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Abstract

In this paper, we present a novel method for intra-operative registration directly from monocular endoscopic images. This tech-
nique has the potential to provide a more accurate surface registration at the surgical site than existing methods. It can operate
autonomously from as few as two images and can be particularly useful in revision cases where surgical landmarks may be absent.
A by-product of video registration is an estimate of the local surface structure of the anatomy, thus providing the opportunity to
dynamically update anatomical models as the surgery progresses.

Our approach is based on a previously presented method [Burschka, D., Hager, G.D., 2004. V-GPS (SLAM): – Vision-based
inertial system for mobile robots. In: Proceedings of ICRA, 409–415] for reconstruction of a scaled 3D model of the environment
from unknown camera motion. We use this scaled reconstruction as input to a PCA-based algorithm that registers the reconstructed
data to the CT data and recovers the scale and pose parameters of the camera in the coordinate frame of the CT scan. The result is
used in an ICP registration step to refine the registration estimates.

The details of our approach and the experimental results with a phantom of a human skull and a head of a pig cadaver are pre-
sented in this paper.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Sinus surgery is a procedure used to remove block-
ages in the sinuses (the spaces filled with air in some
of the bones of the skull). These blockages cause sinus-
itis, a condition in which the sinuses swell and become
clogged, causing pain and impaired breathing. The
endonasal approach for surgical treatment of sinusitis
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has become increasingly established during the last few
decades. In such a procedure, information is provided
primarily through the endoscope. The limited informa-
tion from the endoscopic view requires from the surgeon
a detailed knowledge of the anatomy (Fig. 1).

The sinuses are physically close to the brain, the eye,
and major arteries. Thus, endonasal sinus surgery re-
quires a high degree of precision, since minor misjudg-
ments of anatomical relationships can lead to
catastrophic consequences. These demands are particu-
larly challenging when surgical landmarks used for nav-
igation are distorted or obscured by extensive disease or
previous surgeries. Surgical navigation systems, which
allow for the real time tracking and localization of
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Fig. 1. Endoscopic inspection of the nasal sinus cavities depicting the limited information provided to the surgeon in the current procedures.
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surgical instruments with respect to surrounding ana-
tomical structures, are thus essential for safety and have
been employed in endonasal approaches to simplify the
procedure. The evolution of this field is driven in part by
technical advancements such as computer-aided surgical
navigation. Fig. 2 shows a typical system (here a VTI
system from GE Medical Systems) for endoscopic sinus
surgery.

This paper addresses two fundamental problems
associated with vision-based navigation of surgical tools
in the human body: (1) the reconstruction of the 3D sur-
face geometry within the view of the endoscopic camera
and (2) the registration of the camera to a pre-operative
CT scan that allows a verification of the pre-operative
procedure planning.

There are a variety of surgical navigation systems
that rely on artificial optical and magnetic fiducials.
We give a short overview over the existing approaches
in the following section.

1.1. Related work

Surgical Navigation Systems were first developed in
the 1980�s for neurosurgical applications (e.g., Watan-
abe et al., 1987; Kosugi et al., 1988; Reinhardt et al.,
1988). They have subsequently been applied in many
Fig. 2. Typical surgical navigation system for endoscopic sinus surgery. (Le
VTI, Inc. – now part of GE Medical Systems).
surgical fields, including neurosurgery (Smith et al.,
1994; Heilbrun et al., 1993; Maciunas, 1993; Galloway
et al., 1991; Barnett et al., 1993; Zinreich et al., 1993;
Reinhardt, 1996; Scholtz et al., 1998; Dey et al., 2002),
craniofacial surgery (Cutting et al., 1990, 1992, 1997;
Burghart et al., 1999; VanderKolk et al., 1992), ENT
(Adams et al., 1990, 1991, 1992; Bartz et al., 2001), spine
surgery (Lavallee et al., 1994; Merloz et al., 1997; Nolte
et al., 1994; Cleary, 1999), and orthopedic surgery gen-
erally (DiGioia et al., 1996; Picard et al., 2001; Simon
et al., 1997; Kunz et al., 2001; van HellenMondt et al.,
2001; Nolte and Visarius, 1996). Applications in other
surgical disciplines, such as minimally invasive hepatic
surgery (Herline et al., 1999; Stefansic et al., 2000), are
also being explored. Their primary purpose is to provide
intra-operative information about the geometric rela-
tionships (e.g., between a surgical tool and anatomical
structures) that cannot be readily observed using the
surgeon�s normal visual and haptic senses.

A typical surgical navigation system consists of a
computer workstation, navigational tracking device,
and associated tools with marker devices whose pose
(position and orientation) is continuously measured rel-
ative to the navigational tracker (Fig. 3). Usually, one or
more ‘‘reference’’ markers are affixed to the patient�s
anatomy in order to eliminate the effects of patient or
ft) Operating room scene; (right) navigation screen shot (photos from



Fig. 3. In the current surgical systems, the camera position is
registered indirectly relative to external fiducials (markers) measured
by a tracking device.
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tracker motion. The workstation typically imports pre-
operative CT, MRI, or other volumetric image data
associated with the patient. After suitable calibration,
typically relying on either artificial or anatomical land-
marks, image processing, and registration steps are per-
formed. This allows the system to determine the
transformation between volumetric image coordinates
and the patient reference coordinates. Typically, the sys-
tem also computes an estimate of the accuracy of the
registration, and allows for re-registration if the initial
solution is faulty or if re-registration is otherwise
deemed necessary. Commonly used tracker technologies
include specialized optical tracking systems (Maciunas,
1993; Nolte et al., 1994; Bucholz and Smith, 1993; Tay-
lor et al., 1992; Lavallee et al., 1996; Hofstetter et al.,
1999), stereo vision with conventional cameras (Heil-
brun et al., 1991), electromagnetic sensors (Wu and Tay-
lor, 2003; Poulin and Amiot, 2001), acoustic sensors
(Reinhardt, 1996; Bucholz and Smith, 1993), and
mechanical linkages (Kosugi et al., 1988; Galloway
et al., 1991; Reinhardt, 1996). Currently, systems based
on specialized optical devices such as the Polarise or
OptoTrake (Northern Digital, Waterloo, Ont.) are the
most accurate, but each technology has advantages
and disadvantages.

While surgical navigation has been a catalyst for
advancement in this field, it suffers from a number of
fundamental limitations that constrain further surgical
innovation. These limitations include the inability to
register the surgical site to anatomical landmarks, the
inability to account for changes in anatomy brought
about by surgery, and the inability to repetitively and
autonomously register a patient. The first limitation is
important, since it decreases the practical accuracy of
surgical navigation. Current registration schemes rely
on surface anatomy or fiducial points (Kennedy et al.,
2001), away from the surgical site, to perform the regis-
tration, often leading to relatively large registration er-
rors in the region of greatest interest. The second
limitation means that, as the surgery progresses, the
navigation system becomes less and less useful, as does
the preoperative data. The latter leads to degradation
of the surgical system�s performance with time due to
patient motion, shifts in the reference frame and so
forth. Currently, the operating surgeon must update
the registration at several points in the operative field
throughout the procedure. Typically, registration is ver-
ified by localization on known bony landmarks on the
skull and in the nasal cavity.

Most navigation systems today report position errors
on the order of 2 mm or less (Fried et al., 1997; Metson
et al., 1998). However, the accuracy of registration can
vary widely depending on the location of the surgical
site relative to the landmarks. In particular, sites located
far from a fiducial will generally have higher error than
those near a fiducial. This is a consequence of the indi-
rect nature of the tool-to-anatomy calculation.

1.2. Structure of the paper

In this paper, we present a novel method for intra-
operative registration directly from the endoscopic
images without manual inputs from the surgeon. It is
especially useful in revision cases, where the surgical
landmarks are usually absent. The paper is structured
as follows. In Section 2, we describe the underlying im-
age processing that allows us to recover the 3D-structure
and the motion from monocular images of an endo-
scopic camera, and the way we perform the final align-
ment using a modified iterative closest point (ICP)
approach. In Section 3, we present the experimental re-
sults on the phantom skull. We conclude in Section 4
with an evaluation of our approach and present our fu-
ture research goals.
2. Approach

The two major problems that we address in this paper
are: (1) 3D reconstruction from monocular camera
images and (2) registration of the reconstructed 3D
model to a pre-operative CT scan.

Our system reconstructs a scaled 3D model of the
environment from a monocular camera. This recon-
struction requires knowledge about the motion of the
camera, which we assume to be unknown, or at least
uncertain. Thus, in parallel to model reconstruction,
we estimate the motion of the camera as well. We dis-
cuss the implementation of the vision-based reconstruc-
tion in Section 2.1.

The 3D structure estimated from monocular camera
images is known only up to scale. The correct scale
needs to be recovered from the data to align the points



Fig. 4. The architecture of our system.
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roughly with the CT scan. The remaining alignment er-
ror between the CT scan data and the reconstructed
model is corrected with a modified ICP algorithm with
covariance tree optimization (Section 2.2.2).

The architecture of our system, depicted in Fig. 4,
thus consists of two major components solving the prob-
lems stated above: (1) a monocular VSLAM system that
reconstructs a scaled version of the environment and (2)
a registration module mapping the data reconstructed
from the camera images to the CT scan.

In the following sections, we will describe the details
of the system implementation.

2.1. Scaled 3D reconstruction

As mentioned earlier, an important component of
our system is the 3D reconstruction performed by the
Monocular SLAM system in Fig. 4. This module takes
the monocular image data and extracts point features
(e.g., corners or textured regions) in the Feature Extrac-
tion module and uses this pre-processed data to estimate
the Ego-Motion of the camera relative to the environ-
ment in all 6 degrees of freedom. This motion data is
then used to reconstruct 3D information of newly found
features in the 3D reconstruction module.

2.1.1. System initialization

Our approach requires an initial guess about the 3D
structure of at least three landmarks. Two possibilities
for obtaining this initialization are:
� the eight-point-algorithm applied to estimate the
Essential Matrix of the system from eight-point cor-
respondences. A relation between the projections
pi; p

�
i in two camera images with known intrinsic cal-

ibration parameters can be expressed with the Essen-
tial Matrix ~E as p�i ~Epi ¼ 0.
The Essential Matrix ~E consists of a product of two
matrices

~E ¼ ~R � skðTÞ with skðTÞ ¼
0 �T z T y

T z 0 �T x

�T y T x 0

0
B@

1
CA.

ð1Þ
Note that, given a correspondence, we can form a lin-
ear constraint on ~E. It is only unique up to scale,
therefore, we need 8 matches to calculate E. From
E, it is possible to recover the rotation matrix ~R and
the scaled version of the translation vector T 0 (Brown
and Ballard, 1982). This is sufficient for our approach
as we describe later (Section 2.1.3).

� manual feature selection in the endoscope image.
Here, the surgeon selects three points with known
correspondences to the CT-data and the system uses
this information to bootstrap the processing.

The first alternative is completely unsupervised, but it
requires a significant initial movement to get a well-con-
ditioned Essential Matrix. The second alternative is sim-
ilar to the current image guided system (IGS) procedure,
but it is necessary just for the first frame of the sequence.



Fig. 7. Validation of the approach on a head of a pig cadaver with
anatomical structures similar to the human sinuses. OptoTrak data is
used as a ground truth to validate the motion estimation of our
algorithm.
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2.1.2. Feature extraction

The 3D reconstruction algorithm assumes that point
features are extracted from the images. Possible features
are: intersections of contours resulting from edge filters
(Brown and Ballard, 1982) or simply textured areas of
the image used for template matching in a sum of square
differences (SSD) matching algorithm (Hager and Bel-
humeur, 1998). There are several other possible match-
ing algorithms to use in this system (Brown et al.,
2003); some using local measures (Banks and Corke,
2001) and some incorporating global surface constraints
(Scharstein and Szeliski, 2002; Ramey et al., 2004).

One issue in real endonasal images is the sparse den-
sity of points that can be reliably placed in correspon-
dence and used for model reconstruction. Another
problem is the moving light source, which is attached
to the endoscope (Fig. 5). This changes the shadows cast
in the images due to to small structures on the observed
surfaces. The latter necessitates a brightness indepen-
dent image feature matching algorithm.

Our initial results were based on experiments with a
phantom skull. This skull does not have any detectable
texture, so sparsely distributed colored points were
added to the surface. These are segmented in the hue
space of the color representation. This way, we are able
to identify and track the features in image sequences
using a simple color blob tracker despite the changing
lighting conditions (Fig. 6).
Fig. 5. Our experimental system.

Fig. 6. Example of corresponding points on our phantom.
We have also obtained preliminary results with real
endonasal images using an endoscopic camera (Fig. 7).
We used an image tracker based on the minimization
of the SSD between a reference image template and its
current projection in the image. This tracker follows
an image template compensating for rotation, transla-
tion, illumination changes and occlusions. The details
of the implementation are presented in (Hager and Bel-
humeur, 1998). The tracker was able to track point fea-
tures in real sinuses of the head as depicted in Fig. 8. The
estimated positions of the centers of the tracked regions
are used to subsequently estimate the motion of the
camera. Given motion, it is possible to recover 3D infor-
mation for the newly established correspondences.
Additional correspondences allow us to add new points
to the model to compensate for loss of visible points due
to occlusions and coming out of the field of view.

2.1.3. Localization and mapping step

Since the camera motion needs to be estimated simul-
taneously with reconstruction, the so-called epipolar
geometry from the motion between two camera frames
needs to be recovered. An approach, commonly used
in situations with at least eight point correspondences
between images, is the eight-point-algorithm. The recov-
ered Essential Matrix contains the information about
the translation direction T 0 and rotation R between
the images. The translation information can only be
recovered to a scale factor due to the homogeneous
structure of the epipolar constraint (Brown and Ballard,
1982).

The number of corresponding (detectable) points
between two camera frames varies significantly during
the sinus surgery. There are situations when fewer than



Fig. 8. Tracking result in real sinus images: (top) begin and end of a sequence with four point features being tracked; (bottom) tracking result in
image coordinates.
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eight points can be matched. The above approach fails
in these cases, so we instead apply a method for camera
localization and mapping requiring merely three point
correspondences. We will sketch out the process below.
The reader should consult (Burschka and Hager, 2004)
for details of the algorithm.

In this approach, we assume that each 3D point Pi

imaged in a normalized camera frame pi = (ui, vi, 1)
T

can be represented as its direction vector ni = pi/ipii
and the distance to the real point Di so that Pi = Di Æ ni.
Since, in typical applications, the scale m of the recon-
struction may be unknown, the system operates with a
scaled version of the distance ki = Di/m. This approach
calculates an estimate for the rotation ~R and the scaled
translation T 0* between the points in the current frame
{Pi} and the next frame fP �

i g as

�P ¼ 1

n

Xn
i¼1

P i; �P � ¼ 1

n

Xn
i¼1

P �
i ;

P 0
i ¼ P i � �P ; P 0�

i ¼ P �
i � �P �;

~M ¼
Xn
i¼1

P 0�
i P

0T
i ; ½U DV T� ¼ svdð ~MÞ;

~R ¼ V � UT; T0� ¼ �P � � ~R
��P .

ð2Þ

The approach requires an initial guess for the values for
ki for the first frame and it computes a guess for trans-
lation T 0* and rotation ~R in an iterative process. In
the initial step, it assumes the distances to the points
in the new image are identical to the previous one
k0i ¼ ki and, afterwards, it iteratively converges to the
true ~R; T0�; and k0i. Details and simplifications of the
algorithm are discussed in (Burschka and Hager,
2003). This algorithm requires only three corresponding
points between both images to compute the pose differ-
ence between two camera frames ð~R;T0�Þ, which makes
it more suitable for the given application.

Eq. (2) updates the distance values k0i for all tracked
points P 0

i for the new frame. New points Px = kxnx can
easily be added to the system under a rigid body
assumption. The parameters of Px can be calculated
by solving the following equation:

~Rnx � n�x
� � kx

k�x

� �
¼ ~Rk1n1 � k�1n

�
1. ð3Þ

Alternatively, a more robust estimate can be computed
from 3 frames by solving the following equation:

~R1nx �n�x 0

~R2
~R1nx 0 n��x

 ! kx
k�x
k��x

0
B@

1
CA ¼

~R1k1n1 � k�1n
�
1

~R2
~R1k1n1 � k��1 n

��
1

 !
.

ð4Þ

The pose change from image 1 ! 2 is annotated here as
ð ~R1;T1Þ and the pose change between images 2 ! 3 is
annotated as ð ~R2;T2Þ. This equation estimates the dis-
tance kx to a new point Px in the scale of an already
known point P1 from the currently tracked set of points.
This way the newly added points are still measured with
the same scaling factor m and the resulting 3D model
has a uniform scale.
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2.2. Registration of the endoscope data to CT scan

The other important module in our system depicted
in Fig. 4 is the registration of the scaled data extracted
in the previous section. The extracted patch needs to
be localized correctly within the CT scan and registered
to it. This is a two-step process in which we recover the
scale from a PCA based method and later use ICP meth-
od to align it correctly.

2.2.1. Scale recovery for 3D reconstruction

The scaling factor m in Section 2.1.3 depends on the
scale of the ki-values for the initial set of points. In case
of an unsupervised bootstrap using the eight-point-algo-
rithm (Section 2.1.1) the resulting reconstruction has an
arbitrary scale that depends on the scale of the translation
vector T 0, which is usually assumed to be a unit vector.

The system usually has a rough estimate of the current
camera position. We use this estimate to carve out part of
the CT surface data that falls into the expected visibility
cone of the camera. This cone is slightly enlarged in all
directions to compensate for the unknown camera mo-
tion. The size of the extracted patch depends on the
uncertainty about the camera position. Fig. 9 shows
examples of CT scan and reconstructed data.

The visible regions are usually surfaces with two
dominant directions of the cavity walls with a third
dimension representing the surface structure or combi-
nations of such walls. We assume for now that the CT
data patch consists of a single surface with some surface
structure on it. We will discuss later, how to split more
complex structures into simple patches.

We use the property of two dominant surface direc-
tions for our scale recovery by calculating the covari-
ance matrix ~Ck of the point cloud in the selected CT
scan region and in the current camera reconstruction.
The eigenvalues and eigenvectors of ~Ck define a new
coordinate system with the two eigenvectors calculated
from the larger eigenvalues defining the supporting
Fig. 9. Scaled reconstruction of surface points: (left) CT scan visualization o
scaled reconstructed points {right point cloud}.
plane in the cloud and the third eigenvector describing
the depth variation in the measurement.

In both cases, the smallest eigenvalue (Ect,E3d) repre-
sents a metric for the depth variations in the surface of
the CT scan and in the reconstructed point cloud. The
normalized eigen-vectors {Vctx} and {V3dx} and the
eigenvalues allow us to calculate the scalem and the rota-
tion ~Rtot between the two data sets to (5). The rotationma-
trix ~Rtot aligns both dominant surfaces along their normal
vectors, which are represented by the eigenvector calcu-
lated from the smallest eigenvalue (last column in each
of the rotation matrices in (5)). The rotation about the
normal vector cannot be restored in this way

m ¼
ffiffiffiffiffiffi
Ect

pffiffiffiffiffiffiffi
E3d

p ; V p2fct;3dg ¼ ðV pxV pyV pzÞT;

V n�p ¼
ð0V pz � V pyÞT

kð0V pz � V pyÞTk
;

~Rct ¼ ðV n�ct � V ctÞ V n�ct V ctð Þ;
~R3d ¼ ðV n�3d � V 3dÞ V n�3d V 3dð Þ;
~Rtot ¼ ~R3d � ~R

T

ct.

ð5Þ

We apply the scaling m and rotation ~Rtot to the zero
mean point clouds that were used to calculate the
covariance matrices above. This way, we obtain two
point clouds with the same alignment, but the CT-scan
represents a much larger area because of the unpredict-
able camera movement. Both clouds have a similar scale
and alignment of the supporting plane. Fig. 10 depicts
an alignment result of the scaled point cloud in the
top right corner to the 3D surface from the CT scan.
The transformed points may have a significant rota-
tional error around the normal vector visible in the fig-
ure as crosses (�+�). We correct this error in the next step.
Fig. 11 depicts the pseudo-image representaions used to
correct the rotational error.

We consider now both rotated point clouds as
sparse ‘‘images,’’ where each ‘‘pixel’’ is represented by
f the area, (right) matched surface points with ICP {left point cloud},



Fig. 10. After the alignment along the normal vector to the supporting
plane the scale is roughly recovered, but rotation around the normal
vector is possible.

Fig. 11. Distance to the supporting plane calculated in (5) is used as a
pseudo-image representation to match the sparse reconstruction (left)
to the dense point cloud (right).
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its distance to the supporting plane calculated from the
covariance matrix. We use the reconstructed 3D struc-
ture from the current view as a template that is matched
to the ‘‘image’’ constructed from the CT scan data using
the SSD matching approach described in (Hager and
Belhumeur, 1998). In this case we can allow only an
optimization in in-the-image rotations to find the miss-
ing parameter for the alignment and we treat the missing
information in the sparse image of the reconstruction as
‘‘occlusions.’’ This allows us to find the rotation between
the two point sets and to localize the current view within
the larger region of the CT scan to model the uncer-
tainty in the registration of the camera relative to the
CT scan. The ‘‘search window’’ can be adjusted depen-
dent on the current knowledge about the relative posi-
tion of the two coordinate frames to each other.
Fig. 12. The two surfaces need to be separated first, bef
The physical positions of the sampling points, espe-
cially in the 3D reconstruction, do not necessarily corre-
spond to the extreme values of the surface hull.
Therefore, the above match trial can fail for a specific
set of three points. The 3D reconstruction may not have
reconstructed the peak value but some random value
along the slope instead.

The resulting match is used to align the two data sets.
The residual error is due to imperfect sampling and the
coarse structure of the point sets, especially in the case
of the reconstructed data from the phantom skull.

The 3D scaling step needs to be performed just in the
initial bootstrap phase and in cases when the system was
not able to maintain the minimum number of three
features and needs to re-initialize the distance
measurements.

The above scaling step relies on the fact that the data
contains only one supporting plane with depth varia-
tions that are used to calculate the scaling factor m

(5). In case, when the CT or the reconstructed data set
contains two or more surfaces in a corner arrangement
(Fig. 12), the structure needs to be split into single sur-
faces before we apply the above scaling. We use a mod-
ified version of a split-and-merge algorithm here. We
establish, for the entire data set, the plane equation of
the supporting plane A based on ~Ck and (5). For each
point Pi of the data-set, we calculate the distance di from
the plane

di ¼ ðP i � �P Þ � V n ð6Þ
with Vn being the normal vector of the estimated
plane A.

Points with the largest deviation from the original
plane A and border points on both sides of the data
set are used to split the original surface consecutively
into sub-surfaces defined by these points. Each three
points define one sub-surface. We split the points of
the original surface into sub-surfaces depending on the
distances to the resulting sub-planes. The above evalua-
tion is repeated on the sub-surfaces until the maximum
ore our PCA-based scale recovery can be applied.
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deviation max{di} is smaller than the expected depth
structure in the surfaces.

2.2.2. ICP

Now, we have reconstructed and localized a 3D data-
set with endoscopic images, which has right scale and
similar orientation and translation in the coordinate
frame of the CT scan.

We have chosen to perform the rigid registration be-
tween CT images and physical data reconstructed from
endoscopic images using the ICP algorithm. For some
applications in the endoscopic surgery, a deformable reg-
istration method can be further applied based on the re-
sults of the ICP. The anatomy of the nasal and sinus
cavity ismostly bony tissue. To this end, ICP is considered
a suitable registration solution for this application. An
alternative approach for the alignment, that performs
the point alignment and the registrationwith reduced sen-
sitivity to deformation and outliers is described in (Chui
and Rangarajan, 2000). This approach uses a thin-plate
spline assumption to iteratively match sets of points and
recover the alignment scale. The advantage in our case
is that for the initial alignment and scale recovery only
the region properties of the CT scan are considered. We
have a strong mismatch in the number of points recon-
structed by the camera and recovered from the CT scan
that makes the application of the algorithm in (Chui
and Rangarajan, 2000) difficult.

We use a covariance tree data structure to search for
the closest point for ICP. A covariance tree is a variant
of a k-dimensional binary tree (k-D tree). The tradi-
tional k-D tree structure partitions space recursively
along principal coordinate axes. In our covariance tree
each sub-space is defined in the orthogonal coordinate
system of the eigenvectors centered at the center of mass
of the point set, and is recursively partitioned along this
local coordinate frame. An important advantage of
covariance trees is that the bounding boxes tend to be
much tighter than those found in conventional k-D trees
and tend to align with surfaces, thus producing a more
efficient search (Williams et al., 1997).
Fig. 13. Expected reconstruction accuracy for several cases. Case 1: a
point located in different distances along the optical axis estimated
using 1mm lateral motion. Case 2: a point located along a 15� off-axis
estimated using a 3 mm forward motion. Case 3: a point located 15�
off-axis estimated using combined 1 mm lateral and 3 mm forward
motion.
3. Results

The system is implemented in C++ using the image
processing library XVision2 (Hager and Toyama,
1998) and the Vision-based simultaneous localization
and mapping (SLAM) library VGPS (Burschka and
Hager, 2004). It was tested on a laptop computer with
a Pentium-M processor at 1.2 GHz running Linux OS.

3.1. Geometric investigations

In this section, we first review the essential geometric
concepts necessary for our algorithms, and calculate the
theoretical accuracy with which geometry can be com-
puted in several representative cases. We then describe
initial registration results we have achieved using proto-
type algorithms on phantom data. This data validates
the concept that 3D–3D surface registration from video
data is possible given good image information. Finally,
we describe preliminary results on video tracking and
reconstruction from porcine cadaver data to demon-
strate that the image-level matching problem can be
solved on realistic data.

3.1.1. Point reconstruction accuracy

We performed a standard calibration procedure
(Zhang, 2000; Bouget) on a Storz Telecam 20212113U
NTSC equipped with a 0� lens. Using the resulting
parameters, we then calculated the expected accuracy
of point location reconstruction assuming image point
localization to 1 pixel. This is generally considered con-
servative – many systems report point localization accu-
racy to 1/4 pixel or better (Brown et al., 2003).

Fig. 13 shows the expected reconstruction accuracy
for several cases. The x axis is the distance to the target
point, and the y axis is the reconstruction error due to a
1 pixel mislocalization. Three cases are considered: (1) a
point directly in front of the endoscope and a motion
parallel to the image plane of 1 mm, (2) a point 15� to
the side and motion of 3 mm in the direction of the opti-
cal axis, and (3) a point 15� to the side and a motion
consisting of 1 mm side to side motion with 3 mm for-
ward motion. As can be seen from the figure, for targets
within 2 cm of the endoscope, reconstruction accuracies
on the order of 1.2 mm or less can be expected. Indeed,
for targets 1 cm from the endoscope, accuracies are 0.3
mm or better.

3.1.2. Viewpoint registration accuracy

Consider a set of points pi = (xi,yi,zi)
T lying on a sur-

face, let ci denote the optical center of the camera, and
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let qi = (ui,vi) denote the image observations of the
points. Our objective is to determine the accuracy with
which the observer position ci can be calculated from
noisy observations. We note that we can consider the
case when ci = 0, as any other problem can be trans-
formed to this case by a rigid body motion. Also, note
that, in general, we need at least three points in general
position to compute the full rigid body pose of the
camera.

Under these assumptions, the first order term in a
Taylor series expansion of the camera projection equa-
tions yields

Dqi ¼
1

zi

f 0 ui
0 f vi

� �
Dc ¼ J iDc. ð7Þ

If we now assume that we have a covariance matrix
Kq = r2I2 modeling the accuracy of each observation
qi, we can compute the expected covariance on ci as

kc ¼ r2
X
i

J T
i J i

 !�1

. ð8Þ

Table 1 shows the expected accuracy of registra-
tion as a function of distance and point spread for 4
points arrayed symmetrically about the optical center.
Table 1
Expected registration accuracy for several representative cases

Angle 5�

Distance 10 mm 20 mm

Accuracy parallel to image plane 0.0148 0.0296
Accuracy along optical axis 0.1195 0.2389

It is assumed that four points are observed. The points are located at the giv
stated angle with the optical axis.

Fig. 14. The first column shows the originally chosen regions, the second the l
change in location of the features through the sequence.
This data is again for the previously described endo-
scope. It can be seen that the expected registration accu-
racy is more than an order of magnitude better than that
stated for commonly used navigation systems (Fried
et al., 1997; Metson et al., 1998).

3.2. Tracking

To verify the feasibility of video feature tracking on
sinus tissue, we acquired data ex vivo from a porcine ca-
daver. The model was acquired within 24 h of slaughter.
The nose was shortened to make the anatomy more con-
sistent with the human sinuses. Video and tracking data
was acquired in a manner identical to the skull phantom
with the exception that the endoscope was manually
(rather than robotically) manipulated.

In this case, tracking was performed using gradient
optimization of a local correlation measure with respect
to the four parameters: two locations, scale and orienta-
tion. Fig. 14 shows tracking results in two of five test
cases where different types of features were tracked.
The tracking uses a variety of anatomical structures in
the images varying from significant vessel structures vis-
ible in the images to small structures on the actual
surfaces that allowa robust tracking.Avalidationmethod
10� 15�

10 mm 20 mm 10 mm 20 mm

0.0146 0.0292 0.0143 0.0287
0.0586 0.1172 0.0378 0.0756

en distance from the image plane and their rays of projection form the

ocations at a later point in the sequence and the final column shows the
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described in (Burschka and Hager, 2004) allows a robust
filtering of reliable features in the set of tracked land-
marks. We need to ensure that the feature position is
stable to ensure an accurate calculation of the camera
ego-motion from the collected image data.

In this case, the features themselves were chosen by
hand rather than automatically as it was the case for
the phantom skull. Manual inspection of the tracking
data shows it to be quite accurate, however, no external
reference validating these tracking results is yet
available.

The experiments on the porcine head reveal that the
type of useful features for tracking depends on the re-
gion where the navigation is performed. Along the nasal
area, useful features seem to be vascular structures that
provide the necessary gradient information to uniquely
define the tracking region over a sequence of images.
In deeper regions of the skull, small surface structures
visible in Fig. 14 provide a good gradient information
for tracking. Finally, the sinus structures themselves de-
fine robust structures to be tracked in the actual sinus
area.

3.3. Localization and mapping subsystem

The system is capable of tracking and reconstruction
of 4–6 point features with 3D structure recovery in
Fig. 15. 3D reconstruction results in camera coordinate frame from two cons
points �+�, ground-truth from OptoTrak �s�.

Fig. 16. The relative displacements of the sparse samples (+), their initial pos
ICP (s). Left is the global view of the sample data for a patch. Right is a c
frame-rate on a Pentium-M processor at 1.2 GHz run-
ning Linux OS. The actual iterative structure calculation
with the reported accuracy of 0.5 mm takes �10 ms on
the above CPU. This is part of the Ego-Motion Estima-
tor depicted in Fig. 4.

3.4. Registration to the CT scan

The experimental validation of our approach is car-
ried out on the setup depicted in Fig. 5. We track the po-
sition of the endoscope with the OptoTrake system in
the background to verify the motion estimation results
from our system.

Fig. 15 shows two reconstruction results from a cam-
era motion of (4.8,0.2,5.2) (mm) with small and large
rotation between the consecutive frames. The resulting
reconstruction errors had a standard deviation of
(0.62,0.3382) for each of the cases. The minimal rota-
tional error expressed as Rodrigues vector was
r = (0.0017,0.0032,0.0004), (�0.0123,�0.0117,�0.0052).
The error in the estimate of the translation vector
was DT = (0.05,�0.398,0.2172)T, (�0.29,0.423�0.4027)T

(mm).
We tested our registration with different reconstruc-

tion results (patches) that were registered to CT skull
images. Because the 3D surface data reconstructed by
a monocular camera may not cover the entire surface
ecutive reconstructions: (left) camera view (middle, right) reconstructed

ition recovered by VGPS (*) and their final position after alignment by
loser look.



Table 2
The accuracy results of ICP

Translation offset range (mm) Rotation offset range (�) Noise level (mm) Average error (mm)

Patch 1 {DX,DY,DZ} = ±10 {Dak2{X,Y,Z}} = ±10 0.5 0.65
Patch 2 {DX,DY,DZ} = ±10 {Dak2{X,Y,Z}} = ±10 0.5 0.48

Patch 1 contains around 2500 triangles, and 100 sample points are used for test. Patch 2 contains around 900 triangles, and 50 sample points are used
for test.
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patch, we were interested in the sensitivity to drop-outs.
We purposely removed parts of the data from the recon-
structed patch. Our experiments with the phantom show
that the ICP can accommodate noise levels in the data
up to 0.6 mm, combined with translational offsets of
up to 10 mm, and rotational offsets within 10�. The vi-
sion-based reconstruction gives us errors an order of
magnitude below these limits.

After ICP alignment the average distance error for
the sample points is around 0.65 mm. By comparison,
the fiducial based registration residual error is around
0.40 mm for four fiducials that are attached to the sur-
face of the skull. However, our method directly tells
the registration error of the target region for the surgery
(see Fig. 16 and Table 2).
4. Conclusions and future work

The presented system performs accurate reconstruc-
tion of 3D surface points based on images from an
endoscopic camera. The points are successfully aligned
with CT scans of our phantom skull in the sinus area.
We plan to enhance the quality of the final registration
using ICP by reconstructing dense surface models
around the points reconstructed from the vision-based
SLAM system. The reconstructed points will be used
as seeds for a dense disparity reconstruction under a
smoothness assumption in the local area around the
point. This increased description of the surface proper-
ties around the reconstructed point promises additional
matching criteria that can be used in the alignment
process.

Our major goal is to more extensively test our system
in different parts of the skull and on other range images
to better evaluate the performance of the system. We are
currently investigating the feature type that can be used
for a robust estimation and tracking of our point fea-
tures in real endonasal images obtained in a preliminary
experiment on an animal cadaver.
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