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Zusammenfassung

In dieser Arbeit visualisieren wir trivariate Copulae. Copulae stellen einen Ansatz
der Statistik dar, um multivariate Datensatze zu beschreiben. Basierend auf der
theoretischen Grundlage der Paar-Copula Konstruktion (PCC) bauen wir trivariate
Copulae aus drei bivariaten Copulae auf. Diesen Ansatz nutzen wir zur Visualisierung
von trivariaten Copulae anhand von dreidimensionalen Konturlinien, was wir mittels
des statistischen Programmes R umsetzen.

Nach der Einfithrung von Notation und einem Kapitel iiber die ein-, zwei- und
dreidimensionale Normalverteilung wird im zweiten Kapitel grundlegende Copula-
Theorie vorgestellt. Das folgende Kapitel fiihrt iiber die Paar-Copula Konstruktion hin
zur Visualisierung trivariater Copulae. Die Umsetzung mittels R wird im vierten Kapitel
beschrieben und es werden zahlreiche Szenarien basierend auf verschiedensten bivariaten
Copulae in geordneter Art und Weise vorgestellt. Die nun zur Verfiigung stehende Art
der Darstellung wird abschliefend praktisch eingesetzt, um die Abhéngigkeiten von
drei Variablen des Uranium Datensatzes zu zeigen.
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Abstract

In this thesis we visualize trivariate copulae. Copulae provide one statistical way of
modelling multivariate data. We construct trivariate copulae out of three bivariate
copulae using the theory of pair copula construction (PCC). Based on this we visualize
the three dimensional contour lines of trivariate copulae and implement this visualization
with the statistical software R.

After introducing notation and a chapter on one, two and three dimensional normal
distributions, the second chapter mentions basic theory of copulae. The following
chapter on pair copula construction leads to the visualization of trivariate copulae.
The implementation in R is covered in chapter four. Also lots of scenarios based on
various bivariate copulae are provided in this chapter in a systematic manner. Finally
we use this way of visualization to examine dependence among three variables out of
the uranium data set.
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Introduction

Nowadays “Big Data” is a huge topic. Most people mention this to be the next big
thing and its possibilities seem to be unlimited. It could be used for analysing financial
transactions and discovering irregularities, for predicting epidemics or for faster and
more precise market research. Whenever one wants to use data, he will first define
which parameters are of interest to him and then he will collect a lot of information
about them. But probably the most difficult part is how to infer facts out of this
bunch of informations. Researchers are especially curious about understanding which
parameters depend on each other and to what extend.

An interesting way to take care of this flood of information is to visualize data
sets. One may use statistical software like R for this and produce barplots, pies or
boxplots. And if he likes to examine dependence among multiple variables, he might
prefer scatterplots, QQ plots or contour plots. These are well known concepts and
can be produced using R and already implemented functions. By doing so, one will
discover that these basic functions allow to visualize dependence between two variables.
If he now wants to see also dependence among three variables, he might get stuck first
and has to take some effort to handle this situation.

When examining high dimensional data sets, one might use multivariate distribution
functions (like a normal distribution) to describe dependencies among multiple variables.
A main limitation of this is that marginal distributions and dependence have to be
modelled together. Another approach to model dependence between variables, which
allows to take care of marginal distribution and dependence separately, are copulae.
Its basic theorem is the Theorem of Sklar (1959), which states that for absolutely
continuous random variables X7, ... X,, with marginal distributions F, ... F}, and joint
distribution F', there exists a unique copula C' describing the joint distribution function
of Xl, e Xn

Sklar’s theorem can be used to model multidimensional dependence structures using
just bivariate copulae as building blocks. This process is called “pair copula construc-
tion” (PCC). The underlying bivariate copulae can be divided in various classes (like
elliptical, Archimedean or Tawn copulae) and are well known.

Basically we will use the theory of copulae and the pair copula construction to
visualize dependence of three random variables, implement the whole process in R and
have a look at lots of example scenarios. The general outline of each chapter is as follows.



First of all Chapter 0 contains some notation which will be used throughout the
thesis. A jutting position at the real beginning is reserved for this.

Chapter 1 resumes basic facts of the normal distribution function. It starts with the
univariate case and makes its way over the bivariate to a trivariate normal distribution.
In each dimension the probability density function and corresponding contour levels are
plotted. These are used to finally take a look at the goal of this thesis in a graphical way.

Chapter 2 introduces basic theory about copulae. It starts with the definition of
a copula and states Sklar’s Theorem. This is applied to construct a bivariate Gaus-
sian copula. The next section takes a look at the dependence measures Kendall’s 7
and Spearman’s p. Afterwards different bivariate copula classes are shown, arranged
in proper order. Elliptical copulae first, followed by Archimedean copulae. At the
end of the chapter the relationship between copula parameters and Kendall’s 7 is stated.

The trivariate Gaussian copula is introduced in Chapter 3. This chapter also
contains a study of pair copula constructions in three dimensions and takes the simpli-
fying assumption into account. The chapter is concluded by defining the pair copula
construction of a joint density in three dimensions.

Chapter 4 is the main part of the thesis as it contains the visualization of trivariate
copulae using R. The chapter starts with the workflow of the implementation. Here
the concepts and ideas used during programming are shown, whereas code and fur-
ther explanations are given in the appendix. It continues with the description of the
setting of our visualizations. The next two sections take a look at numerous visualiza-
tions of trivariate copulae constructed out of elliptical, Archimedean or Tawn copulae
as building blocks. Finally the visualization tools are applied to a practical exam-
ple, namely the visualization of the Uranium data set. In total we visualize 50 scenarios.

Chapter 5 gives a brief summary of the thesis. It first resumes the purpose of the
thesis, followed by a recapitulation of each chapter. Finally a general conclusion is given.

The Appendices provide additional material for the previous chapters. Appendix A
shows how the plots of probability density functions and contour levels, showed in
Chapter 1, are done in R. The code for Chapter 2 on bivariate copulae is given in
Appendix B, whereas Appendix C contains all the code for visualizing trivariate copulae
as covered by Chapter 4. This code is also provided in the self written R package
“copulaSG”. Ultimately Appendix D presents an overview on bivariate copula families
and their implementation in the R package “VineCopula”. It finishes with a table
listing all scenarios we have visualized.



Chapter 0
Notation

During the whole thesis we will use some special notation and introduce this right at
the beginning.

Notation 0.1 We will use three different scales for random variables:

e XeR The “real world” random variable distributed according to the distri-

bution function F.

e U €[0,1] The random variable derived by F(X).

e Z€R The inverse given by ®~1(U).
The ®(-) mentioned above represents the standard normal cumulative distribution
function (cdf) with zero mean and standard deviation of 1 and is further explained in
Example 1.4.

Remark 0.2 U is a uniform [0, 1] distributed random variable.

Proof. F(u) = P(U <u)=P(F(X)<u)=P(X < Fl(u)=FF () =u,
where solely the first F' corresponds to the distribution of the random variable U and
the latter F’s correspond to the distribution function of the random variable X. 0O

Remark 0.3 Z is a standard normal distributed random variable.

Proof. F(2) =P(Z<2)=P(® YU)<z2)=PU < ®(2)) = ®(2) ,
where F' denotes the distribution of the random variable Z, and ® stands for the
standard normal distribution function, which is further described in Example 1.4. [

Notation 0.4 We will mark multidimensional objects in boldface, e.g. x is a multidi-
mensional vector.

Notation 0.5 When talking about R code, we will use the following notation:

e Packages are marked in boldface,
o Functions are denoted in italic and
e Parameters are highlighted in typewriter style.



Chapter 0 Notation

Notation 0.6 Whenever we speak of a quantile of a multivariate distribution or
probability density function, the following is meant: We evaluate this function on a
discrete number of points of an restricted domain (this is in most cases quadratic around
the point of origin) and then take the corresponding quantile of these evaluations.



Chapter 1

The Normal Distribution and Other Basic
Concepts of Statistics

First we want to resume some basics about normal distributions. We start with a
short review of the one dimensional case and visualize its probability density function
together with some contour levels. Then we dive in the two dimensional case, give
some further definitions and also visualize both properties. Here we also get to know a
first measure of dependence and what margins are. Afterwards we have a look at the
three dimensional distribution and finish this chapter with a graphical view on what to
do in this thesis.

1.1 The Univariate Normal Distribution

We start with the notation of a univariate normal distribution and define its probability
density function as well as its cumulative distribution function.

Notation 1.1 We denote a one dimensional random variable X that is normal dis-
tributed with mean p € R and variance 02 € R-g by X ~ N, o2

Definition 1.2 Let X € R be a univariate normal distributed random variable
(X ~ N, ,2). Its probability density function (pdf) is given by

fuo2(x) = \/21776}(1) (—%;(x - M)2> , R, (1.1)

Definition 1.3 Let X ~ N, ;». Its cumulative distribution function (cdf) is
given by

— _ i _ 1 [ 1 2
F,pa(z) = p(ng)_[o fﬂ,og(t)dt_mzo exp(—w(t—u) )dt, TER.

Even if the normal distribution is well known, we present the standard normal
distribution as an example. It will be our accompanying example throughout the thesis.



Chapter 1 The Normal Distribution and Other Basic Concepts of Statistics

Example 1.4 Univariate standard normal distribution.

A one dimensional normal distributed random variable X with mean ¢ = 0 and vari-
ance 02 = 1 is called standard normal distributed. We denote this by X ~ No1 .
We abbreviate its probability density function by ¢(-) and its cumulative distri-
bution function by ®(-), i.e.

B(z) = P(X < 2) = /gb(t)dt:\/%/e_fdt, TER.
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Figure 1.1: Left: Probability density function of a one dimensional standard normal
distribution with contour lines at 0.75, 0.90, 0.95 and 0.99 quantiles.
Right: Contour lines on their own.

The left picture of Figure 1.1 visualizes the probability density function of a one
dimensional standard normal distributed random variable with added contour levels at
the 0.75, 0.90, 0.95 and 0.99 quantiles. Note that the probability density function of a
one dimensional distribution is two dimensional and the corresponding contour levels
on their own, shown in the right picture, are one dimensional.

In the future we will need to standardize random variables. For this we use the
following

Definition 1.5 (Probability integral transform). The transformation u = F(z) is
called probability integral transform (PIT).



1.2 The Bivariate Normal Distribution

1.2 The Bivariate Normal Distribution

For two dimensions we start as we did in the one dimensional case. We first define the
probability density function of a bivariate normal distrubed random variable and its
cumulative distribution function.

Notation 1.6 Let X, X5 be two random variables. Let X| ~ Nm,of and Xy ~ NM,OS'
Now we can bring them together in a vector X = (X1, X5)?, which is then bivariate

normal distributed. We denote this by
X~ Nux

with mean vector u € R? and covariance matrix ¥ € R?*2
= 1251 — E[Xﬂ 2 _ 011 012 — COV(Xl,Xl) COV(Xl,XQ)
125] E[Xg} ’ 0921 0929 COV(XQ,Xl) COV(XQ,XQ) ’
Definition 1.7 Let X € R? be a bivariate normal distributed random variable

(X ~ N,x) and ¥ be not degenerated (i.e. det(X) # 0). Its probability den-
sity function is given by

() = 5 2 exp (= 5 x = TS - ) (1.2)

ox _022(1:1—,u1)2—021(m—uz)(m—m)—alz(a:1—ul)(xz—u2)+011(x2—u2)2)
p 2(011022—012021) 2
= , X e R™.
27\/011022 — 012021

Definition 1.8 Let X = (X1, Xo)7 ~ u,x- Its two dimensional normal distri-
bution function is given by

1 T2

FM,Z‘(X) = P(X S X) = / / f”72($1,$2) dl’l dl‘g .

—00 —00

As we are able to take care of two random variables now, we may also be interested
in the density or distribution of just one of these variables and forget about the other.
This can be done by looking on the marginals.

Definition 1.9 Let X = (X1, X2)T ~ N, 5. The marginal density function of the
first coordinate is given by

fien) = [ fusla o) das = fuon (o)

and thus a one dimensional probability density function. The second coordinate works
the same way.
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Definition 1.10 Consequentially we get the marginal distribution function
Fi(z1) = Fux((21,00)) = Fuy 01, (1)

Because of having two random variables now, we also would like to measure depen-
dence between them. A first measure for this is the (Pearson) correlation coefficient,
which is defined next. Furthermore some of its properties are mentioned. Building
up on this measure of dependence we calculate the probability density function of a
bivariate normal distribution.

Definition 1.11 Let X;, X5 be two random variables and let 017 = Var(X;) > 0 and
099 = Var(Xg) > 0. The (Pearson) correlation coefficient between them is given by

COV(Xl,XQ) . 0192
VVar(Xy) /Var(Xs) o110

p=pi2 =

and the correlation matrix R € [—1,1]**? is given by

p (P P2 _ (1 P}
P21 P22 p 1
Remark 1.12 Some properties of the (Pearson) correlation coefficient are given in
Section 2.1 of Czado (2013) on page 17. These are partly mentioned here and extended
at some points. So the (Pearson) correlation coefficient
e measures linear dependence with a range of [—1, 1],
e is invariant under strictly increasing linear transformations, but

e may change by other monotone increasing transformations of the margins and

e might depend on the marginal distributions of the underlying random variables,
see Example 3.1 in Kurowicka and Cooke (2006).

Example 1.13 Bivariate standard normal distribution with correlation.
Let X1, X5 be univariate standard normal distributed random variables and let their
correlation coefficient be given by p. Due to Definition 1.11 it holds

¥ — 011 012\ o11 PO11022
0921 022 PO11022 022



1.3 The Trivariate Normal Distribution

As X1, X, are standard normal distributed, we have 1 = uo = 0 and o171 = 092 = 1.
So we get for the probability density function of X = (X1, X2)7

Fus(x) 2 IS e~ - TS (x— ))

—1/2 -1
Lo (e ()
T orlp 1 Pl7a* \p 1
1 22 4+ 23 — 2px179
= —— X — . 1.3
2my/1 — p2 p( 2(1 - p?) (13)

Figure 1.2: Left: Probability density function of a two dimensional standard normal
distribution with zero correlation. Contour lines are added at 0.75, 0.90,
0.95 and 0.99 quantiles.
Right: Contour lines (two dimensional) on their own.

Now we visualize the probability density function of a two dimensional standard
normal distribution with zero correlation in the left picture of Figure 1.2. Again we
add contour lines at the 0.75, 0.90, 0.95 and 0.99 quantiles, which are shown on their
own in the right picture. Note that the probability density function is drawn in a three
dimensional plot and the corresponding contour lines in a two dimensional one.

1.3 The Trivariate Normal Distribution

For the three dimensional case we start as in both sections before with notation. We
continue with defining the probability density function as well as the corresponding
cumulative distribution function of a trivariate normal distributed random variable.
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Notation 1.14 Now we bring three normal distributed random variables X, X2 and
X3 together to a trivariate random variable X = (X1, Xo, X3)” € R3. We denote this
trivariate normal distributed variable by X ~ N, 5. with mean vector

0 E[X1]
p=|p2| = | E[Xo]
3 E[X3]
and covariance matrix
011 012 013 COV(Xl,Xl) COV(Xl,XQ) COV(Xl,XQ)
Y= 091 092 0923 | = COV(XQ,Xl) COV(XQ,XQ) COV(XQ,Xg)
031 032 033 COV(Xg,Xl) COV(Xg,XQ) COV(X37X3)

Definition 1.15 Let X € R? be a trivariate normal distributed random variable
(X ~ N, yx) and X be not degenerated (i.e. det(X) # 0). The probability density
function of X is then given by

1

(27‘(’)%

fu,E (X) =

1
]Z\_% exp(—z(x — )T (x — ,u)) ,x € R?.

Definition 1.16 Let X ~ N,x. Its three dimensional normal distribution
function is given by

1 T2 X3

Fux(x)=P(X <x) = / / / fux(x1, 22, 23) dog drg des .

—00 —O00 —O0

As we have three variables, we may want to take a look on how one single variable
behaves while disregarding the other variables. Thus we study the margins once again.

Definition 1.17 Let X ~ N, s. The marginal density function of the first coor-
dinate is given by

(o o JNe o]

fl(xl) = / / fu,2($1,$2,l‘3) dze dxg = ful,an(xl)

—00 —O0

and thus a one dimensional probability density function. The other coordinates work
the same way.

Definition 1.18 Consequentially we get the marginal distribution function by

Fi(z1) = FM,E((xla 00, 0)) = Fu1,011(x1) .

10



1.4 Graphical Exploration of Thesis Goal

We close this section with one remark on multidimensional distributions.

Remark 1.19 A random variable X = (X1,...,X;)” € R? which is multivariate
normal distributed with mean vector p € R? and covariance matrix 3 € R4 is
denoted by X ~ N, x. Its probability density function is given by

1

(2m)

NI

fuzs(x) = P

exp(~5x = WS - )

d
2

1.4 Graphical Exploration of Thesis Goal

Let us take a look on what we have done so far. We started with a univariate normal
distribution and visualized the probability density function of a univariate standard
normal distribution in Figure 1.1. We also calculated some quantiles of the plotted
region and added the corresponding contour lines to the plot. Next to this plot we
positioned another plot just displaying the contour lines. To summarize the univariate
case: The plot about the probability density function was two dimensional and the one
of the contour lines was one dimensional.

Then we took over to a bivariate normal distribution and visualized the probability
density function of a bivariate standard normal distribution with zero correlation in
Figure 1.2. Again we added contour lines of some quantiles and also displayed just the
contour lines in another plot. To summarize the bivariate case: The plot about the
probability density function was three dimensional and the one of the contour lines
was two dimensional.

If we had continued with this procedure for the trivariate case, we would have drawn
the probability density function in a four dimensional plot and the one of the contour
lines in a three dimensional one.

The rest of this thesis is about a way to visualize three dimensional copulae. The
definition of a copula is part of the next chapter, but one can look at it as a three
dimensional distribution function. As we want to visualize them, it should be clear at
this point why we will image them quite indirectly via contour lines. The direct way of
showing the probability density function would result in a four dimensional plot.

11






Chapter 2
Copula Theory

In this chapter we want to introduce some copula theory. We first define a copula
and state the fundamental theorem about copulae, named “Sklar’s Theorem”. We
show directly how to use this new theory by studying a bivariate Gaussian copula.
This is followed by the definition of two dependence measures as different approaches
to the (Pearson’s) correlation coefficient. Afterwards we show a variety of bivariate
copulae classified in elliptical copulae, Archimedean copulae with one or two parameters
and extreme value copulae. At the end we mention the relationship between copula
parameters and one dependence measure.

The whole chapter is based on Czado (2013) with changes in wording and presentation
of the ideas.

2.1 Definition of Copula and Sklar’'s Theorem

We start this basic chapter on copula theory with the general definition of a copula
and Sklar’s Theorem, which we then apply to get a bivariate Gaussian copula.

Definition 2.1 A d dimensional copula C is a multivariate distribution function
on the d dimensional hyper cube [0, 1]d with uniformly distributed marginals. We
denote the corresponding copula density by ¢ and it can be obtained by partial
differentiation (if this is possible), i.e.
8d
clul,...,uq) = ———C(ug,...,uq) .
(ua a) Oup ...0ug (u )

Theorem 2.2 (Sklar’s Theorem). Let X be a d dimensional random variable with
joint distribution function F' and marginal distribution functions F;, i = 1,...,d. Then
there is a d dimensional copula C' with uniform marginals such that

F(CEl, ce ,xd) = C(Fl(:lil), cee ,Fd(a:d)) .

In this thesis we will only be confronted with absolutely continuous distributions.
For these the copula C' is unique and its density ¢ exists and one derives

f(@1,.. ma) = c(Fi(21), .. -, Falza)) fr(z) - - .. - fa(za) - (Sklar)

13



Chapter 2 Copula Theory

Going the other way round is also possible. The copula corresponding to a multi-
variate distribution is given by

C(ul,...,ud) = F(Fl_l(ul),,Fd_l(ud)) s
FEC (), ... Fy ' (ua))
AET () - fa(Fy (ua))

(2.1)

c(uy,...,uq) = (2.2)

Example 2.3 Bivariate Gaussian copula.
The bivariate Gaussian copula can be constructed using a bivariate normal distribution
with zero mean and correlation p and applying Sklar’s Theorem 2.1 to give

C(u,ug; p) = <I>2(<I>_1(U1)7<1>_1(UQ);/)) ;

where ®(-) is the distribution function of a standard normal Ny ; distribution and
®y(-,-;p) denotes the bivariate normal distribution function with zero mean and
correlation p. The corresponding copula density is given by

22 ¢2(® " (u1), @~ (u2); p)

c(u1, uz) = G2 (1)) p(2 " (u2))
_ P20z 20p)
d(21)P(22)
22422 —2pz122
b S G

L1 \/%exp —%z%) 1% exp(—%z%)
(_z% + 25 —2p229 22+ z%)
2 201 — p?) 2
(20»2122 — p?(23 + Z%))
2(1-p?) ’

where ¢2(-,-; p) is the probability density function of a bivariate standard normal
distribution with correlation p and ¢(-) denotes the probability density function of a
univariate standard normal distributions. In the second line we did the substitution
zi = ® (), i € {1,2} (remember the Z scale).

14



2.2 Dependence Measures

Figure 2.1: Gaussian copula left mid right

7 080 0.50 0.30
61 095 0.71 045

Figure 2.1 shows the contour plots of a bivariate Gaussian copula with descending
7 values (from 0.8 in the left picture over 0.5 in the middle one to 0.3 in the right
picture). The dependence measure Kendall’s 7 is explained in the following section.
The levels are based on the 0.75, 0.90, 0.95 and 0.99 quantiles of the plotted area. We
see the classical elliptic shape, which is the more pulled apart the higher the 7 value is.
The z; axis is drawn on the right axis and zo on the upper one.

The shape from left bottom to right top in each picture shows positive dependence
(if the value of the first variable gets high, it is likely that the value of the other variable
also gets high). All of the following copulae will show positive dependence. One can
reach negative dependence by rotating copulae. Details on that are given in Section
3.5 in Czado (2013) on page 30.

2.2 Dependence Measures

In Definition 1.11 we already defined (Pearson’s) correlation coefficient as a first measure
of dependence. But we faced some kind of “bad” properties (see Remark 1.12). Now
we want to introduce two other dependence measures, connect them to copulae and
look at some of their nice properties, especially for usage with copulae.

Definition 2.4 Let X; and X3 be two random variables. Then Kendall’s 7 is de-
fined as the difference between the probability of concordance and the probability of
discordance, i.e.

T(X1, X2) == P((X11 — Xo1)(X12 — X22) > 0) — P((X11 — X21)(X12 — X22) <0) ,

where (X711, X12) and (X217, X92) are independent and identically distributed copies of
(X1, X2).
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Definition 2.5 Let X; and X5 be two random variables with marginal distributions
Fy and F>. Then Spearman’s p; or the rank correlation is defined as the Pearson
correlation of the random variables Fi(X1) and F5(X3) (remember the U scale), i.e.

Ps = ps(Xl,XQ) = COI‘I‘(Fl(Xl),FQ(XQ)) .

Theorem 2.6 Kendall’s 7 and Spearman’s ps only depend on the copula and can be
expressed as follows

T=4 C(u1,u2)dC(u1,ug) — 1,
[0,1)2

Ps = 12 C(ul,ug)dulduQ —3.
[0,1]2

Now we get to the properties of both dependence measures which are stated in
Section 2.2 in Czado (2013) on page 18. The corresponding properties of the (Pearson)
correlation coefficient are given in Remark 1.12.

Remark 2.7 Kendall’s 7 and Spearman’s p
e measure general dependence with a range of [—1,1],

e are invariant with respect to monotone transformations of the margins (because
they are rank-based),

e do not depend on marginal distributions (as they can be expressed solely in terms
of the copulae) and

e often can be fully expressed in terms of the copula parameters (see Theorem 2.16).

Another interesting aspect when talking about dependence is the probability of joint
occurrence of extreme observations, meaning if one variable takes a low value, the other
will also tend to be low and the same for large values. We call this tail dependence.

Definition 2.8 Let X be a two dimensional random variable with bivariate distribu-
tion F' and marginal distributions Fi, F5. The corresponding copula shall be given
by C'. Then the lower tail dependence coefficient is defined as

L. 1: —1 -1
A= tl_1>151+P(X2 <O < PN

) P(Xa < Fy'(8), X1 < F'(1))
= 11m
10+ P(X1 < F(t))

t—0+ t ’
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whereas the upper tail dependence coefficient is defined as

X' = lim P(Xa > Fy ' (8)1 X1 > F\(1))
1= P(Xp < Fy'(1) = P(X1 < F ') + P(Xo > Fy (1), X1 > Py (1))

= lim

11 1-P(X < F(®))
o L2400
t—1— 1—1¢

Example 2.9 Tail dependence for bivariate Gaussian copula.
One can show that a bivariate Gaussian copula with (Pearsson) correlation p has either
no tail dependence at all or full one:

N 0 if and only if |p| < 1
7 |1 ifandonlyif|p|=1"

2.3 Bivariate Copula Classes

2.3.1 Construction of Bivariate Copula Classes

Copulae can be constructed using different approaches. Two major principles lead
to elliptical and Archimedean copulae. If one does a probability integral transform
(Definition 1.5) for each margin of known multivariate elliptical distributions (like
Gaussian or Student t), he will end up with so called elliptical copulae. Using generator
functions leads to Archimedean copulae.

2.3.2 Elliptical Copulae

The class of elliptical copulae contains for example the bivariate Gaussian copula, which
we have already seen in Example 2.3. Now another member of this class is given.

Example 2.10 Bivariate t copula.
A bivariate t copula is based on the Student t distribution. If one likes to refresh his
knowledge on that distribution, he should take a look in basic literature on statistics
such as Hogg et al. (2013). Details on the construction of a bivariate Student t copula
can be found in Czado (2013) (Example 1.10 on page 9). For this thesis, we are just
interested in its probability density function and only give a short overview of the
corresponding construction.

The underlying distribution is a bivariate t distribution with v degrees of freedom,
denoted by 7),(-). Furthermore it is standard t, meaning it has zero mean and corre-
lation p. The probability of a univariate standard t distribution is denoted by f,(-).
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Now the copula density of a bivariate t copula is given as

) ( dogned) ¥
T(%)y/(7)2(1 — p?) v(1—p?) fulz1 ’

where z; := T, 1 (u;), i € {1,2} and T'(-) is the gamma function.

c(ur, ug; p,v) =

Figure 2.2: Student t copula left mid right

T 080 0.50 0.30
61 095 0.71 045
62 3.00 3.00 3.00

The contour plots for bivariate Student t copulae, shown in Figure 2.2, have that
typical rectangular shape with rounded corners. These rectangular shapes get more
tightened the higher the 7 value is, showing the higher dependence among the variables.
Upper and lower tail dependence are equal and positive, even for negative and zero
correlations, as shown in Demarta and McNeil (2005) on page 5.

2.3.3 Archimedean Copulae

We just want to highlight the most important facts about Archimedean copulae and
show those members of this class that are implemented in the R package VineCopula.
More details on Archimedean copulae can be found in Nelsen (2006).

Definition 2.11 (Bivariate Archimedean copulae). Let ¢ € Q with Q the set of all
continuous, strict monotone decreasing and convex functions g : [0, 1] — [0, co] with
g(1) = 0. Then a so called Archimedean copula with generator 1 is given by

C(ur,uz) = Y (W (ur) + (uz)) -

The generator is called strict for ¢/(0) = oo .
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Remark 2.12 ¢[71 is the pseudo-inverse of ¢ and is defined as
W71 [0,00] = [0,1]
w[fl} (t) — w_l(t) aO <t< ,QZ)(())
0 ,(0) <t <oo.

Lemma 2.13 (Density of Archimedean copulae). Let C' be an absolutely continuous
Archimedean copula and its generator 1 be twice differentiable. Then the corresponding
density is given by

CPC(ur,un) _ "(C(u, )t (un)y (up)
Du10uy [¥/(C (u1,u2))]® '

c(uy,ug) =

After this short theory on Archimedean copulae we will now show examples of this
class that are implemented in the R package VineCopula. We divide these examples
in Archimedean copulae with one parameter and those with two parameters. For which
values one gets independence or full dependence and what other copula families could
be obtained, is first taken from Czado (2013) and completed with Joe (1997).

Example 2.14 Bivariate Archimedean copulae with a single parameter.

e Clayton copula

=

C(uy,ug) = (ul_é +uy® — 1)7 )

where dependence is controlled by § > 0. Full dependence is achieved if § — oo
and independence if § — 0. We define C'(0,0) :==0.

Figure 2.3: Clayton copula left mid right

T 080 0.50 0.30
6 8.00 2.00 0.86

In the contour plots for the Clayton copula, shown in Figure 2.3, one sees
tightened contour lines on the lower left hand side (especially when focussing
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on the left picture with highest dependence) and fanned out ones on the upper
right hand side. So the Clayton copula is best suited for modelling high lower
tail dependence and weak upper tail dependence. Note that this asymmetric
dependence can’t be replicated by a Gaussian or t copula.

Gumbel copula

C(uy,uz) = exp [—((— Inu;)’ + (—In uz)‘;)ﬂ ,

where § > 1 controls dependence. One gets full dependence if § — oo and
independence if § = 1.

Figure 2.4: Gumbel copula left  mid right

T 080 0.50 0.30
;1 5.00 2.00 1.43

Contour plots for the Gumbel copula in Figure 2.4 are in some kind reverse to
those for the Clayton copula. The Gumbel copula is suited for modelling high
upper tail dependence and weaker lower tail dependence. But the difference in
the values of upper and lower tail dependence is not as high as for the Clayton
copula, as contour lines do not fan out that much.



2.3 Bivariate Copula Classes

e Frank copula

C(ul,uQ) _ _1 In (1 _ (1 — 6_5“1) (1 — e‘5u2>) |

1—e 9

where 6 € R\ {0}. Full dependence is achieved for § — oo and independence for
0—0.

78 ))

o s /8

7 ' (o7 7 \ow”

? 7 ?
T T T T T T T T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Figure 2.5: Frank copula left  mid right

T 080 050 0.30
0 1819 5.74 292

Figure 2.5 shows the interesting behaviour of the Frank copula. When dependence
rises, contour lines are tightened together near the source of origin. This is an
indicator that a Frank copula is able to model situations with strong central
dependency and weak tail dependence (even better than a Gaussian copula can
do). This fact is also supported when looking at the value of the contour lines.
The 0.99 quantile of a Gumbel copula is with a value of 0.48 higher than the
0.43 of the corresponding Gaussian copula. But for the other quantiles the value
of the Gaussian copula is higher. To sum this up, a lot of probability mass is
concentrated in the centre of a Frank copula.

Another interesting fact is its radial symmetry. In fact, the family of Frank
copulae is the only family among Archimedean copulae with radial symmetry, as
shown in Frank (1979).
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e Joe copula

Clunvug) = 1= (1= )+ (1= un)’ = (1= )1~ wn)’)

where 0 > 1. One gets full dependence for § — oo and the independence copula
foro =1.

Figure 2.6: Joe copula left mid right

T 080 0.50 0.30
6 877 286 1.77

Finally the Joe copula, whose contour lines are shown in Figure 2.6, is similar to
the Gumbel copula, but the upper tail dependence is higher. This can be seen in
the tighter contour lines on the upper right hand side. So a Joe copula is closer
to be the reverse of the Clayton copula than a Gumbel one.



2.3 Bivariate Copula Classes

Now we get to Archimedean copulae with two parameters. The BB notation for those
was introduced in Section 5.2 in Joe (1997) on page 149 et seqq. and the following
examples are taken from this book with changes in notation.

Example 2.15 Bivariate Archimedean copulae with two parameters.

e BB1 copula: Clayton-Gumbel

C(uy,u2;6,6) = (1 + [(ul—e B 1)5 N (uz_e B 1)5] §>9
=n(n " (w) +n"'(w)) ,

_1
4

where § > 0, § > 1 and n(s) = n,5(s) = (1 + s%>
if & — oo or if & — oo and independence if # — 0 and 6 = 1.

. Full dependence is achieved

A Gumbel copula is obtained for # — 0 and a BB1 copula with 6 = 1 coincides
with a Clayton copula.

Figure 2.7: BB1 copula left mid right

T 080 0.50 0.30
01 569 1.08 0.20
6, 1.30 1.30 1.30

For Figure 2.7 we set the second parameter to 1.3 and the similarity to a Clayton
copula can be seen (compare with Figure 2.3). But now lower tail dependence
decreased a bit, whereas upper tail dependence increased and even shows up for
low 7 values. Furthermore upper tail dependence is invariant under changes of
the first parameter. Nevertheless a BB1 copula models high lower tail dependence
together with some upper tail dependence.
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e BB6 copula: Joe-Gumbel

Clun,uzi8,8) = 1= (1= exp( = (= In(L = (1 = )"))* + (= In(1 = (1 = )"}
= (0t (w) + 07 (w2)
where > 1,0 > 1 and 7(s) =ng5(s) =1 — {1 - exp(—s%)} % Full dependence

is achieved for 8 — oo or § — oo.

One obtains a Gumbel copula for § = 1 and a Joe copula for § = 1.

Figure 2.8: BB6 copula left mid right
7 0.80 0.50 0.30
0, 6.48 1.98 1.17
f; 130 1.30 1.30

Figure 2.8 visualizes the contour lines of a BB6 copula. Lower tail dependence
can not be observed (and is in fact equal to 0), whereas upper tail dependence is
high. The shape is similar to that of a Joe copula.
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2.3 Bivariate Copula Classes

e BB7 copula: Joe-Clayton

Clur, ug; 0,0) =1 - <1 - [(1 —1—u)) 0+ (1 -1 —up)) 0 - 1}—(1;)

= (0~ (w) + 07 (wa))

D=

1
where 0 > 1, 5 > 0 and 7(s) =g 5(s) =1 — [1 - (14 s)*ﬂ ¢

One gets full dependence for § — oo or § — oo . For § — 0 one obtains the family

of Joe copulae.

Figure 2.9: BBT7 copula left mid right
7 0.80 0.50 0.30
0, 8.43 250 1.42
6y 0.40 0.40 0.40

Contour lines of a BB7 copula are shown in Figure 2.9. In our case, with a
second parameter equal to 0.4, we have strong upper tail dependence. In fact
upper tail dependence is independent of the second parameter and the lower one
is independent of the first parameter. That makes the BB7 copula flexible in

usage.
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e BBS8 copula: Joe-Frank

=
N———

C(uy,u;0,8) = 6 (1 - {1 - (1 —(1- 5)9)_1(1 —(1- 5u1)9) (1 —(1- 5u2)9)] ’

where 6 > 1,0 < 6 < 1. Independence is achieved for § =1 or § = 0.

One obtains a Frank copula for # — oo and a Joe copula when § = 1.

Figure 2.10: BBS8 copula left ~ mid right

T 080 0.50 0.30
0; 1691 5.58 3.20
62 0.70 0.70 0.70

The contour lines of a BB8 copula with high value of 8, shown in the left picture
of Figure 2.10, are similar to those of a Frank copula given in Figure 2.5. One
also observes similarity to the Joe copula for § — 1.

2.3.4 Extreme Value Copulae

Up to now copulae were symmetric, but we use two more bivariate copulae as building
blocks, namely “Tawn type 17 and “Tawn type 2”. A Tawn copula is an extreme value
copula and usually has three parameters. Both copulae mentioned above are reduced
to two parameters and thus special members of the family of Tawn copulae. They
are implemented in the R package VineCopula and details on further characteristics
can be found in its manual or in Eschenburg (2013). We just show their asymmetric
contour lines here.

26



2.3 Bivariate Copula Classes

e Tawn type 1 copula

Figure 2.11:

Tawn type 1 copula

3 2 -

left mid right
T 080 0.50 0.30
6 828 216 1.47
62 0.90 0.90 0.90

Contour lines of a Tawn type 1 copula, as given in Figure 2.11, are similar to
those of a Gumbel copula (compare to Figure 2.4). But for high dependence as
in the left picture a bulge at the lower side gets visible.

e Tawn type 2 copula

Figure 2.12: Tawn type 2 copula

left mid right
T 080 0.50 0.30
0 828 216 1.47
62 0.90 0.90 0.90

Figure 2.12 contains contour lines of a Tawn type 2 copula, which are similar to
those of a Tawn type 1 copula. The only difference is that the bulge is now to

the upper side.
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2.4 Relationship between Kendall’s 7 and Copula Parameters

Now we want to express Kendall’s 7 solely in terms of the copula parameters as stated
in Remark 2.7.

Theorem 2.16 (Kendall’s 7 for bivariate elliptical and Archimedean copulae).

e For an elliptical copula the following relationship between Kendall’s 7 and

correlation p holds
2

T = —sin(p)
T

e For an Archimedean copula with generator ¢ the corresponding Kendall’s 7

satisfies .
- Y(t)
T—1+40/w/(t)dt.

The proof for elliptical copulae can be found in Lindskog et al. (2002) and the one
for Archimedian copulae is given in the proof for Corollary 5.1.4 in Nelsen (2006) on
page 163.
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Chapter 3
Trivariate Copulae

In this chapter we want to discuss trivariate copulae. We discuss a trivariate Gaussian
copula as a first example. Then we show how to get trivariate copulae by pair copula
construction, which we use later on for visualization.

3.1 Trivariate Gaussian Copula

Example 3.1 Trivariate Gaussian copula.

After applying the inverse of Sklar’s theorem to a trivariate Gaussian distribution
with zero mean and symmetric positive definite correlation matrix R € [—1,1]3%3
(Definition 1.11), we end up with the trivariate Gaussian copula

C(u; R) = ®3(® " (ur), & (ua), & (ug); R)

where ®(+) is the cumulative distribution function of a standard normal distribution
and ®3(-, -, -; R) denotes the trivariate standard normal distribution function with zero
mean and correlation matrix R.

The corresponding copula density can be derived similar as in Example 2.3 and one
gets

1
o(ws B) = |R~% exp 527 (1a — R )z).

where z = (21, 22, 23)7 € R? with z; :== & 1(u;), i € {1,2,3} (remember the Z scale)
and I3 is the three dimensional identity matrix.

3.2 Pair Copula Construction

As we want to visualize three dimensional copulae, we have to construct them first.
Using the inverse of Sklar’s theorem, like we did in the example above, worked fine
for a trivariate Gaussian copula. But there is another, more convenient way named
“pair copula construction”. Roughly spoken, we express the three dimensional density
function using only bivariate building blocks. The main tool will be conditioning. These
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approaches were developed in Joe (1996), Bedford and Cooke (2001) and Bedford and
Cooke (2002).

In the following we take a trivariate probability density function f(,-,-) = fi23(-, )
and split it up by conditioning. To visualize which parts belong together, but not
attracting too much attention, we use unobtrusive colours.

fio3(x1, 22, 23) fia(z1, x2)

f(fL'l,fL'Q,CCg) = flg(l'l,l’g) fl(xl) f1<xl) :f3|12(5173|l'1,IQ)fQ‘l(IZ‘xl)f](xl)
oy S2(@n,w2) skier cia(Fi(2), Fo(22)) f1(21) f2(22)
f2\1(x2’x1) - fl(ml) - fl(ml)

= ci2(F1(x1), Fa(xa) fo(2)

klar
Fispa(@1, x3|22) Eer 30 (Fypp (1 |22), Faja(xslza); 22) fija(w1]22) faja(ws]z2)

fapa(xs|zy, z2) = fro3(w1, w9, 3) _ figp(wn, asla) fa(w2) _ fiaja(@1, 23l72)
3[12(F3[11, T2 fr2(21, 22) fi2(w1, z2) Fija(@1z2)
_azp(Fip(@]w2), Fap(as|we); 22) f1)2(@1]22) f32 (23] 22)
- fijp(z1]z2)
= c132(Fijp(21|22), Fapp(w3]a2); 22) fap2 (w3]22)
fap(xs|r2) = cos(Fa(x2), F3(w3)) f3(23)

Here two ways of conditioning occur. f;;(-, ;) denotes the conditional probability
density function of X; given X; = x;, where X; could be two dimensional as well.
c13:2(+, -; x2) stands for the copula density of (X7, X3) given Xy = .

Putting this all together, as done also in Czado (2013), we get

Definition 3.2 (Pair copula decomposition in three dimensions) A pair copula
decomposition of an arbitrary three dimensional probability density is given as

f(@1, 2, x3) = crgp(Frp(@1]@2), Fyjp(ws|w2); w2)ci2(Fi(z1), Fa(z2))
co3(Fo(w2), F3(x3)) f1(21) fo(22) f3(23) -

So the joint three dimensional density can be expressed in terms of bivariate copulae
and conditional distribution functions. One also sees that this decomposition is not
unique, as we can condition also on the first or third variable (and adjust the bivariate
copulae).

In Definition 3.2 our copula construction depends on the value of the second variable
as ¢13;2(+, -; x2) depends on z3. In the rest of the thesis we will simplify this with the
following assumption. For details on this, see Section 5.4 in Czado (2013) on page 66
et seqq.
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Definition 3.3 (Simplifying assumption in three dimensions). Let X5 be a random
variable and ¢3.2(+,-;¢2) be a conditional copula density. Then the simplifying
assumption is satisfied in three dimensions when the following holds

c13:2(-, s x2) = ciz2(+,-) for all g .

To construct a three dimensional copula, we actually do the pair copula decomposition
“the other way round”. We will specify arbitrary bivariate copula families for ci3.2, c12
and co3 with corresponding parameters 63.2, 012 and fa3. The parameters can be two
dimensional. Then a valid parametric joint density is given by the following definition.

Definition 3.4 (Pair copula construction of a joint density in three dimensions). A
three dimensional probability density with parameter vector 8 = (613;2, 612, 023) can be
constructed as follows

f(@1, 22, x3) = iz (Frjp(z1|22), Fyjp(ws|w2); w2)cra(Fi(z1), Fa(z2))
ca3(Fa(w2), F3(x3)) f1(21) f2(22) f3(23) |

where ¢13.2(+, ;1 013;2), c12(+, 3 612) and ca3(+, -; f23) are arbitrary bivariate copula densities
with specified parameters.

The whole implementation of visualizing trivariate copulae with the statistical
software R is based on this definition and is covered in the following chapter.
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Chapter 4

Visualization of Trivariate Copulae Using R

In this chapter we show how we realized the visualization of trivariate copulae using
the statistical software R. We will do this by describing the actual workflow. Details on
the code can be found in the appendix and is packed to copulaSG. Hereafter we show
scenarios constructed first solely out of elliptical copulae as building copulae, followed
by lots of other scenarios. At the end we apply our visualization to a practical example.
In total we visualize 50 scenarios. A list of all scenarios is given in Appendix D.2.

4.1

0.

Workflow

Load Relevant Packages

First we need R to know copulae. The R package VineCopula provides all
functionalities for calculating with them. For visualization of three dimensional
objects we use the packages misc3d and rgl. The package xtable allows us to
export tables to the .tex format. We use these documents for presenting the
specifications of scenarios in a standardized way.

. Function for Constructing R-Vine Matrix

The R package VineCopula calculates with copulae via an RVineMatriz ob-
ject. For comfortably setting different copulae up, we define the function
RVMconstruction.

. Function for Calculating the Probability Density

To calculate the probability density of a trivariate copula on a Z scale, we mainly
implement Sklar’s theorem and use RVinePDF.

Functions for Plotting Contour Lines

We also provide two functions for plotting contour lines. The first one takes the
calculated probability densities and plots the scenario from one point of view.
The second one calls the first one to get the plot and afterwards takes snapshots
of this plot from different points of view. These snapshots are consecutively
numbered and saved in an appropriate folder. It is also possible to rotate the
visualization manually.
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4. Functions for Handling the Scenarios
Now we set up a data frame for storing the different scenarios. We add all
scenarios to this data frame and will then run through it to produce all plots
with view a single line of code.

As we want our scenarios to be as comparable as possible, we want to use the
same 7 values for most scenarios. In the R package VineCopula there already
exists the function BiCopTau2Par for calculating parameter values. These are
needed for setting up the RVineMatriz to calculate with. So we have to provide
an extended version of this function, we name it BiCopTau2ParX, which is able
to handle also copulae with two parameters.

We further define ways to add scenarios to the data frame. For one we have
to specify 7 values and maybe a second parameter, and it calculates the first
parameter (via BiCopTau2ParX), and the other calculates the 7 value for given
parameters.

Then we define the function scenarioToLater, which exports the specification of
each scenario as a table to a .tex file.

The last function to define is for handling all scenarios. The function scenari-
oToFile takes the number of the scenario and the data frame. It specifies the
folder for saving the results of the visualization and calls all the other functions.
Finally the folder will contain the snapshots as .png files, the configuration as a
.tex file and a .txt document whose title shows what scenario is contained in
this folder.

5. Include Scenarios
Now we add a total number of 49 scenarios to our data frame.

6. Visualize the Scenarios
The last thing to be done is running via the data frame and calling scenarioToFile
for each scenario.

4.2 Setting for Visualizations

Before we actually start with the showing scenarios, we describe the settings for the
visualizations in an extra section.

The visualization always contains four perspectives of one scenario and is done on the
7Z scale to provide comparability of different scenarios. We put each three dimensional
contour plot in a box with axes from —3 to 3 (analogue to the two dimensional
contour plots in Chapter 2) and add a cross to highlight the point of origin. The
perspectives are chosen in a way that the contours are visible from every side. The plot
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in the upper left hand corner is the view from the front with the z;-z9 plane spanning
in the back. We rotate this slowly clockwise round the z axis to get the picture in
the upper right hand corner. Then we continue rotating it clockwise round the zo axis
until the z9-z3 plane spans in the back. This gives the perspective for the lower left
hand picture. The last picture of the scenario, in the lower right hand corner, is taken
from above.

Most scenarios are based on our standard setting of 7 values with 7o = 0.8, 703 =
0.5 and T13;2 = 0.3.

Furthermore we denote the first parameter of a copula for a building block by €1 . So
this refers to a p for elliptical copulae and to a 6 of Archimedean copulae. The second
parameter is denoted by 05 and refers to v degrees of freedom of a Student t copula
or to the § for Archimedean copulae. If the copula family has no second parameter,
like the Gaussian copula, we denote this by #o = 0. We introduce this notation in
order to get a unique looking of the tables that describe the scenarios (here we will
mix elliptical and Archimedean copulae).

4.3 First Visualizations

Now we are ready to give first examples of our visualization tool. We start with trivariate
elliptical copulae, namely with trivariate Gaussian copulae and some trivariate t copulae.

4.3.1 Trivariate Gaussian Copulae

We start our visualization series with a trivariate Gaussian copula and our standard
setting of 7 values. The result is shown in Figure 4.1. One realizes the well known
elliptical shape and strong dependence among the first and second variable, which can
be seen best in the slim shape of contour lines in the upper left hand picture. Also
one can imagine the zero tail dependence of Gaussian copulae resulting for example in
radial symmetry. It is interesting that the shape of the 0.75 and 0.90 quantile can not
be shown in a closed way. This can be interpreted as a lot of probability mass being
distributed far away from the centre (compare this to the centralization of probability
mass for a Frank copula, as shown in Figure 2.5).

This scenario is directly followed by actually quite the same scenario, but with
rearranged 7 values. Figure 4.2 shows the trivariate Gaussian copula with 75 = 0.3,
T3 = 0.5 and 73,2 = 0.8. This figure shows the weak dependence among the first and
second variable, which can be explored in the broad shape of contour lines in the upper
left hand picture. The strong dependence of first and third variable can be seen in the
slim shape of contour lines in the lower right picture. An interesting observation is
that the 0.75 quantile is even less visualisable. It is easy to see in these plots, but one
can also prove that the trivariate Gaussian copula satisfies the simplifying assumption
Definition 3.3.
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Figure 4.1: Pair Copula  Family T 01 0y
12 N 0.8 0.95 0

23 N 0.5 0.71 0

13]2 N 0.3 0.45 0
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4.3 First Visualizations

Figure 4.2: Pair Copula  Family T 01 0y
12 N 0.3 0.45 0

23 N 0.5 0.71 0

13]2 N 0.8 0.95 0

37



Chapter 4 Visualization of Trivariate Copulae Using R

There are also two other ways of how to construct a Gaussian copula apart from
setting 7 values and calculating the parameters (which is our standard procedure).
One can get to the pairwise construction directly from the correlation matrix R. We
want to look at two special kinds of correlation matrices.

Definition 4.1 An exchangeable correlation matrix is given by

R=

T D
D D
ST

with correlation coefficient p € [—1,1]. This correlation matrix R is positive definite
for p € (—%, 1) and may be a reasonable choice when all pairs are expected to have the
same dependence.

The autoregressive model AR(1) has a correlation matrix

1 p p?
R=1p 1 p|,
P op 1

with p € [—1,1]. It may be used for modelling situations where variables are most
dependent when they are near to each other.

A connection between the correlation matrix R and the pair copula construction
with its dependency parameters 613,2 ,012 and 623, as we described it in Definition 3.4,
is given in Section 2.6 in Aas et al. (2009) on page 8 et seq. Note that for a trivariate
Gaussian copula, the 8’s are only one dimensional. Thus we get the following connection
among correlation matrix and parameters of a pair copula construction.

Theorem 4.2 Let 013,2, 012 and 023 be the parameters of copulae ci3;2,c12 and co3.
Furthermore let the correlation matrix R be given in the following way

1 pi2 pi3
R=1|pi2 1 po2s
p13 p23 1

Then the connection between both ways of stating correlation is given by

p12 = O12
p23 = 23

P13 = 913;2\/1 — 9%2\/1 — 035 + 612023 .

Proof. A proof can be found in Example 2.5 in Czado (2013) on page 24 et seq. O
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4.3 First Visualizations

As in our case the correlation matrix is given and we need the parameters of the
pair copula construction, we derive the following connections.

Par General Exch. AR(1)
012 P12 P p
023 p23 P p

P13—pP12p23 p(1—p) 0

013.
PP Vs,

Figure 4.3 visualizes trivariate exchangeable Gaussian copulae with parameter p
adjusted in a way that 7o is 0.8 in the top row, 0.5 in the middle one and 0.3 in the
bottom row. Remaining correlation parameters are determined due to the exchangeable
structure. Figure 4.4 is produced in the same manner but with an underlying AR(1)
structure.

The resulting visualizations show the impact of the characterizing parameter p. In
the top its value is high (and so are 612 , 023 as well as 712 , T23) and even the 0.95 quantile
cannot be shown in closed shape. This high dependence results in long drawn-out
elliptical forms.

The difference between an exchangeable and an AR(1) copula, which is the correlation
value among the copula c13;2, is hard to see in the visualizations. But by comparing
the middle rows, one can realize that the 0.75 quantile is more closed for the AR(1)
case, shown in Figure 4.4. If there is also dependence among this building block, as it
is the case for the exchangeable copula, probability mass is fluctuating more out of the
centre.
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Figure 4.3: Exchangeable Gaussian copulae with:

T2 012 Tog 023 T13;2 0132
top 0.8 0.95 0.8 0.95 0.32 0.49
mid 0.5 0.71 0.5 0.71 0.27 0.42
low 0.3 045 0.3 0.45 0.20 0.31
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4.3 First Visualizations

Figure 4.4: AR(1) Gaussian copulae with:

T12 b2 Tog 023 T13;2  B13;2
top 0.8 0.95 0.8 0.95 0 0
mid 0.5 0.71 0.5 0.71 0 0
low 0.3 0.45 0.3 045 0 0
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4.3.2 Trivariate t Copulae

Let us move on to the second member of elliptical copula family, the Student t copula.
We introduced the bivariate t copula in Example 2.10. Now we want to visualize
trivariate Student t copula and show the influence of the degrees of freedom. Note
that the degrees of freedom, encapsulated in v and 60, of the copula c;3;2 have to be
increased by one, as one degree of freedom is lost due to the conditioning on the second
variable.

We start with the isolated effect of degrees of freedom, visualized in Figure 4.5.
These are followed by the scenarios for our standard dependence setting in Figure 4.6.
We bring both cases on one double-page, so they are directly comparable.

A trivariate t copula with zero 7 values and few degrees of freedom, as visualized
in the top row of Figure 4.5, looks like a cube. It is always symmetric and with
increasing degrees of freedom, it takes the shape of a ball, which is the shape of perfect
independence. Note that 7 values of a Student t copula do not depend on the degrees
of freedom.

With more dependence among the variables, as given in Figure 4.6, the cube gets
more torn apart. One also sees the well known fact, that a Student t distribution
behaves more and more like a Gaussian distribution with increasing degrees of freedoms.
This is visible by comparing the last row with Figure 4.1.
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Figure 4.5: Student t copulae with:

Copula cq2 Copula co3 Copula c13.2
Fam 7 91 92 Fam 7 91 92 Fam 7 91 92
top t 0 0 3 0 0 3 t 0 0 4
mid t 0 0 6 0 0 6 t 0 0 7
low 0 0 25 0 0 25 t 0 0 26
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4.3 First Visualizations

Figure 4.6: Student t copulae with:

Copula cq2 Copula co3

Copula c;3:2

Fam 7 0, 0y Fam 7 01

92 Fam T 91 92

top t 08 095 3 t 0.5 071
mid t 08 095 6 t 0.5 0.71
low t 0.8 095 25 t 0.5 071

3 t 03 045 4
6 t 03 045 7
25 t 03 045 26
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4.3.3 Independence Copula

Next we want to study a special case of copulae. In a situation with no dependence
among the variables, we get an independent copula.

Definition 4.3 A trivariate independence copula is given by

c(uy,ug,uz) =1

C(u1,u2,uz) = ujugug .

The contours of an independence copula are perfectly symmetric balls as there is no
dependence among the variables. Therefore Kendall’s 7 of an independence copula is
equal to 0. But it is not true that for 7 = 0 the corresponding contour lines are also
perfectly symmetric balls. We have observed this already for the Student t copula in
Figure 4.5 and now want to visualize this fact in the following figure.

The independence copula is shown in the top row of Figure 4.7. The contour lines
are perfectly symmetric balls as mentioned above.

In the mid row we visualize the trivariate Gaussian copula built out of bivariate
Gaussian copulae with 7 = 0 as building blocks. These look like perfect balls like for
the independence copula.

In the last row we used a Gaussian, t and Clayton copula as building blocks and
had to deal with the fact that a Clayton copula can not be used for 7 = 0. Thus
we assigned a very low value of 0.01 to it. The result is quite near to a ball, but the
influence of the three degrees of freedom of the t copula can be seen, especially in the
quadratic shape of contour lines in the third picture.
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Figure 4.7: Independence copulae with:

Copula cq9 Copula co3 Copula c13.2
Fam 7 (91 (92 Fam 7 (91 92 Fam T 91 92
top I 0 0 O I 0 0 O I 0 0 0
mid N 0 0 0 N 0 0 0 N 0 0 0
low N 0 0 0 t 0 0 3 C 001 002 O
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4.4 Further Visualizations

Now we are ready for a lot more visualizations of various scenarios. In the following we
will stick to visualizing one scenario on a single page as we did for our first visualizations
of trivariate Gaussian copulae in Figure 4.1 and Figure 4.2 and mainly use the setting
described in Section 4.2.

4.4.1 Scenarios out of Archimedean Copulae with one Parameter

We move on to four Archimedean copulae with one parameter, so 65 = 0. First we
visualize trivariate copulae solely built out of either Clayton, Gumbel, Frank or Joe
copulae as building blocks. After that we visualize trivariate copulae built out of a
combination of these bivariate copula families.

Figure 4.8 visualizes the trivariate copula out of Clayton copulae and with our
standard 7 values. We recognize the high lower tail dependence of a Clayton copula,
especially among the first and second variable, in each picture.

The high upper tail dependence of a Gumbel copula is visible in Figure 4.9, which is
based solely on Gumbel copulae. By taking a close look at the upper right picture this
constellation seems to be curved a little to the top, which is rather an illusion than a
characteristic of a Gumbel copula.

Frank copulae are the underlying building blocks for Figure 4.10. The interesting
high concentration of probability mass in the centre is again greatly visible in the upper
left picture. Here one can see that contour lines are narrowed at the point of origin
and are spread out at the tails.

We take a look on Joe copulae as building blocks in Figure 4.11. The high upper
tail dependence among the first and second variable, modelled by a Joe copula, can be
seen perfectly in the upper pictures.

48



4.4 Further Visualizations

Figure 4.8: Pair Copula  Family T 01 )
12 C 0.8 8 0

23 C 0.5 2 0

13]2 C 0.3 0.86 0
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Figure 4.9: Pair Copula  Family T 01 )
12 G 0.8 5 0

23 G 0.5 2 0

13]2 G 0.3 1.43 0
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4.4 Further Visualizations

Figure 4.10: Pair Copula  Family T 01 )
12 F 0.8 18.19 0
23 F 0.5 5.74 0
13]2 F 0.3 2.92 0
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Chapter 4 Visualization of Trivariate Copulae Using R

Figure 4.11: Pair Copula  Family T 01 0o
12 J 0.8 8.77 0

23 J 0.5 2.86 0

13]2 J 0.3 1.77 0
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4.4 Further Visualizations

After this exploration of trivariate copulae solely based on either Clayton, Gumbel or
Frank copulae, we now want to visualize trivariate copulae with building blocks mixed
out of these copula families.

In Figure 4.12 we start with the order Clayton, Gumbel and Frank for the underlying
copulae and our standard 7 values. So a Clayton copula models the strong dependence
(7 = 0.8) among the first and second variable, a Gumbel copula the dependence with
7 = 0.5 of second and third variable and a Frank copula is used for the remaining
pair copula Ci3p with 7 = 0.3. The resulting pictures show the high lower tail
dependence of a Clayton copula as can be seen especially in the upper right picture.
The characteristics of a Frank copula is less visible due to the low dependence modelled
by it.

Now we reverse the order of the building blocks and illustrate the resulting copula
in Figure 4.13. So the Frank copula models high dependence among first and second
variable with high concentration of probability mass at the centre. This is greatly
visible in both upper pictures. The upper tail dependence of a Gumbel copula can be
seen in the lower left hand picture.

Another scenario out of Archimedean copulae with one parameter can be found in
Figure 4.14, which is build out of a Joe, Frank and Gumbel copula. So the upper tail
dependence among first and second variable is modelled via a Joe copula and can be
discovered graphically in the upper right picture.

Our final example for this section is given in Figure 4.15 and consists out of a Gumbel,
Joe and Clayton copula. A Gumbel copula models again high upper tail dependence
but also lower tail dependence. Thus the resulting shape is more tightened than for
the scenario before.
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Chapter 4 Visualization of Trivariate Copulae Using R

Figure 4.12: Pair Copula  Family T 01 0o
12 C 0.8 8 0

23 G 0.5 2 0

13]2 F 0.3 2.92 0
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4.4 Further Visualizations

Figure 4.13: Pair Copula  Family T 01 )
12 F 0.8 18.19 0

23 G 0.5 2 0

13]2 C 0.3 0.86 0
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Figure 4.14: Pair Copula  Family T 01 0o
12 J 0.8 8.77 0

23 F 0.5 5.74 0

13]2 G 0.3 1.43 0
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4.4 Further Visualizations

Figure 4.15: Pair Copula  Family T 01 )
12 G 0.8 5 0

23 J 0.5 2.86 0

13]2 C 0.3 0.86 0
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4.4.2 Scenarios out of Archimedean Copulae with two Parameters and
Tawn Copulae

Next we get to Archimedean copulae with two parameters and Tawn copulae as building
blocks. The R package VineCopula has implemented six scenarios and their rotated
versions. Firstly we take a look on trivariate copulae solely out of either BB1, BBG6,
BB7, BB8, Tawn type 1 or Tawn type 2 as bivariate building blocks. Afterwards we
mix these copula families together to get other interesting scenarios. Throughout we
use our standard 7 values of 0.8, 0.5 and 0.3.

Figure 4.16 visualizes the trivariate copula based on BB1 copulae as building blocks.
This copula family is characterized by its high lower tail dependence, which is especially
recognizable in the upper pictures.

The opposite, high upper tail dependence, is a feature of BB6 copulae, as used for
Figure 4.17. The shape is similar to those of the Joe copulae in Figure 4.11.

Figure 4.18 shows the trivariate copula constructed out of BB7 copulae as building
blocks. The upper tail dependence is also high in this case and especially visible in the
upper pictures. It is interesting to see that even the contour line of the 0.99 quantile
cannot be shown in closed shape. This can be observed in the lower left picture and
is a sign for a concentration of probability mass towards this direction, so really high
upper tail dependence. One could say, the dependences of all copulae (c12, c23 and
ci32) are reinforcing each other and sum up to this result.

The last BB family implemented in the R package VineCopula is used for Fig-
ure 4.19. A BBS8 copula has tightened contour lines at the point of origin and thus
some similarity with a Frank copula (especially for high values of the first parameter).
This can also be underpinned by comparing this figure to Figure 4.10.

Now we turn over to the Tawn families. Figure 4.20 shows the trivariate copula built
on Tawn type 1 copulae. For high dependence, as it is the case among the first and
second variable, the characteristic bulge is greatly visible in the upper pictures. We say
the bulge is located on the lower side, as z; values are low at its position. The position
of the bulge of a trivariate Tawn type 1 copula is on the opposite site as it was for the
bivariate Tawn type 1 copula (compare to Figure 2.11). This can be explained in the
way that our implementation of trivariate copulae in a strict sense specifies co1 instead
of ¢15. This is usually not observed because of symmetric copula families.

On the other hand the bulge on the upper side characterizes the Tawn type 2 copula
and can be seen best in the upper pictures of Figure 4.21.
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4.4 Further Visualizations

Figure 4.16: Pair Copula  Family T 01 )
12 BB1 0.8 5.69 1.3
23 BB1 0.5 1.08 1.3
13]2 BB1 0.3 0.2 1.3

99



Chapter 4 Visualization of Trivariate Copulae Using R

Figure 4.17: Pair Copula  Family T 01 0o
12 BB6 0.8 5.46 1.5
23 BB6 0.5 1.98 1.3
13]2 BB6 0.3 1.17 1.3
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4.4 Further Visualizations

Figure 4.18: Pair Copula  Family T 01 )
12 BB7 0.8 8.43 0.4
23 BB7 0.5 2.5 0.4
13]2 BB7 0.3 1.42 0.4
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Figure 4.19: Pair Copula  Family T 01 0o
12 BBS8 0.8 16.91 0.7
23 BBS 0.5 5.58 0.7
13]2 BBS 0.3 3.2 0.7
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4.4 Further Visualizations

Figure 4.20: Pair Copula  Family T 01 )
12 Tawn 0.8 8.28 0.9
23 Tawn 0.5 2.16 0.9
13]2 Tawn 0.3 1.47 0.9
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Figure 4.21: Pair Copula  Family T 01 0o
12 Tawn?2 0.8 8.28 0.9
23 Tawn2 0.5 2.16 0.9
13]2 Tawn?2 0.3 1.47 0.9
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4.4 Further Visualizations

Now we go on and mix bivariate Archimedean copula families with two parameters
together to construct trivariate copulae.

Figure 4.22 is built out of BB1, BB6 and BB7 copulae. Here the influence of
the building blocks on different dependence structures among the variables is nicely
visible. A BB1 copula models high lower tail dependence together with some upper tail
dependence and this can be seen in the upper pictures. Just from these two pictures
one wouldn’t imagine high upper tail dependence and no lower tail dependence, as
modelled by a BB6 copula, among the second and third variable. But exactly this gets
visible in the lower left picture. So our perspectives are chosen appropriately.

The combination of a BBS8, Tawn type 1 and Tawn type 2 copula result in the
trivariate copula visualized in Figure 4.23. The high concentration of probability mass
in the centre, which causes the similarity of the BB8 and Frank copulae, can be seen
in the upper pictures. The characteristic bulges of Tawn copulae are invisible as the
dependence they are modelling is low.

If dependence modelled by a Tawn copula gets higher, the bulge will get visible.
This is the case in Figure 4.24. Here a Tawn type 1 copula models the high dependence
among first and second variable and remaining building blocks consist out of a BB1
and BB8 copula. The bulge on the lower side (low values of z1) is greatly visible in the
upper pictures and the lower tail dependence of a BB1 copula can be recognized in the
lower left hand picture. The lower right hand picture is interesting when keeping in
mind that there is a bulge in this picture. We see that this is difficult to observe and
so perspectives in the upper pictures are necessary to get an impression of the whole
scene.

The last scenario of this section is visualized in Figure 4.25 and consists out of a
Tawn type 2, BB6 and BB7 copula. The characteristic bulge on the upper side (high
values of z;) is visible in every picture except the one on the lower right hand side.
But this picture shows us the (weak) upper tail dependence among the first and third
variable modelled by a BB7 copula. The effect of upper tail dependence in this picture
is enlarged by the upper tail dependence modelled by the other copulae.
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Figure 4.22: Pair Copula  Family T 01 0o
12 BB1 0.8 5.69 1.3
23 BB6 0.5 1.98 1.3
13]2 BB7 0.3 1.42 0.4
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4.4 Further Visualizations

Figure 4.23: Pair Copula  Family T 01 )
12 BBS8 0.8 16.91 0.7
23 Tawn 0.5 2.16 0.9
13]2 Tawn2 0.3 1.47 0.9
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Figure 4.24: Pair Copula  Family T 01 0o
12 Tawn 0.8 8.28 0.9
23 BB1 0.5 1.08 1.3
13]2 BBS 0.3 3.2 0.7
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4.4 Further Visualizations

Figure 4.25: Pair Copula  Family T 01 )
12 Tawn2 0.8 8.28 0.9
23 BB6 0.5 1.98 1.3
13]2 BB7 0.3 1.42 0.4
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4.4.3 Scenarios with no Restriction of Copula Families

After having introduced each bivariate building block on its own and having built
trivariate copulae with restrictions on the underlying copula families (due to the pre-
sentation in an ordered manner), we now are free to build our scenarios out of a big
pool of bivariate copulae. But we stick to our standard for 7 values.

We start with Figure 4.26. This shows a trivariate copula constructed out of Frank,
BB7 and Clayton copulae. Characteristic centralization of probability mass, modelled
by a Frank copula, is visible in the upper pictures and upper tail dependence among
second and third variable (BB7) can be seen in the lower left picture.

We continue with Figure 4.27. Here the underlying building blocks consist out of a
BB1, Student t and Joe copula. The picture on the upper right hand side visualizes
the lower tail dependence of a BB1 copula best and the torn apart contour lines of a
Student t copula can be observed in the lower pictures.

Now we want to a show a scenario in which a Gaussian copula occurs once again. It
is used for modelling dependence among second and third variable in Figure 4.28. The
other copulae for this scenario are a Clayton and a Gumbel copula. The high lower
tail dependence of a Clayton copula can be seen in the upper pictures.

Another interesting trivariate copula is visualized in Figure 4.29. One can infer
from the upper pictures that a Tawn copula type 1 is used for dependence among first
and second variable. The lower left picture shows that a Student t copula describes
the copula for the second building block and we see from the description that also a
Gumbel copula is used for this trivariate copula.

Finally Figure 4.30 shows a trivariate copula out of a Frank, Clayton and BB6 copula
as building blocks. The upper pictures visualize the concentration of probability mass
in the centre (tightened contour lines at point of origin), which is modelled by the
Frank copula. The Clayton copula causes the high lower tail dependence of second and
third variable, which can be seen in the pictures on the lower side of the figure.
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4.4 Further Visualizations

Figure 4.26: Pair Copula

01 02
18.19 0
2.5 0.4
0.86 0
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Figure 4.27: Pair Copula  Family T 01 0o
12 BB1 0.8 5.69 1.3

23 t 0.5 0.71 3

13]2 J 0.3 1.77 0
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4.4 Further Visualizations

Figure 4.28: Pair Copula  Family T 01 )
12 C 0.8 8 0

23 N 0.5 0.71 0

13]2 G 0.3 1.43 0
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Figure 4.29: Pair Copula  Family T 01 0o
12 Tawn 0.8 8.28 0.9

23 t 0.5 0.71 3

13]2 G 0.3 1.43 0
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4.4 Further Visualizations

Figure 4.30: Pair Copula

T 01 02
0.8 18.19 0
0.5 2 0

0.3 1.17 1.3
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4.4.4 Scenarios with no Restriction on 7 Values

Now we leave our standard 7 setting of 0.8, 0.5 and 0.3 for the building blocks and
show the great variety of dependence structures that can be modelled using copulae.

Figure 4.31 is interesting because of the twisted shape, best visible in the lower right
picture. This is caused by high dependence of the third building block modelled via
a Frank copula. The Clayton and Gumbel copula used for the other building blocks
model low dependence and thus the contour lines are pulled apart.

The pictures in Figure 4.32 seem to do not belong together. The ones on the upper
side suggest a rectangular shape, which is rebutted by the pictures on the lower side.
The picture on the lower right hand side may actually prefer a somehow triangular
shape. This shows the interesting interplay of a Student t, Clayton and Gaussian copula
as building blocks. The three dimensional shape of the scenario can be understood best
by rotating it on ones own after having visualized the scenario via R. It can be found
under the label “vis+NRT2” in the scenario data set. Another interesting aspect is
that all contour lines, even the one of the 0.75 quantile, can be drawn in closed shape.
As dependence is low among the variables, the probability mass is highly centralized.
One can also compare this to the independence copulae shown in Figure 4.7 .

In Figure 4.33 the picture on the lower left hand side again seems not fitting to
the other pictures. As this is the snapshot taken from the side and it visualizes the
influence of Gumbel copula, no rectangular shape can be observed there. This property
of a Student t copula, used for both remaining building blocks, can be seen in all the
other pictures.

Figure 4.34 shows a trivariate copula constructed out of a Gaussian, Clayton and
BBI1 copula. One realizes that the contour line of the 0.75 quantile is truncated and so
probability mass is decentralized. The lower right hand picture shows high dependence
among first and third variable as the contour lines are tightened together.

Finally Figure 4.35 visualizes a trivariate copula built out of a Gumbel, Student t and
BB7 copula. The contour lines are pulled apart due to general rather low dependence.
The characteristic rectangular shape of a Student copula can be observed best in the
lower left picture and a Gumbel copula, with its typical upper tail dependence, can be
divined in the upper left picture.
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4.4 Further Visualizations

Figure 4.31: Pair Copula  Family T 01 0
12 C 0.3 0.86 0
23 G 0.2 1.25 0
13]2 F 0.8 18.19 0
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Figure 4.32: Pair Copula  Family T 01 0
12 t 0 0 3

23 C 0.33 0.99 0

13]2 N 0 0 0
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4.4 Further Visualizations

Figure 4.33: Pair Copula  Family T 01 0
12 t 0 3

23 G 0.5 2 0

13]2 t 0 0 5
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Figure 4.34: Pair Copula  Family T 01 0
12 N 0 0 0

23 C 0.33 0.99 0

13]2 BB1 0.75 2 2

80



4.4 Further Visualizations

Figure 4.35: Pair Copula  Family T 01 0
12 G 0.5 2 0
23 t 0 0 3
13]2 BB7 0.6 2.22 2
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4.4.5 Scenarios in Mai and Scherer (2012)

Next we want to visualize scenarios given in Table 5.2 in Mai and Scherer (2012) on
page 222. These scenarios have really interesting shapes and we need lots of points to
visualize them properly. But even with many evaluations of the probability density the
third scenario still caused heavy numerical problems and thus we skip showing it in
the thesis. Nevertheless it is available in the scenario data set with the label “vis+Mai3”.

In Figure 4.36 the underlying copula is built out of a Gumbel and two Clayton
copulae. The Clayton copula for the bivariate building block of second and third
variable is rotated by 90 degrees. This is denoted by C90 and details on rotation can be
found in Section 3.5 of Czado (2013) on page 30 et seq. Strong dependence among first
and second variable visualizes the typical shape of a Gumbel copula as in Figure 2.4
and can be seen in the upper left hand picture. Another interesting feature of this
scenario is the negative dependence of second and third variable.

Figure 4.37 shows a scenario with two Student t copulae and one Gumbel copula as
building blocks. The resulting contour levels are very flat and torn apart as dependence
among second and third variable is the lowest.

Very high dependence in all building blocks characterizes the scenario in Figure 4.38.
Two Frank copulae and one Clayton copula were used to model the situation. High
dependence is visualized in tight contours and even the 0.99 quantile can not be drawn
in closed shape as one recognizes in the lower right hand picture. So lots of probability
mass is contained in the tails. The interesting S-shape can be seen best in the upper
right hand picture. In this figure we also recognize this dependence structure to cause
numerical problems, as the “fingers” towards the lower panel show.

All in all these three scenarios have very different shapes and thus demonstrate a
great flexibility when modelling dependency with copulae.
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4.4 Further Visualizations

Figure 4.36: Pair Copula  Family T 01 0
12 G 0.8 5 0

23 C90 -0.54 -2.35 0

13]2 C 0.26 0.7 0
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Figure 4.37: Pair Copula  Family T 01 0
12 t 0.59 0.8 2.1

23 G 0.43 1.75 0
13]2 t -0.8 -0.95 2.5
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4.4 Further Visualizations

Figure 4.38: Pair Copula  Family T 01 0
12 F -0.89  -34.64 0

23 C 0.91 20.22 0

13]2 F 0.89 34.64 0
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4.5 Visualization of Uranium Exploration Dataset

Finally we also want to apply our visualization method to a given dataset. We
will examine the Uranium dataset given in the copula package and want to study
dependence among the variables “Co, Sc and Ti” as suggested by my supervisor
Prof. Claudia Czado. For this we roughly follow the process given in Brechmann and
Schepsmeier (2013) but with the up-to-date methods of the R package VineCopula.
In this section we directly give the corresponding code to reveal the procedure.

4.5.1 Getting Uniform Data

We first load the relevant dataset and transform it to uniform data. To do so we use
the pseudo-observations function pobs from VineCopula and save the output as a
data frame. This uniform data will allow us to do Copula calculations later on.

data( , package = )

uranium <- uranium[names(uranium) %in% c( 5 : )]

uranium <- data.frame(pobs(data.frame(Co = uranium$Co, Sc =
uranium$Sc, Ti = uranium$Ti)))

4.5.2 First Impression of Data

Next we have to select the structure for the copula. For a first impression of the data
we draw a pairs plot with scatter plots above and contour plots with standard normal
margins below the diagonal.

wd <- getwd ()
sd <- file.path(wd, : ) )

)
if (!file.exists(sd)) dir.create(sd)
setwd (sd)
pdf (file = _ )
pairs.copuladata(uranium, gap=0)
dev.off ()
setwd (wd)

On the diagonal panel of Figure 4.39 one can see histograms of our transformed data
set, which are now predominant uniformly distributed. So our transformation above
worked fine and copula calculations can be done. The contour plots on the lower panel
show that there is no great tail dependence, so we would not model this via a Clayton
or Gumbel copula for example. This can also be seen on the scatter plots on the upper
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4.5 Visualization of Uranium Exploration Dataset

panel. The 7 values on the upper panel show the lowest dependence is between Co
and Ti. Maximal dependence is with 0.54 on a medium level.

Co

0.54 0.36

Sc

0.44

Figure 4.39: First impression of Uranium data set after getting uniform data. His-
tograms on the diagonal, contour plots below the diagonal and scatter
plots above. Axes are from —3 to 3.

4.5.3 Fit Copula Model

Now we want to fit a copula model to our data set, meaning to select structure,
copula families and corresponding parameters that suits the data best. The function
RuineStructureSelect does the job.

( uraniumRVM <- RVineStructureSelect (uranium) )

R-vine matrix:
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1 <-> Co
2 <-> Sc
3 <-> Ti

So we have the structure 13|2, 12 and 23 (which is our standard structure for all
scenarios), each modelled by t copulae. Other quantities as family, first and second
parameter are also contained in the list “uraniumRVM” and are presented in the
caption of Figure 4.40.

4.5.4 Visualizing the Model

It is left to visualize this three dimensional model using our visualization functions.
So in Figure 4.40 one sees the typical diamond shape of t copulae. The dependence
among first and third variable is quite low, as can be seen by the corresponding 7 value,
but also in the lower right hand picture. The contour lines in this picture are not as
tightened together as they are in the other pictures and also the contour line of the
0.99 quantile is closer to the centre.

wd <- getwd ()
sd <- file.path(wd, ; ) )
if (!'file.exists(sd)) dir.create(sd)

folder <- file.path(sd, )
if (!file.exists(folder)) dir.create(folder)
setwd (folder)

z1l <- seq(-3,3,by=0.2)
z3 <- z2 <- zi1

f uranium = f _Z(zl1, z2, z3, uraniumRVM)
vis3Dvine (f _uranium)

fam12 <- round(uraniumRVM$family[3,1], 2)
fam23 <- round(uraniumRVM$family[3,2], 2)
fam13.2 <- round(uraniumRVM$family[2,1], 2)
parl2 <- round(uraniumRVM$par[3,1], 2)
par23 <- round(uraniumRVM$par[3,2], 2)
parl3.2 <- round(uraniumRVM$par[2,1], 2)
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par2_12 <- round(uraniumRVM$par2[3,1], 2)
par2_23 <- round(uraniumRVM$par2[3,2], 2)
par2_13.2 <- round(uraniumRVM$par2[2,1], 2)
25 taul2 <- round(BiCopPar2Tau(faml2, parl2, par2_12), 2)
tau23 <- round(BiCopPar2Tau(fam23, par23, par2_23), 2)
taul3.2 <- round(BiCopPar2Tau(faml13.2, parl13.2, par2_13.2), 2)
label <- "vis+Uranium"

30 scenarioToLatex (fam12, fam23, faml13.2,
parl2, par23, paril3.2,
par2_12, par2_23, par2_13.2,
taul2, tau23, taul3d.2,
label)

# put label in a tex file
write (pasteO("\\label{", label, "}"), file = "0Olabel.tex")

# put one text file with the name in the folder

10 write("", file = pasteO("Uranium", ".txt"))
write (
paste(
pasteO ("\\pageref{", label, "}"),
45 BiCopName (fam12), taul2, parl2, par2_12,

BiCopName (fam23), tau23, par23, par2_23,
BiCopName (fam13.2), taul3.2, parl13.2, pasteO(par2_13.2,
"N\
, sep = " & "
), file = file.path(sd, "ScenarioTable.tex"), append = TRUE )
50 write ("\\end{longtable} }",
file = file.path(sd, "ScenarioTable.tex"), append = TRUE )
write ("The \\enquote{NA} between page 84 and 85 corresponds to
the third scenario of \\cite{Mai.2012} which causes strong
numerical problems and thus is not shown in the thesis.",
file = file.path(sd, "ScenarioTable.tex"), append = TRUE )
setwd (wd)
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Figure 4.40: Pair Copula  Family T 01 0o
12 t 0.53 0.74 8.02
23 t 0.43 0.62 5.93
13]2 t 0.08 0.13 5.65
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Chapter 5
Conclusion

The purpose of this thesis was the visualization of trivariate copulae. To achieve
this, we used some copula theory and constructed trivariate copulae out of bivariate
building blocks, remember the pair copula construction. We did the visualization by
implementing this theory with the statistical software R.

In Chapter 1 we got used to the idea of visualizing dependence among three random
variables using contour lines via the normal distribution. We resumed basic facts on it
and made our way from the univariate case to the trivariate normal distribution.

Chapter 2 provided some theory of copulae and dependence measures. It also
contained a section on bivariate copula classes, where elliptical, Archimedean and Tawn
copulae were shown.

As our aim was to visualize trivariate copulae, we took a closer look on the trivariate
Gaussian copula in Chapter 3. This chapter also presented pair copula construction
and its application to the trivariate case.

The main part of the thesis was Chapter 4, which first showed the workflow of
our implementation in K. Then we used these tools to visualize trivariate Gaussian
and Student t copulae and lots of further scenarios in an ordered manner. We finally
applied our functions in practice by examining dependence of the uranium data set.
All the code is also given in the R package copulaSG.

So with this thesis we provided another tool to visualize data sets. In general, data
gets more important all the time and we have the opportunities to store enormous
amounts of information. To draw conclusions from this one may use statistical theory
and visualization. Both can be done by statistical software like R, which is further
developed by a great community. When calculating with copulae, the R package
VineCopula is an excellent choice and could contain our tools to visualize trivariate
copulae in the future.
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Appendix A

R-Code Normal Distribution

A.0 General Settings

In this chapter we want to show the R code for plotting the probability density and
contour lines of one and two dimensional standard normal distributions, which we
showed in Chapter 1. Therefore we need the R package mvtnorm.

library (mvtnorm)

Before getting to the visualization, we first set up the folder where to save the plots
and create it if it does not already exist. Later on, we will use the pdf device, which
will by default create quadratic vector graphics that are independent of scaling.

A.1 The Univariate Normal Distribution

First we set up the contour levels by calculating the specified quantiles and provide
the colours in which to plot them. We use a self defined colour palette from green to
blue throughout the thesis. After specifying the parameters for the device to draw at,
we can start plotting the probability density of a one dimensional standard normal
distribution (default of dnorm). As we want to show the contour lines, we have to get
the points at which the contour levels are reached. To do so, we specify the inverse
function and save the corresponding points in the variable contourPoint. Now it is
time to add the points to the graphic with the right colours.

sd <- file.path(getwd(), ; )
if (!'file.exists(sd)) dir.create(sd)
sd <- file.path(sd, )

if (!file.exists(sd)) dir.create(sd)

contourQuantil <- c¢(0.75, 0.90, 0.95, 0.99)

x <- seq(from = -3, to = 3, length.out = 500)

contourLevel <- quantile(dnorm(x), probs = contourQuantil)
n <- length(contourLevel)
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contourColor <- rev(colorRampPalette (c("#0000ff",
"#99f£f00"))(n)) # we use American spelling of "colour" as
functions in R do so

pdf (file = pasteO(sd,"/univariateCasePDF.pdf"))
par (mar = c(5, 5, 4, 2) + 0.1)

curve (dnorm(x), from = -3, to = 3,
xlab = "x", ylab = expression(f["0,1"]1(x)),
col = "gray50", lwd = 2, cex.lab = 2)
inverseGenerator = function(f, lower = 0, upper = 100){
function(y) uniroot ((function(x) f(x) - y), lower = lower,

upper = upper) [1] }
inverseDnorm <- inverseGenerator (function(x) dnorm(x))

contourPoint <- matrix(rep(0, 4*n), ncol = 2)
for (i in 1:(n)){
contourPoint [i,] <- c(inverseDnorm(contourlLevel[i]) $root,
contourLevel [i])
contourPoint [2*n-i+1,] <- c(-contourPoint[i,1],
contourPoint [1i,2]) }

points (contourPoint[,1], contourPoint[,2], cex = 1.7,
pch = 21, bg = c(contourColor, rev(contourColor)), col
"black")
dev.off ()

Next we want to draw the contour lines (in the univariate case points) on their own.
We do this in a one dimensional plot and encode the contour level with different colours.
A small issue was the box of the legend. As a two line title is bad supported, we need
to do draw the rectangle by hand. bty = "n" removes the line of legend() first, and

we will add it manually afterwards.

sd <- file.path(getwd(), "..", "R-Pictures",
"NormalDistribution")

pdf (file = pasteO(sd,"/univariateCaseContour.pdf"))

plot (contourPoint [,1], rep(0.01, 2%n), ylim = c(0,1), xlim =
c(-3,3), axes = F,

ann = FALSE, pch = 21, bg = c(contourColor,
rev(contourColor)), col = "black")

pos <- legend(x = "right", legend = contourQuantil, title =

"Contours at\n quantiles",
cex = 1.7, pch = 21, pt.bg = contourColor, col
"black", bty = "n"

rect (pos$rect$left, pos$rect$top - pos$rect$h, pos$rect$left +

pos$rect$w, pos$rect$top + 0.1)
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A.2 The Bivariate Normal Distribution

cex.axis .8
dev.off ()

axis(side = 1, at = c(round(contourPoint[,1], 2), 0, -3, 3),
= )

A.2 The Bivariate Normal Distribution

Now we want to plot the probability density function of a two dimensional standard
normal distribution with zero correlation. So right after setting up where to save the
file, we compute the values to draw using the outer function. For this we have to
define the function f externally, which calculates the density of a bivariate standard
normal distribution. Now we set up the contour levels and colours similar to the one
dimensional case. We choose the distance between points to evaluate as by = 0.25
in order to get a nice picture (meaning with appropriate portions of black lines and
coloured surface). Then we specify the device on which to plot, adjust the parameters
for our graphic and use the persp function with appropriate chosen ingredients to plot
the probability density function. As we want to add the contour lines to this plot, we
calculate the inverse of the probability density function similar to above and use the
symmetry of a two dimensional standard normal distribution to draw the contour lines.
These are circles in our case.

sd <- file.path(getwd (), 5 5
)

f <- function(x,y) dmvnorm(cbind(x,y))
x <- y <- seq(-3,3, by = 0.25)
z <- outer(x,y,f)

contourQuantil <- c¢(0.75, 0.90, 0.95, 0.99)
contourLevel <- quantile(z, probs = contourQuantil)
n <- length(contourLevel)

contourColor <- rev(colorRampPalette (c( ,

)) (n))
pdf (file = pasteO(sd,"/ )
perspMat <- persp(x,y,z, theta=30, phi=20,
xlab=expression(xl), ylab = expression(x2),
zlab= , expand = .7,
col= , ticktype = , cex.lab
= 1.4)
inverseGenerator = function(f, lower = 0, upper = 3){
function(y) uniroot ((function(x) f(x) - y), lower = lower,

upper = upper) [1] }
inverseDmvnorm <- inverseGenerator (function(x) dmvnorm(c(x,0)))
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phi <- seq(0, 2*pi, len = 201)
for (p in contourLevel){
r <- inverseDmvnorm(p)$root # radius of contourLevel p
rx <- rxcos(phi)
ry <- rxsin(phi)
lines(trans3d(rx, ry, f(rx, ry), perspMat), col =
contourColor [which(contourLevel == p)], 1lwd=3) }
dev.off ()

Finally we want to draw the contour lines on their own. We specify where to save
the file and open the device. Then we adjust the parameters for our plotting function
contour().

sd <- file.path(getwd(), "..", "R-Pictures",
"NormalDistribution")

f <- function(x,y) dmvnorm(cbind(x,y))
x <- y <- seq(-3,3, by = 0.05)
52 <- outer(x,y,f)

pdf (file = pasteO(sd,"/bivariateCaseContour.pdf"))
contour(x,y,z, xlim=c(-3,3), ylim=c(-3,3),

xlab = expression(x[1]), ylab = expression(x[2]),
levels = contourlevel, labels = round(contourlevel, 2),
labcex = 1.0, cex.lab = 1.4, col = contourColor, 1lwd =
2)
dev.off ()
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Appendix B
R-Code Copula Theory

In this chapter we want to provide code we used for the visualizations in Chapter 2.

B.1 Function for Plotting Contours of Bivariate Copulae

For our function we use the method BiCopTau2ParX, which is defined along with the
other functions for visualizing trivariate copulae in the next chapter. It is based on
methods of the package VineCopula.

We want to draw contour plots of bivariate copulae and save these at an appropriate
place. The containing folder will be created first if it does not exist so far. We use
these bivariate copulae as building blocks later on. For this we provide the following
function. We use the graphic parameters, that we use throughout the thesis. During
the function it is checked, whether we have to take care about a second parameter (for
example attach it to our table) or not. We replace NA’s which sometimes happen at
the real edges of the plotting area (numerical issue, but are 0). As we want to position
our table on the top of the current line in the caption, we have to remove the top rule
and insert the “[t]” via gsub using regular expressions. We further denote the first
parameter by 601, the second one by 65 and save the resulting table as a .tex document.
We input this to the caption in LaTeX.

sd <- file.path(getwd (), 5 )
if (!file.exists(sd)) dir.create(sd)
sd <- file.path(sd, )

if (!file.exists(sd)) dir.create(sd)

plotContour2d <- function(name, fam, par2 = NA,
tau = c(0.8, 0.5, 0.3),
contourQuantil = c(0.75, 0.9,
0.95, 0.99),
z1l = seq(-3, 3, by = 0.1), 22 =
seq(-3, 3, by = 0.1),
cmap=colorRampPalette (c( ,

)AL
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sd <- file.path(getwd(), "..", "R-Pictures", "CopulaTheory",
fam)
if (!file.exists(sd)) dir.create(sd)

parl <- rep(0, length(tau))# <¢s filled when going through tau
values

pdf (file = pasteO(sd,"/plot.pdf"), width = 9, height = 3.4) #
to get quadratic plot
par (mfrow = c(1,3), ask = FALSE)
for (i in 1:length(tau)){
parl[i] <- BiCopTau2ParX(fam, taul[i], par2)
f <- BiCopMetaContour(family = fam, par = paril[i], par2 =
par2, PLOT = FALSE)
f$z[is.na(£f$z)] <- 0
level <- quantile(f$z, probs = contourQuantil)
contourColor <- rev(cmap(length(contourQuantil)))

contour(x = f$x, y = f8y, z = £$z, levels = level,
label = round(level, 2), col = contourColor)
}
dev.off ()

if (is.na(par2)){
m <- matrix(c(tau, round(parl, 2)),
nrow = 2, byrow = TRUE)

rownames (m) <- c("$\\tau$", "$\\theta_1$")
colnames (m) <- c("left", "mid", "right")
}elsed{

m <- matrix(c(tau, round(parl, 2), rep(round(par2, 2),
length(tau))),
nrow = 3, byrow = TRUE)
rownames (m) <- c("$\\tau$", "$\\theta_18$", "$\\theta_28%")
colnames (m) <- c("left", "mid", "right")

3

write (
paste(
name , copula \\gquad",
gsub (" (tabular}{+)", "tabular}[t]l{",
print (xtable(m, align = "lccc"),
sanitize.colnames.function = identity,
sanitize.text.function=function(x){x}, # for
being able to pass math-environment ($)

booktabs = TRUE,
hline.after = c(0, nrow(m)),
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B.2 Plot Contours of Bivariate Copulae

perl =
pasteO (
o
file = pasteO

floating = FALSE,
print.results = FALSE),
TRUE) ,

, name, )

(sd, "/ ))

B.2 Plot Contours of Bivariate Copulae

Now we plot the copulae we use as building blocks in our thesis.

plotContour2d(
plotContour2d(
plotContour2d(
plotContour2d (
plotContour2d (
plotContour2d (
plotContour2d(
plotContour2d(
plotContour2d (
plotContour2d (
plotContour2d (
plotContour2d(

, 1)
, 2, 3)
, 3)
, 4)
, 5)
, 6)
, 7, 1.3)
, 8, 1.3)
, 9, 0.4)
, 10, 0.7)
, 104, 0.9)
, 204, 0.9)
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Appendix C
R-Code Visualization

Here we want to show how we implemented the visualizations of Chapter 4 in R. The
code is also available in the self written R package copulaSG.

C.0 Load Relevant Packages

For the visualization of three dimensional copulae in R, we first need the R package
VineCopula which provides functionalities for calculating with copulae. Afterwards
we want to visualize our results, for which we use the R packages misc3d and rgl. A
great introduction in how to work with rgl can be found in Feng and Tierney (2008).

# calculating copulae
library( )

# plotting
library( )
library( )

# printing the specifications to LaTeX
library( )

C.1 Function for Constructing R-Vine Matrices

VineCopula uses one fundamental object for calculating with copulae, namely the
RVineMatriz object. This is specified by the matrix components Matrix, family,
par and par2, which we will pass via the following function. We always use the same
R-vine structure matrix, so we set this up directly.

RVMconstruction = function(faml12, fam23, faml3.2,
parl2, par23, paril3.2,
par2_12=0, par2_23=0, par2_13.2=0){
Matrix <- matrix(c(1, 0, O,
3, 2, 0,
2, 3, 3),
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nrow = 3, ncol = 3, byrow = TRUE)
family <- matrix(c(0, 0, O,
10 fam13.2, 0, O,
fam12, fam23, 0),
nrow = 3, ncol = 3, byrow = TRUE)

par <- matrix(c(0, 0, O,
15 parl13.2, 0, O,
parl2, par23, 0),
nrow = 3, ncol = 3, byrow = TRUE)

par2 <- matrix(c(0, 0, O,
20 par2_13.2, 0, O,
par2_12, par2_23, 0),
nrow = 3, ncol = 3, byrow = TRUE)

return (RVineMatrix (Matrix = Matrix, family = family, par =
par, par2 = par2))
25 }

C.2 Function for Calculating Probability Densities

As our aim is to plot contour lines of the probability density function of trivariate
copulae, we now provide a function for calculating the probability density. More precise,
we want to plot the density on the Z scale and therefore we implement a formula to
calculate the following (remember Sklar’s Theorem):

fz(21, 22, 23) = c(P(21), D(22), P(23)) - f1(21) - fa(z2) - f3(23)

where ¢() is the probability density of the corresponding copula.

We use the function RVinePDF and add the remaining calculations using vector
calculations in order to get fast code. We do this by storing as less intermediary results
as possible in order to speed calculations further up.

We return a list containing the function values as a three dimensional array, the
values of each single axes and the R-vine matrix. With this information we visualize
the data in a significant way and are flexible to change perspectives.

f Z = function(zl, z2, z3, RVM){

z.matrix <- data.matrix(expand.grid(zl,z2,z3))

f <- array(RVinePDF (pnorm(z.matrix), RVM =
RVM) *apply (dnorm(z.matrix), MARGIN = 1, FUN = prod),
dim=c(length(zl) ,length(z2), length(z3)))
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res <- list(f = f, z1 = z1, z2 = z2, z3 = z3, RVM=RVM)
class(res) <-
return(res)

}

C.3 Functions for Plotting Contour Lines

For plotting the contour lines, we use the function contour3d, provided in the package
misc3d. This method needs the data to plot as a three dimensional array passed by
the parameter data. In our case we will assign the probability densities. Moreover the
parameter level encodes the different levels of our contour lines. It is set to NA by
default, as we want to plot contour levels according to quantiles by default. But if one
passes values to level, these values are preferred.

The transparency is adjusted via the alpha channel alo and ahi. For further
information about the alpha channel, one can look at Porter and Duff (1984) or Wallace
(1981). The colour of the map can be chosen via cmap, for which by default we use a
self defined colour palette from green to blue. One can also adjust the visualization via
the parameter optplot, which takes care of the viewpoint and the axes to draw. The
colour of the axes is adjusted by colaxis and smoothing is done via smooth.

The axes3d function adds the three axes and rgl.bringtotop makes the drawing
directly visible and also is needed as on some systems, the snapshot will include content
from other windows if they cover the active rgl window. Also we do something like
a hack to get equal axes for all scenes. We overrite the parameter expand first. This
handles the expansion of the axes. Then we add two invisible point at opposite corners
and afterwards draw the axes. Now they always include the maximum range of the
input.

We want to highlight once again that the function plotContour opens an rgl device
and in this device one is able to rotate the scenario by hand.

plotContour <- function(data, level=NA, contourQuantil=c(0.75,
0.9, 0.95, 0.99), alo=0.1, ahi=0.5,

cmap=colorRampPalette (c( s )), optplot=1,
colaxis= , smooth=2, expand=1.03){

if (is.na(level))
level = quantile(data$f, probs = contourQuantil)

n <- length(level)
contourColor <- rev(cmap(n))
al <- seq(alo, ahi, len = n)

if (optplot == 1){# preferred view (cube around plot and
highlight point of origin)
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contour3d (data$f, x=data$zl, y
level=1level, color=c
smooth=smooth)
points3d(expand*min (data$zl),
expand*min (data$z3),
points3d (expand*max (data$zl),
expand*max (data$z3),
box3d (col colaxis)
axes3d(c(’x’, ’y’, ’z’), col
for (i in c("x", "y "z")) A
axis3d (i, pos c(0,0,0),
col = "black", 1lwd
labels FALSE, tick
title3d (xlab ’z17, ylab = 'z
}else if (optplot == 2){# no cubd
contour3d (data$f, x=data$zl, y
level=1level, color=c
smooth=smooth)
axes3d(c(’x’, ’y’, ’z’), col
title3d(xlab ’z17, ylab >z
}else if (optplot == 3){# azes t
contour3d (data$f, x=data$zl, y
level=level, color=c
smooth=smooth)
axes3d(c(’x’, ’y’, ’z’), pos
lwd=2) # thicker lines

at

20

30 axes3d(c(’x’, ’y’, ’z’), col =
title3d(xlab = ’z1’, ylab = 'z
title3d(ylab = ’z1’, pos = c(m

strange,
title3d(zlab ’z27’, pos
title3d(xlab ’z37, pos
}else if (optplot == 11){# stand
# we interchange parameters 1in
(for contour3d)

temp <- f_Z(data$z2, data$z3,
contour3d (temp$f, x=data$zl, y
level=1level, color=c
smooth=smooth)
Yy, z’), col
227, ylab

c (0

axes3d(c(’x7,

title3d (xlab
}else{

stop("Your input for

40

'z
>optplot’
}
rgl.bringtotop ()
}

45

104

alpha=

alpha=

=data$z2, z=data$z2,
ontourColor, alpha=al,

expand*min (data$z2),
0)
expand*max (data$z2),
0)

colaxis)
= c(-1.5, 1.5),
2,
= FALSE) 1}
27, zlab = ’z37)
e, axzes on the ground
=data$z2, z=data$z2,
ontourColor, alpha=al,
colaxis)
2, zlab = ’z37)
hrough point of origin
=data$z2, z=data$z2,
ontourColor, alpha=al,
c(0,0,0), col = colaxis,
colaxis)
2’, zlab = ’z37)

ax(data$z1) ,NA,0)) # looks

but places 2zl correct

,max (data$z2),NA))

c(NA,O0,max(data$z3)))

ard axes, standard view

order to get the azes Tight
data$z1, RVM = data$RVM)
=data$z2, z=data$z2,
ontourColor, alpha=al,

colaxis)
3’, zlab = ’z1’)

is not supported.")



C.4 Functions for Handling Scenarios

To keep things separated (calculating the data and plotting it), we calculate the
probability densities first with f Z and pass them to our plotting-function via the
data argument. But for comfortable and fast generating of the visualizations for the
thesis, we provide the function vis8Dvine. We automatically save the pictures taken
from different angles consecutively named. We can choose our desired points of view by
passing to the angle parameter a n X 2 matrix containing the #-angle in the first and
the ¢-angle in the second column. The only way to adjust resolution is via adjusting
the plotting area. We set the parameters to a maximum at our current PC, but one
can change the size of the plotting window via windowRect. If verbose is set to true,
one will see the summary of the density values (data$f_Z).

vis3Dvine <- function(data, angle =
matrix(c(-12,5,20,5,100,5,17,68),
ncol=2, byrow=TRUE)

, engine = , windowRect = c (10, 30,
880, 900),
verbose = FALSE, ...){
5 plotContour (data, ...)
# we enlarge the plotting area first
par3d(windowRect = windowRect)

for(i in 1:nrow(angle)){
10 rgl.viewpoint (angle[i,1], anglel[i,2])
rgl.snapshot (pasteO (i, ))
}

if (verbose)
15 summary (data$f_Z)

C.4 Functions for Handling Scenarios

We want to plot lots of different scenarios later on and therefore we store the scenarios
in a data frame, which is set up now.

scenario <- data.frame(label = character (), name = character (),
fam12 = numeric(), fam23 = numeric(),
fam13.2 = numeric(),
parl2 = numeric(), par23 = numeric(),
parl3.2 = numeric(),
par2_12 = numeric (), par2_23 =
numeric (), par2_13.2 = numeric(),
5 taul2 = numeric(), tau23 = numeric(),
taul3 .2 = numeric(),
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RVM = 1list (),
stringsAsFactors = FALSE)

Now we have got an empty data frame and want to provide a function for adding
different scenarios.

As we want our scenarios to be as comparable as possible, we want to print them
with same dependence structure (meaning same 7 values) and only with changing
copula families. For this purpose, we can use BiCopTau2Par from the VineCopula
package. But as this function only works for some copula families (0,1,2,3,4,5,6 and
their rotated versions), we need to enlarge its possibilities. So we provide an extended
version named BiCopTau2ParX, which will be able to calculate the corresponding first
parameter given a proper 7 value, even if the second parameter also influences the 7.
We will fix this issue by letting the user set a second parameter and pass it to our
function. Then the first parameter is calculated, such that this and the passed by
second parameter correspond to the given 7 value. In the end our function expands
the BiCopTau2Par function with the copula families 7,8,9, 10, 104, 204.

BiCopTau2ParX <- function(family, tau, par2=NA){
if (length(family) != 1 || length(tau) != 1 || length(par2)
= 1)
stop ( )
if (!(family %in% c(0, 1, 2, 3, 4, 5, 6, 13, 14, 16, 23,
24, 26, 33, 34, 36, 41, 51, 61, 71,
7, 8, 9, 10, 104, 204)))
stop ( )
if (tau < -1 || tau > 1)
stop ( )

parl <- NA # initialize value
if (family %in’% c(0, 1, 3, 4, 5, 6, 13, 14, 16, 23,

24, 26, 33, 34, 36, 41, 51, 61, 71)){
if (length(par2[!is.na(par2)]) > 0)

warning ( )
parl <- BiCopTau2Par (family, tau)
}
else if (is.na(par2)){# else <f important!
stop ( )
}
else if (family == 2){
if (par2 < 2)
stop ( )
parl <- BiCopTau2Par (family, tau)
}
else if (family == 7){
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if (tau <= 0)
stop(”BBl copula cannot be used for tau<=0.")
else if (par2 < 1)
stop("BB1: par2 has to be >= 1")
parl <- (2/(par2*(1-tau)) - 2)
}
else if (family == 8){
if (tau < 0)
stop ("BB6 copula cannot be used for tau < 0.")
else if (par2 < 1)
stop("BB6: par2 has to be >= 1")
inverseGenerator <- function(f, lower = 1, upper = 100){
function(y) uniroot ((function(x) f(x) - y), lower =
lower , upper = upper) [1] }
inverseFun <- inverseGenerator (function(paril)
BiCopPar2Tau(family = family, parl, par2 = par2))

tryCatch (
parl <- inverseFun(tau)$root,
error = function(e) {

stop(paste("Error occurred: Probably one can’t fulfill
your tau-value with given your parameter two.'",
"\n\t original message: \n\t",
e$message, "\n'"))

}
else if (family == 9){
if (tau <= 0)
stop ("BB7 copula cannot be used for tau<=0.")
else if (par2 <= 0)
stop("BB7: par2 has to be > 0")
inverseGenerator <- function(f, lower = 1, upper = 100){
function(y) uniroot ((function(x) f(x) - y), lower =
lower , upper = upper) [1] }
inverseFun <- inverseGenerator (function(paril)
BiCopPar2Tau(family = family, parl, par2 = par2))

tryCatch (
parl <- inverseFun(tau)$root,
error = function(e) {

stop(paste("Error occurred: Probably one can’t fulfill
your tau-value with given your parameter two.",
"\n\t original message: \n\t",

e$message, "\n"))
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else if (family == 10){
if (tau <= 0)
70 stop ("BB8 copula cannot be used for tau<=0.")
else if (par2 <= 0 || par2 > 1)
stop("BB8: par2 has to be > 0 and <= 1")
inverseGenerator <- function(f, lower = 1, upper = 100){
function(y) uniroot ((function(x) f(x) - y), lower =
lower , upper = upper) [1] }
75 inverseFun <- inverseGenerator (function(parl)
BiCopPar2Tau(family = family, parl, par2 = par2))
tryCatch (
parl <- inverseFun(tau)$root,
error = function(e) {

stop(paste("Error occurred: Probably one can’t fulfill
your tau-value with given your parameter two.'",

80 "\n\t original message: \n\t",
e$message, "\n"))
}
)
}
85 else if (family == 104){

if (tau < 0)
stop("Tawn type 1 copula cannot be used for tau<0.")

else if (par2 <= 0 || par2 > 1)
stop("Tawn type 1: par2 has to be > 0 and <= 1")
90 inverseGenerator <- function(f, lower = 1, upper = 100){
function(y) uniroot ((function(x) f(x) - y), lower =

lower , upper = upper) [1] }
inverseFun <- inverseGenerator (function(par1l)
BiCopPar2Tau(family = family, parl, par2 = par2))

tryCatch(
parl <- inverseFun(tau)$root,
95 error = function(e) {

stop(paste("Error occurred: Probably one can’t fulfill
your tau-value with given your parameter two.",
"\n\t original message: \n\t",

e$message, "\n"))

}
else if (family == 204){
if (tau < 0)
stop("Tawn type 2 copula cannot be used for tau<0.")

105 else if (par2 <= 0 || par2 > 1)
stop("Tawn type 2: par2 has to be > 0 and <= 1")
inverseGenerator <- function(f, lower = 1, upper = 100){
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function(y) uniroot ((function(x) f(x) - y), lower =
lower , upper = upper) [1] }
inverseFun <- inverseGenerator (function(parl)
BiCopPar2Tau(family = family, parl, par2 = par2))

tryCatch (
parl <- inverseFun(tau)$root,
error = function(e) {

stop (paste(

e$message , ))

3

return (parl)

}

So now it is time to provide a way for adding scenarios to our data frame. This is
done by the following function addScenario which takes the copula families, the 7 values
and the second parameters for each dimension. The corresponding first parameter is
then calculated via BiCopTau2ParX. To be able to add also scenarios directly with
parameter values, we provide the function addScenarioPar. We assign a name to each
scenario, where ¢ ’ denotes tau values and ‘-’ denotes par values. But this notation
is not important, as later on the table with the whole configuration is printed. We
just use the name of the scenario for putting a .txt document with the name of the
scenario into the folder of the corresponding pictures. As we want to simplify things,
we round values to two digits, which makes it easy to describe scenarios.

addScenario <- function(label, faml2, fam23, famil3.2,
taul2=0.8, tau23=0.5, taul3.2=0.3,
par2_12=NA, par2_23=NA, par2_13.2=NA){
n <- nrow(scenario) + 1
scenario[n,1] <- label
scenario[n,2] <- pasteO(BiCopName (faml12), BiCopName (fam23),
BiCopName (fam13.2), , round(taul2, 2), s
round (tau23, 2), , round(taul3.2, 2))
scenario[n,3] <- faml2
scenario[n,4] <- fam23
scenario[n,5] <- fami13.2
scenario[n,6] <- round(BiCopTau2ParX(faml2, taul2, par2_12),
2)
scenario[n,7] <- round(BiCopTau2ParX(fam23, tau23, par2_23),
2)
scenario[n,8] <- round(BiCopTau2ParX(faml13.2, taul3.2,
par2_13.2), 2)
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scenario[n,9] <- round(par2_12, 2)
scenario[n,10] <- round(par2_23, 2)

15 scenario[n,11] <- round(par2_13.2, 2)
scenario[n,12] <- round(taul2, 2)
scenario[n,13] <- round(tau23, 2)
scenario[n,14] <- round(taul3.2, 2)
return(scenario)

20 }

addScenarioPar <- function(label, famil12, fam23, faml3.2,
parl2, par23, paril3.2,
par2_12 = 0, par2_23 = 0, par2_13.2
= 01

™)
t

n <- nrow(scenario) + 1
scenario[n,1] <- label
scenario[n,2] <- pasteO(BiCopName (faml12), BiCopName (fam23),
BiCopName (fam13.2), , parl2, , par23, , parl3.2)
scenario[n,3] <- faml2
scenario[n,4] <- fam23
30 scenario[n,5] <- fami13.2
scenario[n,6] <- round(pari2, 2)
scenario[n,7] <- round(par23, 2)
scenario[n,8] <- round(parl13.2, 2)
scenario[n,9] <- round(par2_12, 2)
35 scenario[n,10] <- round(par2_23, 2)
scenario[n,11] <- round(par2_13.2, 2)
scenario[n,12] <- round(BiCopPar2Tau(faml2, parl2, par2_12),
2)
scenario[n,13] <- round(BiCopPar2Tau(fam23, par23, par2_23),
2)
scenario[n,14] <- round(BiCopPar2Tau(faml13.2, parl3.2,
par2_13.2), 2)
40 return(scenario)

Before setting the scenarios up, we need a function that is able to print the spec-
ification of the actual scenario. The function scenarioToLatex takes all the relevant
information about the scenario (copula family, parameter one and two, 7 value), puts
them together in a matrix and exports this matrix as a table to a .tex file using the
function ztable.

# include.rownames is not working directly in ztable ()
# -> need print () to make include.rownames active
# -> need write() to save things to the disk
scenarioTolLatex <- function(fami12, fam23, faml3.2,
5 parl2, par23, paril3.2,
par2_12, par2_23, par2_13.2,
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taul2, tau23, taul3d.2,
label){
m <- matrix(c("$12$", BiCopName(faml12), taul2, parl2, par2_12,
"$23$", BiCopName (fam23), tau23, par23, par2_23,
"$13[2%", BiCopName(fam13.2), taul3.2, paril3.2,
par2_13.2),
ncol = 5, byrow = TRUE,
dimnames = 1list (NULL, c("Pair Copula", "Family",
"$\\tau$", "$\\theta_1$", "$\\theta_28%")))
options(warn = -1) # there %s a warning when passing C{} to
align, we do this in order to define a new column type
with fized width but centred
write(
gsub (" (tabular}{+)", "tabular}[t]l{",
print (xtable(m, align =
"lcC{1.5cm}C{1.2cm}C{1.2cm}C{1.2cm}"), # pass
ncol ()+1 arguments (rowname)
include.rownames = FALSE, booktabs = TRUE,
floating = FALSE,
hline.after = c(0, nrow(m)),
sanitize.text.function=function(x){x}, # for
being able to pass math-environment ($)
print.results = FALSE
),
perl = TRUE),
file = "OOconfiguration.tex")

}

To handle all scenarios and create our files, we now define the function scenario ToFile,
which takes the number of the scenario to visualize and the data frame. It stores the
parameters of the scenario in meaningful named variables first and then sets the working
directory to a folder where to save the results of the visualization. We adjust the
quality of our plot via the points of evaluation with the by= argument and afterwards
action is taken. At the very end we produce a table containing all scenarios. But this
is highly specific for our thesis and is only a complete table after the visualization of
uranium has been run, so we set the parameter table to FALSE by default.

scenarioToFile <- function(num, scenariolIn, table = FALSE){
if (num < 1 || num > nrow(scenario))
stop ("Your number has to between 1 and the number of rows
of scenario.")

### get the wvariables
scenarioIn[num,1] -> label
scenarioln[num,2] -> name
scenariolIn[num,3] -> famil2
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scenarioln [num,4]
scenarioln [num,5]
scenarioIn [num,6]
scenarioln [num,7]
scenarioln [num,8]
scenarioln [num,9]
scenarioln [num,10]
scenarioIn[num,11]
scenarioln [num,12]
scenarioln [num,13]
scenarioln[num,14]

wd <- getwd ()

-> fam23

-> fam13.2
-> parl2

-> par23

-> parl13.2
-> par2_12
-> par2_23
-> par2_13.2
-> taul2
-> tau23
-> taul3.2

### set the working directory

on.exit(setwd(wd)) # reset working directory at the end
sd <- file.path(wd, "..", "R-Pictures")
if (!file.exists(sd)) dir.create(sd)
sd <- file.path(sd, "Scenarios')
if (!'file.exists(sd)) dir.create(sd)

folder <- file.path(sd, label)
if (!'file.exists(folder)) dir.create(folder)

setwd (folder)

### do the action (calculate,

zl <- z2 <- z3 <-

RVM <- RVMconstruction(famil2,

f RVM <- f Z(zl, z2, z3, RVM)

vis3Dvine (f _RVM)

if (is.na(par2_12)) par2_12 <- 0
if (is.na(par2_23)) par2_23 <- 0

if (is.na(par2_13.2)) par2_13.2

scenarioTolLatex (fam12, fam23, famil13.2,

images, latex-table)
seq(-3, 3, by=0.05)
fam23, fam13.2,
parl2, par23, paril3.2,
par2_12, par2_23, par2_13.2)
<- 0
parl2, par23, parl3.2,
par2_12, par2_23, par2_13.2,

taul2, tau23, taul3.2,
label)

# put label imn a tex file
write (pasteO("\\label{", label,
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# put one text file with the name in the folder
write("", file = pasteO(name, ".txt"))

### produce the table containing all scenartios

if (table){
if (num == 1){
write("\\section{Table of Scenarios}",
file = file.path(sd, "ScenarioTable.tex"))
write("{\\footnotesize",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE)

write("\\begin{longtable}{r r >{$}rc<{$} >{$rc<{$}
>{$}c<{$} r >{$}c<{$} >{$rc<{$} >{$}c<{$} r
>{$rc<{$} >{$}c<{$} >{$rc<{$}}",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE )

write("& \\multicolumn{4}{c}{Copula $c_{12}$} &
\\multicolumn{4}{c}{Copula $c_{23}$} &
\\multicolumn{4}{c}{Copula $c_{13;2}$F\\\\",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE )
write("\\cmidrule(1lr){2-5} \\cmidrule(1lr){6-9}
\\ cmidrule(lr){10-13}",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE )

write("p. & Fam & \\tau & \\theta_1 & \\theta_2 & Fam &

\\tau & \\theta_1 & \\theta_2 & Fam & \\tau &
\\theta_1 & \\theta_2 \\\\",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE )
write("\\midrule \\endfirsthead",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE )

write("& \\multicolumn{4}{c}{Copula $c_{12}%} &
\\multicolumn{4}{c}{Copula $c_{23}8} &
\\multicolumn{4}{c}{Copula $c_{13;2F$F\\\\",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE )
write ("\\cmidrule (1r){2-5} \\cmidrule(1lr){6-9%}
\\cmidrule (1r){10-13}",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE )
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write("p. & Fam & \\tau & \\theta_1 & \\theta_2 & Fam &
\\tau & \\theta_1 & \\theta_2 & Fam & \\tau &
\\theta_1 & \\theta_2 \\\\",
file = file.path(sd, "ScenarioTable.tex"), append

TRUE )
write("\\midrule \\endhead",
85 file = file.path(sd, "ScenarioTable.tex"), append
TRUE )

write("\\bottomrule \\endlastfoot",
file = file.path(sd, "ScenarioTable.tex"), append
TRUE )

90 write(
paste(
pasteO0 ("\\pageref{", label, "}"),
BiCopName (fam12), taul2, parl2, par2_12,
BiCopName (fam23), tau23, par23, par2_23,

95 BiCopName (fam13.2), taul3.2, parl13.2,
pasteO(par2_13.2, "\\\\")
, sep = " & "
), file = file.path(sd, "ScenarioTable.tex"), append =
TRUE )
}
else if (num == 48){
100 write(
paste(
"NAT,
BiCopName (fam12), taul2, parl2, par2_12,
BiCopName (fam23), tau23, par23, par2_23,
105 BiCopName (fam13.2), taul3.2, parl3.2,
pasteO(par2_13.2, "\\\\")
, sep = " & "
), file = file.path(sd, "ScenarioTable.tex"), append =
TRUE )
}
else if (num > 1 && num <= nrow(scenario)){
110 write (
paste(
pasteO ("\\pageref{", label, "}"),
BiCopName (fam12), taul2, parl2, par2_12,
BiCopName (fam23), tau23, par23, par2_23,
115 BiCopName (fam13.2), taul3.2, parl3.2,
pasteO(par2_13.2, "\\\\")
, sep = " & "
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), file

= file.path(sd,
TRUE )

120 }

C.5 Include Scenarios

), append =

Now we are ready to add lots of scenarios to our data frame.

For internal usage, we separate the label with ‘4’ not with ‘.’ as the following
characters are not allowed to be used in folder names: ‘<’ ‘>’ 7 "7 \7 ¢ /7 ¢
‘7. Also LaTeX has forbidden characters, for example ‘#’. We use the ‘-> when we
summarize more visualizations in one figure in LaTeX.

# Trivartate Gaussian Copula

scenario <- addScenario ( , 1, 1, 1)
scenario <- addScenario( , 1, 1, 1,
0.3, 0.5, 0.8)
# Exchangeable Copulae
parl2 <- par23 <- rho <- .95
par13.2 = rho*(l1-rho)/(1-rho~2)
scenario <- addScenarioPar ( , 1, 1, 1,
10 parl2, par23, parl3.2)
parl2 <- par23 <- rho <- .71
parl13.2 = rho*(1-rho)/(1-rho~2)
scenario <- addScenarioPar ( , 1, 1, 1,
15 parl2, par23, parl3.2)
parl2 <- par23 <- rho <- .45
parl13.2 = rho*(l1-rho)/(1-rho~2)
scenario <- addScenarioPar( , 1, 1, 1,
20 parl2, par23, parl3.2)
# AR (1) copulae
scenario <- addScenarioPar ( , 1, 1, 1,
0.95, 0.95, 0)
25 scenario <- addScenarioPar ( , 1, 1, 1,
0.71, 0.71, 0)
scenario <- addScenarioPar ( , 1, 1, 1,
0.45, 0.45, 0)
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# Student t
scenario <-

scenario <-

scenario <-

scenario <-

scenario <-

scenario <-

Copulae
addScenario("vis+T1-1",
o, 0, O,
3, 3, 4)
addScenario("vis+T1-2",
o, 0, O,
6, 6, 7)
addScenario("vis+T1-3",
0o, 0, O,

25, 25, 26)

addScenario("vis+T2-1",
0.8, 0.5, 0.
3, 3, 4)

addScenario("vis+T2-2",
0.8, 0.5, 0.
6, 6, 7)

addScenario("vis+T2-3",
0.8, 0.5, 0.
25, 25, 26)

# Independence Copulae

scenario <-

scenario <-

scenario <-

# Scemnarios
scenario <-
scenario <-
scenario <-
scenario <-

scenario <-
scenario <-

scenario <-
scenario <-

# Scemnarios

116

addScenario("vis+Ind-1",
0, 0, 0)

addScenario("vis+Ind-2",
0, 0, 0)

addScenario("vis+Ind-3",
0o, 0, 0.01,
NA, 3, NA)

out of Archimedean Copulae with one Parameter

addScenario("vis+CGFJ1",
addScenario("vis+CGFJ2",
addScenario("vis+CGFJI3",
addScenario("vis+CGFJ4",

addScenario("vis+CGFJI5",
addScenario("vis+CGFJI6",
addScenario("vis+CGFJ7",
addScenario("vis+CGFJI8",

out of Archimedean Copulae with two Parameters
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>
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scenario

scenario

scenario

scenario

scenario

scenario

scenario

scenario

scenario

scenario

< -

<_

< -

<_

< -

< -

< -

< -

<_

# Scemarios

scenario

scenario

scenario
scenario

< -

< -

< -
< -

addScenario( , 7, T, 7,
.8, .5, .3,
1.3, 1.3, 1.3)
addScenario ( , 8, 8, 8,
.8, .5, .3,
1.5, 1.3, 1.3)
addScenario ( 9N O
8, .5, ,
4, .4, 4)
addScenario ( , 10, 10, 10,
8, .5, s
T, T, .T)
addScenario ( , 104, 104, 104,
8, .5, ,
.9, .9, .9)
addScenario ( , 204, 204, 204,
8, .5, ,
9, .9, 9)
addScenario ( , 7, 8, 9,
.8, .5, .3,
1.3, 1.3, .4)
addScenario ( , 10, 104, 204,
8, .5, ,
.7, .9, .9)
addScenario ( , 104, 7, 10,
8, .5, 3,
.9, 1.3, 7)
addScenario( , 204, 8, 9,
8, .5 S

with no Restriction of Copula Families

addScenario ( , 5, 9, 3,
.8, .5, .3,
NA, .4, NA)
addScenario ( , 7, 2, 6,
.8, .5, 8.
1.3, 3, NA)
addScenario ( , 3, 1, 4)
addScenario ( , 104, 2, 4,
8, .5, .3,
9, 3, NA)
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Appendix C R-Code Visualization

scenario <- addScenario( , 5, 3, 8,
125 .8, .5, .3,
NA, NA, 1.3)
130 # Scenarios with no Restriction on tau Values
scenario <- addScenario( , 3, 4, 5,
.3, .2, .8)
scenario <- addScenario ( , 2, 3, 1,
0, .33, 0,
135 3, NA, NA)
scenario <- addScenario( , 2, 4, 2,
0, .5, 0,
3, NA, 5)
scenario <- addScenario ( , 1, 3, 7,
140 0, 33, .75,
NA, NA, 2)
scenario <- addScenario( , 4, 2, 9,
.56, 0, .6,
NA, 3, 2)
145
# Scenarios in \cite{Mai.2012}
scenario <- addScenario ( , 4, 23, 3,
150 .8, -.54, .26)
scenario <- addScenario( , 2, 4, 2,
.69, .43, -.80,
2.1, NA, 2.5)
scenario <- addScenario ( , 16, 6, 13,
155 .35, .92, .91)
scenario <- addScenario( , 5, 3, 5,
-.89, .91, .89)

C.6 Visualize Scenarios

The last thing to do is to run with a for-loop through our data frame and visualize
every scenario via calling scenarioToFile, which is done in one line.

for (i in 1:nrow(scenario)) scenarioToFile(i, table

TRUE)

scenario,
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Appendix D

Overviews

D.1 Copula Families

Family nr. Copula family Abbreviation 01 02
0 Independence I 0 0
1 Gaussian N (—1,1) 0
2 Student t t (-1,1) (2,00)
3 Clayton C (0, 00) 0
4  Gumbel G [1,00) 0
5 Frank F R\{0} 0
6 Joe J (1,00) 0
7 Clayton-Gumbel BB1 (0,00) [1,00)
8 Joe-Gumbel BB6 [1,00) [1,00)
9 Joe-Clayton BB7 [1,00) (0,00)
10 Joe-Frank BBS8 [1,00) (0,1]
104 Tawn type 1 Tawn [1,00)  (0,1]
204 Tawn type 2 Tawn?2 [1,00) (0,1]
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Appendix D Overviews

D.2 Table of Scenarios

Copula ci2 Copula ca3 Copula c13;2
p- Fam T 04 05 Fam T 04 0s Fam T 04 02
36 N 0.8 0.95 0 N 0.5 0.71 0 N 0.3 0.45 0
37 N 0.3 0.45 0 N 0.5 0.71 0 N 0.8 0.95 0
40 N 0.8 0.95 0 N 0.8 0.95 0 N 0.32 0.49 0
40 N 0.5 0.71 0 N 0.5 0.71 0 N 0.27 0.42 0
40 N 0.3 0.45 0 N 0.3 0.45 0 N 0.2 0.31 0
41 N 0.8 0.95 0 N 0.8 0.95 0 N 0 0 0
41 N 0.5 0.71 0 N 0.5 0.71 0 N 0 0 0
41 N 0.3 0.45 0 N 0.3 0.45 0 N 0 0 0
44 t 0 0 3 t 0 0 3 t 0 0 4
44 t 0 0 6 t 0 0 6 t 0 0 7
44 t 0 0 25 t 0 0 25 t 0 0 26
45 t 0.8 0.95 3 t 0.5 0.71 3 t 0.3 0.45 4
45 t 0.8 0.95 6 t 0.5 0.71 6 t 0.3 0.45 7
45 t 0.8 0.95 25 t 0.5 0.71 25 t 0.3 0.45 26
47 I 0 0 0 I 0 0 0 I 0 0 0
47 N 0 0 0 N 0 0 0 N 0 0 0
47 N 0 0 0 t 0 0 3 C 0.01 0.02 0
49 C 0.8 8 0 C 0.5 2 0 C 0.3 0.86 0
50 G 0.8 5 0 G 0.5 2 0 G 0.3 1.43 0
51 F 0.8 18.19 0 F 0.5 5.74 0 F 0.3 2.92 0
52 J 0.8 8.77 0 J 0.5 2.86 0 J 0.3 1.77 0
54 C 0.8 8 0 G 0.5 2 0 F 0.3 2.92 0
55 F 0.8 18.19 0 G 0.5 2 0 C 0.3 0.86 0
56 J 0.8 8.77 0 F 0.5 5.74 0 G 0.3 1.43 0
57 G 0.8 5 0 J 0.5 2.86 0 C 0.3 0.86 0
59 BB1 0.8 5.69 1.3 BB1 0.5 1.08 1.3 BB1 0.3 0.2 1.3
60 BB6 0.8 5.46 1.5 BB6 0.5 1.98 1.3 BB6 0.3 1.17 1.3
61 BB7 0.8 8.43 0.4 BB7 0.5 2.5 0.4 BB7 0.3 1.42 0.4
62 BBS8 0.8 16.91 0.7 BBS 0.5 5.58 0.7 BBS8 0.3 3.2 0.7
63 Tawn 0.8 8.28 0.9 Tawn 0.5 2.16 0.9 Tawn 0.3 1.47 0.9
64  Tawn2 0.8 8.28 0.9 Tawn2 0.5 2.16 0.9 Tawn2 0.3 1.47 0.9
66 BB1 0.8 5.69 1.3 BB6 0.5 1.98 1.3 BB7 0.3 1.42 0.4
67 BBS8 0.8 16.91 0.7 Tawn 0.5 2.16 0.9 Tawn2 0.3 1.47 0.9
68 Tawn 0.8 8.28 0.9 BB1 0.5 1.08 1.3 BBS§ 0.3 3.2 0.7
69 Tawn2 0.8 8.28 0.9 BB6 0.5 1.98 1.3 BB7 0.3 1.42 0.4
71 F 0.8 18.19 0 BB7 0.5 2.5 0.4 C 0.3 0.86 0
72 BB1 0.8 5.69 1.3 t 0.5 0.71 3 J 0.3 1.77 0
73 C 0.8 8 0 N 0.5 0.71 0 G 0.3 1.43 0
74 Tawn 0.8 8.28 0.9 t 0.5 0.71 3 G 0.3 1.43 0
75 F 0.8 18.19 0 C 0.5 2 0 BB6 0.3 1.17 1.3
77 C 0.3 0.86 0 G 0.2 1.25 0 F 0.8 18.19 0
78 t 0 0 3 C 0.33 0.99 0 N 0 0 0
79 t 0 0 3 G 0.5 2 0 t 0 0 5
80 N 0 0 0 C 0.33 0.99 0 BB1 0.75 2 2
81 G 0.5 2 0 t 0 0 3 BB7 0.6 2.22 2
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D.2 Table of Scenarios

Copula ci2 Copula ca3 Copula c13;2
p- Fam T 04 0o Fam T 0, 0o Fam T 0, 0o
83 G 0.8 5 0 C90 —-0.54 —2.35 0 C  0.26 0.7 0
84 t 0.59 0.8 2.1 G 0.43 1.75 0 t —-08 —-095 25
NA SJ 0.35 1.98 0 J 0.92 23.73 0 SC 091 20.22 0
85 F —-0.89 —34.64 0 C 0.91 20.22 0 F 089 34.64 0
90 t 0.53 0.74 8.02 t 0.43 0.62 5.93 t 0.08 0.13 5.65

The “NA” between page 84 and 85 corresponds to the third scenario of Mai and Scherer

(2012) which causes strong numerical problems and thus is not shown in the thesis.
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