
Global Code Selection for

Directed Acyclic Graphs�

Andreas Fauth�� G�unter Hommel�� Alois Knoll�� Carsten M�uller�

fauth�cs�tu�berlin�de

� Technische Universit�at Berlin� Institut f�ur Technische Informatik�
Franklinstr� ������ D	
���
 Berlin� Germany
� Universit�at Bielefeld� Technische Fakult�at�
Postfach
� �
 �
� D	����
 Bielefeld� Germany

Abstract� We describe a novel technique for code selection based on
data	�ow graphs� which arise naturally in the domain of digital signal
processing� Code selection is the optimized mapping of abstract opera	
tions to partial machine instructions� The presented method performs an
important task within the retargetable microcode generator CBC� which
was designed to cope with the requirements arising in the context of cus	
tom digital signal processor �DSP� programming� The algorithm exploits
a graph representation in which control	�ow is modeled by scopes�

� Introduction

In the domain of medium�throughput digital signal processing� micro�programm�
able processor cores are frequently chosen for system realization� By adding
dedicated hardware �accelerator paths�� these cores are tailored to the needs of
new applications� Optimized processor modules can be reused� which is a major
bene�t compared to high�level synthesis 	
�� where a completely new design is
developed for each application� Because of the application�speci�c add�ons and
the rather short lifetimes of a speci�c design� there is a need for retargetable
software development tools� especially code�generators�

��� Overview

In the next section we will shortly discuss several related approaches to code
generation and point out some di
erences of our system� Section � introduces
the overall architecture and functionality of the CBC code generator� Section �
explains the code selection task and the basic techniques used� In section � our
algorithm is presented� We conclude the paper with experimental results�

� Part of this research is supported by the Esprit ���� ��Sprite�� project of the
European Community and Siemens AG� M�unchen�

� Related Work

Lansdkov et al� 	
�� present a machine model and methods for microcode genera�
tion� A subtask of code selection called bundling and a subset of scheduling called
compaction are described� Both methods have a local view on the subject pro�
gram� The YC system 	�� deals with code selection but does not provide detailed
scheduling� A phase called combiner only tries to concatenate adjacent opera�
tions� The work of Rimey 	��� �
� describes a compiler for application�speci�c
DSPs� The main attention� however� is paid to scheduling and data�routing �i�e�
mainly register assignment and spilling�� Code selection and scheduling are only
performed on straight�line code� Optimizations across branch boundaries are
not performed� The Marion system 	
� �� performs code generation for RISC
architectures� Here� a simple approach for code selection is chosen� A recursive�
descent brute�force tree pattern matcher neither considers graph structure of
the intermediate code nor global subexpressions� Our implementation is based
on the work of Fraser et al� 	��� ����

Points of major di
erences between our code selection approach and similar
tasks in �classic� code generation �CG� are�

� Complexity of datapaths� CBC has to deal with highly specialized and op�
timized datapaths� The hardware units make the e�cient execution of fre�
quently used operation sequences possible� Operation patterns for the func�
tional units of these datapaths are much more complex than for standard
microprocessors�

� Type�handling� DSP algorithms may employ a large variety of di
erent word
lengths and numerical types� The hardware operators are restricted to �xed
word lengths� A correct mapping must always be found� In most CG work
this topic is neglected because language de�nitions �and hence the compilers�
are restricted to �implementation�dependent� types�

� Evaluation order� Approaches like 	�� �� dealing with code selection assume
a �xed evaluation order� which is usually derived from the imperative source
code� There is no explicit scheduling phase included in the back�ends� Com�
monly� register allocation is performed during code selection� Most of the
time this is done by graph coloring 	�� or �on�the��y��

� Parallelism of functional blocks� Most DSP architectures contain several
functional units that work in parallel� Therefore� the �nal code cannot be
emitted during or immediately after the code selection phase because partial
instructions must be �compacted� into complete instructions at a later stage
of compilation exploiting the possible parallelism� Consequently� code selec�
tion must not specify the complete behavior of the machine for each cycle�
It must only select code for each of the individual units�

� Expressions are DAGs� Intermediate programs formulated in directed acyclic
graphs �DAGs� pose a problem to classic code selection approaches� �We
assume that the intermediate code and the target code are presented as trees
or terms� 	�� is a typical statement� Tree matching methods 	�� are popular�

� Machine description� In the compiler writer communitymachine descriptions
are mainly intended to be used by the code generator only� Some detailed
knowledge of the compiler is necessary to write good descriptions� By giv�
ing the semantics for each instruction as a transformation of the machine
state� we describe the instruction set in a behavioral way� Out of this ma�
chine description� various machine models can be generated depending on
the application �e�g� code generator� assembler or simulator��

� Intermediate representation� Our intermediate representation is based on a
data� and control��ow graph description that di
ers from the representations
used in many compilers�

� Anatomy of the Compiler

In CBC� code generation is split into di
erent tasks� Each of these is performed
by a speci�c tool� The intermediate results are passed on in human�readable text
�les� Figure � shows the general layout of the code generator� the underlying
data� and rule�base as well as the retargeting mechanism�

analyzer

machine
description

target
dependent

rules

target
independent

rules

processor
working
model

data- & rule-base

scheduling &
data-routing

code
selection

target indep.
transformations

code

control/data
flowgraph

Fig� �� System overview of CBC�s code	generator and its retargeting process�

The primary goal is to generate highly optimized code from the description
of the algorithm� which is speci�ed graphically or textually in a signal �ow
graph� In principle� it is also possible to write the algorithm in other languages
that are capable of modeling parallel behavior in an adequate way� e�g� the
synchronous subset of the applicative real�time DSP language ALDiSP 	���� The
intermediate representation can be easily obtained from a signal �ow graph and
will be described in section ����

��� Retargeting

In our approach� the language nML 	��� is used to describe the target architecture
�see Fig�
�� Originally designed as a simple means for expressing programming

models as found in the usual programmer�s manuals� it has turned out to be
powerful enough to describe current and future DSP cores � it may even serve
as the basis for high�level hardware synthesis 	�
�� Its main advantage from
the programmer�s point of view� however� is its compactness combined with its
readability� nML is intended for describing arbitrary single instruction stream
architectures� Such architectures feature a single program counter� but can oth�
erwise consist of an �unlimited� number of building blocks� Based on attribute
grammars� nML is �exible and reasonably easy to use�

type word � int����

type addr � card����

mem REG	
�word�

mem RAM	�

���word�

mem latch	��word�

op instruction � jump � aluOp � ���

op alu�a�aluAction�s��src�s��src�d�dst�

action � � latch	���s�� latch	���s�� a�action� d�latch	��� �

syntax � format���s �s��s��s��a�syntax�s��syntax�����

image � ���

op aluAction � sub � add � ���

op sub��

action � � latch	�� � latch	�� � latch 	��� �

���

mode src � reg � ���

mode reg�n�card���� � REG	n�

syntax � format��R�d��n�

image � format�����b��n�

���

Fig� �� Excerpt from an nML machine description�

When retargeting the compiler� the nML analyzer examines the instruction
set and the memory description of the target processor and builds a machine
model� i�e� a representation of the capabilities and constraints of the machine�
The process of building this model is detailed in 	��� �
�� The machine model�
along with the datapath constraints and machine�independent transformation
rules are given as input to the generic �parameterized� code generator� The
transformation rules specify� for example� how to perform a �
�bit addition on
a ���bit machine� The phases of code generation and the construction of the
generic compiler are outlined in 	�� ����

��� Code Generation Script

The main tasks of code generation are�

� Signal �ow graph translation� This is the algorithmic design entry to the code
generator� The speci�cation of the application program is constructed using
a schematic editor and a simulation tool� The resultant signal �ow graph is
translated by this front�end into the code generator�s internal data format�

� Control��ow transformations� Transformations concerning the mutually ex�
clusive execution of operations depending on certain conditions are per�
formed to reduce the overall execution time� A pure data�driven representa�
tion is translated into a hybrid data�control�driven representation re�ecting
the requirements of branch controllers and conditional transfers used in pro�
grammable DSP systems 	���
����

� Code selection� Subsets of the algorithm are mapped to datapaths� First�
high�level operations of the algorithmic input are expanded into machine�
executable operations� Then� chains of expanded operations are merged to
form more complex operations that are provided by the machine� This clus�
tering reduces the complexity of the scheduling task and allows optimized
code generation in reasonable time�

� Scheduling and data�routing� The operations in the graph are ordered in
time� To produce high quality code� e�cient scheduling is a necessity� The
goal of scheduling is minimum execution time for a given algorithm on an
architecture which is �xed at compile�time� Therefore� the assignment of
registers to intermediate values� the generation of data�routes �including
spill�code� and scheduling are performed in parallel 	
�� �
��

��� Intermediate Representation

The intermediate representation is a control�data��ow graph �CDFG�� A CDFG
is a program description based on a directed graph �N�E� consisting of two �nite
sets� the nodes ni � N represent the operations of the program and the directed
edges ei � E which are ordered pairs of nodes ei � �nj � nk� display dependencies
between the operations� An edge can either model a data��ow dependency �i�e� a
data �ow path� or an additional control��ow constraint�� The CDFG describes
the body of the main execution loop of an application� Cycles in the graph result
only from algorithmic delay operations which are used to refer to values from
earlier incarnations of loops�
The data��ow graph models all data dependencies and operations� An op�

eration node can be executed whenever input data is available�� Inputs and
outputs of the program are represented as data sources and data sinks� Data is

� This task is actually split in two� One phase before and one phase after code selection�
The �rst phase rewrites scope structures and the second inserts jump operations�

� Note that each data	�ow edge implicitly models a control	�ow constraint�
� All preceding control	�ow constraints must also be satis�ed�

Fig� �� A CDFG with nested conditional scopes� Each box represents one scope� The
two large boxes represent top	level exclusive scopes� The two small boxes represent a
pair of exclusive scopes local to the left top	level scope� The nodes represent opera	
tions and the arcs represent data	�ow edges� The dashed arcs are �ag edges from the
condition to the true and the false case�

represented as signals� A signal represents an in�nite stream of values� For syn�
chronous data��ow� the amount of data produced and consumed for each node
is speci�ed a priori� Our data��ow model limits the amout of data produced
and consumed in a single cycle to exactly one� The execution of an operation
therefore consists mainly of the use of one signal at each incoming edge and the
de�nition of one signal at each outgoing edge��

The control��ow graph is basically a hierarchical structure of macro nodes� A
macro node is a cluster of operations and other macro nodes� They are used to
model loops and conditional scopes� All operations inside a speci�c conditional
scope are related to a certain condition� Additionally� control��ow edges display
precedence relations between operations� At the beginning of code generation
there are few control��ow edges� later phases insert additional control��ow infor�
mation modeling in�place storage of signals and the programming of the branch
controller� The scheduler must �nd an explicit execution order for all operations�
resulting in a sequentially executable microprogram�

For the di
erent stages of code generation� three distinct sets of arithmetic
and logic operations exist in a common library�

� Abstract operations �AOs�� This is set of high�level operations that is avail�
able in the initial input�level graph�

� Machine�executable operations �MEOs�� This set consists of operations which
correspond to primitives of the nML description� All initial CDFG operations
must be mapped to members of this set�

� Datapath operations �DOs�� The third set comprises operations which occupy
a full datapath� They are the basic entities for the scheduling process� These

� At this stage of the translation� all multi	rate segments of the program must be
translated into loops or unrolled into straight	line code�

operations are formed out of the MEOs during chaining and represent the
valid combinations of MEOs�

Besides these operations� some canonical operations identifying the action
on dedicated hardware �such as accelerator paths� can also be included in the
algorithm at each stage of the translation� Since they represent both abstract
and datapath operations they are included in the CDFG upon entry to the script
and need not be transformed during code selection� Two more groups exist�

� Transfer operations� These are used to describe assignments of data to mem�
ory locations and moves on buses� They are inserted into the description to
route data between di
erent storage locations and correspond to addressing
modes and move operations�

� Control��ow operations� All conditional and unconditional jumps belong to
this set�

� The Problem of Code Selection

Prior to code selection� the algorithm consists of operations that are machine�
independent and well�typed� After code selection� the algorithm must consist of
operations that are equivalents for clusters of MEOs� These clusters are associ�
ated with datapaths and must not violate encoding restrictions� The �rst stage of
code selection consists of two interleaved phases� machine�parameterized macro
expansion andmapping to machine�executable operations� The second stage maps
parts of the algorithm to datapaths�

��� The General Approach� Macro Expansion and Chaining

During macro expansion� operations in the CDFG are expanded into opera�
tions available on the machine� For example� multiplications are broken down
to combinations of additions and shifts or into Booth�multiplication steps 	
���
This process is controlled by rules� which are parameterized by the set of spe�
ci�c hardware operators o
ered by the target machine�� Therefore� the rules are
machine�independent� but the choice between them is driven by the structure of
the target machine�
When mapping to MEOs� limited word lengths are taken into account� i�e�

the expanded execution of an operation on a smaller word length datapath is
constructed� For example� an addition of two �
 bit values could be performed
on a �� bit datapath with two additions �assuming an addition with carry is pos�
sible�� This task employs the Cathedral��nd tool for expansion 	
��� However�
it relies heavily on our own operation library 	
��� which is two�fold� A machine�
independent part describes constant folding and other peephole optimizations� a
machine�dependent part describes all MEOs as well as the corresponding expan�
sion rules� The machine�dependent entries are either generated or instantiated

� This set is identi�ed during the analysis of the nML machine description�

from templates during the retargeting process� Implementation alternatives are
given from which the appropriate expansion can be chosen�
To allow the generation of optimized code within reasonable time� it is impor�

tant to reduce the complexity of the scheduling task� Therefore� the second part
of the code selection task maps subsets of the algorithm onto datapaths prior
to scheduling� Once all high�level operations are re�ned to MEOs� clusters of
direct data�dependent operations which can be performed on a datapath within
a single cycle are identi�ed� These chains of operations are merged and replaced
by a single operation each� thus forming more complex operations that are pro�
vided by the machine� These datapath operations occupy a complete datapath�
In Fig� � a CDFG is clustered to be executed on the depicted datapath� The
shift operations ���� are executed on the shifter and the arithmetic operations
�� and �� are executed on the ALU core�

SHIFTER

ALU CORE

register file

datapath

0/-/PASS

Fig� �� A CDFG fragment and a datapath

Our chaining process resembles code selection in standard compilers since
not all possible combinations of operations are legal chains� Restrictions which
must not be violated result from the instruction set de�nition �see section �����

��� Global Chaining

As outlined earlier� the goal of chaining is a �good� assignment of machine op�
erations to datapaths� This implies that chaining assists the scheduler� it could
indeed be integrated into the scheduling phase at the expense of increased com�
plexity and run time� On the other hand� when chaining is done outside the
context of scheduling� little information about resource usage is available� Espe�
cially in the presence of multiple similar datapaths� it is hard to estimate the

� Informally� two datapaths are called similar if they share many chaining patterns�

impact of a particular chaining decision on the quality of the resulting code� Op�
erator assignment performed during chaining may result in schedules not fully
exploiting potential parallelism of the machine� To decouple the two tasks� the
chaining tool must annotate chains with implementation alternatives� In this
paper we can thus neglect the problem of similar datapaths�
Since the architectures under consideration feature complex datapaths� we

emphasize that whole expressions are assigned to a single datapath whenever
possible� A chaining decision can a
ect the choices for distant operations� i�e�� it
has global e
ects� Therefore� large pieces of the CDFG must be considered when
making a speci�c decision�

��� Encoding Restrictions

In general� the set of operation tuples executable on a datapath is not equal to
all possible combinations of the hardware operators� functionalities� the designer
may �and usually will� have imposed restrictions on operation chains� This is
quite natural� the number of possible combinations a
ects the length of the in�
struction word� It might be necessary to omit some �rarely needed� combinations
to reduce the instruction word length� Furthermore� there may be con�icts in
the datapath hardware that prohibit certain combinations� As a result� code se�
lection has to comply with encoding restrictions� As it is quite clear that the
datapath structure alone is not su�cient to hold this information� we decided to
represent legal chains as a set of rewrite rules� Pattern matching is employed to
�nd legal chains in the CDFG�

��� Matching on Trees

Pattern matching is an established technique for instruction selection from ex�
pression trees in compilers for imperative languages 	���
��� Code selection for
stock microprocessors focuses mostly on a good exploitation of complex address�
ing modes� In the context of CBC� however� the emphasis is on good utilization
of the complex datapaths� Nevertheless� similar tools can be used at the tech�
nical level� In the CBC environment� all legal patterns are generated by the
nML front�end 	�� and stored as a set of match�replace pairs �see Fig� � for an
example�� The match�replace database is intentionally held human�readable to
allow an experienced user to modify some rules or add new rules by hand �e�g�
for special optimizations�� The depicted rule does not take commutativity of the
add operation into account� This is not a serious problem� the nML front�end
simply generates multiple patterns �in this case� s � add�t	i
� is replaced by
s � add�i
	t���
In the context of our compiler� the term rewrite system is not one mono�

lithic unit� pattern matching and rewriting are separated phases� The tree parser
generator we use� Iburg 	���� is only concerned with the matching phase� the
connection to the rewrite phase is made by match rule numbers� The tree gram�
mar �from which the tree parser is generated� and the rewrite procedure are
both generated by our chaining preprocessor� which takes the rewrite rules as

MATCH

i� � reg�

i� � reg�

c � const���
������ �
 A value constraint�
�

t � shift�i��c��

s � add�t�i���

REPLACE COST��

s � shiftadd�i��i��c��

ENDM

Fig� �� A sample rewrite rule for the datapath of Fig� ��

its input� The incorporated match algorithm is an extension to the BURS �Bot�
tom Up Rewrite System� 	��� theory and allows the computation of an optimal
rewrite sequence for a tree �by matching the rewrite rules to subtrees�� given a
�xed set of rewrite rules with �xed costs� This computation takes time linearly
proportional to the size of the tree� For the selection of the optimum match�
tree parsing with dynamic programming is used 	��� The tree parser genera�
tor Burg 	��� performs the dynamic programming at parser generation time
and thus generates highly e�cient pattern matchers� Iburg� a heavily simpli�ed
Burg version� still generates very e�cient parsers� but their running time is no
longer independent of the number� size� and structure of the patterns�	 Because
of its simplicity� Iburg can be modi�ed quite easily� We extended it to accept
certain match conditions in the rules� this way we can conveniently express type
constraints or other operand constraints which are imposed by the hardware
operators�

� Code Selection on Graphs

Commonly� code selection is performed on expression trees� These are �partial�
statements usually directly re�ecting source language statements� The programs
being compiled in our environment contain a large amount of decision making
and common subexpressions� As mentioned above� cycles in the graph only result
from values produced by delay operations� These are not considered during code
selection��
 Hence expressions in our CDFG model are DAGs� This means that
intermediate results can have more than one use �Fig� �a� which can also reside in
di
erent conditional scopes �Fig� �b�� Figure �c shows a signal that has multiple
de�nitions in di
erent conditional scopes� In traditional compilers� conditions
are at �borders� of basic blocks� The if�then�else statements themselves are
also subject to code selection� In our approach� operation nodes of the CDFG

	 However� informally speaking� for our purposes the generated parser have �nearly�
linear behavior and are still fast enough�

�
 This is indeed a topic for future investigations�

have a conditional context� For each condition a �ag is computed and connected
to a macro node� i�e� a scope� Then� global data��ow is speci�ed� i�e� signals
�enter� and �leave� scopes� This representation facilitates code selection that
transcends basic blocks�

(a) (b) (c)

if c else

elseif c

Fig� �� Cases of interest to our global chaining approach� �a� multiple uses in the same
scope� �b� multiple uses in di�erent scopes and �c� multiple de�nitions�

Consider the architecture depicted in Fig� �� A value produced by the shifter
is not immediately available for more than one operation� For that purpose an
addition with zero must be performed to pass the value unchanged through the
ALU core� i�e� the value is �spilled� to a register� We assume that the data�
paths do not fork �and thus do not allow multiple uses within themselves�� This
implies that an operation de�ning a multiply used value can never be chained�
The CDFG in Fig� �a would be mapped to three operations �a shift� an add

and a sub� instead of two in the optimal case �a shift�add and a shift�sub��
The best results possible for the datapath of Fig� � are shown in Fig� ��

(a) (b) (c)

if c else
if c else

Fig� 	� The best solutions to the three di�erent cases of Fig� ��

��� The Simple Approach� 	Undagging

Earlier section were concerned with tree parsing and pattern matching in trees�
On the other hand� it was unveiled that CDFGs are de�nitely not tree�like in
the general case� The resulting problems have to be solved� Taking the previ�
ous section into account� it can be seen that some subgraphs indeed have a tree

structure� namely those that lie between points of multiple uses and multiple def�
initions� Incidentally� the values which are de�ned or used more than once must
be held in registers� multiple de�nitions require a proper modeling of control�
�ow which cannot �generally� be mapped onto the datapath� multiple uses map
to di
erent instructions��� This leads to a very simple chaining method� Cutting
the DAG whenever a value is de�ned or used in multiple places yields a set of
�usually small� trees� These trees are then individually processed by the rewrite
system and reconnected afterwards to compose a chained version of the original
DAG�

��� A More Sophisticated Approach� Heuristic Node Duplication

The advantage of the previous method is its simplicity� However� in a signi�cant
number of cases chaining possibilities are lost due to cuts at multiple uses or
de�nitions� We seek a way to improve this situation� The key insight is that the
CDFGmust be modi�ed in order to create more chaining possibilities��� Consider
the cases where chaining possibilities may be missed� There are essentially four
of them�

� A signal has one de�nition and multiple uses in the same scope� This implies
that this signal must be made available to di
erent DOs �since multiple uses
in the datapath are not possible�� By duplicating the de�nition once for each
use� the multiple use has been resolved �while introducing a multiple use at
each operand� and the desired chaining possibilities have been created�

� A signal has one de�nition and multiple uses� at least one in another scope�
To generate a chaining possibility� the uses must be within the same scope
as the de�nition� A further look reveals that this case resembles the previous
one� it is solved in basically the same manner�

� A signal has multiple de�nitions �in mutually exclusive scopes	 and one use
outside the scopes of the de�nitions� A chaining possibility can be created by
duplicating the use and nesting the copies into the scopes of the de�nitions�
However� we must bear in mind that if the use has yet another operand
multiply de�ned in di
erent scopes� a particular evaluation order for the
mentioned de�ning scopes would be enforced� This could be undesirable �see
Fig� �a��

� A signal has multiple de�nitions �in mutually exclusive scopes	 and multiple
uses� This case is not further considered since there are rarely any cases
where duplication of operations could lead to shorter code� Consider a signal
that has n uses and m de�nitions� If each of these operations is �trivially�
chained to a single DO� we get n m operations� If all necessary copies of
operations are generated to get more chaining possibilities and each of these
would actually be chained� the result would be n�m DOs �see Fig� �b��

�� This is a consequence of the postulation that no multiple uses exist in the datapaths�
�� More exactly� we do not want to create chaining possibilities per se but only in those

places where this will lead to an improvement of the generated code�

if c else if d else if c

if d else

if c1 if c2 else if c1 if c2 else

(a) (b)

else

if d else

Fig�
� Node duplication examples� Conditions c and d in case �a� are independent of
each other� Conditions c
 and c� in case �b� are exclusive to each other�

It can be seen that the creation of chaining possibilities is associated with
duplication of nodes� When duplicating excessively� the graph might grow too
large� This is overcome by �rst partitioning the graph� which yields �usually�
small partitions� and then processing each partition in turn� The partitions are
chosen so that no chains across partition boundaries are possible�
One problem not yet mentioned is the identi�cation of chaining possibili�

ties� A simple heuristic is employed� For all pairs of MEOs� the pattern base is
looked up counting the occurrences of an edge between both operations� �This
is quite informal� but should be intuitively justi�ed�� This information is then
used for partitioning� two operations are put into the same partition if a chaining
possibility exists� Partitions including only one operation are trivial cases�
When duplicating into scopes �either at a multiple de�nition or at a multiple

use�� the code size might be increased but �usually� not the execution time be�
cause only one of the exclusive scopes is executed� To the case shown in Fig� �a�
however� this argument cannot be applied� Therefore� a common subexpression
elimination �CSE� phase� which succeeds the pattern matcher� removes most of
the unchained operation copies from the graph� This also works for duplications
at scope boundaries� Since with duplication there is a danger that the number
of operations �and thus program size� increases unduly� a cost function is used
to resort to the simple undagging method in cases where the node duplication
heuristic fails� The cost is computed for both the undagging and the node dupli�
cation method�� as the weighted sum of the number of resulting DOs �a rough
estimate of the code size� and the expected number of executed DOs on each
execution path �a rough estimate of execution time�� The better alternative is
kept�

� Results

The experimental results shown in Table � are taken from a �real�life� AD�
PCM algorithm� which is incorporated into speech compression applications�
The �exemplary� datapath from Fig� � served as target architecture� The tool
was implemented and tested on a SPARC station IPX using C � All CPU
times including parsing and computation of statistics are less than one minute�
Therefore� they are not explicitely given�

�� This is not overly expensive� as the pattern matching and rewriting is quite fast�

Table �� Experimental results

machine	 datapath operations
design ex� opns� undagging node dupl�

ENCODE �
� �

 �	
����� ��� �	������

ADQUANT �� �
 �	
���� �
 �	
����
IADQUANT �

� �	������
� �	������
PREDICT �

 ��� �	

���� ��� �	�
����

TONE DET ��

 �	����

 �	����

� Conclusion

We have presented an algorithm for code selection on control�data��ow graphs�
The approach is based on a global view on the subject programs� The points of
interest are multiple uses of values resulting from common subexpressions and
multiple de�nitions of values resulting from conditional scopes� An implementa�
tion of the algorithm is incorporated into the CBC compiler and was successfully
tested with the Siemens DECT �Digital European Cordless Telephone� design�
One line of future research includes the coupling of code selection and scheduling
as well as the adaption of our technique to loops�

References

� A�V� Aho� M� Ganapathi� S�W� Tjiang� Code Generation Using Tree Matching
and Dynamic Programming� ACM TOPLAS ���� �
���� ��
��
�

�� D�G� Bradlee� R�R� Henry� S�J� Eggers� The Marion System for Retargetable
Instruction Scheduling� Proc� PDLI��
� SIGPLAN Notices ���� �
��
� �������

�� D�G� Bradlee� S�J� Eggers� R�R� Henry� Integrating Register Allocation and In	
struction Scheduling for RISCs� �th Int� Conf� on Arch� Support for Prog� Lang�
and Operating Systems �
��
�
���
�

�� P� Briggs� Register Allocation via Graph Coloring� Ph� D� Thesis� Rice Univ��
Houston� Texas �
����

�� R�G�G� Cattell� Automatic Derivation of Code Generators from Machine Descrip	
tions� ACM TOPLAS ��� �
����

��
��

�� J�W� Davidson� C�W� Fraser� Code Selection through Object Code Optimization�
ACM TOPLAS ��� �
���� ���	���

� H� Emmelmann� F�	W� Sch�oer� R� Landwehr� BEG � a Generator for E�cient
Back Ends� Proc� PLDI���� SIGPLAN Notices ���
 �
���� ��
	��

�� H� Emmelmann� Code Selection by Regularly Controlled Term Rewriting� Code
Generation � Concepts� Tools Techniques� Springer �
���� ����

�� A� Fauth� A� Knoll� Automated Generation of DSP Program Development Tools
Utilizing a Machine Description Formalism� Technical Report
�����
� Techni	
sche Universit�at Berlin� Fachbereich ��� Informatik� Berlin �
����

�� A� Fauth� A� Knoll� Automatic Generation of DSP Program Development Tools
Using a Machine Description Formalism� Proc� IEEE Int� Conf� on Acoustics�
Speech and Signal Processing �
���� ��
����

� A� Fauth� A� Knoll� Translating Signal Flowcharts into Microcode for Custom
Digital Signal Processors� Proc� Int� Conf� on Signal Processing �
���� ���
�

�� A� Fauth� M� Freericks� A� Knoll� Generation of Hardware Machine Models from
Instruction Set Descriptions� VLSI Signal Processing VI �
���� �������

�� C�W� Fraser� R�R� Henry� T�A� Proebsting� BURG � Fast Optimal Instruction
Selection and Tree Parsing� ACM SIGPLAN Notices �	�� �
���� ���
�

�� C�W� Fraser� D�R� Hanson� T�A� Proebsting� Engineering a Simple� E�cient Code
Generator Generator� ACM Letters on Prog� Lang� and Systems ��� �
���� �
��
���

�� M� Freericks� The nMLMachine Description Formalism� Technical Report
��
�
��
Technische Universit�at Berlin� Fachbereich ��� Informatik� Berlin �
��
�

�� M� Freericks� A� Knoll� Formally Correct Translation of DSP Algorithms Speci�ed
in an Asynchronous Applicative Language� Proc� Int� Conf� on Acoustics� Speech
and Signal Processing �
���� �

����

� M� Ganapathi� C�N� Fischer� Description	driven code generation using attribute
grammars� Proc� of the �th POPL �
����
���

�

�� M� Ganapathi� C�N� Fischer� J�L� Hennessy� Retargetable Compiler Code Gener	
ation� Computing Surveys ���� �
���� �
�����

�� M� Ganapathi� C�N� Fischer� A�x Grammar Driven Code Generation� ACM
TOPLAS 	�� �
���� �������

��� M� Ganapathi� C�N� Fischer� Integrating Code Generation and Peephole Opti	
mization� Acta Informatica �� �
���� ���
��

�
� R� Giegerich� Code selection by inversion of order	sorted derivors� Theoretical
Computer Science 	� �
����

��

��� R�S� Glanville� S�L� Graham� A new method for compiler code generation �Ex	
tended Abstract�� Conf� Record of the �th POPL �
�
�� ��
����

��� R� Hartmann� Combined scheduling and data routing for programmable ASIC
systems� Proc� European Design Automation Conference EDAC��� �
����

��� J�L� Hennessy� D�A� Patterson� Computer architecture� a quantitative approach�
Morgan Kaufmann Publishers �
����

��� C�M� Ho�mann� M�J O�Donnell� Pattern Matching in Trees� JACM ���
 �
����
�����

��� M� Rim� R� Jain� Representing Conditional Branches for High	Level Synthesis
Applications� Proc� �� Design Automation Conf� �
����
���

�
� D� Landskov� S� Davidson� B�D� Shriver� P�W� Mallet� Local microcode com	
paction techniques� Computing Surveys ���� �
���� ��
����

��� D� Lanneer� F� Catthoor� G� Goossens� M� Pauwels� J� Van Meerbergen� H� De
Man� Open	ended System for High	Level Synthesis of Flexible Signal Processors�
Proc� European Design Automation Conf� EDAC��� �
���� �
���
�

��� G� Meyer	Berg� The Library LIB for the Hardware Independent Compiler CBC�
Esprit	II Project ���� �Sprite� Report CBC�b�Siemens�Y�m
��� �
����

��� T�A� Proebsting� Simple and e�cient BURS table generation� Proc� PLDI����
SIGPLAN Notices �	�� �
���� ��
����

�
� K� Rimey� P�N� Hil�nger� A Compiler for Application	Speci�c Signal Processors�
VLSI Signal Processing III �
���� ��
���

��� K� Rimey� P�N� Hil�nger� Lazy data routing and greedy scheduling� �
st Annual
Workshop on Microprogramming MICRO	�
 �
����

�

�

��� Discussion� Code Generator Speci�cation Techniques� Led by Chris Fraser� Sum	
marized by J� Boyland and H� Emmelmann� Code Generation � Concepts� Tools
Techniques� Springer �
���� �����

This article was processed using the LaTEX macro package with LLNCS style

