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Abstract—When there are strategic and malicious users in
a wireless network, the resource allocation is complicated due
to the information limitation about the nature of users and
network parameters. Bayesian games are appropriate tools to
analyze the network resource allocation with heterogeneous
users. We consider a scenario with arbitrary number of
malicious users in the network, in which individual users
gather probabilistic information about the density of malicious
users. Users and the base station observe the network over
a long time period and modify their actions accordingly. The
power allocation in wireless networks which we consider in
this paper, is subject to Quality of Service (QoS) requirements.
We consider Bayesian pricing mechanisms where the prices
are modified using the Bayesian information about types of the
users to satisfy the QoS requirements. We also give detection
methods based on regression learning algorithms which are
used for forming the probability of a user being malicious. The
utilities of the users are formed by observing the power strate-
gies of the users and the anomalies are detected. We obtain
numerically, the Bayesian Nash Equilibrium (BNE) points of
the Bayesian games. We also evaluate the effect of incomplete
information on the satisfaction of the QoS requirements of the
users in the mechanisms. These mechanisms are with prices
which were originally developed for networks with complete
information.

I. INTRODUCTION

There has been an increasing interest to analyse the

security problems using game theory [1]. While allocating

resources to the users the base station or service provider

should ensure QoS requirement of each user even in the

presence of malicious users int the network [2]. The infor-

mation available in the hand of base station for the resource

allocation is limited in most realistic scenarios [3]. The

users are not price anticipating in a distributed network

in which there is an information asymmetry between the

users and the designer. The users do not know the action

and utility function of other users or the nature of pricing

function. Hence, they cannot anticipate the exact impact of
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their action on the pricing function and they just adopt a

best response strategy by taking the price as a constant

given by the designer. The users only report their QoS

requirements and take Best Response(BR) power strategy.

The users in the wireless systems are rational agents in

the game theoretic sense that they aim to maximize their

own utilities. It is possible that the mobiles which share the

same spectrum have incentives to misrepresent their private

information for better utilities. Such private information

includes channel state information (CSI), user preferences

and the nature of users [4]. Therefore to supervise and

influence the operation of the system is an important task

of the system operator [1], [5].

We analyze Bayesian games in which users have a proba-

bilistic distribution over the type of the other users. The util-

ity of a user is a function of the Signal-to-Interference plus

Noise Ratio (SINR) which is a Quality of Service (QoS)

metric in wireless network. The impact of the malicious

behavior in interference limited wireless network with QoS

requirements is quantified within a Bayesian framework [6].

In our work, we develop the distributed power allocation

with individual pricing for the general MAC system without

successive interference cancellation (SIC). The pricing is

given such that the BR power converges to achieve the

QoS requirement of each user and the malicious behavior

of the users is prevented. Each user has a rate-based QoS

requirement, which is guaranteed through the prices in

the non-cooperative game [7]. The work in [3] which

proposed Bayesian mechanisms for net utility maximization

is extended with QoS requirement for the users.

Nowadays the wireless communications and networking

practices are tightly coupled with economic considerations

[8]. Particularly, pricing has been successively applied into

the wireless networks to enforce the system efficiency. The

interference and resource allocation on the physical layer

of the wireless communications can be managed by smart

pricing adaptation [9]. The prices in the wireless system

refer more to the control signal as some virtual currency

in the utility functions of each user [10]. A strategy-proof

pricing mechanism is the one in which with the proper
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price adaptation, no user in the system behave maliciously

to others. We propose malicious behavior resistant Bayesian

mechanisms [11] which have a designer (network) who de-

signs prices based on information expressed. We extend the

work in [12] to an incomplete information case where the

malicious behavior is countered without explicit detection

of malicious users by learning their nature. The designer

knows the probability of malicious user’s existence and

counters them by updating the prices using the probabilistic

information in the pricing mechanism. The additional pric-

ing by the designer and the uncertainty about the nature of

users counter malicious activities.

In mobile networks, Gaussian process regression is used

to model spatial functions or other functions [13]. The

paper [14] utilizes Gaussian process regression learning

techniques to infer general user utilities to maximize the

social welfare by a designer in a mechanism design setting.

In pricing mechanisms, the price taking players are charged

with the appropriate value of Lagrange multiplier which

corresponds to the marginal utility functions of the users.

In [15], the condition for correctly detecting malicious links

in a wireless network is obtained based on the global de-

pendency matrix, which captures the effect of interference

coupling in the system. In this paper, we use regression

learning methods to infer user utilities of the regular and

malicious users by a designer to satisfy the QoS require-

ments. Such learning schemes decrease the communication

requirements considerably and allow usage of successive

scalar bids or actions from the users, even though the users

have infinitely-dimensional utility functions. We apply the

regression learning technique to pricing mechanisms, to

learn the utility function of regular and malicious users

and then the malicious users are detected by observing

the anomalies in utility functions. The detection helps to

develop probability beliefs of each user in the network

being malicious which in turn is used for Bayesian pricing.

The contributions of the paper:

1) In contrast to [7], the users do not know the nature

of other users. They take actions according to proba-

bility beliefs about the types of others but with QoS

requirements.

2) Furthermore, the designer does not know the iden-

tities of the malicious users for determining the

prices. Therefore, the designer acts with Bayesian

information for the implementation of differentiated

pricing.

3) The results in [3] are extended to SINR pricing,

Shannon rate as utility function, QoS requirements

and arbitrary number of malicious users.

4) The designer learns the utility function of regular

and malicious users. Then the malicious users are

detected by observing the anomalies in utility func-

tions.

II. BAYESIAN GAME MODEL

The model we present next is based upon the one in [3]

and is partially repeated here for the sake of completeness.

We denote vectors with block letters. The following Table

I provides the notations and variables used in the paper. At

TABLE I: Table of Notations

Parameter Description
N ;Nm Total number of users; Total number of

malicious users

xi Received power user i in the

pricing game

X The decision space of all users

ui QoS requirement of user i
Ci Payment of user i
γi SINR of user i
Pi Price per unit SINR of user i
Ui Utility of user i
Ji Cost of user i
B Energy cost per unit transmitted power

hi Channel gain of user i
ψs Probability that the other user is malicious

for a regular user

ψm Probability that the other user is regular

for a malicious user

μs(N,Nm) Joint pmf of N and Nm as observed by

regular user

μm(N,Nm) Joint pmf of N and Nm as observed

by malicious user

μd(N,Nm) Joint pmf of N and Nm as observed

by the designer

ψd
i Probability that user i is malicious as

observed by the designer

the center of the mechanism design model is the designer
D who influences N users, denoted by the set A, who

engage in a strategic (noncooperative) game with each

other. These users are autonomous and rational decision

makers, who share and compete for limited resources of

the network under the given constraints of the environment.

Let us define an N -user strategic game, G, where each user

i ∈ A has a respective decision variable xi such that

x = [x1, . . . , xN ] ∈ X
where X ∈ �N is the decision space of all users. Let

x−i = [x1, . . . , xi−1, xi+1, . . . xN ] ∈ X−i,

be the profile of decision variables of users other than ith

user and X−i is the respective decision space. xi is the

received power of user i in the wireless network. Let B be

the set of malicious users with Nm elements and S is the

set of regular users.

Assumption II.1. This paper assumes that the strategy space

X has scalar decision variables, is compact, convex and has
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a nonempty interior.

We consider a CDMA system, for which the received

SINR of a user is given by

γi(x) =
hixi

Ii(x−i)
=

hixi

1

L

∑
j �=i hjxj + σ2

, (1)

where hi is the channel gain, L is the bandwidth and σ2

denotes noise power. L is taken as 1 in the model of [7].

The preferences of the users are captured by utility

functions

Ui(γi(x)) : X → R, ∀i ∈ A.

Assumption II.2. The utility function of the ith user, Ui(x),
is jointly continuous in all its arguments and twice contin-

uously differentiable, non-decreasing and strictly concave

in xi.

The Shannon rates are considered as the utility functions,

i.e.,

Ui(xi, x−i) = log (1 + γi(x)) ∀i ∈ A. (2)

The QoS requirements are satisfied if

Ui(xi, x−i) ≥ ui, ∀i ∈ A. (3)

where ui is the QoS (rate) requirement of user i.

The modified utility function [12] to model malicious

users is obtained by a convex combination of user utilities

Um
i (γi(x)) = Ui(γi(x)) + θi

∑

k∈S

Uk(γk(x)), (4)

where θi is the parameter between -1 and 0. The variable

θ captures the range of behavior of a user from malicious

to selfish. The first term on the right-hand side is the self

utility and the second term captures the malicious goal of

the user. For a malicious user, the variable θ < 0 and is

called degree of maliciousness. We assume that malicious

users do not gain anything by harming each other.

The designer D devises a mechanism, M =
〈 N,Nm,X , J 〉, which is represented by the mapping

M : X → �N , by introducing incentives in the form of

rules and prices to users. J is the set of cost functions of

the users. Let Ci(x) be the total payment by the ith user

to the mechanism.

Assumption II.3. The payment function of the ith user,

Ci(x), is jointly continuous in all its arguments and twice

continuously differentiable, non-decreasing and convex in

xi.

We consider SINR pricing in this paper,

Ci(x) = βiγi(x), ∀ i.

In addition to the price, the users have battery energy cost

for transmission in the uplink of a wireless link. Let a

user spends energy B for transmission per unit of transmit

power.

Now we give the model of the mechanism with an

arbitrary number of regular and malicious users. Let

μm(N,Nm) and μs(N,Nm) be the joint probability mass

function (pmf) of N and Nm as observed by malicious and

regular user respectively. The users do not know the nature

of the users around them and evaluate their costs based on

the pmfs. The cost function of the regular user will be,

Js
i (x

s, xm) =

N∑

Nm=0

μs(N,Nm)(βiγ
s
i (N,Nm) +B

xs
i

hi

− U(γs
i (N,Nm)). (5)

For the symmetric case, when the channel gains of all the

regular users and malicious users are equal to hs and hm

respectively, the SINR of regular users become

γs(N,Nm) =
hsxs

1

L
((N −Nm − 1)hsxs +Nmhmxm) + σ2

where xs and xm are the symmetric power strategies for

selfish and malicious users respectively.

The utility function of malicious user is

Um
i (x) =

N∑

Nm=0

μm(N,Nm) (U(γm
i ) + θiγ

m
i ) .

For the symmetric case,

γm(N,Nm) =
hmxm

1

L
((N −Nm)hsxs + (Nm − 1)hmxm) + σ2

is the SINR of malicious user.

The maliciousness term is the utility function of user i
is replaced in [7] with the SINR of user i. The reason is

that the malicious user affects all the other users with his

SINR. Then the cost function of the malicious user for the

symmetric case with θi = θm, ∀ i is

Jm(x) =

N∑

Nm=0

μm(N,Nm)(α(βγm(N,Nm) +B
xm

hm
)

− U(γm(N,Nm)) + θmγm(N,Nm)), (6)

where αi is the parameter which indicates how much the

malicious user i is sensitive towards the payment. Some

malicious users would like to disrupt the network even by

taking the chance of getting detected and for them α =
0. A malicious user does not gain anything by creating

interference to other malicious users. For this malicious

users need to spend more energy and pay price for the extra

power. Therefore, when two malicious users encounter each

other in the game they have only payment and energy cost.

The Bayesian Nash Equilibrium (BNE) of the bayesian

game is the solution point where no player gains anything

by changing their own strategies. The BNE with heteroge-

neous users can be obtained from the intersection of the

best responses of all users, given by

x∗
i ∈ argmin

xi

Jm
i (xi, x∗−i), ∀ i. (7)
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III. BAYESIAN PRICING GAME ANALYSIS

In this section, we analyse the Bayesian game for which

the model is presented in the previous section. We consider

symmetric assumption where each user believes that other

nodes of same type choose the same strategy. For an arbi-

trary number of malicious users with symmetry assumption,

the cost function of a user, if it is regular, is given in

equation (5) and if malicious, in equation (6). The following

proposition gives the BNE power strategies of the regular

user and the malicious user with Shannon rate utilities.

Proposition III.1. The BNE of the pricing game with
an arbitrary number of malicious users with symmetric
assumption is the solution of the below two equations
subject to xs ≥ 0, xm ≥ 0;

N∑

Nm=0

μs(N,Nm)(γ′ +
B

hs
−

Nmhmxm + Lσ2

γ1 ((N −Nm − 1)hsxs +Nmhmxm + Lσ2)
2 ) = 0,

where γ′ =
βNmhmxm + Lσ2

((N −Nm − 1)hsxs +Nmhmxm + Lσ2)
2

and γ1 = (1 + γm(N,Nm)), and

N∑

Nm=0

μm(N,Nm)L(γ′
θ +

B

hm
−

(N −Nm)hsxs + Lσ2

γ1 ((N −Nm)hsxs + (Nm − 1)hmxm + Lσ2)
2 ) = 0,

where γ′
θ =

(αβ + θm)((N −Nm)hsxs + Lσ2)

((N −Nm)hsxs + (Nm − 1)hmxm + Lσ2)
2 .

Proof: The BR of a regular user is obtained from the

cost function in equation (5). Similarly, the BR of malicious

users is obtained from the equation (6). From the definition

of BNE in (7), we obtain the solution in the proposition.

IV. DIFFERENTIATED PRICING WITH QOS

REQUIREMENTS

In this section, we analyze pricing to satisfy the QoS

requirements at the equilibrium point of the game in the

previous section. Each user reports a QoS (rate) require-

ment ui to the base station. The power allocation to achieve

the QoS requirement ui of each user is proved in [9] as

xU
i =

BN

hi
· 2

ui − 1

2ui
, ∀ i,

where BN = 1∑N
j=1

1

2
uj

−N+1
is a constant for given uj , j =

1, · · · , N .

The individual optimal prices which make the NE xNE

equal to xU are obtained in [7] as

βi =
hi

2ui
, ∀ i. (8)

First we discuss the pricing with complete information and

extend it to Bayesian case later.

A. Differentiated Pricing with Complete Information

The price and NE power allocation, with QoS require-

ment and complete information about the type of users and

identities, are obtained in [7]. With the individual price

βi = αi

2ui
, ∀ i, the Nash equilibrium power allocation

xNE
i (θi) of each user i in the noncooperative game G in

the general MAC system with private type θi is higher than

or equal to xU
i in (8), where

xNE
i (θi, θ−i) =

1− θi − 2−ui

αi

∑N
j=1(2

−uj + θj)−N + 1
, ∀ i. (9)

The resulting rate Ui(θi) is

• Ui(θi) = ui, for selfish users with θi = 0
• Ui(θi) > ui, for malicious users with 0 < θi ≤ 1.

If all the users are selfish, the NE power allocation will be

as in equation (9) but with θi = 0, ∀ i.

In differentiated pricing, the malicious user is punished

with price βm and the selfish user by βs. In the N -

user non-cooperative game G of general MAC system, no

malicious user will have incentive to behave maliciously if

the punishment price [7] βm
i is given by

βm
i ≥ βs

i − θihi, ∀ i. (10)

To implement the pricing the designer need to know the

exact identity of the malicious user here. But this is not

realistic. Therefore, we propose a Bayesian differentiated

pricing in the next section.

B. Bayesian Pricing with QoS Requirements

We assume that to implement Bayesian differentiated

pricing, the designer observes each user in the network and

attach a probability that he is malicious [15]. Let ψd
i be the

probability that user i is malicious and θdi be the estimate

of degree of maliciousness of user i by the designer. Since

it is not realistic to estimate the exact value of the degree of

maliciousness θi by the designer, we assume that he gives

the maximum punishment, i.e., with θdi = −1. Each user’s

Bayesian price according to the probabilities are;

βm
i =

hi

2ui
− ψd

i θ
d
i hi. (11)

We consider also that there may be an error in the esti-

mation of probability by the designer. With the Bayesian

pricing, for the two-users case, the cost of the regular user

becomes

Ji = B
xs
i

hi
+ ψs((βs

i − ψd
i θ

d
i hi)γ

sm
i )

− Ui (γ
sm
i )) + (1− ψs)((βs

i − ψd
i θ

d
i hi)γi(x

s
i , x

s
j)

− Ui

(
γi(x

s
i , x

s
j)
)
), (12)
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and for malicious user

Jm
i = αiB

xm
i

hi
+ ψm(αi(

hi

2ui
− ψd

i θ
d
i hi)γi(x

m
i , xs

j)

− Ui(x
m
i , xs

j)− θiγi(x
m
i , xs

j))

+ (1− ψm)αi(
hi

2ui
− ψd

i θ
d
i hi)γi(x

m
i , xm

j ), (13)

where γsm
i = γi(x

s
i , x

m
j ). The BNE can be obtained from

these cost functions.

In the next Section IV-C, we propose a way of detecting

the malicious users observing the anomalies in the utility

function. For this purpose, the designer learns the utility

functions of all the users from their BR strategies.

In the numerical section, we calculate the BNE numer-

ically with the prices given in equation (11). Then we

compare the Bayesian case, to the complete information

case.

C. Detection and Pricing by Learning Utilities

The designer needs to know the utility functions to find

the prices as in equation (10), in the previous sections.

Also the designer needs to know the identities of the

malicious user. In this section, regression techniques are

used to learn the user private marginal utilities by the

designer. The anomalies in the utility curves are used to

obtain the identities of malicious users with a possible

error and further for implementation of the differentiated

pricing mechanism. The utility function is not assumed to

be Shannon rate here and it can be any concave function.

The users just give their utility requirements ui, ∀ i and

take the best responses.

The regular user optimization problem will be to find the

power level which minimizes his individual cost , i.e.,

min
xi

βiγi − Ui(x),

Consequently, the general condition for player best re-

sponse obtained from first order derivative is

βi
dγi(x)

dxi
− dUi(x)

dγi

dγi(x)

dxi
= 0, ∀ i ∈ A. (14)

Let us denote U ′
i =

dUi

dγi
, ∀ i. Thus,

βi = U ′
i(γ

BR
i ), ∀ i. (15)

First, the designer gives sample values of prices β to

all the users. Then the designer observes the NE xNE and

calculates the SINR at the NE, γNE
i of all the users. With

different values of β, the designer can plot the curve of U ′
i

against γi. For the malicious user,

βi = U ′
i(γ

BR
i )− θi

∑

k∈S

dUk(γk)

dγi
, ∀ i. (16)

The designer will obtain a completely different type of

curve U ′
i for the malicious users. The designer use this

anomaly in the curve for the detection of malicious users

and punish them with higher price.

From the U ′
i curve, the utility function Ui(γi) can be

obtained by integrating. The designer objective is

Ui(x) ≥ ui, ∀ i.

Once the users give their utility requirements ui, ∀ i,
the designer can find the corresponding γi’s which satisfy

the designer objective with equality. The designer uses the

curve obtained above using regression learning for this

purpose. The price which moves the NE to the equality

point can be also calculated.

The detection and pricing is part of the mechanism and

can be implemented online. In addition to the pricing and

channel feedback to different users the base station has

a network security module which detects the malicious

users and update the probability beliefs. The detections

facilitate the designer to update the probability beliefs with

the changing parameters in the wireless network.

V. NUMERICAL RESULTS

We consider an arbitrary number of malicious users out

of N = 10 users in the pricing game in Section III.

The number of malicious users are varied according to

distributions μs(N,Nm) and μm(N,Nm) which are taken

as binomial distribution, i.e. μ(N,Nm) =
(

N
Nm

)
λNm

(1 −
λ)N−Nm

where λ is the binomial parameter. The wireless

parameters are σ = 0.1 and L = 0.01. The malicious

user parameters are θ = −0.5 and α = 0.8. The prices

taken are equal pricing given in equation (8). The utilities

at BNE powers are plotted as a function of probability λ
in binomial distribution belief of regular user, in Figure 1.

The utility requirements are taken as ui = 0.1, ∀ i. We

could observe that the QoS requirement of regular users

are satisfied without malicious users. When there is higher

concentration of malicious users, i.e., when λ increases,

utilities of regular users decrease and the QoS requirement

are violated.

Next the BNE of the pricing game is compared with the

NE of the complete information case, again with the price

as the one in equation (8). We observe that xNE is lesser

for the regular user than xU in the presence of malicious

user.

VI. CONCLUSION

Bayesian mechanisms and learning methods are utilized

to allocate the power in the wireless networks where

malicious users exist. The CDMA system is considered

where each user in the system has an SINR-based QoS

requirement. With partial information about the user behav-

ior, the Bayesian game using pricing is analyzed. Network

with arbitrary number of malicious users is considered

and BNE points are obtained. It is observed that the

BNE points of the pricing game is not unique due to the

nonlinear nonconvex nature of the BRs of the users. The

user misbehavior is detected by learning anomalies in the

utilities and the malicious users are priced higher using

the probabilistic statistic from the detection. Numerically
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arbitrary number of malicious users, as a function of

parameter λ in the binomial distribution.
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complete information case.
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