)]x(t)x(s)dtds

= E

[(∫
X(t)x(t)dt

)2
]
≥ 0, ∀x ∈ H.
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(iii) Since ∫∫
c2(t, s)dtds =

∫∫
(E[X(t)X(s)])2 dtds

≤
∫∫

E [X(t)]2E [X(s)]2 dtds

=

(∫ 1

0

E [X(t)]2 dt

)2

=
(
E‖X‖2

)2
<∞,

then by (2.9) and (2.10), the integral operator C is Hilbert Schimdt.

2.2.2 Eigenfunctions and eigenvalues of the covariance operator

We denote (νj, j ∈ Z) and (λj, j ∈ Z) by the (orthonormal) eigenfunctions and the corre-
sponding eigenvalues of the covariance operator C, i.e.

C(νj) = λjνj, j = 1, 2, . . . . (2.17)

By Theorem 2.2, the integral kernel c(t, s) is symmetric and non-negative definite.
Furthermore, since X ∈ L2

H , then c(t, s) (see the definition in (2.16)) is continuous. By
Mercer’s theorem (Theorem 2.1), the eigenvalues (λj, j ∈ Z) are non-negative and the
eigenfunctions (νj, j ∈ Z) form an orthonormal basis of H.

2.2.3 Karhunen-Loéve representation

Without loss of generity, we assume the random function X ∈ L2
H is with EX = 0. X can

be represented with the eigenfunctions (νi, i ∈ Z) of the covariance operator C, which is
known as the Karhunen-Loéve representation.

Theorem 2.3 (Karhunen-Loéve Theorem). Suppose X ∈ L2
H with EX = 0, then X can

be represented by

X =
∞∑
i=1

〈X, νi〉 νi :=
∞∑
i=1

xiνi, (2.18)

where (νi, i ∈ Z) are the orthonormal eigenfunctions of the covariance operator C defined
in (2.17). (xi, i ∈ Z) defined in (2.18) are called the scores of X. The scores (xi, i ∈ Z)
are mean-zero, uncorrelated and with variance λi, i.e.

Exi = 0, ∀i ∈ Z,
E(xixj) = 0, i 6= j,

E(xi)
2 = E 〈X, νj〉2 = λi, ∀i ∈ Z, (2.19)

where (λi, i ∈ Z) are the eigenvalues of the covariance operator C of X.
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Remark 3. For an arbitrary orthonormal basis (ei, i ∈ Z) of H, the representation

X =
∞∑
i=1

〈X, ei〉 ei

still holds by Parseval’s identity. But the scores (〈X, ei〉 , i ∈ N) may not be uncorrelated.

By the last equation in (2.19), we have

∞∑
j=1

λj =
∞∑
j=1

E 〈X, νj〉2 = E‖X‖2 <∞, X ∈ L2
H . (2.20)

Combining (2.19) and (2.20), we can know that each λj can represent some proportion
of the tatal variability of X. This is a very useful property. For any integer d > 0, we
suppose λ1, . . . , λd are the largest d eigenvalues of C. Then notion of cumulative percentage
of total variance (CPV(d)) is defined as

CPV (d) :=

d∑
j=1

λj

∞∑
j=1

λj

. (2.21)

If we choose d > 0 such that the CPV (d) exceeds a predetermined value, e.g. 90%,
then λ1, . . . , λd or the corresponding ν1, . . . , νd explain most of the variability of X. Here
ν1, . . . , νd are also called the functional principal components (FPC’s). We can truncate
the infinite-dimensional random function X by

Xtrunc :=
d∑
i=1

〈X, νi〉 νi. (2.22)

The trucation Xtrunc in (2.22) contains most of the information (variability) of the random
function X.

The procedure mentioned above to find d such that CPV (d) exceeds the predetermined
value, is called the CPV method. Of course, in real data analysis, we do not know the
exact value of (λi, i ∈ Z) and (νi ∈ Z). Thus the (λi, i ∈ Z) in (2.21) and the (νi, i ∈ Z) in
(2.22) will be replaced by their corresponding empirical forms in real data analysis. The
asymptotic properties of the empirical eigenvalues and eigenfunctions will be referred in
Section 2.4.

In Figure 2.1 we show the application of the CPV method on highway functional
velocity data. We compute the empirical eigenvalues λe1, . . . , λ

e
N and the empirical eigen-

functions νe1, . . . , ν
e
N from the dataset. Then we made the “ CPV (d) vs. d ” plot in Figure

2.1. We can see from the plot that, CPV (3) < 0.8 and CPV (4) > 0.8. Thus if we set
the criterion to 80%, then d = 4. Then for each day n ∈ {1, . . . , N}, we truncate the

daily functional velocity curve Sn by Sn,trunc :=
d∑
j=1

〈
Sn, ν

e
j

〉
νej . In Figure 2.2 we show the

(centered) functional velocity data and the corresponding truncation. One can see that
the error made is limited.
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Figure 2.1: Application of CPV method to functional velocity data on 178 days. The
CPV criterion is 80%, i.e. ν1, ν2, ν3, ν4 explain 80% of the total data variability. Source:
Autobahndirektion Südbayern
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Figure 2.2: Highway (centered) functional velocity data in one week vs. the corresponding
truncated data by Karhunen-Loéve representation. The CPV criterion is 80% and the
number d of FPC’s is 4. Source: Autobahndirektion Südbayern
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2.3 Functional time series

At an early stage of development, FDA focused mainly on i.i.d functional data. But in
many applications, the assumption of i.i.d is too strong, especially when data are collected
sequentially over time, e.g the daily records of traffic conditions. It is natural to expect
that the current traffic condition more or less depends on the previous conditions.

Hörmann and Kokoszka [2010] proposed the notion of Lp-m-approximability to quan-
tify the temporal dependence of functional time series. Based on the work of Hörmann and
Kokoszka [2010], the ideas of time series analysis and FDA have been merged and many
results in FDA under the assumption of i.i.d have been extented to Lp-m-approximable
functional time series.

In this section we will introduce some basic but important theories of functional time
series, which include H-white noise, Lp-m-approximability and Bernoulli shifts.

2.3.1 White noise in general separable Hilbert space

In this subsection, Section 2.3.1, we do not restrict H = L2(0, 1), i.e. H can be any
separable Hilbert space (which includes L2([0, 1])).

Definition 2.4 (Definition 3.1, Bosq [2000]). A sequence (εn, n ∈ Z) of H-random varibles
is said to be an H-white noise if

(1) For each n ∈ Z, 0 < E‖εn‖2 = σ2
ε <∞, Eεn = 0, and the covariance operator Cεn

of εn, where
Cεn(x) := E [〈εn, x〉 εn] , x ∈ H, (2.23)

does not depend on n. Thus we denote Cεn := Cε.

(2) For ∀n,m ∈ Z, n 6= m,

E [〈εn, x〉 〈εm, y〉] = 0, ∀x, y ∈ H. (2.24)

Furthermore, (εn, n ∈ Z) is said to be H-strong white noise (SWN), if it satiesfies (1) in
Definition 2.4 and

(2’) (εn, n ∈ Z) is i.i.d.

Similar to scalar and multivariate time series, H-white noise is often used as the
innovations in the functional ARMA process. In the previous sections we have mentioned
that, dimension reduction is the basic idea of FPCA. If we reduce the dimension of the
H-white noise (εi, i ∈ Z), will its truncated vector process be a multivariate white noise?
The following theorem answers this question.

Theorem 2.5. Suppose (εn, n ∈ Z) is an H-valued white noise and (ei, i ∈ Z) is an ar-
bitrary orthonormal basis of H. We define the d-dimensional vector process (En, n ∈ Z)
truncated from (εi, i ∈ Z), where

En := (〈εn, e1〉 , . . . , 〈εn, ed〉)T , ∀n ∈ Z. (2.25)

Then (En, n ∈ N) in (2.25) is multivariate white noise.
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Proof. To prove (En, n ∈ N) is a multivariate white noise, we need to show

E [En] = 0, ∀n ∈ Z,
E
[
EnE

T
m

]
= 0, n 6= m,

E
[
EnE

T
n

]
does not depend on n.

• Since Eεn = 0, we have

E [En] = E (〈εn, e1〉 , . . . , 〈εn, ed〉)T = 0, ∀n ∈ Z.

• For n 6= m, by (2.25), we know EnE
T
m is a d×dmatrix with ijth entry 〈εn, ei〉 〈εm, ej〉.

Then by (2.24) in Definition 2.4, we have

E [〈εn, ei〉 〈εm, ej〉] = 0, ∀i, j ∈ {1, . . . , d}.

Thus E
[
EnE

T
m

]
= 0 for n 6= m.

• For each n, EnE
T
n is a d× d matrix with ijth entry 〈εn, ei〉 〈εn, ej〉. Then by (2.23),

E [〈εn, ei〉 〈εn, ej〉] = 〈Cεn(ei), ej〉
= 〈Cε(ei), ej〉 , ∀i, j ∈ {1, . . . , d}.

It implies that E
[
EnE

T
n

]
does not depend on n.

2.3.2 Lp-m-approximable functional time series

Now we introduce the notion Lp-m-approximability proposed by Hörmann and Kokoszka
[2010] and this subsection, Section 2.3.2, is also mainly based on their paper.

Suppose (Xn, n ∈ Z) is an H-valued sequence. We denote by F−t := σ{. . . , Xt−1, Xt}
and F+

t := σ{Xt, Xt+1, . . . } the σ−algebras generated by the observations up to time t
and after t.

Definition 2.6. The H-valued sequence (Xn, n ∈ Z) is said to be m-dependent if for
∀t ∈ R , the σ-algebras F−t and F+

m+t are independent.

One idea is to approximate (Xn, n ∈ Z) by m-dependent process
(
X

(m)
n , n ∈ Z

)
, m ≥

1, where for each n,
(
X

(m)
n , n ∈ Z

)
converges in some sense (e.g in distribution) to Xn,

as m → ∞. If the convergence is fast enough, then we can obtain the limiting behavior

of (Xn, n ∈ Z) from
(
X

(m)
n , n ∈ Z

)
. The following definition formalizes this idea.

Definition 2.7 (Definition 2.1, Hörmann and Kokoszka [2010]). For X ∈ LpH , i.e.
E‖X‖p <∞, we define

νp(X) := (E‖X‖p)1/p <∞. (2.26)
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A sequence (Xn, n ∈ Z) ∈ LpH is called Lp-m-approximable if each Xn admits the repre-
sentation

Xn = f(εn, εn−1, . . . ), (2.27)

where the (εn, n ∈ Z) is an i.i.d H-valued sequence, and f is a measurable function

f : H∞ → H.

Moreover we assume that if (ε′n, n ∈ Z) is an independent copy of (εn, n ∈ Z) defined on
the same probability space, then letting

X(m)
n = f(εn, εn−1, . . . , εn−m+1, ε

′
n−m, ε

′
n−m−1, . . . ), (2.28)

we have
∞∑
m=1

νp(Xm −X(m)
m ) <∞. (2.29)

Since (εn, n ∈ Z) is i.i.d, the Lp-m-approximable sequence (Xn, n ∈ Z) in (2.27) is
strictly stationary.

But we must note that
(
X

(m)
n , n ∈ Z

)
defined in (2.28) is not m-dependent. By (2.28),

X
(m)
n+m = f(εn+m, εn+m−1, . . . , εn+1, ε

′
n, . . . , ε

′
n−m, . . . ). (2.30)

Combining (2.28) and (2.30), we can see that ε′n−m is included both in X
(m)
n and X

(m)
n+m.

It implies X
(m)
n and X

(m)
n+m are dependent, thus the

(
X

(m)
n , n ∈ Z

)
defined in (2.28) is not

m-dependent.
To solve this problem, Hörmann and Kokoszka [2010] proposed a so-called coupling

construction method. They defined for each n an independent copy {ε(n)k } of {εk}, then(
X

(m)
n , n ∈ Z

)
is re-defined as

X(m)
n := f(εn, εn−1, . . . , εn−m+1, ε

(n)
n−m, ε

(n)
n−m−1, . . . ). (2.31)

Then for each m ≥ 1,
(
X

(m)
n , n ∈ Z

)
is strictly stationary and m-dependent, and for each

n ∈ Z, X(m)
n is equal in distribution to Xn.

The Lp-m-approximable functional time series (Xn, n ∈ Z) is weakly dependent, i.e.
the correlation between Xn and Xn+h tends to zero sufficiently quickly as h→∞. Many
results in FDA under the assumption of i.i.d can be extended to weakly-dependent func-
tional time series (see Section 2.4).

In the following we introduce the Bernoulli shifts, which also belong to the class of
Lp-m-approximable functional time series.

Definition 2.8. Suppose (εn, n ∈ Z) is an i.i.d H-valued sequence. Then (ηn, n ∈ Z) forms
a sequence of Bernoulli shifts, if for each n, ηn is Lp-m-approximable (see Definition 2.7),
and

εj(t) = εj(t, ω) is jointly measurable in (t, ω), −∞ < j <∞, (2.32)

Eη0 = 0, E‖η0‖2+δ <∞, for some 0 < δ < 1. (2.33)
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The sequence (ηn, n ∈ Z) can be approximated by m-dependent sequences {η(m)
n } (defined

in the way of (2.31)) in the sense that

∞∑
m=1

(
E‖ηn − η(m)

n ‖2+δ
)1/κ

, for some κ > 2 + δ. (2.34)

Each causal stationary funtional time series can be represented in the form of functional
moving average process, which is similar to the scalar and multivariate case. In fact, the Lp-
m-approximable Bernoulli shifts defined in Definition2.8 include all (linear or nonlinear)
stationary functional processes used in practice, and we will refer them again in Chapter
3 for the stationarity test of functional observations.

2.4 Estimation

Up to now, we have introduced the most important notions used in FDA. In this section,
we will define their corresponding emprical forms (estimators) and show the asymptotic
properties of the estimators under the assumption of i.i.d and weak dependence (Lp-m-
approximability).

2.4.1 Estimation under the assumption of i.i.d

Assumption 2.1. The H-valued observations X1, . . . XN are i.i.d and have the same
distribution as X.

The sample mean (or empirical mean) of the observations X1, . . . XN is defined as

µe :=
1

N

N∑
k=1

Xk. (2.35)

The superscript “e” stands for “empirical”.
Recall the representation of the covariance operator C and the covariance kernel c(t, s)

in (2.15) and (2.16), it is natural to define the empirical covariance operator Ce and the
empirical covariance kernel ce(t, s) as

Ce(x) :=
1

N

N∑
k=1

〈Xk − µe, x〉 (Xk − µe), x ∈ H = L2([0, 1]), (2.36)

ce(t, s) :=
1

N

N∑
k=1

(Xk(t)− µe(t))(Xk(s)− µe(s)), t, s ∈ [0, 1]. (2.37)

Figure 2.3 shows the empirical covariance kernel of the highway functional velocity
data on working days. As indicated by the arrows, the t = 0, s = 0 point is in the
bottom right corner. It estimates E[(X(0)− µ(0))(X(0)− µ(0))]. The empirical variance
of the time series is represented along the diagonal from the bottom right to the top
left corner. The peaks along the diagonal represent phases of transition between stable
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and unstable traffic states: for instance, the first peak represents the transition at around
05:00 a.m., where traffic becomes denser due to commuting. Peaks away from the diagonal
represent high dependencies between different time points. For instance, on working days
high traffic density in the morning correlates high traffic density in the evening, again due
to commuting.

H
ou

rs

Hours

Figure 2.3: Empirical covariance kernel of highway functional velocity data on working
days. Source: Autobahndirektion Südbayern

The next three theorem show the asymptotic properties of µe, Ce and ce(t, s).

Theorem 2.9 (Theorem 2.3, Horváth and Kokoszka [2012]). If Assumption 2.1 holds,
then Eµe = µ and E‖µe − µ‖2 = O(N−1).
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Theorem 2.9 implies that µe is an unbiased estimator of µ and consistent in the sense

that ‖µe − µ‖ P→ 0.

Theorem 2.10 (Theorem 2.4, Horváth and Kokoszka [2012]). If X ∈ L4
H , i.e. E‖X‖4 <

∞, EX = 0 and Assumption 2.1 holds, then

E‖Ce‖2S ≤ E‖X‖4, (2.38)

where ‖ · ‖S is the Hilbert-Schmidt operator norm.

Theorem 2.11 (Theorem 2.5, Horváth and Kokoszka [2012]). If E‖X‖4 <∞, EX = 0
and Assumption 2.1 holds, then

E‖Ce − C‖2S = E

∫∫
[ce(t, s)− c(t, s)]2 dtds ≤ N−1E‖X‖4. (2.39)

Theorem 2.11 implies that ce(t, s) is a mean squared consistent estimator of c(t, s).
By the representation of Ce in (2.36), we know that Ce maps H = L2([0, 1]) into

an N -dimensional subspace spanned by X1, . . . , XN . Thus Ce has N eigenvalues and N
eigenfunctions. It is natural to take the eigenvalues and the eigenfunctions of Ce as the
empirical eigenvalues and eigenfunctions, i.e. the empirical eigenvalues and the corre-
sponding empirical eigenfunctions are defined as

λejν
e
j = Ce(νej ) =

∫ 1

0

ce(t, s)νej (s)ds, j = 1, . . . , N. (2.40)

The following theorem shows the asymptotic properties of the empirical eigenvalues
and eigenfunctions defined in (2.40).

Theorem 2.12 (Theorem 2.7, Horváth and Kokoszka [2012]). Suppose E‖X‖4 < ∞,
EX = 0, Assumption 2.1 holds, and

λ1 > λ2 > . . . λd > λd+1. (2.41)

Then, for each 1 ≤ j ≤ d (d ≤ N),

E
[
‖νej − νj‖2

]
= O(N−1), E

[
|λej − λj|2

]
= O(N−1). (2.42)

Theorem 2.12 implies that, under regularity conditions, the empirical eigenvalues and
eigenfunctions are consistent estimators.

We call νe1, . . . , ν
e
d the empirical functional principal components (EFPC’s). νe1, . . . , ν

e
d

form an orthonormal basis of the N -dimensional subspace spanned by X1, . . . , XN , then
we have

1

N

N∑
i=1

‖Xi‖2 =
1

N

N∑
i=1

N∑
j=1

〈
Xi, ν

e
j

〉2
=

N∑
j=1

〈
Ce(νej ), ν

e
j

〉
=

N∑
j=1

λej , (2.43)

i.e. each λej represents some proportion of the total variability of the observations. Fur-
thermore, νe1, . . . , ν

e
d can be extended to an orthonormal basis of H.
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2.4.2 Estimation under the assumption of weak dependence

In this subsetion we show the asymptotic properties of the estimators mentioned in the
last subsection, when (Xn, n ∈ Z) ∈ L2

H is an Lp-m-approximable (see Definition 2.7)
functional time series.

Theorem 2.13 (Theorem 4.1, Hörmann and Kokoszka [2012]). Suppose (Xn, n ∈ Z) is
an H-valued L2-m-approximable process with mean µ. Then E‖µeN − µ‖2 = O(N−1).

Theorem 2.14 (Theorem 3.1, Hörmann and Kokoszka [2010]). Suppose (Xn, n ∈ Z) is
an H-valued L4-m-approximable process with covariance operator C, and E‖Xn‖4 < ∞.
Then there exists some constant UX <∞, which does not depend on N, such that

E‖Ce − C‖2S ≤ UXN
−1. (2.44)

Theorem 2.15 (Theorem 3.2, Hörmann and Kokoszka [2010]). Suppose (Xn, n ∈ Z) is
an H-valued L4-m-approximable process with covariance operator C, E‖Xn‖4 <∞, and

λ1 > λ2 > . . . λd > λd+1. (2.45)

Then for each 1 ≤ j ≤ d (d ≤ N),

E
[
‖νej − νj‖2

]
= O(N−1), E

[
|λej − λj|2

]
= O(N−1). (2.46)

2.4.3 Long-run variance kernel for functional time series

Let (yn, n ∈ Z) be a scalar stationary sequence with Eyn = µy. Its long-run variance is
defined as

σ2 :=
∑
i∈Z

Cov(y0, yi), (2.47)

provided the sequence (2.47) is absolutely convergent. The long-run variance is used to
measure the standard error of the sample mean when there is serial dependence, i.e.
Cov(y0, yi) 6= 0.

For an H-valued stationary functional time series (Xn, n ∈ Z) with EXn = 0, the
long-run variance kernel of (Xn, n ∈ Z) is defined in the similar way to (2.47) as

cL(t, s) := E [X0(t)X0(s)] +
∑
i≥1

[X0(t)Xi(s)] +
∑
i≥1

[X0(s)Xi(t)] . (2.48)

If the serial covariance is 0 (e.g. (Xn, n ∈ Z) is i.i.d), then the long-run covariance kernel
cL(t, s) is exactly the covariance kernel c(t, s) defined in (2.16).

Up to now, the covariance kernel c(t, s) is still applied much more widely than cL(t, s)
in FDA (or FPCA), even if the serial covariance of the data is not 0. Maybe it is an
outlook to try to apply the long-run covariance kernel cL(t, s) in FPCA when the data
have dependence structure. Horváth et al. [2013b] have applied the long-run covariance
kernel in the hypothesis test for stationarity of functional observations (see Chapter 3).

In this subsection we will first introduce the central limit theorem for the sample mean
of an L2-m-approximable functional time series, which is helpful to understand the long-
run variance kernel. Then we give a form of the emprical long-run covariance kernel and
show the consistency of the estimator. This subsection is mainly based on Horváth et al.
[2013a].
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Theorem 2.16 (Theorem 2.1, Horváth et al. [2013a]). Suppose the functional time series
(Xn, n ∈ Z) is L2-m-approximable (thus stationary, see (2.27)) and EXn = 0, E‖Xn‖2 <
∞. Then

N−
1
2

N∑
i=1

Xi
D→ Z in L2, (2.49)

where Z is a Gaussian process with

EZ(t) = 0, and E [Z(t)Z(s)] = cL(t, s), (2.50)

where cL(t, s) is defined in (2.48). Furthermore, cL(t, s) converges in L2 ([0, 1]× [0, 1]),
i.e. cL is a square integrable function on the unit square.

By Theorem 2.16, cL(t, s) converges in L2 ([0, 1]× [0, 1]), then by (2.9), the correspond-
ing integral operator CL with the integral kernel cL(t, s) is Hilbert Schmidt, where

CL(x)(t) :=

∫ 1

0

cL(t, s)x(s)ds, x ∈ H = L2([0, 1]). (2.51)

We denote (λnL, n ∈ Z) and (νnL, n ∈ Z) by the eigenvalues and the corresponding
eigenfunctions of of CL defined in (2.51).

In the following we will define the empirical form ceL(t, s) of cL(t, s). The definition of
the empirical long-run covariance kernel ceL(t, s) is not so “natural”.

We consider the L2-m-approximable sequence (Xn, n ∈ Z) with mean µ and E‖Xn‖2 <
∞, then for each n, Xn(t) can be written as

Xn(t) = µ(t) + ηn(t). (2.52)

(ηn, n ∈ Z) is thus L2-m-approximable with zero mean and can be approximated by the

m-dependent sequence
(
η
(m)
n , n ∈ Z

)
(see Definition 2.7). In addition, we assume

lim
m→∞

m

[
E

∫ (
ηn(t)− η(m)

n (t)
)2

dt

]1/2
= 0. (2.53)

Let K(·) be a kernel (weight) function defined on the line and satisfying the following
conditions:

K(0) = 1, (2.54)

K(u) = 0, if | u |> c, for some c > 0, (2.55)

K is continuous, (2.56)

K is bounded. (2.57)

We define the empirical (sample) correlation functions:

γei (t, s) :=
1

N

N∑
j=i+1

(
Xj(t)− X̄N(t)

) (
Xj−i(s)− X̄N(s)

)
, (2.58)
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where X̄N(t) =
1

N

N∑
i=1

Xi(t).

Now the empirical long-run covariance kernel ceL(t, s) is defined as

ceL(t, s) := γe0(t, s) +
N−1∑
i=1

K

(
i

h

)
(γei (t, s) + γei (s, t)) , (2.59)

where h = h(N) is the smoothing bandwidth satisfying

h(N)→∞ and
h(N)

N
→ 0, as N →∞. (2.60)

Then the empirical long-run covariance kernel ceL(t, s) defined in (2.59) is a consistent
estimator of cL(t, s), which is stated in the following theorem.

Theorem 2.17 (Theorem 2.2, Horváth et al. [2013a]). Suppose (Xn, n ∈ Z) is L2-m
approximable satisfying (2.52) and (2.53). Under conditions (2.54)-(2.57) and (2.60),∫∫

(ceL(t, s)− cL(t, s))2 dtds
P→ 0, (2.61)

with cL(t, s) defined in (2.48) and ceL(t, s) defined in (2.59).



Chapter 3

Hypothesis test for functional data

In the real data analysis, before we attempt to choose a model to fit to the data, we need
to transform the data properly.

For example, if we want to fit ARMA model to the data, we need to make the data
more stationary by e.g. deducting the trend and seasonal part. Thus, to test whether the
data have been properly transformed is an important issue.

In this chapter we will introduce two hypothesis tests for functional data. One is the
Portmanteau test of independence proposed by Gabrys and Kokoszka [2007]. The other
one is the test of stationarity of functional time series, which was proposed by Horváth
et al. [2013b]. We will apply these two tests to check whether our dataset is properly
transformed in the real data analysis in Chapter 6.

3.1 Portmanteau test of independence for functional

observations

This section is mainly based on Gabrys and Kokoszka [2007].
Suppose we have random functional observations X1(t), . . . , XN(t), t ∈ [0, 1]. We want

to test

H0 : X1, . . . , XN are i.i.d,

H1 : H0 does not hold.

By FPCA, we can approximate the Xn(t) with truncated Karhunen-Loéve representation

Xn(t) ≈
d∑

k=1

xeknν
e
k(t), (3.1)

where νe1, . . . , ν
e
d are empirical eigenfuntions, and xekn is the kth score of Xn:

xekn :=

∫ 1

0

Xn(t)νek(t)dt. (3.2)

Note that here all the notations are in the empirical form.
The d in (3.1) is choosen with the CPV method (see Section 2.2.3). To establish the

null distribution of the test statistic, the following assumption is required.

26
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Assumption 3.1. The H-valued functional observations X1, . . . , XN are i.i.d. For each
n ∈ {1, . . . , N}, E‖Xn‖4 <∞ and EXn = 0. Furthermore, we assume that the population
eigenvalues satisfy

λ1 > λ2 > · · · > λd > λd+1. (3.3)

We work with the vector consisting of scores (see (3.2))

Xe
n := [xe1n, x

e
2n, . . . , x

e
dn]T , (3.4)

and the unobservable vectors in population form

Xn := [x1n, x2n, . . . , xdn] , (3.5)

where

xkn =

∫ 1

0

Xn(t)νk(t)dt, k = 1, . . . , d. (3.6)

Under H0, the Xn in (3.5) are i.i.d zero mean d-dimensional random vectors. We denote
the cross-covariance matrix by V := E [Xn,Xn]. Then the ijth entry v(i, j) of V is

v(i, j) = E[xinxjn], i, j = 1, . . . , d.

And we define Ch as the sample autocovariance with klth entry

ch(k, l) :=
1

N

n−h∑
n=1

xknxl,n+h, k, l = 1, . . . , d. (3.7)

Remark 4. Since Xn in (3.5) are unobservable, Ch in (3.7) can not be computed from
the data. So we do not put the superscript “e” on Ch, even though we call it “sample”
autocovariance.

Finally, the test statistic is constructed as

Qe
N = N

H∑
h=1

d∑
i,j=1

ref,h(i, j)r
e
b,h(i, j), (3.8)

where ref,h(i, j) and reb,h(i, j) are the ijth entry of (Ce
0)
−1 Ce

h and Ce
h (Ce

0)
−1 respectively,

where the ijth entry of Ce
h is

ceh(k, l) :=
1

N

n−h∑
n=1

xeknx
e
l,n+h, k, l = 1, . . . , d. (3.9)

The following lemma provides us with an equivaluent form of the test statistic Qe
N in

(3.8).

Lemma 3.1 (Lemma 7.1, Horváth and Kokoszka [2012]). The statistic Qe
N in (3.8) has

an equivalent form

Qe
N = N

H∑
h=1

d∑
i,j=1

(ceh(i, j))
2 (λei )

−1 (λej)−1 , (3.10)

where λe1, . . . , λ
e
d are the empirical eigenvalues.
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The following theorem establishes the limit null distribution of the test statistic Qe
N .

Theorem 3.2 (Theorem 1, Gabrys and Kokoszka [2007]). Under H0, if Assumption 3.1

holds, then Qe
N

D→ χ2
d2H (Chi-square distribution with d2H degrees of freedom).

3.2 Testing stationarity for functional time series

This section is mainly based on Horváth et al. [2013b].
Suppose (ηn, n ∈ Z) are Bernoulli shifts defined in Definition 2.8. We wish to test

H0 : Xi(t) = µ(t) + ηi(t), 1 ≤ i ≤ N, µ ∈ H = L2([0, 1]),

HA : H0 does not hold. (3.11)

Remark 5. The H0 in (3.11) implies that (Xn, n ∈ Z) is stationary and can be represented
in the form of a functional moving average process.

Remark 6. The mean function µ(t) in (3.11) is unknown. Furthermore, the alternative
hypothesis HA is very general. In Horváth et al. [2013b], the asymptotic behaviors of the
test statistics under the following alternatives have also been studied.

• Change point alternative:

HA,1 : Xi(t) = µ(t) + δ(t)I{i > k∗}+ ηi(t), 1 ≤ i ≤ N, 1 ≤ k∗ = bNτc < N,

where 0 < τ < 1. The size of the change δ(t) and the time of the change k∗ are all
unknown parameters.

• Integrated alternative:

HA,2 : Xi(t) = µ(t) +
i∑
l=1

ηl(t), 1 ≤ i ≤ N.

• Deterministic trend alternative:

HA,3 : Xi(t) = µ(t) + g(i/N)δ(t) + ηi(t), 1 ≤ i ≤ N,

where g(t) is a piecewise Lipschitz continuous function on [0, 1].

But in our thesis, we will not list the asymptotic behaviors of the test statistics under the
alternatives above. More details see Horváth et al. [2013b]. In our real data analysis, if
we can not reject H0 in (3.11), then we will attempt to fit ARMA models to the data.

Before we introduce the test statistics, let us first get familiar with some notations.
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The sample mean of the observations is defined as

X̄(t) :=
1

N

N∑
i=1

Xi(t). (3.12)

The partial sum process of the curves X1(t), . . . , XN(t) is defined as

SN(x, t) :=
1√
N

bNxc∑
i=1

Xi(t), 0 ≤ x, t ≤ 1, (3.13)

where b·c denotes the floor function.
We define

ZN(x, t) := SN(x, t)− xSN(1, t), 0 ≤ x, t ≤ 1. (3.14)

Thus ZN(x, t) has the form of a functional Brownian bridge.
With these notations, we can introduce the test statistics. In Horváth et al. [2013b],

they introduced two classes of tests. One is based on the curves themselves, i.e. on popu-
lation level. The other one is based on the finite dimensional projections of the curves on
the EFPC’s.

• Fully functional tests

The test statistics TN and MN are defined as

TN :=

∫∫
Z2
N(t, s)dtdx, (3.15)

MN := TN −
∫ 1

0

(∫ 1

0

ZN(x, t)dx

)2

dt

=

∫∫ (
ZN(x, t)−

∫ 1

0

ZN(y, t)dy

)2

dxdt. (3.16)

• Tests based on finite-diemensional projections

There are four test statistics, which are defined respectively as

T 0
N(d) :=

d∑
i=1

1

λeiL

∫ 1

0

〈ZN(x, ·), νeiL〉
2 dx, (3.17)

T ∗N(d) :=
d∑
i=1

∫ 1

0

〈ZN(x, ·), νeiL〉
2 dx, (3.18)

M0
N(d) :=

d∑
i=1

1

λeiL

∫ 1

0

(
〈ZN(x, ·), νeiL〉 −

∫ 1

0

〈ZN(u, ·), νeiL〉 du
)2

dx, (3.19)

M∗
N(d) :=

d∑
i=1

∫ 1

0

(
〈ZN(x, ·), νeiL〉 −

∫ 1

0

〈ZN(u, ·), νeiL〉 du
)2

dx. (3.20)
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where λe1L, . . . , λ
e
dL and νe1L, . . . , ν

e
dL are the eigenvalues and eigenfunctions of the empirical

long-run covariance kernel ceL(t, s) defined in (2.59).
Under H0 in (3.11), the asymptotic behaviour of the test statistics above are stated

in the following two theorems. We assume B1, B2, . . . are i.i.d Brownian bridges on [0, 1].

Theorem 3.3 (Theorem 2.1, Horváth et al. [2013b]). Under H0,

TN
D→

∞∑
i=1

λiL

∫ 1

0

B2
i (x)dx, (3.21)

and

MN
D→

∞∑
i=1

λiL

∫ 1

0

(
Bi(x)−

∫ 1

0

Bi(y)dy

)2

dx, (3.22)

where (λeiL, i ∈ Z) and (νeiL, i ∈ Z) are the eigenvalues and eigenfunctions of the long-run
covariance kernel cL(t, s) defined in (2.48).

Theorem 3.4 (Theorem 2.2, Horváth et al. [2013b]). Under H0 and assume λ1L > λ2L >
. . . λdL > λd+1,L > 0, then

T 0
N(d)

D→
d∑
i=1

∫ 1

0

B2
i (x)dx, (3.23)

T ∗N(d)
D→

d∑
i=1

λiL

∫ 1

0

B2
i (x)dx, (3.24)

M∗
0 (d)

D→
d∑
i=1

∫ 1

0

(
Bi(x)−

∫ 1

0

Bi(y)dy

)2

dx, (3.25)

M∗
N(d)

D→
d∑
i=1

λiL

∫ 1

0

(
Bi(x)−

∫ 1

0

Bi(y)dy

)2

dx. (3.26)

The proof of Theorem 3.3 and Theorem 3.4 see Horváth et al. [2013b].



Chapter 4

Prediction of functional ARMA
process

This chapter addresses the study of functional ARMA(p, 1) process. Providing reliable pre-
dictions is one of the most important goals of functional time series analysis. In scalar and
multivariate time series analysis, there already exist many prediction methods which can
be easily implemented, e.g. Durbin-Levinson and innovations algorithms (e.g see Brock-
well and Davis [1991]). In functional case, Bosq [2000] has proposed the functional best
linear predictor for general linear process. But it is difficult to implement in practice,
because we do not know the exact math formula of the predictor. Since we still lack
advanced prediction methodology for functional time series, the functional time series is
often assumed to follow the functional AR(1) (FAR(1)) models. And the prediction is also
based on the assumption of FAR(1) structure (see Chapter 3 of Bosq [2000]).

Aue et al. [2015] proposed a prediction algorithm which combines the idea of FPCA
and time series analysis, and it is not restricted to FAR structure. The basic idea is
to reduce the infinite-dimensional functional data to finite-dimensional vector data (by
FPCA). Then the issue of predicting functional time series is transformed to the prediction
of multivariate time series. Furthermore, Aue et al. [2015] applied the algorithm to predict
the functional AR(1) process and bounded the prediction error.

In this chapter we will try to extend the work by Aue et al. [2015]. In Section 4.1 and
4.2 we will quickly review the work by Bosq (functional best linear predictor) and Aue
et al. (the prediction algorithm mentioned above). Then we will focus on the functional
ARMA(p, 1) process and its corresponding truncated vector process. In Section 4.3, we will
first seek a sufficient condition for stationarity of functional ARMA(p, 1) process. Then we
will have a closer look on the vector process truncated from the functional process. We will
show that, the vector process “approximately” follows the vector ARMA(p, 1) structure.
Furthermore, under some assumptions, the vector process is rigorously a stationary vector
ARMA(p, 1) process. In Section 4.4, we will show the relation between the functional best
linear predictor (based on functional observations) and the vector best linear predictor
(based on the truncated vector observations ). At last, in Section 4.5, we will bound
the prediction error when we apply the prediction algorithm by Aue et al. [2015] on the
prediction of functional ARMA(p, 1) process.

In this chapter we still assume H := L2([0, 1]), and all our random functions are defined
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on some common probability space (Ω,A, P ). H is equipped with the inner product

〈x, y〉 :=
∫ 1

0
x(t)y(t)dt and the norm ‖x‖ :=

√
〈x, x〉, ∀x, y ∈ H. We say an H-valued

random function X is in LpH if E‖X‖p <∞.

4.1 Functional best linear predictor

Suppose we have a d-dimensional stationary time series (Yn, n ∈ Z) with EYn = 0. We
denote the “matrix linear span” of the observations Y1, . . . ,Yn by M1, where

M1 :=

{
n∑
i=1

AniYi, Ani is real d× d matrix, i = 1, . . . , n

}
.

Then the vector best linear predictor Ŷn+1 of Yn+1 based on the observations Y1, . . . ,Yn

is defined as the orthogonal projection of Yn+1 on M1, i.e.

Ŷn+1 := P{M1}Yn+1.

Equivalently, we have

E
[(

Yn+1 − Ŷn+1

)
yT
]

= 0, ∀ y ∈M1.

By the projection theorem (see Theorem 2.3.1 of Brockwell and Davis [1991]), Ŷn+1 is
the unique elmement in M1 such that

E‖Yn+1 − Ŷn+1‖22 = inf
y∈M1

E‖Yn+1 − y‖22,

where ‖ · ‖2 denotes the Euclidean vector norm.
In the following we will introduce the notion of functional best linear predictor proposed

by Bosq [2000].
Suppose we have an H-valued stationary functional time series (Xn, n ∈ Z) with

EXn = 0 and E‖Xn‖2 < ∞, i.e. Xn ∈ L2
H . The functional best linear predictor X̂n+1

of Xn+1 based on the observations X1, . . . , Xn, is defined as the orthogonal projection of
Xn+1 on a specific subspace of L2

H containing X1, X2, . . . Xn. This specific subspace of L2
H

is introduced in the following definition.

Definition 4.1 (Definition 1.1, Bosq [2000]). G is said to be an L-closed subspace(LCS)
or hermetically closed subspace of L2

H , if

(1) G is a Hilbertian subspace of L2
H .

(2) If X ∈ G and l(·) ∈ L, then l(X) ∈ G, where L denotes the space of bounded linear
operators acting on H.

G is said to be a zero-mean LCS if it contains only zero-mean H-random variables.

A property of the LCS is listed in the following theorem.
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Theorem 4.2 (Theorem 1.8, Bosq [2000]). Let F be a subset of L2
H . Then the LCS GF

generated by F is the closure of G ′F , where

G ′F :=

{
n∑
i=1

li(Xi), li ∈ L, Xi ∈ F, i = 1, . . . n, n ≥ 1

}
.

Now we define
Fn := {X1, . . . , Xn},

by Theorem 4.2, the LCS G := GFn generated by Fn , is the closure of G ′ := G ′Fn
, where

G ′Fn
:=

{
n∑
i=1

li(Xi), li ∈ L, Xi ∈ Fn, i = 1, . . . n, n ≥ 1

}
. (4.1)

Note that G contains full information of X1, X2, . . . , Xn.
The functional best linear predictor X̂Gn+1 of Xn+1 is defined as the orthogonal projec-

tion of Xn+1 on G, i.e.
X̂Gn+1 := P{G}Xn+1 ∈ G. (4.2)

Equivalently, we have

E
〈
Xn+1 − X̂Gn+1, y

〉
= 0, ∀y ∈ G. (4.3)

Since X̂Gn+1 ∈ G, X̂Gn+1 has the form of

X̂Gn+1 =
n∑
i=1

gn,i(Xi) ∈ G, gn,i ∈ L, i = 1, . . . , n.

Again, by the projection theorem, X̂Gn+1 is the unique element in G such that

E‖Xn+1 − X̂Gn+1‖2 = inf
y∈G

E‖Xn+1 − y‖2.

We denote the mean square error of the predictor X̂Gn+1 by

σ2
n := E‖Xn+1 − X̂Gn+1‖2. (4.4)
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4.2 Prediction algorithm

Suppose the H-valued stationary functional time series (Xn, n ∈ Z) is with EXn = 0 and
E‖Xn‖2 <∞. And we have N observations X1, X2, . . . XN .

For simplicity, we call the prediction algorithm by Aue et al. [2015] Algorithm I. It
can be organized into three steps.

Algorithm I:

(1) Select d, the number of FPC’s, with CPV method (see Section 2.2.3) such that most
of the total data variability can be explained by ν1, . . . , νd. We compute the FPC
scores xk,l := 〈Xk, νl〉 by projecting each observation on ν1, . . . , νd. We write the
scores into the vector form:

Xk := (xk,1, . . . xk,d)
′, k = 1, . . . N, l = 1, . . . , d. (4.5)

(2) We view the d-dimensional vectors X1, . . . XN as observations. We fix the prediction
lag h (in this thesis we choose h = 1), then we choose an appropriate multivariate
prediction algorithm, e.g. innovations algorithm, to produce the one-step ahead
(vector) predictor

X̂N+1 = (x̂N+1,1, . . . x̂N+1,d)
′.

(3) At last, we re-transform the vector predictor X̂N+1 into the functional form X̂N+1

by the truncated Karhunen-Loéve representation:

X̂N+1 := x̂N+1,1ν1 + · · ·+ x̂N+1,dνd

= (ν1 . . . νd) X̂N+1.

Note that, in Algorithm I, no specific data struture is required. Thus it can be applied
on the prediction of any stationary functional time series. This is very important, since
there is still no well developed theory of the prediction of functional ARMA process.

The first and the third step in Algorithm I can be implemented in R with the package
FDA, and the second step can be achieved with the R package MTS.

4.3 Sufficient conditions for stationarity

Algorithm I can be applied on the prediction of the stationray functional ARMA(p, 1)
process. But we must note that, if the vector process in (4.5) is not stationary, things
become more complicated. It is more difficult to predict a non-stationary process than
a stationary process. Thus, our motivation is to seek conditions under which the vector
process in (4.5) is stationary.

Before that, in the beginning of this section, we will first try to find out a condition for
stationarity of the functional ARMA(p, 1) process. Secondly, we will study the structure
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of the truncated vector process in (4.5). We will show that, the vector process “approxi-
mately” follows the vector ARMA(p, 1) structure. And under some further constraints, it
is rigorously a vector ARMA(p, 1) process. At the end of this section, we will try to seek
conditions under which the vector process is stationary as well.

4.3.1 Sufficient conditions for stationarity of functional ARMA(p, 1)
process

Definition 4.3. A zero mean, H-valued sequence (Xn, n ∈ Z) with E‖Xn‖2 < ∞, ∀n ∈
Z, is called a functional ARMA (p,1) process, if it is stationary and for every
n ∈ Z,

Xn =

p∑
i=1

φi(Xn−i) + εn + θ(εn−1), (4.6)

where the H-valued i.i.d sequence (εn, n ∈ Z) is with Eεn = 0 and satisfies E‖εn‖2 =
σ2
ε <∞. And φ1, . . . , φp, θ ∈ L.

In this section, we will seek a sufficient condition for stationarity of functional ARMA(p, 1)
process in (4.6). To make the this part more understandable, we start with functional
ARMA(1, 1) process. Then we will use state space equation to extend the result of
ARMA(1,1) to ARMA(p, 1). First of all, we need the next two lemmas.

Lemma 4.4 (Lemma 3.1, Bosq [2000]). For any φ ∈ L, the following two conditions are
equivalent:

C0 : There exists an integer j0 such that ‖φj0‖L < 1.

C1 : There exist a > 0 and 0 < b < 1 such that for every j ≥ 0, ‖φj‖L < abj.

If φ ∈ L satisfies C1, then it follows

∞∑
j=0

‖φj‖2L <
∞∑
j=0

a2b2j =
a2

1− b2
<∞. (4.7)

Remark 7. ‖φ‖L < 1 is the special case of C0 (by choosing j0 = 1). But C0 (or C1) does
not imply ‖φ‖L < 1 (see Example 3.4 in Bosq [2000]). Thus C0 (or C1) is weaker than
‖φ‖L < 1.

Lemma 4.5. The H-valued i.i.d sequence (εn, n ∈ Z) is with zero mean and satisfies
E‖εn‖2 = σ2

ε <∞. If C0 holds, then

∞∑
j=0

∥∥φj(εn−j)∥∥ <∞ a.s. (4.8)

implies the almost sure convergence of

∞∑
j=0

φj(εn−j). (4.9)
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Proof. We define Cm :=
m∑
j=0

φj(εn−j). Since H is a Hilbert space, if Cm converges in H,

then the limit of Cm (defined in (4.9)) is still in H. For simplicity, we denote the limit of

Cm defined in (4.9) by C :=
∞∑
j=0

φj(εn−j).

Similarly, we define Dm :=
m∑
j=0

‖φj(εn−j)‖, and the limit of Dm defined in (4.8) is

simplified to D :=
∞∑
j=0

‖φj(εn−j)‖. Then

P
(

lim
m→∞

Dm = D
)

= P
(

lim
m→∞

(D −Dm) = 0
)

= P

(
lim
m→∞

∞∑
j=m

‖φj(εn−j)‖ = 0

)

Since ∥∥∥∥∥
∞∑
j=m

φj(εn−j)

∥∥∥∥∥ ≤
∞∑
j=m

‖φj(εn−j)‖,

we have

P

(
lim
m→∞

∞∑
j=m

‖φj(εn−j)‖ = 0

)
≤ P

(
lim
m→∞

∥∥∥∥∥
∞∑
j=m

φj(εn−j)

∥∥∥∥∥ = 0

)
.

In a Hilbert space H, x = 0 if and only if ‖x‖ = 0, x ∈ H. Thus,

P

(
lim
m→∞

∥∥∥∥∥
∞∑
j=m

φj(εn−j)

∥∥∥∥∥ = 0

)
= P

(
lim
m→∞

∞∑
j=m

φj(εn−j) = 0

)
= P

(
lim
m→∞

(C − Cm) = 0
)

= P
(

lim
m→∞

Cm = C
)
.

Thus, P
(

lim
m→∞

Dm = D
)

= 1 implies P
(

lim
m→∞

Cm = C
)

= 1.

In the following theorem we give a sufficient condition for stationarity of functional
ARMA(1, 1) process.

Theorem 4.6. If C0 holds, then there is a unique stationary causal solution to (4.6)
(p=1). And the unique solution is given by

Xn = εn +
∞∑
j=1

φj−1(φ+ θ)(εn−j), (4.10)
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where φ0 denotes the identity operator in H. Furthermore, the solution in (4.10) converges
almost surely and in mean square, i.e

E

∥∥∥∥∥Xn − εn −
m∑
j=1

φj−1(φ+ θ)(εn−j)

∥∥∥∥∥
2

→ 0, as m→∞.

Proof. • First of all we prove the mean square convergence of (4.10).

We define X
(m)
n := εn +

m∑
j=1

φj−1(φ+ θ)(εn−j). Then for ∀m′ > m ≥ 1,

E‖X(m′)
n −X(m)

n ‖2 = E

∥∥∥∥∥
m′∑
j=m

φj−1(φ+ θ)(εn−j)

∥∥∥∥∥
2

=
m′∑
j=m

m′∑
k=m

E
〈
φj−1(φ+ θ)(εn−j), φ

k−1(φ+ θ)(εn−k)
〉

=
m′∑
j=m

E
∥∥φj−1(φ+ θ)(εn−j)

∥∥2
≤

(
m′∑
j=m

∥∥φj−1(φ+ θ)
∥∥2
L

)
E‖ε0‖2

≤

(
m′∑
j=m

∥∥φj−1∥∥2L
)
‖φ+ θ‖2L σ2

ε .

By (4.7), we have(
m′∑
j=m

∥∥φj−1∥∥2L
)
‖φ+ θ‖2L σ2

ε ≤ ‖φ+ θ‖2L σ2
εa

2

m′∑
j=m

b2(j−1) → 0, as m,m′ →∞.

By the Cauchy criterion, it follows that the series (4.10) converges in mean square.

• If we want to prove the almost sure convergence of (4.10), by Lemma 4.5, it suffices
to verify that

∞∑
j=1

∥∥φj−1(φ+ θ)(εn−j)
∥∥ <∞ a.s.

Since

E

(
∞∑
j=1

∥∥φj−1(φ+ θ)(εn−j)
∥∥)2

≤

(
∞∑
j=1

∥∥φj−1∥∥L ‖φ+ θ‖L

)2

E‖ε0‖2

≤ σ2
ε ‖φ+ θ‖2L

(
∞∑
j=1

∥∥φj−1∥∥2L
)2

,
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then by (4.7), we have

σ2
ε ‖φ+ θ‖2L

(
∞∑
j=1

∥∥φj−1∥∥2L
)2

= σ2
ε ‖φ+ θ‖2L

(
∞∑
j=1

abj−1

)2

= σ2
ε ‖φ+ θ‖2L

a2

(1− b)2
<∞.

It implies

E

(
∞∑
j=1

∥∥φj−1(φ+ θ)(εn−j)
∥∥)2

<∞.

Thus we obtain the a.s. convergence of (4.10).

• (4.10) is clearly stationary, now we prove it is a solution of (4.6) (p=1). We plug
(4.10) into (4.6), then we have

Xn − φ(Xn−1) = εn +
∞∑
j=1

φj−1(φ+ θ)(εn−j)− φ

(
εn−1 +

∞∑
j=1

φj−1(φ+ θ)(εn−1−j)

)

= εn − φ(εn−1) +
∞∑
j=1

φj−1(φ+ θ)(εn−j)−
∞∑
j=1

φj(φ+ θ)(εn−1−j)

= εn − φ(εn−1) +
∞∑
j=1

φj−1(φ+ θ)(εn−j)−
∞∑
j=2

φj−1(φ+ θ)(εn−j)

= εn − φ(εn−1) + (φ+ θ)(εn−1)

= εn + θ(εn−1).

It implies that (4.10) is a solution of equation (4.6).

• Finally we prove the uniqueness of the solution. Let (X ′n) be another stationary
solution of (4.6)(p=1). A straightforward induction gives

X ′n = φk+1(X ′n−k−1) + εn +
k∑
j=1

φj−1(φ+ θ)(εt−j) + φkθ(εt−k−1), k ≥ 1.

Therefore,

E

∥∥∥∥∥X ′n − εn −
k∑
j=1

φj−1(φ+ θ)(εt−j)

∥∥∥∥∥
2

= E
∥∥φk+1(X ′n−k−1) + φkθ(εt−k−1)

∥∥2
≤ E

∥∥φk+1(X ′n−k−1)
∥∥2 + E

∥∥φkθ(εt−k−1)∥∥2
≤ ‖φk+1‖2LE‖X ′n−k−1‖2 + σ2

ε‖φk‖2L‖θ‖2L.

Due to the stationarity, E‖X ′n−k−1‖2 remains constant. By the condition C1 in
Lemma 4.4,

‖φk‖2L < a2b2k → 0, as k → 0.
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Thus

X ′n = εn +
∞∑
j=1

φj−1(φ+ θ)(εn−j).

This proves the uniqueness.

Now we turn to the functional ARMA(p, 1) case. In the proof of Theorem 4.6, we
did not use the fact that (Xn, n ∈ Z) and (εn, n ∈ Z) take values in H = L2([0, 1]), i.e.
L2([0, 1]) can be replaced by a general separable Hilbert space. And the proof remains
literally unchanged. Using this fact, we write the functional ARMA(p, 1) process with
state space equation


Xn

Xn−1
...

Xn−p+1


︸ ︷︷ ︸

:=Yn

=


φ1 · · · φp−1 φp
I 0

. . .
...

I 0


︸ ︷︷ ︸

:=φ∗


Xn−1
Xn−2

...
Xn−p


︸ ︷︷ ︸

:=Yn−1

+


εn
0
...
0


︸ ︷︷ ︸
:=δn

+


θ · · · 0 0

0
. . .

...
0 0


︸ ︷︷ ︸

θ∗


εn−1

0
...
0


︸ ︷︷ ︸

δn−1

,

(4.11)
i.e.

Yn = φ∗(Yn−1) + δn + θ∗(δn−1), (4.12)

where I and 0 in (4.11) denote the indentity operator and the zero operator respectively.
Yn and δn in (4.12) take values in the space Hp := (L2([0, 1]))

p
. Hp is a Hilbert space

equipped with the inner product

〈x, y〉p :=

p∑
j=1

〈xj, yj〉 , (4.13)

and the corresponding norm

‖x‖p :=
√
〈x, y〉p . (4.14)

φ∗ and θ∗ in (4.12) are bounded opeartors acting on Hp, where the norm (of the bounded
operators) of φ∗ and θ∗ are defined as

‖φ∗‖L := sup {‖φ∗(x)‖p : ‖x‖p ≤ 1} . (4.15)

(δn, n ∈ Z) is still i.i.d in Hp. The following theorem is immediate.

Theorem 4.7. If there exists an integer j0 such that ‖(φ∗)j0‖L < 1, where φ∗ defined
in (4.11) is a bounded operator acting on Hp. Then there is a unique stationary causal
solution to the functional ARMA(p, 1) process (4.6). And the solution can be written as

Yn = δn +
∞∑
j=1

(φ∗)j−1(φ∗ + θ∗)(δn−j), (4.16)

where Yn, δn, φ∗ and θ∗ have the forms defined in (4.11).
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4.3.2 The vector ARMA(p, 1) structure

Now we will study the structure of the vector process truncated from the stationary
functional ARMA(p, 1) process. Similar to the last subsection, we start with the functional
ARMA(1, 1) process:

Xn = φ(Xn−1) + εn + θ(εn−1). (4.17)

Furthermore, we need the constraints below and we call them FARMA(1,1):

• φ, θ ∈ S, i.e φ, θ are Hilbert-Schmidt operators and ‖φ‖S < 1.

• The H-valued sequence (εn, n ∈ Z) is i.i.d with zero mean and satisfies E‖εn‖2 =
σ2
ε <∞.

Since ‖φ‖L ≤ ‖φ‖S < 1, then by Lemma 4.4 and Theorem 4.6, if the condition FARMA(1,1)
holds, the functional ARMA(1,1) process in (4.17) has a unique stationary solution.

Suppose the functional ARMA(1,1) process (Xn, n ∈ Z) in (4.17) satisfies FARMA(1,1).
Now we implement the first step in Algorithm I, i.e. to project observations X1, · · · , Xn

on (νl, l ∈ Z), then we have

〈Xn, νl〉 = 〈φ(Xn−1), νl〉+ 〈εn, νl〉+ 〈θ(εn−1), νl〉 , ∀l ∈ Z. (4.18)

For every l, we expand 〈φ(Xn−1), νl〉 and 〈θ(εn−1), νl〉 by

〈φ(Xn−1), νl〉 =

〈
φ

(
∞∑
l′=1

〈Xn−1, νl′〉 νl′
)
, νl

〉

=
∞∑
l′=1

〈φ(νl′), νl〉 〈Xn−1, νl′〉 , (4.19)

and

〈θ(εn−1), νl〉 =

〈
θ

(
∞∑
l′=1

〈εn−1, νl′〉 νl′
)
, νl

〉

=
∞∑
l′=1

〈θ(νl′), νl〉 〈εn−1, νl′〉 . (4.20)

In (4.19) and (4.20) we used Karhunen-Loéve representation. Then with CPV method
(see Section 2.2.3), we choose d such that most of the entire variability can be explained
by ν1, . . . , νd. With the help of (4.19) and (4.20), we can write (4.18) into the matrix form:
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
〈Xn, ν1〉

...
〈Xn, νd〉
〈Xn, νd+1〉

...

 =



〈φ (ν1) , ν1〉 . . . 〈φ (νd) , ν1〉 〈φ (νd+1) , ν1〉 . . .
...

...
...

...
...

〈φ (ν1) , νd〉 . . . 〈φ (νd) , νd〉 〈φ (νd+1) , νd〉 . . .

〈φ (ν1) , νd+1〉 . . . 〈φ (νd) , νd+1〉 〈φ (νd+1) , νd+1〉 . . .
...

...
...

...
...




〈Xn−1, ν1〉

...
〈Xn−1, νd〉
〈Xn−1, νd+1〉

...



+


〈εn, ν1〉

...
〈εn, νd〉
〈εn, νd+1〉

...

+



〈θ (ν1) , ν1〉 . . . 〈θ (νd) , ν1〉 〈θ (νd+1) , ν1〉 . . .
...

...
...

...
...

〈θ (ν1) , νd〉 . . . 〈θ (νd) , νd〉 〈θ (νd+1) , νd〉 . . .

〈θ (ν1) , νd+1〉 . . . 〈θ (νd) , νd+1〉 〈θ (νd+1) , νd+1〉 . . .
...

...
...

...
...




〈εn−1, ν1〉

...
〈εn−1, νd〉
〈εn−1, νd+1〉

...


(4.21)

We simplify the notations in (4.21) to(
Xn

X∞n

)
=

[
Φ Φ∞

...
...

](
Xn−1
X∞n−1

)
+

(
En

E∞n

)
+

[
Θ Θ∞

...
...

](
En−1
E∞n−1

)
, (4.22)

where

Xn := (〈Xn, ν1〉 , . . . , 〈Xn, νd〉)T ,
En := (〈εn, ν1〉 , . . . , 〈εn, νd〉)T ,

X∞n := (〈Xn, νd+1〉 , . . . )T ,
E∞n := (〈εn, νd+1〉 , . . . )T . (4.23)

Φ and Θ are d× d matrices with entries 〈φ(νl′), νl〉 and 〈θ(νl′), νl〉 in the l′th column and
lth row respectively. Φ∞ and Θ∞ are d×∞ matrices with ll′th entries 〈φ(νl′+d), νl〉 and
〈θ(νl′+d), νl〉 respectively.

In practice, we can only focus on the d-dimensional vector observations (Xn, n ∈ Z).
Then by (4.22), for each n,

Xn = ΦXn−1 + En + ΘEn−1 + Φ∞X∞n−1 + Θ∞E∞n−1︸ ︷︷ ︸
:=∆n−1

:= ΦXn−1 + En + ΘEn−1 + ∆n−1. (4.24)

By Theorem 2.5, the d-dimensional vector process (En, n ∈ Z) truncated from (εn, n ∈ Z)
is multivariate white noise. Note that, ∆n−1 in (4.24) is a d-dimensional vector and its
lth element (∆n−1)l is

(∆n−1)l =
(
Φ∞X∞n−1 + Θ∞E∞n−1

)
l

=
∞∑

l′=d+1

〈φ(νl′), νl〉 〈Xn−1, νl′〉+
∞∑

l′=d+1

〈θ (νl′) , νl〉 〈εn−1, νl′〉 . (4.25)
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Thus, ∆n−1 depends in a complex way on Xn−1, i.e. the error term ∆n−1 is not uncorre-
lated with past observations. Thus, rigorously speaking, the vector process (Xn, i ∈ Z) in
(4.24) is not a vector ARMA(1, 1) process.

But if we can show that ∆n−1 is a quite small error term, i.e. its impact can be
negelected, then we can approximately treat (Xn, i ∈ Z) in (4.24) as a vector ARMA(1, 1)
process. We will show this in Lemma 4.9. Before that we need the following technical
lemma.

Lemma 4.8. Suppose a and b are arbitrary d-dimensional vectors, i.e. a,b ∈ Rd. Then
the squared Euclidean norm ‖ · ‖22 is convex, i.e.

‖αa + (1− α)b‖22 ≤ α‖a‖22 + (1− α)‖b‖22, ∀α ∈ [0, 1].

Proof. Since f(x) := x2 is a convex function, by Jensen’s inequality, we have

‖αa + (1− α)b‖22 ≤ (‖αa‖2 + ‖(1− α)b‖2)2

= f (α‖a‖2 + (1− α)‖b‖2)
≤ αf (‖a‖2) + (1− α)f (‖b‖2)
= α‖a‖22 + (1− α)‖b‖22

Remark 8. Lemma (4.8) holds not only for the Euclidean norm ‖ · ‖2. For an arbitrary
norm ‖ · ‖, the convexity of ‖ · ‖2 still holds.

Now we will show that the ∆n−1 defined in (4.24) is bounded and tends to 0 as d→∞.

Lemma 4.9. Suppose ‖ · ‖2 denotes the Euclidean norm of vector and the d-dimensional
vector ∆n−1 is defined in (4.24). Then E‖∆n−1‖22 is bounded and tends to 0 as d→∞.

Proof. By the convexity of ‖ · ‖22 (Lemma 4.8),

E‖∆n−1‖22 = E‖Φ∞X∞n−1 + Θ∞E∞n−1‖22
≤ 2

(
E‖Φ∞X∞n−1‖22 + ‖Θ∞E∞n−1‖22

)
. (4.26)

Now we calculate the two parts E‖Φ∞X∞n−1‖22 and E‖Θ∞E∞n−1‖22 respectively. By
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(4.25), we have

E‖Φ∞X∞n−1‖22 = E

 d∑
l=1

 ∞∑
l′=d+1

〈φ(νl′), νl〉 〈Xn−1, νl′〉︸ ︷︷ ︸
:=xn−1,l′


2

:= E

 d∑
l=1

(
∞∑

l′=d+1

〈φ(νl′)xn−1,l′ , νl〉

)2


≤ E

 ∞∑
l=1

(
∞∑

l′=d+1

〈φ(νl′)xn−1,l′ , νl〉

)2


= E

 ∞∑
l=1

〈
∞∑

l′=d+1

φ(νl′)xn−1,l′ , νl

〉2
 . (4.27)

By Parseval’s identity, we continue with the computation of (4.27),

E

 ∞∑
l=1

〈
∞∑

l′=d+1

xn−1,l′φ(νl′), νl

〉2
 = E

∥∥∥∥∥
∞∑

l′=d+1

xn−1,l′φ(νl′)

∥∥∥∥∥
2

= E

〈
∞∑

l=d+1

xn−1,lφ(νl),
∞∑

l′=d+1

xn−1,l′φ(νl′)

〉
. (4.28)

By Karhunen-Loéve theorem (see Theorem 2.3), the scores (xn−1,l, l ∈ Z) are uncorrelated.
Thus (4.28) is equal to

E

〈
∞∑

l=d+1

xn−1,lφ(νl),
∞∑

l′=d+1

xn−1,l′φ(νl′)

〉
= E

[
∞∑

l′=d+1

x2n−1,l′ ‖φ(νl′)‖2
]

=
∞∑

l′=d+1

E (xn−1,l′)
2 ‖φ(νl′)‖2 .

Recall (2.19) in Theorem 2.3, i.e. E (xn−1,l′)
2 = λl′ , then we have

∞∑
l′=d+1

E (xn−1,l′)
2 ‖φ(νl′)‖2 =

∞∑
l′=d+1

λl′ ‖φ(νl′)‖2

≤ λ1

∞∑
l′=d+1

‖φ(νl′)‖2 , (4.29)

where λ1 is the largest eigenvalue of the covariance operator C. Combining (4.27)-(4.29),
we have

E‖Φ∞X∞n−1‖22 ≤ λ1

∞∑
l′=d+1

‖φ(νl′)‖2 . (4.30)
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Note that
∞∑

l′=d+1

‖φ(νl′)‖2 ≤ ‖φ‖2S <∞, thus E‖Φ∞X∞n−1‖22 is bounded and tends to 0 as

d → ∞. The proof to bound for E‖Θ∞E∞n−1‖22 is exactly the same. So we just list the
result in the followling,

E‖Θ∞E∞n−1‖22 ≤
∞∑

l′=d+1

E (εn−1,l′)
2 ‖θ(νl′)‖2

≤ σ2
ε

∞∑
l′=d+1

‖θ(νl′)‖2 <∞. (4.31)

Combining (4.26), (4.30) and (4.31), we get that E‖∆n−1‖22 is bounded and tends to 0 as
d→∞.

Thus, even though the error term ∆n−1 is correlated with the past observations, we
can still treat the (Xn, i ∈ Z) in (4.24) as a vector ARMA(1, 1) process by neglecting
∆n−1, i.e.

Xn ≈ ΦXn−1 + En + ΘEn−1. (4.32)

Now the next question is, whether the vector ARMA(p, 1) process in (4.32) is station-
ary? The following theorem answers this question.

Theorem 4.10. Consider the functional ARMA(1,1) process defined (4.17), and the con-
dition FARMA(1,1) holds. Then for ∀d ≥ 1, the vector process in (4.32) has a unique
stationary causal solution.

Proof. Since ‖φ‖L ≤ ‖φ‖S < 1, then by Theorem 4.6, the functional ARMA(1, 1) process
(4.17) has a unique stationary solution (4.10).

Let us first recall the form of the d × d matrix Φ in the vector process (4.32) (see
(4.21) and (4.22)), i.e.

Φ =

〈φ (ν1) , ν1〉 . . . 〈φ (νd) , ν1〉
...

...
...

〈φ (ν1) , νd〉 . . . 〈φ (νd) , νd〉

 .

To prove the vector process (4.32) has a unique stationary causal solution, it suffices to
prove that, for an arbitrary eigenvalue λ of Φ, | λ |< 1 (see Theorem 11.3.1 of Brockwell
and Davis [1991]).

For an arbitrary eigenvalue λ of Φ, we suppose a is the corresponding eigenvector, i.e

Φa = λa, ‖a‖2 = 1.
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Then we have

|λ| = ‖λa‖2 = ‖Φa‖2

= 〈Φa,Φa〉
1
2 =

〈
a,ΦTΦa

〉 1
2

≤ ‖a‖1/22 ‖ΦTΦa‖1/22 = ‖ΦTΦa‖1/22

≤
(

max
‖b‖2=1

‖ΦTΦb‖2
) 1

2

=

(
max
‖b‖2 6=0

‖ΦTΦb‖2
‖b‖2

) 1
2

. (4.33)

In linear algebra, the spectral norm ‖ · ‖spectral of a square matrix Φ is defined as

‖Φ‖spectral :=
(
maximum eigenvalue of ΦTΦ

)
= max
‖b‖2 6=0

‖Φb‖2
‖b‖2

. (4.34)

Thus by (4.33) and (4.34), we have

| λ |≤ ‖ΦTΦ‖
1
2
spectral = ‖Φ‖spectral. (4.35)

Furthermore, by the property of the spectral matrix norm ‖ · ‖spectral, we have

‖Φ‖spectral ≤ ‖Φ‖F , (4.36)

where ‖ · ‖F is the Frobenius matrix norm:

‖Φ‖F :=

(
d∑
i=1

d∑
j=1

〈φ(vi), νj〉2
)1/2

≤

(
∞∑
i=1

∞∑
j=1

〈φ(vi), νj〉2
)1/2

=

(
∞∑
i=1

‖φ(νi)‖2
)1/2

= ‖φ‖S < 1. (4.37)

Then combining (4.35)-(4.37), we have

|λ| ≤ ‖Φ‖F ≤ ‖φ‖S < 1. (4.38)

Up to now we can conclude that, if the condition FARMA(1,1) holds, then both the
functional ARMA(1,1) process in (4.17) and its truncated vector process (by negelecting
∆n−1) in (4.32) are stationary.
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Now we will apply the state space equation in (4.11) again to extend the ARMA(1,1,)
case to ARMA(p, 1) case. We rewrite the functional ARMA(p, 1) process as

Yn = φ∗(Yn−1) + δn + θ∗(δn−1), (4.39)

where Yn, φ∗, θ∗ and δn are defined in (4.11) and take values in Hp = (L2([0, 1]))
p

(see
(4.13) and (4.14)). Here we assume φ∗ and θ∗ in (4.39) are Hilbert-Schmidt opeartors
acting on Hp, where the Hilbert-Schmidt norm of φ∗ and θ∗ are defined as

‖φ∗‖S :=

(
∞∑
i=1

‖φ∗(ν∗i )‖2p

) 1
2

, (4.40)

where ‖ · ‖p is the norm in Hp (see (4.14)) and (ν∗i , i ∈ Z) is an arbitrary orthonormal
basis in Hp.

Analogously, we summarize the condition under which both the functional ARMA(p, 1)
process and its truncated vector process are stationary. We call the condition FARMA(p,1):

• φ1, . . . , φp, θ defined in (4.6) are all Hilbert-Schmidt operators, and ‖φ∗‖S < 1 (see
(4.40)).

• The H-valued sequence (εn, n ∈ Z) in (4.6) is i.i.d with zero mean and satisfies
E‖εn‖2 = σ2

ε <∞.

If the condition FARMA(p,1) holds, both the functional ARMA(p, 1) process and its
truncated vector process are stationary.
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4.3.3 Some further notes on the vector process

We consider the vector process

Xn =

p∑
i=1

ΦiXn−i + En + ΘEn−1 + ∆n−1, (4.41)

which is truncated from the stationary functional ARMA(p, 1) process. By (4.25), we can
derive form of ∆n−1 in (4.41) directly,

(∆n−1)l =

(
p∑
i=1

Φ∞i X∞n−i + Θ∞E∞n−1

)
l

=

p∑
i=1

∞∑
l′=d+1

〈φi(νl′), νl〉 〈Xn−i, νl′〉+
∞∑

l′=d+1

〈θ (νl′) , νl〉 〈εn−1, νl′〉 , (4.42)

where the (∆n−1)l in (4.42) is the lth element of ∆n−1 in (4.41).
We have shown in Lemma 4.9 that E‖∆n−1‖22 is bounded and tends to 0 as d → ∞

(for ARMA(1,1)). Analogously this also holds for ARMA(p, 1).
So if we neglect the ∆n−1 in (4.41), we can treat the vector process (4.41) as a vector

ARMA(p, 1) process.
In this section we will show that, under some further constraints, even if we do not

neglect ∆n−1 in (4.41), the vector process (4.41) is still rigorously a vector ARMA(p, 1)
process. Before that, we first introduce a lemma, which will be helpful to our proof later.

Lemma 4.11 (Lemma 1, Lütkepohl [1984]). Suppose the k-dimensional process (Mn, n ∈ Z)
is k-dimensional MA(q). Let F 6= 0 be a real l×k matrix. Then the l-dimensional process
(Ln, n ∈ Z), Ln := FMn, is l-dimensional MA(q∗), where q∗ ≤ q.

In the following we provide two conditions under which the vector process (Xn, n ∈ Z)
in (4.41) rigorously follows vector ARMA(p, 1) structure.

• Condition I: For i = 1, . . . , p, ‖φi‖2S =
d∑
j=1

‖φi(νj)‖2 and ‖θ‖2S =
d∑
j=1

‖θ(νj)‖2.

In this case,

‖φi‖2S =
d∑
j=1

‖φi(νj)‖2 =⇒
∞∑

j=d+1

‖φi(νj)‖2 = 0

=⇒ φi(νj) = 0, ∀j ≥ d+ 1,

and

‖θ‖2S =
d∑
j=1

‖θ(νj)‖2 =⇒ θ(νj) = 0, ∀j ≥ d+ 1.

From (4.42) we know that, ∆n−1 = 0. Thus, if Condition I holds, the vector process
(4.41) is rigorously a vector ARMA(p, 1) process.
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• Condition II: For i = 1, . . . , p, ‖φi‖2S =
d∑
j=1

‖φi(νj)‖2 .

Under Condition II, the first part of ∆n−1,
p∑
i=1

Φ∞i X∞n−i is 0, which is the as Con-

dition I. We denote the second part of ∆n−1 by Kn−1, i.e.

Kn−1 := Θ∞E∞n−1. (4.43)

If we can show that
En + ΘEn−1 + Kn−1 (4.44)

is a vector MA(1) process, then the vector process

Xn =

p∑
i=1

ΦiXn−i + En + ΘEn−1 + Kn−1. (4.45)

is really a vector ARMA(p, 1) process. Now we begin the proof.

Proof. We will organize our proof into three steps. In the first step we will show (Kn, n ∈ Z)
defined in (4.43) is white noise. In the second step we will show the 2d-dimensional vector

process

((
En

Kn

)
, n ∈ Z

)
is white noise. Finally we will use Lemma 4.11 to prove that

(En + ΘEn−1 + Kn−1, n ∈ Z) defined in (4.44) is a vector MA(1)process.

(1) For ∀l ∈ {1, . . . , d}, by the form of the lth element of Kn (see (4.42) and (4.43)),
we have

E[(Kn)l] =
∞∑

l′=d+1

〈θ (νl′) , νl〉E[〈εn, νl′〉] = 0.

Thus
E[Kn] = 0, ∀n ∈ Z. (4.46)

For n 6= m, we compute E
[
KnK

T
m

]
and show it is 0. For ∀k, l ∈ {1, . . . , d},

E
[(

KnK
T
m

)
k,l

]
= E

[(
∞∑

i=d+1

〈θ (νi) , νk〉 〈εn, νi〉

)(
∞∑

j=d+1

〈θ (νj) , νl〉 〈εm, νj〉

)]

= E

[
∞∑

i,j=d+1

〈θ (νi) , νk〉 〈θ (νj) , νl〉 〈εn, νi〉 〈εm, νj〉

]
. (4.47)

By the definition of H-white noise in Definition 2.4, i.e.

E [〈εn, x〉 〈εm, y〉] = 0, ∀x, y ∈ H, n 6= m,

then (4.47) is equal to

∞∑
i,j=d+1

〈θ (νi) , νk〉 〈θ (νj) , νl〉E [〈εn−1, νi〉 〈εm−1, νj〉] = 0.
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Thus
E
[
KnK

T
m

]
= 0, n 6= m. (4.48)

Now we show E
[
KnK

T
n

]
does not depend on n.

E
[(

KnK
T
n

)
k,l

]
= E

[(
∞∑

i=d+1

〈θ (νi) , νk〉 〈εn, νi〉

)(
∞∑

j=d+1

〈θ (νj) , νl〉 〈εn, νj〉

)]

= E

[
∞∑

i,j=d+1

〈θ (νi) , νk〉 〈θ (νj) , νl〉 〈εn, νi〉 〈εn, νj〉

]

= E

[
∞∑

i,j=d+1

〈θ (νi) , νk〉 〈θ (νj) , νl〉 〈Cεn(νi), νj〉

]
(see (2.23))

= E

[
∞∑

i,j=d+1

〈θ (νi) , νk〉 〈θ (νj) , νl〉 〈Cε(νi), νj〉

]
. (4.49)

Thus E
[
KnK

T
n

]
does not depend on n. Combining (4.46), (4.48) and (4.49), we get

that (Kn, n ∈ Z) defined in (4.43) is d-dimensional white noise.

(2) Now we will show the 2d-dimensional vector process((
En

Kn

)
, n ∈ Z

)
(4.50)

is white noise. Since both (En, n ∈ Z) and (Kn, n ∈ Z) are white noise, it suffices to
show E

[
EnK

T
m

]
= 0 for n 6= m and E

[
EnK

T
n

]
does not depend on n.

For n 6= m, ∀k, l ∈ {1, . . . , d},

E
[(

EnK
T
m

)
k,l

]
= E

[
〈εn, νk〉

(
∞∑

j=d+1

〈θ (νj) , νl〉 〈εm, νj〉

)]

= E

[
∞∑

j=d+1

〈θ (νj) , νl〉 〈εn, νk〉 〈εm, νj〉

]
= 0. (4.51)

And

E
[(

EnK
T
n

)
k,l

]
= E

[
〈εn, νk〉

(
∞∑

j=d+1

〈θ (νj) , νl〉 〈εn, νj〉

)]

= E

[
∞∑

j=d+1

〈θ (νj) , νl〉 〈εn, νk〉 〈εn, νj〉

]
= 0. (4.52)

The last step in (4.52) holds due to the orthogonality of the two spaces spanned by
{ν1, . . . , νd} and {νd+1, . . . } (note that j ≥ d+ 1 and 1 ≤ k ≤ d in (4.52)).

Anyway, E
[
EnK

T
n

]
does not depend on n. Combining (4.51) and (4.52), the 2d-

dimensional vector process (4.50) is white noise.
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(3) We define a 2d-dimensional vector process (Zn, n ∈ Z), where

Zn :=

(
Zn,1

Zn,2

)
:=

(
Id 0
0 0

)(
En

Kn

)
+

(
Θ 0
0 0

)(
En−1
Kn−1

)
. (4.53)

In (4.53), Zn,1 and Zn,1 are all d-dimensional, Id is d × d identity matrix and 0 is
d × d zero matrix. We have proved that (4.50) is 2d-dimensional white noise, thus
(Zn, n ∈ Z) in (4.53) is a 2d-dimensional MA(1) process. Then we follow the Lemma
4.11 to define the non-zero d× 2d matrix

F := (Id, Id) . (4.54)

Since (Zn, n ∈ Z) in (4.53) is 2d-dimensional MA(1) process, then by Lemma 4.11,

(FZn, n ∈ Z) (4.55)

is a d-dimensional MA(1) or MA(0) (i.e. white noise) process. Now we compute FZn

in (4.55) by

FZn = (Id, Id)

(
Id 0
0 0

)(
En

Kn

)
+ (Id, Id)

(
Θ 0
0 0

)(
En−1
Kn−1

)
= En + ΘEn−1 + Kn−1.

Thus, (En + ΘEn−1 + Kn−1, n ∈ Z) (see (4.44)) is a d-dimensional MA(1) or MA(0)
(i.e. white noise) process. We need to prove that (4.44) is not a white noise, and it
suffices to show

E
[
(En+1 + ΘEn + Kn) (En + ΘEn−1 + Kn−1)

T
]
6= 0. (4.56)

Since (En, n ∈ Z) and (Kn, n ∈ Z) are white noise, E
[
EnK

T
m

]
= 0 for n 6= m (see

(4.51)) and E
[
EnK

T
n

]
= 0 (see (4.52)), then we have

E
[
(En+1 + ΘEn + Kn) (En + ΘEn−1 + Kn−1)

T
]

= E
[
ΘEnE

T
n

]
= ΘE

[
EnE

T
n

]
. (4.57)

By the definition of Θ and En (see (4.21)-(4.23)), (4.57) is equal to〈θ (ν1) , ν1〉 . . . 〈θ (νd) , ν1〉
...

...
...

〈θ (ν1) , νd〉 . . . 〈θ (νd) , νd〉



E
[
〈εn, ν1〉2

]
0 · · · 0

0 E
[
〈εn, ν2〉2

]
· · · 0

...
...

. . .
...

0 0 · · · E
[
〈εn, νd〉2

]


=


λ1 〈θ (ν1) , ν1〉 0 · · · 0

0 λ2 〈θ (ν2) , ν2〉 · · · 0
...

...
. . .

...
0 0 · · · λd 〈θ (νd) , νd〉

 6= 0. (4.58)

Thus the d-dimensional process (En + ΘEn−1 + Kn−1, n ∈ Z) in (4.44) is not white
noise, so it is MA(1). It implies that (Xn, n ∈ Z) in (4.41), which is truncated from
the functional ARMA(p, 1) process, is rigorously a vector ARMA(p, 1) process.
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4.4 Relation between the functional and vector best

linear predictor

Suppose (Xn, n ∈ Z) is a functional ARMA(p, 1) process defined in (4.6) and the condi-
tion FARMA(p,1) holds. Then both the functional process (Xn, n ∈ Z) and the vector
process (Xn, n ∈ Z) are stationary.

Suppose X̂Gn+1 is the functional best linear predictor of Xn+1, and X̂n+1 is the d-
dimensional vector best linear predictor of Xn+1 (see Section 4.1).

If we project X̂Gn+1 on ν1, . . . νd, then the projection X̂Gn+1, where

X̂Gn+1 :=
(〈
X̂Gn+1, ν1

〉
, . . . ,

〈
X̂Gn+1, νd

〉)T
, (4.59)

is d-dimensional as well. Is there a relation between X̂Gn+1 and X̂n+1? In other words, is
the distance between these two vectors small enough? Before we list the main result, let
us first get familiar with some notions.

• The vector best linear predictor X̂n+1 is defined as the orthogonal projection of
Xn+1 on the “matrix linear span” of the d-dimensional observations X1, . . . ,Xn.
We denote the “matrix linear span” by M1, where

M1 =

{
n∑
i=1

AniXi, Ani is an arbitrary real d× d matrix, i = 1, . . . , n

}
. (4.60)

X̂n+1 satiesfies

E
[(

Xn+1 − X̂n+1

)
yT1

]
= 0, for all y1 ∈M1. (4.61)

M1 is a linear subspace of Rd.

• Suppose G is the closure of G ′, where

G ′ =

{
n∑
i=1

sni(Xi), ∀sni ∈ S, Xi ∈ Fn = {X1, . . . , Xn}, i = 1, . . . n, n ≥ 1

}
.

(4.62)
Note that in (4.62) we put a further constraint on G, i.e. we assume sni, i = 1, . . . , n
are Hilbert-Schmidt operators (compare it with (4.1)). X̂Gn+1 is defined as the or-
thogonal projection of Xn+1 on G and satisfies

E
〈
Xn+1 − X̂Gn+1, y

〉
= 0, ∀y ∈ G. (4.63)

X̂Gn+1 has the form of

X̂Gn+1 =
n∑
i=1

gni(Xi), gni ∈ S, i = 1, . . . , n. (4.64)
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• Now let us study the projection of X̂Gn+1 on ν1, . . . , νd. For ∀l ∈ {1, . . . , d},〈
X̂Gn+1, νl

〉
=

〈
n∑
i=1

gni(Xi), νl

〉

=

〈
n∑
i=1

∞∑
l′=1

〈Xi, νl′〉 gni (νl′) , νl

〉

=
n∑
i=1

∞∑
l′=1

〈Xi, νl′〉 〈gni (νl′) , νl〉 . (4.65)

By (4.65), we can rewrite X̂Gn+1 defined in (4.59) as

X̂Gn+1 =
n∑
i=1

 〈gni (ν1) , ν1〉 . . . 〈gni (νd) , ν1〉 〈gni (νd+1) , ν1〉 . . .
...

...
...

...
...

〈gni (ν1) , νd〉 . . . 〈gni (νd) , νd〉 〈gni (νd+1) , νd〉 . . .



〈Xi, ν1〉

...
〈Xi, νd〉
〈Xi, νd+1〉

...


:=

n∑
i=1

GniXi +
d∑
i=1

G∞niX
∞
i , (4.66)

where Gni is a d× d matrix with ll′th entry (lth row and l′th column) 〈gni(νl′), νl〉
and G∞ni is a d × ∞ matrix with ll′th entry 〈gni(νd+l′), νl〉. Similar to (4.37), the
Frobenius matrix norm of the d×∞ matrix G∞ni is bounded by

‖G∞ni‖F ≤ ‖gni‖S <∞, i = 1, . . . , n.

• For ∀y ∈ G, there exist sn1, . . . , sn,n ∈ S such that

y =
n∑
i=1

sni(Xi). (4.67)

Similar to (4.65), we project y ∈ G on ν1, . . . , νd, then we have

y := (〈y, ν1〉 . . . 〈y, νd〉)T

=

(〈
n∑
i=1

sni(Xi), ν1

〉
. . .

〈
n∑
i=1

sni(Xi), νd

〉)T

:=
n∑
i=1

SniXi +
n∑
i=1

S∞niX
∞
i . (4.68)

The d × d matrix Sni and the d ×∞ matrix S∞ni in (4.67) are defined in the same
way as Gni and G∞ni in (4.66). We denote the set of the projection of ∀y ∈ G on
{ν1, . . . , νd}, by M, where

M : =
{

y | y = (〈y, ν1〉 , . . . , 〈y, νd〉)T , ∀y ∈ G
}

=

{
y | y =

n∑
i=1

SniXi +
n∑
i=1

S∞niX
∞
i , ∀sni ∈ S, i = 1, . . . , n

}
. (4.69)



CHAPTER 4. PREDICTION OF FUNCTIONAL ARMA PROCESS 53

• Now we want to show M1 ⊆M, i.e. if y1 ∈M1, then y1 ∈M.

For ∀y1 ∈ M1, by the definition of M1 in (4.60), there exist d × d matrices
An1, . . . ,Ann such that

y1 =
n∑
i=1

AniXi. (4.70)

For each i ∈ {1, . . . , n}, we denote the jkth entry (jth row and kth column) of Ani

in (4.70) by Ani;jk.

Now we construct n operators sni(·), . . . , snn(·) in the following way. For each i ∈
{1, . . . , n},

sni(νl) :=


d∑

m=1

Ani;mlνm 1 ≤ l ≤ d,

0 l > d.

(4.71)

Then for ∀j, k ∈ {1, . . . , d},

〈sni(νk), νj〉 =

〈
d∑

m=1

Ani;mkνm, νj

〉
= 〈Ani;jkνj, νj〉
= Ani;jk, (4.72)

which implies that the sn1(·), . . . , snn(·) constructed in (4.71) are such that

Sni = Ani, i = 1, . . . , n, (4.73)

where the d×dmatrix Sni is defined in (4.68). We still need to prove, the sn1(·), . . . , snn(·)
in (4.71) are Hilbert-Schmidt operators and such that S∞ni = 0, i = 1, . . . , n.

For ∀l ∈ {1, . . . , d} and ∀l′ ≥ 1, by (4.71), we have

〈sni(νd+l′), νl〉 = 〈0, νj〉 = 0, (4.74)

which implies S∞ni = 0, i = 1, . . . , n. Furthermore,

∞∑
l=1

‖sni(νl)‖2 =
d∑
l=1

‖sni(νl)‖2

=
d∑
l=1

‖
d∑

m=1

Ani;mlνm‖2

=
d∑
l=1

d∑
m=1

A2
ni;ml <∞, i = 1, . . . , n, (4.75)

which implies the sn1(·), . . . , snn(·) in (4.71) are Hilbert-Schmidt operators. Now we
summarize the process above. For ∀y1 ∈M1, which can be represented by

y1 =
n∑
i=1

AniXi,
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we can always construct n Hilbert-Schmidt operators sn1, . . . , snn in the way of
(4.71) such that (by (4.68), (4.73) and (4.74))(〈

n∑
i=1

sni(Xi), ν1

〉
. . .

〈
n∑
i=1

sni(Xi), νd

〉)T

︸ ︷︷ ︸
∈M

=
n∑
i=1

SniXi +
n∑
i=1

S∞niX
∞
i

=
n∑
i=1

AniXi︸ ︷︷ ︸
∈M1

.

Thus we prove M1 ⊆M.

• The mapping

f : G →M

y 7→ (〈y, ν1〉 , . . . , 〈y, νd〉)T (4.76)

is surjective, it implies that for ∀y ∈M, we can always find a y ∈ G such that

(〈y, ν1〉 , . . . , 〈y, νd〉)T = y. (4.77)

Since X̂n+1 ∈ M1, then X̂n+1 ∈ M. By the surjectivity, the functional form X̂n+1

of X̂n+1, where X̂n+1 := (ν1 . . . νd)
T X̂n+1 is in G.

Now we will compute the “distance ” between X̂n+1 and X̂Gn+1 in (4.59), and the

“distance ” is defined as E
∥∥∥X̂n+1 − X̂Gn+1

∥∥∥2
2
. We will show that, the distance is bounded

and tends to 0 as d→∞. The result is stated in the following theorem.

Theorem 4.12. Suppose we have functional ARMA(p, 1) process (Xn, n ∈ Z) and the
condition FARMA(p,1) holds. X̂Gn+1 is the functional best linear predictor of Xn+1 de-

fined in (4.62)-(4.63) and X̂Gn+1 is defined in (4.59). X̂n+1 is the best linear predictor of

Xn+1, which is based on vector observations X1, . . . ,Xn. Then the distance between X̂n+1

and X̂Gn+1 is bounded by

E
∥∥∥X̂n+1 − X̂Gn+1

∥∥∥2
2
≤ 4

 n∑
i=1

(
∞∑

l=d+1

‖gn,i(νl)‖2
) 1

2

2
∞∑

l=d+1

λl. (4.78)

Furthermore, E
∥∥∥X̂n+1 − X̂Gn+1

∥∥∥2
2

tends to 0 as d→∞.

Before we directly prove this theorem, we need a technical lemma.

Lemma 4.13. Suppose (Xn, n ∈ Z) is a zero mean stationary functional ARMA(p, 1)
proecess. (νl, l ∈ Z) are eigenfunctions of the covariance operator C. Then for ∀j, l ∈ Z,
(4.63) implies

E
[〈
Xn+1 − X̂Gn+1, νl

〉
〈y, νj〉

]
= 0, ∀y ∈ G. (4.79)
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Proof. For ∀j, l ∈ Z, we define sl,j(·) := 〈·, νl〉 νj.
sl,j(·) is Hilbert Schmidt, since

∞∑
k=1

‖sl,j(νk)‖2 =
∞∑
k=1

‖ 〈νk, νl〉 νj‖2

= ‖ 〈νl, νl〉 νj‖2 = 1.

Using the fact that

E
〈
Xn+1 − X̂Gn+1, y

〉
= 0, ∀y ∈ G,

and sl,j(y) ∈ G, we have

E
[〈
Xn+1 − X̂Gn+1, sl,j(y)

〉]
= E

[〈
Xn+1 − X̂Gn+1, 〈y, νl〉 νj

〉]
= E

[〈
Xn+1 − X̂Gn+1, νl

〉
〈y, νj〉

]
= 0, ∀j, l ∈ Z.

Now we begin to prove Theorem 4.12.
Proof of Theorem 4.12:

Proof. By (4.79), we have

d∑
j=1

E
[
〈y, νj〉

〈
Xn+1 − X̂Gn+1, νj

〉]
= E

[
yT
(
Xn+1 − X̂Gn+1

)]
(4.66)
= E

[
yT

(
Xn+1 −

n∑
i=1

GniXi −
n∑
i=1

G∞niX
∞
i

)]
= 0, ∀y ∈ G, (4.80)

where
y = (〈y, ν1〉 , . . . , 〈y, νd〉)T ∈M. (4.81)

By (4.76), (4.80) holds for ∀y ∈M. Furthermore, since M1 ⊆M, (4.80) holds for ∀y ∈M
implies (4.80) holds for ∀y1 ∈M1, i.e.

E

[
yT1

(
Xn+1 −

n∑
i=1

GniXi −
n∑
i=1

G∞niX
∞
i

)]
= 0, ∀y1 ∈M1. (4.82)

Combining (4.82) and (4.61), we have

E

[
yT1

(
X̂n+1 −

n∑
i=1

GniXi

)]
= E

[
yT1

(
n∑
i=1

G∞niX
∞
i

)]
, ∀y1 ∈M1. (4.83)
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Since both X̂n+1 and
n∑
i=1

GniXi are in M1, (4.83) especially holds when

y1 = X̂n+1 −
n∑
i=1

GniXi ∈M. (4.84)

We plug the y1 defined in (4.84) in (4.83), then we have

E

(X̂n+1 −
n∑
i=1

GniXi

)T (
X̂n+1 −

n∑
i=1

GniXi

) = E

(X̂n+1 −
n∑
i=1

GniXi

)T ( n∑
i=1

G∞niX
∞
i

) .
(4.85)

Now we caculate the left and the right part of (4.85) respectively:

E

(X̂n+1 −
n∑
i=1

GniXi

)T (
X̂n+1 −

n∑
i=1

GniXi

) = E

∥∥∥∥∥X̂n+1 −
n∑
i=1

GniXi

∥∥∥∥∥
2

2

, (4.86)

and

E

(X̂n+1 −
n∑
i=1

GniXi

)T ( n∑
i=1

G∞niX
∞
i

) = E

[〈
X̂n+1 −

n∑
i=1

GniXi,
n∑
i=1

G∞niX
∞
i

〉
Rd

]

≤ E

[∥∥∥∥∥X̂n+1 −
n∑
i=1

GniXi

∥∥∥∥∥
2

·

∥∥∥∥∥
n∑
i=1

G∞niX
∞
i

∥∥∥∥∥
2

]

≤

E ∥∥∥∥∥X̂n+1 −
n∑
i=1

GniXi

∥∥∥∥∥
2

2

 1
2
E ∥∥∥∥∥

n∑
i=1

G∞niX
∞
i

∥∥∥∥∥
2

2

 1
2

,

(4.87)

where 〈 , 〉Rd denotes the scalar product of two d-dimensioanl vectors and ‖ · ‖2 denotes
the Euclidean vector norm.

Combining (4.83), (4.86) and (4.87), we have

E

∥∥∥∥∥X̂n+1 −
n∑
i=1

GniXi

∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥
n∑
i=1

G∞niX
∞
i

∥∥∥∥∥
2

2

. (4.88)
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Recall that our task is to compute the distance E
∥∥∥X̂n+1 − X̂Gn+1

∥∥∥2
2
. By (4.88), we have

E
∥∥∥X̂n+1 − X̂Gn+1

∥∥∥2
2

= E

∥∥∥∥∥X̂n+1 −
n∑
i=1

GniXi −
n∑
i=1

G∞niX
∞
i

∥∥∥∥∥
2

2

≤ 2E

∥∥∥∥∥X̂n+1 −
n∑
i=1

GniXi

∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥
n∑
i=1

G∞niX
∞
i

∥∥∥∥∥
2

2

≤ 4E

∥∥∥∥∥
n∑
i=1

G∞niX
∞
i

∥∥∥∥∥
2

2

. (4.89)

Recall the representation of
n∑
i=1

G∞niX
∞
i defined in (4.66), it is a d-dimensional vector

with lth element

n∑
i=1

∞∑
l′=d+1

〈Xi, νl′〉 〈gn,i(ν ′l), νl〉 =
n∑
i=1

∞∑
l′=d+1

xi,l′ 〈gn,i(ν ′l), νl〉 .

Then we calculate E

∥∥∥∥ n∑
i=1

G∞niX
∞
i

∥∥∥∥2
2

in the following part:
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E

∥∥∥∥∥
n∑
i=1

G∞niX
∞
i

∥∥∥∥∥
2

2

= E

 d∑
l=1

(
n∑
i=1

∞∑
l′=d+1

xi,l′ 〈gn,i(ν ′l), νl〉

)2


= E

∥∥∥∥∥
d∑
l=1

(
n∑
i=1

∞∑
l′=d+1

xi,l′ 〈gn,i(ν ′l), νl〉

)
νl

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
∞∑
l=1

(
n∑
i=1

∞∑
l′=d+1

xi,l′ 〈gn,i(ν ′l), νl〉

)
νl

∥∥∥∥∥
2

Parseval’s identity
= E

∥∥∥∥∥
n∑
i=1

∞∑
l′=d+1

xi,l′gn,i(ν
′
l)

∥∥∥∥∥
2

= E

[〈
n∑
i=1

∞∑
l=d+1

xi,lgn,i(νl),
n∑
j=1

∞∑
l′=d+1

xj,l′gn,j(ν
′
l)

〉]

=
n∑

i,j=1

∞∑
l,l′=d+1

E (xi,lxj,l′) 〈gn,i(νl), gn,j(νl′)〉

≤

(
n∑
i=1

∞∑
l=d+1

√
E(xi,l)2 ‖gn,i(νl)‖

)(
n∑
j=1

∞∑
l′=d+1

√
E(xj,l′)2 ‖gn,j(ν ′l)‖

)

=

(
n∑
i=1

∞∑
l=d+1

√
λl ‖gn,i(νl)‖

)(
n∑
j=1

∞∑
l′=d+1

√
λ′l ‖gn,j(ν

′
l)‖

)

≤

 n∑
i=1

(
∞∑

l=d+1

λl

) 1
2
(

∞∑
l=d+1

‖gn,i(νl)‖2
) 1

2


×

 n∑
j=1

(
∞∑

l′=d+1

λ′l

) 1
2
(

∞∑
l′=d+1

‖gn,j(ν ′l)‖
2

) 1
2


=

 n∑
i=1

(
∞∑

l=d+1

‖gn,i(νl)‖2
) 1

2

2
∞∑

l=d+1

λl (4.90)

Note that (
∞∑

l=d+1

‖gn,i(νl)‖2
) 1

2

≤ ‖gn,i‖
1
2
S <∞.

Thus (4.90) is bounded by n∑
i=1

(
∞∑

l=d+1

‖gn,i(νl)‖2
) 1

2

2
∞∑

l=d+1

λl ≤

(
n∑
i=1

‖gn,i‖
1
2
S

)2 ∞∑
l=d+1

λl <∞,
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and  n∑
i=1

(
∞∑

l=d+1

‖gn,i(νl)‖2
) 1

2

2
∞∑

l=d+1

λl → 0, as d→∞. (4.91)

we finish the proof by combining (4.89), (4.90) and (4.91).

4.5 Bound for the prediction error

In the Algorithm I, once we have the vector predictor

X̂n+1 = (x̂n+1,1, . . . , x̂n+1,d)
T , (4.92)

which is based on the vector observations X1, . . . ,Xn, we need to transform it to its
functional form

X̂n+1 :=
d∑
i=1

x̂n+1,iνi = (ν1 . . . νd)
T X̂n+1. (4.93)

In this section we want to bound the mean square prediction error E‖Xn+1− X̂n+1‖2.
We will show that, the prediction error is composed of two parts. The first part is relevant
to E‖Xn+1− X̂Gn+1‖2 and thus bounded by σ2

n. It also implies that X̂n+1 can not be better

than the functional best linear predictor X̂Gn+1. Furthermore, the second part tends to
zero as d→∞.

Theorem 4.14. Consider the functional ARMA(p, 1) process (4.6) and suppose the con-
dition FARMA(p,1) holds, i.e. both the functional process and the vector process are
stationary. Then the mean square prediction error is bounded by

E
∥∥∥Xn+1 − X̂n+1

∥∥∥2 ≤ σ2
n + γd,

where

σ2
n := E‖Xn+1 − X̂Gn+1‖2,

γd = 4

[
n∑
i=1

gn;i,d

]2 ∞∑
l=d+1

λl + E

∥∥∥∥∥
∞∑

l=d+1

〈
X̂Gn+1, νl

〉
νl

∥∥∥∥∥
2

,

g2n;i,d =
∞∑

l=d+1

‖gn,i(νl)‖2 ≤ ‖gn,i‖2S .

Furthermore, γd tends to 0 as d→∞.

Proof. Since
(
Xn+1 − X̂Gn+1

)
is orthogonal to G and

(
X̂Gn+1 − X̂n+1

)
is in G, we have

E
∥∥∥Xn+1 − X̂n+1

∥∥∥2 = E
∥∥∥(Xn+1 − X̂Gn+1

)
+
(
X̂Gn+1 − X̂n+1

)∥∥∥2
= E

∥∥∥Xn+1 − X̂Gn+1

∥∥∥2 + E
∥∥∥X̂Gn+1 − X̂n+1

∥∥∥2 . (4.94)
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The first part of (4.94) is bounded by

E
∥∥∥Xn+1 − X̂Gn+1

∥∥∥2 ≤ σ2
n. (4.95)

Now we bound the second part of (4.94).

E
∥∥∥X̂Gn+1 − X̂n+1

∥∥∥2 = E

∥∥∥∥∥
∞∑
l=1

〈
X̂Gn+1 − X̂n+1, νl

〉
νl

∥∥∥∥∥
2

= E

∥∥∥∥∥
d∑
l=1

〈
X̂Gn+1 − X̂n+1, νl

〉
νl

∥∥∥∥∥
2

+ E

∥∥∥∥∥
∞∑

l=d+1

〈
X̂Gn+1, νl

〉
νl

∥∥∥∥∥
2

= E
∥∥∥X̂Gn+1 − X̂n+1

∥∥∥2
2

+ E

∥∥∥∥∥
∞∑

l=d+1

〈
X̂Gn+1, νl

〉
νl

∥∥∥∥∥
2

. (4.96)

By Theorem 4.12, E
∥∥∥X̂n+1 − X̂Gn+1

∥∥∥2
2

is bounded by

E
∥∥∥X̂n+1 − X̂Gn+1

∥∥∥2
2
≤ 4

 n∑
i=1

(
∞∑

l=d+1

‖gn,i(νl)‖2
) 1

2

2
∞∑

l=d+1

λl, (4.97)

and tends to 0 as d→∞.
The second part of (4.96) is bounded by

E

∥∥∥∥∥
∞∑

l=d+1

〈
X̂Gn+1, νl

〉
νl

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
∞∑
l=1

〈
X̂Gn+1, νl

〉
νl

∥∥∥∥∥
2

= E
∥∥∥X̂Gn+1

∥∥∥2 . (4.98)

Furthermore, E

∥∥∥∥ ∞∑
l=d+1

〈
X̂Gn+1, νl

〉
νl

∥∥∥∥2 tends to 0 as d→∞. We finish the proof by gath-

ering (4.94)-(4.98).



Chapter 5

Simulation study

To verifty the results of our study on functional ARMA(p, 1) process in Chapter 4, we
conduct simulation studies in this chapter. We will do the following things.

• First of all we use Gaussian integral kernel (see Section 2.1.3) to simulate stationary
functional ARMA(p, 1) processes.

• To verify whether the truncated vector process still follows ARMA(p, 1) structure,
we fit different vector ARMA models (with different orders) to the truncated vector
observations. We compare the goodness of fit (AIC and BIC) and check whether the
vector ARMA(p, 1) model fits the data better than other models.

• We assume the vector observations follow the models in the last step respectively,
and then implement Algorithm I introduced in Section 4.2. Then we compute
and compare the prediction errors and check whether the predictor based on the
assumption of ARMA(p, 1) is better than others.

• Furthermore, we will apply different types of univariate prediction methods, e.g.
exponential smoothing, on the prediction of the functional process. And we compare
these univariate predictors with the functional predictors (based on vector models).

For the functional data analysis (e.g. the computation of empirical eigenfunctions
and eigenvalues), we use the R package FDA. For the multivariate time series analysis,
e.g. parameter estimation and the computation of multivariate predictors, we use the R
package MTS.

5.1 Procedure and some notations

5.1.1 Settings in the functional ARMA(p, 1) model

We use Gaussian integral kernel to simulate the functional ARMA(p, 1) process, i.e.
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Xn(t) =

p∑
i=1

Φi(Xn−i)(t) +Bn(t) + Θ(Bn−1)(t)

=

p∑
i=1

∫ 1

0

ci ∗ φi(t, s)Xn−i(s)ds+Bn(t) +

∫ 1

0

cθ ∗ θi(t, s)Bn−1(s)ds, i = 1, . . . , p,

(5.1)

where

φi(t, s) = θ(t, s) = exp

(
t2 + s2

2

)
, t, s ∈ [0, 1], i = 1, . . . , p, (5.2)

and ci, cθ are some constants. Note that∫∫ 1

0

exp

(
t2 + s2

2

)
dtds ≈ 2.3772.

The innovations (Bn, n ∈ Z) are assumed to be i.i.d Brownian bridges on [0, 1].

5.1.2 Generation and transformation of the observations

We divide [0, 1] into 1000 intervals with equal length, i.e. t0 = 0 < t1 < · · · < t999 < t1000 =
1 and ∆t := tj − tj−1 = 0.001, j = 1, . . . , 1000. We set our number of oberservations N =

200. Then the N = 200 vector observations
{

(Xn(t0), . . . , Xn(t1000))
T , n = 1, . . . , N

}
are

generated as follows:

• X1 is initialized to 0, i.e. X1(tj) = 0, j = 0, . . . , 1000.

• We choose appropriate ci such that the functional process is stationary. For example,
to simulate stationary functional ARMA(1,1) process, c1 needs to satisfy(∫∫ 1

0

c21 exp

(
t2 + s2

2

)
dtds

) 1
2

= ‖Φ‖S < 1.

• We approximate and simulate
{

(Xn(t0), . . . , Xn(t1000))
T , n = 2, . . . , N

}
by

Xn(tj) ≈
p∑
i=1

1000∑
k=0

ciφi(tj, tk)Xn−i(tk)∆t +Bn(tj) +
1000∑
k=0

cθθ(tj, tk)Bn−1(tk)∆t, (5.3)

where j, k = 0, . . . , 1000. Note that, as ∆t → 0, (5.3) tends to (5.1).

Up to now, we have generated theN vector observations
{

(Xn(t0), . . . , Xn(t1000))
T , n = 1, . . . , N

}
.

Now we need to transform the vector observations to functional observations (smoothing).
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We choose M Fourier basis functions which are defined as

Fm(x) =


1 m = 1,

cos(πmx) m is even,

sin(π(m− 1)x) m is odd,

where x ∈ [0, 1]. The Fourier basis functions can be generated by the command cre-
ate.fourier.basis() in the R package FDA. For a fixed M and for each n ∈ {1, . . . , N},
we determine the coefficients cn1, . . . , cnM of the M basis functions by minimizing the
least squares criterion

1000∑
j=0

(
Xn(tj)−

M∑
m=1

cnmFm(tj)

)2

. (5.4)

We define that

F :=

 F1(t0) . . . FM(t0)
...

...
...

F1(t1000) . . . FM(t1000)

 ,

then by the theory of multivariate linear regression, for each n ∈ {1, . . . , N}, cn1
...

cnM

 =
(
FTF

)−1
FT

 Xn(t0)
...

Xn(t1000)

 .

With these coefficients, we can transform the high-dimensional vector observations to
functional observations {Xn(t), t ∈ [0, 1], n = 1, . . . , N}, where

Xn(t) :=
M∑
m=1

cnmFm(t), n = 1 . . . , N, t ∈ [0, 1]. (5.5)

But how to choose the number M of basis functions? In fact, there is no one “gold”
standard method to select an optimal M . One way is to compare the mean absolute
errors

1

N

N∑
n=1

1

1000

1000∑
j=0

| Xn(tj)−
M∑
m=1

cnmFm(tj) | (5.6)

for different M . To show the process of choosing M , we simulate functional ARMA(1, 1)
process with ‖Φ‖ = ‖Θ‖ = 0.9 (N = 200 observations). From Figure 5.1, we can see that,
as the number M of the Fourier basis functions increases, the mean absolute error defined
in (5.6) decreases. And the error curve becomes level from about M = 29. Furthermore,
the error is quite small in comparison to the data. In our simulation study, we choose
M = 29. More details of chooing the number of basis functions see Ramsay and Silverman
[2005].

Remark 9. In Figure 5.1, we smooth the observations with the R command Data2fd
instead of smooth.basis. We will compare these two commands in details in Section 6.1.3
(see Remark 11 and 12).
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Figure 5.1: N = 200 observations of the functional ARMA(1,1) process (‖Φ‖ = ‖Θ‖ =
0.9) are smoothed with different number of Fourier basis, with the R command Data2fd.
Depicted are the mean absolute errors by choosing different number of Fourier basis
functions. The results are based on 100 loops.

5.1.3 Model fitting and prediction

Up to now, we have N = 200 functional observations (by choosing M = 29), and the
data type of these observations is “fd” in R. With CPV method (see Section 2.2.3), we
determine the number d of FPC’s by setting the criterion to 90%, i.e. CPV (d− 1) < 0.9
and CPV (d) ≥ 0.9. Then we truncate the functional observations X1, . . . XN by

Xe
n =

d∑
l=1

〈Xn, ν
e
l 〉 νel , n = 1, . . . , N. (5.7)

The corresponding vector form of Xe
n in (5.7) is

Xe
n := (〈Xn, ν

e
1〉 , . . . , 〈Xn, ν

e
d〉)

T , n = 1, . . . , N.

The empirical eigenfunctions and the corresponding empirical eigenvalues can be com-
puted with the R command pca.fd().

The following steps are executed 100 times, and all the results are the average value
in 100 loops.

• We fit different vector ARMA(p, q) models (i.e. different orders, e.g AR(1), AR(2),
MA(1), ARMA(1,1)) to the vector data Xe

1, . . . ,X
e
N . We compare the goodness of

fit (AIC and BIC) among different models. The model fitting and the results of the
goodness of fit (AIC and BIC) can be achieved with the commands VARMA() and
VAR() installed in the R package MTS.
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• We implement multivariate prediction algorithm based on the assumtion that Xe
1, . . . ,X

e
N

follow the models mentioned above respectively. We compute the vector predictor
X̂e
N−9, . . . , X̂

e
N for the last 10 observations XN−9, . . . , XN . The vector predictors can

be computed with the commands VARMApred() and VARpred() installed in the R
package MTS.

• We transform the 10 vector predictors to functional predictor:

X̂e
N−k := (νe1 . . . ν

e
d)
T X̂e

N−k, k = 0, . . . , 9. (5.8)

For each functional predictor X̂e
N−k, k = 0, . . . , 9. , we compare it with the truncated

functional observation Xe
N−k defined in (5.7) and compute the prediction error. Then

we compute the average value of the 10 prediction errors. We use two types of error,
which are as stated in the following.

– Root mean square error (RMSE)
The average root mean square error (RMSE) of X̂e

N−9, X̂
e
N−8, . . . , X̂

e
N is defined

as

1

10

9∑
k=0

√√√√1000∑
j=0

(
X̂e
N−k(tj)−Xe

N−k(tj)
)2

∆t. (5.9)

Note that, as ∆t → 0, (5.9) tends to

1

10

9∑
k=0

√∫ 1

0

(
X̂e
N−k(t)−Xe

N−k(t)
)2

dt.

– Mean absolute error (MAE)
The average mean absolute error (MAE) of X̂e

N−9, X̂
e
N−8, . . . , X̂

e
N is defined as

1

10

9∑
k=0

1000∑
j=0

| X̂e
N−k(tj)−Xe

N−k(tj) | ∆t. (5.10)

• Furthermore, we implement three univariate prediction methods . In this case, for
each time point tj, we see Xe

1(tj), X
e
2(tj), . . . , X

e
N(tj) as a univariate time series,

j = 1, . . . , 1000. The three univariate prediction methods are stated in the following.

– Mean method
For each k ∈ {0, . . . , 9}, we denote the mean method predictor of XN−k by
X̂Mean
N−k and it is defined as

X̂Mean
N−k (tj) :=

1

N − k − 1

N−k−1∑
i=1

Xe
i (tj), j = 0, . . . , 1000. (5.11)
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– Drift method
For each k ∈ {0, . . . , 9}, we denote the drift method predictor of XN−k by
X̂Drift
N−k and it is defined as

X̂Drift
N−k (tj) := Xe

N−k−1(tj)+
1

N − k − 2

N−k−1∑
i=2

(
Xe
i (tj)−Xe

i−1(tj)
)
, j = 0, . . . , 1000.

(5.12)

– Exponential smoothing (ES)
For each k ∈ {0, . . . , 9}, we denote the exponential smoothing predictor of
XN−k by X̂ES

N−k and it is defined as

X̂ES
N−k(tj) := αjX

e
N−k−1(tj) + (1− αj) X̂ES

N−k−1(tj) j = 0, . . . , 1000. (5.13)

αj is selected such that

N−k∑
i=1

(
Xe
i (tj)− X̂ES

i (tj)
)2

is minimized, j = 0, . . . , 1000. This step can be achived with the command
forecast.ets().
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5.2 Results

5.2.1 Functional ARMA(1, 1) process

In the simulation of function ARMA(1, 1) process, we choose c1 = cθ = 0.6153 such that
‖Φ‖S = ‖Θ‖S ≈ 0.9. We choose the number d of FPC’s such that νe1, . . . , ν

e
d explain 95%

of the total data variability. In the 100 loops, the average d is 2.25.
We fit vector AR(1), AR(2), MA(1), MA(2), ARMA(1,1) model to the vector data

respectively. But we find that MA(1) model does not perform well both in the model
fitting and prediction. So we do not list the results of MA(1) in Table 5.1 and 5.2.

In Table 5.1 we list the results of the goodness of fit for vector AR(1), AR(2), MA(2),
ARMA(1,1) model. We can see that, both AIC and BIC of ARMA(1,1) are smaller than
the others, which means vector ARMA(1,1) model fits the vector observations better than
the other vector models.

Model fit VAR(1) VAR(2) VMA(2) VARMA(1,1)
AIC -7.0861 -7.3450 -3.8123 -7.5820
BIC -6.9979 -7.1684 -3.6542 -7.4055

Table 5.1: Simulation of functional ARMA(1,1) with ‖Φ‖S = 0.9 and ‖Θ‖S = 0.9. Good-
ness of fit of different models. Results are based on 100 loops.

Then we implement the multivariate prediction algorithm based on the assumption of
AR(1), AR(2), MA(2), ARMA(1,1), and the three univariate prediction algorithms men-
tioned in Section 5.1.3. We can compare the results in Table 5.2. We can see that, the
functional predictor based on vector ARMA(1,1) model is better than any other functional
and univariate predictors. Furthermore, generally speaking, the functional predictors per-
form better than the univariate predictors.

We also visualize the four functional predictors in Figure 5.2. The real black line shows
the truncated functional data Xe

190, . . . , X
e
200 defined in (5.7). Other lines with different

types and in different colours show the different functional predictors defined in (5.8).

Model fit VAR(1) VAR(2) VMA(2) VARMA(1,1) Mean Drift ES
RMSE 0.3226 0.3027 0.4161 0.2867 0.9070 0.3997 0.4005
MAE 0.2921 0.2714 0.3857 0.2555 0.8760 0.3545 0.3535

Table 5.2: Simulation of functional ARMA(1,1) with ‖Φ‖S = 0.9 and ‖Θ‖S = 0.9. Pre-
diction errors from different prediction methods. Results are based on 100 loops.
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5.2.2 Functional MA(1) process

In the simulation of function MA(1) process, we choose cθ = 0.3891 such that ‖Θ‖S ≈ 0.6.
We choose the number d of FPC’s such that νe1, . . . , ν

e
d explain 90% of the total data

variability. In the 100 loops, the average d is 4.38.
We still tried to fit vector AR(1), AR(2), MA(1), MA(2), ARMA(1,1) model to the

vector data respectively. But we find that ARMA(1,1) model does not perform well both
in the model fitting and prediction. So we do not list the results of ARMA(1,1) in Table
5.3 and 5.4.

From Table 5.3, both AIC and BIC of MA(1) are smaller than others, which means
vector MA(1) model fits the vector observations better than other vector models.

From Table 5.4, the predictor based on MA(1) is better than any other multivariate
and univariate predictors. And generally speaking, the functional predictors still perform
better than univariate predictors.

Again, we visualize the four multivariate predictors in Figure 5.3.

Model fit VAR(1) VAR(2) VMA(1) VMA(2)
AIC -19.8785 -19.8637 -20.015 -19.9158
BIC -19.4873 -19.0812 -19.623 -19.1333

Table 5.3: Simulation of functional MA(1) with ‖Θ‖S = 0.6. Goodness of fit of different
models. Results are based on 100 loops.

Model fit VAR(1) VAR(2) VMA(1) VMA(2) Mean Method Drift Method ES
RMSE 0.3618 0.3630 0.3536 0.3612 0.3817 0.4724 0.3855
MAE 0.3087 0.3083 0.3011 0.3062 0.3293 0.3993 0.3315

Table 5.4: Simulation functional MA(1) with ‖Θ‖S = 0.6. Prediction errors from different
prediction methods. Results are based on 100 loops.
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5.3 Summary

We finish this chapter by summarizing the results listed in Section 5.2.1 and 5.2.2.
By the theory in Chapter 4, the vector process (Xn, n ∈ Z) obtained from a station-

ary functional ARMA(p, 1) process (Xn, n ∈ Z) follows the vector ARMA(p, 1) structure.
Based on this fact, the vector ARMA(p, 1) is supposed to perform better than other vector
models in the model fitting and prediction. The results listed in Section 5.2.1 and 5.2.2.
are in accordance with the theory.

In fact, except the two cases listed in this chapter (ARMA(1,1) with ‖Φ‖S = ‖Θ‖S =
0.9 and MA(1) with ‖Θ‖S = 0.6), we also executed the whole procedure on the other
ARMA process by changing the order p and the operator norm. As expected and without
surprise, the results are still in accordance with our theory.

Since both the theory and the computation of the functional prediction are much
more complicated than univariate prediction, so we expect that the functional predictors
perform better than the univariate predictors, which makes sense to the work on functional
predicton. From the results of the prediction errors, we can say the functional predictors
are at least not worse than the univariate predictors, on the prediction of functional
observations.

In the next chapter, the whole procedure in this chapter is applied on analysing real
highway traffic data provided by Autobahndirektion Südbayern.
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Figure 5.2: Simulation of functional ARMA(1,1) with ‖Φ‖S = 0.9 and ‖Θ‖S = 0.9.
Functional predictors based on based on vector ARMA models with different orders.
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Figure 5.3: Simulation of functional MA(1) with ‖Θ‖S = 0.6. Functional predictors based
on based on vector ARMA models with different orders.



Chapter 6

Real data analysis

In this chapter we analyse the highway traffic data provided by Autobahndirektion Südbayern.
Our goal will be to forecast the highway velocity.

Firstly we will describe the dataset and process the data, e.g. excluding outliers,
smoothing, etc. Then we will conduct Portmanteau test and stationarity test introduced
in Chapter 3, to check whether the data have been transformed properly. Finally, under
the framework of Chapter 5, we will fit different ARMA(p, 1) models to the data and
compute the (one-step) functional predictors based on these models, and then compare
them with several univariate predictors.

6.1 Description and transformation of the dataset

6.1.1 Data description

Our dataset describes the traffic conditions (in one direction) which include car types,
velocity and traffic volume, etc. The data come from a fixed measure point on a highway
in Southern Bavaria, Germany. The traffic conditions on three lanes in one direction are
recored every one minute (1440 minutes in one day) during the period 1/1/2014 00:00 to
30/6/2014 23:59.

We are interested in the car velocity and the traffic volume data. We denote these two
variables by Sln(tj) and Cln(tj), where Sln(tj) (Cln(tj)) represents the car velocity (traffic
volume) measured at time point tj on the nth day on Lane l, l = 1, 2, 3, n = 1, . . . , N .

To simplify the computation, we consider the three lanes as one lane. We take the sum
of the traffic volume on three lanes by

Cn(tj) :=
3∑
l=1

Cln(tj), j = 1, . . . , 1440, n = 1, . . . , N, (6.1)

then we treat
{

(Cn(t1), . . . , Cn(t1440))
T , n = 1, . . . , N

}
as our vector traffic volume obser-

vations. And we take the weighted average velcocity on three lanes by

Sn(tj) :=
3∑
l=1

Cln(tj) · Sln(tj)

C1n(tj) + C2n(tj) + C3n(tj)
, j = 1, . . . , 1440, n = 1, . . . , N, (6.2)

71
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then we treat
{

(Sn(t1), . . . , Sn(t1440))
T , n = 1, . . . , N

}
as our vector velocity observations.

We have seen the figures of the vector velocity Sn in (6.1) and the traffic volume data
Cn in (6.2) on several selected weeks in Section 1.1 (see Figure 1.3 and Figure 1.4).

6.1.2 Data processing

After we check through the whole dataset, we find out the following three kinds of data
which need to be further processed.

(1) As can be seen from Figure 6.1, many (in fact, 159) consecutive “0” records of
velocity and traffic volume appear simultaneously between about 0:00-4:00 on 13/03.
This may be due to the technical fault of the surveillance camera. In this case, both
the velocity and traffic volume records need to be processed.

(2) Except on the commuting time (we set it to 8:00-10:00 and 16:00-20:00), we can
still find some “0” velocity and traffic volume records which apprear simultaneously.
For example, see the “0” velocity and volume records at about 23:00 on 10/04 in
Figure 6.1. In this case, it means there are no cars passing the measure point at the
measure time. Of course, this kind of “0” records reflect the real traffic condition
indeed. But, when we collect the velocity records as observations to support the
work of forecasting, are this kind of “0” velocity records supposed to be processed,
or just to remain?

From the upper panel of Figure 6.1, one can see that, there is just one “0” velocity
record at about 23:00 on 10/04. But all the other velocity records in the neighbor-
hood are very high, which implies that the traffic condition was quite good at that
time. If we really treat such “0” velocity records as “0”, it give rise to a low-value
velocity predictor, which will misguide the driver about the highway condition. Thus
we will process this kind of “0” velocity records.

But on the commuting time, if the the velocity record is zero while the corresponding
traffic volume record is not “0”, it implies a traffic congestion at that time. And in
this case, we will not do anything about the “0” velocity records, since a low-value
velocity predictor is reasonable and expected.

(3) Except on the commuting time (8:00-10:00 and 16:00-20:00), the velocity records
below 50km/h appear quite rarely in the whole dataset. Meanwhile, the other veloc-
ity records in the neighborhood are far above 50km/h (e.g see the volocity records
between 12:00 to 14:00 on 24/3 in Figure 6.1). Similar to (2), we treat this kind of
data as outliers. Again, we will not do anything about the low velocity records on
the commuting time (e.g see the records between 16:00-20:00 on 28/5).
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Now we show how we process the three kinds of outliers mentioned above.
We divide t1, . . . , t1440 into 288 groups, U1, . . . , U288. For each i ∈ {1, . . . , 288}, Ui =

{t5∗i−4, . . . , t5∗i}.

• For the second and the third kind of outliers (non-consecutive “0” and low velocity
records except on the commuting time), we do the following thing.

For day n, if we find Sn(tj) < 50 (it includes Sn(tj) = 0), where tj ∈ Ui for some
i, then we replace the value of Sn(tj) with the average velocity records in Ui which
are above 50, i.e.

Sn(tj) :=

5∗i∑
k=5∗i−4,k 6=j

Sn(tk)1{Sn(tk)≥50}

5∗i∑
k=5∗i−4,k 6=j

1{Sn(tk)≥50}

. (6.3)

In comparison to Figure 6.1, Figure 6.2 depict the records after data processing.
The low velocity (and non-consecutive 0) records, e.g 12:00-14:00 on 24/03 and at
about 23:00 on 10/04, are replaced with higher velocity records (>50 km/h).

• For the first kind of data (consecutive “0” velocity and traffic volume data due to
the technical fault), we do the following thing.

For day n, we suppose Ui is the first interval in which all five velocity and taffic vol-
ume records are 0. Then we look for the smallest m > 5i such that Sn(tm) ≥
50 and Cn(tm) > 0. Then we replace the value of Sn(t5i−4), . . . , Sn(tm−1) and
Cn(t5i−4), . . . , Cn(tm−1) by linear interpolation, i.e.

Sn(tj) := Sn(t5i−5) +
Sn(tm)− Sn(t5i−5)

tm − t5i−5
(tj − t5i−5) , (6.4)

Cn(tj) := Cn(t5i−5) +
Cn(tm)− Cn(t5i−5)

tm − t5i−5
(tj − t5i−5) , tj ∈ Ui. (6.5)

As can be seen from the upper panel of Figure 6.2, the consecutive “0” velocity
records (see 0:00-4:00 on 13/03 in Figure 6.1) are replaced with two clear slanting
lines, which are derived from the linear interpolation in (6.4).

In Figure 6.3, we plot the velocity data processed in the way mentioned above, on
the same weeks as in Figure 1.3. Comparing these two figures, we can see that, many
“0” records which are not on the commuting time, e.g see 16/4, 30/4, etc in, disappear.
Meanwhile, those low speed records which are on the commuting time, e.g. see 18/6 and
26/6, remain.
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Figure 6.1: Velocity and traffic volume records on 4 selected days before data processing.
Source: Autobahndirektion Südbayern
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Figure 6.2: Velocity and traffic volume records on 4 selected days after data processing.
Source: Autobahndirektion Südbayern



CHAPTER 6. REAL DATA ANALYSIS 75

0
15

0

2014−01−05 2014−01−06 2014−01−07 2014−01−08 2014−01−09 2014−01−10 2014−01−11V
el

oc
ity

 (
km

/h
)

0
15

0

2014−01−12 2014−01−13 2014−01−14 2014−01−15 2014−01−16 2014−01−17 2014−01−18V
el

oc
ity

 (
km

/h
)

0
15

0

2014−01−26 2014−01−27 2014−01−28 2014−01−29 2014−01−30 2014−01−31 2014−02−01V
el

oc
ity

 (
km

/h
)

0
15

0

2014−02−02 2014−02−03 2014−02−04 2014−02−05 2014−02−06 2014−02−07 2014−02−08V
el

oc
ity

 (
km

/h
)

0
15

0

2014−04−13 2014−04−14 2014−04−15 2014−04−16 2014−04−17 2014−04−18 2014−04−19V
el

oc
ity

 (
km

/h
)

0
15

0

2014−04−20 2014−04−21 2014−04−22 2014−04−23 2014−04−24 2014−04−25 2014−04−26V
el

oc
ity

 (
km

/h
)

0
15

0

2014−04−27 2014−04−28 2014−04−29 2014−04−30 2014−05−01 2014−05−02 2014−05−03V
el

oc
ity

 (
km

/h
)

0
15

0

2014−06−08 2014−06−09 2014−06−10 2014−06−11 2014−06−12 2014−06−13 2014−06−14V
el

oc
ity

 (
km

/h
)

0
15

0

2014−06−15 2014−06−16 2014−06−17 2014−06−18 2014−06−19 2014−06−20 2014−06−21V
el

oc
ity

 (
km

/h
)

0
15

0

2014−06−22 2014−06−23 2014−06−24 2014−06−25 2014−06−26 2014−06−27 2014−06−28V
el

oc
ity

 (
km

/h
)

Figure 6.3: Processed vector velocity data on the same weeks as in Figure 1.3. The data are
processed in the way introduced in Section 6.1.2. Source: Autobahndirektion Südbayern
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6.1.3 From discrete to functional data

Remark 10. • There are 181 days from 1/1/2014 to 30/6/2014. But in our dataset,
many records are lost on 20/1, 30/3 and 7/5. Thus we exclude these three days
out of our dataset. Thus the number of the observations in the group All days is
N = 181− 3 = 178.

• 1/1(Wednesday), 6/1(Monday), 18/4(Friday), 20/4(Sunday), 21/4(Monday), 1/5
(Thursday), 29/5(Thursday), 8/6(Sunday), 9/6(Monday) and 19/6 (Thursday) are
10 public holidays during 1/1/2014 to 30/6/2014. In Section 1.1, we have seen from
Figure 1.3 and Figure 1.4 that, the velocity and volume curves on the holidays falling
on weekdays, e.g. 18/4(Friday) and 9/6(Monday), differ apparently from those on
the other corresponding “normal” weekdays. So we exclude these days out of the
group Workingdays and categorize them into the group Holidays. In contrast, we
treat the holidays falling on Sundays, e.g. 8/6(Sunday), as normal Sundays instead
of categorizing them into the group Holidays.

Thus, we have 8 observations in the group Holidays: 1/1(Wednesday), 6/1(Mon-
day), 18/4(Friday), 21/4(Monday), 1/5(Thursday), 29/5(Thursday), 09/6(Mon-
day), 19/6(Thursday).

• Except the 8 holidays mentioned above, there are 51 weekends from 1/1/2014 to
30/6/2014. Thus, we have 178− 8− 51 = 119 observations in the group Working-
days.

• In Section 6.2 and 6.3, the hypothesis tests, the model fitting and the predictions
algorithm will be conducted to the functional data in the group of All days and
Workingdays respectively.

Up to now, we have N 1440-dimensional velocity records{
(Sn(t1), . . . , Sn(t1440))

T , n = 1, . . . , N
}
,

which have been processed (excluding outliers) in Section 6.1.2 (N = 178 in All days and
N = 119 in Workingdays). They still belong to the class of high-dimensional data. In
this subsection we will transform these vector data to functional data. We do the following
things.

(i) Recall that in Section 6.1.2, we divide t1, . . . , t1440 into 288 groups U1, . . . , U288. Now
we define T1, . . . , T288 as the initial time point of U1, . . . , U288 respectively, i.e.

Ti = t5∗i−4, i = 1, . . . , 288.

Firstly we reduce the 1440-dimensional data
{

(Sn(t1), . . . , Sn(t1440))
T , n = 1, . . . , N

}
to 288-dimensional by computing the weighted average velocity every 5 minutes in
each day n, i.e.

Xn(Ti) :=

4∑
k=0

Sn(t5i−k)Cn(t5i−k)

4∑
k=0

Cn(t5i−k)

, i = 1, . . . , 288. (6.6)
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Then
{

(Xn(T1), . . . , Xn(T288))
T , n = 1, . . . , N

}
are 288-dimensional velocity data.

(ii) Centering the data: Usually speaking, centering the data implies deducting the
average value of all the observations from each observation. But we will do it in
another way. Figure 6.4 depicts the mean velocity curve of the 178 observations in
All days (real black line), and Mondays, . . . , Sundays and holidays respectively. As
can be seen that, the mean curve of Saturdays, Sundays and holidays are significantly
different from those on working days. Thus, instead of deducting the mean velocity
of all N = 178 days from each observation, we deduct individual weekday mean, i.e.
we deduct the the mean (velocity) of all Mondays from each Monday observations,
etc.
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Figure 6.4: Mean velocity curves of the 178 observations in All days and Mondays, Tues-
day, Wednesdays, Thursdays, Fridays, Saturdays, Sundays and holidays from 01/01/2014
to 30/06/2014. Source: Autobahndirektion Südbayern

We center the data since we want to make the data more stationary, i.e. we hope
the curves get closer (which implies the mean and the variance more stable). In
Figure 6.5, 6.6 and 6.7, we can compare the raw data on 50 workingdays and the
corresponding centered data (deducted with the overall mean of all workingdays and
the individual weekday mean respectively).

The scales of the y-axis in Figure 6.6 and Figure 6.7 are the same. As can be seen
that, both of the centered velocity curves in Figure 6.6 and 6.7 get closer to 0
and look much more “level” than the non-centered curves in Figure 6.5. If we only
compare the curves in 6.6 and 6.7, they do not look much different. This is because
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the traffic conditions on workingdays are not much different form each other, e.g see
Figure 6.4. But we note that, at some extreme value points, the curves in Figure 6.7
(deducted with individual weekday mean) get a bit closer to 0 than those in Figure
6.6, see e.g. the value of 15km/h at 8:00 and the -60km/h at 18:00.
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Figure 6.5: 119 observations in the group Workingdays are smoothed with 29 Fourier
basis functions. Depicted are the functional velocity data on 50 workingdays (11/4/2014
to 30/6/2014). Source: Autobahndirektion Südbayern
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Figure 6.6: Functional velocity data (deducted with the overall mean of all workingdays)
on the same days as in Figure 6.5. Source: Autobahndirektion Südbayern
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Figure 6.7: Functional velocity data (deducted with the individual weekday mean) on the
same days as in Figure 6.5. Source: Autobahndirektion Südbayern



CHAPTER 6. REAL DATA ANALYSIS 80

(iii) To smooth the vector data
{

(Xn(T1), . . . , Xn(T288))
T , n = 1, . . . , N

}
in (6.6), we

need to specify a series of basis functions. We denote these basis functions by
φ1, . . . , φK . For each vector observation (Xn(T1) . . . Xn(T288))

′, we hope it can be
smoothed by

Yn(t) :=
K∑
k=1

cnkφk(t), ∀t ∈ [0, 1]. (6.7)

For fixed number K of the basis functions, the simplest criterion to choose the
coefficients (cnk) is to minimize the SSE, where

SSE : =
N∑
n=1

288∑
j=1

(Xn(tj)− Yn(tj))
2

=
N∑
n=1

288∑
j=1

(
Xn(tj)−

K∑
k=1

cnkφk(tj)

)2

. (6.8)

By assuming the residuals (εj) in the model

Xn(tj) = Yn(tj) + εj (6.9)

are independent and normally distributed (with mean 0 and constant mean), the
least-squares estimate of the coefficients (cnk) are c11 . . . cN1

...
...

c1K . . . cNK

 := ĉ =
(
ΦTΦ

)−1
ΦTX, (6.10)

where

X :=

 X1(t1) . . . XN(t1)
...

...
X1(t288) . . . XN(t288)

 , (6.11)

and

Φ :=

 φ1(t1) . . . φK(t1)
...

...
...

φ1(t288) . . . φK(t288)

 . (6.12)

We call the method of smoothing above smoothing by regression analysis.

Remark 11. Besides the method of smoothing by regression analysis, smoothing
with roughness penalties is also a usually used smoothing method. The motivation
is to obtain a smooth derivative rather than just a smooth function. The penalty is
often defined as

PEN2(yn) :=

∫
[D2Yn(t)]2dt, (6.13)
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where D2Yn(t) is the second derivative of Yn defined in (6.7). Of course the penalty
can be defined in various other ways, see Chapter 5 of Ramsay et al. [2009]. The
coefficients is determined by minizing

PENSSE :=
N∑
n=1

288∑
j=1

(Xn(tj)− Yn(tj)
2 + λ

∫
[D2Yn(t)]2dt. (6.14)

The smoothing parameter λ specifies the emphasis on the second term in (6.14). If
λ is 0, then it is exactly the same as smoothing by regression analysis. All in all,
with the method of smoothing with roughness penalties, we can obtain more smooth
functions, but at the cost of losing some information (bigger error). More details see
Chapter 5 of Ramsay et al. [2009]. In R, the command smooth.basis() smooths the
data by regression analysis, if the argument fdParobj is a functional basis object with
the class ”basisfd”. But it can also deal with smoothing with roughness penalties by
choosing the class of ”fdPar” in the argument fdParobj, and setting the value of
the argument dfscale. Meanwhile, the command Data2fd() smooth the data with
roughness penalties, and the default value of the smoothing parameter λ is 3 ∗ 10−8.

Now we go back to the issue of choosing basis functions. In our data anlysis, we
used Fourier and Bspline basis functions to smooth the vector data respectively. In
the following we will explain why we choose Fourier rather than Bspline from two
aspects.

• For both Fourier and Bspline, we choose different number M of the basis func-
tions and compute the mean absolute error (MAE) defined in (5.6), between
the functional data and the vector data. By smoothing we used the R command
Data2fd, i.e. smoothing with roughness penalties and the smoothing parameter
λ is 3 ∗ 10−8. In Figure 6.8 (a) and (b) are depicted the MAE between the
178 vector data and the corresponding functional data, by choosing different
number M of Fourier and Bspline basis functions respectively. And in Figure
6.8 (c) and (d) are depicted the results of 119 Workingdays.

As can be seen from Figure 6.8 (a) and (c), i.e. by choosing Fourier basis, the
error curves become level from about M = 29. In comparison, in Figure 6.8
(b) and (d), i.e. by choosing Bspline basis, the error decreases as M increases.
Merely from the angle of MAE, Bsplines is a little bit better than Fourier. But
we must note that, the errors are relatively small in comparison to the velocity
value.

In the following we evaluate Fourier and Bspline from the angle of dimensional
reduction.

• Now we choose 29 Fourier and Bspline basis functions to smooth the vector
data in the two datasets (All days and Workingdays) respectively. We choose
M = 29 is not because of some specific “gold” standard. One side is that the
error curves in Figure 6.8 (a) and (c) become level from M = 29, and the value
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Figure 6.8: (a) and (b) are mean absolute errors (MAE) between the 178 vector data in
All days and the corresponding functional data, by choosing different number of Fourier
and Bspline basis functions respectively (with R command Data2fd). (c) and (d) are the
results for Workingdays.

of errors (including Bspline) are small in comparison to the velocity value, so
it does not deserve to choose more basis functions. On the other side, in many
real case studies, for about 200 observations, 29 basis functions are usually
enough.

Now we apply the CPV method to the functional data (smoothed by 29 Fourier
and Bspline respectively), to determine the number d of FPC’s (see (2.21) in
Section 2.2.3). In Figure 2.2, we have shown that, for the 178 functional data
in All days, under the CPV criterion 80% (see (2.21)), the number d of the
FPC’s should be d = 4.

In the following table, Table 6.1, we compare the results (number d of FPC’s)
by changing the CPV criterion.

As can be seen from Table 6.1, in both datasets, and under each CPV criterion,
the number of FPC’s by choosing Fourier is always smaller than that by choos-
ing Bspline. It is an important advantage of Fourier. We always want to use
fewer FPC’s to explain more data variability, which makes the computation
easier and faster.

Thus, from the results in Table 6.1, we decide to choose M = 29 Fourier basis
functions to smooth the vector data in the group of All days and Working-
days. And the CPV criterion is set to 80%. Thus for the both datasets, the
number d of the empirical FPC’s should all be 4 according to Table 6.1.

Figure 6.9 depicts the 4 empirical eigenfunctions of the 178 functional data
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CPV criterion 0.8 0.85 0.9

All days (N = 178)
Number d of FPC’s (with F-basis) 4 5 7
Number d of FPC’s (with B-basis) 6 8 11

Workingdays (N = 119)
Number d of FPC’s (with F-basis) 4 5 7
Number d of FPC’s (with B-basis) 6 8 11

Table 6.1: Application of CPV method to the functional data in the group of All days
and Workingdays, under different CPV criteria. In both datasets, the functional data
are derived from 29 Fourier and Bspline basis functions (with R command Data2fd)
respectively.

on All days, while Figure 6.10 depict the 4 empirical eigenfunctions of the
121 data on Workingdays. And the proportion of the total data variability
explained by each empirical eigenfunction is listed in the captions of Figure 6.9
and Figure 6.10.

As can be seen from Figure 6.9 and Figure 6.10, the eigenfunctions ν1, which
explains 45% and 40% of the data variability respectively, look quite level. It
is in accordance with the fact that, most of the velocity curves look level (see
Figure 6.3).
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Figure 6.9: Four empirical eigenfunctions of the 178 functional data on All days. The
CPV criterion is 80%. The proportion of the total data variability explained by ν1, ν2, ν3, ν4
is 45%, 20%, 9.5% and 8% respectively. Source: Autobahndirektion Südbayern
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Figure 6.10: Four empirical eigenfunctions of the 119 functional data on Working-
days. The CPV criterion is 80%. The proportion of the total data variability explained
by ν1, ν2, ν3, ν4 is 40%, 22%, 11% and 8% respectively. Source: Autobahndirektion
Südbayern
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Remark 12. Recall that in Remark 11, we mentioned that the R command Data2fd()
smooths the vector data with roughness penalty and the smoothing parameter λ =
3 ∗ 10−8 (by default setting), while smooth.basis() smooths the data by regression
analysis(if the argument fdParobj is a functional basis object with the class ”bas-
isfd”). Now we compare these two commands in the application to our dataset.

Figure 6.11 is a similar plot to Figure 6.8, but the data are smoothed with the
R command smooth.basis(). As expected, with the method of smoothing by regres-
sion analysis ( smooth.basis()), the curves describe the data better (smaller MAE,
compare Figure 6.11 with Figure 6.8), and MAE goes to 0 as the number of basis
functions is sufficiently large. However, due its precision, the functions are not so
smooth as those generated by Data2fd(), see Figure 6.12. In addition, more FPC’s
are needed under the same CPV criterion (compare Table 6.2 with Table 6.1). Due
to the two facts of using Data2fd(), smoother curves and fewer FPC’s, we choose
Data2fd() instead of smooth.basis().
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Figure 6.11: Similar plot to Figure 6.8, the data are smoothed with the R command
smooth.basis().

CPV criterion 0.8 0.85 0.9

All days (N = 178)
Number d of FPC’s (with F-basis) 6 8 11
Number d of FPC’s (with B-basis) 6 8 11

Workingdays (N = 119)
Number d of FPC’s (with F-basis) 6 8 11
Number d of FPC’s (with B-basis) 6 8 11

Table 6.2: Similar table to Table 6.1, data are smoothed with the R command
smooth.basis().
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Figure 6.12: In the upper panel are the centered raw velocity data on one week. In the lower
panel are the corresponding functional data generated with the R command Data2fd()
and smooth.basis() respectively.
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6.2 Hypothesis Test

In this section, we will conduct the Portmanteau test (H0: data are i.i.d) and the station-
arity test (H0: data have the functional moving average forms) introduced in Chapter 3,
to the centered functional velocity data in the group of All days and Workingdays
respectively. We want to check, whether the data have been transformed properly. We
hope that the independence can be rejected and the stationarity can not be rejected, then
it is reasonable to fit ARMA model to the data (see Section 6.3).

For both of the datasets, the CPV criterion is set to 80%, then the number of FPC’s
is d = 4 (see Table 6.1).

• Test on the data in All days

Lag (H) 1 2
P -value 6.90 ∗ 10−11 1.38 ∗ 10−7

Table 6.3: Portmanteau test on 178 centered functional velocity data in All days.

For lags H = 1 and H = 2, the independence can be rejected ever for a significance
level as small as α = 10−6.

Test Statistics TN MN T ∗N(d) M∗
N(d)

P -value 0.0966 0.2239 0.0917 0.2176

Table 6.4: Stationarity test on on 178 centered functional velocity data in All days.

The form of the test statistics TN , MN , T ∗N(d) and M∗
N(d) can be found in (3.15),

(3.16), (3.18) and (3.20). The stationarity can not be rejected ever for a significance
level as small as α = 0.05.

• Test on the data in Workingdays

Lag (H) 1 2
P -value 3.72 ∗ 10−7 9.85 ∗ 10−2

Table 6.5: Portmanteau test on 119 centered functional velocity data in Workingdays.

For lags H = 1 and H = 2, the independence can be rejected ever for a significance
level as small as α = 0.01.

Test Statistics TN MN T ∗N(d) M∗
N(d)

P -value 0.1038 0.1935 0.0964 0.1766

Table 6.6: Stationarity test on 119 centered functional velocity data in Workingdays.

The stationarity can not be rejected ever for a significance level as small as α = 0.05.

Combining the results in Table 6.3 to Table 6.6, it is reasonable to fit ARMA model to
the data.
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6.3 Model fitting and prediction

Since for both of the datasets (All days and Workingdays), the number of FPC’s
is chosen by d = 4 (under the CPV criterion 80%). Thus each functional observation
X1, . . . , XN (N = 178 in All days and N = 119 in Workingdays) are truncated to
4-dimensional, i.e.

Xn ≈ Xe
n :=

d∑
l=1

〈Xn, ν
e
l 〉 νel , n = 1, . . . , N. (6.15)

And the vector form of (6.15) is

Xe
n := (〈Xn, ν

e
1〉 . . . 〈Xn, ν

e
4〉)

T , n = 1, . . . , N. (6.16)

In this section, we will fit different vector ARMA(p, 1) models to the truncated vector
observations (6.16) in All days and Workingdays respectively. We will compare the
goodness of fit among these vector models. Then we will compute the one-step functional
predictors based on these vector models, and compare them with several univariate pre-
dictors. The framework of this section is exactly the same as that of the simulation study
in Chapter 5.

• Study of the 178 observations in All days

In our data analysis, we found that the vector ARMA(1, 1) does not perform well
both in the model fitting and the prediction of the 178 observations in All days.
Thus in the following two tables, Table 6.9 and Table 6.10, we do not list the results
of ARAM(1,1).

In Table 6.8 and Table 6.10, “Mean”, “Drift” and “ES” are the abbreviations of
“Mean method”, “Drfit method” and “Exponential smoothing” introduced in Sec-
tion 5.1.3. And the prediction errors in Table 6.8 and Table 6.10 are the “distance”
between the predictors and the truncated funtional observations in (6.15). The def-
initions of RMSE and MAE see (5.9) and (5.10).

Model fit VAR(1) VAR(2) VMA(1) VMA(2)
AIC 7.72 7.69 7.18 7.72
BIC 8.02 8.27 8.09 8.31

Table 6.7: Goodness of fit of different vector models to the 178 observations in All days.

Model fit VAR(1) VAR(2) VMA(1) VMA(2) Mean Drift ES
RMSE 5.67 5.53 5.74 6.05 5.37 7.70 5.46
MAE 5.05 4.95 5.12 5.40 4.73 6.77 4.76

Table 6.8: Average prediction errors of the predictors for the last 10 observations in the
group All days.

As can be seen from Table 6.7, VAR(1) and VMA(1) fit the data better than the
other vector models. But from the results of the prediction errors in Table 6.8, the
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predictors based on VAR(1) and VMA(1) is not better than the predictor based
on VAR(2), and even not better than two univariate predictors (mean method and
ES).

In Figure 6.14 and Figure 6.15, we visulized the functional predictor (based on
VMA(1), Figure 6.14), and the univariate predictors (Figure 6.15) of the velocity
data on the last 10 days of All days. One can compare these two figures with Figure
6.13, which depicts the raw velocity data and the corresponding functional data on
the same days.

One can see from Figure 6.13 that, the velocity curve on 29/6 deviates highly from
the other curves. Meanwhile, all the (functional and univariate) predictors perform
not well on this day. Besides on this day, all the predictors perform not well when
the velocity curve highy fluctuates, e.g. see 24/6 and 26/6.

• Study of the 119 observations in Workingdays

Model fit VAR(1) VAR(2) VMA(1) VMA(2) VARMA(1,1)
AIC 6.96 7.12 7.00 6.90 6.87
BIC 7.34 7.89 7.39 7.67 7.64

Table 6.9: Goodness of fit of different models to the 119 observations in Workingdays

Model fit VAR(1) VAR(2) VMA(1) VMA(2) VARMA(1,1) Mean Drift ES
RMSE 4.05 3.87 3.89 4.78 4.50 4.24 5.17 5.06
MAE 3.19 3.059 3.06 3.77 3.59 3.45 3.83 4.41

Table 6.10: Average prediction errors of the predictors for the last 10 observations in the
group Workingdays.

As can be seen from Table 6.9, VAR(1) and VARMA(1,1) fits the data relatively better
than the other vector models. But from the results of the prediction errors in Table 6.10,
the predictors based on VAR(1) and VARMA(1,1) are not better than the predictor based
on VAR(2).

If we compare the functional predictors and the univariate predictors, we can see from
Table 6.8 that the functional predictors are generally better.

Similar to Figure 6.13, 6.14 and 6.15, Figure 6.16 depicts the raw velocity data versus
the corresponding functional data on the last 10 days of Workingdays, while Figure
6.17 and Figure 6.18 depict the corresponding functional (VMA(1)) predictor and the
univariate predictors respectively.

Similarly, we can see from Figure 6.17 and Figure 6.18 that, all the predictors perform
not well when the velocity curve highy fluctuates, e.g. see 18/6, 20/6 and 24/6. But on
the other “normal” days, all the predictors look not bad.
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Figure 6.13: Raw velocity data and the corresponding functional data on the last 10 days
of All days. Source: Autobahndirektion Südbayern
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Figure 6.14: Functional velocity data on the last 10 days of All days and the corre-
sponding functional predictor based on VMA(1) model. Source: Autobahndirektion
Südbayern
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Figure 6.15: Univariate predictors of the velocity data on the last 10 days of All days.
Source: Autobahndirektion Südbayern
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Figure 6.16: Raw velocity data and the corresponding functional data on the last 10 days
of Workingdays. Source: Autobahndirektion Südbayern
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Figure 6.17: Functional velocity data on the last 10 days of Workingdays and the cor-
responding functional predictor based on VMA(1) model. Source: Autobahndirektion
Südbayern
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Figure 6.18: Univariate predictors of the velocity data on the last 10 days of Working-
days. Source: Autobahndirektion Südbayern
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Now we finish this section with a brief summary.
Firstly, we talk about the functional predictors based on the different vector ARMA

models. As can be seen from the results in Table 6.7 to Table 6.10, it is very hard to
conclude which vector ARMA models really fits the data better than other vector models,
which is quite different to the case in our simulation study in Chapter 5.

One of the possible reasons is, the real data maybe do not follow any specific ARMA
model. Another reason is, the size of our sample is not big enough (we just have 178
days and 119 working days). But in the model fitting, we need to estimate 4 ∗ 4 ∗ 2 = 32
parameters in the vector ARMA(1,1) and MA(2) model (since d = 4).

Then we compare the functional predictors with the univariate predictors. From the
results in Table 6.8 and Table 6.10, we can at least say, the functional predictors perform
not worse than the univariate predictors, which makes sense to the work on functional
data analysis.
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A. Aue, D. Norinho, and S. Hörmann. On the prediction of stationary functional time
series. Journal of the American Statistical Association, 110:378–392, 2015.

D. Bosq. Linear Processes in Function Spaces: Theory and Applications. Springer, New
York, 2000.

P.J. Brockwell and R.A. Davis. Time Series: Theory and Methods (2nd Ed.). Springer,
New York, 1991.

R. Gabrys and P. Kokoszka. Portmanteau test of independence for functional observations.
Journal of the American Statistical Association, Vol. 102(No. 480), 2007.
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L. Horváth, P. Kokoszka, and G. Rice. Testing stationarity of functional time series.
Journal of Econometrics, 2013b.

H. Lütkepohl. Linear transformations of vector arma processes. Journal of Econometrics,
26:283–293, 1984.

J.O. Ramsay and B.W. Silverman. Applied Functional Data Analysis. Springer Series in
Statistics, 2002.

J.O. Ramsay and B.W. Silverman. Functional Data Analysis. Springer Series in Statistics,
2005.

J.O. Ramsay, G. Hooker, and S. Graves. Functional Data Analysis with R and Mathlab.
Springer New York, 2009.

94


