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Abstract. Complex Valued Neural Network is one of the open topics in the 
machine learning society. In this paper we will try to go through the problems of 
the complex valued neural networks gradients computations by combining the 
global and local optimization algorithms. The outcome of the current research is 
the combined global-local algorithm for training the complex valued feed forward 
neural network which is appropriate for the considered chaotic problem. 

1 The Differences between Feed-Forward Real Valued and 
Complex Valued Neural Networks 

In the following paper we briefly introduce Real Valued Neural Network (further 
RVNN) structure [1] which consists of the neurons, where the last one can be 
described with the following equation (see eq.(1)): 
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where yi is the output of the ith neuron, Xj – is the jth element of the input vector with 
T  elements, Wij is the matrix  of weights, Wbj is the vector of bias parameters and 
function tanh – is the activation (transition) function.  
In the Complex Valued Neural Network (further CVNN) case inputs, weights, bias 
parameters and outputs are complex numbers , ,j ij jX W Wb⎡ ⎤ ∈⎣ ⎦ . The first problem 

in the complex representation of the neural network is the activation function. 
Following the Liouville theorem one can show that every bounded entire function is 
constant (for the complete complex plane) [2]. This immediately means that if one 
wants his/her non linear function to be differentiable, it means the function will be at 
least unbounded. For example the tanh function will have singularity points which 
occur periodically. At these points function goes to infinite values which explode any 
computations. Following Haykin [3], the elegant way to avoid that is to use a sigmoid 
complex function which has a singularity at infinity and then limiting the search space 
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for the weights and the bias parameters they will never go from the “safe” region 
which in this case should be far from infinity. For instance, one can use the 
region[ 1..1]−  for the real and imaginary parts of the weights. 

2 The Differences between the Complex Valued and Real Valued 
Back-Propagation Algorithms 

 The real valued back propagation algorithm is the local algorithm, which can be 
applied for any architecture. Let us briefly describe the Real Valued Back Propagation 
(further RVBP) algorithm. The goal of the neural network training is to minimize the 
approximation error. In order to do that one can use the RVBP and “ladder” algorithm 
(see scheme 1a) introduced in [4] by Zimmermann. Following the idea one should use 
Taylor expansion for the error and introduce the weights adaptation procedure based 
on this expansion. 
 1

2( ) ( ) T TE W W E W g W W G W+ Δ = + Δ + Δ Δ  (2) 
Then the rule for weights adaptation can be written as w E WηΔ = − ⋅∂ ∂ , where η  is 
a learning rate. Updating the weights using this rule one can find the local minimum 
for the error. The “ladder algorithm” allows an efficient computation of the partial 
derivatives of the error locally, between the layers. 
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Scheme 1. a) Back propagation algorithm for the 3 layered real valued feed forward neural 
networks. b) Back propagation algorithm for the 3 layered complex valued feed forward 
neural networks (at this schemes bias is not presented for simplicity). The bar above some 
values means conjunction of the complex value. The picture follows the notations given by 
Zimmermann in [1]. 
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Now let us discuss the complex valued feed forward neural network [3 - 6]. The 
complex valued neural network error can be presented in the way explained at the 
eq.(3) below: 

 ( ) ( )( )
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E w y y y y
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= − − →∑  (3) 

where ty is an output, d
ty  is a desired output (target output), w are network weights 

and bias parameters and T  is the amount of patterns for NN training. Here ( )d
t ty y−  

is conjugated to the ( )d
t ty y− . After the error is calculated one should expand this 

error using Taylor expansion in order to obtain the rule for the weights adaptation. 
w E wηΔ = − ⋅∂ ∂ . For this purpose define the E w∂ ∂ , since 

now and ,ijE w w⎡ ⎤∈ ∈⎣ ⎦ . Unfortunately, E w∂ ∂  is not defined since the 

derivative of the error does not exist, which means the following (see eq.(4) below): 
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where h  is a small step. The first term of the eq.7 is well defined, while the second 
term is not defined in mathematical sense. This second term makes the error non 
analytical.  
 The solution for this problem is given by Wirtinger calculus. Let 
( ) ( ) ( ), ,r im r imivf z u z z z z= + , then one can write the two real valued variables as 

( ) ( )/ 2, / 2imrz z zz zz i= + = − . One should consider z and z as independent from 
each other. Then function :f → can be expressed as :f →×  by rewriting 
it as ( ) ( ),r imf z f z z= . Using the theorems below when evaluating the gradient, we 
can directly compute the derivatives with respect to the complex argument, rather 
than calculating individual real-valued gradients [2]. 
Theorem 1. If the function ( , )f z z  is real-valued and analytic with respect to z  
and z , all stationary points can be found by setting the derivative (in the sense just 
given) with respect to either z  or z  to zero. 
Theorem 2. Let ( , )f z z  be a real-valued function of the vector-valued complex 
variable z  where the dependence on the variable and its conjugate is explicit. By 
treating z  and z  as independent variables, the quantity pointing in the direction of 
the maximum rate of change of ( , )f z z  is ( ( ))z f z∇ . 

3 Combination of the Global and Local optimization Algorithms 

 Due to the problems with the non analytical error function it has been decided to 
start the training with the global search algorithm, which does not require any 
gradient information. Then after we have found the region for the local minimum, we 
can apply the gradient descent algorithm to converge to this minimum. 
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3.1 Random Search Algorithm and its Complex Valued Case 

 Following the works [7, 8] the adaptive random search method is a global 
stochastic optimization technique which does not require any a priori information 
about an optimization problem. 
 Let iI X⊂  be a perspective interval for variable ix , 1:i n∈ ; a Cartesian 

product of sets iI , 1:i n∈  is a perspective domain with center point 0
ix , 1:i n∈ .  

The process of random search is divided into steps sN  (in terms of neural networks – 

epochs). On every step the vector jx , 1: sj N∈  is randomly selected according to 
some distribution (in this work step-function distribution) and the value of the 
objective function ( )j jxΦ = Φ  is calculated.  

By using min{ , }j j j
min minΦ = Φ Φ a minimal value of the objective function in the 

step j , 1: sj N∈  is calculated. 
 A wide set of experiments have been conducted, in order to show adaptive 
random search algorithm’s effectiveness and to make recommendations for choosing 
heuristic parameter values [7, 8]. 
In the case of the CVNN the algorithm works independently with real and imaginary 
parts of the complex, thus, expanding the dimension of optimization space twice.  

3.2 Combination of the Complex Valued Back Propagation and the 
Random Search Algorithm 

 As it was mentioned above, calculation of gradients is a problem in the complex 
valued case. In order to simplify the problem it has been decided to use non gradient 
global optimization method (RSA) [7, 8] and to use it as an initialization method, 
which should find the local minimum region. In order to converge to the minimum 
itself we have decided to apply the gradient descent method with very small learning 
rate in order to reach the minimum. Therefore, first we make several hundred epochs 
of RSA and then we apply the CVGD. This combination proved to be better than 
separate usage of both algorithms for the considered problem which will be described 
in details in the Results chapter). 
The typical behavior of the training error can be seen at the fig.1. below (summarized 
graph for 10 runs of the algorithms).  
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Fig.1. Training Error behaviors. First 100 epochs – complex random search, next 400 
epochs is complex gradient descent. Best error is 0.007 at epoch # 463. 
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4 Experimental Results and Conclusions 

The problem which we considered as a test case for the mentioned above algorithms 
is a well known chaotic problem: 
 ( ) ( ) ( )( )1 1X t X t X tλ+ = −  (5) 
where λ is data complexity. This parameter was selected to be 3.9 which is quite high 
complexity of the data ( ( )0 0.01X = ). Training set was chosen to be first 1000 
values, test set – next 400 values. As the absolute part the values of the eq. (5) have 
been used. As a phase of the complex number it has been decided to use the sinus of 
time since sin function makes the time bounded. This is one of the advantages of the 
complex representation of data that one can naturally deal with time even in the feed 
forward networks. 
 First task is to make one step prediction for the test set. For this purpose 6 
lagged values of the ( )X t  will be used. Target value is the 1tX + value. Second task is 
to make 20 steps iterated forecast for the first 20 points of the test set. Iterated forecast 
means that we use the forecasted value as an input at the next iteration, therefore after 
some iteration all inputs are replaced by the forecasted values.  
To present the results we have decided to use the following statistical measures: Mean 
Squared Error and the adjusted R2 (adjusted coefficient of determination). 
The architecture of the feed forward neural network was chosen to have 6 inputs, 40 
hidden nodes in two hidden layers (20-20) and 1 output. The structure of the 
nonlinearities was chosen to have linear activation at the input and output layers and 
hyperbolic tangent in both hidden layers. Each neural network was used 5 times and 
then the results were averaged. The learning rate for the neural network training was 
selected to be relatively small 0.002. 
 The results for the CVNN are presented at the table 1 below. To calculate the 
statistics for the complex valued output we had to separate the complex onto the 
absolute part and the phase part (following the Euler representation). Table 2 shows 
the results for the RVNN. 

Table 1. Results for the complex valued neural network are presented. RSA/CVGD shows 
how many epoch were given to the random search and how many epoch were given for the 
gradient descent.  

Adj. R2 for 1 step Error for 1 step Adj. R2 for 20 steps Error for 20 steps Epochs 
RSA/CVGD angle abs angle abs angle abs angle abs 

0/500 0.86 0.51 0.06 0.04 0.67 -0.11 0.15 0.12 
100/400 0.83 0.56 0.08 0.03 -0.50 -0.73 0.72 0.19 
200/300 0.94 0.93 0.00 0.01 0.42 -0.16 0.27 0.13 
300/200 0.81 0.58 0.09 0.03 0.73 -0.30 0.12 0.14 
400/100 0.82 0.24 0.08 0.06 0.62 -0.15 0.18 0.13 

500/0 0.12 -1.82 0.43 0.25 -1.58 -1.63 1.25 0.30 

Table 2. Results for the real valued neural network are presented. RSA/GD shows how 
many epochs were given to the random search and how many epochs were given for the 
Gradient Descent.  

Epochs Adj. R2 Error Adj.R2 Error 
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RSA/CVGD for 1 steps for 1 steps for 20 steps for 20 steps 

0/500 0.97 0.00 -0.05 0.12 
100/400 0.96 0.00 -0.01 0.11 
200/300 0.91 0.00 -0.22 0.14 
300/200 0.83 0.01 -0.36 0.15 
400/100 0.78 0.01 -0.29 0.14 

500/0 0.44 0.05 -0.45 0.16 
 Analyzing the tables 1 and 2 one can say, that for this example both networks 
are giving the same quality of the forecast. For 20 steps prediction both networks are 
predicting for 5-6 steps ahead with R2>0.9. 
 Experiments have shown that RVNN can converge to smaller errors and can 
produce a bit better 1 step prediction (see table 1 and 2).  
 Thus, complex valued neural network is of the same quality as real valued 
neural network (if to compare the absolute part of the CVNN output and the RVNN 
output). The complex back propagation algorithm is inconsistent due to the error 
function type but fortunately one can use the Wirtinger calculus to avoid the 
problems. CVNN is very sensitive to the initialization. In order to avoid bad 
initialization of weights with random numbers RSA was introduced. After RSA is 
applied CVGD always converges to local minimum. 
 Since there is no difference in approximation quality and training between 
RVNN and CVNN we can think about extension of the application area of the NN in 
industry. For example in electrical engineering modeling dealing with complex valued 
inputs is much more convenient.  
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