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Abstract— System state estimation is an essential part for
robot navigation and control. A combination of Inertial Nav-
igation Systems (INS) and further exteroceptive sensors such
as cameras or laser scanners is widely used. On small robotic
systems with limitations in payload, power consumption and
computational resources the processing of exteroceptive sensor
data often introduces time delays which have to be considered in
the sensor data fusion process. These time delays are especially
critical in the estimation of system velocity. In this paper we
present a state estimation framework fusing an INS with time
delayed, relative exteroceptive sensor measurements. We evalu-
ate its performance for a highly dynamic flight system trajectory
including a flip. The evolution of velocity and position errors for
varying measurement frequencies from 15Hz to 1Hz and time
delays up to 1s is shown in Monte Carlo simulations. The filter
algorithm with key frame based odometry permits an optimal,
local drift free navigation while still being computationally
tractable on small onboard computers. Finally, we present the
results of the algorithm applied to a real quadrotor by flying
from inside a house out through the window.

I. INTRODUCTION

Accurate state estimation is essential for mobile robot
control. The subclass of Micro Aerial Vehicles (MAV) poses
special requirements on state estimation algorithms. MAVs
are inherently unstable and have fast system dynamics. For
stabilization at least the system orientation and velocity
must be estimated. The estimation algorithm has to be
computationally efficient as the system payload usable for
processing resources is often very limited. Sensor measure-
ments that have to be preprocessed may be time delayed and
only available at a low frequency compared to the natural
frequency of the system.

Inertial Navigation Systems (INS) were shown to be suit-
able for system state estimation for MAVs [1]. The system
motion is calculated by the strapdown algorithm with sensor
inputs from an Inertial Measurement Unit (IMU). Errors in
the system states resulting from sensor noise and varying
sensor biases are estimated by an extended Kalman Filter
(EKF). Therefore further absolute measurement sensors such
as GPS as the main position and velocity sensor, a barometer
as height sensor and a magnetometer mainly for yaw stabi-
lization are fused in the filter. Nevertheless, these classical
INS are only suitable for outdoor applications with GPS
coverage.

Several approaches have been shown to replace GPS by
other exteroceptive sensors in GPS-denied environments. The
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Fig. 1: Experimental quadrotor platform showing (1) laser
scanner, (2) mirrors, (3) stereo cameras, (4) a modular
computation stack, (5) wired ethernet connection, (6) XBee
modem, and (7) WLAN stick. One of the propellers is
pointing downwards to improve the view of a front-facing
camera (not depicted).

probably most widely used method is the use of external
cameras with known locations to track the 6 Dof MAV
pose [2]. While this is useful for testing purposes, it can
only be used in controlled environments. The more general
approach is to mount exteroceptive sensors like cameras or
laser scanners on the MAV. Downward looking cameras are
used by Herisse et al. [3] to stabilize the MAV position
during hover with optical flow and by Eberli et al. [4] to
track a known landmark. However, they are limited in terms
of dynamics and the need for a known landmark.

To be able to better cope with higher dynamics Achtelik et
al. [5] use a fast low level attitude estimation based on IMU
measurements, with position and velocity estimation done
in a separate filter. A monocular Simultaneous Localization
and Mapping (SLAM) algorithm is used to provide position
feedback to the second filter in order to compensate for drifts.
In [6] all processing is also done onboard and the camera is
synchronized with the IMU to provide a common timebase.
Also Cheviron et al. [7] have developed an efficient algorithm
for fusing inertial and visual measurements.

However, the introduced approaches do not properly com-
pensate for measurement and processing time delays and are
only suitable in situations where sensor speed is capable of
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observing the system dynamics.
In this contribution we propose a state estimation system

for MAVs in GPS denied environments that is stable up
to the dynamic limits of the system. Estimates of velocity
and attitude as well as gyroscope and accelerometer biases
are needed to stabilize the system. Delayed relative position
measurements are used for state correction, therefore position
is also estimated. We use stochastic cloning [8] to process the
relative position and orientation information from a general
odometry sensor, in our case an onboard stereo vision odom-
etry system. In contrast to the original stochastic cloning,
we leverage previously held key frames as a local reference
instead of just using relative measurements between the two
latest images. As long as the system navigates in a small area,
features used for localization stay visible for some time. It
is possible to reuse these features and calculate a delta pose
change referencing the initial key frame. In this way, a local
drift free navigation is possible. In contrast to sparse SLAM
methods [9], where the positions of all features are estimated,
we only estimate vehicle positions within the filter.

A further extension is the consideration of sensor time
delays resulting from communication delays and data pre-
processing time which is of importance for highly dy-
namic systems with limited processor resources. Our filter
framework can directely process time delayed absolute and
(overlapping) relative measurements at the time of arrival.

In the simulation part of this paper we demonstrate the
efficiency of the proposed system. We simulate a quadrotor
using low and highly dynamic trajectories including a flip.
We vary the odometry frequency and time delay for different
runs in the range of 15Hz to 1Hz and between 5ms to 1s
respectively. Results of the state estimation in combination
with a controller are shown on a real quadrotor flight from
inside a house through a window to the outside. Finally we
give a conclusion from the achieved results and an outlook
on further research topics.

II. SYSTEM STATE ESTIMATION

We use a MEMS IMU with gyroscopes and accelerometers
to calculate the system state for highly dynamic movements.
The drifting states are stabilized by further sensors: a low
frequency key frame based odometry system and an absolute
height measurement. A system block diagram is shown in
Figure 2.
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Fig. 2: EKF INS state estimator in feedback configuration
with height and time delayed odometry sensor.

The current, direct system state x is calculated by integrat-
ing accelerations and angular rates of the IMU in the strap-

down algorithm (SDA) [10]. An indirect feedback Kalman
Filter uses measurements, in our case visual odometry and
laser height, to estimate the errors rather than the direct state.
Hence, it is also known as error state space Kalman Filter.
The odometry sensor measurement is assumed to be time
delayed. The EKF defines the indirect (error) system state
δ. The direct system state is corrected by subtracting the
estimated errors after each update step. After correction, the
filter state is reset to zero. The decoupling of the error state
estimation problem from the full system state observation
has several advantages [11]:
• Fast system dynamics tracked by the INS system using a

high execution frequency for the SDA. The slower error
dynamics can be accurately tracked by a filter running
at a lower frequency.

• Time delays in additional sensor measurements have
only to be considered in the indirect filter.

• The INS can operate even in the case of a failure of the
filter.

• No system model is needed.
• As the system state is corrected after each filter update

we can assume small angles in the attitude error, which
can be efficiently represented by an error angle vector
of size 3.

The EKF and SDA algorithms run on a separate realtime
operating system whereas the rest of the sensor processing
is carried out on a system without special timing constraints.
The realtime system receives a hardware synchronization
signal at the exact time of a camera or laser measurement.

A. Strapdown algorithm

The evolution of the direct system state x ∈ R16 is
calculated by the SDA using IMU data. We model a discrete
single sensor measurement at time k as:

m̃k = mk + bk + nk (1)

where mk is the ideal measurement, bk is a time varying
bias and nk is a zero mean Gaussian random variable. By
including the varying sensor biases in the direct system state
we define:

x =
(
po,Tob vn,Tob qo,Tb bb,Ta bb,Tω

)T
(2)

with the sub-states:
• body position (poob) in an earth fixed frame defined by

the initial starting position and heading of the system
(o-frame)

• body velocity (voob) in the o-frame
• body orientation quaternion (qob) in respect to the o-

frame
• three bias estimates bba for each acceleration sensor axis
• three bias estimates bbω for the corresponding gyroscope

sensor axis
1) Body orientation: IMU gyroscopes measure the body

angular rate in the body frame (b-frame) in respect to an
earth centered inertial frame (i-frame):

ωbib = ωbnb + Cn,T
b (ωnie + ωnen) (3)
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where ωbnb denotes the angular rate of the body with respect
to the North East Down (NED) local-tangent-plane navi-
gation frame (n-frame), expressed in the b-frame. Cn,T

b is
the Direction Cosine Matrix (DCM) rotating n-frame onto
b-frame. As the earth rotation rate ωnie and the transport
rate ωnen are small compared to the noise of the MEMS
gyroscopes, we can assume:

ωnie ≈ 0 ,ωnen ≈ 0 (4)

Equation (3) can be approximated as:

ωbib ≈ ωbnb ≈ ωbob (5)

With the assumption that the angular rate ωbob,k at time step
k is constant within the measuring interval from Tk−1 to Tk
we get for the delta orientation vector at time k:

∆σb,k−1
b,k ≈ ωob,k(Tk − Tk−1) (6)

We use a quaternion representation with the vector part in
the first three and the scaling part in the last component. The
delta rotation quaternion between Tk−1 and Tk is given by:

∆qb,k−1
b,k =

 cos

(
∆σb,k−1

b,k

2

)
∆σb,k−1

b,k

∆σb,k−1
b,k

sin

(
∆σb,k−1

b,k

2

)
 (7)

where ∆σb,k−1
b,k = ‖∆σb,k−1

b,k ‖. And so, a new orientation
quaternion, representing the rotation from the b to the o-
frame for time step k, can be calculated as:

qob,k = qob,k−1∆qb,k−1
b,k (8)

2) Position: With assumption (4) and a local operation
area the differential equation for the body position in the
world frame is approximated by:

ẋoob ≈ C
o
nv

n
ob ≈ voob (9)

with Co
n rotating the n-frame on the o-frame. We find the

approximated differential equation of the body speed in the
o-frame as:

v̇oob ≈ C
o
ba

b
ib + go (10)

where Co
b is the DCM corresponding to qob , a

b
ib the accel-

erations measured by the IMU and go the gravity vector in
the o-frame. Under the assumption of a constant acceleration
between Tk−1 and Tk the difference equation for the body
speed at time k can be found as:

∆voob,k ≈ Co
b,k−1

(
abib +

1

2
∆σb,k−1

b,k × abib
)

(Tk − Tk−1)

(11)

B. Indirect Kalman Filter

The error state vector of our filter (δ) includes the errors in
position (δop), velocity (δov) and attitude (δoψ) in the o-frame
as well as the errors of the biases of the accelerometers (δbba )
and the gyroscopes (δbbω ) of the INS in the b-frame. Our filter
error-state vector becomes:

δ =
(
δo,Tp δo,Tv δo,Tψ δb,Tba δb,Tbω

)T
. (12)

The uncertainties in the error propagation for translation
and rotation are modeled as additive zero-mean, white Gaus-
sian noise (AWGN). The acceleration and gyroscope biases
are modeled as random walk processes driven by AWGN.
The noise vector ns has the spectral density Q.

Q = diag(Qa,Qω,Qba ,Qbω ) . (13)

where diag(X1,X2) is a diagonal matrix with X1 and X2

on the diagonal and

Qs = E
[
nsn

T
s

]
| s ∈ {a,ω, ba, bω} . (14)

where E[n] is the mean of the stochastic variable n. The
linearized continuous-time transition can be modeled as [10]:

δ̇ = F δ + Gn

=


O3x3 I3 O3x3 O3x3 O3x3

O3x3 O3x3 −baoibc −Co
b O3x3

O3x3 O3x3 O3x3 O3x3 −Co
b

O3x3 O3x3 O3x3 O3x3 O3x3

O3x3 O3x3 O3x3 O3x3 O3x3

 δ

+


O3x3 O3x3 O3x3 O3x3

Co
b O3x3 O3x3 O3x3

O3x3 Co
b O3x3 O3x3

O3x3 O3x3 I3 O3x3

O3x3 O3x3 O3x3 I3

n
(15)

where bac is a 3 × 3 skew matrix such that bac b is the
cross product of a and b. In the following Φk,Gk and
Qk represent the discretizations at time k of F ,G and Q
respectively.

1) State augmentation: To process relative state measure-
ments in an optimal way we use state augmentation by
stochastic cloning [8]. At the arrival of a relative measure-
ment a new relative measurement starts. The end of the
preceding relative measurement is the start of the new one.
The state at the end of a relative measurement is augmented
to the state vector so that it can be referenced to by the
following measurement. This concept can be generalized for
multiple delta position measurements as shown in [12].

Nevertheless, for highly dynamic systems the time span
between the real end of a relative measurement and the
arrival of the measurement data can be unacceptably high
due to communication and processing time delays. To com-
pensate for these delays and get a non delayed, optimal state
estimate the state at the end of a relative measurement is
augmented when a hardware trigger signals the real end of
the measurement. When the delayed relative measurement
arrives it can reference the start and end states of the mea-
surements and correct all states including the augmentations.
The filter framework can directly process different time
delayed (overlapping relative) measuremtents at the time of
arrival. As the state estimation is running at the current time,
an optimal estimate of velocity is available at any time. This
is of great importance for stable system control.

Furthermore, it is possible, depending on the available
processor resources, to hold augmented states in the filter
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instead of deleting it directly after the arrival of the mea-
surement data. If a relative state sensor is able to recognize a
measurement start or end point that is augmented in the filter,
the proposed navigation filter is equivalent to an indirect EKF
position SLAM but can compensate for measurement time
delays.

For a general representation of filter augmentation we use
in the following the term main state for the estimated states
at the current time and augmented states for the rest of the
state vector. As mentioned in [12] it is not necessary to
augment the whole main state for the processing of relative
measurements but only the parts a relative measurement
refers to. In general, state augmentation and removal for the
direct and indirect states at time k can be written as:

x̄k = Skxk (16)
δ̄k = Skδk (17)

where Sk is a state selection matrix with dimension (n +
ak+a)×(n+ak) with n as the size of the main state vector,
ak as the number of initially augmented states at time k and
a as the number of states to augment to or remove from the
state vector.

To augment a part of the main state to the state vector
in between the main state and the already augmented states,
Sk can be written as:

Sk =

 In×n 0n×ak
Īa×n 0a×ak
0ak×n Iak×ak

 (18)

where Ii×i is the i × i identity matrix, Īi×j is an identity
matrix containing only the rows that correspond to states
that should be augmented and and 0ak×n is the ak × n zero
matrix.

To remove an augmentation from the state vector, Sk can
be written as:

Sk = Ī(n+ak+a)×(n+ak) (19)

where a is negative and Ī is an identity matrix of size
(n+ ak)× (n+ ak) with the rows removed that correspond
to a state that should be removed.

With this notation the augmented/de-augmented state co-
variance matrix can be written as:

E[δ̄kδ̄
T
k ] = E[Skδkδ

T
kS

T
k ] (20)

2) Prediction: As we have an error state space filter
representation only the filter covariance is involved in the
prediction step. The augmented error propagation matrix
(Φaug,k) and the noise propagation matrix (Gaug,k) are
defined as:

Φaug,k = diag(Φk, Ia+k×a
+
k

) (21)

Gaug,k =

(
Gk

0a+k×n

)
(22)

where a+
k is the number of augmented states at the time of

prediction k. The filter covariance prediction can be realized

by the standard Kalman Filter prediction step:

P−k+1 = Φaug,kP
+
k ΦT

aug,k +Gaug,kQkG
T
aug,k (23)

where P k+1 is the a priori error state covariance at time step
k+1 and P+

k the a posteriori covariance matrix at time step
k.

The special form of Φaug,k andGaug,k can be exploited in
the filter implementation to get a prediction step with a com-
plexity rising only linearly with the number of augmented
states.

3) Update: The augmented filter update is realized as
standard EKF update:

Kk = P−kH
T
k (HkP

−
kH

T
k +Rk)−1 (24)

P+
k = (I −KkHk)P−k (25)

δ = Kkyk (26)

where Kk is the Kalman Filter gain, Hk the measurement
matrix, Rk the measurement noise covariance matrix and yk
the measurement residual.

The measurement matrixHk is of dimension m×(n+a+
k )

where m is the number of sensor measurements. The first
n colums of the Hk matrix correspond to the main state.
For time delayed, relative measurements the colums of Hk

corresponding to the referenced augmented states are filled
with the relative measurement matrices.

The absolute height measurement is assumed to be not
time delayed. The measurement equation is given by:

z̃ −
(
0 0 1

)
xoob = −

(
0 0 1

)
δp + nz̃ (27)

where z̃ is the height measurement in the o-frame and nz̃ the
AWGN of the measurement with variance R = E[nz̃n

T
z̃ ].

We use a pseudo measurement to exploit the gravity
vector for roll and pitch stabilization [10]. The measurement
equation is given by:

ãbib +Co,T
b go = Co,T

b

0 −g 0
g 0 0
0 0 0

 δoψ + nã (28)

where go = (0 0 g)T is the gravity vector in the o-frame
and nã the AWGN of the measurement with variance R =
E[nãn

T
ã ].

A general odometry sensor provides noisy position and
orientation changes between two points in time T1 and T2.

∆x̃T2
T1 =

(
p̃oT2 − p̃

o
T1

q̃o,−1
b,T1 q̃

o
b,T2

)
=

(
∆p̃oT1,T2

∆q̃T1
T2

)
+ n∆x̃ (29)

where n∆x̃ is a AWGN random variable modeling the
sensor noise. Position and orientation states at time Tx are
augmented to process the measurement. The augmented sub-
states can be written as:

δaug,Tx =
(
δo,Tp,Tx δo,Tψ,Tx

)T
(30)

xaug,Tx =
(
po,TTx qo,Tb,Tx

)T
(31)
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The estimated delta pose between T1 and T2 is:

∆xT2
T1 =

(
poT2 − poT1

qo,−1
b,T1q

o
b,T2

)
=

(
∆poT1,T2

∆qT1
T2

)
(32)

As in [13], the measurement equation can be derived as:

∆x̃T2
T1 	∆xT2

T1 =
(
H1 H2

)(δaug,T1

δaug,T2

)
+ n∆x̃ (33)

with the measurement submatrices as:

H1 =

(
Co,T
T1 Co,T

T1

⌊
∆poT1,T2

⌋
03×3 Co,T

T1

)

H2 =

(
−Co,T

T1 03×3

03×3 −Co,T
T1

)
and the definition of 	 as:

∆x̃T2
T1 	∆xT2

T1 =(
∆p̃oT1,T2 −∆poT1,T2(

diag(2 2 2) 03×1

) ∆q̃T1
T2∆qT1,−1

T2

‖∆q̃T1
T2∆qT1,−1

T2 ‖

)T
which is a substraction of the position part and for the
attitude part the delta rotation between the two delta ori-
entations, approximated by the error angle vector.

The measurement noise n∆x̃ is again characterized by its
covariance matrix R∆x̃ = E[n∆x̃n

T
∆x̃] calculated by the

odometry algorithm.

III. SIMULATION

The performance of the implemented filter is demonstrated
in a simulation. We modeled our sensor system shown in
Figure 2.

A. Sensor simulation

We implemented an IMU simulation according to [14],
simulating a sensor value with additive white gaussian noise
(AWGN), a varying bias driven by AWGN and a constant
bias. The standard deviation for the angular and velocity
random walk driving AWGN can be found from the Al-
lan deviation (AD) plot of the simulated reference IMU
(AD16367):

σRW =
RW

δt
(34)

where RW is the AD plot value at τ = 1 and δt the
simulated sensor sampling time. The standard deviation of
the bias instability driving AWGN can be found as:

σBS =

√
δt

τBS
BS (35)

where BS is the minimum in the AD plot with corresponding
time value τBS . The corresponding noise values from the
data sheet are listed in Table (I).

The simulated stereo odometry system calculates the delta
position and orientation quaternion between two points in
time from a simulated trajectory disturbed by AWGN. The
base noise parameters (Table I) are varied by a factor of 100
to simulate periods with a low number of vision features.
We limited the odometry system to hold only one key frame

Parameter Value
IMU Gyroscopes RW 5.2e-4 rad/s
IMU Gyroscopes BS at τbs = 100s 2.1e-4 rad/s
IMU Accelerometers RW 3.5e-3 m/s2

IMU Accelerometers BS at τbs = 30s 2.0e-3 m/s2
Stereo odometry position noise σpos 0.01 m
Stereo odometry attitude noise σatt 0.02 rad
Stereo odometry key frame hold 1 s

TABLE I: Sensor simulation parameters.

at a time. During this time the delta position measurement
refers to the same position. The simulated data including the
measurement covariance is delayed by a variable measure-
ment delay. At the beginning and the end of a measurement
a start and stop trigger signal is generated.

Our height sensor is modeled according to Equation (27)

B. Results

We generated a trajectory flown by a simulated quadrotor
model starting with a flip around the roll axis (at t = 12s)
followed by a low dynamic flight (from t = 16s to t = 150s)
and finished by a highly dynamic flight (from t = 150s to
t = 300s). The flight path and the corresponding estimates
for a typical parameter set of our onboard stereo odometry
system (f = 3Hz and d = 320ms) is shown in Figure 3.
During the flip we measure accelerations of about 3g, in
the fast dynamic phase we have 1g peaks measured in the
horizontal plane. Roll and pitch angles go up to 50◦. The
velocity reaches about 4m/s.

Figure 4 shows the estimation errors for position and
velocity with their corresponding estimated 3σ bounds.
The covariances show peaks on the x and y axes for the
stereo odometry drop outs. The total position error rises
slowly whereas the corresponding velocity error is bound
to 0.05m/s. The absolute height measurement limits the z
position and velocity errors.

We varied the frequency of the stereo odometry measure-
ment from f = 15Hz to f = 1Hz as well as the delays of
the measurement arrival from d = 1

f − dt to d = dt with a
sampling time of dt = 5ms. For each dataset 20 Monte Carlo
simulations were performed. For control applications we are
especially interested in the velocity estimate in the body
frame. In the absence of an absolute measurement of the yaw
angle we transformed the ground truth velocities from the
simulated world frame to the estimated world frame. In this
way the velocities are directly comparable. The dependency
of the mean of the root mean square errors (RMSE) over all
runs for position and velocity is shown in Figures 5 and 6.

The velocity RMSE plot shows that the accuracy of the
velocity estimate depends strongly on the frequency of the
measurement update. With the increase of information com-
ing with a higher frequency the filter can estimate velocity
errors more accurately.

Furthermore, the velocity errors rise linearly with time
delays. Velocities are propagated by the SDA algorithm
and only indirectly measured by position updates. With
measurement time delays, the velocity error rises from the
end time of a measurement until its arrival. The smaller the
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Fig. 3: Simulated flight with stereo odometry parameters
f = 3Hz, d = 320ms and key frame hold of 1s. Plots
from top to bottom: Standard deviation of stereo odometry
position measurement; Reference position (px,y,z) in red,
estimated position in blue; Reference velocity (vx,y,z) in red,
estimated velocity in blue; Reference angles (roll,pitch,yaw)
in red, estimated angles in blue. The trajectory includes a
flip (t = 12s), a low dynamic passage (t = 12s to t = 150s)
and a highly dynamic passage (t = 150s to t = 300s)
with velocities of up to 4m/s and accelerations of up to 3g
resulting from roll and pitch angles of up to 50◦.

delay, the smaller the time the velocity error can rise before
an indirect update arrives.

Again for the position RMSE, the error rises with lower
measurement updates. The position RMSE is almost constant
for varying measurement delays. In contrast to velocities,
position is measured directly. The error of the measurement
is small compared to the propagated error from double
integrating accelerations. The constant key frame hold time
of 1s has the effect of an absolute position measurement for
the period of the key frame. Therefore, the effect of time
delays on the position estimate is small.
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(ve,x,y,z) in red and the corresponding estimated 3σ bounds
in red. The estimate covariances rise during phases of bad
vision measurements. The x,y position error rises slowly, the
z position error is bound by the absolute hight measurement.
The velocity errors are bound by the position measurements.
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IV. EXPERIMENTS

We demonstrate the estimation system on a quadrotor by
flying from inside a house through a window to the outside.
A video of the experiment can be found at [15]. Additional
to an IMU, the quadrotor is equipped with stereo cameras
connected to a Atom processor board (1.6GHz) running a
stereo key frame odometry algorithm [12] with a frequency
of approximately 3Hz. A key frame is hold as long as it
has enough features in common with the current image.
Otherwise, the penultimate image is used as new key frame.
With this strategy, the system can hover without position
drift. In the current baseline configuration the cameras are
too close to the ground to have enough image overlap while
the quadrotor is still very close on the ground. Therefore, we
use a Hokuyo UTM-30LX laser range finder as alternative
odometry sensor. The laser measurements are projected onto
the ground plane. We run a ICP based laser scan matcher [16]
on the projected range measurements to get a delta position
and yaw measurement. Some laser beams are reflected to the
ground by mirrors to measure height. The system provides 2
Gumstix processor boards (OMAP3530, 720MHz) for sensor
fusion, control and laser data processing.

The ground plane projection of laser beams is only valid
if the surrounding objects have vertical surfaces which is
usually only the case in artificial environments. In other
situations (outdoors) the calculated delta movement and its
corresponding measurement covariance is invalid and must
be ignored. We observed a strong rise in the measurement
covariance in these situations. Therefore, we switch between
stereo and laser odometry, depending on the measurement
covariance.

An external vision tracking system suitable for outdoor
environments was not available and GPS is too inaccurate in
this case, therefore figure 7 shows the commanded trajectory
and the corresponding position estimate. The state estimates
for position and velocity as well as laser and stereo odometry
covariances are shown in Figure 8.

While standing on the ground, only laser odometry is
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Fig. 7: Flown path estimated in the experiment. The dashed
red line shows the reference trajectory, while the solid line
shows the estimated path. The house outline is shown in gray.
Locations where switching between visual and laser odome-
try occurs are also indicated. A video of the experiment can
be found at [15].

available. Therefore, the quadrotor starts inside the house
using laser odometry. At a height of 70cm, stereo odometry
becomes available with a smaller measurement noise than
that of the laser odometry. The quadrotor hovers using visual
odometry.

When the quadrotor starts moving towards the window, the
measurement noise of the stereo odometry rises due to mo-
tion blur caused by weak lighting conditions inside the house.
Laser odometry is used for the flight through the window.
Outside the house, stereo odometry measurements become
significantly better than laser odometry measurements. The
rest of the flight is conducted by stereo odometry. In the
landing phase, stereo odometry becomes unavailable again
and laser odometry is used for stabilization.
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Fig. 8: Flight from inside the house out through the window,
located at x = 2m. The upper plot shows the reference
position (xd, yd, zd), estimated position (p) and raw laser
height measurement (z̃). The middle plot shows the reference
velocity (vxd, vyd,vzd) and estimated velocity (v). The bot-
tom plot shows the magnitude of laser and visual odometry
covariances. Also shown on the time axis are indicators when
the system has switched to visual (V) or laser (L) odometry.

V. CONCLUSION

In this contribution we introduced an efficient and robust
EKF based INS system. With the proposed state augmen-
tation mechanism, measurements of varying time delayed
odometry sensors with key frame support, like a visual
odometry system, can be efficiently processed. In this way
an accurate and stable estimation of velocities is achieved,
especially important for the stabilization of inherently un-
stable, highly dynamic systems like flying robots. With key
frames considered in the filter algorithm a locally drift-free
navigation is possible. The number of states augmented to
the filter can be increased to result in an INS EKF position
SLAM system considering long measurement time delays.

We simulated a quadrotor flight with a fast and slow
dynamic trajactory including a flip to show the effect of
measurement frequency and time delays. We implemented
an odometry sensor holding a key frame for 1s to generate
state estimates in 800 Monte Carlo simulations. It was shown
that rising time delays result in a linear increase of velocity
errors while there is almost no effect on position errors. The
measurement frequency has a strong effect on velocity and
position errors.

Finally, we tested the system conducting a flight, starting

inside a house and flying out through the window.
We will use the state estimation for highly dynamic,

autonomous flight in unknown environments without the aid
of external tracking. The size of the drift-free navigated
area is limited by the number of key frames. Since the
number of onboard-processable key frames is limited due to
processor resources, an optimal strategy for dropping unused
key frames out of the filter must be found.
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