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Abstract. In this paper we propose a new method for pairwise rigid
point set registration. We pay special attention to noise robustness, out-
lier resistance and global optimal alignment. The problem of registering
two point clouds in space is converted to a minimization of a nonlinear
cost function. We propose a cost function that aims to reduce the impact
of noise and outliers. Its definition is based on the input point sets and is
directly related to the quality of a concrete rigid transform between them.
In order to achieve a global optimal registration, without the need of a
good initial alignment, we develop a new stochastic approach for global
minimization. Tests on a variety of point sets show that the proposed
registration algorithm performs very well on noisy, outlier corrupted and
incomplete data.

1 Introduction and Related Work

Point set registration is a fundamental problem in computational geometry with
applications in the fields of computer vision, computer graphics, image processing
and many others. The problem can be formulated as follows. Given two finite
point sets M = {x1, . . . ,xm} ⊂ R

3 and D = {y1, . . . ,yn} ⊂ R
3 find a mapping

T : R
3 → R

3 such that the point set T (D) = {T (y1), . . . , T (yn)} is optimally
aligned in some sense to M. M is referred to as the model point set (or just
the model) and D is termed the data point set. Points from M and D are
called model points and data points respectively. If T is a rigid transform, i.e.,
T (x) = R(x) + t for a rotation R and a translation t, we have the problem of
rigid point set registration. The problem is especially hard when no initial pose
estimation is available and the data point set is noisy, outlier corrupted and
incomplete.
Point Set Registration. Algorithms for the rigid registration problem belong
to two general classes. One class consists of methods designed to solve the initial
pose estimation problem. These methods compute a (more or less) coarse align-
ment between the point sets without making any assumptions about their initial
position and orientation in space. Johnson and Hebert introduce in their work
[1] local geometric descriptors, called spin images, and use them for pose estima-
tion and object recognition. The presented results are impressive, but no tests
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with noisy or outlier corrupted data are performed. Gelfand et al. [2] develop a
local descriptor which performs well under noisy conditions, but still, defining
robust local descriptors in the presence of significant noise and a great amount
of outliers remains a difficult task. A more recent approach to the initial pose
estimation problem is the 4PCS algorithm introduced by Aiger et al. [3]. It is an
efficient randomized generate-and-test approach: For an appropriate quadruple
B (called a basis) of nearly coplanar points from the model set M, compute
the optimal rigid transform between B and each of the potential bases in the
data set D and choose the optimal one. In order to achieve high probability for
finding the global optimal transform, the procedure is repeated several times for
different bases B ⊂ M. Note, however, that the rigid transform, found by the
algorithm, is optimal only for the two bases (i.e., for eight points). In contrast to
this, the rigid transform we compute is optimal for all points of the input sets,
and thus we expect to achieve higher accuracy than the 4PCS algorithm. This
is further supported by the experimental results in Section 4 of our paper.

Since the accuracy of the pose computed by the above mentioned methods
is insufficient for many applications, an additional pose refinement step needs to
be performed. The pose refining algorithms build the second class of registration
approaches. The most popular one is the Iterative Closest Point (ICP) algorithm.
Since its introduction by Chen and Medioni [4], and Besl and McKay [5], a
variety of improvements have been proposed in the literature. A good summary
as well as new results on acceleration of ICP algorithms has been given by
Rusinkiewicz and Levoy [6]. A major drawback of these ICP variants is that they
assume a good initial guess for the orientation of the data point set (with respect
to the model point set). This orientation is improved in an iterative fashion
until an optimal rigid transform is found. The quality of the solution depends
heavily on the initial guess. Another disadvantage of the methods compared by
Rusinkiewicz and Levoy [6] is that they use local surface features like surface
normals which cannot be computed very reliably in the presence of noise.

The approach we develop is most related to the ones proposed by Mitra
et al. [7] and Pottmann et al. [8]. They also express the registration problem as a
minimization of a cost function. Its definition is based on the distance of the data
points to the surface defined by the model points. For its minimization, however,
a local optimization method is used. This results in the already mentioned strong
dependence on a good initial transform estimation.

Stochastic Optimization. Stochastic optimization has received considerable
attention in the literature over the last three decades. Much of the work has
been devoted to the theory and applications of simulated annealing (SA) as a
minimization technique [9], [10], [11]. A comprehensive overview of this field is
given in [12]. A major property of SA algorithms is their “willingness” to ex-
plore regions around points in search space at which the objective function takes
values greater than the current minimum. This is what makes SA algorithms
able to escape from local minima and makes them suitable for the task of global
minimization. A known drawback of SA algorithms is the fact that they waste
a lot of iterations generating candidate points, evaluating the objective function
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at these points, and finally rejecting them [12]. In order to reduce the number
of rejections, Bilbro and Snyder [13] select candidate points from “promising”
regions of the search space, i.e., from regions in which the objective function is
likely to have low values. They achieve this by adapting a spatial data struc-
ture (an n-dimensional binary tree) to the objective function each time a new
candidate point is accepted. If, however, the current point is not accepted, the
tree remains unchanged. This is—in the case of candidate rejection—a consider-
able waste of computation time, since the information gained by the (expensive)
evaluation of the objective function is not used at all. In contrast to that, our
algorithm adapts the n-dimensional tree at every iteration and thus uses all the
information collected during the minimization.
Contributions and Overview. Our registration algorithm aims to solve the
initial pose estimation problem with a sufficient accuracy, so that no additional
refinement is necessary. Our main contributions are (i) the introduction of a new
noise and outlier resistant cost function and (ii) a new stochastic approach for
its global minimization.

The rest of the paper is organized as follows. In Section 2, we define the task
of aligning two point sets as a nonlinear minimization problem and define our
cost function. In Section 3, we introduce a stochastic approach for global min-
imization. Section 4 presents experimental results obtained by our registration
algorithm. Conclusions are drawn in the final Section 5 of this paper.

2 Registration as a Minimization Problem

Consider we are given a model point set M = {x1, . . . ,xm} ⊂ R
3 and a data

point set D = {y1, . . . ,yn} ⊂ R
3. Suppose we have a continuous function S :

R
3 → R, called the model scalar field, which takes small values when evaluated

at (or near) the model points xj , j ∈ {1, . . . ,m} and increases with increasing
distance between the evaluation point and the closest model point. The model
scalar field S will be precisely defined in Section 2.1. Consider for now it is given
and it has the above mentioned property. Our aim is to find a rigid transform
T : R

3 → R
3 of the form T (x) = R · x + t for a rotation matrix R ∈ R

3×3 and a
translation vector t ∈ R

3 such that the functional

F(T ) =

n∑

i=1

S(T (yi)), yi ∈ D. (1)

gets minimized. This definition of F is based on the following quite natural idea
common for most registration algorithms: We seek a rigid transform that brings
the data points as close as possible to the model points.

2.1 Definition of the Model Scalar Field

Given the model point set M = {x1, . . . ,xm}, we want to have a function S :
R

3 → R which takes its minimal value at the model points, i.e.,

S(xj) = smin ∈ R, ∀j ∈ {1, . . . ,m}, (2)
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and takes greater values for all other points in R
3, i.e.,

S(x) > smin, ∀x ∈ R
3 \ {x1, . . . ,xm}. (3)

Define
dM(x) := min

xj∈M

‖x− xj‖ (4)

to be the distance between a point x ∈ R
3 and the set M, where ‖ · ‖ is the

Euclidean norm in R
n. If we set

S(x) := dM(x), (5)

we get an unsigned distance field which is implicitly used by ICP. It is obvious
that this choice for S fulfills both criteria (2) and (3).

Mitra et al. [7] and Pottmann et al. [8] consider in their work more sophisti-
cated scalar fields. They assume that the model point set M consists of points
sampled from some underlying surface Φ. The scalar field S at a point x ∈ R

3

is defined to be the squared distance from x to Φ. In this context, S is called
the squared distance function to the surface Φ. We refer to [7] for details on
computing the squared distance function and its approximation for point sets.

The version of S given in (5) and the one used by Mitra et al. [7] are both
essentially distance fields. This means that lim‖x‖→∞ S(x) = ∞, i.e., S(x) ap-
proaches to infinity as the point x gets infinitely far from the point set. This has
the practical consequence that a registration technique based on an unbounded
scalar field S will be sensitive to outliers in the data set, because data points
lying far away from the model point set will have great impact on the func-
tional value in Eq. (1) and thus will prevent the minimization algorithm from
converging towards the global optimal alignment.

To avoid this problem we propose to use a bounded scalar field satisfying (2)
and (3) and having the additional property

lim
‖x‖→∞

S(x) = 0. (6)

We set
S(x) := −ϕ (dM(x)) , (7)

where ϕ : R
+ → R

+, for R
+ := {x ∈ R : x ≥ 0}, is a strictly monotonically

decreasing continuous function with

max
x∈R+

ϕ(x) = ϕ(0) and (8)

lim
x→∞

ϕ(x) = 0. (9)

In our implementation we use a rational function of the form 1/(1+αx2) because
it is computationally efficient to evaluate and can be controlled by a single
parameter α. This results in the following scalar field:

SM

α (x) = −
1

1 + α (dM(x))
2
, α > 0. (10)
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It is easy to see that (2), (3) and (6) hold. Different α’s in Eq. (10) lead to
different scalar fields. The greater the value the faster SM

α (x) convergences to
zero as ‖x‖ → ∞. In the next Section, we will discuss how to choose a suitable
value for α.

2.2 Cost Function Definition

At the beginning of Section 2, we formulated the rigid point set registration
problem as a functional minimization problem: Minimize F (see Eq. (1)) over
the set of rigid transforms. We convert F to a real-valued scalar field F : R

6 → R

of the form

F (θ, φ, ψ, x, y, z) =

n∑

i=1

SM

α (Rθ,φ,ψ · yi + (x, y, z)), (11)

for the data points y1, . . . ,yn and for SM

α defined in Eq. (10). Rθ,φ,ψ is a rotation
matrix describing a rotation by θ about the x-axis, followed by a rotation by
φ about the y-axis and a rotation by ψ about the z-axis. A global minimizer
x∗ ∈ R

6 of F defines a rigid transform that brings the data points as close as
possible to the model points.

What makes the proposed cost function robust to outliers is the fact, that
outlier data points have a marginal contribution to the sum in Eq. (11). More
precisely, given a positive real number d, we can compute a value for α, such
that |SM

α (x)| is less than an arbitrary δ > 0, if dM(x) > d holds. In this way the
contribution of an outlier point to the sum in Eq. (11) can be made arbitrary
close to zero, hence F behaves like an outlier rejector. Too large values for
α, however, will lead to the rejection of data points which do not have exact
counterparts in the model set, but still are not outliers. In our implementation we
set d = 1

5
diag(BB(M)) and δ = 0.1, where diag(BB(M)) denotes the diagonal

length of the axis-aligned minimum bounding box of the model point set. Using
the absolute value of the right side of Eq. (10) and solving for α yields

α =
1 − δ

δd2
. (12)

The cost function given in (11) is nonlinear and nonconvex. This results in a
great number of local minima of F over the search space. Using a local optimiza-
tion procedure—common for the most registration methods in the literature—
will lead in most cases to a local minimizer of F and thus will not give the best
alignment between model and data.

We employ a new stochastic approach for global minimization, described in
the next Section of this paper. We seek the global minimum of F over the search
space

X := [−π/2, π/2]× [−π, π] × [−π, π] ×BB(M), (13)

where BB(M) denotes the axis-aligned minimum bounding box of the model
point set. The first three intervals in (13) build the search space for the rotational
part and the bounding box for the translational part of the rigid transform.
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3 Adaptive Search for Global Minimization

Our stochastic minimization approach is inspired by the work of Bilbro and
Snyder [13]. The algorithm shares two properties with the one presented in [13]:
(i) we use the same data structure (an n-dimensional binary tree) to represent
the search space and (ii) we adapt the tree during the minimization process to
the objective function. In contrast to [13], where the tree is updated only when a
new candidate point is accepted, we update it at every iteration, so we use all the
information gained by the evaluation of the objective function. This apparently
minor modification leads to a rather different algorithm (than [13]) and enables
a faster rejection of regions in which the objective function is likely to have high
(i.e., poor) values and thus speeds up the convergence.

3.1 Problem Definition

We call a set X ⊂ R
n an n-dimensional (or n-d) box if there are n intervals

[ai, bi] ⊂ R such that

X = [a0, b0] × . . .× [an−1, bn−1]. (14)

Given an n-dimensional box X and a bounded continuous function f : X → R

our aim is to find an x∗ ∈ X with f(x∗) ≤ f(x) for all x ∈ X.

3.2 Overall Algorithm Description

We use an n-dimensional binary tree to represent the search space X. The root
η0
0 is at the 0th level of the tree and represents the whole box X0 := X. η0

0 has
two children η1

00 and η1
01, which are at the next level of the tree. They represent

the n-d boxes X00 respectively X01 resulting from bisecting the 0th interval (this
is [a0, b0] in (14)) of X0 and assigning the first half to X01 and the second half to
X11. In general, a node ηks (where k ≥ 0 and s is a binary string of length k+1)
is at the kth level of the tree and has two children ηk+1

s0 and ηk+1

s1 which are at
the next, (k+1)th, level. The child nodes represent the same n-d box as the one
represented by ηks (this is Xs) except for that the (k mod n)th interval of Xs is
bisected and the first and second half is assigned to ηk+1

s0 and ηk+1

s1 respectively.
During the minimization the tree is built in an iterative fashion beginning

with the root. The algorithm adds more resolution to promising regions in the
search space, i.e., the tree is built with greater detail in the vicinity of points in
X at which the objective function has low values. The overall procedure can be
outlined as follows:

1. Initialize the tree (see Section 3.3) and set an iteration counter j := 0.
2. Select a “promising” leaf according to a probabilistic selection scheme (see Sec-

tion 3.4).
3. Expand the tree by bisecting the selected leaf. This results in the creation of two

new child nodes. Evaluate the objective function at a point which is uniformly
sampled within the n-d box of one of the two children (see Section 3.5).

4. If a stopping criterion is not met, increment the iteration counter j and go to step
2, otherwise terminate the algorithm (see Section 3.6).
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3.3 Initializing the Tree

For every tree node ηks the following items are stored: (i) an n-d box Xs ⊂ X

and (ii) a pair (xs, f(xs)) consisting of a point xs, randomly selected from Xs,
and the corresponding function value f(xs). The tree is initialized by storing the
bounds of the whole search space X and a pair (x0, f(x0)) in the root.

3.4 Selecting a Leaf

At every iteration the search for a global minimum begins at the root and pro-
ceeds down the tree until a leaf (node without children) is reached. In order to
reach a leaf, we have to choose a concrete path from the root down to this leaf.
At each node, we have to decide, whether to take its left or right child as the
next station. This decision is made probabilistically. For every node two numbers
p0, p1 ∈ (0, 1) are computed in a way that p0 + p1 = 1. Arriving at a node, we
choose to descend via either its left or right child with probability p0 respectively
p1. We make these left/right decisions until we encounter a leaf.
Computing the Probabilities. The idea is to compute the probabilities in
a way, that the “better” child, i.e., the one with the lower function value, has
greater chance to be selected. We compute p0 and p1 for each node ηks based
on the function values associated with its children ηk+1

s0 and ηk+1

s1 . Let fs0 and
fs1 be the function values associated with ηk+1

s0 respectively ηk+1
s1 . The following

criterion should be fulfilled:

fs0 < fs1 ⇔ p0 > p1. (15)

For fs0 < fs1 we set

p0 = (t+ 1)/(1 + 2t), p1 = t/(1 + 2t), (16)

for a parameter t ≥ 0. For t → ∞ we get p0 = p1 = 1

2
and our minimization

algorithm becomes a pure random search. Setting t = 0 results in p0 = 1 and
p1 = 0 and makes the algorithm deterministically choosing the “better” child
of every node, which leads to the exclusion of a great portion of the search
space and in general prevents the algorithm from finding a global minimum. For
fs1 < fs0 we set

p0 = t/(1 + 2t), p1 = (t+ 1)/(1 + 2t). (17)

Updating the Probabilities. From the discussion above it becomes evident
that t should be chosen from the interval (0,∞). For our algorithm the parame-
ter t plays a similar role as the temperature parameter for a simulated annealing
algorithm [9], so we will refer to t as temperature as well. Like in simulated an-
nealing, the search begins on a high temperature level (large t), so the algorithm
samples the cost function quite uniformly. The temperature is decreased gradu-
ally during the search process, so that promising regions of the search space are
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explored in greater detail. More precisely, we update t according to the following
cooling schedule:

t = tmax exp(−vj). (18)

j ∈ N is the current iteration number, tmax > 0 is the temperature at the begin-
ning of the search (for j = 0) and v > 0 is the cooling speed which determines
how fast the temperature decreases.

3.5 Expanding the Tree

After reaching a leaf ηks , the n-d box Xs associated with it gets bisected in the
way described at the beginning of Section 3.2. This results in the creation of
two n-d boxes Xs0 and Xs1 associated with two new children ηk+1

s0 and ηk+1

s1

respectively. In this way, we add more resolution in this region of the search
space. Next, we evaluate the new children, i.e., we assign to the left and right
one a pair (xs0, f(xs0)) and (xs1, f(xs1)) respectively.

Note that the parent node ηks stores a pair (xs, f(xs)). Since we have Xs =
Xs0 ∪Xs1 and Xs0 ∩Xs1 = ∅ it follows that xs is contained either in Xs0 or in
Xs1. Thus we set

(xs0, f(xs0)) := (xs, f(xs)) if xs ∈ Xs0 or (19)

(xs1, f(xs1)) := (xs, f(xs)) if xs ∈ Xs1. (20)

To compute the other pair we sample a point uniformly over the appropriate n-d
box (Xs0 or Xs1) and evaluate the function at this point.
Updating the Tree. During the search we want to compute the random paths
from the root down to a certain leaf such that promising regions—leafs with low
function values—are visited more often than non-promising ones. Thus, after
evaluating a new created leaf, we propagate its (possibly very low) function value
as close as possible to the root. This is done by the following updating procedure.
Suppose that the parent point xs is contained in the set Xs1 belonging to the
new created child ηk+1

s1 . Therefore, we randomly generate xs0 ∈ Xs0, compute
f(xs0) and assign the pair (xs0, f(xs0)) to the other child ηk+1

s0 . Updating the tree
consists of ascending from ηk+1

s0 (via its ancestors) to the root and comparing
at every parent node ηju the function value f(xs0) with the function value of
ηju, i.e., with f(xu). If f(xs0) < f(xu) we update the current node by setting
(xu, f(xu)) := (xs0, f(xs0)) and proceed to the parent of ηju. The updating
procedure terminates if we reach the root or no improvement for the current
node is possible, i.e., if f(xs0) ≥ f(xu).

Note that if f(xs0) is the lowest function value found so far, it will be
propagated to the root, otherwise it will be propagated only to a certain level
l ∈ {1, . . . , k + 1}. This means, that every node contains the minimum function
value (and the point at which f takes this value) found in the n-d box associated
with this node. Since the root represents the whole search space, it contains the
point we are interested in, namely the point at which f takes the lowest value
found up to the current iteration.
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Fig. 1. (a) The bunny model point set. Although it is shown as a mesh, no surface
information is used for registration. (b) The data point set without outliers. Note that
the data set is incomplete and very sparsely sampled (compared to the model). (c)–(e)
Contaminated data point sets. The number of outliers as percentage of the original
number of points are shown below each figure. Note that local descriptors, like spin
images [1] or integral invariants [2], are very difficult to compute for such sparsely
sampled and outlier corrupted point sets.

Fig. 2. The dragon model and data sets. Although all of them are shown as meshes,
only points are used for registration. (a) The dragon model. (b) Noiseless data set.
Note that it has a lower level of detail compared to the model and parts of the dragon
are missing. (c)–(e) Data point sets corrupted by zero-mean additive Gaussian noise
with variance σ which is expressed in percentage of the bounding box diagonal length
of the noiseless data set. Again, computing reliable local descriptors for the point sets
(d) and (e) is a very challenging task.

3.6 Stopping rule

We break the search, if for the last N iterations the absolute difference between
the last sample of the objective function and the sample before is less than a
predefined ǫ > 0.

4 Experimental Results

In this Section, we test our registration method on several point sets. Since the
algorithm is a probabilistic one, it computes each time a (slightly) different result.
In order to make a statistical meaningful statement about its performance, we
run 100 registration trials for every pair of inputs. We measure the success rate
and the accuracy of the algorithm under varying amount of noise and outliers in
the data point sets. The success rate gives the percentage of registration trials in
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Fig. 3. (Upper row) Typical registration results for the incomplete and outlier cor-
rupted data point sets shown in Fig. 1. The amount of outliers is indicated below the
corresponding figure. (Lower row) Typical registration results for the incomplete and
noise contaminated data point sets shown in Fig. 2. The value for σ of the Gaussian
noise added to the data point sets is shown below each figure.

which a transform which is close to the global optimal one is found. The accuracy
is measured using the RMS error between the point sets after alignment [2]. The
type of noise added to some of the data sets is Gaussian and the outliers are
simulated by drawing points from a uniform distribution within the bounding
box of the corresponding data set. We also measure the number of cost function
evaluations and the computation time for varying cooling speed v (defined in
(18)). In the following, we describe each test scenario in detail.

First, we use our algorithm to register four data point sets to a noiseless model
of the Stanford bunny. The data sets are at a lower level of detail (compared to
the model), contain only parts of the bunny and three of them are contaminated
by a significant amount of outliers (see Fig. 1). We examine each of the 100
registration results. The upper row in Fig. 3 shows exemplary one result for
each data point set.

In the second test case, we register several versions of the Stanford dragon
under varying noisy conditions. We use a noiseless point set as the model. The
data sets have lower resolution, do not contain all parts of the dragon and three
of them are corrupted by Gaussian noise (see Fig. 2). As in the bunny test case,
we inspect all registration results. Four of them are shown in the lower row in
Fig. 3.

We compute the success rate and the mean RMS error based on all 800
registration results in the bunny and in the dragon test cases. For comparison,
we show how the newly proposed 4PCS registration algorithm [3] performs under
similar conditions. Note that 4PCS has been tested on different point sets, so an
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Fig. 4. Success rate and mean RMS error computed from the registration results in
the bunny test case (a), (b) and in the dragon test case (c), (d). In (a) and (b) the
success rate and the mean RMS error are shown as a function of the number of outliers,
whereas in (c) and (d) they are a function of σ of Gaussian noise. In (b) and (d), we
compare the accuracy of our method with the accuracy of the 4PCS algorithm [3]. One
RMS error unit equals 1% of the bounding box diagonal length of the data point set.

Fig. 5. Success rate (a), mean RMS error (b), mean number of cost function evaluations
(c) and mean computation time (d) of our registration algorithm as a function of the
cooling speed v. All tests presented in this paper run on a low-cost computer with a
2.2 GHz CPU. For all registration trials we set tmax = 40 (see Eq. (18)). Model and
data set are copies of the point set shown in Fig. 1(b). One RMS error unit equals 1%
of the bounding box diagonal length of the point set.

exact comparison is not possible. In Fig. 4, we plot our results together with the
ones reported in [3]. Observe that the success rate of our algorithm is immune
against outliers and shows low sensitivity to noise. For outlier corrupted point
sets, the 4PCS algorithm is apparently more accurate than ours (see Fig. 4(b)).
Note, however, that Aiger et al. [3] add outliers to both data and model set.
Thus, outliers from both point sets are close to each other and contribute little
to the RMS error. In contrast to this, we corrupt only the data point set, so its
outliers do not have close counterparts in the model point set, hence we get a
greater RMS error. According to Fig. 4(d), our method is far more accurate on
noisy point sets than the 4PCS algorithm.

Finally, we measure the performance of our algorithm for varying cooling
speed v. We report the results in Fig. 5. Our algorithm achieves a success rate of
100% and a mean RMS error less than 0.5 for 6.5 seconds. For comparison, the
best success rate (for similar point sets) achieved by the registration algorithms
studied in [8] is 15.951% (see last column of Table 3 in [8]).
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5 Conclusions

In this paper we introduced a new technique for pairwise rigid registration of
point sets. Our method is based on a noise robust and outlier resistant cost func-
tion and on a new stochastic approach for global minimization. Characteristic
to the proposed algorithm is (i) that it does not rely on an initial estimation of
the globally optimal rigid transform and (ii) that it has low sensitivity to out-
liers, noise and missing data. Both claims were further supported by a variety
of experiments on noisy, outlier corrupted and incomplete point sets.
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2013 under grant agreement 215821 (GRASP project).
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