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1 Introduction 
 

In this chapter, some introductory information regarding the motivation for the research into our 
thesis topic will be provided. Additionally, some of the challenges and current status of related 
work & research will be briefly discussed. 
 

1.1 Motivation 
 
With the increasing focus on location aware technology, indoor navigation is one field that still 
remains quite open for development, more so when compared to research and applications of 
outdoor navigation. While there has been a significant surge in development, this has been mostly 
aimed towards applications with specific use cases. Two factors that appear to be key for the 
further improvement of indoor navigation is expanding the context awareness of route planning 
applications (to a level comparable with outdoor navigation solutions) and achieving better 
interoperability of indoor/outdoor navigation, with the goal of reaching a point of seamless 
navigation from outdoor to indoor space. 
 
However, there are several issues with the current state of interoperability between the available 
data models for outdoor and indoor space, as well as constraints that have to be taken into 
consideration or overcome. 
 
It is thus the purpose of this thesis to examine in depth the architecture of IndoorGML and 
compare it to data models and routing implementations of outdoor dataset providers, with a 
special focus on OpenStreetMap. The goal is the combined use of the two models for the 
development of a single system capable of multi-modal indoor/outdoor routing. Several 
alternative processes for the achievement of this goal will be examined. 
 

1.2 Challenges/ Current Status 
 
One of the main challenges in developing this conceptual system is achieving a good level of 
interoperability. While this is an issue even when comparing data models with the same purpose, 
it becomes much more of an issue when trying to combine a model describing indoor spaces and 
their relations (such as IndoorGML) with another model that is more oriented towards mapping 
and routing, without so much of a focus on buildings and indoor space (such as OpenStreetMap). 
 
Luckily, with the added traction that location aware services and open platforms like OSM have 
been gaining in the past years, an increasing amount of development is taking place with the goal 
of extending the OpenStreetMap model in order to accommodate more precise and complex data, 
such as building information.  
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While not offering the same complexity and flexibility as dedicated indoor mapping data models, 
these extensions provide a good starting point for enabling some level of connectivity between 
OSM and indoor models. 
 
Another important challenge is the many different formats and data models being used for indoor 
data. From multi-purpose formats such as AutoCAD DWG to information models such as IFC to 
CityGML, creating a conceptual model that would allow for interoperability with all the possible 
data structures is practically unfeasible. As a solution, the IndoorGML model is to be used as the 
data model to describe indoor data. IndoorGML is a great fit as it is focused towards navigation. 
Additionally, it provides great flexibility by allowing for external referencing e.g. to IFC or 
CityGML objects, while data stored in other models such as IFC and CityGML can also be 
converted into IndoorGML with very good accuracy, enabling us to work with a varied set of 
source data. 
 
The addition of support for context aware routing [e.g., change in form of transport from walking 
to Public Transit (outdoor segment) and then back to walking (outdoor and indoor segment)] is 
one further goal, as a multi-modal routing system without such capabilities would offer little 
practical use. Naturally, context awareness extends to conditions beyond accessibility and means 
of transport, such as time of day and opening hours (e.g. for commercial buildings), weather 
conditions (preference for indoor/ outdoor navigation), or access controlled areas (e.g., employee 
only entrances & areas). As both IndoorGML and OSM include support for restricting navigation 
by specific constraints and conditions, we will investigate which constraints and to what extent 
can be covered via the combined use of the two models regarding context-awareness. 
 
Finally, if interoperability between the two data models is achieved, the next challenge would be 
the development of a prototype implementation providing multi-modal routing data. This could 
work as proof of concept and provide valuable feedback regarding the usability, as well as the 
limits of the above conceptual work. 
 
The research approach, examined process concepts and expected outcomes will be examined in 
further detail in the following section.  
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2 Expected outcomes 
 

This section will list the expected outcomes originating from the assorted work on the thesis 
topic. As the stages defined in the beginning of the proposal also define the objectives to a certain 
extent, the same differentiation between objectives is followed here: 
 
The research & conceptual development should provide a solid analysis of the IndoorGML and 
OpenStreetMap Data models & the routing implementations available for the two data models. 
 
Based on the above analysis, the level of conflation between the two models will be examined, as 
a necessary factor in achieving the interoperability necessary for combining an indoor and 
outdoor dataset. In the context of this thesis, conflation is used as the term to indicate the 
necessary process to merge different datasets, with the desired goal being the extraction and 
addition of indoor data from our indoor model to the outdoor dataset and its model. 
 
Regardless of the process variant decided during the research stage, a conceptual data model will 
be defined, as a container of the common elements linking outdoor with indoor data.  
 
In addition, in case Variants 1, 2 will be selected, a process will be defined for the integration of 
data under one of the two initial data models.  
 
In the case of Variant 3, a wrapper schema will be defined, under which the combined 
indoor/outdoor data will be contained. 
 
For Variant 4, the initial data model linking the data will be used as the basis for the development 
of an application concept, managing the outdoor and indoor routing segments and connecting 
them accordingly. 
 
Finally, depending on the variant decided, an implementation will be created for testing purposes 
using available test datasets. The main objective of the implementation is a routing engine 
capable of handling combined indoor/outdoor datasets and providing correct routing results. 
 
Additionally, contextual constraints (time, access, etc.) should be definable and taken into 
account by the routing implementation. The third objective of the implementation is multi-modal 
routing capability, providing the optimal combination of vehicle and on-foot routing for the 
outdoor & indoor segments. Additional support for other modes of transport (e.g., bicycle, 
transit) is a desired objective, however it is not part of the scope of this thesis. 
 
The representation of the generated routes in a graphical user environment is also part of the 
thesis work objectives. However, navigation instructions or the 3D display of the route, while 
particularly useful for the indoor segment, are not part of the current thesis scope.  



 

14 
 

3 Research approach 
 
This chapter will offer an overview of the research approach driving this Master’s thesis. At first, 
a work outline is provided, describing the stages in which the work is separated. This is followed 
by a more detailed definition of four conceptual processes that were considered for the 
achievement of the thesis objectives. Finally, the expected outcomes from the thesis work are 
outlined. 

3.1 Research Stages 
 
As mentioned above, the work related to this Master Thesis can be broken down in the following 
three stages: 

3.1.1 Stage 1 – Research & Conceptual Development 
This stage will consist of the following objectives: 
Analysis of related work. 
Analysis of the IndoorGML Data Model and current indoor routing implementations. 
Analysis of Outdoor data provider (OpenStreetMap) and comparative analysis of the possible 
routing implementations. 
Examination of a conceptual system for a combined use of OSM and IndoorGML data. 
Examination of an application concept enabling routing for indoor and outdoor segments, via 
separate handling of the indoor and outdoor segments. 
 

3.1.2 Stage 2 – Indoor/Outdoor data integration 
This stage will consist of the following objectives: 
Identification of possible processes to achieve data interoperability enabling the conflation of 
IndoorGML and OpenStreetMap data, either by utilizing one of the two initial data models or 
under a combined “wrapper” schema. 
Alternatively, examination of the data merging/linkage requirements of an application enabling 
routing for indoor and outdoor segments, via separate handling of the indoor and outdoor 
segments. 
Identification of the optimal process/variant for context aware multi-modal routing between 
outdoor/indoor spaces. 
 

3.1.3 Stage 3 – Implementation & Testing 
This stage will consist of the following objectives: 
Development of a prototype implementation of the selected process, allowing for routing between 
outdoor/indoor spaces, supporting multi-modal routing as well as context awareness (semantic 
driven constraints). 
Assessment of the implementation regarding routing accuracy as well as context awareness.  
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3.2 Reviewed process concepts/variants 
 

The below section will examine four approaches/ process concepts that were considered during 
development of the thesis proposal, in order to achieve the thesis objective for the development 
of a multi-modal, context aware routing implementation, utilizing IndoorGML and 
OpenStreetMap data. 

 

3.2.1 Variant 1 – Integration of IndoorGML and OpenStreetMap data models (IndoorGML  
OSM) 

 

In this approach, the main focus is the conflation of the IndoorGML and OpenStreetMap data 
models. The purpose is the migration of IndoorGML indoor data to OpenStreetMap data, in a 
manner that maintains as much of the information contained in IndoorGML as possible, including 
not only the network information (edges and nodes of the building) but also any semantic 
information derived from the MLSEM that is necessary for contextual constraints. 

The reason for attempting this approach is that OpenStreetMap allows for immediate access to 
outdoor spatial information (maps, road networks, etc.) which can be used for the outdoor 
navigation segment.  

Additionally, OpenStreetMap already offers a host of options in regards to online and offline 
routing engines, which can be easily set-up and hosted for the creation of a web interface 
allowing navigation in the available datasets. Apart from the OpenStreetMap network, many of 
the routing engines support easy integration of GTFS (General Transit Feed Specification) data, 
enabling calculation of transit routes as part of the multi-modal navigation options. 

Migrating the IndoorGML data to OpenStreetMap would allow us to treat indoor and outdoor 
space as one seamless dataset, enabling routing via one of the available OSM routing engines. 
However, one important issue that may arise with this conflation is the loss of data when 
migrating from the combined network and space cell based approach of IndoorGML to the node-
edge network structures typical in OpenStreetMap.  

The other challenges with this approach appear mainly in the conflation process, since 
IndoorGML and the MLSEM are focused on the multi-layer description of indoor spaces to 
represent context (e.g., traversability in different modes of movement (flying, driving, walking), 
sensor spaces, etc.). On the other hand, OpenStreetMap does implement constraints on the 
edge/node network via the use of specific restriction tags, allowing for the definition of 
unconditional (e.g., wheelchair access) and conditional (e.g., opening hours) restrictions. 
However, as there is no multi-layer representation of the same topographical space, the amount of 
information that can be directly migrated is limited.  
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3.2.2 Variant 2 – Integration of IndoorGML and OpenStreetMap data models (OSM 
IndoorGML) 

 

In this approach, the conflation of the IndoorGML and OpenStreetMap data models would be 
again attempted. The difference to the previous process is the direction of data migration, as we 
would attempt to represent OpenStreetMap data in the IndoorGML data model. 

The reason for attempting this approach is that the IndoorGML is generally more complex, 
allowing for a richer semantic description of data sets via the MLSEM. If the data is successfully 
migrated, a routing implementation for IndoorGML could be implemented. As with the previous 
variant, the main benefit of such an approach is using a single routing solution based on one data 
model which would include the combined indoor/outdoor data. 

However, it quickly becomes apparent that there are multiple challenges to such an approach, 
since IndoorGML has been very specifically developed for the description and navigation of 
indoor spaces. As such, integrating outdoor data from OpenStreetMap would require extensive 
work in adapting and extending the IndoorGML data model, since the most applicable solution in 
the current IndoorGML implementation appears to be the use of Anchor nodes and external 
referencing of OSM objects. 

Additionally, there is no ready-to-use routing implementation for IndoorGML datasets, which 
means that additional work would be needed in order to implement one, capable not only of 
handling the indoor dataset, but also at least providing rudimentary navigation for the externally 
referenced outdoor OSM data. However, as IndoorGML conforms to the ISO 19100 family of 
standards, it should meet all the necessary requirements for use with other ISO compliant GIS 
tools & platforms, such as Oracle Spatial, facilitating the implementation of a routing engine. 

With the above in mind, this variant is only mentioned for the sake of completeness and will not 
be further investigated.  
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3.2.3 Variant 3 – Integration of IndoorGML and OpenStreetMap data models (OSM & 
IndoorGML  “Wrapper” schema) 

 

In this approach, we attempt to combine the IndoorGML and OpenStreetMap data models under 
a single wrapper schema that would allow for the merging of indoor (initially in the IndoorGML 
format) and outdoor (derived from OpenStreetMap) data. A wrapper schema concept would then 
be developed, allowing for the seamless import and integration of both IndoorGML and 
OpenStreetMap data.  

It then should be feasible to implement the conceptual wrapper model through a spatial-enabled 
database (in this approach, Oracle Spatial). Once the wrapper schema containing both data 
models has been successfully developed, a routing solution would be implemented that would 
need to utilize the complete wrapper data model, so as to accommodate the combined 
indoor/outdoor, multi-modal and context-aware routing requirements of the thesis objectives. 

The benefit of such an approach is that since both IndoorGML and OpenStreetMap data can be 
represented and stored in an Oracle database, developing a wrapper schema would enable the 
creation of a seamless indoor/outdoor dataset, without requiring any modification or 
simplification of data that takes place as part of the integration processes in Variants 1 and 2. 
This is a very important benefit, as it allows for the import and export of data from the database 
wrapper schema without any loss of information compared to the initial IndoorGML/OSM 
dataset. Additionally, Oracle Spatial has built-in support for routing, which could be possibly also 
utilized for a navigation implementation based on the wrapped indoor/outdoor data. 

The challenges in such an approach mostly focus around the implementation of the wrapper 
schema, which would have to conform to the ISO 19100 family of standards for geographic 
information systems, including the semantic and spatial representation of data, as well as 
Location-based services (e.g., routing). An important element is managing the correct merging of 
IndoorGML and OSM data, including accounting for any errors or mismatches in the description 
of the same elements in the initial datasets. 

An additional challenge is the implementation of a routing application, possibly driven by the 
built-in functionality of Oracle Spatial, which would need to meet all the requirements of the 
thesis objectives, namely providing multi-modal navigation for combined indoor and outdoor 
datasets, while taking into account any context/semantics driven constraints. 
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3.2.4 Variant 4 – Application-based integration of navigation results from OSM & 
IndoorGML 

 

This approach differs from all the previously examined variants, as there is no attempt to merge 
the IndoorGML and OSM data in a single dataset via conversion or a wrapper. According to this 
approach, the indoor and outdoor datasets would be examined separately within an application, 
using an OSM routing solution to calculate the outdoor segment of a route, an IndoorGML 
routing solution for the indoor segment, and an interface displaying the complete solution. 

One benefit of such an approach is that there is no need for modification of the initial datasets, as 
they are each processed separately by their respective routing engines. Additionally there is 
increased flexibility in the multi-modal and context awareness aspects of the routing solution. 
Vehicle/mobility type as well as constraints for context-aware routing can be defined separately 
for each of the segments, allowing for more fine-tuned control, or provided once, based on the 
subset of constraints that can be included/ considered in both the IndoorGML and 
OpenStreetMap models. 

The routing aspects for the outdoor segment can be handled by one of the available routing 
implementations for OpenStreetMap, while a routing solution would need to be 
developed/implemented for the IndoorGML data. 

The main focus and challenges of such an approach is the development of the main application, 
which would need to provide an interface for the input of data necessary for both route segments 
(start & endpoint, mode of transport & other constraints), the functional display of both route 
segments and navigation instructions and most importantly, the correct linkage between the two 
segments. Such an approach would possibly require some further input from the user, such as 
definition of preferred building entrance for the indoor segment apart from the origin/destination 
point, or calculation of the complete indoor/outdoor routing request for all possible building 
entrances and selection of the optimal route. 

This is extremely crucial, as correct routing needs to take into account information that needs to 
be a part of both data models and correctly matched between them. An easy example is the TUM 
building, which has multiple entrance points. These need to be matched between the IndoorGML 
model of the building and its representation in the OpenStreetMap model. Apart from matching, 
the multiple entrance points need to be accounted for during route calculation, along with their 
semantic information, in order to provide an optimal solution (e.g., entrance from the closest 
entrance when using transit, or only through the main entrance during late hours). 

While the indoor & outdoor datasets could be used in their original formats in such an 
implementation, additional linkage would need to be defined between the datasets, in order to 
correctly connect the external and internal datasets. In order to achieve this, the IndoorGML and 
OSM data could be stored under a single database allowing for the definition of relations between 
objects from the two datasets.  
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4 Analysis of Related Work 
 

The purpose of the following chapter is to provide a detailed look into research and work relevant 
to the objectives of this thesis. Initially, the selected data models for indoor & outdoor data, 
namely IndoorGML and OpenStreetMap, will be examined in more detail. A preliminary 
examination of the capacity for conflation of the two data models will follow, as a necessary step 
in deciding which of the previously described conceptual processes would be best suited for 
development of a working implementation. Finally, some of the platforms to be used as part of 
the conceptual system implementation will be examined in more detail. 
 

4.1 Data models – Introduction 
 

Data models are an essential tool in defining a structure in which sets of data can be organized, in 
order to facilitate tasks involving said data. These tasks can range from simple storage and 
exchange of data to complex processes involving the manipulation and/or processing of data that 
is part of the data model, including the addition and processing of semantic information. 
 
The structure that is defined within a data model enables the storage of data in a consistent 
manner, allowing for the development of processes and tools which are compatible with the data 
model and utilize its structure efficiently. 
 
One approach in categorizing data models is the three-level architecture model presented in 1975 
by ANSI-SPARC. According to this approach, data models can be categorized as one of three 
types, External (User), Conceptual and Physical. 
 

 
Figure 1 - The ANSI/SPARC three level architecture (West, M., 2011) 
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The external model defines the data that is available at the end user level. This can cover both the 
data structure requirements for user input as well as system output towards the user and helps 
better define the needs and requirements for the complete system, or simply the next level model, 
which is the conceptual model. According to the three-level architecture, the conceptual model 
level offers a high level view of the structure, requirements and interaction of data stored within 
the model. The types of data that are stored are defined in this level, along with their relations and 
interactions, hierarchical or other. This provides a global view of the model’s functionality and 
capabilities, without providing specifics for its implementation within a database or file system. 
The later information about the actual storage of data within a database or file is covered by the 
physical level model, which clearly defines how the conceptual model is implemented in a 
system, i.e., how data is stored and processed in both the database/file system and related 
hardware. 
 
Naturally, since 1975, many other approaches for the description of data and data models have 
been proposed, including additional steps or layers between the end user’s needs and the physical 
implementation of those. One important addition that is common across data modeling 
architectures is the concept of the logical schema, a level between conceptual and physical 
models which covers the definition of specific structures within the model, such as tables and 
columns, classes, functions and even tags. While still platform agnostic, this level allows for a 
better definition of semantic information and its representation within the data model. It is 
however often the case that the above logical level is also defined within the conceptual model. 
(S. Hoberman, 2014) 
 
The work within this thesis will initially deal mostly with conceptual level modeling, as this level 
is the most suited for ascertaining the feasibility of data integration between indoor and outdoor 
datasets stored in different data models. Naturally, both the external and physical model levels 
will also be examined, as part of the design of an implementation that will utilize the integrated 
indoor/outdoor data set for context-aware multi-modal routing purposes. A UML diagram could 
in turn be produced in order to better map and describe the conceptual model. 
 
One of the challenges of implementing a seamless indoor/outdoor navigation system is the 
interaction between the available data models for outdoor and indoor maps. 
 
Considering the scope of this thesis, it was decided to use a controlled and verified dataset for 
indoor data, based on IndoorGML data for a TUM building that was created based on IFC data 
from the TUM, in (Khan, A. A., Donaubauer, A., & Kolbe, T. H., 2014). Further details on the 
indoor dataset will be provided in the next section, covering the IndoorGML data model. 
 
For the outdoor segment, the use of OpenStreetMap was decided, due to the great availability of 
data, as well as the extensive documentation and community support, both in regards to the data 
model itself, as well as the multiple routing implementations that are available. More details on 
the datasets used will be provided in the relevant section regarding the OSM data model. 

http://en.wikipedia.org/wiki/Steve_Hoberman
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4.2 Indoor data model - IndoorGML 
 
IndoorGML is an OGC standard, specifying “an open data model and XML schema for indoor 
spatial information. IndoorGML is an application schema of OGC® GML 3.2.1. While there are 
several 3D building modelling standards such as CityGML, KML, and IFC, which deal with 
interior space of buildings from geometric, cartographic, and semantic viewpoints, IndoorGML 
intentionally focuses on modelling indoor spaces for navigation purposes” (OGC, 2014) 
 
IndoorGML was created based on the need for a standard for the accurate definition of indoor 
spaces, considering the needs of indoor location based services and differences between an 
outdoor and indoor dataset. One example is location acquisition, which is nowadays easy for 
outdoor spaces with the prevalence of GPS on mobile devices.  
 
However, in indoor space, where GPS coverage is not possible, alternatives such as combined 
sensor measurements (RFID, Bluetooth, Wi-Fi) and sensor space/strength mapping are used. 
Additionally, while outdoor navigation is relatively straightforward, utilizing road networks with 
limited constraints, indoor navigation is much more complex due to the complexity of indoor 
layouts, with building elements like doors, corridors and rooms, in addition to elements for 
vertical movement such as stairs, elevators and escalators. 
 
IndoorGML manages the above complexities by providing a data model which contains the 
following elements in its effort to accurately cover the constraints specific to indoor navigation 
(OGC, 2014): 
 
- Cellular space 
- Semantic representation 
- Geometric representation 
- Topological representation 
- Multi-Layered representation 
- Subspacing 
- Anchor nodes 
- External referencing 
 
The following segments will briefly examine each of the above elements separately. One 
additional point of note is that, as an OGC standard, IndoorGML is also compliant with the ISO 
19100 family of standards, enabling its use for multiple GIS applications. One such example is 
the confirmed capability to transfer data from other typical Building Information Model formats 
such as IFC or from other OGC formats such as CityGML LoD4 to the IndoorGML data model, 
limiting the loss of semantic information available in the input models (Khan, A. A., 
Donaubauer, A., & Kolbe, T. H., 2014). 
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4.2.1 IndoorGML - Cellular space 
 
Cellular space is a key feature differentiating IndoorGML from other standards. Instead of a 
thorough description of typical building elements (walls, floors, roofs), IndoorGML focuses on 
the indoor spaces enclosed and defined by these elements.  
 
These spaces are defined via the use of Cells, derived from the decomposition of the indoor space 
to its smallest organizational or structural units. With that in mind, each cell is unique, allowing 
for common boundaries but no overlap. A unique identifier allows for the referencing and 
identification of cells.  
 
The information of each cell can be complemented by the addition of further information, such as 
coordinates, semantic information, a geometric representation and the relevant relations, be it 
topological relations to other cells, or relations of cell to elements in different layers (a concept 
further examined alongside the Multiple Space-Event Layer Model) (OGC,2014) 
 

4.2.2 IndoorGML - Semantic representation 
 
In the scope of this master thesis, we focus on examining the feasibility and effectiveness of a 
context aware system.  However, there are certain prerequisites for effective context awareness. 
More specifically, “Context-aware navigation systems require the use and integration of an 
appropriate indoor spatial model that satisfies application and structural constraints” (Afyouni, I., 
et al., 2014) 
 
In order to define and utilize such constraints in our data model for indoor space, the addition and 
use of semantic information is required. As we mentioned IndoorGML has a cell-based approach 
for the subdivision of indoor space. However, semantics are also a driver of the definition of 
cells. For example, when defining semantics for topographical space, cells may be defined by the 
subdivision of a larger area into separate rooms. For a sensor space, each cell could represent the 
coverage area of an RFID card reader or a Wi-Fi network. Semantic elements such as function 
(e.g. living room, dining area, etc.) or access constraints (public, employee only, maintenance 
only) can be used for the definition of cells.  
 
From the above approach, we can see that semantics play a significant role in IndoorGML, as 
they are an intrinsic driver of space subdivision and definition. Additionally, this allows for their 
use in defining the relations between elements, be it connectivity between cells or interrelations 
with sub or parent classes of elements. This is particularly useful for the quick identification and 
grouping of cells by their semantic properties, when examining a complete and complex indoor 
space dataset. 
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Navigation within IndoorGML is also driven by the inclusion of rich semantic information, as it 
is precisely the distinction between navigable and non-navigable spaces, along with the 
connections between the cell elements that allow for the definition of a route. Any additional 
semantic information, such as sensor spaces, locomotion or access constraints, can be also 
defined within the model and assist in creating a more semantically rich system, capable of 
providing precise and context-aware routing information.  
 
The above defined semantic enrichment of the data model is also achieved via the use of the 
Multi-Layered Space-Event Model (MLSEM). 
 

4.2.3 IndoorGML - Geometric representation 
 
As we have previously mentioned, the thorough representation of geographical space and its 
elements is not one of the main focus areas of IndoorGML. Based on this, an IndoorGML dataset 
may contain no geometry information and still offer a usable dataset for navigation, semantic and 
topological classification of indoor spaces. Alternatively, the geometry of cells can be described 
via external references to elements in other datasets, such as CityGML LoD4 building models. 
Finally, geographic representation is also possible within the IndoorGML data model, covering 
both 2D and 3D spaces, as per the ISO19107 Spatial Schema. Usage of the GM_Solid or 
GM_Surface, for 2D and 3D spaces respectively, can provide geometry information as part of an 
IndoorGML dataset.  
 

 
Figure 2 - Three options to represent geometry in IndoorGML (OGC, 2014) 

 
One final point of note is that external referencing can be used alongside the built-in basic 
geometry definition capabilities of IndoorGML when a complete and matching external dataset is 
not available or preferable.   
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4.2.4 IndoorGML - Topological representation 
 
Topological representation is essential in defining connectivity of spaces, however it is not 
implicitly defined in cellular space. As the geometrical representation of spaces (which could be 
leveraged in order to establish basic relations between elements) is not a requirement for 
IndoorGML datasets, the topology and relations between cells must be defined separately, in 
order to have a usable dataset. This establishment and representation of relations between cells is 
achieved by use of a relational graph called Node-Relation Graph (NRG). 
 
NRG are created from indoor space through the application of the Poincaré duality. According to 
this principle: “a k-dimensional object in N-dimensional primal space is mapped to (N-k) 
dimensional object in dual space. Thus solid 3D objects in 3D primal space, e.g., rooms within a 
building, are mapped to nodes (0D object) in dual space. 2D surfaces shared by two solid objects 
is transformed into an edge (1D) linking two nodes in dual space.” (OGC, 2014) 
 
As a result, 3D objects in indoor space such as rooms are transformed to 0D objects (point nodes) 
in the dual space of the NRG, while 2D surfaces, boundaries between 3D spaces are transformed 
to 1D edges, connecting the nodes. This allows for the generation of an NRG indicating the 
adjacency relations of nodes (which also coincide with cells in the cellular space), called the 
adjacency graph. 
 

 
Figure 3 - Topographic and Indoor Space 

 One important note is that basic topological relations such as adjacency require no semantic 
information for their definition. However, the addition of semantics and further definition of 
more specific graphs allows for a very useful tool for routing and navigation implementations. As 
a first example, the addition of semantic information differentiating the surfaces of the 
topographic space between navigable (doors, e.g., D1,D3) and non-navigable (walls, e.g., 
B1,B2,B3,B4), can lead to the derivation of a connectivity graph, indicating only the edges 
(surfaces) which allow navigation through the nodes (rooms/spaces).  
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With the addition of further semantic information, e.g. wheelchair accessibility based on the 
dimensions of the transfer surfaces (doors), we could derive an accessibility graph. If we assume 
that based on the added semantic info door D1 is too small to fit a wheelchair through, our 
accessibility graph would look as follows, indicating that cell/room R1 is not accessible via 
wheelchair: 

 
Figure 4 - Derivation of connectivity and accessibility graphs from adjacency graph (OGC, 2014) 

As discussed, addition of geometry is not obligatory in IndoorGML. This is easier to accept when 
considering the capabilities enabled simply through the use of topological graphs, which suffice 
for the purposes of navigation, including constraints. In such cases, the NRG is called a logical 
NRG. However, basic geometrical properties can be added to elements of the NRG via 
GM_Point (nodes) and GM_Curve (edges), as per ISO 19107. NRGs that include geometric data 
are called geometric NRGs. (OGC, 2014) 
 
One final note regarding the topological / network representation is that boundaries such as walls, 
windows and doors can also be depicted as cells, in what is called the thick wall model. 
Naturally, this changes the adjacency graph, as the doors and walls now also are 3D cell space 
objects which transform into nodes in the dual space of the NRG. 

 
Figure 5 - Thick wall model and corresponding adjacency graph (OGC, 2014) 
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4.2.5 IndoorGML - Multi-Layered Representation 
 
IndoorGML is based on a flexible and extendable model, called “Multi-Layered Space-Event 
Model (MLSEM)” (Nagel, C., 2014). The MLSEM allows for multiple layers of data, not only 
providing topographical information and connections between spaces, but allowing for the 
overlay and connection of multiple thematic layers, be it sensor spaces (e.g. Wi-Fi or BT 
coverage) or other layers, providing useful semantic information and connecting it to the actual 
topography of the building. This semantic information can be utilized in order to provide the 
constraints necessary for a context-aware system. 
 
The MLSEM is an extension of the Structured Space Model: The concept is based on the 
subdivision of a space by Geometrical and Topological space, alongside primal & dual space. 
Each layer can be represented geometrically or topologically in an ISO 19107 compliant 
definition of primal space. Via the Poincaré duality, the ISO 19107 primal space is transformed to 
dual space Node Relation Graphs (NRGs) which can be geometric (containing coordinate 
information for the states/points and transitions/curves) or logical (only topology info, no 
coordinates). 
 

 
Figure 6 - Multiple Space-Event Layer Model (OGC, 2014) 

  
 

 
Figure 7 - Multiple layer relations (OGC, 2014) 

  
 
The MLSEM allows not only the addition of multiple layers of semantic information to the 
existing cellular space, but also the establishment of inter-layer relations between multiple layers, 
allowing for extensive fine-tuning of queries for data within the model, and the parallel 
examination of multiple constraints (e.g., a Wi-Fi coverage map for IT combining topographic 
and Wi-Fi sensor maps, or identification of a location in the topographic space by the 
combination of returned values from the Wi-Fi and RFID sensor space). 
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As an OGC standard, IndoorGML follows the concept of modularization, utilizing a base Core 
Module which is further extensible by additional thematic modules. The MLSEM, being the 
foundation of IndoorGML, is defined via the IndoorGML Core Module, which also provides the 
Structured Space Model for ISO 19107 compliant geometric representation (utilizing GML 3.2.1 
geometry classes). A UML diagram of the Core module is depicted below, structured in order to 
highlight the SSM (geometry) and MLSEM (topology) segments of the module: 
 

 
Figure 8 - UML diagram of IndoorGML's core module (Multi-Layered Space Model) (OGC, 2014) 

 
Currently, the only additional thematic module for IndoorGML is the IndoorNavigation Module, 
which will be examined further below, as it is essential for the use of IndoorGML in a routing 
implementation as per the scope of this thesis. 
 
The IndoorNavigation Module extends the Core IndoorGML module by providing additional 
classes that allow for the characterization of space (State/Cellspace features in dual and primal 
space respectively) and surface (Transition/CellSpaceBoundary features) features into non-
navigable and navigable features. The Navigable features are further defined depending on their 
function within a routing context. Additional Feature classes are defined for the description of a 
Route, along with the Route Segments and Route Nodes the route is comprised of. 
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An example of how space is mapped to the appropriate classes of the IndoorNavigation module is 
provided below (OGC 2014): 
  

 
Figure 9 - Indoor space mapped to IndoorGML Navigation module classes (OGC, 2014) 

One point of note is that the use of the Space/Boundary variants of the IndoorNavigation module 
feature classes is also dependent on the selection of model for the definition of indoor spaces. As 
a reminder, two approaches exist, with the thin wall model considering walls and transitions 
(doors/windows/etc.) as 2D Surfaces, while the thick wall models considers all elements (indoor 
spaces and walls/ doors alike) as 3D solids. 
 
In addition to the above feature classes, the IndoorNavigation module provides a conceptual 
model for the addition of constraints to NavigableSpace and NavigableBoundary features.  The 
constraints currently defined in the conceptual model are time-based constraints, access/ 
authorization constraints, traversability/ passability constraints, direction constraints (e.g., one 
way doors as in airports) and movement type constraints (e.g. vehicle, walking, wheelchair). 
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The UML diagram of the conceptual model for constraints is depicted below: 

 
Figure 10 - Conceptual model of indoor navigation constraints (OGC, 2014) 

The navigation constraints model will also be examined further later in this document, as one of 
the main points for data integration between IndoorGML and OSM data and a requirement for the 
implementation of a context aware routing system, as per the thesis objectives. 
 

4.2.6 IndoorGML - Subspacing 
 
IndoorGML allows the subspacing of indoor spaces via decomposition of a cellular space and its 
node representation in a dual space NRG to multiple sub-nodes, in order  to better reflect 
hierarchical structures (e.g., dividing a corridor by segments better matching the connected door 
& room nodes. This is achieved in the MLSEM by the creation of a new subspacing NRG which 
contains the new NRG created by the subspacing, along with specific inter-layer connections 
showing the relations between the initial and new nodes, while all other nodes retain a 1 to 1 
inter-layer connection. Below is an example of subspacing of a corridor (node n6 to n6-1 & n6-2):  
 

 
Figure 11 - Example of subspacing (OGC, 2014) 
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4.2.7 IndoorGML - Anchor nodes 
 
One of the features of IndoorGML that greatly enable interoperability of IndoorGML with 
outdoor datasets is its support for bidirectional external references via the Anchor Node (usable 
via the AnchorSpace and AnchorBoundary feature classes of the Indoor Navigation module). 
 
The Anchor node serves multiple purposes, not only allowing for an external reference to outdoor 
datasets (e.g., via mapping of one or many anchor nodes to the corresponding “building:entrance” 
tags of a building in OSM), but also by providing the necessary transformation parameters in case 
a different coordinate system is used between the indoor and outdoor data sets. These parameters 
are the following: i) rotation origin point (x0, y0, z0) ii) rotation angles (α, β, γ, along x, y, and z-
axis), iii) rescaling factor (sx, sy, sz) and iv) translation vector (tx, ty, tz). (OGC, 2014) 
 

 
Figure 12 - Indoor GML Anchor Node (OGC, 2014) 

 

4.2.8 IndoorGML - External referencing 
 
As mentioned previously, IndoorGML has extensive support for external referencing. 
Considering the scope and focus of the IndoorGML data towards topological data and network 
graphs with the purpose of navigation, this capability allows users to quickly create an 
IndoorGML dataset that is data-rich by supplementing it with external references to industry 
specific formats such as IFC or OGC standards such as CityGML. One point of note is that the 
use of external referencing is optional and dependent on the availability of matching datasets. 
Additionally, only one external reference is currently supported per IndoorGML feature. 
 
The above section covers the initial review of the IndoorGML data model and its features. Some 
further analysis of certain features will follow while reviewing IndoorGML’s potential for 
conflation with OpenStreetMap data. While we will review parts of the IndoorGML and OSM 
data model as necessary in the following sections, complete UML diagrams of the IndoorGML 
modules and sample OSM XML code are also included in Appendix I of this document.  
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4.3 Outdoor data model - OpenStreetMap (OSM) 
 
OpenStreetMap is a free and editable global map, built from crowd sourced and public domain 
data, available to any user based on an open content license. Since its foundation in 2004, 
OpenStreetMap has become a huge resource for openly available mapping data by utilizing 
crowd-sourced and public-domain data. With more than 1.9 million registered users 
(http://wiki.openstreetmap.org/wiki/Stats, Accessed February 2015), OSM has in many cases 
become an alternative to commercial providers of mapping data. 
 
This section will provide an overview of the OpenStreetMap data model, starting with the base 
elements, schema and data sources for OSM, an overview of tagging in outdoor datasets, a brief 
look into the advances in indoor mapping with OSM and a review of some of the available 
routing solutions and their pros and cons. The selected tools for our implementation will be 
further examined in section 6. 
 
Despite no official conceptual model being available, the basis of the OSM data model is fairly 
simple, utilizing the following base elements (also referred to as data primitives): 

• nodes (point elements) 
• ways (line elements defining linear features or boundary edges) 
• relations (relational elements connecting all element types) 
• tags (free tagging system defining attributes of elements and their values) 

 

 
Figure 13 - Simplified OSM data primitives class diagram (F. Ramm, 2010) 

 
Nodes in OSM are used to represent point features. These can be stand-alone features or part of a 
line-edge (node-way in OSM elements) network. Nodes include an id and coordinate values and 
are supplemented with information via the use of tags (further describing the exact nature of the 
point feature and providing attribute values) and relations, connecting the node to other elements. 

http://wiki.openstreetmap.org/wiki/Stats
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Ways represent linear features (edges) in OSM. Ways may represent a single line feature 
connecting two nodes or be part of a more complex feature connecting up to 2000 nodes, e.g., 
providing the boundaries to a polygon, defining a subway line (by connecting the nodes 
representing the line’s stations), etc. It is important to note that the use of ways to represent a 
boundary is the same for an area (e.g. the polygon outline of a square) and a loop (e.g. a walking 
path circling said square). Such cases, where the first and last node in the way are the same, are 
called closed ways and can be differentiated by the tags and relations used to further describe 
them. Multiple way features can be combined via the use of relations in order to describe 
complex polygon features (e.g., more than 2000 nodes or areas with “holes”). 
 
Relations are a data element providing relationship info between other elements (nodes, ways or 
other relations). There are multiple types of relations, defined via the use of tags and their 
content. The “type” tag usually describes the nature of the relation, with other associated tags 
providing further data or attributes. Relations may be collections of elements, e.g. a list of nodes 
and ways forming a bus route, along with the route’s information (bus number, line name, etc.). 
Relations can also cover restrictions, for example in the case of turn restrictions between ways. 
Additionally, as we mentioned before, relations can express combinations of multiple ways for 
the description of complex polygon features. These are only some examples, as essentially most 
complex data structures containing multiple elements are defined via relations. (OSM Wiki, 
2015)  
 
Along these basic elements exists a very extensive set of tags which can further define all aspects 
of an element. Tags consist of a key, describing the category of information or feature to be 
defined, and values, providing the specific options available under the defined key. While this 
does allow for great flexibility and easy extension of the data model, it also has some concrete 
drawbacks considering the lack of standardization and arbitrary use of tags. Taginfo, a project 
tracking the use of tags in the main OpenStreetMap database, lists over 53 thousand distinct keys, 
with over 74 million distinct values (https://taginfo.openstreetmap.org/, figures from May 2015). 
 
As an example, the path on the right can be tagged 
as follows (OpenStreetMap, 2015): 
highway=cycleway 
foot=yes 
tracktype=grade2 (unpaved track) 
horse=no 
motor_vehicle=no 
 
or, alternatively: 
highway=path 
foot=yes 
bicycle=yes  
horse=no Figure 14 - OSM Highway example image 

(http://wiki.openstreetmap.org/wiki/Highway_exa
mples) 

https://taginfo.openstreetmap.org/
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Considering the above figures, as well as the arbitrarily defined elements, it is apparent that while 
OSM allows for the easy definition of new key and value pairs for e.g., the development of a 
custom applications, it is often hard to define a uniform approach for handling larger datasets and 
creating applications that will correctly parse larger or more complex OpenStreetMap datasets. 
However, certain tag assignments are more established, and there are certain efforts for the 
codification/ establishment of best practices, which also include tagging for indoor mapping. The 
current approaches for indoor & outdoor tagging standardization will be reviewed in more depth 
later in this document. 
 

4.3.1 OSM Schema 
 
OSM data is typically available in XML file format. Typically, XML files are accompanied by an 
XSD (XML Schema Definition) file, outlining the expected content of an XML file in regards to 
elements, attributes, parent/child relationships between elements, data types and default or fixed 
values for elements and attributes (W3C, 2015) 
 
However, unlike other XML-based data models (e.g. IndoorGML, CityGML, etc.), 
OpenStreetMap has no official XSD Schema, due to the ever changing content of OSM elements 
and the issues arising when setting pre-requisites for expected element types or their attributes, as 
these vary depending on the selected data-set, its source and how it was created or extracted from 
the main OSM database. An OSM XML example is provided in Appendix I. 
 
As some applications require an XSD Schema in order to process OSM data, some example XSD 
files are in circulation, but they are usable under specific circumstances (e.g., only for parsing 
data retrieved from a specific OSM API version) and may not always be compatible with the 
XML datasets examined. (OGC, 2015) 
 

4.3.2 OSM Data Sources 
 
OSM data in the standard XML format is directly retrievable from the main OSM database via 
the OSM API. Apart from direct usage of the API, users can also export data from the 
Openstreetmap.org site, via the export tab. A bounding area is set based on the current map view, 
which is further modifiable by the user. However, this method is only available for smaller areas / 
datasets. OSM editing clients such as JOSM also allow for direct download of data from the main 
OSM database, with similar limitations regarding the size of the area that can be downloaded. 
 
In addition to the standard OpenStreetMap API, the Overpass API also allows read-only access 
and querying to the main OSM database, enabling advanced queries to the database and export of 
queried data via a comprehensive query language (Overpass QL). There are several public 



 

34 
 

instances serving data via the Overpass API. However, limitations regarding size of the dataset 
still exist, along with limited support for querying and retrieval of historical data. 
 
For larger datasets, a snapshot of the entire main OSM database, also known as planet.osm is 
available on a weekly basis via several mirror sites. These planet.osm XML files can be 
extremely large (0.5TB) and are rarely used. Instead, two typical formats of compressed OSM 
data are preferred, namely PBF files or BZ2 compressed OSM XML. Most OSM tools directly 
support these formats, which offer a dramatic reduction of size compared to the original XML 
data (42GB for BZ2 and 28.8GB for PBF, compared to 576GB for an uncompressed XML 
planet.osm file). (OSM Wiki 2015) 
 
Additionally, there are several providers of extracts, which are smaller datasets, ranging from 
country to city levels. Extracts are available both freely or paid, depending on the provider, and in 
some cases, the extract format. The update frequency of extracts also varies, with several 
providers offering daily updates of their extract datasets. Typically, extracts are also available in 
XML (compressed & uncompressed) and PBF, however some providers have options for ESRI 
Shapefiles, navigator vendor specific files (Garmin, Navit, etc.), and other formats. Finally, apart 
from location based extracts, some providers also have the option of thematical extracts (e.g. 
WeoGeo Market). Two sources of OSM extracts data for Bavaria & Munich are Geofabrik and 
Mapzen (http://download.geofabrik.de/europe/germany.html and https://mapzen.com/metro-
extracts/ respectively). 
 

4.3.3 Tagging of features in OSM 
 
As mentioned previously, OSM data is based on the combined use of simple elements (points, 
ways and relations) and tags, key-value pairs which help define these elements, so that they 
represent features in the real world. 
 
While OSM has a free tagging system, allowing for the definition and use of arbitrary tags, the 
need to establish a commonly accepted and consistent manner of tagging features has led to the 
creation of an informal but comprehensive list of tags used for various map features. 
This list is maintained within the OpenStreetMap Wiki, offering a solid basis for defining real 
world features via applicable tags.  
 
The OSM communities from various countries have also established some country-specific 
tagging rules which help improve consistency, while also allowing for the addition of information 
that makes sense within the regional/national context. 
 
Each one of the commonly accepted feature tags has further documentation in the OSM Wiki, 
allowing for the better understanding and use of the relevant tags. Of particular interest in our 
case are the tags/features for Buildings, Restrictions and Indoor mapping.  

http://download.geofabrik.de/europe/germany.html
https://mapzen.com/metro-extracts/
https://mapzen.com/metro-extracts/


 

35 
 

4.3.4 Buildings in OSM 
 
Buildings are described in OSM typically via use of a building footprint (closed way) or even a 
point node, in case an outline is not available due to poor building information availability. The 
“building” key is used, followed by the type of the building. In its simplest form, “building=yes” 
can be used, when the function of the building is unknown. The “building=yes” key/value 
combination actually accounts for 84.16% percent of the buildings defined in the main OSM 
database (Taginfo, retrieved May 2015). Otherwise, there is an extensive list of commonly used 
values, also available via the Taginfo tool, as well as in the OSM Wiki.  
 
However, with a free tagging system as in OSM, a user is not limited to certain values for the 
building type and can use values based on industry standardized typologies, if that facilitates 
interoperability of the defined OSM data with a specific application. In any case, the best 
practices defined for building tagging should still be considered, in order to at least ensure a 
certain level of consistency with global OSM data. 
 
Other than the building type, important elements for the tagging of buildings are the “addr” 
(address) and “entrance” keys: 
The addr:* keys (typical keys in the addr:* namespace being “addr:street”, “addr:housenumber”, 
“addr:postcode”, “addr:city” and “addr:country” ) help better identify the exact location of a 
building and enable querying the dataset for specific address values. While the addresses of OSM 
features can be resolved from longitude & latitude using geocoding services, the addition of 
address information remains a best practice, as it provides an official value for the address of 
building features, compared to the estimates often provided by geocoding services. 
The “entrance” key is used to identify the entrance of a building. This is an important key as it 
simultaneously provides the location of the building entrance (multiple entrances are also 
supported) allows for the definition of further parameters, such as access or accessibility 
constraints and entrance type (main entrance, service access, etc.). One important note is that the 
entrance key was proposed as a replacement to the deprecated “building=entrance” tag. However, 
the later tag still remains in use, with 52 and 823 thousand entries with “building=entrance” and 
“entrance=*” respectively (Taginfo, retrieved May 2015). With that in mind, when considering 
querying for building entrances within a dataset, both tags should be examined. 
 
For the 3D representation of buildings, an initial approach is through the combined used of the 
building footprint, as defined by the initial closed way using the “building” key, and the use of 
the “height” key and “building:levels” tag: 
The “height” key is used to define the height of any feature, by entering the actual height value of 
the feature (by default in meters, although other units can be also used). For building features, it’s 
important to remember that the “height” key refers to the top edge of the building, i.e., its 
maximum height. 
This is the main difference to the “building:levels” tag, which simply specifies the number of 
levels a building has above ground, without accounting for the building roof, which can be 
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described separately via the “roof” key. Another important note is that “building:levels” does not 
consider differences in height between levels, so it is better used alongside the “height” key. 
 
An approach for the simple mapping and representation of 3D buildings was proposed in the 
2012 2nd 3D Workshop Garching, named Simple 3D Buildings (S3DB). The S3DB proposal 
provides a tagging method with the purpose of representing more complex 3d geometries. The 
concept is based on the provision of a building outline via the “building” key, and its division 
into building parts, in order to represent parts of the building with different attributes (e.g., 
different number of levels/floors, height, different roof types and materials). As per the S3DB 
proposal, apart from the closed ways defining the “building” and “building:part” elements, it is 
also helpful to create a relation grouping the outline and part elements together, in order to 
facilitate queries and better indicate the hierarchical structure of the building and its parts. 
 

 
Figure 15 - Representation of buildings in Passau as per the S3DB proposal (OSMBuildings engine) 

(http://osmbuildings.org/?zoom=17&lat=48.57259&lon=13.45641) 

 

4.3.5 Indoor mapping   
 
There is an increased interest in indoor mapping within the OSM community in the past years, 
leading to the creation of a separate wiki section and forum, in an effort to propose and establish 
a tagging approach for indoor spaces. 
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One of the first proposals that gained significant traction was IndoorOSM. Proposed by the 
GIScience Group of the University of Heidelberg, IndoorOSM provided a model for indoor 
tagging, which could be used for mapping, as well as indoor navigation & routing purposes. The 
concept of IndoorOSM is based on the definition of a 3D Building Ontology covering most 
aspects necessary for the representation of outdoor and indoor features of a building. Based on 
this ontology, an extension of the OSM tagging schema is proposed, defining the use of 
primitives (nodes, ways & closed ways, organized hierarchically under a rigid relations structure) 
and tags, introducing new keys as well as existing ones where applicable, for a model that could 
be used as a consistent approach to building tagging. (Goetz & Zipf, 2011) The 3D Building 
ontology proposed by IndoorOSM, as well as some example OSM XML of a building defined 
according to the model are available in Appendix I. 
 
However, due to technical issues (e.g., reference of OSM IDs causing data persistence issues, 
heavy use of relations) IndoorOSM is now considered defunct as a schema 
(http://wiki.openstreetmap.org/wiki/IndoorOSM, Accessed February 2015), with other 
proposals based on it such as the Simple Indoor Tagging and Full 3D Buildings (F3DB) schema 
being reviewed in order to accommodate the increasing request for better indoor mapping 
capabilities with OSM. (OGC, 2015) 

 

Figure 16 - Sketch showing the tagging of indoor elements in Simple Indoor Tagging schema / IndoorOSM_2.0 (OGC, 2015) 

There are already some demo implementations of indoor routing which support partial outdoor 
navigation (i.e. by utilizing a predefined graph with walking directions to another nearby building 
entrance node). Such examples show that by using a graph derived from a building (defined as 
OSM data) and linking it to an existing outdoor graph, we can attempt a seamless indoor/ outdoor 
navigation implementation. (Hubel A, 2011) 
 
All the above approaches are considered alongside the conflation process with IndoorGML, as 
well as the routing and representation implementation, in order to select the tagging model that is 
most appropriate for context-aware indoor/outdoor routing, as per the thesis’ goals. The tagging 
model in use will be examined further as part of the implementation, in section 6 of this 
document. 
 
  

http://wiki.openstreetmap.org/wiki/IndoorOSM
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4.3.6 Restrictions / Constraints in OSM 
 
The OSM free tagging system allows for the definition of restrictions via the use of various 
key/value pairs supplementing the data primitives’ descriptions. Usually, restrictions apply to 
node and way elements, however relations can also be used for restrictions, either indirectly, i.e., 
to specify a restriction interaction between elements of the relation (e.g. turn restrictions via used 
of “relation type=restriction”), or directly, by applying a restriction to all members of the relation. 
 
The most used tag in regards to restrictions is the “access” tag, which can be used in multiple 
ways to define the legal access for elements such as highways, building entrances, areas, etc. 
The access key can be used to define specific transport modes that are allowed or restricted (if 
that is not implicitly defined by the tags already used to define the described element), right of 
access (e.g., staff only, private, public, etc.), routing restrictions (e.g., one way streets or even 
emergency exits/doors), size and speed restrictions and even time restrictions.  
 
There is a multitude of other key/value pairs that are used for constraints, many of which are 
more specialized/ stand-alone variations of the access tag. One important note is that the same 
restrictions can be (where it makes sense) applied for on foot or other navigation within indoor 
datasets. 
 
Additionally, OSM supports the definition of complex conditional restrictions, which are 
restrictions that apply when a specific criteria is met. Access limits based on time and day of the 
week are a prime example, while others include speed limits depending on the vehicle type or 
weight, lane access depending on vehicle usage, etc. The AND logical operator can be used to 
define even more complex restrictions, while conflicting restrictions are also determined based on 
a specific algorithm, allowing for the definition of complex restrictions via the use of a 
specifically ordered or structured approach in defining them. The last point is particularly useful 
in setting “default” values that apply generally, as the implicit default values when defining 
highways or other elements may not accurately represent the real world constraints or 
restrictions. 
 
One example of a conditional restriction is given below (OSM Wiki, 2015) 
 

 
Figure 17 - Conditional restriction example 

(http://wiki.openstreetmap.org/wiki/Condition
al_restrictions) 

OSM Tagging: 
motor_vehicle:conditional=no @ 
(10:00-18:00 AND length>5)  

 
 
Resulting constraint: 
Motor vehicles longer than 5 meters 
are not allowed between 10am - 6pm. 
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The above free tagging mechanism for restrictions allows for a very targeted and accurate 
definition of restrictions. One important parameter however, as with other aspects of the free 
tagging system, is that while free tagging is good for the accurate representation of elements, at 
least depending on the specific needs of the user doing the tagging, there is not one globally 
consistent approach in the use of tags for the definition of restrictions. This means that correct 
parsing of the data can either be limited to the most commonly used forms and values, in order to 
achieve a relatively generic, but globally operational implementation, or, alternatively, 
extensively specialize or customize the application, in order to accommodate for the added 
element definitions and their correct interpretation and use. 
 
This is an issue particularly apparent with routing engines, which rely heavily on the tagging of 
elements to provide an accurate routing solution and can be problematic, if the tagging is not 
implemented in the manner that the routing engine is configured to parse. 
 

4.3.7 Routing and data representation in OSM 
 
OpenStreetMap data, apart from the typical mapping applications, can additionally be used for 
navigation from one point to another. There are many options for routing applications utilizing 
OSM data, available in online and offline configurations for desktops, as well as mobile devices. 
 
There are several key factors differentiating the many available engines, such as supported modes 
of transport (an important factor considering the multi-modal scope of this thesis), advanced 
routing options such as turn restrictions, vehicle details & speed, traffic & route avoidance 
(features that are important when considering context awareness of the routing implementation) 
and existing/ available user interfaces, which are integral in the ease of use of any navigation 
system implementation.  
 
A rather extensive list & comparison of online routing engines is available in the OpenStreetMap 
Wiki pages (http://wiki.openstreetmap.org/wiki/Routing/online_routers, 2015). 
 
One example of an OpenStreetMap routing implementation meeting several of the requirements 
is OpenTripPlanner ( http://www.opentripplanner.org/ ), a multi-modal trip planner which has 
built-in support for on-foot movement, cycling (including definition of constraints such as 
maximum cycling distance & route steepness),  transit (with the use of General Transit Feed 
Specification – GTFS data) and limited support for cars. Additionally, support for indoor features 
such as elevators is currently implemented, hinting at functionality with indoor datasets. The 
OpenTripPlanner platform also offers a customizable user interface for navigation including 
instructions and a 2D visual representation based on the Leaflet library and OSM data, while 
offering advanced features such as support for geocoding and integration with Google Street 
View. There are several high-profile OTP deployments that are currently online 
(http://docs.opentripplanner.org/en/latest/Deployments/ ). 

http://wiki.openstreetmap.org/wiki/Routing/online_routers
http://www.opentripplanner.org/
http://docs.opentripplanner.org/en/latest/Deployments/
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Figure 18 - TRIMET - Multi-Modal Routing implementation based on OpenTripPlanner (http://trimet.org/) 

 
While OTP offers a great solution for quick deployment of an outdoor routing solution, further 
customization is necessary for the correct processing of indoor graphs and their connection to the 
outdoor graph for routing and navigation purposes. The extent to which this is possible will be 
investigated via the manipulation of the available options for the built-in graph builder, as well as 
the definition of the indoor dataset. 
 
Additionally, the representation of data based on the default configuration of Leaflet is aimed 
towards 2D outdoor routing. Features like display of floor overlays or 3D buildings can be added 
by customizing the viewer, with examples being available from several projects outside OTP 
(e.g., OSMTools, OpenLevelUp, OSMBuildings) which use the same Leaflet library as a basis 
for their Map viewers.  
 

 
Figure 19 - OpenLevelUp indoor representation example 

( http://github.pavie.info/openlevelup/ ) 

 
Figure 20 - OSMTools indoor representation example 

( http://clement-lagrange.github.io/osmtools-indoor/ )

http://github.pavie.info/openlevelup/
http://clement-lagrange.github.io/osmtools-indoor/
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Figure 21 - OSMBuildings 3D Building representation example – Leaflet based implementation 

( http://osmbuildings.org/ ) 

 

 
Figure 22 - OSMBuildings 3D Building representation example - GLMap based implementation 

( http://osmbuildings.org/gl/ ) 

 
A full 3D virtual globe implementation (such as Cesium or other WebGL-based globes) could be 
investigated, but is currently outside the scope of this Master thesis, and is only discussed as part 
of potential improvements in the proof of concept results in subsection 6.11. 
   

http://osmbuildings.org/
http://osmbuildings.org/gl/
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5 Conflation Conceptual Model - Indoor GML & OSM 
 
One of the essential tasks encountered in all variants is the conflation or integration of data. 
Considering the different focus of the two data models as well as the objectives of the thesis, 
identifying the common features (as well as differences) between IndoorGML and the 
OpenStreetMap data model is crucial to identifying and enabling interoperability, in order to 
implement a routing solution capable of dealing with the combined indoor/outdoor space. 
 
In the previous section, we examined the concepts and structure of IndoorGML and 
OpenStreetMap, the two data models that were considered suitable for achieving the goals of this 
Master Thesis. In the current section, we will examine how to best achieve the goal outlined 
above, namely identifying conflation points between the two data models that would ideally 
enable transferring data accurately, completely and consistently from the complex and 
specialized IndoorGML model to the more widespread and simple, yet fragmented, OSM model. 
 
As we have mentioned, the following concepts form the core of IndoorGML: 
 
- Cellular space 
- Geometric representation 
- Topological representation 
- Semantic representation 

- Multi-Layered representation 
- Subspacing 
- Anchor nodes 
- External referencing 

 
Respectively, OSM is based on a drastically simpler concept, using a flat, single layer approach 
based on the combined use of basic data primaries. These are the following: 
 
- nodes (point elements) 
- ways (line elements defining linear features or boundary edges) 
- relations (relational elements connecting all element types) 
- Tags (free tagging system defining attributes of elements and their values) 
 
If we attempt an initial identification of conflation points, we would start with how the basic 
OSM elements are best matched to and covered by the concepts of IndoorGML: 
 

 IndoorGML Concepts 

OSM 
Elements 

Cellular 
Space 

Geometric 
Representation 

Topological 
Representation 

Semantic 
Representation 

Multi-Layered 
Representation 

Subspacing Anchor 
Nodes 

External 
Referencing 

Nodes ? X X - X ? X - 

Ways ? X X - X ? X - 

Relations - - X X X ? - - 

Tags ? ? ? X X ? X X 

Table 1 - IndoorGML Concepts / OSM Elements - initial mapping 
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We can already see from the table above that by correctly utilizing OSM’s basic blocks, a good 
level of coverage can be attempted for most main elements of the IndoorGML core concept. In 
addition, the extra data covered by the IndoorGML Navigation Module and Constraints concept 
can also be covered via the use of tags in OSM, which serve as the main extension method for 
OSM data.  
 
The transference of these concepts will be first examined in greater detail below, while an actual 
mapping of IndoorGML Core and Navigation Module / Constraint Concept Features to OSM 
equivalents will be presented at the end of the section. 
 

5.1 Conflation - Cellular Space 
 
Cellular space, the concept of breaking down an indoor space to small, non-overlapping or 
intersecting space cells (which may however share boundaries) is a very important concept in 
IndoorGML, driving the structure of the data model itself. The use of cellular space ensures that 
data accuracy is high, with no overlapping elements and clearly defined spaces and boundaries. 
Naturally, this also benefits the geometric, topological and semantic representation accuracy, as 
they are structured on top of the cellular space model, preventing conflicts between indoor 
features. 
 
One key difference between IndoorGML and OSM is that the second does not rely on a similar 
cellular space based approach. Node and Way Features in OSM may intersect and/or overlap 
without issue, as the model places no restrictions such as those in IndoorGML. Possible reasons 
for this behavior are the all-purpose use and more generalized content of OSM data, alongside the 
higher error margin that is generally considered acceptable in volunteered geographic 
information. As such, no direct implementation of cellular space topology is currently used or 
readily feasible within OSM. 
 
In order to overcome the possible issues that arise from lack of such a structure in the OSM data 
model, there is a series of best practice guidelines in regards to uploaded data quality in the OSM 
Wiki. Additionally, some error checking functionality is available in most OSM editors (JOSM, 
Potlatch, etc.), as well as via Keep Right, a quality assurance tool for OSM ( http://keepright.at/ 
). There is also research in attempting to define further means of error checking for the logical 
consistency of data when working with OSM (Hashemi, P. and R. Ali Abbaspour, 2015).  
 
With the above in mind, the concept of Cellular Space is not transferable to OSM. However, the 
relevant CellSpace and CellSpaceBoundary features will be examined further when reviewing the 
topological / geometrical representation concepts and their conflation with OSM.  
 
  

http://keepright.at/
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5.2 Conflation - Geometric / Topological representation 
 
As we have mentioned in the relevant section, IndoorGML offers three options for geometric 
representation within the data model: i) No Geometry, ii) Externally referenced geometry (e.g. 
via CityGML dataset references) and iii) ISO 19107 compliant definitions of solid, surface and 
curve geometries within the IndoorGML dataset. In comparison, OSM, being a general use 
mapping platform, requires a geometrical representation in its datasets, removing option i). 
Regarding option ii), as we will see later in the section, support for external referencing is limited 
compared to its IndoorGML counterpart, not allowing for direct use of geometries stored in 
IndoorGML as external references (at least not without a separate process for storing the external 
geometries to IndoorGML’s geometry as a preparation stage, as per (Khan, A. A., Donaubauer, 
A., & Kolbe, T. H., 2014). This essentially leaves us only with direct support of the third 
IndoorGML option for geometric representation (inclusion of ISO 19107 geometry). However, 
we must also take the limitations of OSM into consideration, as it is mainly a platform geared 
towards the 2D representation of data. 
 
As a first step, we need to consider the two models for the representation of boundary features in 
IndoorGML. One concept is the thin wall model, were elements such as doors and walls are 
considered as linear features, and the other option is the thick wall model, were each wall, door, 
or similar element is treated as a separate space cell. 
  

 
Figure 23- Thin Wall Model (OGC, 2014) 

 
Figure 24 - Thick Wall Model (OGC, 2014) 

 

Considering the limitations of OSM feature representation (which will also be examined further 
in the current subsection), the Thin Wall Model is better suited for OSM conflation and our 
conceptual model, due to the greatly increased complexity of representation with use of the Thick 
Wall model. 
 
In such datasets, only use of Navigable Space features (from the Indoor Navigation module, to be 
examined later in this section) or State / Transition features (Network Graph without Space / 
Boundary features) is recommended for migration to a navigable OSM dataset.  
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With the above in mind, we can continue with quickly re-examining the cell space features and 
the relevant geometry elements from the IndoorGML UML Diagram:  
   

 
 
IndoorGML cell spaces and their boundaries (2D or 3D) can only be defined as a 2D way 
element in OSM (with the possible addition of a “height” tag for the 3D elements). Essentially, 
this can be considered close to only maintaining a single OSM feature equivalent of the two 
Primal Space feature classes, consisting of an OSM Way which simultaneously provides the 
boundary equivalent of CellSpaceBoundary and surface area of the contained CellSpace 
equivalent. Inclusion of geometry is obligatory for the OSM Way feature, but limited to 2D. 
Calculation of height information from the IndoorGML Solid 3D geometry needs to be done by 
extracting the feature boundaries to provide an appropriate “min_height” (“floor” level height / 
lower boundary Z value) or “height” (maximum height, e.g. room ceiling / upper boundary Z 
value) tag to the OSM Way.  
 
It should be noted that this simplification of the stored geometrical representation also has an 
impact on the external reference conflation concept, as it has to now refer to the OSM object 
containing both the space and boundary elements, compared to the level of fine-grained 
referencing that is normally possible with IndoorGML. This point is further examined in 
subsection 5.7. 
 
Regarding the Topological representation of data, OSM is well equipped to cover IndoorGML’s 
representation concept. Again, we can first review the Dual Space representation from the 
IndoorGML Core Module UML Diagram 
: 
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Since OSM features essentially consist of point and linear elements, generation of a Node/State 
Way/Transition network that replicates the dual space concept, is directly feasible. State 
IndoorGML features can be covered by OSM Node features, while Transitions are covered by 
Ways. It should be noted that OSM Ways are actually more complex than the typical IndoorGML 
Transition feature, as they can consist of multiple edges connecting several nodes and still be 
defined as a single Way element. As with primal space elements, inclusion of the dual space 
features’ geometry is obligatory in OSM and limited to 2D coordinates. However, Z values of 
points can be added via the “min_height” key, and Transitions should contain both a 
“min_height” and “height” tag in order to indicate non-horizontal transitions (e.g. steps). 
 

5.3 Conflation – Semantic Representation 
 
Semantic representation in IndoorGML consists of multiple elements. For a mapping of the 
IndoorGML feature classes to OSM Elements, a separate subsection is available with a complete 
overview of the mapping. The current subsection covers the mapping of attributes, its handling in 
IndoorGML and how they can be migrated to OSM. 
 
As per the initial conceptual model proposed by Nagel (Nagel, C., 2014), semantic attributes and 
their values are stored for each indoor feature, via a GenericAttributeType data type. Further 
semantics are added via the use of the MLSEM, in the sense that layers are used for semantically 
similar elements. States can belong to multiple or a single layer, depending on their 
characteristics (e.g. a corridor that belongs to both a layer covering a walking navigable space 
and a layer representing wheelchair accessible space, or a topographic space layer and a WLAN 
coverage layer). Attributes can also be inherited from the layer the element belongs to. 
 
The complete diagram of the semantic concept is available under Appendix I, Figure IV, 
however, small segments are available below: 
 

 
Figure 25A - Partial diagram of the semantic concepts of the Space 

Representation package (Nagel, C., 2014) 

 
 
 
 

 
Figure 17B - Partial diagram of the semantic concepts of the Space 

Representation package (Nagel, C., 2014) 
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In the IndoorGML v1 OGC reference (OGC, 2014), semantic properties are stored in the 
SpaceLayer Features, which are also inherited by the elements (States, Transitions, Space Cells 
and Space Cell Boundaries) belonging to each layer. Other than providing additional data, this 
semantic information is also useful in mapping elements of the Core Module to other thematic 
modules, such as the Navigation module. It should be noted that these additional attributes have 
values based on predefined codelists to ensure interoperability. Codelist values are available as 
part of the IndoorGML v1 OGC reference and are defined based on the OmniClass classification, 
(Tables 13 and 14, available at http://www.omniclass.org/ ), which is extensively used in the US 
industry. The Omniclass & CityGML based codelists used in IndoorGML v1 are also available 
for review in this document, in Appendix III. 
 
These values are defined as per the following excerpt from the SpaceLayer feature definition in 
the IndoorGML v1 XSD schema (OGC, 2014): 
 

 
Figure 26 - Semantic attributes stored in SpaceLayer features as per IndoorGML v1 XSD Schema (OGC, 2014) 

 
The above covers the semantic information stored via the IndoorGML Core Module. Thematic 
extensions such as the IndoorGML Navigation module and Constraints concept are defined to 
offer additional semantic attributes that are aimed towards specific use cases such as indoor 
navigation or constraint definition / context awareness support. 
 
The IndoorGML Navigation Module indirectly provides semantic information by defining new 
feature types that are derived from the Core Module features. Core States and Transitions are 
mapped to Navigation Route Nodes and Route Segments which comprise a Route feature, while 
Core Cell Spaces and Cell Space Boundaries are mapped to Navigation Navigable and Non-
Navigable Space and Boundary features. These are further broken down into other subcategories, 
depending on their function (General, Transition, Connection or Anchor Spaces). 
 
The NavigableSpace elements are the only ones including direct storage of semantic information 
based on the class, function and usage attributes which utilize the same Codelists as Space 

http://www.omniclass.org/
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Layers, according to the NavigableSpace feature definition found in the Indoor Navigation 
Module description from the IndoorGML v1 XSD Schema (OGC, 2014) 
 

 
Figure 27 – Navigation Module - NavigableSpace feature definition - IndoorGML v1 XSD Schema (OGC, 2014) 

Semantic information is additionally provided indirectly from the IndoorGML Navigation 
Module via the child elements of Navigable Space and Navigable Boundary features, as the 
specific feature type used allows us to infer more information about the Space Cell or Boundary 
feature it’s mapped to. A complete overview via the UML diagram of the Indoor Navigation 
Module is available below (OGC, 2014): 
 

 
Figure 28 - IndoorGML Navigation Module UML Diagram 

Another important element of semantic information is constraints. These can range from time and 
access constraints which are function / rule driven to mode of transport and directionality 
constraints which have more to do with the actual physical space. The IndoorGML v1 OGC 
Reference document defines a concept for the definition of constraints, which follows a similar 
logic to the IndoorGML Navigation thematic module. More specifically, the Indoor Constraints 
concept defines Constraint features that can be mapped to Space Cell or Space Cell Boundary 
elements. 
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As it is still a concept, IndoorGML v1 does not include a specific definition of the constraints 
model in the current XSD schema. However, a quick overview of the constraint coverage 
included in the concept can be seen in the following conceptual model diagram (OGC, 2014): 
 

 
Figure 29 - Conceptual model of indoor navigation constraints (OGC, 2014) 

 
With the above information, we have covered the semantic representation in IndoorGML. 
However, there are significant differences in the treatment of semantic information in 
IndoorGML and OpenStreetMap. As we have mentioned in section 4.3.3, OpenStreetMap 
employs a vast but arbitrary set of key & value pairs via its free tagging system, which can be 
used to define attributes of any node, way or relation element in an OpenStreetMap data set.  
 
The free tagging system in OSM is not only used to provide attributes to features, but to further 
define complex features out of the node / way elements. As such, closed ways can be further 
defined as outlines or areas, including 2D representations of features such as buildings, building 
parts, rooms, etc. Nodes can be defined as point feature indicators for simplified representation of 
complex elements or direct representation of features such as building entrances, doors, etc. 
Relations often derive functionality from the addition of a “type” key which more explicitly 
defines the content and purpose of the relation. 
 
It should be noted again, that with such a free-tagging schema, the extension possibilities of OSM 
are practically limitless; however this comes at the cost of consistency and interoperability. With 
that in mind, several proposals currently exist regarding the mapping of indoor spaces in OSM, as 
discussed in Section 4.3.5, however, no single model / proposal is currently considered a standard 
or at least a best practice. With that in mind, we will attempt to provide a proposal for the tagging 
of features that covers as much of the standard semantic information available in IndoorGML 
Core, Navigation and Constraint Modules via the use of well-established OSM tags, while still 
allowing for use of the OSM free tagging system in order to accommodate further generic 
attributes defined as part of an IndoorGML dataset via the use of new tag key namespaces. 
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Considering the above, we can already provide some general rules regarding tagging based on the 
MLSEM and Thematic modules. One common element for the MLSEM and Navigation modules 
are the class, function and usage Omniclass based attributes. These can be stored to OSM 
elements directly or as part of the layer element containing them by using the keys 
“IndoorGML:Core:Class”, “IndoorGML:Core:Function” and “IndoorGML:Core:Usage”. The 
values used should be based on the Omniclass values listed in the IndoorGML v1 OGC reference 
document (OGC, 2014) and in Appendix III. It is important to note that the meaning of the 
codelist values depends on the type of *Space element they are describing. With that in mind, the 
“IndoorGML:Navi” tag (further described in subsection 5.8.2) must be reviewed alongside the 
Omniclass based attributes. 
 
The elements belonging to the IndoorGML Navigation module feature classes are normally 
mapped to features from the topographic space layers from the IndoorGML Core module. As part 
of our conflation process, Navigation features are treated simply as a source for additional 
semantic information for the topographic space features they are connected to. As a result, we use 
the tag key “IndoorGML:Navi:Navigable”, with “yes/no” values depending on whether the 
feature is mapped to <Navigable*> or <NonNavigable*> IndoorGML Navigation features. 
When mapped to the subclasses of the above IndoorGML Navigation classes, features are tagged 
with the “IndoorGML:Navi” key, with the values “Anchor/Transfer/Connection/Transition”, 
depending on the “source” IndoorGML Navigation class elements belong to. 
 
The Constraint Concept is again intended to be used as a thematic extension for adding semantics 
to Core Module features. However, as there is no concrete implementation on the classes to be 
included as of v1 of the IndoorGML OGC reference document, we will only provide some 
recommendations for tagging based on the current concept classes. Again, depending on the 
source Constraints Module class, we would tag the corresponding Core Module derived feature, 
as with the IndoorGML Navigation Module. If using standard OSM tags, the “access” key can 
cover almost all of the Constraints module classes via the definition of a complex conditional 
value, with the exception of the <OneWayRestriction> class which can be covered via the 
“oneway” key. However, it would be recommended to also follow the tagging logic used for the 
Navigation Module, with use of an “IndoorGML:Constraints:*” key namespace, which can be the 
basis for specific keys covering the scope of the Constraints Module. Applicable values should 
then be defined depending on the type of constraint represented.             
 
The above covers the general rules and recommendations for semantic information and the use of 
tagging to represent it. The exact tagging schema is covered more in section 5.8, as it is further 
defined on a feature by feature basis, in order to avoid adding unnecessary tags and increasing the 
complexity of elements. 
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5.4 Conflation - Multi-Layered representation 
 
As we have mentioned in section 4.2, IndoorGML is based around the concept of the MLSEM, 
allowing for the simultaneous representation of multiple information layers with discreet or 
shared elements (space cells / states) in a single dataset.  
 
The main benefit of this approach is that it allows for both the definition of semantic layers as 
well as the distinction between them and their elements. An additional benefit is the capacity for 
establishing inter-layer connections linking elements that are shared across layers or connected 
(e.g. a topographic space cell and a WLAN coverage cell or spaces and access restrictions). 
 
One important note is that while semantic information can be provided via use of multiple layers, 
for example separate layers per mode of transport, as examined in combination with subspacing 
in (Khan, A. A., & Kolbe, T. H., 2012), the Thematic extension modules of IndoorGML may be 
covering the same semantic data in a more structured manner that better ensures interoperability, 
despite being more constrained / limited compared to the free definition of additional layers. 
 
This comes to contrast with OSM, where a singular data layer exists, covering the complete 
representation of all features. As mentioned previously within this section, considering the 
mapping oriented nature of the OSM project explains the lack of support for features without a 
matching topographic space representation. 
 
 When attempting to migrate data from an MLSEM based IndoorGML dataset to OSM, only 
layers and elements with a topographic space representation (or elements linked to a matching 
topographic space via an inter-layer relation) can be defined in OSM. 
 
Two possible approaches have been identified in order to represent a multiple layer based data 
model in the single data layer representation of OSM.  
 
The optimal approach is merging elements of all semantically different MLSEM Layers to a 
single layer, including all the elements that are present in all layers (and have a topographic space 
representation), along with storing any attributes and semantic information that is available from 
the source layers on the respective merged element.  
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This concept was also investigated in (Nagel, C., 2014), from where we have the following 
representation and example of the merging process: 
 

 
Figure 30 - Recommended Layer merging process for MLSEM data, including table with input space cells and applied 

operations for merged data (Nagel, C., 2014) 

According to the above approach, a single OSM data “layer” would be created, containing all 
elements (nodes, ways) from all IndoorGML MLSEM layers, with tagging being composed from 
the combination of layer attributes each element is a member of, along with any attributes derived 
from the mapping of IndoorGML Core Features to the thematic extension modules (IndoorGML 
Navigation Module and Constraints concept). Inter-layer connections definition in OSM is 
unnecessary in this approach, as the MLSEM is essentially “flattened” to a single layer and 
elements’ merged attributes are derived precisely based on those inter-layer connections. 
 
The second approach would be based on the creation of multiple OSM elements based on all the 
available layers and their elements. As a result, we would have multiple overlapping way and 
node OSM elements (where the elements share topographic space across layers in MLSEM), 
which would utilize different, mutually exclusive tagging, in order to accurately represent all 
layers separately. Inter-layer connections can be then defined via the use of OSM relations which 
would establish the base topographic space layer and link it with the matching elements. The 
concept can be graphically demonstrated as follows: 
 

 
Figure 31 - Concept for superimposed OSM elements derived from multiple MLSEM layers 

 
While one could argue that the latter approach better maintains the integrity of the MLSEM data 
in OSM and could be used to reverse engineer the source IndoorGML dataset, the drawbacks are 
significant. There is a large amount of overhead in the repeated representation of overlapping 
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data, while the derived OSM dataset will be rather hard to work with in the most OSM editors, 
which are not optimized for overlapping data without heavy use of filtering based on properties. 
Additionally, the complete semantic attributes of a feature (the derived OSM equivalent of the 
initial IndoorGML State or Space Cell) are only retrievable via the relation, which would cause 
issues with most OSM-based applications (geocoders, routing engines, etc.).  
 
However, there is one use case where such an approach makes sense, specifically when an 
IndoorGML dataset only includes a small number of layers, which are used to define separate 
layers per mode of transport (instead of using the Navigation thematic extension module). 
 
As this was the case with the sample IndoorGML dataset that was used for the proof of concept 
implementation, this approach was followed, generating a network graph that was used for 
walking instructions based on the complete topographic space MLSEM layer, while a secondary 
layer which represented wheelchair accessibility was recreated in OSM as a second node/way 
network which overlapped the main network. The two were tagged with the “wheelchair” OSM 
key, with “no” and “yes” values for the topographic and wheelchair layers. As there were no 
other semantic based layers, there was no significant overhead in data and this allowed for the 
quick creation of a navigable dataset which could consider wheelchair accessibility constraints 
apart from typical walking instructions. 
 
Considering the above, while there are some possible use cases where representing each MLSEM 
layer as separate overlapping networks in OSM looks acceptable, the merging/flattening of 
MLSEM layers in a single layer containing the complete semantic information seems like an 
overall preferable approach, providing a cleaner and easier to process dataset, both by tools as 
well as users. 
 

5.5 Conflation - Subspacing 
 
As we have previously mentioned, the notion of cellular space, as it is defined in IndoorGML, 
cannot be properly migrated to OSM. Another problematic concept in that aspect is 
IndoorGML’s Subspacing. Breaking down features into smaller subsets is not a function that can 
be directly done in OSM.  
 
As a result, the recommended workaround is the manual definition of additional equivalent 
features that are based on the “parent” primal space feature and within its boundaries, which can 
then be connected to the parent feature via an OSM relation. Indicating that these features were 
created as a result of subspacing is recommended, via the use of the 
“IndoorGML:Core:Subspace:Child=yes” key/value pair and the 
“IndoorGML:Core:Subspace:Parent” tag, with the value here referencing the OSM ID of the 
parent feature. This allows for easier selection and grouping of elements and creation of the 
relation indicating the subspace. 
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The relation should consist of the subspace features and its boundary should match the outline of 
the “parent” feature. It is not obligatory to define a type for OSM relations. However, for 
consistency reasons, the new “subspace” relation type could be entered. Existing relation types 
such as “multipolygon” should not be used, as their official semantics does not match the 
subspacing concept semantics. 
 
When creating subspacing relations, it is important to indicate the parent/source feature. This 
feature should not be entered as a member of the relation but can be defined via the use of the 
“IndoorGML:Core:Subspace:Parent” tag, with the value again referencing the OSM ID of the 
parent feature. 
 

5.6 Conflation - Anchor nodes 
 
Anchor Nodes are a very important concept of IndoorGML, as they serve the role of connecting 
the indoor data defined in the dataset with their external environment, a function that is directly 
linked with the thesis goal of conflating the indoor and outdoor datasets. 
 
The main functions of the Anchor node are defining the CRS used within the IndoorGML 
dataset, the transformation parameters necessary for reprojecting it to other CRSs and providing a 
connection point that is “shared” between the indoor and outdoor datasets.  
 
In the context of conflation, the first function is handled as follows: OSM Data is based on the 
WGS84 / EPSG 4326 CRS. IndoorGML data may utilize a different absolute (e.g. EPSG:31468) 
or a relative CRS. The transformation parameters that are stored in the Anchor Node are 
examined at the beginning of the IndoorGML derived OSM dataset creation process and the 
needed transformation is applied to all the IndoorGML dataset features. As the features are 
transformed, there is no need for further storage of the transformation matrix or source CRS via 
tags or otherwise. 
 
The second and more important function is addressed via the use of tagging. As Anchor Spaces / 
Nodes are a feature of the IndoorGML Navigation thematic module, they are treated as a source 
for additional semantic attributes for the core features defined from the topographic layer to 
which they are mapped. As a result, Anchor Spaces / Nodes use typical “building:part=yes” or 
“room=yes” tagging, with an additional custom “IndoorGML:Navi=Anchor” tag. 

In order to achieve the goal of connectivity, the Anchor features need to be matched to a typical 
OSM feature that defines the same transition point between outdoor and indoor as the Anchor 
Space / Node. From a semantic perspective, the “entrance=*” OSM tag is the best match. 
However, it is important to note that the “entrance” tag has some limitations, which also prevent 
us from directly applying it to the Anchor elements. The “entrance” tag can only be used to 
describe a node feature and must be part of the “building” feature outline way. 
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This differentiation in representation leads to the need for a process to identify and match the 
Anchor Space / Node features to their “entrance” equivalents. This can be achieved via use of the 
Anchor features as base points and identification of the nearest “entrance” features within a 
reasonable distance threshold. Additional checks can be implemented to ensure that the matched 
features are also sharing the same direction and avoid wrong matches. One way to implement this 
is to confirm the orientation (determined for example via azimuth angle) of the broad side of 
Anchor Space (covering the vast majority of entrance types) matches that of the wall / “building” 
outline segment the matched OSM “entrance” feature belongs to. 
 
Once matched, the features can be connected via the creation of a way element with 
“highway=corridor” tagging and additional semantic tags copied from the origin Anchor Node 
feature, so as to ensure that attribute/tag based semantics such as wheelchair accessibility are not 
lost in the transition. 
 
As this is an automated process, it is recommended that the matches between elements and 
generated transitions are also reviewed manually, to ensure that no mismatches are present. One 
additional point is that it is often the case that no or wrong entrance features are defined in the 
main OSM database (and the resulting “outdoor” OSM dataset). With that in mind, it is 
recommended to always review the “outdoor” OSM dataset of the area surrounding the 
IndoorGML dataset defined buildings and correct or add the necessary entrance tags where 
applicable. 
 

 

Figure 32 - Anchor Node / Space equivalent OSM feature, Nearest Neighbor “entrance” Outdoor feature and generated Way / 
Transition 
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5.7 Conflation - External referencing 
 
External Referencing in IndoorGML is used to directly link features from the IndoorGML dataset 
to other datasets such as a CityGML or IFC file.  
To avoid confusion with the typical OSM use of the “ref” tag to indicate references, and as the 
IndoorGML reference concept serves a different purpose, a new “IndoorGML:Core:Ext_Ref:*” 
tag namespace is defined.  
 
Since the main information stored in IndoorGML as per the OGC v1 schema is the information 
system, name of the object and URI, all these values can be defined as part of the same tag 
namespace, via “IndoorGML:Core:Ext_Ref:Inf_Sys”, “IndoorGML:Core:Ext_Ref:Obj_name” 
and “IndoorGML:Core:Ext_Ref:Obj_URI” tags. The tags are directly assigned to the OSM 
equivalents of the IndoorGML features that contained the external reference. 
 

5.8 Conflation – Feature by Feature Mapping 
 
So far, the Conflation section has been covering the higher-level mapping process for the 
IndoorGML core concepts. In the current subsection, we will examine the mapping from 
IndoorGML to OSM on a feature by feature level, covering all classes of the IndoorGML Core 
and Navigation Modules. 
 

5.8.1 IndoorGML Core Feature Classes 
 
Before delving into each of the classes of the IndoorGML Core Module, the table below provides 
an overview of the feature by feature mapping, including some notes regarding the necessary 
process steps: 
 

IndoorGML Class OSM Element Process / Notes 
<State> Node 3D to 2D with min_height / height tag 
<Transition> Way 3D to 2D with min_height / height tag 
<CellSpace> Closed Way 3D to 2D with min_height / height tag - Surface projection for Solids 
<CellSpaceBoundary> Closed Way 3D to 2D with min_height / height tag 
<SpaceLayer> Relation Contains all State / Transition elements / Tag source for layer members 
<InterLayerConnection> Relation Tag source for connected elements 
<MultilayeredGraph> Relation Contains all SpaceLayer elements 
<PrimalSpaceFeatures> Relation Contains all CellSpace & CellspaceBoundary elements 
<IndoorFeatures> Relation Contains all PrimalSpaceFeature & MultilayeredGraph elements 

Table 2 - IndoorGML Core Feature Class to OSM Element mapping  
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Starting with our feature by feature analysis, we examine the Dual Space representation elements: 
 
The <State> IndoorGML class can be represented in OSM via the use of a node element. 
Geometry is defined via extraction of the features’ XYZ geometry and use of X,Y values for 
positioning the element, while the Z value is saved via use of the “min_height” tag. As part of the 
IndoorGML dataset, the “indoor=yes” tag is also added, along with a State specific tag of 
“room=yes”. Further attributes are assigned to the element as per the recommendations outlined 
in subsections 5.3 and 5.4. 
 
The <Transition> class can be reflected in OSM via use of OSM way features. The geometry is 
provided as usual with the retrieval of X,Y coordinates directly from the IndoorGML geometry, 
while Z values are provided via the “min_height” and “height” tags. The use of both tags is 
recommended in order to better cover any non-horizontal transitions, (e.g. stairs). The “indoor” 
tag is again applied to the OSM features, and they are further defined via use of the highway tag.  
 
Depending on the type of source feature, it is recommended to use the values “corridor” for 
typical transitions such as corridors or ramps, “steps” for any stair elements and “elevator” to 
define vertical transitions, typically used for elevators. Further attributes are again defined as per 
the recommendations outlined in subsections 5.3 and 5.4. 
 
The <CellSpace> and <CellSpaceBoundary> classes can both be mapped to closed way 
elements in OSM, however it is important to note that as a mainly 2D representation, the current 
OSM conflations concept does not require both feature classes. A surface projection of the solid 
space is the basis for the OSM feature definition. The surface projection can either be derived 
from the solid or the boundary geometry, but as only one projection is needed to define the 
feature, “duplicate” projections are not necessary.  
 
In the proof of concept implementation, only solid geometries (no boundaries) were defined, so 
extraction was straightforward, however datasets with both classes need to be handled carefully 
to avoid the generation of duplicate features. 
 
Again, for the geometry, the X,Y coordinates are stored in the feature geometry, while lower and 
upper boundary Z values are stored via the use of “min_height” and “height” tags. All features 
derived from the two classes are additionally tagged with “indoor=yes” and “building:part=yes” 
tags. Further semantic information and attributes are defined as per subsections 5.3 and 5.4. 
 
The <SpaceLayer> class can be defined in OSM as a relation of type 
“IndoorGML:Core:MLSEM:Layer” that contains all member elements of a layer. The class, 
function and usage Omniclass-based attributes can also be stored here using the keys 
“IndoorGML:Core:Class”,  “IndoorGML:Core:Function” and “IndoorGML:Core:Usage”. 
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The <InterLayerConnection> class is also defined as a relation in OSM, with the type 
“IndoorGML:Core:MLSEM:InterLayerConnection” where a pair of member elements can be 
stored. This allows for the identification of connections between layers and the transference of 
attributes from the secondary layers to the connected features defined via the main topography 
layer.  
 
Additional tags are used to further define the relation as per the IndoorGML class. These are 
“IndoorGML:Core:MLSEM:InterLayerConnection:ConnectedLayers” which defines the parent 
layer of the relation members, via semicolon separated values, and 
“IndoorGML:Core:MLSEM:InterLayerConnection:typeOfTopoExpression” which can have the 
values “contains/overlaps/equals”. 
 
The <MultilayeredGraph> class is represented by a super-relation in OSM, of the type 
“IndoorGML:Core:MultilayeredGraph” which contains all the relations created from the 
<SpaceLayer> and <InterLayerConnection> IndoorGML classes. 
The <PrimalSpaceFeatures> class can be again defined via the use of a relationship of the type 
“IndoorGML:Core:PrimalSpaceFeatures”, containing all features generated from the 
<CellSpace> and/or <CellSpaceBoundary> classes as members. 
 
Finally, the <IndoorFeatures> class is also defined via an OSM super-relation with the 
“IndoorGML:Core:IndoorFeatures” type, containing the relations derived from the 
<PrimalSpaceFeatures> and <MultilayeredGraph> classes. 
 
The above overview covers the mapping of all Core Module feature types to OSM elements, 
including recommendations for the correct tagging of features. As a reminder, for the complete 
semantic data, it is important to also review the tagging recommendations from the Semantic 
Representation conflation overview in section 5.3.  
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5.8.2 IndoorGML Navigation Feature Classes 
 
As with the IndoorGML Core Module, the table below provides an overview of the feature by 
feature mapping of the IndoorGML Navigation Module classes, again including notes about the 
process steps: 
 

IndoorGML Class OSM Element Process / Notes 

<NavigableSpace> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpace elements – used as Tag 
source only 

<NonNavigableSpace> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpace elements – used as Tag 
source only 

<GeneralSpace> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpace elements – used as Tag 
source only 

<TransferSpace> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpace elements – used as Tag 
source only 

<ConnectionSpace> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpace elements – used as Tag 
source only 

<AnchorSpace> 
Closed 
Way/None 

CRS Source for necessary reprojection – Connection to Outdoor OSM dataset – 
2D Closed way defined from equivalent CellSpace elements – used as Tag 
source only 

<TransitionSpace> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpace elements – used as Tag 
source only 

<NavigableBoundary> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpaceBoundary elements – used as 
Tag source only 

<TransferBoundary> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpaceBoundary elements – used as 
Tag source only 

<ConnectionBoundary> 
Closed 
Way/None 

2D Closed way defined from equivalent CellSpaceBoundary elements – used as 
Tag source only 

<AnchorBoundary> 
Closed 
Way/None 

CRS Source for necessary reprojection – Connection to Outdoor OSM dataset – 
2D Closed way defined from equivalent CellSpaceBoundary elements – used as 
Tag source only 

<RouteNode> Node 
Not necessary for OSM Routing, can be used to create predefined Route 
Relations 

<RouteSegment> Way 
Not necessary for OSM Routing, can be used to create predefined Route 
Relations 

<Route> Relation Not necessary for OSM Routing, can be used to represent predefined routes 

Table 3 - IndoorGML Navigation Module Feature Class to OSM Element mapping 

As we can see from the table, the IndoorGML Navigation module is mostly used (within the 
conflation concept) in order to derive further semantic attributes for the features defined via the 
Core Module classes. 
 
More specifically, with the exception of the final three classes, there is no need to define 
additional OSM features, as information such as geometry is directly represented by the Core 
module features that the Navigation module class features are mapped to. Based on the above, we 
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will be providing below a mapping of the appropriate tags to be added to the Core class features, 
depending on the Indoor Navigation module class that is mapped to them. 
 
The <NavigableSpace> and <NonNavigableSpace> classes, as well as <NavigableBoundary> 
And <NonNavigableBoundary>, can be migrated to the OSM dataset via the use of a new tag, 
“IndoorGML:Navi:Navigable”, with “yes/no” values. As mentioned, the tags should be applied 
to the corresponding features defined from the Core module. 
 
The classes <GeneralSpace>, <TransferSpace>, <TransferBoundary>, <ConnectionSpace>, 
<ConnectionBoundary>, <AnchorSpace>, <AnchorBoundary>, and <TransitionSpace> are 
handled in the same logic, via use of the “IndoorGML:Navi” tag, with values 
“Anchor/Transfer/Connection/Transition”. This tighter grouping is selected as the exact original 
class can be identified depending on the tag value and the OSM feature type it is attributed to, 
with node features (States) indicating a *Space origin class, while way features (Transitions) 
indicate a *Boundary origin. 
 
The final three classes of the IndoorGML Navigation Module, <RouteNode>, <RouteSegment> 
and <Route> are not necessary for routing applications based on OSM, however, they can be 
used to create predefined routes through an IndoorGML dataset. With that in mind, 
<RouteNode> features can be created in the form of OSM Nodes, while <RouteSegment> 
features can be defined as ways. If new features are defined based on these classes, it is 
recommended to provide any additional tags necessary, such as “indoor=yes” 
“highway=corridor/steps/elevator” or “room=yes” and any additional semantics/ attributes that 
are necessary for correct navigation.  
 
The <Route> class can then be defined in the OSM dataset as a relation which can utilize the 
existing OSM “route” type, and have as members elements from either the <RouteNode> and 
<RouteSegment> Navigation Module classes, or <State> and <Transition> elements from the 
Core classes. The relation can be defined in order to present typical predefined routes through a 
building, for example a tour guide route through a museum. The <RouteNode> and 
<RouteSegment> remain available to define and use as separate elements from the existing State 
nodes and Transition ways in our conflation concept, in order to allow for route node and 
segment definition that includes locations outside the IndoorGML derived dataset (e.g. the 
“outdoor” OSM data. 
 
The above overview covers the mapping of all Navigation Module feature types to OSM 
semantic elements / tags. As the Constraints Concept has no concrete class definition, this 
subsection concludes the feature by feature mapping of IndoorGML features. 
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5.9 Conflation – OSM/IndoorGML Conflation Conceptual Model – Workflow 
 
Based on the conflation analysis of the core IndoorGML concepts, along with the feature to 
feature mapping, we can define a workflow for generating an OSM dataset which manages to 
adequately migrate IndoorGML data to the OSM data model and provide a navigable OSM 
dataset that can be utilized by existing or new OSM-based applications and tools. 
 
The workflow is presented below in graphical form: 

 

Figure 33 - Conceptual Conflation Model Workflow 

 
Based on the above flowchart, a step by step overview of the creation of data based on the 
conceptual conflation model would be as follows: 
 

• Analysis of the IndoorGML dataset. 
• Detection and parsing of the Anchor Node / Space elements, including reprojection of the 

data (if needed) to the WGS 84 CRS.  
• Identification of the wall model in use in the dataset, and retention of NavigableSpace (as 

per IndoorGML Navigation module) features or Primal Space (State / Transition) based 
representation in the case of Thick Wall Model datasets.  

• Identification of IndoorGML Core and Navigation feature classes in dataset and their 
OSM semantic equivalents (as per Feature by Feature mapping from section 5.8). 
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• Identification of base Topographic layers and secondary topographic layers (e.g. 
subspacing derived layers) and generation of OSM features based on the base topography 
layer.  

• For feature generation, Geometry is represented by 2D (X,Y) surface projection of 3D 
features ( CellSpace, CellSpaceBoundary) and “min_height” / “height” tagging for the 
lower/upper boundary Z values.  

• The OSM features are additionally tagged with an “indoor=yes” tag and room=yes, 
“building:part=yes” or “highway=corridor/steps/elevator” according to the IndoorGML 
feature class they were derived from. 

• The Omniclass codelist values defined for the features or from their parent MLSEM 
Layer and added as “IndoorGML:Core:Class”,  “IndoorGML:Core:Function” and 
“IndoorGML:Core:Usage” tags to the features. 

• Any additional attributes that are directly derived from feature attributes or specified in 
the parent MLSEM Layers are added as tags. Care should be given regarding correct tag 
use, where it is best recommended to try and identify a correct OSM equivalent tag (e.g. 
“wheelchair=yes/no”) and failing that, create a tag based on the “IndoorGML:Attribute:*” 
namespace. Using existing OSM tags ensures some interoperability 

• For attributes added to features that are also mapped to classes from the thematic modules 
(IndoorGML Navigation Module and possibly in future versions Constraints), it is 
recommended to use a namespace defining the thematic module used for the creation of 
the tag, e.g. “IndoorGML:Navi:*”. 

• External references are defined via the “IndoorGML:Ext_Ref:*” tag namespace, where, 
as per the conceptual model proposal, the values are plain text strings defining the 
referenced dataset, object, and  source or URL. 

• Finally, the IndoorGML derived OSM dataset needs to be reviewed alongside the existing 
main OSM DB dataset which is used for “outdoor” data, and connections need to be 
established between the Anchor space/node “indoor” OSM equivalents and “outdoor” 
OSM “entrance” tagged features. 

 

5.10 Conflation – Conceptual Model UML Diagram 
 
In order to better represent the structure of the Conceptual Conflation Model that was outlined 
throughout this section, it was deemed helpful to create a UML diagram representation of the 
complete data model.  
 
In order to best represent all elements, their attributes are also defined in the diagram, in the sense 
that the tags which are explicitly specified during the previous subsections are added as attributes 
to their respective features. However, an additional “open” Tags attribute is added to a common 
super class of OSM features, which can accommodate for any further semantic information added 
via use of tags, for example regarding wheelchair accessibility, or other additional information. 
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Based on the above, the UML diagram was designed as follows: 

 
Figure 34 - Conceptual Conflation Model (OSM) - UML Diagram 
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As a note, a UML diagram for the OSM Data Model, available in the OSMSharp wiki (an OSM 
routing and optimization tool), was used as a reference for the basic element UML representation: 

 
Figure 35 - OSM Data Model (Primaries) - OSMSharp Github Wiki Page - 

https://github.com/OsmSharp/ui/wiki/OpenStreetMap-data-model) 

5.11 Conflation – Conclusion 
 
Reviewing our initial IndoorGML Concept to OSM Element mapping table, we can update its 
contents as follows: 
 

 IndoorGML Concepts 

OSM 
Elements 

Cellular 
Space 

Geometric 
Representation 

Topological 
Representation 

Semantic 
Representation 

MLSEM 
Representation 

Subspacing Anchor 
Nodes 

External 
Referencing 

Nodes - X X - - - X - 

Ways - X X - - - X - 

Relations - X X X X X - - 

Tags - X X X X - X X 

Table 4 - IndoorGML Concepts / OSM Elements - revised / final mapping 

Based on the above table, as well as the Feature to Feature mapping and workflow of our 
conflation data model concept, we can see that a fairly good representation of IndoorGML data 
can be achieved within OSM, at the very least in regards to obtaining a useful dataset for indoor 
navigation.  
 
There are naturally some caveats, for example the lack of support for true cellular space 
representation and consequently subspacing, as well as the limited options for conveying the 
MLSEM based multiple layer approach to the single data “layer” representation of OSM. 
 
Regardless, as experience has shown with other proposals for an OSM Indoor / Building mapping 
data model, the main challenge is acceptance and widespread use of any proposed schema by the 
extended OSM community, which is capable of more accurate review, particularly in regard to 
potential technical issues that might arise by our data model / schema definition which are not 
immediately apparent during the conceptual development phase.  
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6 Proof of Concept Implementation 
 
As mentioned in Section 3 the 1st process concept was chosen during the early stages of the thesis 
work as the most suitable for achieving the thesis goals of developing a solution for combined 
indoor outdoor routing. 
 
A conceptual process for the migration of IndoorGML data to the OSM data model was defined 
in Section 5. However, as the available IndoorGML source data is not defined as per the OGC 
standard, a different process was used for the creation of OSM data that will work as part of our 
proof of concept implementation. As explained, external factors also played a role in our 
definition of the target OSM “schema”, such as compatibility of the data with the OTP routing 
engine and Nominatim Geocoder. 
 
Additionally, certain modifications in the source code of the OSM tools (OTP and Nominatim, 
original source code available at https://github.com/opentripplanner/OpenTripPlanner and 
https://github.com/twain47/Nominatim ) were made, with the purpose of making the tools more 
suitable to our goal of combined indoor/ outdoor routing. These modifications will also be 
examined in this section. 
 
The current section will begin by comparing the conceptual conflation model to the data model 
used for the proof of concept implementation, in order to identify the reasoning behind 
differences in the conceptual and implementation process workflows. 
 
We then continue by examining the platforms and tools that have shown potential and were used 
as parts of the implementation of a multi-modal, context-aware routing engine for combined 
indoor/outdoor datasets, as per the scope of this master thesis. 
 
Following this, we will provide an overview of the proof of concept implementation setup, 
including a description and specifications of the Linux Virtual Machine that was used to host the 
local instances of the tools used in the implementation. 
 
An analysis of the IndoorGML dataset that was used for the implementation is covered 
afterwards, followed by a quick overview of a complementary CityGML LoD4 dataset that was 
used for additional semantics and the mock GTFS Transit dataset which enabled multimodal 
Transit routing. 
 
Finally, a complete overview of the data migration process via FME and JOSM is provided, 
alongside an overview of data processing and modifications for Nominatim and OTP. A 
graphical representation of the workflow is also provided, along with a visual guide through the 
workflow and testing process steps. The sections closes with a review of the results produced 
from the proof of concept implementation, and the conclusions derived and experience gathered 
from the complete process. 

https://github.com/opentripplanner/OpenTripPlanner
https://github.com/twain47/Nominatim
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6.1 Conflation Conceptual Model and Proof of Concept Implementation 
comparison 
 

In the previous section, a conceptual model for storage of IndoorGML data in the OSM XML 
format was defined. As the current section will cover the Proof of Concept Implementation that 
was created in order to test the feasibility of using IndoorGML data in an OSM-based routing 
solution with multi-modal capabilities and context awareness, we must note certain differences in 
our approach. 
  
These are covered briefly in the table below, followed by a more detailed analysis: 
 

Conceptual Model Proof of Concept Implementation 

Source data: 
Idealized complete dataset based on IndoorGML 
OGC standard schema 

Source data: 
Custom MLSEM driven data model 
implementation, 
 subset of complete IndoorGML data model 

Target data: 
Idealized OSM representation with coverage of as 
much of the IndoorGML data model as possible, 
usage of all OSM data primaries 

Target data: 
Routing capable OSM representation, usage of 
OSM  
nodes & ways + tagging for network creation 

Constraints: Driven by IndoorGML conceptual 
model 

Constraints: Driven by routing engine constraint 
support 

No external restrictions considered External restrictions considered 

(FME Reader/Writer capabilities, Routing engine 
feature & tag support) 

Table 5 - Proof of Concept Implementation and Conceptual Model comparison 

These differences stem initially from the available IndoorGML source data. The IndoorGML 
dataset available from the chair of Geoinformatics (Khan, A. A., Donaubauer, A., & Kolbe, T. 
H., 2014), does not constitute a model IndoorGML dataset, in the sense that it does not utilize all 
available modules or contains data for all available feature types. More importantly, the structure 
used (include feature types, names, etc.) is not the same as the one defined in the OGC Standard 
for IndoorGML. It is instead a somewhat custom implementation based on the MLSEM 
definition (Nagel, C., 2014). A more complete analysis of the source dataset is provided in the 
next section. 
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Regarding the target OSM data, there are again differences between the implementation and the 
conceptual model described previously. The main reason is the aim towards an implementation 
that meets our criteria for routing capable OSM data, the main pre-requisite for which is the 
definition of a node & way network that can be used for routing. Semantics are stored where 
necessary to enable a certain level of context-awareness and include support for multiple modes 
of transport. The implementation data model does not attempt to fully capture the complete data 
stored within an OGC standard compliant IndoorGML dataset, but to derive a working network 
with certain semantics out of the available custom MLSEM implementation. 
Additional limitations to the complexity of the utilized OSM data come from the specific 
functionality constraints of the OSM tools used for the implementation, namely the OTP routing 
engine and Nominatim geocoder. The use of tags and relations was limited to what the tools 
support and require in order to achieve the desired functionality, instead of attempting to 
completely rework the tools, so as to enable full support of the proposed conceptual model. 
Naturally, this has a direct influence on how context awareness and semantic data are handled, as 
our limitations are mostly derived by the limitations of the tools used. However, the most capable 
tools (based on the thesis requirements) were selected, in order to ameliorate this issue as much 
as possible. 
 

6.2 Relevant platforms for the Proof of Concept Implementation 
 
The platforms are presented in no specific order, as, depending on the platform, they may cover 
multiple different steps of the implementation (e.g., data storage, routing, visual representation, 
etc.). 
 

6.2.1 Oracle Spatial & Graph platform 
 
Oracle Spatial & Graph is an additional component for the Oracle Enterprise database platform. 
Oracle Spatial provides additional functionality to the Oracle object-relational database, enabling 
its use for storage and management of location and geographic data. This allows for the 
implementation of GIS applications which take advantage of the performance and support of the 
well-established Oracle database management system. The Graph components of Oracle Spatial 
& Graph allow for use of Resource Description Framework (RDF) semantics graphs as well as 
network graphs based on the Oracle Network Data Model (NDM)(Oracle, 2014). 
 
In addition to a host of geospatial data features, the Oracle Spatial & Graph platform also has a 
built-in geocoding and routing engine, allowing for the quick implementation of customized 
solutions in the area of routing and navigation. It is worth noting that Oracle Spatial and the built-
in routing engine has been successfully utilized for routing within an IndoorGML (MLSEM) 
dataset in related research (Donaubauer, A., Straub, F., Panchaud, N., & Vessaz, C., 2013). 
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One point of note is that the test TUM building IndoorGML dataset that is to be used in this 
thesis was stored and available in an Oracle Spatial database. The IndoorGML dataset was based 
on IFC data which was converted to IndoorGML (with an interim conversion to CityGML 
LoD4), as part of research in the creation of a transformation process for the generation of indoor 
routing graphs from an existing semantic 3D building model (Khan, A. A., Donaubauer, A., 
Kolbe, T. H.,  2014). 
  
The dataset consists of the 3D representation of the building states/cell spaces, the point nodes for 
the spaces as well as the edges network connecting the point nodes and signifying the boundary 
transitions between states. Additionally, tables containing the different available layers for the 
MLSEM, list of indoor objects and a generic attribute container for the additional semantic 
information of each state/cell are included in the dataset. The complete dataset structure is 
available under Appendix I and examined in the corresponding part of the proof of concept 
workflow, namely in section 6.4. A partial dataset was additionally provided as an ESRI file 
geodatabase, and was initially used in the development of the proof of concept. 
 
Oracle developed tools that were used to review the data were the Oracle Instant Client, Oracle 
SQL Developer tool and the Oracle SQL Developer Data Modeler, all available from Oracle’s 
website (Oracle Instant Client and Oracle SQL Developer / SQL Developer Data Modeler were 
downloaded from http://www.oracle.com/technetwork/database/features/instant-client/index-
097480.html and http://www.oracle.com/technetwork/developer-tools/index.html respectively). 
 

 

Figure 36 - Oracle SQL Developer environment - connected to IndoorGML source data Oracle Spatial DB 

  

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/developer-tools/index.html
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6.2.2 Safe Software FME  
 
Safe Software’s FME (Feature Manipulation Engine - http://www.safe.com/fme/ ) is a Spatial 
ETL (Extract, Transform, Load) suite which allows for manipulation and conversion to and from 
over 325 formats (Safe Software, 2015), via a graphical interface. Workflows are defined via a 
drag & drop interface that allows for the addition of data readers, transformers and writers, 
allowing for a quick setup of complex data manipulation, without any coding knowledge 
requirements, as is often the case for such processes in other tools. 

The main workload in FME for the implementation is done via the FME Workbench application, 
through which the data manipulation tasks are defined and managed. The FME Data Inspector 
application was also used for testing of the workbench output and resulting data. 

Screenshots of the specific workbenches defined and used will be provided in Appendix I, while 
the actual process will be further explained in section 6.7. 

 

 
Figure 37 - FME Workbench 

  
 

  

http://www.safe.com/fme/
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6.2.3 Routing Engine – OpenTripPlanner (OTP) 
 
OpenTripPlanner (OTP) is the OSM routing engine selected for use with our proof of concept 
implementation. The project launched in 2009, starting as a trip planner implementation for 
Portland, Oregon’s TriMet agency. It has since advanced to a full featured multimodal trip 
planner (OTP) and transportation network analysis platform (OTP Analyst). As an open-source 
project, OTP is oriented towards open data standards, such as OpenStreetMap (OSM) and 
General Transit Feed Specification (GTFS). It additionally supports some other industry standard 
formats, such as Shapefiles, GeoTIFF. 

Being Java based, OTP can be run on any OS with a working Java Virtual Machine installed. For 
the purposes of the thesis project, it was installed on a Virtual Machine running Ubuntu Server 
14.04. OTP is available either as a prebuilt stand-alone JAR package that can be used directly to 
build a network graph, run the necessary routing engine it and serve it as web service via a built-
in Java Grizzly server. Apart from the server, the JAR also includes a preconfigured web client 
and GUI based on Leaflet, an open source Javascript library for interactive map representation, as 
well as a REST-based API that can be used for external querying by third party applications. 

In the case that modifications are necessary, the source of the entire project is available on 
Github, so that users or developers can clone the repository and build their own JAR files, 
including any possible customizations or modifications to the source code. As part of the thesis 
work, the stand-alone JAR packages were initially used for testing, before moving to a modified 
version of OTP built from source (Master branch, version 0.19). 

Apart from the support for the desired formats (OSM), ease of initial setup and installation and 
ready to use web interface, OTP has several other features which made it the preferred routing 
engine for the proof of concept implementation: OTP has very advanced multi-modal planning 
support, including Transit, Bus Only, Rail Only, Bicycle Only, Bicycle & Transit, Walk 
Only, Drive Only, Park and Ride, Kiss and Ride, Bike and Ride as possible modes of 
transport. When combined with an accurate and complete OSM and GTFS dataset, OTP is an 
extremely powerful tool for multi-modal trip planning. As per the goals of this thesis, multimodal 
capabilities are rather important for a seamless indoor/outdoor routing solution, as it is most 
likely that at least a segment of the outdoor navigation will utilize a mode of locomotion other 
than walking. 

In regards to its suitability for indoor navigation, OTP is one of few routing engines which 
directly support vertical movement via elevators, including detailed route instructions (e.g. 
boarding and alighting). In addition, OTP developers are examining support for open area 
navigation, when no specific routes are defined (e.g., a floor space or foyer). 

Context awareness in the routing implementation is another important goal of the thesis. OTP 
shows promising capabilities for context awareness via out of the box support for constraints 
such as wheelchair accessibility, time of travel selection so that the appropriate route options are 
displayed when using transit / public transportation, terrain steepness awareness for walking 
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directions, as well as a preference selector for bicycle routes based on three factors (Quickness, 
Flatness, Bike Friendliness). If the appropriate information / datasets are available (e.g., a local 
DEM and accurate OSM street tagging), the OTP routing engine is immediately capable of 
meeting several of our criteria for context awareness, while also providing the option for further 
adaptation or modification, in order to further expand context awareness. 

One other important aspect is the active user and developer community of the project, which gave 
it a significant advantage over other smaller or discontinued projects, as support was needed and 
received, especially when examining modifications to OTPs base functionality in order to achieve 
the goals set for the proof of concept implementation and thesis work. 

Overall, OTP offers a well-rounded, highly customizable and capable solution for OSM and open 
data based routing, which is also evidenced by the use of it in several multimodal trip planner 
implementations by various state agencies, such as New York State’s Department of 
Transportation and Portland, Oregon’s TriMet agency in the US, as well as agencies in France, 
Spain, Poland and Italy (an up-to date list is available under the OTP documentation’s 
Deployments section). 

 

   

  

 

  

Figure 38 - Portland Tri-metropolitan area OTP powered multimodal route planner 
(http://ride.trimet.org/#/ , 2015) 
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6.2.4 Geocoder – Nominatim 
 
Nominatim is an open-source geocoding engine that is used alongside OTP to complement the 
routing engine with geocoding and facilitate the selection of   trip start and end locations, both in 
the indoor and outdoor segment. 
 
Geocoders in general allow for the identification of a point based on text input. More precisely, 
they provide x,y coordinates or other information (e.g. OSM node/way ids) by name or address 
input. Nominatim also supports reverse geocoding, returning the name or address of a location 
based on the input coordinates. Nominatim is based around the osm2pgsql utility, creating a 
PostgreSQL database with an index of all searchable locations, using a combination of C, plpgsql 
and php for communication with clients, such as OTP’s Leaflet client. 
 
As it is mostly aimed for outdoor datasets, Nominatim has built-in support for building and 
highway tagged features. However, its source code can be modified to add other feature types 
(tagged elements), such as buildingpart, building:part and room features in the search index, in 
order to be used for indoor geocoding. When it comes to indoor environments, use of a geocoder 
is important for the correct selection of trip start and end points, as the 2D representation of most 
OSM clients (including OTP’s Leaflet client) does not directly allow for the selection of a 
specific room or floor, due to the general lack of z coordinates in OSM features, as well as height 
or level based filtering of features in the clients’ 2D data representations. 
 
Nominatim was selected as the geocoder for our proof of concept implementation due to its 
popularity ( Nominatim is used as the geocoding provider for the main OSM webpage ), 
extensive documentation and active community support, which was particularly helpful when it 
came to extending the base geocoder functionality with the inclusion of further tags / features for 
use in indoor geocoding. 
 

 

Figure 39 - Nominatim instance created for thesis work – Search result “Details” view – built-in client 
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6.3 Implementation Setup 
 
In order to create the proof of concept implementation, multiple systems were used. The source 
IndoorGML data was retrieved from an Oracle spatial database hosted by the TUM Chair of 
Geoinformatics. Retrieval and processing of the data was done via Safe Software’s FME on a 
separate personal workstation. OSM Data for the “outdoor” dataset was also retrieved via the 
JOSM OSM editor on the workstation, and processed alongside the indoor data via FME. The 
complete target dataset was then merged via JOSM in a single file, in preparation for final 
processing by the geocoding and routing engines. 
 
For the purpose of hosting a local instance of the routing and geocoding engines, a Virtualbox 
Virtual Machine was setup on the personal workstation. Due to the java based OpenTripPlanner 
routing engine and the inclusion of a Desktop GUI in the VM, the VM was created with above 
average specs, listed below: 
 
OS: Ubuntu Server 14.04 64bit Virtual Machine + Unity Desktop 
CPU: Intel i7-4770K (1 core allocated) 
RAM: 16GB RAM allocated 
HDD: 100 GB fixed-size VHD Virtual drive 
 
The large HDD size allowed for the storage and testing of multiple OSM datasets, ranging from a 
few MB (Localized TUM extract) to Country-level extracts (Germany). The high amount of 
RAM was added to ensure smooth operation of the Java based OTP routing engine and client. In 
retrospect, a 4GB RAM allocation would likely suffice for a single user demonstration with a 
small dataset and corresponding graph, alongside the Ubuntu Unity Desktop. 
For OTP, the v 0.19.0 Snapshot was used, initially by using the stand-alone jar release for v0.19. 
However, due to the need for more in-depth understanding and customization of the client and 
engine, a local build of OTP from the source (available on Github) was preferred, as per the 
instructions from the OpenTripPlanner documentation pages. 
 
The Nominatim Geocoder was likewise built from source (again available via Github), as per the 
instructions available via the Nominatim wiki. The creation of the local instance allowed for 
some necessary customizations to the source code and core functionality of the geocoder, to 
better accommodate for its use for indoor geocoding. 
 
A personal Dropbox account was additionally used to facilitate data exchange between the VM 
host workstation and the VM itself. Processing of the OSM data by the routing graph and 
geocoder indexing engines was done entirely in the VM. Both processes are relatively resource 
intensive with typical datasets. Luckily, the small dataset used for the purposes of this 
demonstration (merged Indoor/ Outdoor OSM dataset – 7.72MB) was processed relatively 
quickly, at half a minute and three minutes for the OTP Graph and Nominatim Index 
respectively.  
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It should be noted that the time required changes drastically with larger and/or more complex 
datasets. For comparison purposes, an OSM extract of the city of Munich required 5 minutes for 
the OTP Graph and 30 minutes for the Nominatim Index. 
 
After the OTP graph and Nominatim Index are successfully created, the built-in OTP client can 
be started from the VM. It is then accessible via a browser on the VM, as well as any clients 
within the same network, including mobile devices. A visual representation of the 
implementation can be seen below:  
 

 
Figure 40 - Proof of Concept Implementation 

6.4 IndoorGML Source data 
 
The IndoorGML source data was initially received in an ESRI file Geodatabase, which was used 
for initial testing and setup of the necessary workspaces. However, we were made aware of a 
more complete IndoorGML dataset, available via an Oracle database. The process examined 
below is based on the Oracle IndoorGML dataset. 
 

 
Figure 41 - FME Data Inspector view of the IndoorGML dataset spatial elements 
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The source data used a series of tables, including Oracle Spatial and non-spatial information. The 
main differentiator between the two types of data is the existence of data with the 
SDO_Geometry type, used for storing geometry information. An overview of the database 
structure is available in Appendix I, Figure VII. The dataset was created by Aftab Khan, as part 
of his work with the TUM chair of GeoInformatics in (Khan, A. A., Donaubauer, A., & Kolbe, 
T. H., 2014) and represents Building 7 of the Main TUM Building in Arcisstrasse. 
 
The main elements used for the storage of IndoorGML data are the following tables (in 
alphabetical order): 
 

IndoorGML dataset Table Name Has Geometry Has Data 
IDML_EXTERNAL_REFERENCE - - 
IDML_INDOOR_OBJECT - X (ID only) 
IDML_JOINT_STATE_RELATIONS X (x2) - 
IDML_SPACE_BOUNDARY_TRANSITION X (x2) X 
IDML_SPACE_LAYER - X 
IDML_SPACE_STATE X (x2) X 
IDML_SPACE_STATE_GENERICATTRB  - X 

Table 6 - ORACLE IndoorGML dataset content 

Reviewing the structure of the database, we can see that the database is built around the 
IDML_INDOOR_OBJECT table. All indoor elements are assigned with an id serving as the 
Primary key (and used in most of the other tables to connect elements to this table), along with 
additional columns for storage of semantic data (GML ID & Namespace, creation and 
termination date and author), derived from the initial CityGML dataset which was used to 
generate the IndoorGML data. It is worth noting that no geometry is stored in this table, serving 
only as an index for all the elements of the dataset. Additionally, in the provided dataset, the 
columns for the GML derived data are empty, as a result, only the ID value is populated. 
 
IDML_SPACE_LAYER is the table defining IndoorGML’s multiple layers. Each layer has an 
entry in the ID column, which is also the table’s primary key. A LAYER_NAME column allows 
for the definition of the name, allowing for the easy identification of specific layers, while an 
additional LAYER_CLASSIFIER column exists for further classification. In the provided 
dataset, the last column was not populated with any values, and was not used further as a result. 
 
The IDML_SPACE_STATE table is used for the definition of the possible states (nodes or 
spaces in dual and primal space) within the IndoorGML dataset. An ID column is also present 
here, functioning as the table’s primary key. The LAYER_ID and INDOOR_OBJECT_ID 
columns are the two foreign keys connecting the states with their respective layers and indoor 
objects from the previous two tables. A STATE_NAME column allows for the definition of a 
name, while there are also two geometry columns, SPACE_GEOMETRY and 
STATE_GEOMETRY, defining the primal and dual space geometries of the State objects. It 
should be noted that not all layers from the IDML_SPACE_LAYER table were utilized, as only 



 

76 
 

the topography and wheelchair subspace were considered relevant for the proof of concept 
implementation objectives. Additional layers that had elements were a person subspace layer 
(ID=3) which had a too small number of elements to generate any navigable network (29 States, 
no transitions), a Bluetooth layer (ID=5, 5 States, no transitions), a subspacing layer based on the 
topography which was not using the same projection as the rest of the data, likely resulting from 
subspacing tests (ID=21) and an unnamed layer (null value in the name column, ID = 6) which 
also only had few elements (61 States, no transitions). As the combined number of objects for 
Layer IDs 3,5 & 6 was 95 states, compared to 838 and 242 state objects from layers 1 and 2 
(topography & wheelchair, respectively), it was deemed ok to not utilize them further in the 
implementation. 
  
The IDML_SPACE_BOUNDARY_TRANSITION table provides the transitions between states 
within the dataset (boundaries and edges in primal and dual space). Two columns, 
SPACE_STATE_ID1 and SPACE_STATE_ID2, provide the start and end states, connecting the 
table as foreign keys with the IDML_SPACE_STATE table. The LAYER_ID column provides 
an additional connection via foreign key to the layer the transitions belong to and the 
IDML_SPACE_LAYER table. A primary key ID column also exists in this table. An 
INDOOR_OBJECT_ID column also exists; however it is not populated with data, or linked with 
the IDML_INDOOR_OBJECT via a foreign key. 2 columns contain the geometry of the 
boundary transitions, SPACE_BOUNDARY_GEOMETRY and TRANSITION_GEOMETRY 
for the primal and dual space, respectively. A SPACE_BOUNDARY_NAME column contains 
the names of the boundary transition objects, while their respective lengths are stored in the 
TRANSITION_LENGTH column. As with the IDML_SPACE_STATE, not all layers were 
available, and the same two layers were utilized for the proof of concept source data. 
 
The IDML_SPACE_STATE_GENERICATTRB table was defined in order to provide additional 
semantic information for the various indoor objects. It is important to note that no Primary or 
Foreign keys were defined in this table, making the connection of the relevant info to the 
corresponding objects a manual process. An ID column is again included, possibly intended for a 
connection to the IDML_INDOOR_OBJECT table. However, while working with the data, the 
SPACE_STATE_ID column that is also included provided better results when attempting to 
match the attributes to the features. The attributes themselves are entered via use of ATTRNAME 
and DATATYPE columns, which specify the name and a codified value type of the attribute. The 
values are entered via separate columns for each data type, namely INTVAL, REALVAL, 
RUIVAL, DATEVAL and STRVAL. Out of these types, only the STRVAL column is used for 
string attribute values, even in the case of attributes like “Area”. The corresponding DATATYPE 
column value is also 1 for all table rows. 
 
The IDML_EXTERNAL_REFERENCE table allows for assignment of external reference 
information to any indoor object ID (Primary + Foreign key matched to elements of the 
IDML_INDOOR_OBJECT table). The Information System referenced can be specified, along 
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with a Name and URI. In the available dataset, this particular table did not include any 
information and was subsequently not used further. 
 
The IDML_JOINT_STATE_RELATIONS table allows for the definition of joint state relations 
of specific elements. An ID column exists as a Primary key but was not directly connected to the 
Indoor Object table. In addition, columns exist to for the entry of Space State IDs of up to 5 
layers, along with two separate geometry columns, for intersecting nodes and solids respectively. 
This table also does not include any data and was not used for the proof of concept 
implementation of this thesis. It is possible that the lack of data is also the reason no connection 
between this table and IDML_INDOOR_OBJECT or other tables was specified. 

The above completes our overview of the available source data in the IndoorGML dataset. An 
additional CityGML dataset was provided by the chair which will be examined in the next 
subsection. 
 

6.5 Complementary CityGML LoD4 data 
  
In addition to the IndoorGML dataset outlined in the previous section, a CityGML LoD4 dataset 
was provided, in order to enhance the existing data with further semantic information, where 
possible. The data was created as part of the process converting IFC and CityGML LoD4 data to 
IndoorGML (Khan, A. A., Donaubauer, A., & Kolbe, T. H., 2014) and was supplemented with 
additional semantic info as part of a project work on automatic creation of 3d points of interest 
via CityGML LoD4 files (S. Bauer, T. Vogl, 2014). 
 
The CityGML dataset is an LoD4 representation of Building 7 of the Main TUM Building in 
Arcisstrasse, same as the IndoorGML dataset. The Core and Building modules of CityGML were 
used for the initial dataset, which was expanded via use of the Generic module, in order to add 
GenericCityObject POI features. In order to accommodate two types of features, they used 
CityGML’s capacity for generalization and specialization, creating a GenericCityObject feature 
class named POI_Room, along with a specialized child class named POI_Door. Under those two, 
various semantic information was stored. Specifically, the following attributes were added: 
 
• gml_id 
• Raumnummer 
• Gebäudenummer 
• Raumname 
• Lehrstuhl 
• Stockwerk 
• Standort 

• Adresse 
• Fläche 
• DIN277 Untergruppe 
• TUM-Nutzung 
• Belegungsplan 
• Bodenbelag 
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This information was added to the IndoorGML dataset by merging the relevant features and 
copying the attributes from the CityGML dataset to the matched IndoorGML features. The exact 
process is described in the FME workflow, in section 6.7. It should be noted that only the 
GenericCityObejct features (POI_Room and POI_Door) were utilized. In addition, the geometry 
of the features was ignored, as the geometry of the IndoorGML features (states) was used instead. 
 

6.6 GTFS Transit Data 
 
OTP supports Transit trips as part of its multi-modal routing. In order to enable Transit, a valid 
GTFS (General Transit Feed Specification, as defined by Google Developers 
https://developers.google.com/transit/gtfs/ ) file needs to be provided alongside the OSM data 
used for OTP Graph building. 
 
Such files are typically available from transit agencies, such as Munich’s MVV. However, data 
for the Munich transit network is unfortunately not released publicly from MVV. As a 
workaround, data from the Verkehrsverbund Berlin-Brandenburg (VBB) agency was downloaded 
(VBB Data retrieved from Berlin Open Data website: http://daten.berlin.de/kategorie/verkehr ) 
and examined alongside the specification reference available via the Google Developers website.  
 
Based on the above, a mock GTFS dataset was created with the two stations nearest to the TUM 
building of the OSM dataset (Theresienstrasse and Koenigsplatz). A fake agency was created, 
along with 1 minute routes between the two stations at 5 minute intervals and a daily trip 
schedule for the second half of 2015. The dataset was correctly parsed by OTP, allowing for 
successful testing of the multimodal transit capabilities for the outdoor route segment. The mock 
GTFS dataset is partially available under Appendix I. 
 

  

https://developers.google.com/transit/gtfs/
http://daten.berlin.de/kategorie/verkehr
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6.7 FME Workflow 
 
The majority of the data migration tasks were completed mainly through the use of Safe 
Software’s FME Workbench tool. The precise workflow will be examined in depth in the current 
section. The relevant Workbench for the main conversion workflow is displayed in Figure IX of 
Appendix I, however, a graphical representation of the overall workflow can be seen below: 
 

 
Figure 42 - Proof of Concept Implementation Workflow (Green = FME / Blue = JOSM / Black = Linux OSM Tools) 

As we have mentioned, the source data was retrieved from an Oracle database, hosted by the 
TUM chair of Geoinformatics. One point of note is that by default, such a mixed dataset (Spatial 
& non-spatial information) cannot be fully read by a single FME reader (the data parsing engines 
developed by Safe Software as part of the FME series of tools). In order to mitigate that, both an 
Oracle Spatial and Non-spatial reader were added, in order to process the complete dataset. 
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As an overview, the below reader setup was used: 
 
FME Oracle non-spatial Reader 
IDML_EXTERNAL_REFERENCE   (Disabled, no data) 
IDML_INDOOR_OBJECT    (Disabled, only ID data) 
IDML_JOINT_STATE_RELATIONS  (Disabled, no data) 
IDML_SPACE_BOUNDARY_TRANSITION (Disabled, no data) 
IDML_SPACE_LAYER    (Disabled, only Layer ID and Name data) 
IDML_SPACE_STATE    (Disabled, no data) 
IDML_SPACE_STATE_GENERICATTRB  
 
FME Oracle Spatial Reader 
IDML_SPACE_BOUNDARY_TRANSITION (Transition geometry / DS edges + attributes) 
IDML_SPACE_STATE    (State geometry / DS nodes + attributes) 
 
FME Oracle Spatial Reader #2 
IDML_SPACE_STATE    (State geometry / PS spaces + attributes) 
 
As we can see above, FME Oracle spatial readers were used to retrieve the dual space node 
(state) and edge (transition) elements from the IDML_SPACE_STATE and 
IDML_SPACE_BOUNDARY_TRANSITION tables respectively. A second Oracle Spatial 
reader retrieved the primal space state geometries, again from the IDML_SPACE_STATE table. 
 
The non-spatial Oracle reader was used to retrieve the generic attributes table. Duplicate features 
from the non-spatial reader were disabled (IDML_SPACE_STATE and 
IDML_SPACE_BOUNDARY_TRANSITION). Additionally, any tables that did not contain data 
were also disabled in the reader. The IDML_INDOOR_OBJECT table was also not used, as it 
only contained the indoor object IDs, which were not necessary, considering the lack of data on 
the other non-spatial tables. Finally, the IDML_SPACE_LAYER table was not directly utilized 
in the FME workflow, due to awareness of the layers used. 
An additional FME reader was used for the GenericCityObject features (POI_Room & 
POI_Door) of the CityGML dataset. 
 
As a first step, all geometry containing features ( state point and space features, transition edges) 
are first passed through a Reprojector transformer, in order to be reprojected from the 
EPSG:31468 CRS to LL-WGS84 which is typically used in OSM data. 
 
The spatial features are then put through an AttributeFilter transformer, where the Layer ID 
values are used to separate the topography (used for walking) and wheelchair (used for 
wheelchair access) layers. As OTP considers features wheelchair accessible by default (with the 
exception of staircases and features tagged with “wheelchair=no”), an attribute creator is used to 
tag all layer 1 (topography) features with “wheelchair=no”, and all layer 2 (wheelchair subspace) 
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features with “wheelchair=yes”. This allows for the creation of a single graph containing both 
possible modes of transport and enables wheelchair accessible route selection via the client. 
While this method creates some overhead by defining two networks of nodes and edges with 
possible overlaps, it is also the most straightforward way to deal with the use of multiple 
IndoorGML/ MLSEM layers to store different modes of transport. 
 
In order to mitigate the lack of support for Z values in OSM features, we make use of the “level” 
tag. Ideally, the semantic information could be used to derive the appropriate floor/level of each 
element. The room number was initially considered, as the room naming scheme of the TUM 
includes the floor the room belongs to. However, since features like hallways have no room 
number assigned, this was deemed insufficient. As a workaround, a BoundsExtractor transformer 
is used in the features, in order to identify the higher and lower boundary Z values of each object 
from the geometry enabled features (states, spaces, transitions). State derived elements only 
receive a “min_height” tag, considering that they can only have a single Z value. Way elements, 
including both solid derived surface projections/outlines and transitions, have both a 
“min_height” and “height” tag, in order to represent the solid feature height and any non-
horizontal transitions (e.g. steps/ramps).  The values are then separated into different streams via 
an AttributeRangeFilter transformer and their “_zmin”/“min_height” (original transformer and 
final OSM attribute name) attribute values. The applicable ranges for each floor where initially 
defined via the use of features with other available floor indicators (e.g. rooms) and then refined 
by hand in order to more correctly cover the Z Ranges for each floor. The various ranges output 
by the filters are then fed into another AttributeCreator transformer which assigns the features 
with their respective level tags. 
 
As OSM does not support 3D solids, the space state features featuring solids geometry are 
additionally processed with the SurfaceFootprintReplacer transformer which allows for the 
generation of 2D footprints of the various spaces, which can be saved and viewed correctly in 
OSM. In regards to conveying the complete dimensions of the solid, the “min_height” and 
“height” values are stored as tags/attributes in the features from the previous process step. 
 
Finally, the geometry enabled features are fed through a series of FeatureMerger Transformers, in 
order to match and copy the semantic information available via the non-spatial generic attributes 
table, as well as the CityGML dataset. An AttributeRenamer transformer is used to rename 
attributes to known OSM keys. Namely, the “name” and “ref” keys are populated with the 
original room name and current room name values retrieved from the generic attributes table. The 
reason for creating these specific tags is that they are used for the Nominatim geocoder index as 
searchable text strings where addresses are not available (which is naturally the case in the indoor 
dataset). The AttributeRenamer can also be used at this point to change other attributes to their 
closest OSM key equivalents if needed. However, as OSM has a free-tagging system, this step is 
not necessary unless a specific key is required for targeted usage. 
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The features are then processed by one more AttributeCreator transformer, which assigns an 
indoor=yes tag to all features, along with feature specific tags (room=yes for the state node 
features, building:part=yes for the space state footprints and highway=corridor/step/elevator for 
the edge features). This is done to add the features to the list of indexable OSM features in the 
Nominatim geocoder. It should be noted that by default, building:part and room features are not 
indexed.  
 
The differentiation between the possible highway tag values is done via the use of an 
AttributeFilter Transformer on the Space State elements to separate them based on their 
STATE_NAME attribute values. The elements are separated between typical transitions 
(“highway=corridor” tagging) and steps (“highway=steps” tagging) depending on the 
STATE_NAME values, which is then used alongside two FeatureMerger transformers, merging 
the transitions (requesters) to their point of origin states (suppliers). The matched features are 
then tagged separately with the appropriate value for the “highway” tag, before being directed to 
the OSM writer. It should be noted that as no elevator elements were clearly defined in the 
IndoorGML dataset, the step for creating “highway=elevator” tags was omitted from the 
implementation workbench. 
 
As a final step, the features are directed to FME’s OSM Writers. It should be noted that when 
nodes are used as parts of way features (e.g. edges or footprints), the individual nodes retain no 
information and are only selectable as part of the way feature they belong to. As a workaround, 
two separate OSM Writers are used to store a ways OSM file containing the linear/way features 
(dual space transition edges and space state footprints) and a nodes OSM file containing the 
point/node features (dual space state nodes). 
 
One important task for the correct implementation of indoor/outdoor routing solution is ensuring 
that the outdoor OSM dataset is correctly connected to the generated indoor OSM dataset. In 
order to achieve this, a separate FME Workspace was defined, which parses data from the OSM 
Ways file generated in the previous workflow, as well as the surrounding dataset. The relevant 
Workbench is displayed in Figure VIII of Appendix I. 
 
Currently, this is achieved via a manual download of the surrounding area data via the OSM 
webpage or the JOSM client. The data could also possibly be retrieved automatically via a call to 
the OSM API via FME. However, as the API often rejects queries with a large bounding box or 
complex data, the manual process was deemed as adequate for the purposes of this 
implementation. 
 
One additional step that is completed in JOSM is the definition of anchor nodes/ spaces based on 
the sample IndoorGML dataset. This manual editing is necessary as the sample IndoorGML data 
does not contain any Anchor Space / Node features. Loading the IndoorGML-derived OSM 
dataset in JOSM, we can filter for elements with the attribute/value pair 
“STATE_NAME=Door”. 
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We can then proceed to manually identify door features that can be changed to Anchor Space / 
Nodes. Once these are located, the first step is the addition of the “IndoorGML:Navi=anchor” 
key/value pair, which we can then use for filtering. It is then recommended to change the value of 
the “STATE_NAME” attribute to “Anchor”, for all the features where the 
“IndoorGML:Navi=anchor” tag was added. While redundant, this tagging allows us to maintain a 
data structure similar to that of the original dataset. 
 
Once the two datasets are read, they are passed through AttributeFilter transformers. These are 
used to isolate features from the external dataset that have a value for the “entrance” tag. The 
reason for not only selecting “entrance=yes” tagged features is that values can be entered to 
denote main and alternative entrances in a building. The indoor dataset is also filtered similarly, 
for features where the STATE_NAME attribute has the “Anchor” value (stored in the feature as 
part of the attributes for space states from the IDML_SPACE_STATE table). 
The FME GeographicNeighborFinder transformer is then used to locate indoor candidate Anchor 
features that are within a pre-defined distance (selected a 5m distance, after trial and error to 
provide reasonable results) from the outdoor entrance base features. An additional check that 
could be potentially implemented, is the automated review of the base and candidate feature 
angles (as provided by the GeographicNeighborFinder transformer), in order to confirm that 
matched anchor and entrance features are facing in the same direction. As the Anchor features 
were manually derived for the implementation, this was not a necessary check, however it could 
be a potential improvement for dealing with fully automated parsing of datasets with Anchor 
Spaces / Nodes. 
 
Three FME VertexCreator transformers are then used to generate the points and edge connecting 
them based on the coordinates of the matched anchor and entrance features. An AttributeCreator 
transformer is used to tag the generated edges with “highway=corridor”, 
“IndoorGML:Navi=anchor”, and “indoor=yes” tags so that they can be parsed from OTP for any 
routing request. 
 
The line features are then saved in a separate file via the FME OSM Writer, containing the OSM 
connecting edges. This is the final step in generating OSM data from the IndoorGML dataset via 
FME. It should be noted that the merging of the derived OSM datasets into a single final set was 
completed via use of the JOSM OSM editor. The reason for this was that merging the files 
directly via FME resulted in issues regarding overlapping features, which are obviously present 
in the datasets, considering the above workflow.  
 
All the OSM data, including partial and combined datasets is then synchronized over to the VM 
via use of the Dropbox cloud storage platform. 
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6.8 Data Processing – Nominatim Index 
 
The OSM XML format our OSM data is available in is not the preferred format for use with OTP 
and Nominatim. For that reason, the open source osmconvert command line tool is used, in order 
to convert the files to compressed PBF format. Osmconvert is part of the osmctools Debian 
package which can be installed directly in Ubuntu Server, so as to avoid building the necessary 
osmconvert binaries from source. Once the files have been converted to the PBF format, they are 
ready for processing by OTP and Nominatim. We have previously mentioned that some 
modifications to the two tools were needed, in order to enable functionality that would help us 
meet the thesis goals. These modifications will be examined further in this subsection. 
 
Nominatim, the OSM geocoder, works by parsing the OSM data files and creating an index of all 
searchable features. Out of the features that mostly interest us, Nominatim has coverage of 
building and highway tags enabled by default, along with most typical outdoor features like POIs, 
stores, etc. However, features (tags combined with nodes and ways) typically used for indoor 
mapping, are not included in the standard configuration.  
 
As the Nominatim OSM parser is not configurable via the use of external configuration files or 
command line to the needed extent, some modifications need to be made to the source code of the 
project, in order to enable support for such tags. After some failed attempts at modification, the 
question on how to better implement this support was raised in the Nominatim Github page, 
where some feedback was provided by a member of the community. 
 
As mentioned, Nominatim is based around the osm2pgsql tool which handles the parsing of OSM 
data and storage of relevant information for the geocoder’s index in a pgSQL database. In order 
to expand the tag indexing capabilities, the source code of the osm2pgsql/output-gazetteer.cpp 
(CPP file source code available in Appendix II, including modifications) file, responsible for the 
indexing of data, had to be modified. More specifically, the place_tag_processor::process_tags() 
function was modified to include “room”, “building:part” and “buildingpart” tags in the index. 
 
After the above modifications, both osm2pgsql and Nominatim were rebuilt. Testing confirmed 
that features tagged as “room”, “building:part” or “buildingpart” were now searchable, based on 
the values of the “name” or “ref” tags that were also defined where available (e.g. rooms). 
 
It is worth noting at this point that the Nominatim geocoder works by creating a “nominatim” 
table in the pgsql database running at the host machine. In order to build a new index (e.g. when 
completely changing source data), the existing “nominatim” database needs to be manually 
removed or renamed. The PGAdmin 3 graphical dB management tool was installed for this 
purpose on the VM, and used in order to keep backups of old index databases or clean up before 
creation of a new one. However, the index can be simply updated via use of the appropriate 
commands, in case of small updates to a large dataset. In our implementation, the dataset was 
small enough to allow for rebuilding the index for every change. 
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6.9 Data Processing – OTP Graph 
 
One of the features that we wanted to enable in OTP, was the option for setting a preference 
towards indoor or outdoor route segments, in order to increase context awareness. In order to 
implement this, we need to first explain a bit more in depth how OTP actually works.  
 
As with Nominatim, the OSM data is initially parsed by OTP’s graph builder. The OSM reader 
parses the way network of “highway” tagged elements (including streets, steps, corridors, 
elevators, etc.) and stores them as graph edges. Various types of edges are stored, with specific 
functions. The various tags assigned to the OSM way network are also parsed, and if applicable 
for routing purposes, stored as flags. An example of such a flag is wheelchair accessibility, 
defined by the “wheelchair” tag. In order to also take the “indoor” tag into consideration, some 
modifications to the source code were necessary, in order to both parse the tag and store it as 
“flag” for the appropriate edge types. 
 
The source code was examined for every location where wheelchair accessibility was examined, 
and a similar modification was made, in order to also include the indoor tag and flag. The exact 
files and functions that were modified are available in Appendix II, with the changes to the code 
highlighted. 
 
One important difference in the handling of indoor preference and wheelchair accessibility, is 
that wheelchair accessibility is a binary option, completely allowing or not allowing passage 
through the appropriate segments depending on the route settings. Naturally, this is not the same 
for indoor/outdoor preference, as completely avoiding indoor or outdoor segments would not 
allow for a complete route in any combined indoor/outdoor scenario. In order to implement this, 
we used OTPs capability to dynamically modify the weights (preference) of routes, depending on 
input from the user. This is a feature already implemented and used for OTP bicycle trip planner, 
allowing for modification of the route preference depending on three factors (safety, flatness, 
speed). 
 
In our implementation, a dropdown box was added to the standard client, allowing for selection 
of a neutral option (default OTP weighting of route), “prefer indoor” (reduced weight/higher 
preference for “indoor” tagged segments and increased weight for rest) and “prefer outdoor” 
(increased weight/lower preference for “indoor” tagged segments and reduced weight for rest). 
The necessary code modifications to the client are available in Appendix II, with the changes and 
additions highlighted. 
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6.10 Other changes – OTP Client 
 
In addition to the previously mentioned modifications, some further changes to the OTP source 
files was needed, in order to configure the client closest to the needs of the implementation. 
Enabling the Nominatim geocoder for our local instance was such a change, managed through the 
modification of OTP’s client configuration files so that it can correctly locate and query the local 
Nominatim instance. 
 
Additional changes to the client required for the implementation of the indoor preference 
dropdown were also made, with the respective files and highlighted changes available in 
Appendix II. 
 

6.11 Proof of concept process – Overview, Testing and Results 
 
Below is an overview of the proof of concept workflow and testing process, including 
screenshots: 
 
As a first step, we use FME and the main “oracle_all2osm” FME Workbench, in order to 
generate our OSM dataset from the IndoorGML data. 
 

 
Figure 43 - Use of FME Workbench to generate OSM way and node files from IndoorGML Oracle Spatial dataset 

 
Following that, we retrieve the “outdoor” OSM data via JOSM, and load the two FME generated 
OSM XML files in JOSM. When selecting an outdoor dataset, the JOSM tool provides feedback 
on the likelihood of the data being retrieved without issues from the OSM API. It is important to 
check this information, as direct retrieval from OSM is limited, being able to cover simple larger 
datasets, but allowing much smaller selections within densely mapped urban areas. In the case 
that a larger dataset is needed, country or city level extracts are available from alternative 
sources, as mentioned in section 4.3.2. 
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Figure 44 - OSM API "outdoor" OSM data download via JOSM 

 
Once the “outdoor” OSM data is downloaded and saved as an OSM XML file, we can proceed 
with loading the two OSM files generated via FME from the IndoorGML dataset. 
 

 
Figure 45 - FME generated Way OSM File   Figure 46 - FME generated Node OSM File 

 
As discussed in sections 5.6 we need to have Anchor Space / Node features from our IndoorGML 
dataset, in order to be able to match the “outdoor” OSM data to that derived from IndoorGML. 
However, as mentioned in section 6.7, Anchor Spaces need to be defined manually via editing of 
feature tags in JOSM. Once the editing is completed and the Ways OSM XML file is saved with 
the updates as per the instructions on section 6.7, we return to FME Workbench, in order to 
proceed with the matching of the building outdoor “entrance=*” tags and the Anchor Spaces / 
Nodes that we defined. 
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Figure 47 - "Outdoor" OSM "entrance=*" feature to Anchor Space / Node feature matching via FME 

In the FME Workbench, we load the updated Way and “Outdoor” OSM files that we have via 
FME and JOSM respectively, and run the workbench. A new OSM file is generated, which 
contains the “highway” tagged elements connecting the matched Anchor and “entrance” features. 
 

 
Figure 48 - Anchor Node / Space equivalent OSM feature, Nearest Neighbor “entrance” Outdoor feature and generated Way / 

Transition 

After loading the newly created connections file in JOSM, we proceed with merging the layers in 
JOSM, first merging the nodes layer to the ways, the combined layer to the “outdoor” dataset and 
finally merging the anchor to “entrance” connections to the rest of the data. 
 

 
Figure 49 - Merging OSM data layers in JOSM 
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After merging the data to a single file, we need to use the osmconvert command line tool in order 
to change the data to the OSM PBF file format. 
 

 
Figure 50 - osmconvert tool usage for OSM XML to OSM PBF file conversion 

 
The generated OSM PBF file can then be used to build the OTP Graph and Nominatim Index, via 
use of the applications’ command line tools. 
 

 
Figure 51 - OTP Graph build command syntax. All necessary files (OSM PBF, GTFS ZIP) are included within the target folder 

 
Figure 52 - OSM Nominatim Index setup command syntax, incl. OSM PBF source file definition 

After the OTP Graph and Nominatim Index are created, we can begin testing their functionality. 
For the Nominatim Geocoder, we can simply navigate to http://localhost/nominatim via a 
browser and do a test search to confirm the geocoder works as intended. 
 

 
Figure 53 - Nominatim geocoder instance test 

 

http://localhost/nominatim
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For OTP, we need to manually start the server via command line, as below: 
 

 
Figure 54 - OTP Server start command syntax. OTP Graph file is included within the target folder 

Once the server has initialized, we can load a tab in our browser with the location of our OTP 
server ( http://localhost:8080/?debug_layers=true ). Please note that we are enabling the built-in 
OTP debug layers via the “?debug_layers=true” parameter for our testing. 
 

 
Figure 55 - OTP Server initialized and instance loaded in browser 

We can use the debug layers functionality to display the available/loaded OTP graph and confirm 
that both our building/”indoor” dataset and “outdoor” OSM data is included in the graph. 

http://localhost:8080/?debug_layers=true
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Figure 56 - Display of "Traversal permissions" debug layer to review complete OTP Graph 

The difference in graph complexity between typical “outdoor” OSM data and an “indoor” 
IndoorGML derived dataset becomes rather pronounced when zooming to the relevant section of 
the graph. For a quick comparison, the entire “outdoor” dataset, spanning 88.729 hectares, 
consists of 2001 ways and 9619 nodes, while the “indoor” dataset contains 4252 ways and 9503 
nodes at 1.572 hectares. These values result in close to 120 times higher way and 55 times higher 
node density in an indoor dataset, compared to a well mapped area such as the center of Munich. 

 

 
Figure 57 - Review of indoor segment of OTP Graph via display of the "Traversal permissions" debug layer 
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We can now start by entering the address of a start point in our “outdoor” OSM data, 
simultaneously testing the Nominatim Geocoder for the “outdoor” data segment. We can see that 
the value we are entering is autocompleted from the geocoder if a near match is found. 
 

 
Figure 58 - Start point from “outdoor” OSM data 

We can then use a room with a known name in the building as the trip end point to confirm that 
the Nominatim Geocoder is also handling the “indoor” data segment correctly. 
 

 
Figure 59 - End point from “indoor” OSM data 

Once the two points have been defined, we can modify any other parameters such as the 
maximum walking distance and click the Plan Your Trip button. The OTP routing engine will 
return results based on the specified input. 
 

 
Figure 60 - OTP Route result for transit with outdoor/indoor start and end points 
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From the above routing result, we can confirm both the general routing functionality of the 
engine, as well as OTP’s multimodal support for use of Transit, based on our mock dataset.  
 
Additionally, if we zoom in to the point of entry to the building dataset and enable the debugging 
layer, we can see the improvement discussed in section 6.7 regarding the use of Anchor Space / 
Node features instead of matching “entrance” elements to doors, as OTP routes through one of 
the defined anchor connections.  
 
However, one other point that becomes apparent is that review and debugging of indoor route 
network graphs with the default 2D representation of 3D data in OTP is at best cumbersome, if 
not almost unfeasible. 
  

 
Figure 61 - Route through anchor point connection - Complexity of 2D representation of indoor network graph 

For the next step in our testing, we confirm the functionality of simple walking routes. If 
“Transit” is selected as the mode of transport, we can still receive simple walking-only results, if 
they are preferred to using a transit route. As we are using nearby points in a small dataset, this 
happens to be the case. Again, we define an outdoor and an indoor point for our routing. 
 
It should be noted that the indoor point used for the below testing segment was created manually 
in order to better showcase the added functionality in regards to context awareness. The same 
functionality could be replicated in an IndoorGML derived OSM dataset created from our 
workflow, however the current building does not readily provide a good network segment for 
testing of the added functionality. 
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Figure 62 - Standard routing result with no Indoor/Outdoor or wheelchair preference 

Once we have our standard route, we can test the indoor/outdoor preference functionality, by 
selecting the “Indoor” option from the trip planner dropdown. After a short calculation, we can 
see that the route is updated, containing a larger indoor segment. 
 

 
Figure 63 - Updated routing result with Indoor preference and no wheelchair preference 
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In order to test wheelchair accessibility, we check the “Wheelchair accessible trip” option. We 
can see that the route is updated again, directing us through a path and entrance that are 
wheelchair accessible. It’s also important to note that wheelchair accessibility takes precedence 
over indoor/outdoor preference, as intended.  
 

 
Figure 64 - Updated routing result with Indoor preference and wheelchair preference, wheelchair constraint precedence 

 

As we have seen from the above overview, the proof of concept implementation was tested with 
indoor only, outdoor only and combined indoor outdoor requests. The standard routing 
functionality was confirmed, including transit + walking and walking only requests, meeting our 
criteria for multi-modal routing. 
 
In regards to context awareness, time constraints were only usable in regards to OTP’s built in 
time dependent routing for Transit trips. Time-based constraints regarding the indoor dataset 
were examined, however, there were significant difficulties in implementing them, a fact 
confirmed with feedback from the OTP development team. The same limitations applied for the 
considered option of clearance-based access constraints. The main reason is the simultaneous 
definition of multiple constraints in OSM via use of the “access” tag, which created problems 
with the correct parsing of the various constraint possibilities. 
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However, both wheelchair accessibility and indoor/outdoor preference were successfully 
implemented as constraints, providing alternative routes depending on the user input during the 
routing request. 
 
Some issues that were initially identified regarding the connectivity of the datasets due to the lack 
of Anchor states in the source dataset, were overcome via the manual definition of Anchor Space 
/ Node features to be used for matching instead of the previous Door states. This addition, along 
with slight modifications to the relevant workbench resolved previous issues. One such example 
was the outdoor dataset being connected to a door belonging to a room near the actual building 
entrance. Such issues can be easily overcome via the accurate definition of Anchor spaces and 
states, and a, so that Anchor spaces & states are used instead of doors. 
 
During testing, we had a chance to review the performance of a 2D representation while dealing 
with a 3D dataset such as a building. While 2D is generally adequate for outdoor 
routing/navigation, its use for indoor navigation proves to be much more problematic. The 
limitations of a 2D representation can be overcome to a certain extent through the use of multiple 
levels/layers, however, this is still not optimal for more complex or extensive structures which 
are better visualized through the use of a 3D model. 
 
One of the platforms increasingly utilized for 3D representation of data is Cesium, an open-
source Javascript library utilizing WebGL for the creation and display of 3D globes as well as 2D 
maps in mobile and desktop browsers without the need for additional plugins. 
 
With built-in support for OpenStreetMap base imagery layers, JSON & GPX vector data (e.g., a 
route produced in JSON from the OTP routing engine) and COLLADA 3D models, Cesium 
(http://cesiumjs.org/) offers an interesting potential option for the 3D visualization of a navigation 
implementation. 
 
As some research has been performed from the chair regarding the combination of semantic 
spatial databases (3dCityDB) and a Cesium based viewer (Chaturvedi, K., Yao, Z., & Kolbe, T. 
H., 2015), Cesium could be considered as an option for 3D representation of a route. An existing 
prototype for 3D visualization of IndoorGML based indoor routing has already been developed 
from the TUM chair of Geoinformatics (Khan, A. A., Yao, Z., & Kolbe, T. H., 2015)  and could 
potentially offer a starting point for combined indoor/ outdoor routing implementations. 
 
Other alternatives naturally exist, with a significant amount of research into the 3D representation 
of data coming directly from the OSM community, as depicted in section 4.3.7. In regards to 
Indoor 3D representation of OSM data, a prototype application using XML3D and building data 
defined as per the IndoorOSM proposal was developed from the University of Heidelberg and is 
available online ( http://indoorosm.uni-hd.de/3d/Indoor_examine.xhtml# ). Another prototype 
implementation, based on the OSMBuildings project is available online, however again with 
quite limited functionality ( http://osmbuildings.org/examples/indoor/ ).  

http://cesiumjs.org/
http://indoorosm.uni-hd.de/3d/Indoor_examine.xhtml
http://osmbuildings.org/examples/indoor/
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Challenges to be considered with the 3D representation are the performance impact & 
requirements for the representation of complex building indoor models, in combination with the 
vector representation of a route and the 3D “outdoor” dataset. Naturally, new development of a 
3D capable and indoor optimized routing engine (or extensive modification of an existing 
solution) would be necessary in order provide more than simple visualization of the data. 
 
Another issue that was encountered during testing, which may be related to the small extent of 
the outdoor dataset and the use of a mock GTFS dataset with only two stops in close proximity to 
the target “indoor” area is that the preferred route output often provides walking only instructions 
despite selection of the “Transit” mode of transport. This may be due to the fact that OTP adds an 
additional weight cost to the route for boarding and leaving transit, which, in shorter routes such 
as those possible within our combined outdoor/indoor dataset, leads to a preference towards 
walking instead of utilizing available transport. 
 
One final and rather important challenge that was faced during testing of the implementation was 
the inability to use the Nominatim geocoder to provide OSM IDs of indoor elements to the 
routing engine as trip start/end points. In the current implementation, the X,Y coordinates of the 
element or its center point in the case of areas is provided, and the OTP  routing engine matches 
it with vertices sharing the same X,Y coordinates. This does not appear to take into account the 
level tagging, only navigating to a different level if the matched vertex has no other vertices in 
different levels that overlap its X,Y coordinates. As a result, requests towards rooms from the 
geocoder that are in different levels essentially provide the same input to the routing engine. 
 
While the geocoder request and response can be reconfigured to provide only the OSM ID as its 
response, this cannot be utilized by OTP, as it appears to use an internal ID within its Graph 
which is different to that available from the OSM dataset and Nominatim. As the geocoder has no 
way of parsing the internal Graph IDs of elements based on their OSM ID, it is obvious that 
either extensive reworking of OTP and Nominatim is required, or an alternative solution in 
regards to routing or trip start/end point selection. One potential solution that could at least offer a 
possible improvement in indoor trip star/end point selection would be to implement a selection 
method using a layer/level based representation of building indoors, as per the OSMTools or 
OpenLevelUp projects, referenced in section 4.3.7. 
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6.12 Proof of Concept Implementation - Conclusion 
 
Overall, the performance of the proof of concept solution exceeded our initial expectations in 
some aspects, considering the lack of built-in support for indoor datasets, while leaving room for 
improvement in other aspects. 
 
Regarding the migration of data from IndoorGML to OSM, it should be noted that, at its current 
state, the generated OSM data is still simplified compared to the initial IndoorGML data, mostly 
due to the limitations of OSM’s simple data model compared to IndoorGML. However, the 
conflation process provides a navigable combined dataset, including the identification of outdoor 
entrance & indoor anchor matches and generation of connecting pathways, when both the OSM 
and IndoorGML datasets are well defined. This provides datasets that can be readily utilized for 
indoor/outdoor routing requests, with confirmed functionality in single level indoor datasets. 
 
It should be noted that the OSM data generated for the proof of concept implementation was 
mostly geared towards having a dataset working  with the limitations that OTP and Nominatim 
introduce, rather than being as close to the original data as possible. With that in mind, there is 
still room for improvement in this regard, which should also be easier to implement with the 
complete conceptual conflation model defined and a dataset based on the IndoorGML OGC 
standard and fully utilizing all available IndoorGML feature classes. 
 
Regarding the performance of the routing solution used for the proof of concept, we were able to 
obtain working routing results for transit and walking. Naturally, a more extensive mock GTFS 
dataset or an actual GTFS dataset from a transit agency would provide much better results. The 
current proximity of the mock GTFS stops and the tested indoor area often result in walking 
routes being preferred, due to the routing engine adding a boarding and disembarking weight cost 
to transit usage for small distances. Generally, improvements in this regard depend greatly on the 
accuracy of the external OSM data, which, if supplemented with parking spots for bikes and cars, 
could also be used to power multimodal planning for other options like car and bike, with a few 
further modifications to the OTP client. 
 
Context awareness and application of constraints was achieved in regards to wheelchair 
accessibility and indoor/outdoor preference, with slight modifications to the OTP routing engine 
source code and appropriate tagging of the generated OSM features. Again, especially in regards 
to wheelchair accessibility, the accuracy of the routing results depends greatly on the accuracy 
and completeness of both the “outdoor” OSM data and the IndoorGML dataset from which we 
derive our “indoor” OSM. 
 
One significant problem that remains is the correct provision of trip start/end points to the routing 
engine. As OSM and its tools, and more specifically the OTP routing engine, are aimed towards 
outdoor navigation, accurate selection of trip points in a dataset of features with overlapping X,Y 
coordinates but different Z values is problematic. An attempt to resolve this issue was made 
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through the use of the geocoder, which can identify the target points correctly, but cannot 
communicate the information to the routing engine in a manner that would force routing through 
the appropriate path to the level the element belongs to. This causes confirmed issues when 
attempting to route to overlapping features (X,Y overlapping rooms in different floors), where the 
route generated simply directs to the feature that is at the same level as the outdoor dataset and 
building entrance. When directing to features with non-overlapping X,Y network elements (nodes 
or ways), the implementation acknowledged the need to route through an elevator feature and 
change levels in order to reach the target room (this functionality was tested with manual 
additions to the combined indoor/outdoor OSM dataset). 
 
This could be potentially resolved via the use of a different routing solution, one with better 
management of overlapping features, or one not relying on a graph prebuilt from the OSM data, 
but real time graph building and direct use of the OSM data. This would allow the use of a 
geocoder as initially planned, due to the geocoder also utilizing the same OSM data and being 
able to offer node IDs that would refer to the same features in both the routing network graph and 
the geocoder OSM feature index. 
 
One final issue is the representation of 3D based data in a 2D oriented environment. The problem 
becomes increasingly apparent when trying to review the network graph of the “indoor” OSM 
data in the OTP client, but is already obvious when loading the generated data in an OSM 
viewer/editor such as JOSM, where efficient navigation and work within the dataset is only 
achievable through extensive use of filters. In that regard, there is work within the OSM 
community for development of tools and a tagging schema that could be more oriented towards 
work with 3D building datasets, however, there is little in the way of a production-ready solution 
or implementation at the moment. 
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7 Conclusion 
 
As a conclusion to this thesis, we will provide an overview of the goals achieved through the 
related research and work of this thesis, while indicating areas of potential for further research 
and providing some overall final feedback. 
 
As part of the goals, after extensive review of both the IndoorGML and OSM data models, their 
structure, content and capabilities, a proposal for a Conceptual Conflation Model for migrating 
data from IndoorGML to OSM has been created. This provided a basis for some aspects of the 
proof of concept implementation, while also giving a good basis for the general transformation of 
IndoorGML data, including similar future implementations and some perspective on how to best 
deal with indoor data within OSM. 
 
Additionally, a proof of concept implementation was developed, covering the thesis requirements 
for creation of a navigable OSM dataset out of IndoorGML source data, via a conversion process 
based to a certain extent to our conceptual conflation model, but modified to better work with 
both the specific structure of our sample IndoorGML dataset, and the base requirements of our 
OSM tools and thesis. An automated process was also defined via FME for the connection of 
available “outdoor” OSM datasets and the “indoor” OSM data that was generated from 
IndoorGML. 
 
The tools selected for the proof of concept implementation provided a good starting point for 
meeting the thesis requirements for a working combined routing solution, but were modified to 
meet further goals, in respect to Context Awareness, by the addition of an Indoor / Outdoor 
routing preference option and validation of support for wheelchair accessibility. Additional 
modifications were made to provide a geocoder based option for entering trip start/end points, 
including indoor POIs such as rooms, via simple name entry.  
 
Additionally, support of multimodal trip planning was confirmed in testing, via the use of a mock 
GTFS Transit feed that was created for the implementation. The transit data, combined with the 
OTP routing engine’s built in support for multimodal trip planning via GTFS, allowed us to meet 
the goal of multimodal trip planning, despite occasional mode of transport preference issues due 
to the small extent of the GTFS dataset and its proximity to the singular indoor target area. 
 
While the work done in this thesis offers an initial approach towards developing a full-fledged 
combined indoor/outdoor routing solution, there is still significant potential for further research 
and development. 
 
One of the areas of future research would be the refinement of the semantics migration process, 
both in regards to further definition of the IndoorGML Constraints concept, as well as the 
identification of matching OSM tags and best tagging practices for the accurate and effective 
conveyance of these attributes to OSM. 
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This would in turn allow for much more fine-tuned context awareness, provided that the OSM 
tools (routing engines), include and extend their support for more complex constraint awareness 
and definition for route planning, both in regards to indoor only and especially towards combined 
indoor/outdoor data. 
 
However, what is possibly the most important point for better indoor and combined 
indoor/outdoor navigation is the need for significant improvements in the available options for 
representing and working with complex, 3D based datasets such as buildings and their indoor 
areas, or at the very least, complex network graphs which also include vertical transitions. This 
would also allow for better routing clients, with options for trip start/end point selection in 3D 
space that will greatly improve both the user experience, as well as the quality of results, by 
enabling drastically better testing and validation of the routing engines’ behavior and results. 
 
While on the point of validation, it should be noted that there already exists a plethora of 
proposals from the OSM community regarding indoor tagging and representation of buildings 
within OSM. While the freedom of the OSM platform allows for direct import of the data derived 
via our implementation and/or based on the Conceptual conflation OSM model, it is still advised 
to allow for review of both the created data as well as the model from the OSM community, 
before proceeding with large scale building indoor uploads or en masse modifications to already 
tagged buildings.  
 
This has been a proven method to identify any potential issues with a proposed mapping and 
tagging schema, particularly in regards of technical or interoperability issues that may arise, 
which are spotted much more effectively when reviewed by the active OSM community, 
compared to what has been already identified during the concept development. 
 
In regards to review of existing data models, some points also became apparent during work with 
v1 of the IndoorGML OGC standard. One initial point is the need for definition of generic 
attributes for the IndoorGML elements, either via inclusion of support for generic attributes in the 
Core Module (as per the MLSEM approach from (Nagel, C. 2014)), or via a new thematic 
extension.  
 
This appears to be the intent with the Constraints Concept, however, with the Constraints Module 
being more tied to the Navigation rather than the Core module, it is important to avoid further 
nesting / dependence of thematic modules on each other, as this approach seems to add 
unnecessary complexity to the model structure. In any case, the Constraints concept needs to be 
fully implemented as a module for effective context aware navigation. 
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Additionally, best practices have to be established regarding the representation of specific cases 
within the model. As an example, wheelchair constraints can either be implemented via use of the 
Navigation & Constraints Modules, or via definition of a separate Space Layer in the core 
module. A best practice for such cases needs to be defined, in order to have a consistent modeling 
approach that will help with the development of tools that can successfully parse an IndoorGML 
dataset 
 
In conclusion, based on the current state of tools, it is clear that we are still in the early 
development stages of indoor and combined indoor/outdoor navigation solutions, particularly 
when comparing to the maturity of outdoor LBS and navigation. However, judging from the 
increasing amount of interest shown from companies, academia and even user communities, and 
considering the many applications for such solutions (both commercial and noncommercial), one 
could expect a growth in the speed of new solution development, similar to that of outdoor LBS 
in recent years. 
 
 
  



 

103 
 

8 References 
 
West, M. (2011). Developing high quality data models. Elsevier. 
 
Steve Hoberman, "Data Modeling for MongoDB", Technics Publications, LLC 2014 
 
Khan, A. A., Donaubauer, A., & Kolbe, T. H. (2014). “A multi-step transformation process 
for automatically generating indoor routing graphs from existing semantic 3D building 
models.” In Proceedings of the 9th 3D GeoInfo Conference. 
 
Open Geospatial Consortium. (2008). OGC IndoorGML. OGC standard available from: 
Open Geospatial Consortium – IndoorGML Standard, last retrieved May 2015 
http://www.opengeospatial.org/standards/indoorgml 
 
Afyouni, I., et al. (2014). "Spatial models for context-aware indoor navigation systems: A 
survey." Journal of Spatial Information Science(4): 85-123. 
 
Nagel, C. (2014), “Spatio-Semantic Modelling of Indoor Environments for Indoor 
Navigation.” Dissertation an der Technischen Universität Berlin, Fakultät VI – Planen 
Bauen Umwelt 
 
Ramm, F. ; Topf, J.: "OpenStreetMap: Die freie Weltkarte nutzen und mitgestalten", 
Lehmanns Media, 2010 
 
Goetz, Marcus, and Alexander Zipf. "Extending OpenStreetMap to indoor environments: 
bringing volunteered geographic information to the next level.” Urban and Regional Data 
Management: Udms Annual 2011 (2011). 
 
Hubel A (2011) “Webbrowser based indoor navigation for mobile devices based on 
OpenStreet-Map.” http://andreas-hubel.de/ba/ba_V2.0.pdf (Accessed June 2015) 
http://andreas-hubel.de/ba/demo/ 
 
Hashemi, P. and R. Ali Abbaspour (2015). Assessment of Logical Consistency in 
OpenStreetMap Based on the Spatial Similarity Concept. OpenStreetMap in GIScience. J. 
Jokar Arsanjani, A. Zipf, P. Mooney and M. Helbich, Springer International Publishing: 
19-36. 
 
Khan, A. A., & Kolbe, T. H. (2012, November). “Constraints and their role in subspacing 
for the locomotion types in indoor navigation.” In Indoor Positioning and Indoor 
Navigation (IPIN), 2012 International Conference on (pp. 1-12). IEEE. 
 

http://www.opengeospatial.org/standards/indoorgml
http://andreas-hubel.de/ba/ba_V2.0.pdf
http://andreas-hubel.de/ba/demo/


 

104 
 

Donaubauer, A., Straub, F., Panchaud, N., & Vessaz, C. (2013), “A 3D indoor routing 
service with 2d visualization based on the multi-layered space-event model.” In Progress in 
Location-Based Services (pp. 453-469). Springer Berlin Heidelberg. 
 
S. Bauer, T. Vogl, (2014) “Automatische Ableitung von 3D Points of Interest aus CityGML 
LOD4”, Abschlussbericht Angewandte Geoinformatik 2  
 
Chaturvedi, K., Yao, Z., & Kolbe, T. H. (2015). “Web-based Exploration of and Interaction 
with Large and Deeply Structured Semantic 3D City Models using HTML5 and WebGL.” 
 
Khan, A. A., Yao, Z., & Kolbe, T. H. (2015). “Context Aware Indoor Route Planning Using 
Semantic 3D Building Models with Cloud Computing.” In 3D Geoinformation Science (pp. 
175-192). Springer International Publishing. 
 
OpenStreetMap Wiki (Accessed May 2015) 
http://wiki.openstreetmap.org/wiki/Main_Page 
 
OSM Taginfo project homepage 
https://taginfo.openstreetmap.org/ 
 
W3C XML reference site 
http://www.w3.org/XML/ 
 
Geofabrik OSM data extract for Bavaria (Retrieved June 2015) 
http://download.geofabrik.de/europe/germany.html 
 
Mapzen OSM data extract for Munich (Retrieved June 2015) 
https://mapzen.com/metro-extracts/ 
 
OSMBuildings project homepage 
http://osmbuildings.org/ 
 
OpenTripPlanner (Accessed May 2015) 
http://www.opentripplanner.org/ 
 
OpenTripPlanner Deployments Worldwide 
http://docs.opentripplanner.org/en/latest/Deployments/ 
 
TRIMET Trip Planner (Accessed May 2015) 
http://trimet.org/ 
 
  

http://wiki.openstreetmap.org/wiki/Main_Page
https://taginfo.openstreetmap.org/
http://www.w3.org/XML/
http://download.geofabrik.de/europe/germany.html
https://mapzen.com/metro-extracts/
http://osmbuildings.org/
http://www.opentripplanner.org/
http://docs.opentripplanner.org/en/latest/Deployments/
http://trimet.org/


 

105 
 

OpenLevelUp! project homepage 
http://github.pavie.info/openlevelup/  
 
OSMTools - Indoor building browser example (Accessed May 2015) 
http://clement-lagrange.github.io/osmtools-indoor/home.html 
 
Keep Right OSM Quality Assurance tool (Homepage and OSM Wiki Page) 
http://keepright.at/ & http://wiki.openstreetmap.org/wiki/Keep_Right 
 
OmniClass Classification Codelists homepage 
http://www.omniclass.org/ 
 
OpenTripPlanner Github page 
https://github.com/opentripplanner/OpenTripPlanner 
 
OSM Nominatim Github page 
https://github.com/twain47/Nominatim 
 
Oracle Spatial and Graph product site 
http://www.oracle.com/us/products/database/options/spatial/overview/index.html 
 
Oracle Instant Client downloads page 
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html 
 
Oracle SQL Developer and SQL Developer Data Modeler downloads page 
http://www.oracle.com/technetwork/developer-tools/index.html 
  
Safe Software - Feature Manipulation Engine (FME) Homepage 
http://www.safe.com/fme/ 
 
Google Developers GTFS Reference page 
https://developers.google.com/transit/gtfs/  
 
Open Data Berlin – VBB GTFS Dataset source 
http://daten.berlin.de/kategorie/verkehr 
 
Cesiumjs – Cesium Javascript library website (Accessed May 2015) 
http://cesiumjs.org/ 
 
University of Heidelberg – IndoorOSM 3D building indoor representation and routing  
http://indoorosm.uni-hd.de/3d/Indoor_examine.xhtml# 
 

http://github.pavie.info/openlevelup/
http://clement-lagrange.github.io/osmtools-indoor/home.html
http://keepright.at/
http://wiki.openstreetmap.org/wiki/Keep_Right
http://www.omniclass.org/
https://github.com/opentripplanner/OpenTripPlanner
https://github.com/twain47/Nominatim
http://www.oracle.com/us/products/database/options/spatial/overview/index.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/developer-tools/index.html
http://www.safe.com/fme/
https://developers.google.com/transit/gtfs/
http://daten.berlin.de/kategorie/verkehr
http://cesiumjs.org/
http://indoorosm.uni-hd.de/3d/Indoor_examine.xhtml


 

106 
 

OSMSharp Github Wiki – OSM Data Model (Accessed May 2015) 
https://github.com/OsmSharp/OsmSharp/wiki/OpenStreetMap-data-model  

https://github.com/OsmSharp/OsmSharp/wiki/OpenStreetMap-data-model


 

107 
 

Appendix I – UML & Structure Diagrams, Sample Data Examples 
 

IndoorGML Core Module 

 

Appendix Figure I - UML diagram of IndoorGML Core Module (OGC, 2014) 
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IndoorGML Navigation Module 

 

Appendix Figure II - UML diagram of IndoorGML Navigation module (OGC, 2014) 
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IndoorGML Constraints Concept 

 

Appendix Figure III - Concept diagram of IndoorGML Constraints module concept (OGC, 2014) 
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MLSEM Constraints Concept 

 

Appendix Figure IV - The semantic concepts of the Space Representation package (Nagel, C., 2014) 
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OSM XML Example 
 

<?xml version="1.0" encoding="UTF-8"?> 
<osm version="0.6" generator="CGImap 0.0.2"> 
 <bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900" 
maxlon="12.2524800"/> 
 <node id="298884269" lat="54.0901746" lon="12.2482632" user="SvenHRO" uid="46882" 
visible="true" version="1" changeset="676636" timestamp="2008-09-21T21:37:45Z"/> 
 <node id="261728686" lat="54.0906309" lon="12.2441924" user="PikoWinter" uid="36744" 
visible="true" version="1" changeset="323878" timestamp="2008-05-03T13:39:23Z"/> 
 <node id="1831881213" version="1" changeset="12370172" lat="54.0900666" 
lon="12.2539381" user="lafkor" uid="75625" visible="true" timestamp="2012-07-
20T09:43:19Z"> 
  <tag k="name" v="Neu Broderstorf"/> 
  <tag k="traffic_sign" v="city_limit"/> 
 </node> 
 ... 
 <node id="298884272" lat="54.0901447" lon="12.2516513" user="SvenHRO" uid="46882" 
visible="true" version="1" changeset="676636" timestamp="2008-09-21T21:37:45Z"/> 
 <way id="26659127" user="Masch" uid="55988" visible="true" version="5" 
changeset="4142606" timestamp="2010-03-16T11:47:08Z"> 
  <nd ref="292403538"/> 
  <nd ref="298884289"/> 
  ... 
  <nd ref="261728686"/> 
  <tag k="highway" v="unclassified"/> 
  <tag k="name" v="Pastower Straße"/> 
 </way> 
 <relation id="56688" user="kmvar" uid="56190" visible="true" version="28" 
changeset="6947637" timestamp="2011-01-12T14:23:49Z"> 
  <member type="node" ref="294942404" role=""/> 
  ... 
  <member type="node" ref="364933006" role=""/> 
  <member type="way" ref="4579143" role=""/> 
  ... 
  <member type="node" ref="249673494" role=""/> 
  <tag k="name" v="Küstenbus Linie 123"/> 
  <tag k="network" v="VVW"/> 
  <tag k="operator" v="Regionalverkehr Küste"/> 
  <tag k="ref" v="123"/> 
  <tag k="route" v="bus"/> 
  <tag k="type" v="route"/> 
 </relation> 
 ... 
</osm> 

 

OSM XML Example, including Node, Way and Relation Elements (OSM Wiki, 2015) 
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OSM Relation Example 

 
Appendix Figure V - OSM Relation Example – OSM Website representation 

 
<osm version="0.6" generator="CGImap 0.4.0 (23030 thorn-
02.openstreetmap.org)" copyright="OpenStreetMap and 
contributors"attribution="http://www.openstreetmap.org/copyright" license="http://opend
atacommons.org/licenses/odbl/1-0/"> 
<relation id="1370729" visible="true" version="12" changeset="21010523" timestamp="2014
-03-09T18:00:32Z" user="Cato_d_Ae" uid="1679807"> 
<member type="relation" ref="1370727" role="level_-1"/> 
<member type="relation" ref="1370728" role="level_0"/> 
<member type="relation" ref="1370725" role="level_1"/> 
<member type="relation" ref="1370726" role="level_2"/> 
<member type="node" ref="1098227410" role="entrance"/> 
<member type="way" ref="94551367" role="outer"/> 
<tag k="addr:city" v="Heidelberg"/> 
<tag k="addr:country" v="DE"/> 
<tag k="addr:housenumber" v="48"/> 
<tag k="addr:postcode" v="69120"/> 
<tag k="addr:street" v="Berliner Straße"/> 
<tag k="amenity" v="university"/> 
<tag k="building" v="yes"/> 
<tag k="building:architecture" v="modern"/> 
<tag k="building:buildyear" v="1980"/> 
<tag k="building:cladding" v="concrete"/> 
<tag k="building:condition" v="good"/> 
<tag k="building:facade:colour" v="grey"/> 
<tag k="building:levels" v="4"/> 
<tag k="building:max_level" v="2"/> 
<tag k="building:min_level" v="-1"/> 
<tag k="building:roof:colour" v="black"/> 
<tag k="building:roof:material" v="cardboard"/> 
<tag k="building:roof:shape" v="flat"/> 
<tag k="height" v="14.5"/> 
<tag k="name" v="Geographisches Institut"/> 
<tag k="type" v="building"/> 
</relation> 
</osm> 

OSM Relation Example – OSM Website representation and XML Data (OSM, 2015) 
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IndoorOSM - 3D Building Ontology 
 

 

Appendix Figure VI - IndoorOSM - 3D Building Ontology for describing the inside and outside of a building (Goetz & Zipf, 2011) 
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Sample IndoorGML data structure 
 

 

Appendix Figure VII - Sample IndoorGML data structure in Oracle Spatial DB – Oracle SQL Developer Data Modeller 
representation 

 

“Anchor2Entrance” FME Workbench 
 

 

Appendix Figure VIII – “Anchor2Entrance” FME Workbench for "outdoor" OSM "entrance" to "indoor" OSM "anchor" feature 
matching 
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“IndoorGML_Oracle2OSM” FME Workbench 

 

Appendix Figure IX - “Anchor2Entrance” FME Workbench for "indoor" OSM data generation from IndoorGML data stored in 
Oracle Spatial / Non-Spatial DB  
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Mock GTFS Dataset 
 

The mock GTFS dataset that was created for the implementation represents two stops for a bus 
type transit. Routes were created for both directions of travel at 5 minute intervals for the entire 
day, with a schedule covering every day in the second half of 2015. The dataset consists of the 
following files: agency.txt, calendar.txt, calendar_dates.txt, routes.txt, stop_times.txt, stops.txt 
and trips.txt. Samples and complete files will be presented below: 
 
agency.txt – Complete file with mock Agency information: Agency ID, Name, URL, Timezone, 
Language. 
 
agency_id,agency_name,agency_url,agency_timezone,agency_lang,agency_phone 
MVV,MVV,http://www.mvv.de,Europe/Berlin,de, 

 
 
calendar.txt – Complete file with mock calendar information: Service ID, days of service and 
start/end dates. 
 
service_id,monday,tuesday,wednesday,thursday,friday,saturday,sunday,start_date,end_date 
01,1,1,1,1,1,1,1,20150604,20151212 
02,1,1,1,1,1,1,1,20150604,20151212 

 
 
calendar_dates.txt – File sample with mock calendar dates information: Service ID, dates, 
exceptions in schedule. 
 
service_id,date,exception_type 
01,20150604,1 
01,20150605,1 
01,20150606,1 
… 
02,20151210,1 
02,20151211,1 
02,20151212,1 

 
 
routes.txt – Complete file with mock route information: Route ID, Agency ID, route short and 
long names, route type (Bus), route URL. 
 
route_id,agency_id,route_short_name,route_long_name,route_desc,route_type,route_url,rou
te_color,route_text_color 
01,MVV,TtoK,TheresienstrtoKoenigspl,,3,http://www.mvv.de,, 
02,MVV,KtoT,KoenigspltoTheresienstr,,3,http://www.mvv.de,, 
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stop_times.txt – File sample with mock stop times information: Trip ID, arrival & departure time, 
stop id, stop sequence, pickup & drop off type. 
 
trip_id,arrival_time,departure_time,stop_id,stop_sequence,stop_headsign,pickup_type,dro
p_off_type,shape_dist_traveled 
1,4:45:00,4:45:00,01,1,,0,0, 
1,4:46:00,4:46:00,02,2,,0,0, 
2,4:55:00,4:55:00,01,1,,0,0, 
2,4:56:00,4:56:00,02,2,,0,0, 
…  
285,4:15:00,4:15:00,02,1,,0,0, 
285,4:16:00,4:16:00,01,2,,0,0, 
286,4:25:00,4:25:00,02,1,,0,0, 
286,4:26:00,4:26:00,01,2,,0,0, 

 
 
stops.txt – Complete file with mock stops information: Stop ID, Name, Stop latitude and 
longitude, location type. 
 
stop_id,stop_code,stop_name,stop_desc,stop_lat,stop_lon,zone_id,stop_ur
l,location_type,parent_station 
01,,Theresienstrasse,,48.15176,11.56465,,,0, 
02,,Koenigsplatz,,48.14519,11.56338,,,0, 
 
 
trips.txt – File sample with mock trips information: Route ID, Service ID, Trip ID, trip short 
name. 
 
route_id,service_id,trip_id,trip_headsign,trip_short_name,direction_id,block_id,shape_i
d 
01,01,1,"TtoK_1",,,, 
01,01,2,"TtoK_1",,,, 
01,01,3,"TtoK_1",,,, 
… 
02,02,284,"KtoT_1",,,, 
02,02,285,"KtoT_1",,,, 
02,02,286,"KtoT_1",,,, 
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Appendix II – OTP & Nominatim Source Code Modifications 
 
This Appendix includes changes made to the original OTP and Nominatim source code in order 
to enable functionality needed for their use in the thesis project proof of concept implementation. 
OTP Source Code changes were generated using the GIT diff functionality of Github’s GIT Shell 
tool and follow the standard formatting settings. Removed lines are indicated by a leading minus 
sign (-) while added lines are indicated by a leading plus sign (+). The files modified are named 
at the beginning of each code snippet, with indicators for the source, a being the official OTP 
code repository and b being the local custom code repository. Nominatim required minimal 
alteration to the source code (one location) and is thus added manually, following the same 
formatting (leading plus sign for additions). 
 
Inclusion of Nominatim Geocoder script in the built-in Leaflet OTP client index.html page 
 
diff --git a/src/client/index.html b/src/client/index.html 
index 572667f..3a83de8 100644 
--- a/src/client/index.html 
+++ b/src/client/index.html 
@@ -85,6 +85,7 @@ 
 <script src="js/otp/core/Geocoder.js?v=1"></script> 
 <script src="js/otp/core/GeocoderBuiltin.js?v=1"></script> 
 <script src="js/otp/core/GeocoderBag.js?v=1"></script> 
+<script src="js/otp/core/GeocoderNominatim.js?v=1"></script> 
 <script src="js/otp/core/SOLRGeocoder.js?v=1"></script> 
 <script src="js/otp/core/TransitIndex.js?v=1"></script> 
 <script src="js/otp/core/IndexApi.js?v=1"></script> 
 

Modifications in the built-in Leaflet OTP client config.js JavaScript file: 
Change of web service location to http://localhost 
Change of OTP units to metric 
Replacement of built-in OTP Geocoder with Nominatim Geocoder 
 
diff --git a/src/client/js/otp/config.js b/src/client/js/otp/config.js 
index 5cae24e..b4ba652 100644 
--- a/src/client/js/otp/config.js 
+++ b/src/client/js/otp/config.js 
@@ -44,7 +44,7 @@ otp.config = { 
     /** 
      * The OTP web service locations 
      */ 
-    hostname : "", 
+    hostname : window.location.protocol+"//"+window.location.host, 
     //municoderHostname : "http://localhost:8080", 
     //datastoreUrl : 'http://localhost:9000', 
     // In the 0.10.x API the base path is "otp-rest-servlet/ws" 
@@ -121,7 +121,7 @@ otp.config = { 
     showLogo            : true, 
     showTitle           : true, 
     showModuleSelector  : true, 
-    metric              : false, 
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+    metric              : true, 
  
  
     /** 
@@ -163,9 +163,10 @@ otp.config = { 
  
     geocoders : [ 
         { 
-            name: 'OTP built-in geocoder', 
-            className: 'otp.core.GeocoderBuiltin' 
-            // URL and query parameter do not need to be set for built-in geocoder. 
+            name: 'Nominatim', 
+            className: 'otp.core.GeocoderNominatim', 
+            url: '/nominatim/search.php?format=json', 
+            addressParam: 'q' 
         } 
     ], 
 
 

Nominatim Geocoder JavaScript .js file, created via modification of Geocoder script samples 
included in OTP 
 
diff --git a/src/client/js/otp/core/GeocoderNominatim.js 
b/src/client/js/otp/core/GeocoderNominatim.js 

new file mode 100644 
index 0000000..d716f7c 
--- /dev/null 
+++ b/src/client/js/otp/core/GeocoderNominatim.js 
@@ -0,0 +1,33 @@ 
+/* This program is free software: you can redistribute it and/or 
+ modify it under the terms of the GNU Lesser General Public License 
+ as published by the Free Software Foundation, either version 3 of 
+ the License, or (at your option) any later version. 
+  
+ This program is distributed in the hope that it will be useful, 
+ but WITHOUT ANY WARRANTY; without even the implied warranty of 
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
+ GNU General Public License for more details. 
+  
+ You should have received a copy of the GNU General Public License 
+ along with this program.  If not, see <http://www.gnu.org/licenses/>. 
+ */ 
+  
+otp.namespace("otp.core"); 
+  
+otp.core.GeocoderNominatim = otp.Class({ 
+  
+     url: 
window.location.protocol+'//'+window.location.hostname+'/nominatim/search.php?format=js
on', 
+  
+    initialize : function(url, addressParam) { 
+        // Do nothing, the proper address and query param are already known. 
+    }, 
+  
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+    geocode : function(address, callback) { 
+        // The built in geocoder returns results in the form expected by the client: 
+        // A JSON array of objects containing lat, lng, and description fields. 
+        $.getJSON(this.url, {q: address}, function(response) { 
+            callback.call(this, response); 
+        }); 
+    } 
+  
+}); 
\ No newline at end of file 
 
 

Addition of Indoor Preference selector in Multimodal Planner JavaScript Module of the built-in 
Leaflet OTP client. (Based on Wheelchair code) 
 
diff --git a/src/client/js/otp/modules/multimodal/MultimodalPlannerModule.js 
b/src/client/js/otp/modules/multimodal/MultimodalPlannerModule.js 
index 1d8b9e6..99c5da7 100644 
--- a/src/client/js/otp/modules/multimodal/MultimodalPlannerModule.js 
+++ b/src/client/js/otp/modules/multimodal/MultimodalPlannerModule.js 
@@ -72,6 +72,7 @@ otp.modules.multimodal.MultimodalPlannerModule = 
         modeSelector.addModeControl(new 
otp.widgets.tripoptions.PreferredRoutes(this.optionsWidget)); 
         modeSelector.addModeControl(new 
otp.widgets.tripoptions.BannedRoutes(this.optionsWidget)); 
         modeSelector.addModeControl(new 
otp.widgets.tripoptions.WheelChairSelector(this.optionsWidget)); 
+        modeSelector.addModeControl(new 
otp.widgets.tripoptions.IndoorSelector(this.optionsWidget)); 
  
         modeSelector.refreshModeControls(); 
 
  

Addition of Indoor Preference selector default values in Planner JavaScript Module of the built-in 
Leaflet OTP client. (Based on Wheelchair code) 
 
diff --git a/src/client/js/otp/modules/planner/PlannerModule.js 
b/src/client/js/otp/modules/planner/PlannerModule.js 
index 93e1a70..66e265d 100644 
--- a/src/client/js/otp/modules/planner/PlannerModule.js 
+++ b/src/client/js/otp/modules/planner/PlannerModule.js 
@@ -21,6 +21,7 @@ otp.modules.planner.defaultQueryParams = { 
     date                            : 
moment().format(otp.config.locale.time.date_format), 
     arriveBy                        : false, 
     wheelchair                      : false, 
+    indoor                          : 0, 
     mode                            : "TRANSIT,WALK", 
     maxWalkDistance                 : 804.672, // 1/2 mi. 
     metricDefaultMaxWalkDistance    : 750, // meters 
@@ -339,6 +340,7 @@ otp.modules.planner.PlannerModule = 
             }; 
             if(this.arriveBy !== null) _.extend(queryParams, { arriveBy : 
this.arriveBy } ); 
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             if(this.wheelchair !== null) _.extend(queryParams, { wheelchair : 
this.wheelchair }); 
+            if(this.indoor !== null) _.extend(queryParams, { indoor : this.indoor }); 
             if(this.preferredRoutes !== null) { 
                 queryParams.preferredRoutes = this.preferredRoutes; 
                 if(this.otherThanPreferredRoutesPenalty !== null) 
 
 

Addition of Indoor Preference selector functionality in Trip Options JavaScript Widget of the 
built-in Leaflet OTP client. 
 
diff --git a/src/client/js/otp/widgets/tripoptions/TripOptionsWidget.js 
b/src/client/js/otp/widgets/tripoptions/TripOptionsWidget.js 
index df05261..254a2e3 100644 
--- a/src/client/js/otp/widgets/tripoptions/TripOptionsWidget.js 
+++ b/src/client/js/otp/widgets/tripoptions/TripOptionsWidget.js 
@@ -451,6 +451,48 @@ otp.widgets.tripoptions.WheelChairSelector = 
     } 
 }); 
  
+//** IndoorSelector **// 
+ 
+otp.widgets.tripoptions.IndoorSelector = 
+    otp.Class(otp.widgets.tripoptions.TripOptionsWidgetControl, { 
+ 
+    id           :  null, 
+    //TRANSLATORS: label for checkbox 
+    label        : _tr("Indoor/Outdoor preference:"), 
+ 
+    initialize : function(tripWidget) { 
+ 
+        
otp.widgets.tripoptions.TripOptionsWidgetControl.prototype.initialize.apply(this, 
arguments); 
+ 
+        this.id = tripWidget.id; 
+ 
+ 
+        ich['otp-tripOptions-indoor']({ 
+            widgetId : this.id, 
+            label : this.label, 
+        }).appendTo(this.$()); 
+ 
+    }, 
+ 
+    doAfterLayout : function() { 
+        var this_ = this; 
+ 
+        $("#"+this.id+"-indoor-input").change(function() { 
+            this_.tripWidget.module.indoor = $("#"+this_.id+"-indoor-input").val(); 
+        }); 
+    }, 
+ 
+    restorePlan : function(data) { 
+        if(data.queryParams.indoor) { 
+            $("#"+this.id+"-indoor-input").val(data.queryParams.indoor); 
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+        } 
+    }, 
+ 
+    isApplicableForMode : function(mode) { 
+        return true; 
+    } 
+}); 
+ 
  
 //** ModeSelector **// 
  
 

Addition of possible values for the Indoor Preference selector in trip options template HTML file 
of the built-in Leaflet OTP client. 
 
diff --git a/src/client/js/otp/widgets/tripoptions/tripoptions-templates.html 
b/src/client/js/otp/widgets/tripoptions/tripoptions-templates.html 
index 81dec7b..abad9db 100644 
--- a/src/client/js/otp/widgets/tripoptions/tripoptions-templates.html 
+++ b/src/client/js/otp/widgets/tripoptions/tripoptions-templates.html 
@@ -74,6 +74,21 @@ 
  
 </script> 
  
+<!-- IndoorSelector --> 
+ 
+<script id="otp-tripOptions-indoor" type="text/html"> 
+ 
+    <div class="notDraggable"> 
+        {{label}} &nbsp; 
+                <select id="{{widgetId}}-indoor-input"> 
+                    <option value="0" selected="selected">Any</option> 
+                    <option value="1">Indoor</option> 
+                    <option value="2">Outdoor</option> 
+                </select> 
+    </div> 
+ 
+</script> 
+ 
 <!-- MaxDistanceSelector --> 
  
 <script id="otp-tripOptions-maxDistance" type="text/html"> 
 
 

Addition of indoor trip type in the Trip Types java source code of the OTP API. (Based on 
Wheelchair code) 
 
diff --git a/src/main/java/org/opentripplanner/api/adapters/TripType.java 
b/src/main/java/org/opentripplanner/api/adapters/TripType.java 
index 8421616..6a45108 100644 
--- a/src/main/java/org/opentripplanner/api/adapters/TripType.java 
+++ b/src/main/java/org/opentripplanner/api/adapters/TripType.java 
@@ -101,6 +101,10 @@ public class TripType { 
  
     @XmlAttribute 
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     @JsonSerialize 
+    Integer indoor; 
+ 
+    @XmlAttribute 
+    @JsonSerialize 
     Integer tripBikesAllowed; 
      
     @XmlAttribute 
 
 

Addition of indoor trip type in the Routing Resources java source code of the OTP API. (Based 
on Wheelchair code) 

 
diff --git a/src/main/java/org/opentripplanner/api/common/RoutingResource.java 
b/src/main/java/org/opentripplanner/api/common/RoutingResource.java 
index 4215a15..dee9add 100644 
--- a/src/main/java/org/opentripplanner/api/common/RoutingResource.java 
+++ b/src/main/java/org/opentripplanner/api/common/RoutingResource.java 
@@ -90,6 +90,10 @@ public abstract class RoutingResource { 
     @QueryParam("wheelchair") 
     protected Boolean wheelchair; 
  
+    /** Whether the trip must prefer indoor streets. */ 
+    @QueryParam("indoor") 
+    protected Integer indoor; 
+ 
     /** The maximum distance (in meters) the user is willing to walk. Defaults to 
unlimited. */ 
     @QueryParam("maxWalkDistance") 
     protected Double maxWalkDistance; 
@@ -402,6 +406,9 @@ public abstract class RoutingResource { 
         if (wheelchair != null) 
             request.setWheelchairAccessible(wheelchair); 
  
+        if (indoor != null) 
+            request.setIndoor(indoor); 
+ 
         if (numItineraries != null) 
             request.setNumItineraries(numItineraries); 
 
 

Addition of support for indoor tags in the OSM Module java source code of the OTP 
Graphbuilder. 
Default value is set to false. (Based on Wheelchair code) 
 
diff --git 
a/src/main/java/org/opentripplanner/graph_builder/module/osm/OpenStreetMapModule.java 
b/src/main/java/org/opentripplanner/graph_builder/module/osm/OpenStreetMapModule.java 
index 6752785..9ce675f 100644 
--- 
a/src/main/java/org/opentripplanner/graph_builder/module/osm/OpenStreetMapModule.java 
+++ 
b/src/main/java/org/opentripplanner/graph_builder/module/osm/OpenStreetMapModule.java 
@@ -773,6 +773,7 @@ public class OpenStreetMapModule implements GraphBuilderModule { 
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                     // default permissions: pedestrian, wheelchair, and bicycle 
                     boolean wheelchairAccessible = true; 
+                    boolean indoor = false; 
                     StreetTraversalPermission permission = 
StreetTraversalPermission.PEDESTRIAN_AND_BICYCLE; 
                     // check for bicycle=no, otherwise assume it's OK to take a bike 
                     if (node.isTagFalse("bicycle")) { 
@@ -782,6 +783,9 @@ public class OpenStreetMapModule implements GraphBuilderModule { 
                     if (node.isTagFalse("wheelchair")) { 
                         wheelchairAccessible = false; 
                     } 
+                    if (node.isTagTrue("indoor")) { 
+                        indoor = true; 
+                    } 
  
                     // The narrative won't be strictly correct, as it will show the 
elevator as part 
                     // of the cycling leg, but I think most cyclists will figure out 
that they 
@@ -790,6 +794,8 @@ public class OpenStreetMapModule implements GraphBuilderModule { 
                     ElevatorHopEdge backEdge = new ElevatorHopEdge(to, from, 
permission); 
                     foreEdge.wheelchairAccessible = wheelchairAccessible; 
                     backEdge.wheelchairAccessible = wheelchairAccessible; 
+                    foreEdge.indoor = indoor; 
+                    backEdge.indoor = indoor; 
                 } 
             } // END elevator edge loop 
         } 
@@ -1079,6 +1085,10 @@ public class OpenStreetMapModule implements GraphBuilderModule { 
                 street.setWheelchairAccessible(false); 
             } 
  
+            if (way.isTagTrue("indoor")) { 
+                street.setIndoor(true); 
+            } 
+ 
             street.setSlopeOverride(wayPropertySet.getSlopeOverride(way)); 
  
             // < 0.04: account for 
 
 

Addition of support for indoor tags in the OSM Walkable Area Builder java source code of the 
OTP Graphbuilder. (Based on Wheelchair code) 
 
diff --git 
a/src/main/java/org/opentripplanner/graph_builder/module/osm/WalkableAreaBuilder.java 
b/src/main/java/org/opentripplanner/graph_builder/module/osm/WalkableAreaBuilder.java 
index b77a20b..37fe41c 100644 
--- 
a/src/main/java/org/opentripplanner/graph_builder/module/osm/WalkableAreaBuilder.java 
+++ 
b/src/main/java/org/opentripplanner/graph_builder/module/osm/WalkableAreaBuilder.java 
@@ -396,6 +396,10 @@ public class WalkableAreaBuilder { 
                 street.setWheelchairAccessible(false); 
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             } 
  
+            if (areaEntity.isTagTrue("indoor")) { 
+                street.setIndoor(true); 
+            } 
+ 
             street.setStreetClass(cls); 
             edges.add(street); 
  
@@ -415,6 +419,10 @@ public class WalkableAreaBuilder { 
                 street.setWheelchairAccessible(false); 
             } 
  
+            if (areaEntity.isTagTrue("indoor")) { 
+                street.setIndoor(false); 
+            } 
+ 
             backStreet.setStreetClass(cls); 
             edges.add(backStreet); 
  
 

Addition of support for indoor routing requests in the Routing Request java source code of the 
OTP Routing Engine. (Based on Wheelchair code) 
 
diff --git a/src/main/java/org/opentripplanner/routing/core/RoutingRequest.java 
b/src/main/java/org/opentripplanner/routing/core/RoutingRequest.java 
index 0203332..50fcd18 100644 
--- a/src/main/java/org/opentripplanner/routing/core/RoutingRequest.java 
+++ b/src/main/java/org/opentripplanner/routing/core/RoutingRequest.java 
@@ -112,6 +112,9 @@ public class RoutingRequest implements Cloneable, Serializable { 
     /** Whether the trip must be wheelchair accessible. */ 
     public boolean wheelchairAccessible = false; 
  
+    /** Whether the trip should prefer indoor streets. */ 
+    public int indoor = 0; 
+ 
     /** The maximum number of itineraries to return. */ 
     public int numItineraries = 3; 
  
@@ -515,6 +518,10 @@ public class RoutingRequest implements Cloneable, Serializable { 
         this.wheelchairAccessible = wheelchairAccessible; 
     } 
  
+    public void setIndoor(int indoor) { 
+        this.indoor = indoor; 
+    } 
+ 
     /** 
      * only allow traversal by the specified mode; don't allow walking bikes. This is 
used during contraction to reduce the number of possible paths. 
      */ 
@@ -876,6 +883,7 @@ public class RoutingRequest implements Cloneable, Serializable { 
                 && maxTransfers == other.maxTransfers 
                 && modes.equals(other.modes) 
                 && wheelchairAccessible == other.wheelchairAccessible 
+                && indoor == other.indoor 
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                 && optimize.equals(other.optimize) 
                 && maxWalkDistance == other.maxWalkDistance 
                 && maxPreTransitTime == other.maxPreTransitTime 
@@ -929,6 +937,7 @@ public class RoutingRequest implements Cloneable, Serializable { 
                 + new Double(carSpeed).hashCode() + new Double(maxWeight).hashCode() 
                 + (int) (worstTime & 0xffffffff) + modes.hashCode() 
                 + (arriveBy ? 8966786 : 0) + (wheelchairAccessible ? 731980 : 0) 
+                + (int) indoor + (int) indoor * 11027 
                 + optimize.hashCode() + new Double(maxWalkDistance).hashCode() 
                 + new Double(transferPenalty).hashCode() + new 
Double(maxSlope).hashCode() 
                 + new Double(walkReluctance).hashCode() + new 
Double(waitReluctance).hashCode() 
 
 

Addition of requirements for indoor routing in the Traversal Requirements java source code of 
the OTP Routing Engine. (Based on Wheelchair code) 
 
diff --git a/src/main/java/org/opentripplanner/routing/core/TraversalRequirements.java 
b/src/main/java/org/opentripplanner/routing/core/TraversalRequirements.java 
index 62029d2..4af001c 100644 
--- a/src/main/java/org/opentripplanner/routing/core/TraversalRequirements.java 
+++ b/src/main/java/org/opentripplanner/routing/core/TraversalRequirements.java 
@@ -26,6 +26,11 @@ public class TraversalRequirements { 
     private boolean wheelchairAccessible = false; 
  
     /** 
+     * If true, trip must prefer indoor streets. 
+     */ 
+    private int indoor = 0; 
+ 
+    /** 
      * The maximum slope of streets for wheelchair trips. 
      *  
      * ADA max wheelchair ramp slope is a good default. 
@@ -77,6 +82,7 @@ public class TraversalRequirements { 
     private static void initFromRoutingRequest(TraversalRequirements req, 
RoutingRequest options) { 
         req.modes = options.modes.clone(); 
         req.wheelchairAccessible = options.wheelchairAccessible; 
+        req.indoor = options.indoor; 
         req.maxWheelchairSlope = options.maxSlope; 
         req.maxWalkDistance = options.maxWalkDistance; 
     } 
 
 

Addition of indoor flags for edges in the Elevator Hop Edge java source code of the OTP Routing 
Engine. (Based on Wheelchair code) 
 
diff --git a/src/main/java/org/opentripplanner/routing/edgetype/ElevatorHopEdge.java 
b/src/main/java/org/opentripplanner/routing/edgetype/ElevatorHopEdge.java 
index 315b8bb..b2e6af2 100644 
--- a/src/main/java/org/opentripplanner/routing/edgetype/ElevatorHopEdge.java 
+++ b/src/main/java/org/opentripplanner/routing/edgetype/ElevatorHopEdge.java 
@@ -36,6 +36,8 @@ public class ElevatorHopEdge extends Edge implements ElevatorEdge { 
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     public boolean wheelchairAccessible = true; 
  
+    public boolean indoor = false; 
+ 
     public ElevatorHopEdge(Vertex from, Vertex to, StreetTraversalPermission 
permission) { 
         super(from, to); 
         this.permission = permission; 
 
 

Addition of indoor flags for edges in the Street Edge java source code of the OTP Routing 
Engine. (Based on Wheelchair code) 
With Street Edges comprising the bulk of edges in Graph Builder, an output command was 
included for logging/ debugging here. 
Custom weighting for Indoor Preference defined here, with following preference options: 
Neutral = Standard routing & weighting behavior  
Indoor = Preferred indoor routing & custom weighting: 
  (2 * outdoor segment and 0.5 * indoor segment weight) 
Outdoor = Preferred outdoor routing & custom weighting behavior: 
  (2 * indoor segment and 0.5 * outdoor segment weight) 

 
diff --git a/src/main/java/org/opentripplanner/routing/edgetype/StreetEdge.java 
b/src/main/java/org/opentripplanner/routing/edgetype/StreetEdge.java 
index de92300..fdb3ce9 100644 
--- a/src/main/java/org/opentripplanner/routing/edgetype/StreetEdge.java 
+++ b/src/main/java/org/opentripplanner/routing/edgetype/StreetEdge.java 
@@ -84,6 +84,7 @@ public class StreetEdge extends Edge implements Cloneable { 
     private static final int STAIRS_FLAG_INDEX = 4; 
     private static final int SLOPEOVERRIDE_FLAG_INDEX = 5; 
     private static final int WHEELCHAIR_ACCESSIBLE_FLAG_INDEX = 6; 
+    private static final int INDOOR = 7; 
  
     /** back, roundabout, stairs, ... */ 
     private byte flags; 
@@ -137,6 +138,7 @@ public class StreetEdge extends Edge implements Cloneable { 
         this.setPermission(permission); 
         this.setCarSpeed(DEFAULT_CAR_SPEED); 
         this.setWheelchairAccessible(true); // accessible by default 
+        this.setIndoor(false); // Outdoor by default 
         if (geometry != null) { 
             try { 
                 for (Coordinate c : geometry.getCoordinates()) { 
@@ -352,6 +354,24 @@ public class StreetEdge extends Edge implements Cloneable { 
             } 
         } 
  
+        if (options.indoor == 1) { 
+            if (isIndoor()) { 
+                weight *= 0.5; 
+                System.out.println("Wanted indoor, WAS indoor. new weight: "+weight); 
+            } else { 
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+                weight *= 2; 
+                System.out.println("Wanted indoor, wasn't indoor. new weight: 
"+weight); 
+            } 
+        } else if (options.indoor == 2) { 
+            if (isIndoor()) { 
+                weight *= 2; 
+                System.out.println("Didn't want indoor, WAS indoor. new weight: 
"+weight); 
+            } else { 
+                weight *= 0.5; 
+                System.out.println("Didn't want indoor, wasn't indoor. new weight: 
"+weight); 
+            } 
+        } 
+ 
         if (isStairs()) { 
             weight *= options.stairsReluctance; 
         } else { 
@@ -619,6 +639,14 @@ public class StreetEdge extends Edge implements Cloneable { 
         flags = BitSetUtils.set(flags, WHEELCHAIR_ACCESSIBLE_FLAG_INDEX, 
wheelchairAccessible); 
  } 
  
+ public boolean isIndoor() { 
+  return BitSetUtils.get(flags, INDOOR); 
+ } 
+ 
+ public void setIndoor(boolean indoor) { 
+        flags = BitSetUtils.set(flags, INDOOR, indoor); 
+ } 
+ 
  public StreetTraversalPermission getPermission() { 
   return permission; 
  } 
@@ -769,6 +797,7 @@ public class StreetEdge extends Edge implements Cloneable { 
             e.setStairs(isStairs()); 
             e.setWheelchairAccessible(isWheelchairAccessible()); 
             e.setBack(isBack()); 
+            e.setIndoor(isIndoor()); 
         } 
  
         return new P2<StreetEdge>(e1, e2); 
 
 

Addition of indoor flags for edges in the Transfer Edge java source code of the OTP Routing 
Engine. (Based on Wheelchair code) 
 
diff --git a/src/main/java/org/opentripplanner/routing/edgetype/TransferEdge.java 
b/src/main/java/org/opentripplanner/routing/edgetype/TransferEdge.java 
index e629824..287750c 100644 
--- a/src/main/java/org/opentripplanner/routing/edgetype/TransferEdge.java 
+++ b/src/main/java/org/opentripplanner/routing/edgetype/TransferEdge.java 
@@ -37,6 +37,8 @@ public class TransferEdge extends Edge { 
  
     private boolean wheelchairAccessible = true; 
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+    private boolean indoor = false; 
+ 
     /** 
      * @see Transfer(Vertex, Vertex, double, int) 
      */ 
@@ -104,6 +106,10 @@ public class TransferEdge extends Edge { 
         this.wheelchairAccessible = wheelchairAccessible; 
     } 
  
+    public void setIndoor(boolean indoor) { 
+        this.indoor = indoor; 
+    } 
+ 
     public boolean isWheelchairAccessible() { 
         return wheelchairAccessible; 
     } 
 
 

Addition of indoor support for edges in the edge loader Link Request java source code of the 
OTP Routing Engine. (Based on Wheelchair code) 
 
diff --git a/src/main/java/org/opentripplanner/routing/edgetype/loader/LinkRequest.java 
b/src/main/java/org/opentripplanner/routing/edgetype/loader/LinkRequest.java 
index 679dc12..3afeee6 100644 
--- a/src/main/java/org/opentripplanner/routing/edgetype/loader/LinkRequest.java 
+++ b/src/main/java/org/opentripplanner/routing/edgetype/loader/LinkRequest.java 
@@ -294,6 +294,8 @@ public class LinkRequest { 
             backward2.setStairs(e2.isStairs()); 
             backward1.setWheelchairAccessible(e2.isWheelchairAccessible()); 
             backward2.setWheelchairAccessible(e2.isWheelchairAccessible()); 
+            backward1.setIndoor(e2.isIndoor()); 
+            backward2.setIndoor(e2.isIndoor()); 
             addEdges(backward1, backward2); 
         } 
  
@@ -311,6 +313,8 @@ public class LinkRequest { 
         forward2.setStairs(e1.isStairs()); 
         forward1.setWheelchairAccessible(e1.isWheelchairAccessible()); 
         forward2.setWheelchairAccessible(e1.isWheelchairAccessible()); 
+        forward1.setIndoor(e1.isIndoor()); 
+        forward2.setIndoor(e1.isIndoor()); 
  
         // swap the new split edge into the replacements list, and remove the old ones 
         ListIterator<P2<StreetEdge>> it = replacement.listIterator(); 
 
 

Addition of indoor support for Street edge vertices in the Street Vertex Index Service 
Implementation java source code of the OTP Routing Engine. (Based on Wheelchair code) 
 
diff --git 
a/src/main/java/org/opentripplanner/routing/impl/StreetVertexIndexServiceImpl.java 
b/src/main/java/org/opentripplanner/routing/impl/StreetVertexIndexServiceImpl.java 
index da0bb66..882a1cf 100644 
--- a/src/main/java/org/opentripplanner/routing/impl/StreetVertexIndexServiceImpl.java 
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+++ b/src/main/java/org/opentripplanner/routing/impl/StreetVertexIndexServiceImpl.java 
@@ -125,6 +125,7 @@ public class StreetVertexIndexServiceImpl implements 
StreetVertexIndexService { 
     public static TemporaryStreetLocation createTemporaryStreetLocation(Graph graph, 
String label, 
             I18NString name, Iterable<StreetEdge> edges, Coordinate nearestPoint, 
boolean endVertex) { 
         boolean wheelchairAccessible = false; 
+        boolean indoor = false; 
  
         TemporaryStreetLocation location = new TemporaryStreetLocation(label, 
nearestPoint, name, 
                 endVertex); 
@@ -132,6 +133,7 @@ public class StreetVertexIndexServiceImpl implements 
StreetVertexIndexService { 
             Vertex fromv = street.getFromVertex(); 
             Vertex tov = street.getToVertex(); 
             wheelchairAccessible |= ((StreetEdge) street).isWheelchairAccessible(); 
+            indoor |= ((StreetEdge) street).isIndoor(); 
             /* forward edges and vertices */ 
             Vertex edgeLocation; 
             if (SphericalDistanceLibrary.distance(nearestPoint, fromv.getCoordinate()) 
< 1) { 
@@ -162,6 +164,7 @@ public class StreetVertexIndexServiceImpl implements 
StreetVertexIndexService { 
             } 
         } 
         location.setWheelchairAccessible(wheelchairAccessible); 
+        location.setIndoor(indoor); 
         return location; 
  
     } 
 
 

Addition of indoor support for Street edge vertices in the Street Location java source code of the 
OTP Routing Engine. (Based on Wheelchair code) 
 
diff --git a/src/main/java/org/opentripplanner/routing/location/StreetLocation.java 
b/src/main/java/org/opentripplanner/routing/location/StreetLocation.java 
index dd82c6f..c29e6c8 100644 
--- a/src/main/java/org/opentripplanner/routing/location/StreetLocation.java 
+++ b/src/main/java/org/opentripplanner/routing/location/StreetLocation.java 
@@ -24,6 +24,7 @@ import org.opentripplanner.util.NonLocalizedString; 
  */ 
 public class StreetLocation extends StreetVertex { 
     private boolean wheelchairAccessible; 
+    private boolean indoor; 
  
     // maybe name should just be pulled from street being split 
     public StreetLocation(String id, Coordinate nearestPoint, I18NString name) { 
@@ -47,6 +48,14 @@ public class StreetLocation extends StreetVertex { 
         return wheelchairAccessible; 
     } 
  
+    public void setIndoor(boolean indoor) { 
+        this.indoor = indoor; 
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+    } 
+ 
+    public boolean isIndoor() { 
+        return indoor; 
+    } 
+ 
     public boolean equals(Object o) { 
         if (o instanceof StreetLocation) { 
             StreetLocation other = (StreetLocation) o; 
 
 

Addition of indoor support for OTP Routing Requests in the Otps Routing Request java source 
code of the OTP API. (Based on Wheelchair code) 
 
diff --git a/src/main/java/org/opentripplanner/scripting/api/OtpsRoutingRequest.java 
b/src/main/java/org/opentripplanner/scripting/api/OtpsRoutingRequest.java 
index fb7561e..5d2763a 100644 
--- a/src/main/java/org/opentripplanner/scripting/api/OtpsRoutingRequest.java 
+++ b/src/main/java/org/opentripplanner/scripting/api/OtpsRoutingRequest.java 
@@ -95,6 +95,10 @@ public class OtpsRoutingRequest { 
         req.wheelchairAccessible = wheelchairAccessible; 
     } 
  
+    public void setIndoor(int indoor) { 
+        req.indoor = indoor; 
+    } 
+ 
     public void setClampInitialWait(long clampInitialWait) { 
         req.clampInitialWait = clampInitialWait; 
     } 
 
 

Addition of indoor tagged features to the list of indexable elements in Nominatim. Done via 
modification of OSM2PGSQL tool’s Output Gazeteer code (Based on POI code): 
 
osm2pgsql/output-gazetteer.cpp – Lines 196-207 
 
                   item->key == "leisure" || 
                   item->key == "office" || 
                   item->key == "shop" || 
                   item->key == "tunnel" ||  
+                  item->key == "room" ||  
+                  item->key == "building:part" || 
+                  item->key == "buildingpart" || 
        item->key == "mountain_pass") { 
            if (item->value != "no") 
            { 
                places.push_back(*item); 
            } 
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Appendix III – IndoorGML v1 OGC reference Class, Function, Usage 
Codelists (Omniclass and CityGML) 
 
The current Appendix contains all the Omniclass and CityGML based codelists that are used for 
the definition of Class, Function and Usage in the IndoorGML v1 OGC reference (OGC, 2014). 
As our conflation model uses a single tag to represent the *Space types, the codelist values must 
be taken into consideration after reviewing the “IndoorGML:Navi” tag assigned to the feature. 
 

GeneralSpace 
 

GeneralSpaceClassType 
Code list derived from OmniClass Table 13 and CityGML 
1000 Administration 1060 Laboratory 
1010 Business, trade 1070 Service 
1020 Education, training 1080 Production 
1030 Recreation 1090 Storage 
1040 Art, performance 1100 Security 
1050 Healthcare 1110 Accommodation,  Waste 

management 
 

GeneralSpaceFunctionType 
Code list derived from OmniClass Table 13 
1000 Elevator Machine Room 2550 Lecture Classroom 
1010 Fire Command Center 2560 Lecture Hall 
1020 Men’s Restroom 2570 Seminar Room 
1030 Unisex Restroom 2580 Astronomy Teaching Laboratory 

1040 Refrigerant Machinery Room 2590 Research/non-class  Class 
Laboratory 

1050 Incinerator Room 2600 Training Space 
1060 Gas Room 2610 Woodshop/Metalshop 

1070 Liquid Use, Dispensing and Mixing 
Room 2620 Religious Education Space 

1080 Electrical Room 2630 Study Service 
1090 Telecommunications  Room 2640 Basketball Courts 
1100 Hazardous Waste Storage 2650 Team Athletic Recreation Spaces 
1110 Building Manager Office 2660 Volleyball Court 
1120 Guard Stations 2670 Boxing Ring 
1130 Women’s Restroom 2680 Circuit Training Course Area 
1140 Furnace Room 2690 Aerobic Studio 
1150 Fuel Room 2700 Swimming Pool 
1160 Liquid Storage Room 2710 Firing Range 
1170 Hydrogen Cutoff Room 2720 Hobby and Craft Center 
1180 Switch Room 2730 Exercise Room 
1190 Classrooms 2740 Skating Rink 
1200 Assembly Hall 2750 Climbing Wall 
1210 Physics Teaching Laboratory 2760 Diving Tank 
1220 Open Class Laboratory 2770 Game Room 
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1230 Laboratory Service Space 2780 Fitness Center 
1240 Computer Lab 2790 Weight Room 
1250 Training Support Space 2800 Courtroom 
1260 Study Room 2810 Jury Room 
1270 Evidence Room 2820 Jury Assembly Space 
1280 Witness Stand 2830 Judge’s Chambers 
1290 Robing Area 2840 Hearing Room 
1300 Council Chambers 2850 Legislative Hearing Room 
1310 Armory 2860 Acting Stage 
1320 General Performance Spaces 2870 Performance Rehearsal Space 
1330 Orchestra Pit 2880 Banding Training Space 
1340 Performance Hall 2890 Pre-Function Lobby 
1350 Audience Space 2900 Supporting Performance Space 
1360 Audience Seating Space 2910 Catwalk 
1370 Projection Booth 2920 Motion Picture Screen Space 
1380 Stage Wings 2930 Exhibit Gallery 
1390 Art Gallery 2940 Display Space 
1400 Sculpture Garden 2950 Artist’s Studio 
1410 Recording Studio 2960 Media Production 
1420 Photo Lab 2970 Museum Gallery 
1430 Library 2980 Baptistery 
1440 Mediation Chapel 2990 Cathedra 
1450 Reflection Space 3000 Clean Room 
1460 Chapel 3010 Data Center 
1470 Shrine 3020 Computer Server Room 
1480 Confessional Space 3030 Exam Room 
1490 Tabernacle 3040 General Examination Space 

1500 Choir Loft 3050 Labor, Delivery, Recovery, 
Postpartum Room 

1510 Marriage  Sanctuary 3060 Newborn Nursery 
1520 Mental Health Quiet Room 3070 Patient Room 
1530 Bone Densitometry Room 3080 Clean Supply Room 
1540 CT Simulator Room 3090 Consultation Room 
1550 Head Radiographic Room 3100 Equipment Storage Room 
1560 Mobile Imaging System Alcove 3110 Nurse Workspace 
1570 MRI System Component Room 3120 Nurse Triage Space 

1580 PET/CT Simulator Room 3130 Mental Health Multipurpose room 
w/Control Room 

1590 Radiographic  Room 3140 Holding Room, Secured 
1600 Stereotactic Mammography Room 3150 Anteroom 

1610 Ultrasound/Optical  Coherence 
Tomography Room 3160 Medical Information Computer 

System Room 
1620 Angiographic Control Room 3170 Nursery Transport Unit Alcove 

1630 Angiographic Procedure Control 
Area 3180 Clean Linen Storage Room 

1640 Silver Collection Area 3190 Clean Utility Room 
1650 Computer Image Processing Area 3200 Mental Health Interview/Counseling  

Room 
1660 CT Control Area 3210 Medical Records Storage room 
1670 Image Quality Control Room 3220 Nurse Station 
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1680 X-Ray, Plane Film Storage Space 3230 Soiled Utility Room 
1690 MRI Control Room 3240 Resuscitation Cart Alcove 
1700 MRI Viewing Room 3250 Angiographic Procedure Room 
1710 Radiographic Control Room 3260 CT Scanning Room 
1720 Tele-Radiology/Tele-Medicine  Room 3270 Cystoscopic Radiology Room 

1730 Radiation Diagnostic and Therapy 
Spaces 3280 Mammography  Room 

1740 Health Physics Laboratory 3290 MRI Scanning Room 

1750 Linear Accelerator Entrance Maze, 
Healthcare 3300 PET/CT Scanning Room 

1760 Radioactive Waste Storage Room, 
Healthcare 3310 Radiographic Chest Room 

1770 Nuclear Medicine Scanning Room 3320 Radiology Computer Systems 
Room 

1780 Patient Dose/Thyroid Uptake Room 3330 Ultrasound Room 
1790 Radiopharmacy 3340 Whole Body Scanning Room 

1800 Radiation Therapy, Mold Fabrication 
Shop 3350 Angiographic Instrument Room 

1810 Hearth and Lung Diagnostic and 
Treatment Spaces 3360 Angiographic System Component 

Room 
1820 Cardiac Catheter Instrument Room 3370 Computed Radiology Reader Area 

1830 Cardiac Catheter Control Room 3380 X-Ray, Digital Image Storage 
Space 

1840 Cardiac Electrophysiology Room 3390 CT power and Equipment Room 
1850 Echocardiograph  Room 3400 Image Reading Room 

1860 Extended Pulmonary Function 
Testing Laboratory 3410 Mammography Processing Room 

1870 Pacemaker ICD Interrogation Room 3420 MRI Equipment Storage Room 
1880 Procedure Viewing Area 3430 PET/CT Control Room 
1890 Pulmonary Function Treadmill Room 3440 Radiographic  Darkroom 

1900 Respiratory Therapy Clean-up Room 3450 Viewing/Consultation  Room, 
Diagnostic Imaging 

1910 General Diagnostic Procedure and 
Treatment Spaces 3460 Equipment Calibration Space, 

Radiation Diagnostic and Therapy 

1920 Endoscopy/Gastroenterology  Spaces 3470 Linear Accelerator Component 
Room, Healthcare 

1930 Clinical Laboratory Spaces 3480 Linear Accelerator Room, 
Healthcare 

1940 Pharmacy Spaces 3490 Nuclear Medicine Dose Calibration 
Space 

1950 Rehabilitation  Spaces 3500 Nuclear Medicine Patient “Hot” 
Waiting Room 

1960 Medical Research and Development 
Spaces 3510 Radiation Dosimetry Planning 

Room 
1970 Chemistry  Laboratories 3520 Radium Cart Holding Space 
1980 Physical Sciences Laboratories 3530 Sealed Source Room 

1990 Earth and Environmental Sciences 
Laboratories 3540 Brachytherapy  Room 

2000 Psychology  Laboratories 3550 Cardiac Catheter System Component 
Room 

2010 Dry Laboratories 3560 Cardiac Catheter Laboratory 
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2020 Wet Laboratories 3570 Cardiac Testing Room 
2030 Biosciences  Laboratories 3580 EKG Testing Room 
2040 Astronomy  Laboratories 3590 Microvascular  Laboratory 
2050 Forensics Laboratories 3600 Pacemaker/Holter Monitor Room 

2060 Bench  Laboratories 3610 Pulmonary Function Testing 
Laboratory 

2070 Integration  Laboratories 3620 Pulmonary Screening Room 
2080 Laboratory Storage Spaces 3630 Respiratory Inhalation Cubicle 
2090 Office Spaces 3640 Eye and Ear Healthcare Spaces 
2100 Dedicated Enclosed Workstation 3650 Surgical Spaces 

2110 Open Team Setting 3660 Clinical Laboratory Support 
Spaces 

2120 Shared Equipment Station 3670 Medical Services Logistic Spaces 
2130 Banking Spaces 3680 Dental Spaces 
2140 Automatic Teller Machine Space 3690 Press Conference Room 
2150 Trading Spaces 3700 War Room 
2160 Demonstration  Spaces 3710 Waiting Space 
2170 Checkout Space 3720 Waiting Room 
2180 Fitting Space 3730 Office Service 
2190 Auction Room 3740 Shared Open Workstation 

2200 Commercial Service and Repair 
Spaces 3750 General File and Storage 

2210 Hotel, Motel, Hostel, and Dormitory 
Service Spaces 3760 Lookout Gallery 

2220 Hotel Residence Room 3770 Bank Teller Space 
2230 Commercial Support Spaces 3780 Vault 
2240 Dormitory 3790 Trading Floor 
2250 Information  Counter 3800 Sales Spaces 
2260 Post Office Space 3810 Display Space 
2270 Mail Room Space 3820 Vending Machine Area 
2280 Conference Room 3830 Pet Shop Animal Space 
2290 Grooming Activity Spaces 3840 Makeup Space 
2300 Haircutting Space 3850 Food Service 
2310 Cooking Spaces 3860 Kitchen Space 
2320 Food Preparation Space 3870 Cooking Space 
2330 Dishwashing Station 3880 Dining and Drinking Spaces 
2340 Dining Room 3890 Banquet Hall 
2350 Food Court 3900 Snack Bar 
2360 Salad Bar 3910 Liquor Bar 
2370 Beverage Station 3920 Table Bussing Station 
2380 Serving Station 3930 Vending Perishable Product Space 
2390 Cafeteria Vending Space 3940 Tray Return Space 
2400 Food Discard Station 3950 Coffee stations 
2410 Child Care Spaces 3960 Daycare sickroom 
2420 Child Day Care Space 3970 Play Room 
2430 CLD–Child Care 3980 Resting Spaces 
2440 Rest Area 3990 Break Room 
2450 Laundry/Dry Cleaning Space 4000 Smoking Space 
2460 Locker Room 4010 Filing Space 
2470 Supply Room 4020 Unit Storage 
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2480 On-call Room 4030 Bathroom 
2490 Shower Space 4040 Toilet Space 
2500 Ablution Room 4050 Combination Toilet and Bathing 

 2510 Mud Room 4060 Laundry Room 
2520 Bedroom 4070 Mental Health Resident Bedroom 
2530 Mental Health Resident Bedroom, 

 
4080 Nursery 

2540 Kitchen   
 

GeneralSpaceUsageType 

 
Code list identically specified as GeneralSpaceFuntionType 

 
 

TransitionSpace 
 

TransitionlSpaceClassType 
Code list derived from OmniClass Table 13 
1000 Horizontal Transition 1010 Vertical Transition 

 
TransitionlSpaceFuntionType 
Code list derived from OmniClass Table 13 
1000 Corridor 1070 Concourse 
1010 Breezeway 1080 Moving walkway 
1020 Box Lobby 1090 Entry Lobby 
1030 Elevator Lobby 1100 Jet way 
1040 Landing 1110 Elevator Shaft 
1050 Aisle 1120 Stair 
1060 Ramp 1130 Chute 

 
TransitionSpaceUsageType 

 
Code list identically specified as TransitionSpaceFuntionType 

 
 

ConnectionSpace 
 

ConnectionSpaceFunctionType 
Code list derived from OmniClass Table 13 
1000 Door 1060 Sally port 
1010 Vestbule 1070  

 
ConnectionSpaceClassType 
Code list derived from OmniClass Table 13 
1000 Door 1020 Sally port 
1010 Vestbule   

 
ConnectionSpaceUsageType 

 
Code list identically specified as  ConnectionSpaceFunctionType 
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AnchorSpace 
 

AnchorSpaceClassType 
Code list derived from OmniClass Table 13 
1000 Vestibule 1020 Gate 

 
AnchorSpaceFuntionType 
Code list derived from OmniClass Table 13 
1000 Entry Vestibule 1020 Gate 
1010 Exterior door 1030 Emergency door 

 
AnchorSpaceUsageType 

 
Code list identically specified as  AnchorSpaceUsageType 
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