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Abstract—We study secure communication in which a trans-
mitter wants to send confidential messages to an arbitrary num-
ber of receivers in the presence of an external eavesdropper. We
consider two classes of Gaussian channels: the Gaussian single-
input single-output (SISO) multi-receiver wiretap channel and
the degraded Gaussian multiple-input multiple-output (MIMO)
multi-receiver wiretap channel. These two channels belong to the
class of degraded multi-receiver wiretap channels. In previous
literature the secrecy capacity regions of these two channels
were established under the conservative joint secrecy constraint.
Thus, we focus our work on the less conservative individual
secrecy constraint, which is characterized by a higher throughput.
We establish the individual secrecy capacity region for these
two cases. The achievability follows from the individual secrecy
capacity established for the discrete memoryless degraded wiretap
channels where coding is performed using Gaussian signals. On
the other hand, the converse is established by adapting the
techniques used for formulating the joint secrecy capacity region
to the individual secrecy constraint.

I. INTRODUCTION

The wireless medium is characterized by an open nature
that allows transmitted signals to be received not only by le-
gitimate receivers but eavesdroppers as well. To overcome this
problem, physical or higher layer secrecy techniques are used.
Recently, physical layer security, also known as information
theoretic security, is becoming more attractive because it is not
based on any assumptions regarding the computational power
of the eavesdroppers. Information theoretic security was first
introduced by Shannon in [1], where secure communication
was achieved using a secret key shared between the transmitter
and the receiver. In [2], Wyner studied the degraded wiretap
channel and proved that secure transmission is still achievable
in the absence of a secret key by exploiting the noisiness of
the channel. In [3], this result was extended to the Gaussian
scalar wiretap channel.

Recently, the problem of secure communication in wiretap
channels with more than one legitimate receiver has captured
a lot of attention. Researchers found it very challenging to
establish the secrecy capacity for the general multi-receiver
wiretap channel, but they managed to solve different special
cases. In [4], the degraded two-receiver wiretap channel was
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investigated, where the authors succeeded in establishing the
secrecy capacity. This result played an important role in
establishing the secrecy capacity for the Gaussian SISO two-
receiver wiretap channel [5] and the degraded Gaussian MIMO
two-receiver wiretap channel [6]. In [7], the secrecy capacity
of the degraded wiretap channel with arbitrary number of
receivers was established. Finally, in [5], the secrecy capacities
for both Gaussian SISO and MIMO (not necessarily degraded)
multi-receiver wiretap channel were formulated. However, all
these works only considered the conservative joint secrecy
criterion.

In [8], the degraded multi-receiver wiretap BC was inves-
tigated under the less conservative secrecy constraint known
as the individual secrecy. This criterion was addressed by
the wiretap multiple access channels in [9] and the wiretap
broadcast channel with receiver side information in [10, 11],
where it was shown that under the individual secrecy con-
straint, we have a larger secrecy capacity region by using the
available side information to apply secret key encoding. In [8],
the individual secrecy capacity region of the degraded multi-
receiver wiretap channel was established. This result was also
extended to the two-receiver Gaussian SISO wiretap channel.
In this paper, we will use this result to formulate the individual
secrecy capacity region of the Gaussian SISO and degraded
MIMO multi-receiver wiretap channels.

This paper is organized as follows: In Section II, we
describe the model of the degraded multi-receiver wiretap
channel and explain the differences between joint and indi-
vidual secrecy. In Section III, we present a detailed proof
for the individual secrecy capacity of the Gaussian SISO
multi-receiver wiretap channel. In Section IV, we establish the
individual secrecy capacity of the degraded Gaussian MIMO
multi-receiver wiretap channel by adapting the technique used
for the SISO case to the vector nature of the MIMO channel.

II. DEGRADED MULTI-RECEIVER WIRETAP CHANNEL

The degraded multi-receiver wiretap channel consists of a
transmitter with an input alphabet X , k legitimate receivers
with output alphabets Yj ,1 and an external eavesdropper with
output alphabet Z , such that the following Markov chain holds

X−Y1 −Y2 − · · ·−Yk − Z. (1)

1Through the whole paper j is taken to be in J1, kK, unless stated otherwise.
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We consider the standard model of a block code of arbitrary
but fixed length n with input and output sequences xn, ynj and
zn.

Definition 1. A (2nR1 , . . . , 2nRk , n) code Cn for the degraded
multi-receiver wiretap channel consists of: k independent
message sets Mj = J1, 2nRj K, a source of local randomness
R, an encoding function at the transmitter

E :M1 × · · · ×Mk ×R → Xn,

which maps the k confidential messages (m1, . . . ,mk) ∈
M1 × · · · × Mk and a realization of the local randomness
r ∈ R to a codeword xn(m1, . . . ,mk, r), and k decoders

ϕj : Yn
j →Mj ∪ {?},

that maps each channel observation at the respective receiver
to the corresponding required message or an error message.

We assume that the messages M1, . . . , Mk are chosen
uniformly at random. The reliability performance of Cn is
measured in terms of its average probability of error

Pe(Cn) ,P
[
M̂1 6= M1 or . . . or M̂k 6= Mk

]
, (2)

where M̂j is the estimated message at the jth legitimate
receiver. One of the main properties of the degraded multi-
receiver wiretap channel is that each legitimate receiver is not
only capable of decoding its own message, but it can also
decode the messages of the receivers degraded from it. This
property is one of the consequences of the Markov chain in
(1), which indicates that the channel of Yj is better than that
of Yj+1.

The secrecy performance of the code that assures the
ignorance of the eavesdropper about the confidential messages,
can be measured with respect to two different secrecy criteria.

1. Joint Secrecy: This criterion requires the mutual leak-
age of the confidential messages to the eavesdropper to be
small. This condition can be formulated as follows:

LJ(Cn) , I(M1, . . . ,Mk; Zn) ≤ τn (3)

This definition also implies that:

k∑
j=1

I(Mj ; Zn|Mj+1, . . . ,Mk) ≤ τn. (4)

2. Individual Secrecy: This criterion requires the sum
of individual leakages of each confidential message to the
eavesdropper to be small. This requirement can be expressed
as follows:

LI(Cn) ,
k∑

j=1

I(Mj ; Zn) ≤ τn. (5)

The selection among the previous two secrecy criteria is a
trade-off between the degree of secrecy and the maximum
achievable rate region. The joint secrecy criterion is a conser-
vative secrecy constraint, where the legitimate receivers do not
trust each other, so it guarantees that the confidential message
of each receiver is secure, even if the confidential messages
of the other receivers were revealed to the eavesdropper. On
the other hand, the individual secrecy criterion is a relaxed
secrecy constraint that is based on the mutual trust between the

legitimate receivers. This implies that the individual secrecy
achievable rate region is bigger than the joint one [8].

Definition 2. A rate tuple (R1, . . . , Rk) ∈ Rk
+ is achievable

for the multi-receiver wiretap channel, if there exists a se-
quence of (2nR1 , . . . , 2nRk , n) codes Cn and two sequences
εn and τn, where limn→∞ εn, τn = 0 such that, for n is large
enough, the following holds:

Pe(Cn) ≤ εn and L(Cn) ≤ τn. (6)

Depending on the selected secrecy criteria, L(Cn) is given by
(3) or (5).

Theorem 1. [8] The individual secrecy capacity region of the
degraded multi-receiver wiretap channel is given by the union
of all rate tuples (R1, . . . , Rk) ∈ Rk

+ that satisfy

Rj ≤ I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) +

k∑
l=j+1

Rl (7a)

Rj ≤ I(Uj ; Yj |Uj+1) + I(Uj+1; Z) (7b)
k∑

l=j

Rl ≤
k∑

l=j

I(Ul; Yl|Ul+1) (7c)

where U1 = X, Uk+1 = ∅ and the union runs over all ran-
dom variables (Uk, . . . ,U2,X) such that, Uk − · · · − U2 −
X−Y1 −Y2 − · · ·−Yk − Z forms a Markov chain.

Evaluating the capacity for a certain degraded multi-
receiver wiretap channel is equivalent to finding the optimal
joint distribution of (X,U2, . . . ,Uk) for this channel that
satisfy the Markov chain in (1) and trace the boundary of the
region in (7).

III. GAUSSIAN SISO MULTI-RECEIVER WIRETAP
CHANNEL

In this section, we will establish the individual secrecy
capacity region of the Gaussian SISO multi-receiver wiretap
channel. This result generalizes the one in [8], where the
individual secrecy capacity region of the Gaussian SISO two-
receiver wiretap channel was established. We define the Gaus-
sian SISO multi-receiver wiretap channel as:

Yj = X + Nj (8a)
Z = X + NZ , (8b)

where the channel input X is subject to a power constraint
E[X2] ≤ P . The Nj and NZ are zero-mean Gaussian random
variables, whose variances are given by σ2

j and σ2
Z respec-

tively.
The Gaussian SISO multi-receiver wiretap channel belongs

to the class of degraded wiretap channels, where the variances
(power) of the Gaussian noises Nj and NZ define the de-
gradedness order of the channel. In [8], it was showed that
the capacity region in (7) establishes the individual secrecy
capacity of any degraded wiretap channel regardless of the
degradedness order of the eavesdropper. This implies that
Theorem 1 can be used to derive the individual secrecy
capacity of the Gaussian SISO multi-receiver wiretap channel.
However, we will assume without loss of generality that the
variances of the Gaussian noises satisfy the following order:

σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
k ≤ σ2

Z . (9)
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Theorem 2. The individual secrecy capacity region of the
Gaussian SISO multi-receiver wiretap channel is given by the
union of all rate tuples (R1, . . . , Rk) ∈ Rk

+ that satisfy

Rj ≤f

(
αjP∑j−1

i=1 αiP + σ2
j

)
− f

(
αjP∑j−1

i=1 αiP + σ2
Z

)

+

k∑
l=j+1

Rl (10a)

Rj ≤f

(
αjP∑j−1

i=1 αiP + σ2
j

)
+ f

( ∑k
i=j+1 αiP∑j

i=1 αiP + σ2
Z

)
(10b)

k∑
l=j

Rl ≤
k∑

l=j

f

(
αlP∑l−1

i=1 αiP + σ2
l

)
(10c)

where f(x) = 1
2 log(1 + x) and the union is taken over all

values of αj ∈ [0, 1] such that
∑k

i=1 αi ≤ 1.

Proof: The previous region is achieved by choosing Uj =
Uj+1 + Vj , where the Vj are independent Gaussian random
variables with variance αj and Uk+1 = 0. This means that each
Vj contains information about the confidential message Mj

and a part of the local randomness Rj that is used to confuse
the eavesdropper in this layer. The decoder at a certain receiver
Yi, where i ∈ J1, kK, can decode all Vj for j ≥ i because of
the order of the variances of the Gaussian noises in (9), while
handling the remaining Vj for j < i as an interference noise.
The previous coding structure implies that, (Uk, . . . ,U2,X)
are characterized by a joint Gaussian distribution.
Before we jump to the converse part of the theorem, we need
to highlight the following proposition.

Proposition 1. For the Gaussian SISO multi-receiver wiretap
channel defined in (8), where E[X2] ≤ P and the variances of
the Gaussian noises satisfy the order in (9), if

I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) ≤

f

(
αjP∑j−1

i=1 αiP + σ2
j

)
− f

(
αjP∑j−1

i=1 αiP + σ2
Z

)
, (11)

where Uk+1 = ∅, Uk−· · ·−U2−X−Y1 −Y2 − · · ·−Yk−
Z forms a Markov chain and

∑k
i=1 αi = 1, then E[U2

j ] ≤∑k
i=j αiP .

Proof of Proposition 1: We start by Uk and assume that
Uk is a Gaussian random variable such that, E[U2

k] = (αk +
γ)P . If we let X = Uk + V̄k, where V̄k is a Gaussian random
vector independent from Uk, we have

I(Uk; Yk)−I(Uk; Z) = f

(
(αk+γ)P

(
∑k−1

i=1 αi−γ)P+σ2
k

)

− f

(
(αk+γ)P

(
∑k−1

i=1 αi−γ)P+σ2
Z

)
. (12)

This conditions contradicts the one in (11) at j = k, unless
γ ≤ 0 which consequently implies that E[U2

k] ≤ αkP .
Now, following the same steps, we can show that E[U2

j ] ≤∑k
i=j αiP .

Now, we are ready to present our converse. We start with
the bound in (7a) and consider the kth user first. We have

Rk ≤ I(Uk; Yk)− I(Uk; Z)
(a)
=
[
I(X; Yk)−I(X; Z)

]
−
[
I(X; Yk|Uk)−I(X; Z|Uk)

]
(b)

≤
[
f

(
P

σ2
k

)
−f
(
P

σ2
Z

)]
−
[
I(X; Yk|Uk)−I(X; Z|Uk

]
(c)
=

[
f

(
P

σ2
k

)
−f
(
P

σ2
Z

)]
−
[
f

(
ᾱkP

σ2
k

)
−f
(
ᾱkP

σ2
Z

)]
(d)
= f

(
αkP∑k−1

i=1 αiP+σ2
k

)
−f

(
αkP∑k−1

i=1 αiP+σ2
Z

)
, (13)

where (a) follows by using the chain rule and the Markov
chain Uk−X−(Yk,Z); (b) follows because I(X; Yk)−I(X; Z)
is maximized by a Gaussian X [3]; (c) follows because 0 ≤
I(X; Yk|Uk)−I(X; Z|Uk) ≤ f(P/σ2

k)−f(P/σ2
Z), which im-

plies that for any pair (Uk,X), there exists an ᾱk ∈ [0, 1] such
that, I(X; Yk|Uk)−I(X; Z|Uk) = f(ᾱkP/σ

2
k)−f(ᾱkP/σ

2
Z);

and (d) follows by letting αk = 1 − ᾱk and ᾱk =
∑k−1

i=1 αi.
Now, we consider the (k − 1)th user under the same bound,
we have

Rk−1 ≤ I(Uk−1; Yk−1|Uk)− I(Uk−1; Z|Uk) +Rk

(a)
=
[
I(X; Yk−1|Uk)−I(X; Z|Uk)

]
−
[
I(X; Yk−1|Uk−1)−I(X; Z|Uk−1)

]
+Rk

(b)

≤
[
f

(
ᾱkP

σ2
k−1

)
−f
(
ᾱkP

σ2
Z

)]
−
[
I(X; Yk−1|Uk−1)−I(X; Z|Uk−1

]
+Rk

(c)
=

[
f

(
ᾱkP

σ2
k−1

)
− f

(
ᾱkP

σ2
Z

)]
−
[
f

(
ᾱk−1P

σ2
k

)
−f
(
ᾱk−1P

σ2
Z

)]
+Rk

(d)
= f

(
αk−1P∑k−2

i=1 αiP+σ2
k

)
−f

(
αk−1P∑k−2

i=1 αiP+σ2
Z

)
+Rk,

(14)

where (a) follows by using the chain rule and the Markov
chain Uk−Uk−1−X− (Yk−1,Z); (b) follows because under
the constraint I(X; Yk|Uk) − I(X; Z|Uk) = f(ᾱkP/σ

2
k) −

f(ᾱkP/σ
2
Z), the expression I(X; Yk−1|Uk) − I(X; Z|Uk) is

maximized by a joint Gaussian distribution on the pair
(Uk,X) [5]; (c) follows because 0 ≤ I(X; Yk−1|Uk−1) −
I(X; Z|Uk−1) ≤ f(ᾱkP/σ

2
k−1) − f(ᾱkP/σ

2
Z), which im-

plies that for any triple (Uk,Uk−1,X), there exists an
ᾱk−1 ∈ [0, ᾱk] such that, I(X; Yk−1|Uk−1)− I(X; Z|Uk−1) =
f(ᾱk−1P/σ

2
k−1)− f(ᾱk−1P/σ

2
Z); and (d) follows by letting

αk−1 = ᾱk − ᾱk−1 and ᾱk−1 =
∑k−2

i=1 αi.
Now, if we apply the same steps in (14) to the remaining users,
we can show that the bound in (10a) holds. These calculations
establish two additional constraints: the first is

∑k
i=1 αi = 1,

while the second is the bound in (11), which implies that
E[U2

j ] ≤
∑k

i=j αiP . We now consider the bound in (7b) as
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follows:

Rj ≤ I(Uj ; Yj |Uj+1) + I(Uj+1; Z)
(a)
= I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) + I(Uj ; Z)

(b)

≤ f

(
αjP∑j−1

i=1 αiP+σ2
j

)
−f

(
αjP∑j−1

i=1 αiP+σ2
Z

)
+ I(Uj ; Z)

(c)

≤ f

(
αjP∑j−1

i=1 αiP+σ2
j

)
−f

(
αjP∑j−1

i=1 αiP+σ2
Z

)

+ f

( ∑k
i=j αiP∑j−1

i=1 αiP + σ2
Z

)

= f

(
αjP∑j−1

i=1 αiP+σ2
j

)
+f

( ∑k
i=j+1 αiP∑j

i=1 αiP+σ2
Z

)
, (15)

where (a) follows by using the chain rule and the Markov
chain Uj+1 − Uj − Z; (b) follows by the same steps used
to establish (10a) and (c) follows because under the power
constraint on Uj and X, in addition to the Markov chain Uj−
X−Z, I(Uj ; Z) is maximized by a joint Gaussian distribution
on the pair (Uj ,X). Finally, we consider the bound in (7c),
for which we have
k∑

l=j

Rl ≤
k∑

l=j

I(Ul; Yl|Ul+1)

(a)
=

k∑
l=j

[
I(Ul; Yl|Ul+1)− I(Ul; Z|Ul+1)

]
+ I(Uj ; Z)

(b)

≤
k∑

l=j

[
f

(
αlP∑l−1

i=1 αiP+σ2
l

)
−f

(
αlP∑l−1

i=1 αiP+σ2
Z

)]
+ I(Uj ; Z)

(c)

≤
k∑

l=j

[
f

(
αlP∑l−1

i=1 αiP+σ2
l

)
−f

(
αlP∑l−1

i=1 αiP+σ2
Z

)]

+ f

( ∑k
i=j αiP∑j−1

i=1 αiP + σ2
Z

)

=

k∑
l=j

f

(
αlP∑l−1

i=1 αiP + σ2
l

)
, (16)

where (a) follows by using the chain rule and the Markov
chain Uk − Uk−1 − · · · − Uj − Z; while (b) and (c) follows
as in (15). Now, our converse is complete.

IV. DEGRADED GAUSSIAN MIMO MULTI-RECIEVER
WIRETAP CHANNEL

In this section, we will establish the individual secrecy ca-
pacity region of the degraded Gaussian MIMO multi-receiver
wiretap channel by adapting the converse techniques used in
[5] to Theorem 1. We define the degraded Gaussian MIMO
multi-receiver wiretap channel as:

Yj = X + Nj (17a)
Z = X + NZ , (17b)

where X, Yj , Nj , Z and NZ are column vectors of length
m, where m is the number of antennas available at the
transmitter and each receiver. The channel input X is subject
to a covariance constraint E[XX>] � S, where S � 0. Nj and
NZ are zero-mean Gaussian random vectors, whose covariance
matrices are given by Σj and ΣZ , such that

0 ≺ Σ1 � Σ2 � · · · � Σk � ΣZ . (18)

The semi-definite ordering of the noise covariance matrices
in (18) implies that X−Y1 − · · · −Yk −Z forms a Markov
chain, where changing the order of the covariance matrix will
change the position of the receiver in the Markov chain. This
implies that, the degraded Gaussian MIMO wiretap channel
belongs to the class of degraded wiretap channels and its
individual secrecy capacity region can be computed by finding
the optimal joint distribution on (Uk, . . . ,U2,X) that traces
the boundary of the capacity region in (7).

Theorem 3. The individual secrecy capacity region of the
degraded Gaussian MIMO multi-receiver wiretap channel is
given by the union of all rate tuples (R1, . . . , Rk) ∈ Rk

+ that
satisfy

Rj ≤
1

2
log

∣∣∣∑j
i=1 Ki+Σj

∣∣∣∣∣∣∑j−1
i=1 Ki+Σj

∣∣∣−1

2
log

∣∣∣∑j
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki+ΣZ

∣∣∣
+

k∑
l=j+1

Rl (19a)

Rj ≤
1

2
log

∣∣∣∑j
i=1 Ki+Σj

∣∣∣∣∣∣∑j−1
i=1 Ki+Σj

∣∣∣+1

2
log

∣∣∣∑k
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j
i=1 Ki+ΣZ

∣∣∣ (19b)

k∑
l=j

Rl ≤
k∑

l=j

1

2
log

∣∣∣∑l
i=1 Ki + Σl

∣∣∣∣∣∣∑l−1
i=1 Ki + Σl

∣∣∣ (19c)

where the union is taken over all positive semi-definite matrices
Kj � 0, such that

∑k
i=1 Ki � S.

Remark 1. Although it is more common in literature and
practically meaningful to consider a sum power constraint,
we used a covariance constraint instead for convenience.
Moreover, it was shown in [12], that once the capacity region
is obtained under a covariance constraint, the capacity region
under the sum power constraint follows easily.

Proof: The region in (19) can be achieved by using a
Gaussian random vector realization for the auxiliary random
variables in Theorem 1, where the random vector Uj is used as
a realization for the auxiliary random variable Uj . The vectors
are constructed recursively as follows: Uj = Uj+1 + Vj ,
where Vj are independent Gaussian random vectors with
covariance matrices Kj and Uk+1 is a zero vector. This
means that each Vj contains information about the confidential
message Mj and a part of the local randomness Rj that is
used to confuse the eavesdropper in this layer. The decoder
at a certain receiver Yi, where i ∈ J1, kK, can decode all Vj

for j ≥ i because of the order of the covariance matrices of
the noise vectors in (18), while handling the remaining Vj for
j < i as noise.
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Before we present the converse part of the theorem, we need
to highlight the bound established in [5] for the degraded
Gaussian MIMO wiretap channel.

I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) ≤

1

2
log

∣∣∣∑j
i=1 Ki + Σj

∣∣∣∣∣∣∑j−1
i=1 Ki + Σj

∣∣∣ − 1

2
log

∣∣∣∑j
i=1 Ki + ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki + ΣZ

∣∣∣ , (20)

where Uk−· · ·−U2−X−Y1−· · ·−Yk−Z forms a Markov
chain and Kj � 0 are positive semi-definite matrices, such
that

∑k
i=1 Ki = S, where E[XX>] � S. The establishment

of the previous bound uses similar steps to the one used
to establish the bound in (11) for the Gaussian SISO case,
along with the properties of Fisher information matrix. One
of the consequences of the bound in (20) is the extension of
Proposition 1 to the degraded Gaussian MIMO wiretap channel
as follows:

Proposition 2. For the degraded Gaussian MIMO multi-
receiver wiretap channel defined in (17), where covariance
matrices of the Gaussian noise vectors satisfy the semi-definite
order in (18), if the bound in (20) holds with all its constraints,
then the vector realizations Uj of the auxiliary random
variables Uj in (20) must satisfy the following covariance
constraint: E[UjU

>
j ] �

∑k
i=j Ki.

Proof: The proof follows by adapting the same techniques
used to prove Proposition 1 to the vector nature of the degraded
Gaussian MIMO multi-receiver wiretap channel and is omitted
due to space constraints.

Now, we can formulate our converse. We start with the first
bound in Theorem 1. If we apply the bound in (20) to Eq. (7a),
we reach the first bound in Theorem 3. We then move to the
second bound in (7b), we have

Rj

(a)

≤ I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) + I(Uj ; Z)

(b)

≤ 1

2
log

∣∣∣∑j
i=1 Ki+Σj

∣∣∣∣∣∣∑j−1
i=1 Ki+Σj

∣∣∣−1

2
log

∣∣∣∑j
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki+ΣZ

∣∣∣
+ I(Uj ; Z)

(c)

≤ 1

2
log

∣∣∣∑j
i=1 Ki+Σj

∣∣∣∣∣∣∑j−1
i=1 Ki+Σj

∣∣∣−1

2
log

∣∣∣∑j
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki+ΣZ

∣∣∣
+

1

2
log

∣∣∣∑k
i=1 Ki + ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki + ΣZ

∣∣∣
=

1

2
log

∣∣∣∑j
i=1 Ki+Σj

∣∣∣∣∣∣∑j−1
i=1 Ki+Σj

∣∣∣+1

2
log

∣∣∣∑k
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j
i=1 Ki+ΣZ

∣∣∣ , (21)

where (a) follows as in (15); (b) follows from (20) and the fact
that for a Gaussian MIMO channel and under the Markov chain
Uj−X−Z, I(Uj ; Z) is maximized by a vector realization Uj

for the auxiliary random variable Uj , such that Uj and X are
jointly Gaussian; (c) follows from the covariance constraint on
Uj in Proposition 2. Finally, we consider the bound in (7c),

we have
k∑

l=j

Rl

(a)

≤
k∑

l=j

[
I(Ul; Yl|Ul+1)− I(Ul; Z|Ul+1)

]
+ I(Uj ; Z)

(b)

≤
k∑

l=j

[
1

2
log

∣∣∣∑l
i=1 Ki + Σl

∣∣∣∣∣∣∑l−1
i=1 Ki + Σl

∣∣∣
−1

2
log

∣∣∣∑l
i=1 Ki+ΣZ

∣∣∣∣∣∣∑l−1
i=1 Ki+ΣZ

∣∣∣
]
+

1

2
log

∣∣∣∑k
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki+ΣZ

∣∣∣
=

k∑
l=j

1

2
log

∣∣∣∑l
i=1 Ki + Σl

∣∣∣∣∣∣∑l−1
i=1 Ki + Σl

∣∣∣ , (22)

where (a) follows as in (16), while (b) follows as in (21). This
completes our converse.

V. CONCLUSION

We studied secure communication over two classes of
Gaussian channels: the Gaussian SISO and the degraded Gaus-
sian MIMO multi-receiver wiretap channel. We established the
individual secrecy capacity region for both channels, where
coding with Gaussian signals is used to prove the acheivability,
while the converse follows using the techniques in [5].
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