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Abstract— We present a vision based multisensor that is de-
signed for robot interaction with small, soft, and possibly fragile
objects. The sensor consists of a rubber membrane, a rectangular
frame on which the membrane is mounted and a CCD camera.
The entire system is airtight. Based on the observed deformations
of the membrane, we determine the contact area, the integral
force acting on the membrane, the 3D force distribution over
the membrane, and derive properties of the target object by
monitoring the evolution of its deformation. We can distinguish
between different types of materials, i.e., solid, soft, amorphous,
and determine the speed and nature of their deformation. The
sensitivity of the sensor can be adjusted by changing the volume
of air within the rectangular frame. We achieved a small noise
to signal ratio, which allows us to observe small integral forces
in the range of 0.5N to 2.5N, with an average error of 0.04N.

I. INTRODUCTION

The sense of touch is one of the five fundamental senses that
humans use for perceiving the surroundings. A good tactile
sensor can augment the robot’s ability to perceive, identify
and interact with the environment. Significant improvements
can be accomplished in grasping and object exploration,
given a tactile sensor that can identify the three dimensional
force distribution over the contact surface, the target’s shape,
softness, and it’s response during the interaction. We believe
that the current state-of-the-art tactile sensors are specialized
in one of the above problems and struggle when presented with
the other challenges. For example Damian et. al [1] present an
artificial silicon based skin for prosthetic interfaces that allows
the estimation of the two dimensional motion over the surface
of the skin, but it is not capable of registering complex shapes
and deformations. Katsunari [2] et. al. introduced a GelForce
surface traction sensor for a robotic hand. While the sensor
computes the three dimensional force distribution, it suffers
from low resolution [3] and does not provide data regarding
the target’s shape.

II. THE SENSOR

In this Section, we give the full description of our sensor.
First, in Sec. II-A we describe it’s physical setup. Following
in Sec. II-B, we present the algorithm for 3D reconstruction
of the surface of the contact area. Last, we outline the
computation of forces and their distribution over the contact
surface in Sec. II-C.

Fig. 1. (1): LED, (2): CCD camera, (3): a valve to regulate the amount of
air within the frame, (4): rigid circle markers, (5): rubber skin surface, (6):
the airtight frame of the finger,(7): glass, (8): air.

A. Physical Setup

The design of our multysensor is rather simple. It consists
of a thin white rubber membrane that has rigid black circles
attached to its surface. The membrane is mounted on a hollow
rectangular frame. The other side of the frame is sealed with
a glass. The rectangular frame is also equipped with a small
valve that allows to control the amount of air within the
frame (Fig. 1). By increasing and decreasing the amount of
air within the frame we can regulate the shape of the rubber
membrane as well as its sensitivity to deformations caused by
external forces. From the other side of the glass (outside of
the rectangular frame) a CCD camera is mounted combined
with a few LEDs to provide lighting. This is done in such way
that it is always possible to keep the membrane in the image
plane of the camera.

B. 3D Reconstruction of the Surface of the Membrane

1) Extracting the Circle Centres: It is a well known fact
that the projection of a circle is always an ellipse unless
the projection surface is parallel to the surface of the circle.
Thus, given the image Ij captured from camera, we extract
all the black ellipses {ei} ∈ Ij (Fig. I) according to [4] that
correspond to the projections of the circles {ci}. Since an
ellipse is a conic section, in the most general case it is possible
to write the ellipse equation in this form:

m1x
2
i +m2xiyi +m3y

2
i +m4xi +m5yi +m6 = 0 (1)
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(a) Detected ellipses (b) Computed centers of circles (c) Trinagulation, and mashing

(d) Initial 3D reconstruction (e) Mashing and bilinear inter-
polation

(f) B-spline fitting

Fig. 2. Step by step illustration of the membrane surface reconstruction process.

Where xi and yi are the coordinates of all the points on the
considered ellipse. The matrix representation of conic section
can be written as following:

M =

 m1 m2/2 m4/2
m2/2 m3 m5/2
m4/2 m5/2 m6

 (2)

Where the matrix elements are the corresponding coefficients
from Eq. (1). Since M is a symmetric matrix its eigenvector
matrix V will be orthogonal and the following will hold:

M = V ∗ Λ ∗ V T Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 (3)

Here λ1 > λ2 > λ3 are the eigenvalues of M . As it is shown
in [5] it is possible to estimate the position Pi = {u, v, 1}t of
the projection of the center of the circle ci in the image plane
(Fig. 2(b)) by:

Pi = ±V

 −√−λ3/λ1sinψ0√
−λ1/λ3cos(ψ)

 (4)

where:

ψ = arccos
√

(
λ2 − λ3
λ1 − λ3

) (5)

2) Reconstructuion of the 3D Pose of the Circle: Consider
Fig.(II-B.2), here D is the center of the circle, A and B are
two points on the circle such that line AB passes through the
center of the circle, thus AB = BA = r. Where r is the
radius of the circle. Π is the image plain and C is the camera
center, a,b, and d are the projections of A, B and D on the
image plane correspondingly, hence a and b are located on
the ellipse, and d is inside (Fig. 2(b)). We are interested in

Fig. 3. Here C is the camera center, Π is the image plane, a and b are two
points on the ellipse, and line ab passes through d that is the projection of
circle center D, AD = DB, and ρ = 180 − φ− ω

computing the length of CD to determine the 3D pose of the
circle. This can be computed by applying sine rule:

sin (φ)

r
=

sin (ρ− ν)

CD
(6)

sin (ω)

r
=

sin (ν)

CD
(7)

here ρ = 180 − φ − ω. By dividing Eq. (6) by Eq. (7) we
obtain:

sin (φ)

sin (ω)
=

sin (ρ− ν)

sin ν
(8)

By simplifying Eq. (8) we can derive ν to:

cot ν =
sin (φ)

sin (ω) sin (ρ)
+ cot (ρ) (9)

further we combine (9) and (7) to derive equation for CD:

CD =
r ∗ sin (ν)

sin (ω)
(10)



Here the remaining unknowns are the angles ω and φ, that
can be computed from (Ĉa · Ĉd) and (Ĉd · Ĉb) dot products
correspondingly, where ˆ indicates a unit vector. a can be
chosen as an arbitrary point on an ellipse, where b will be
defined as a point that is located on the intersection of the
ellipse and a line that passes through a and d. For best
accuracy, we suggest to pick the line ab such that it is parallel
to the major axis of the ellipse. After the depth CD of the
center of the circle is known it is possible to re-project the
point into 3D using the inverse of the intrinsic camera matrix,
and obtain the unstructured point cloud {pi} (Fig. 2(d)).

3) Mashing and Surface Fitting: Only the point cloud {pi}
is not sufficient to extract information regarding the contact
area of the sensor. Thus as a next step we preform B-spline
surface fitting. The point cloud {pi} is not structured and
hence it requires some processing for the surface fitting. We
consider the set {pi} of projected circle centres in the image
plain and the rectangular profile of the frame, which will
be later used as boundary conditions. We assume that the
pose of the rectangular profile in reference to the camera
center is known. Former can be obtained by running the 3D
reconstruction described in the previous chapter with an open
valve. First we obtain triangulation {ti} ∈ T by performing
Delaunay triangulation for {pi} (Fig. 2(c)). Next, we generate
a 2D low resolution Cartesian grid within the frame, and for
each node vi ∈ ti of that grid, we compute its 3D pose by
performing barycentric interpolation in ti, using the frame
and the points located on the frame as boundary conditions
(Fig.2(e)). In the final step, we fit a B-spline surface to the
3D structured point cloud obtained from the grid (Fig.2(f)).

C. Computation of Force Distribution

Due to its molecular structure, the rubber is not a Hookean
material, i.e. the relation between the starch and the applied
force is not linear [6], hence it is not possible to analytically
compute the force distribution. To compute the relative force
distribution over the surface of the membrane we make some
assumptions. First, we assume that the membrane has uniform
thickness (d). The thickness is considerably smaller then the
width (w) and the length (l) of the membrane (w � d, l� d).
The thinning of the thickness due to starches is neglectful,
and the external forces are small, i.e. in the range of [0.5 −
2]N . Based on this assumptions, we claim that the elasticity of
the rubber membrane is constant within a small stretch range
(proof by experiment Sec. (III)). If the volume of air remains
constant within the frame of the sensor the following is true:

∆F = c∆A (11)

Where c is a constant, ∆F is the overall change in the
external forces acting on the membrane and ∆A is the change
of the area of the membrane due to ∆F . Form (11) and
the above made assumptions it follows that the membrane
is stretching uniformly. Therefore, to compute the direction
and magnitude of forces over the entire surface we can
approximate the membrane by a grid of springs (Fig. 2(f)).

Fig. 4. Computation fo the force acting on a node. Here F = F1 + F2 +
F3 + F4

Since the surface is stretching uniformly, each node of the
grid will be equidistant to its neighbours. Thus the direction
and magnitude of force at that node will only depend on the
curvature of the surface at that point (Fig. 4).

III. RESULTS

The 3D reconstruction of the contact area is computed
based on the 3D positions of the circle markers on the
membrane (Fig.1). Examples of the 3D reconstructions with
corresponding force distributions are illustrated in Fig.7. We
generated 15 synthetic images (Fig. 6(a)) each containing 16
ellipses that represent the projection of the circle markers with
known poses, to evaluate the accuracy of the vision system.
We achieved an average error for the circle marker pose
estimation of 0.39 mm (Fig. 6(b),6(c)). Since the rubber is not
a Hookean material the force to strain relation is generally
nonlinear, thus it is not possible to analytically compute
force from strain. However we claim that for small strains
the Hook’s model holds. To support this, we conducted an
experiment where we attached a force sensor to our sensor
and drove a cylindrical solid object into the rubber membrane
with 1 mm increments. For each increment, we registered
the force from the force sensor and the estimated integral
force acting on the membrane. Fig.5(a) depicts that there is a
linear correspondence between the measured and the relative
forces. The overall average error for these measurements is
0.04 N. Relative integral force to deformation ratio for a
similar experiment conducted on a solid cylinder and a soft
sponge is illustrated in Fig.5(b). Note that for sponge the force
to deformation curve is parabolic, and by fitting a curve to the
datapoints it is possible to determine the stress/strain relation.
Fig.5(c) illustrates the relative integral force profile over time
for the case when the sensor is continually driven into the
same objects.

IV. CONCLUSION

We have presented a vision based haptic multisensor that is
aimed to interact with soft and fragile objects. Our sensor is
capable of determining the shape of the target object as well
as the forces and their distribution over the contact area. It can
detect the dynamic changes of the target object and determine
the nature of its deformation.



(a) Relative Integral Force/Measured
Force Profile.

(b) Force/Deformation Profile. (c) Force/Time Profile.

Fig. 5. Here the blue and red lines correspond to the sold cylinder and soft sponge respectively.

(a) (b) (c)

Fig. 6. 6(a) Illustrates the generated image that contains the projections of circles with known poses. In 6(b) are plotted the estimated (red) and known
(blue) circle center projections, and correspondingly the absolute distances from the camera center are illustrated in 6(c).

(a) (b) (c)

(d) (e) (f)

Fig. 7. 7(a),7(b),7(c) Illustrate the captured and processed images from the CCD camera for three different objects, and 7(d),7(f),7(f) the respective 3D
reconstructions, and force distributions. Here the force vectors are illustrated with a minus sign, for visualization purposes.
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