
T U M Ü N C H E N

Fakultät für Informatik

C O N N E C T I O N I S T M O D E L S F O R L E A R N I N G L O C A L I M A G E
D E S C R I P T O R S : A N E M P I R I C A L C A S E S T U D Y

Christian Anton Osendorfer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Daniel Cremers

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Patrick van der Smagt

2. Univ.-Prof. Dr. Jürgen Schmidhuber

Die Dissertation wurde am 07.12.2015 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 30.03.2016 angenommen.

Christian Anton Osendorfer: Connectionist models for learning local im-
age descriptors: An empirical case study, © 2015

A B S T R A C T

Recently, several difficult visual object classification benchmarks have
been tackled very successfully by deep learning-based systems. The
equally important problem of learning (compact) descriptors for low-
level image patches has been mostly neglected by this type of models,
however.

This work demonstrates that deep supervised Convolutional Net-
works perform competitively on a challenging correspondence task
for local image patches, even if the model is severely restricted. State-
of-the-art results can be achieved if the learning objective and the op-
timization algorithm are finely adapted to the correspondence task.

Similarly, real-valued as well as binary representations learned in
a completely unsupervised way perform comparably to engineered
descriptors if the learning algorithm factors the latent representation.

Apart from these extensive empirical analyses three algorithmic
contributions are described: Explicit negative contrasting shows how
learning of a multi-view undirected graphical model can be improved
by utilizing negative pairs of samples. Hobbesian Networks use dif-
ferential equations to induce a deep Autoencoder architecture. And
vaeRIM successfully combines a variational inference method for di-
rected graphical models with an unsupervised clustering algorithm
in a novel way.

iii

Z U S A M M E N FA S S U N G

In jüngster Vergangenheit haben tiefe Lernarchitekturen im Bereich
der visuellen Objekterkennung sehr gute Ergebnisse erzielt. Die glei-
chermaßen wichtige Aufgabe, kompakte Darstellungen für kleintei-
lige Bildausschnitte zu lernen, wurde von diesen Methoden jedoch
vernachlässigt.
Diese Arbeit zeigt, dass tiefe überwachte Konvolutionsnetzwerke eine
schwierige Ähnlichkeitsaufgabe, definiert mittels kleinteiliger Bild-
ausschnitte, sehr gut lösen, auch wenn das Modell bewußt einge-
schränkt wird. Die Ergebnisse können mit denen der besten alter-
nativen Methoden konkurrieren, falls die Zielfunktion und der Opti-
mierungsalgorithmus entsprechend abgestimmt sind.
Die Arbeit zeigt auch, dass unüberwachte Lernmethoden für dieses
Problem ähnlich gut funktionieren wie von Menschen entworfene
Repräsentationen. Das gilt sowohl für reellwertige als auch für bina-
risierte gelernte Darstellungen der Bildausschnitte, solange eine fak-
torisierte Repräsentation verwendet wird.
Neben diesen umfassenden empirischen Analysen werden drei algo-
rithmische Neuerungen beschrieben. Durch explicit negative contrast-
ing kann ein ungerichtetes graphisches Modell, definiert über einem
zwei-modalen Eingaberaum, verbessert werden indem während des
Lernens explizit negative Eingabepaare verwendet werden. Eine Re-
interpretation numerischer Methoden zum Lösen von Differential-
gleichungen erlaubt es diese zu verwenden, um tiefe Autoassozia-
tionsstrukturen zu induzieren (Hobbes’sche Netzwerke). Und vaeRIM
verwendet variationelle Inferenzmethoden eines gerichteten graphi-
schen Modells auf neue Art und Weise, um einen unüberwachten
Clusteringalgorithmus zu regularisieren.

iv

P U B L I C AT I O N S

peer reviewed conferences/workshops

• Saskia Golz, Christian Osendorfer, and Sami Haddadin. Using
tactile sensation for learning contact knowledge: Discriminate colli-
sion from physical interaction. In International Conference on Robotics
and Automation (ICRA), 2015.

• Christian Osendorfer, Hubert Soyer, and Patrick van der Smagt.
Image super-resolution with fast approximate Convolutional Sparse
Coding. In Neural Information Processing (ICONIP), 2014. Best Pa-
per Award.

• Hubert Soyer and Christian Osendorfer. Fast image super-resolution
utilizing convolutional neural networks. In Forum Bildverarbeitung
2014, 2014.

• Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan
Chen, Sebastian Urban, and Patrick van der Smagt. On fast dropout
and its applicability to recurrent networks. In Workshop International
Conference for Learning Representations (ICLR), 2014.

• Nutan Chen, Sebastian Urban, Christian Osendorfer, Justin Bayer,
and Patrick van der Smagt. Estimating finger grip force from an im-
age of the hand using Convolutional Neural Networks and Gaussian
Processes. In International Conference on Robotics and Automation
(ICRA), 2014.

• Rachel Hornung, Holger Urbanek, Julian Klodmann, Christian
Osendorfer, and Patrick van der Smagt. Model-free robot anomaly
detection. In Intelligent Robots and Systems (IROS), 2014.

• Justin Bayer and Christian Osendorfer. Learning stochastic recur-
rent networks. In NIPS 2014 Workshop on Advances in Variational
Inference, 2014.

• Justin Bayer, Christian Osendorfer, Sebastian Urban, and Patrick
van der Smagt. Training neural networks with implicit variance. In
Neural Information Processing (ICONIP), 2013.

• Christian Osendorfer, Justin Bayer, Sebastian Urban, and Patrick
van der Smagt. Convolutional Neural Networks learn compact local
image descriptors. In Neural Information Processing (ICONIP), 2013.

• Sebastian Urban, Justin Bayer, Christian Osendorfer, Göran Wes-
ling, Benoni B. Edin, and Patrick van der Smagt. Computing grip

v

force and torque from finger nail images using Gaussian Processes.In
Intelligent Robots and Systems (IROS), 2013.

• Justin Bayer, Christian Osendorfer, and Patrick van der Smagt.
Learning sequence neigbourhood metrics. In International Conference
on Artificial Neural Networks, 2012.

• Justin Bayer, Christian Osendorfer, and Patrick van der Smagt.
Learning sequence neigbourhood metrics. In NIPS 2011 Workshop
Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity,
2011.

• Christian Osendorfer, Jan Schlüter, Jürgen Schmidhuber, and
Patrick van der Smagt. Unsupervised learning of low-level audio
features for music similarity estimation. In ICML Workshop on Learn-
ing Architectures, Representations, and Optimization for Speech and
Visual Information Processing, 2011.

• Thomas Rückstieß, Christian Osendorfer, and Patrick van der
Smagt. Sequential feature selection for classification. In Australasian
Conference on Artificial Intelligence, 2011.

• Jan Schlüter and Christian Osendorfer. Music similarity estima-
tion with the mean-covariance restricted boltzmann machine. In Inter-
national Conference on Machine Learning and Applications (ICMLA),
2011.

• Frank Sehnke, Christian Osendorfer, Jan Sölter, Jürgen Schmid-
huber, and Ulrich Rührmair. Policy gradients for cryptanalysis. In
International Conference on Artificial Neural Networks (ICANN),
2010.

• Frank Sehnke, Alex Graves, Christian Osendorfer, and Jürgen
Schmidhuber. Multimodal parameter-exploring policy gradients. In
International Conference on Machine Learning and Applications
(ICMLA), 2010.

• Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex
Graves, Jan Peters, and Jürgen Schmidhuber. Policy gradients
with parameter-based exploration for control. In International Con-
ference on Artificial Neural Networks (ICANN), 2008.

peer reviewed journals

• Thomas Rückstieß, Christian Osendorfer, and Patrick van der
Smagt. Minimizing data consumption with sequential online feature
selection. In International Journal of Machine Learning and Cybernet-
ics, 4(3):235–243, 2013.

vi

• Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex
Graves, Jan Peters, and Jürgen Schmidhuber. Parameter-exploring
policy gradients. In Neural Networks, 23(2):551–559, 2010.

vii

A C K N O W L E D G M E N T S

First and foremost I want to thank my parents, Anton and Marianne1. I
was always free to follow my interests, knowing that whatever I decide to
do, they would support me the best they could. In addition to having great
parents I also have the privilege of having two great siblings, Daniela and
Markus. I am also incredibly lucky to have a wonderful wife and a wonder-
ful son. Julia, thank you for all these years together, for your support, for
your love and for the laughs together. Thanks for putting up with me every
day. Levi, thank you for being our new source of joy and happiness and
for being our sunshine all year long. It goes without saying that whatever I
accomplish is to a very large part due to having a great family. Thank you
so much.

I want to thank my two advisers, Prof. Patrick van der Smagt and Prof.
Jürgen Schmidhuber, for guiding me through the Ph.D. experience. Jürgen
accepted me, a novice to Machine Learning back then, as a Ph.D. student,
introducing me to the wonderful world of Neural Networks. Thank you.
Patrick helped me to continue working at TUM and without him this thesis
would have never been finished. Thank you for the many valuable discus-
sions over all these years.

I also want to thank Prof. Alois Knoll for hosting me so long at his
chair. Dr. Gerhard Schrott and the three angels from the secretariat, Monika
Knürr, Gisela Hibsch and Amy Bücherl, made the day-to-day operations for
a research- and teaching-assistant bearable, not least with the right amount
of humor. Prof. Darius Burschka claded me with many long and insightful
discussions at the beginning of my Ph.D. career, while Prof. Sami Haddadin
helped me to not lose track of the overall goal at the end of writing down
the thesis. Thank you all.

I had the great luck of having a large number of awesome colleagues and
collaborators during my time at TUM: Alex Graves, Agneta Gustus, Bastian
Bischoff, Brian Jensen, Claus Lenz, Daniela Korhammer, Elmar Mair, Florian
Trifterer, Frank Sehnke, Georg Stillfried, Hannes Höppner, Holger Urbanek,
Hubert Soyer, Jörn Vogel, Juan Carlos Ramirez de la Cruz, Justin Bayer, Marc
de Kamps, Markus Rickert, Martin Felder, Marvin Ludersdorfer, Maximilian
Karl, Maximilian Sölch, Nutan Chen, Oliver Ruepp, Philipp Heise, Rachel
Hornung, Sebastian Urban, Steffen Wittmeier, Thomas Rückstieß, Thorsten
Röder, Tino Gomez and Zhongwen Song.

I am particularly grateful to the Buam, Alex, Flo, Frank, Justin, Martin
and Thomas, for many many long, inspiring and insightful discussions but
also for at least as many fun moments. Justin, special thanks for being an
awesome idea-pusher as well as an awesome laugh-pusher for the last four
years. And finally, a shout-out to George, for all motivational moments over
the last decade.

1 Names are ordered lexicographically.

ix

C O N T E N T S

i main work 1

1 introduction 3

2 fundamentals 7

2.1 Linear Algebra 7

2.2 Multivariate and Matrix Calculus 13

2.3 Probability Theory 19

2.4 Machine Learning Concepts 28

2.5 The Monte Carlo Principle and Sampling 33

2.6 Graphical Models 42

2.7 Neural Networks 66

3 dataset 121

4 supervised modeling of local image patches 131

4.1 Dataset 136

4.2 Convolutional Networks 140

4.3 Experiments 146

4.4 Qualitative assessment 162

4.5 Transfer learning 169

4.6 Related Work 176

4.7 Summary 176

5 unsupervised modeling of local image patches 179

5.1 Dataset 180

5.2 Methods 182

5.3 Evaluation Protocol 185

5.4 Results 186

5.5 Conclusion 195

6 tour des cul-de-sacs 197

6.1 Modeling image pairs with a three-way RBM 198

6.2 Exploring extensions to the supervised model 202

6.3 Image similarities with variational Autoencoders 208

7 conclusion 211

ii appendix 215

a em 217

b predictability minimization for deep learning 227

bibliography 237

xi

Part I

M A I N W O R K

1
I N T R O D U C T I O N

How does visual learning happen? The recent surge in massive per-
formance improvements for object classification tasks achieved by
deep Convolutional Networks [63, 59, 61, 209, 380, 350, 54] might
indicate that it is enough to collect huge amounts of category-labeled
image data and present these to a very powerful supervised learning
system. But is this the way the human visual system is trained?

In some very rare cases, this is what seems to happen. When the
visual task is of a very specific definition then humans are trained in
this way, e.g. doctors or inspectors. And these are also very well emu-
lated by deep learning systems, e.g. for steel defect detection [248] or
in the medical image domain [62].

But generally this is not the case. So is it unsupervised learning,
then? This presupposition might be tempting because most of the
time we don’t seem to have any explicit supervision signal. But at
least one very powerful teacher, albeit mostly invisible, exists—physics.
The images we constantly perceive do not form random sequences of
pixel heaps but a very smooth movie, consistent in time and space.
It helps that two views of a complicated three-dimensional environ-
ment are available and that evolution developed deterministic and
non-deterministic control of the imaging system. The latter already
proved to be crucial [61, 84] for supervised classification tasks: ran-
dom saccades can be approximated by random geometric transfor-
mation that leave object-identity invariant [333]. However, rarely does
this movie show well-centered and rectified objects, especially not in
the beginning of the human learning adventure.

Most of the time the learning signals are therefore weak and only
related to correspondences between local image regions (patches). But
out of these pieces of correspondence information a powerful visual
system can be built in a bottom-up manner, requiring relatively little
detailed supervision in order to understand high-level concepts. This
seems to be the exact opposite of the currently dominating top-down
approach employed for supervised object recognition systems, requir-
ing humongous amounts of labeled training data. Even more, learn-
ing low-level image correspondences has been completely neglected
by deep learning approaches even though it is a central building block
for many Computer Vision tasks beyond object classification.

A Computer Vision system built in a bottom-up manner would
heavily rely on low-level patch correspondences, forming further lev-
els of intermediate representations also through weak labels, repre-
senting similarities on larger contexts (in space or time, for example).

3

4 introduction

Different high-level tasks would then share most of these less abstract
representations and, relying on a diverse set of tasks, only a small
number of fine-grained supervised signals (hopefully) are necessary.

With the greater goal of building such a system in a bottom-up
manner in mind, I conduct an in-depth empirical study of super-
vised and unsupervised algorithms for low-level image correspon-
dence learning. More specifically, the class of algorithms I investi-
gate is restricted to those employing distributed representations. I
denote this class with the old, and somewhat vague term connection-
ism [318, 255]. Connectionist learning systems are adaptive methods
that are based on distributed representations. Unsurprisingly, these
are usually realized with Neural Network-like approaches (only be-
cause Neural Networks are currently the most powerful approxima-
tion technique which has a general and computationally tractable
learning algorithm).

Describing Neural Networks as an expressive approximation al-
gorithm is a central concern of Chapter 2. It covers all necessary
mathematical foundations in order to understand Neural Networks
from a technical point of view and how these can be applied as ap-
proximation functions. In particular it uses Matrix Calculus as the
core mathematical tool to derive the important backpropagation al-
gorithm [35, 333], allowing Neural Networks to be easily applied to
very complex mathematical formulations (which are usually built out
of matrix expressions). The chapter also introduces two novel unsu-
pervised learning models: Hobbesian Networks are unsupervised Neu-
ral Networks with an architectural structure induced by differential
equations of competitive submodules. Variational AutoEncoding Reg-
ularized Information Maximization (vaeRIM) uses an unsupervised
generative model as a regularization method for an unsupervised
clustering algorithm.

In Chapter 3 I introduce a large set of matching and non-matching
low-level image patches, representing a low-level correspondence task.
I also argue that this dataset (or more broadly, any kind of weak simi-
larity task) is a good benchmark for purely unsupervised algorithms,
considering that there seems to be no consistent evaluation method
for this class of algorithms [385].

Chapter 4 empirically studies deep supervised Convolutional Net-
works for the previously presented dataset. Compared to typical vari-
ants of deep networks, the model is severely restricted in size (both
with respect to the number of parameters as well as the dimensional-
ity of the final representation for a patch). Nonetheless, using specif-
ically adapted cost functions and optimization methods it is possible
to perform competitively to state-of-the-art approaches on the cor-
respondence task. Moreover, the learned representations (descriptors)
are successfully validated on a challenging transfer problem.

introduction 5

Chapter 5 covers a similar empirical investigation, looking at un-
supervised algorithms. While the results are by far not as impressive
as those achieved with a supervised deep Convolutional Network
it is still possible to reach competitive results with respect to hand-
engineered image patch descriptors if semantically relevant represen-
tations are selected to form the final descriptor.

In Chapter 6 I collect a range of attempts to supervised as well
as unsupervised learning that did not perform as hoped for on the
matching task. Among others I describe how a multi-view undirected
graphical model can be substantially improved by enhancing its learn-
ing algorithm with explicitly selected non-matching input pairs. Nev-
ertheless, compared to overall results on the dataset the improved
model still performs below the best (supervised) approaches. The
most promising result in this chapter stems from representing de-
scriptors as densities. It seems that for the correspondence problem
the good results that were reported in parallel work [406] for NLP
problems can be repeated.

Chapter 7 concludes this thesis, introducing a new unsupervised
model for learning descriptors for local image patches, patch2vec.
The model is heavily inspired by a successful model for learning dis-
tributed representations for words [261] and is suited very well to
the overall goal of building a general Computer Vision system in a
bottom-up manner.

2
F U N D A M E N TA L S

Data is recorded everywhere and at every moment. In order to al-
low algorithms to handle these streams of bits and bytes, to extract
knowledge from it, Machine Learning methods need to support scal-
able learning with respect to the number of samples as well as with
respect to the dimensionality of a single sample. Learning algorithms
must provide (or at least enable) fast approximate inference1 (whereby
approximate is here defined loosely as good enough) and, for general
applicability, must be compositional—depending on the task, it should
be easy to reduce or enhance the model in complexity.

I think that the framework of Neural Networks is currently the
approach that fulfills these very broad requirements for a general
Machine-Learning method in the best way. This chapter provides a
concise path to Neural Networks (Section 2.7) from an algorithmic
and mathematical point of view. Because Machine Learning is a blend
of various mathematical disciplines I also review the necessary math-
ematical foundations from Linear Algebra (Section 2.1), (Matrix) Cal-
culus (Section 2.2) and Probability Theory (Section 2.3) and also look
briefly at Graphical Models (Section 2.6) which encompass Neural
Networks (Section 2.7) as a special kind. Some general concepts of
Machine Learning are reviewed in Section 2.4. The goal of these re-
views is simplicity and clarity, so whenever possible (and necessary)
mathematical intricacies are left out.

Overall, this review covers slightly more than the bare necessities
for Neural Networks—it enables the reader to put Neural Networks
into the broader context of Machine Learning. A reader with a modest
mathematical understanding and basic knowledge of what Machine
Learning is about in general will be able to follow this chapter easily.

2.1 linear algebra

notation. An m× n matrix A ∈ Rm×n is a collection of scalar
values arranged in a rectangle ofm rows and n columns. The element
of A at position (i, j) is written [A]ij, or more conveniently, Aij. If A
∈ Rm×n and I ⊂ {1, . . . ,m} and J ⊂ {1, . . . ,n} are (ordered) index sets
then AI,J denotes the |I|× |J| sub-matrix formed from A by selecting
the corresponding entries (i, j), i ∈ I, j ∈ J. An m× n matrix is called
square, whenm = n. A square matrixA is said to be positive definite,
denoted by A � 0, if xTAx > 0 for all x 6= 0. Hereby, x is a (column)
vector x ∈ Rn which can be considered a n× 1 matrix. Its elements

1 This is indispensable if learning relies on inference.

7

8 fundamentals

are denoted with xi. A matrix of the form 1× n is often referred to
as a row vector and usually denoted by xT . A vector whose elements
are all ones is denoted by 1, or 1n if its dimensionality is known. A
vector whose elements are all zeros apart from a one at position i is
denoted by ei.

For many operations in Linear Algebra the dimensions of the in-
volved matrices must fit. If the specific shapes are missing in this textf
it is generally assumed that all matrices are conformable with respect
to the operations.

operators . The transpose of an m× n matrix A is the n×m ma-
trix AT , with AT

T
= A:

[AT]ij = [A]ji (2.1)

The conjugate transpose of A is A∗ and is defined as A∗ = ĀT (i.e. A
transposed and complex conjugated elementwise). A square matrix
A is called symmetric if AT = A. Symmetric matrices are of particu-
lar interest, as they often arise in Machine Learning, for example as
covariance matrices, kernel matrices or Hessian matrices.

The trace operator is only defined on square matrices. The trace of
a matrix A ∈ Rn×n is the sum of the elements along the leading
diagonal

tr(A) =
n∑
k=1

[A]ii (2.2)

and, with B ∈ Rn×n

tr(A+B) = tr(A) + tr(B) (2.3)

Clearly, the trace is invariant with respect to a scalar a:

tr(a) = a (2.4)

Likewise, the determinant |A| is also only defined for square matrices:

|A| =
∑
i

(−1)i+j[A]ijcofij (2.5)

where cofij denotes the Cofactor of A at position (i, j). The (i, j)-th
Cofactor of any squared matrix A is the determinant of a matrix ob-
tained from A by deleting the row i and column j. For two matrices
A and B of the same size, matrix addition is defined element-wise. The
m×n zero matrix 0, for which every entry is 0, is the neutral element
of addition.

For an m×n matrix A and a n×p matrix B, the matrix product AB
is an m× p matrix with elements

[AB]ij =

n∑
k=1

[A]ik[B]kj, i = 1 . . .m, j = 1 . . . p (2.6)

2.1 linear algebra 9

The neutral element for matrix multiplication is the n × n identity
matrix In, usually denoted I when there is no ambiguity over dimen-
sionality. The identity matrix has elements [I]ij = δij, where δij is the
Kronecker delta:

δij =

1, if i = j

0, otherwise.
(2.7)

The identity matrix is a special case of a diagonal matrix which has
only non-zero elements on its diagonal. A diagonal matrix is some-
times denoted by diag(d1,d2, . . . ,dn). The matrix-vector product Dx
between a diagonal matrix D ≡ diag(d1,d2, . . . ,dn) and some vector
x ≡ (x1, x2, . . . , xn)T is (d1x1,d2x2, . . . ,dnxn)T and can be written
compactly as the product between the vector d of the diagonal ele-
ments of D and x, that is

Dx = d� x (2.8)

The identity matrix is also a special case of a Toeplitz matrix [166].
A Toeplitz matrix has constant values on each descending diagonal
from left to right. An n×m matrix A is a Toeplitz matrix iff Aij =
Ai+1,j+1, i.e. it has the following form:

a0 a−1 a−2 · · · · · · a−m+1

a1 a0 a−1
. a−m+2

a2 a1 a0
.

...
...

. a−1 a−2
...

. a1 a0 a−1

an−1 an−2 · · · a2 a1 a0


(2.9)

The Kronecker product A⊗B between A ∈ Rm×n and B ∈ Rp×q is
the mp×nq matrix defined by

A⊗B :=


A11B · · · A1nB

...
...

Am1B AmnB

 (2.10)

The inverse of a square matrix A, denoted A−1 satisfies AA−1 =

A−1A = I. It is not always possible to find an inverse, in which case
A is called singular. If A is singular, |A| = 0. Note that the inverse (if
it exists) of a symmetric matrix is also symmetric. There is a convo-
luted (but useful) way of describing the inverse of a matrix A using
cofactors:

[A−1]ij = cofji/|A| (2.11)

10 fundamentals

Computing inverses for matrices is usually expensive (it scales cubi-
cally with the number of rows). If a matrix has a special structure
then the inverse can be computed more efficiently, using the Sherman-
Morrison-Woodbury formula. Let A ∈ Rn×n, U ∈ Rn×k, C ∈ Rk×k

and V ∈ Rk×n then the inverse of the rank k correction of A is

(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1 (2.12)

This is cheap to compute if the inverse of A is already known or
simple to evaluate (e.g. because A is diagonal). In this case only ma-
trices of shape k× k need to inverted which eases the computational
burden a lot if k� n.

A special from of matrix multiplication is the scalar product between
a row vector xT and a column vector y

xTy =

n∑
i=1

xiyi (2.13)

The scalar product has a natural geometric interpretation as

xTy =| x || y | cos(α) (2.14)

where | · | denotes the length of a vector and α the angle between the
two vectors. The squared length of a vector x is defined as

|x|2 = xTx =
∑
i

x2i (2.15)

and x is denoted a unit vector if xTx = 1. The length of a vector is a
special case of the p-norm of a vector x for p = 2 (also called Euclidean
norm). The p-norm of x is defined as

||x||p =

(∑
i

xpi

)1/p
(2.16)

Sort of the opposite operation to the scalar product is the outer
product xyT between two arbitrary vectors x ∈ Rm and y ∈ Rn. It is
an m×n rank-1 matrix and is, according to the general matrix-matrix
product (Eq. (2.6)), given by

[xyT]ij = xiyj (2.17)

In the case of a sum over outer products, matrices can greatly com-
pactify the expression (and also make it more amendable to the gen-
eral tools of Linear Algebra). So let

M =

n∑
i=1

xiyi
T (2.18)

2.1 linear algebra 11

with xi ∈ Rn and yi ∈ Rm for 1 6 i 6 n. The element Mkl is given
by

Mkl =

n∑
i=1

xikyil (2.19)

which can be interpreted as the scalar product between the k-th row
of a matrix X having the n vectors xi as columns and the l-th column
of a matrix Y having the n vectors yi as rows. That is, with

X =

x1 x2 · · · xn

 (2.20)

and

Y =


y1
T

y2
T

...

yn
T

 (2.21)

Eq. (2.18) can be written as

n∑
i=1

xiyi
T = XY (2.22)

For an n×n matrix A, the eigenvector equation is defined by

Aui = λiui (2.23)

for i = 1 . . . n, where ui is an eigenvector and λi the correspond-
ing eigenvalue. In general, the eigenvalues are complex numbers (and
hence, the eigenvectors are vectors with complex entries), but for sym-
metric matrices the eigenvalues are real. In this case Equation 2.23 is
often denoted the spectral composition. It can be written more com-
pactly as a matrix-matrix operation

AU = U∆ (2.24)

or

A = U∆UT (2.25)

where ∆ is the diagonal matrix of eigenvalues. The last equation can
also be written as a weighted sum of outer products formed by the
eigenvectors (see also Eq. (2.22)):

A =

n∑
i=1

λiuiu
T
i (2.26)

12 fundamentals

While the spectral decomposition only exists for real valued, sym-
metric matrices, any m× n matrix A can be decomposed using the
Singular Value Decomposition (SVD):

A = USVT (2.27)

where U is an n× n orthogonal matrix, V an m×m orthogonal ma-
trix and S a diagonal matrix, with all three matrices having only real
valued entries. The entries of S are called the singular values of A
and are non-negative. The singular values are actually the roots of
the eigenvalues of AAT (and also of ATA, so there can be at most
min(n,m) non-zero singular values).

The norm || · || of a matrix is a generalization of the concept of a
norm of a vector [118]. Vector norms are used to define operator norms
on a matrix A in the following way:

||A|| := sup
x 6=0

||Ax||

||x||
(2.28)

If the p-norm for vectors (Eq. (2.16)) is used as a basis, the special
case of p = 2, the spectral norm, is defined as the square root of the
largest eigenvalue of A∗A:

||A||2 =
√
λmax(A

∗A) = σmax(A) (2.29)

σmax(A) is the largest singular value ofA. Another widely used norm
is the Frobenius norm || · ||F, defined as

||A||F =

√∑
i

∑
j

∣∣Aij∣∣2 (2.30)

A matrix norm || · || is consistent with its inducing vector norm if

||Ax|| 6 ||A||||x||. (2.31)

In this case the matrix norm is also submultiplicative, that is

||AB|| 6 ||A||||B|| (2.32)

for A and B being conformable matrices. The norms defined above
are both submultiplicative, the spectral norm is also consistent.

algebraic properties . The trace operator has a very useful
cyclic property,

tr(AB) =
m∑
i=1

m∑
k=1

[A]ik[B]ki =

n∑
k=1

m∑
i=1

[B]ki[A]ik = tr(BA) (2.33)

which clearly extends to the product of any number of matrices. Ap-
plying this to the eigenvalue decomposition of a symmetric matrix A
one gets:

tr(A) = tr(U∆UT) =
∑
i

λi (2.34)

2.2 multivariate and matrix calculus 13

The determinant of a product of two matrices is given by

|AB| = |A||B| (2.35)

and thus

|A|−1 = |A|−1 (2.36)

Applied to the eigenvalue decomposition of a symmetric matrixAthis
means

|A| =

n∏
i=1

λi (2.37)

A therefore is positive definite if and only if all its eigenvalues are
positive.

tensors . Tensors are a generalization of matrices to multidimen-
sional arrays (like matrices are a generalization of vectors). Tensors
are becoming more and more relevant in Machine Learning, as they
encode valuable structural information e.g. [6, 277], though usually
tensors are vectorized and then treated within the simpler Linear Al-
gebra framework for matrices. It is possible to define generalizations
of matrix products and other operators to tensors, but these are not
used in this work and therefore left out. One operator is however
briefly used and it is strongly related to a geometric view of tensors:
The point reflection A◦ of an n1 × n2 × · · · × nm tensor A is defined
elementwise as

[A◦]i1,i2,··· ,im = [A]n1−i1,n2−i2,··· ,nm−im (2.38)

2.2 multivariate and matrix calculus

Assuming familiarity with one dimensional calculus [205, 147], this
section succinctly reiterates some important aspects of Multivariate
Calculus and also briefly addresses some concepts of Matrix Calculus
[243].

A general multivariate function f(x1, x2, . . . , xm) maps points from
Rm to Rn, i.e. f : Rm → Rn. An important special case for Machine
Learning is given by n = 1which represents the situation that a scalar
loss is induced by an m-dimensional parameter setting on a given
training set. In this case the partial derivative of f(x) with respect to
xi is defined as the following limit (when it exists):

∂f

∂xi
= lim
h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xm) − f(x)

h
(2.39)

and induces the gradient on f, denoted ∇f:

∇f(x) ≡


∂f
∂x1

...
∂f
∂xm

 (2.40)

14 fundamentals

∇f is a vector in the input domain and points (locally) along the
direction in which the function increases most rapidly. This can be
easily seen by considering a first order Taylor expansion of f at some
point x:

f(x+ δ) = f(x) +
∑
i

δi
∂fi
∂xi

+O(δ2)

= f(x) + (∇f)Tδ+O(δ2) , |δ|2 � 1

(2.41)

The scalar product (∇f)Tδ (and therefore the local Taylor expansion)
is maximized, if the angle between ∇f and δ is 0. Hence, the direction
along which the function changes the most rapidly is along ∇f(x).
This implies a simple iterative optimization scheme (steepest gradient
ascent [51, 278]): Maximizing f(x) (i.e. find a x′ such that f(x′) is
maximal, at least locally) can be done with repeatedly following the
gradient until it vanishes:

xn+1 = xn + ηn∇f(xn) (2.42)

with x0 chosen arbitrarily. ηn is denoted the step size at iteration n and
needs to be chosen small enough (otherwise the Taylor approxima-
tion does not hold).

Given the gradient ∇f(x) the derivative of f(x), f ′(x), is defined as

f ′(x) = (∇f(x))T (2.43)

For an arbitrary vector valued function f : Rm → Rn the derivative
of f is given by stacking the n derivative row vectors on top of each
other, resulting in the n×m Jacobian Df at x:

Df(x) = f ′(x) =
∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xm

...
...

∂fn
∂x1

. . . ∂fn
∂xm

 (2.44)

As an example consider the following vector function f : Rn → Rn

which simply applies scalar functions element-wise:

[f(x)]i = gi(xi), with gi : R→ R, ∀i ∈ {1, . . . ,n} (2.45)

Then f ′(x) is an n×n diagonal matrix with the element-wise deriva-
tives on the diagonal:

[f ′(x)]ij =

g ′i(xi), if i = j

0, otherwise.
(2.46)

On more formal grounds, the Jacobian is the n×m matrix A such
that f(x+u), with ‖u‖ < ε, can be written as

f(x+u) = f(x) +Au+ r(u) (2.47)

2.2 multivariate and matrix calculus 15

with

lim
u→0

r(u)

‖u‖ = 0 (2.48)

With this definition the summation rule and the chain rule generalize
from one dimensional calculus to arbitrary vector valued functions
(the product rule and quotient rule only generalize to scalar functions
without any additional restrictions). So for the summation rule, let
f1, f2 : Rm → Rn, then

[f1(x) + f2(x)]
′ = f ′1(x) + f

′
2(x) (2.49)

For the chain rule let f : Rn → Rr and g : Rm → Rn, then

Df(g(x)) = (f(g(x))) ′ = (f ′(g(x)))g ′(x), (2.50)

an m× r dimensional Jacobian (assuming that f ′(·) and g ′(·) exist).
Specifically, if f : Rn → R then

(f(g(x))) ′ = (∇f(g(x)))Tg ′(x) (2.51)

An important implication of the chain rule is the method for integra-
tion by substitution. Let f : Rm → Rn and g : Rn → Rn, an injective
and continuous differentiable function with its determinant |g ′(x)| al-
ways positive or always negative. Then∫

f(x)dx =

∫
f(g(x))|g ′(t)|dt (2.52)

This is also true if g is not injective over the integration volume or if
its determinant is (only sometimes) 0 or changes signs. In the later
case the integration must be split up over volumina where the sign is
constant.

matrix calculus . The concept of a vector function can be ex-
tended to a matrix function [243]. A matrix function F is a function that
maps from Rm×n to Rq×r for arbitrary m,n,q, r. In order to define
the (first) derivative of a matrix function, a new operator is necessary:
vec(·). If A is an m×n matrix, with ai its i-th column, then vec(A) is
the mn× 1 vector obtained by stacking the columns of A underneath
each other:

vec(A) =


a1

a2
...

an

 (2.53)

For a vector a the vec(·) operation is invariant:

vec(a) = vec(aT) = a (2.54)

16 fundamentals

The inverse operator to vec(·) is denoted by cev(·,n,m), taking an
nm-dimensional vector a and building an n×m matrix by aligning
the n-dimensional columns:

vec(cev(a,n,m)) = a (2.55)

A function F : Rm×n → Rp×q is differentiable at C ∈ Rm×n if, for
some U ∈ Rm×n with ‖U‖ < ε, there exists a real qr×mn matrix
A(C) (i.e. depending on C but not on U) such that

vec(F(C+U)) = vec(F(C)) +A(C)vec(U) + vec(RC(U)) (2.56)

for all U ∈ Rm×n with ‖U‖ < ε and

lim
U→0

RC(U)

‖U‖ = 0 (2.57)

The first differential of F at C with increment U is the m × p matrix
dF(C;U) defined by

vec(dF(C;U)) := A(C)vec(U). (2.58)

Then, the first derivative of F at C, F ′(X), is the pq×mn matrix A(C).
Instead of the matrix function F one can consider the equivalent

vector function f : Rmn → Rpq, defined by

f(vec(X)) = vec(F(X)) (2.59)

With this mapping all calculus properties of vector functions can be
transferred to corresponding properties of matrix functions. Follow-
ing [243] the definition of the Jacobian of F at X is the pq×mn matrix

F ′(X) = DF(X) =
∂vec(F(X))
∂(vec(X)T)

(2.60)

Among other things this definition ensures that Eq. (2.48) is still cor-
rect if vector-valued functions are considered as special cases of ma-
trix functions. It is often convenient to work with both Eq. (2.48) and
Eq. (2.60) depending on the formulation of the problem.

Let F : Rm×n → Rp×q be differentiable at C and let G : Rp×q →
Rr×s be differentiable at B = F(C). Then H : Rm×n → Rr×s defined
by

H(X) = G(F(X)) (2.61)

is differentiable at C according to the chain rule for matrix functions
and

H ′(C) = DH(C) = G ′(B)F ′(C) (2.62)

One strategy to find the Jacobian of a matrix function is to evaluate
each of its partial derivatives (akin to Eq. (2.48)). A more elegant, and

2.2 multivariate and matrix calculus 17

often more concise and easier way is to find the differential and then
match terms according to Eq. (2.58).

As an example consider the following vector-valued linear matrix
function F : Rm×n → Rm, with a ∈ Rn a constant vector

f(X) = Xa (2.63)

Following Eq. (2.56) it is straightforward to determine F ′:

vec((X+U)a) = (X+U)a = Xa︸︷︷︸
vec(Xa)

+ Ua︸︷︷︸
F ′(X)vec(U)

(2.64)

vec(U) ∈ Rmn, so F ′(X), an m×mn matrix, must have the following
form:
a1 0 · · · 0 a2 0 · · · 0 · · · an 0 · · · 0

0 a1 0 0 0 a2 0 0 · · · 0 an 0 0
...

...
...

... · · ·
...

...

0 · · · a1 0 · · · a2 · · · 0 · · · an

 (2.65)

The Kronecker product (Eq. (2.10)) allows a more compact expres-
sion:

F ′(X) = aT ⊗ Im (2.66)

Note that for some vector c ∈ Rm the expression cT (aT ⊗ Im), a
1×mn matrix, can be written as

cT (aT ⊗ Im) = vec(caT)T (2.67)

On the other hand the vector-valued linear vector function f : Rn →
Rm, with A ∈ Rm×n a constant matrix,

f(x) = Ax (2.68)

has a simple derivative f ′:

f ′(x) = A (2.69)

Two similarly simple examples are the following scalar-valued vec-
tor functions. First, consider f(x) = aTx, where x ∈ Rn and a ∈ Rn,
a constant. The differential is simply aTu (using u instead of U), so,
with Eq. (2.54),

f ′(x) = aT . (2.70)

Second, consider the quadratic form f(x) = xTAx. The differential is
given by (relying on the fact that the transpose is invariant to scalars)

uTAx+ xTAu = (uTAx)T + xTAu = xT (AT +A)u (2.71)

18 fundamentals

Again, with Eq. (2.54) it follows that

f ′(x) = xT (AT +A). (2.72)

If A is symmetric then

f ′(x) = 2xTA. (2.73)

The trace operator is an often-used scalar-valued matrix function. The
most basic function to be considered first is

F(X) = tr(AX) (2.74)

with X ∈ Rn×m and a constantA ∈ Rm×n, the first differential is sim-
ply tr(AU). F ′(X) must be a 1×nq row vector because vec(U) ∈ Rnm.
With

tr(AU) =
∑
i

∑
j

AijUji (2.75)

it follows that

F ′(X) = vec(AT)T (2.76)

This derivative is very helpful in combination with the cyclic property
of the trace operator (Eq. (2.33)). Let F(X) = aTXa with a ∈ Rn being
a constant vector and X ∈ Rn×n. Using Eq. (2.4) and Eq. (2.33) rewrite
F(X) as

F(X) = aTXa = tr(aTXa) = tr(aaTX) (2.77)

With Eq. (2.76) one gets

F ′(X) = (vec(aaT))T (2.78)

A more complicated expression involving the trace operator is

F(X) = tr(XAXTB) (2.79)

with X,A and B conformable matrices. The first differential in this
case is

tr(XAUTB) + tr(UAXTB) (2.80)

Relying on the cyclic property of tr(·) and utilizing Eq. (2.76) it fol-
lows that

F ′(X) = vec(AXTB+ATXTBT)T (2.81)

Finally, an important derivative for a symmetric matrix A is ∂|A|
∂A .

For a symmetric matrix A, cofij = cofji and so

d|A|

d[A]ij
= cofij = cofji = |A|[A−1]ij (2.82)

2.3 probability theory 19

Combining these element-wise derivatives into a matrix, we get

∂|A|

∂A
= |A|A−1 (2.83)

and similarly

∂|A−1|

∂A
= −|A−1|A−1 (2.84)

Applying the chain rule, one derives

∂ ln |A|

∂A
= A−1 (2.85)

and with |A−1| = |A|−1 it follows that

∂ ln |A|

∂A−1
= −

∂ ln |A−1|

∂A−1
= −A (2.86)

2.3 probability theory

Our model of the world around us will always be limited by our ob-
servations and understanding. Having only imperfect knowledge of
the world, we are forced to take uncertainty into account. Probabil-
ity theory provides a consistent framework for the quantification and
manipulation of uncertainty. In what follows, I only cover informally
some basic notions of probability theory. For a thorough introduction,
I suggest [136].

A random variable X is a function X : Ω→ R with the property that
{ω ∈ Ω : X(ω) 6 x} ∈ F for each x ∈ R. Ω denotes a sample space [136,
p. 1] and F denotes an underlying sigma-field [136, p. 3]. A random
variable X is uniquely determined by its distribution function F : R →
[0, 1], given by FX(x) = P(X 6 x). P(·) denotes a probability measure
[136, p. 5] that is defined over Ω and F. A random variable is not
limited to mapping only to the real line. Instead, it can be extended
easily to the idea of a random vector. The joint distribution function of a
random vector X = (X1,X2, . . . ,Xn) is the function FX : Rn → [0, 1],
given by FX(x) = P(X 6 x).

A random vector (which is from now on also named random vari-
able) X is called discrete if it takes values in some countable subset
{x1, x2, . . . } only. The discrete random variable X has the joint (proba-
bility) mass function pX : Rn → [0, 1] given by pX(x) = P(X = x). The
marginal mass function pXi can be evaluated using the sum rule:

pXi(xi) =
∑
x−i

pX(xi, x−i) (2.87)

x−i denotes the elements of the vector x except the i-th element. We
denote n random variables X1,X2, . . .Xn stochastically independent if
and only if

pX(X) =

n∏
i=1

pXi(xi) ∀ xi ∈ R (2.88)

20 fundamentals

The conditional distribution function of Y given X = x, written FY |X(·|x)
is defined by

FY |X(y|x) = P(Y 6 y|X = x) (2.89)

for any x such that P(X = x) > 0. The conditional (probability) mass
function of Y given X = x, written pY |X(·|x) is defined by

pY |X(y|x) = P(Y = y|X = x) (2.90)

Using this definition the product rule is:

pX,Y (x,y) = pY |X(y|x)pX(x) = pX|Y (x|y)pY (y) (2.91)

The inherent symmetry of the product rule then induces the Bayes’
rule:

pY |X(y|x) =
pX|Y (x|y)pY (y)

pX(x)
(2.92)

The expectation of a random variable X with joint probability mass
function pX under any g : Rn → Rm is

E [g(X)] =
∑
x

g(x)pX(x) (2.93)

whenever this sum is absolutely convergent. The expectation operator
E [·] is a linear operator in the space of random variables:

• E [c] = c for any constant c.

• If A ∈ Rm×n, then E [AX] = AE [X] and E
[
XAT

]
= E [X]AT .

• E [X+ Y] = E [X] + E [Y].

If f is convex and X is a discrete random variable with finite mean
then

E [f(x)] 6 f(E [x]), (2.94)

denoted Jensen inequality[185].
The covariance matrix V [X] is defined as

V [X] = E
[
(X− E [X])(X− E [X])T

]
= E

[
XXT

]
− E [X]E [X]T

(2.95)

The following simple properties are very useful to know:

• V [c] = 0 for any constant c.

• V [cX] = c2V [X].

2.3 probability theory 21

The covariance matrix V [X,Y] between two random variables X and
Y is defined as

V [X,Y] = E
[
(X− E [X])(Y − E [Y])T

]
= E

[
XYT

]
− E [X]E [Y]T

(2.96)

For a set of n random variables X1,X2, . . . ,Xn the variance of its sum
is simple the summed variances, if the n random variables are i.i.d:

V

[
n∑
i=1

Xi

]
=

n∑
i=1

V [Xi] (2.97)

For a set of n data points x1, x2, . . . , xn, which are states of a ran-
dom variable X, the empirical distribution p̂X has probability mass dis-
tributed evenly over the data points, and zero elsewhere:

p̂X(x) =
1

n

n∑
i=1

δ(x = xn) (2.98)

where δ(x) is the Dirac delta function. The Dirac delta function is a
distribution function and defined functionally as∫∞

−∞ δ(x− x0)f(x)dx = f(x0) (2.99)

The Kullback-Leibler divergence (KL divergence) measures the differ-
ence between two discrete distributions qX and pX:

KL[pX||qX] = E [logpX(x) − logqX(x)]

=
∑
x

pX(x) log
pX(x)

qX(x)
(2.100)

The Kullback-Leibler divergence is not a valid distance metric (it is
not symmetric), however it can be used as a semi-distance metric,
because it is non-negative:

KL[pX||qX] =
∑
x

pX(x) log
pX(x)

qX(x)
= −

∑
x

pX(x) log
qX(x)

pX(x)

> − log
∑
x

pX(x)
qX(x)

pX(x)
= − log

∑
x

qX(x)

= − ln 1 = 0

(2.101)

The proof uses Jensen’s inequality (Eq. (2.94)) applied to the concave
function log. The discrete entropy H[pX] of a probability mass function
pX is defined as

H[pX] = −
∑
x

pX(x) logpX(x) (2.102)

It is a measure of the uncertainty in a distribution pX. One way to
see this is that H[pX] = KL[pX||uX] + c, where uX is the uniform

22 fundamentals

distribution over X and c > 0. Because KL[p||u] > 0, the less similar
to the uniform distribution pX is, the smaller is its entropy.

A random variable X is called continuous if its cumulative distribu-
tion function can be expressed as

FX(x) =

∫x
−∞ fX(u)du, x ∈ Rn (2.103)

for some integrable function fX : Rn → [0, 1], the (probability) density
function (pdf) of X. For very small ∆x, one can approximately compute

P(x 6 X 6 x+∆x) ≈ fX(x)∆x (2.104)

Even though a probability density function is a much more complex
object than a probability mass function, all previous results for dis-
crete distributions also hold for continuous distributions, in particu-
lar the sum rule, the product rule, Bayes’ rule and expectation results
(operationally, these results are generally obtained by simply substi-
tute the summation sign by the integral sign). Because a continuous
signal carries an infinite amount of information, the entropy must be
defined differently. The differential entropy is defined as

H[fX] = −

∫
fX(x) log fX(x)dx (2.105)

Additionally, there is one aspect for continuous random variables that
has no equivalent behavior for discrete random variables. If a contin-
uous random variable X ∈ Rm gets transformed by some monotonic
function g : Rm → Rm, then the probability density function fY of
the resulting random variable Y = g(X) has to be adapted following
the change of variable theorem (Eq. (2.52)):

fY (y) = fX(x)|J| (2.106)

where J is the Jacobian of the inverse function g−1 : Rm → Rm. If g is
not monotonic over the complete space then the above rule must be
applied piecewise to subsets where g is monotonic. For example, let
X ∈ Rn be an arbitrary continuous random variable with pdf fX(x)
and Y = DX, with D ∈ Rn×n a matrix of rank n. Then

fY (y) = fX(D
−1y)/|D| (2.107)

From now on I simplify the notation of probabilistic expressions: In-
stead of writing pX(x) and fX(x) I will use p(x) and f(x). That is, the
variable argument to p and f also denote the underlying random vari-
able. So for example p(x) is a different distribution from p(y) (which
would not be the case for pX(·), because pX(x) ≡ pX(y), because
x and y only denote the variable placeholders). Similarly, instead of
differentiating between the random variable X and the variable argu-
ment x I will only use x and the context determines the interpretation.

2.3 probability theory 23

Additionally a probability density function (pdf) f(·) will usually be
also denoted by the symbol p(·). Sometimes, only parts of a pdf/pmf
are important for a specific derivation. This will be expressed by the
symbol ∝ (which will also be used in a non-probabilistic content to
denote that unimportant terms are left out).

Important distributions

In this subsection I briefly introduce the probability distributions that
are used throughout this text. The distributions are given through
their probability mass functions or probability density functions, de-
pending on their type. Distributions usually depend on parameters
θ1,θ2, · · · ,θn denoted by p(·|θ). This is consistent with the previ-
ously introduced notation of a conditional probability distribution,
as these parameters can also be regarded as random variables. If a
random variable x is distributed according to a probability distribu-
tion defined by p(·) then I often write x ∼ p(·). And finally, if in a set
of random variables {x1, x2, . . . , xn all random variables are indepen-
dent and all follow the same distribution this set is denoted as an i.i.d
(independent and identically distributed) set of random variables.

discrete uniform distribution. If a random variable x only
takes on n different values and all values are equally probable then
we denote this a (discrete) uniform distribution:

p(x = xi) =
1

n
, ∀i (2.108)

bernoulli distribution. The Bernoulli distribution describes
a binary random variable, i.e. the variable can have one of two values.
A typical usage example is the description of the outcome of coin
flips. The distribution is defined by

Bern(x | θ) = θx(1− θ)1−x (2.109)

Setting η = log θ
1−θ one can write

Bern(x | θ) =
exp (ηx)

1+ exp (η)
(2.110)

Furthermore

E [x] = θ (2.111)

V [x] = θ(1− θ) (2.112)

multinomial distribution. The Bernoulli distribution is gen-
eralized by the Multinomial distribution to describe a discrete ran-
dom variable that can take on one of kmutually exclusive values. The
random variable is represented by a k-dimensional vector x, using a

24 fundamentals

1-of-k scheme: One element of the vector equals 1 and all remaining
elements are 0. The distribution is defined by

Multi(x | n,θ) =
(

n

x1 x2 . . . xk

)
θx11 θ

x2
2 . . .θ

xk
k (2.113)

with ∑
k

xk = n (2.114)

and ∑
k

θk = 1 (2.115)

and where

θk > 0, ∀ k (2.116)

and (
n

x1 x2 . . . xk

)
=

n!
x1! x2! . . . xk!

(2.117)

Furthermore,

E [x] = (nθ1,nθ2, . . . ,nθk) (2.118)

and

V [x] = n


θ1(1−θ1) θ1θ2 · · · θ1θk

θ2θ1 θ2(1−θ2) · · · θ2θk
...

. . .
...

θkθ1 θkθ2 · · · θk(1−θk)

 (2.119)

continuous uniform distribution. A one-dimensional con-
tinuous uniform distribution U(a,b) has a density function that is
constant over a finite interval [a,b]. If x ∼ U(a,b) then its probability
density function is given by

p(x) =

 1
b−a , x ∈ [a,b]

0, otherwise.
(2.120)

with

E [x] =
a+ b

2

V [x] =
(b− a)2

12

(2.121)

So for example, a uniform distribution U(−a,a) which is symmet-
ric around 0 has a variance of a2/3. The cdf (cumulative distribution
function) FU(x) of the continuous uniform distribution has the nice
property that it acts as the identity function for the argument, i.e.

FU(x 6 c) = c, c ∈ [0, 1] (2.122)

2.3 probability theory 25

multivariate gaussian distribution. One of the most im-
portant probability distributions for continuous variables is the mul-
tivariate normal or Gaussian distribution. The density of a multivariate
Gaussian variable x ∼ N(x | µ,Σ) is given by

N(x | µ,Σ) = |2πΣ|−1/2exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
(2.123)

with E [X] = µ and V [X] = Σ. A Gaussian is completely defined by
its mean and covariance, i.e. all its higher moments are 0.

The natural parameterization of a Gaussian is

N(x | r,Λ) = |2πΛ|1/2exp

(
−
1

2
(xTΛx+ 2rTx)

)
(2.124)

with Λ = Σ−1 and r = Σ−1µ (simply multiplying out the square
formula from Eq. (2.123) and arranging terms). Using this parameter-
ization, it is easy to show that the product of two Gaussian densities is
again a Gaussian density (in the functional form). More specifically,
if two Gaussian density functions N1(·) and N2(·) are given, then

N(x | µ1,Σ1) ·N(x | µ2,Σ2) ∝ e−
1
2x
TA1x+r

T
1x · e− 1

2x
TA2x+r

T
2x (2.125)

The result is again a Gaussian density, because we can write it in
information form:

N(x | µ1,Σ1) ·N(x | µ2,Σ2) ∝ e−
1
2x
T (A1+A2)x+(r1+r2)

Tx (2.126)

Converting it back into moment parameterization gives a new µ and
Σ:

Σ = (Σ−1
1 +Σ−1

2)−1, µ = Σ(Σ−1
1 µ1 +Σ

−1
2 µ2) (2.127)

A family of distributions is closed under a set of operations if if the
outcome of these operations lies in the family as well. The Gaussian
family is closed under linear (affine) transformations, marginalization
and under conditioning which is one the reasons why it has such a
central role in Probability Theory.

The invariance of the type under a linear transformation is a result
of change of variable theorem (Eq. (2.106)). If x ∼ N(x | µ,Σ) and
y = Dx for some matrix D ∈ Rn×n with rank n then (see Eq. (2.107))

p(y) = N(D−1x | µ,Σ)/|D|

= |D(−2/2)||2πΣ|−1/2exp

(
−
1

2
(D−1x− µ)TΣ−1(D−1x− µ)

)
= |2πDΣDT |−1/2exp

(
−
1

2
(x−Dµ)TD−TΣ−1D−1(x−Dµ)

)
= |2πW|−1/2exp

(
−
1

2
(x−Dµ)TW−1(x−Dµ)

)

26 fundamentals

(2.128)

with W = DΣDT . So y is also a Gaussian with

E [y] = Dµ (2.129)

V [y] = DΣDT (2.130)

This result also holds for arbitrary D ∈ Rm×n, without having full
rank which results in a so called degenerate Gaussian. However, the
proof is much more difficult and therefore omitted here [202]. A corre-
lation of the above result is that for x ∼ N(x | µ,Σ) the z-transformation
xz,

xz = Σ−1/2 (x− µ) , (2.131)

is distributed according to N(0, I).
The results from Eq. (2.129) and Eq. (2.130) automatically follow

from the linear nature of the expectation operator and are true for
any type of random variable x. Using this rule it is easy to show that
the sum of two independent Gaussian random variables is Gaussian.
Let x1 ∼ N(x | µ1,Σ1), x2 ∼ N(x | µ2,Σ2), two n dimensional inde-
pendent Gaussian random variables. Stack both variables to form a
random variable y. y is a Gaussian random variable because

y =

(
x1

x2

)
∼ N

(
x

∣∣∣∣∣
(
µ1

µ2

)
,

(
Σ1 0

0 Σ2

))
(2.132)

Consider z = x1 + x2. z can be written as z = Ay, with A = [In In],
so z is Gaussian. Applying Eq. (2.129) and Eq. (2.130) leads to a mean
and a covariance matrix that are the sum of the respective means and
covariance matrices:

x1 + x2 ≡ z ∼ N(z | µ1 + µ2,Σ1 +Σ2) (2.133)

Next, let’s consider the marginalization operation. For a given n
dimensional Gaussian random variable x, we are interested in the
marginal distribution of xI, I ∈ {1, 2, . . . ,n}. Usually, one needs to
employ explicitly the sum rule for marginalization, however in the
Gaussian case marginalization can be expressed as a linear operation,
because xI = IIx, where II is a selector matrix (for every index i ∈ I
the matrix II has a row with a single 1 at column i). Thus

xI ∼ N(x | µI,ΣI) (2.134)

according to Eq. (2.128), Eq. (2.129) and Eq. (2.130).
The conditioning operation is straightforward in the natural pa-

rameterization. Assume that x ∼ N(x | µ,Σ), I ∈ {1, 2, . . . ,n} and
R = {1, 2, . . . ,n} \ I. In order to find the conditional distribution for

2.3 probability theory 27

xI | xR, we write the joint density p(xI, xR) (a Gaussian) but only
consider those parts containing xI:

lnp(xI, xR) ∝ −
1

2

(
(xI − µI)

TΛI(xI − µI)

+ 2(xR − µR)
TΛR,I(xI − µI)

)
∝ −

1

2
xTIΛIxI

+(xR − µR)
TΛR,IΛ

−1
I ΛI︸ ︷︷ ︸
I

xI − µIΛIxI

(2.135)

Note that Λ = Σ−1. The product rule (Eq. (2.91)) gives p(xI, xR) =

p(xI | xR)p(xR), and thus p(xI | xR) is a Gaussian. One can read of
the mean and covariance by matching against its natural parameteri-
zation:

V [xI | xR] = Λ
−1
II

E [xI | xR] = µI +Λ
−1
I ΛI,R(xR − µR)

(2.136)

Finally, let’s consider linear Gaussian systems. Let y be an m dimen-
sional random variable which is defined as follows:

y = Ax+b+ ε (2.137)

A ∈ Rm×n, b ∈ Rm and x, ε are two independent random Gaussians
(n/m dimensional, respectively):

x ∼ N(x | µ,Λ−1)

ε ∼ N(ε | 0,L−1)
(2.138)

Conditioned on x, y | x is a Gaussian because it is the sum of a
constant (Ax+b) and a Gaussian (ε):

p(y | x) = N(y | Ax+b,L−1) (2.139)

y is a Gaussian, too, because it is the sum of a linearly transformed
Gaussian (Ax), a constant (b) and again a Gaussian (ε), so following
Eq. (2.133) gives:

y ∼ N(y | Aµ+b,AΛ−1AT + L−1) (2.140)

The covariance matrix between x and y is Λ−1AT because

E
[
(x− E [x])(y− E [y])T

]
= E

[
(x− E [x])(Ax+b−AE [x] −b)T

]
= E

[
(x− µ)(A(x− µ))T

]
= E

[
(x− µ)(x− µ)T

]
AT

= Λ−1AT

(2.141)

So stacking x and y is a Gaussian:[
x

y

]
∼ N

(
x

∣∣∣∣∣
[
I

A

]
x+

[
0

b

]
,

[
Λ−1 Λ−1AT

AΛ−1 AΛ−1AT + L−1

])
(2.142)

28 fundamentals

Then it is simple to invert the linear system (as is necessary, e.g., for
the Kalman Filter [196, 370, 183]), by applying the conditioning re-
sults from Eq. (2.136):

p(x | y) = N(x | Σ(ATL(y−b) +Λµ),Σ) (2.143)

with Σ = (Λ+ATLA)−1

2.4 machine learning concepts

Learning happens on the basis of collected data. The set of n observed
data items is denoted by D. These items are either vectors xi ∈ Rd

(with d depending on the task to be solved) or pairs (xi,yi) forming
an input (x ∈ Rd) – output (y ∈ Ro) relationship. In the first case,
unsupervised learning, we are interested in modeling the distribution
of the observed data, p(x | θ). In the second case, supervised learn-
ing, we are interested in the functional relationship between inputs and
corresponding outputs and therefore want to model the conditional
distribution p(y | x,θ). A popular choice for modelings distributions
in both cases are parametric families of models. The goal is then to
find the best parameter vector θ using the available information in
the collected data D2.

However, what does best mean in this case? Given that we only
have the observed data D and the class of distributions p(x | θ) (or,
equivalently, p(y | x,θ)), a reasonable objective is to find parameters
θ that minimize the Kullback-Leibler divergence (Eq. (2.100)) between
the empirical data distribution p̂(x) (Eq. (2.98)), p̂(x) = 1

n

∑n
i=1 δ(x =

xi), and p(x | θ):

KL[p̂||pθ] =

∫
p̂(x) log

p̂(x)

p(x | θ)
dt (2.144)

This can be reformulated as follows, using Eq. (2.99)

KL[p̂||pθ] =

∫
p̂(x) log

p̂(x)

p(x | θ)
dt

= −H[p̂] −

∫
p̂(x) logp(x | θ)dt

= −H[p̂] −

∫ ∑
i

δ(x = xi) logp(x | θ)dt

= −H[p̂] −
∑
i

∫
δ(x = xi) logp(x | θ)dt

= −H[p̂] −
∑
i

logp(xi | θ)

(2.145)

2 Reinforcement Learning [376] which is not discussed in this text can be modeled in
a similar parametric form—the observed data items then comprise state, action and
reward information.

2.4 machine learning concepts 29

So minimizing the KL divergence between the empirical distribution
and p(x | θ) is equivalent to maximizing the log-likelihood `(θ) =∑
i logp(xi | θ) of the data under the model family p(x | θ), because

H[p̂] is independent of θ. Note that the log-likelihood is a function
of θ, as the dataset D is considered fixed (though unknown apriori).
Because the logarithm is a monotone function, the optimum of the
log-likelihood function is the same as the one for the likelihood func-
tion

∏
i p(xi | θ) = p(D | θ) . Determining parameters θ in this way

is called Maximum Likelihood Estimation (MLE).
Though the empirical distribution (the training set) is used for learn-

ing (i.e. optimizing θ in the case of MLE), the overall goal is to find
models that generalize well, that is, perform well also on data items
that are not in the training set. In order to assess the generalization
performance of a trained model, an unbiased estimate of it can be
obtained by evaluating the trained model on an independent test set,
a dataset that is generated from the same process that generated the
training set, but does not share any specific elements with it. The test
set must never be used to adapt parameters θ in any way, it is only
utilized for evaluating the log-likelihood of the model on its data sam-
ples (for a supervised model this measures its predictive capacity). If
the trained model performs well on the training set but not on the
test set (that is, it does not generalize well) we say that the model
overfits the training set.

Sometimes parameters θ themselves are equipped with parame-
ters, so called hyperparameters. Determining optimal settings for these
hyperparameters often can’t be done on the training set. Instead a
third independent data set is introduced denoted validation set which
is used tuning these hyperparameters (and hyperparameters of hy-
perparameters, . . .).

For an item x from the test set what is its likelihood given the items
from D? If one considers the parameter θ itself a random variable
(the training set D is a random variable, too, as the collection of the
training samples is a random process) then this likelihood can be
expressed as (using Bayes’ rule):

p(x | D) =
p(x,D)

p(D)
=

∫
p(x,D,θ)dθ
p(D)

=

∫
p(x | D,θ)p(D | θ)p(θ)dθ

p(D)

(2.146)

That is the likelihood of a test sample (or, its posterior distribution, if
one thinks of the test sample as a random variable) is the likelihood
of x , p(x | D,θ) for a given θ weighted by the likelihood p(D | θ) of
θ and the prior of θ, p(θ). The marginal likelihood (or evidence) p(D) is
necessary as a normalization constant. Note that integrating over all
possible values of θ and using their likelihood as weights is the best
way to avoid overfitting.

30 fundamentals

The integrals in Eq. (2.146) are often intractable. Maximum Likeli-
hood Estimation circumvents these complicated integrals by setting
the likelihood of θ to be a Dirac delta function centered at its maxi-
mum and fixes the prior to a constant, i.e.

p(D | θ) = δ(θ−θMLE)

θMLE = arg max
θ

p(D | θ)

p(θ) ∝ 1
(2.147)

The posterior distribution for x is then

p(x | D) =

∫
p(x | D,θ)δ(θ−θMLE)1dθ∫

δ(θ−θMLE)1dθ
= p(x | D,θMLE) (2.148)

Let’s consider the application of the MLE principle for both un-
supervised and supervised problems. For the unsupervised setting
assume the training set consisting of samples from a Bernoulli dis-
tribution with unknown θ. Given n i.i.d samples (b1,b2, . . . ,bn) the
likelihood function for θ is therefore∏

i

θbi(1− θ)1−bi = θn0θn−n0 (2.149)

where n0 denotes the number of sampled zeros. Hence the log likeli-
hood `(θ) is

`(θ) = n0 log θ+ (n−n0) log(1− θ) (2.150)

and its first derivative is
n0
θ

−
n−n0
1− θ

(2.151)

Therefore, the MLE for θ is

θMLE =
n0
n

(2.152)

For the supervised setting assume that a real valued input x ∈ Rd is
mapped to y ∈ R, a regression problem. In particular, assume that the
functional relationship between x and y can be modeled as

y = f(x,θ) + ε, ε ∼ N(ε | 0,σ2) (2.153)

That is

p(y | x,θ) = N(y | f(x,θ),σ2), (2.154)

so the mean of the distribution for y is a deterministic function of
x, which is parameterized by θ. An important simplification here is
that the variance σ2 is independent of x. The likelihood function for
a dataset D with n training pairs (xi,yi) is therefore∏

i

N(yi | f(xi,θ),σ2) (2.155)

2.4 machine learning concepts 31

and hence the loglikelihood function `(θ) is

`(θ) = −
n

2
lnσ2 −

n

2
ln(2π) −

1

2σ2

∑
i

(yi − f(xi,θ))
2 (2.156)

So under the assumption of Eq. (2.153) the Maximum Likelihood Esti-
mation of θ for a regression problem corresponds to minimizing the
sum-of-squares error between the predicted mean f(x,θ) and the true
value y:

θMLE = arg max
θ

(
−
1

2σ2

∑
i

(yi − f(xi,θ))
2

)

= arg min
θ

(
1

2

∑
i

(yi − f(xi,θ))
2

) (2.157)

If, instead to regression, real valued inputs x are mapped to K mu-
tual exclusive natural numbers (labels, which are usually abstract rep-
resentations of properties of the input, e.g. the color of a car) then
we denote the underlying task a classification problem. y is then a
Multinomial random vector (see Eq. (2.113)). One might imagine that
this is simply a special case of regression, but this does usually not
provide satisfactory results, because there is no ordinal relationship
between the labels (see [35, Section 4.1.3] for more discussion on this
aspect).

The model p(yi = 1 | x,θ) denotes the probability that input x is
classified with label i. For a given dataset D = {(x1, l1), . . . , (xn, ln)}
with n pairs of labeled inputs the likelihood is∏

n

∏
k

p(yik | xi,θ)yik =
∏
n

p(yili | xi,θ) (2.158)

The loglikelihood is then∑
i

logp(yili | xi,θ) (2.159)

which is often denoted the categorial cross-entropy function. In order
to ensure that p(y | x,θ) is a Multinomial distribution, a common
functional form of p(y | x,θ) is the so-called soft-max function

p(y | x,θ) =
exp(f(x,θ))
‖exp(f(x,θ))‖1

(2.160)

where f : Rn → Rk and exp(·) is the elementwise exponential. In this
case Eq. (2.159) becomes:∑

i

log
exp([f(x,θ)]li)
‖exp(f(x,θ))‖1

=
∑
i

[f(x,θ)]li − log ‖ exp(f(x,θ))‖1 (2.161)

Maximizing the loglikelihood in this case does not only induce max-
imizing the output for the correct label. The second contrastive term

32 fundamentals

also minimizes the probabilities of all other (wrong) labels for a given
input (which is of course a direct consequence of a normalized prob-
ability distribution).

In the case of K = 2 a scalar random variable y is enough to model
the binary outcome with a simple Bernoulli distribution:

p(y | x,θ) = Bern(y | σ(f(x,θ))) (2.162)

with f : Rn → R. The loglikelihood function is called binary cross-
entropy:∑

i

yi logσ(f(xi,θ)) + (1− yi)(1− logσ(f(xi,θ))) (2.163)

with the provided labels yi ∈ {0, 1}.
Certain types of models and tasks can rely on a large body of prior

information—this information is then encoded into the form of p(x|θ)
and into the prior p(θ) over the parameters. MLE neglects this part of
the prior information which especially results in overfitting problems
when the size of the training set is small. The so called Maximum-A-
Posteriori (MAP) approach can be a remedy in these situations. First,
reformulate Eq. (2.146) by identifying the posterior distribution of θ
given the dataset D:

p(x | D) =
p(x,D)

p(D)
=

∫
p(x | D,θ)p(θ | D)dθ

with p(θ | D) =
p(D | θ)p(θ)

p(D)

(2.164)

That is the posterior distribution of a test sample x is the average like-
lihood p(x | D,θ), weighted by the posterior of θ. Then approximate
the integral in Eq. (2.164), again using a Dirac delta function:

p(θ | D) = δ(θ−θMAP)

θMAP = arg max
θ

p(D | θ)p(θ) (2.165)

The posterior distribution for x is then

p(x | D) = p(x | D,θMAP) (2.166)

Continuing the regression example from Eq. (2.153), a simple choice
for the prior over the parameters θ can be a zero centered Gaussian
with independent parameters, i.e.

θ ∼ N(θ | 0, λ2I) (2.167)

The posterior density p(θ|D) is

p(θ | D) ∝
∏
i

N(yi | f(xi,θ),σ2)N(θ | 0, λ2I) (2.168)

2.5 the monte carlo principle and sampling 33

a Gaussian (the product of Gaussian densities, see Eq. (2.126)), which
can be written easier in the log domain as

logp(θ | D) ∝ 1
2

∑
i

(yi − f(xi,θ))
2 +

1

2λ2
θTθ (2.169)

MAP with the prior from Eq. (2.167) therefore results in a regular-
ized sum-of-squares objective for θ. Regularizing with an L2 term as
in Eq. (2.169) is often called weight decay in Machine Learning – the
parameters (weights) are driven to small absolute values.

Both MLE and MAP have nice statistical properties (e.g. MLE is
a consistent estimator in the limit of an infinite amount of training data).
However, in both cases learning becomes a (difficult) optimization
problem. As it turns out, these optimization problems are not invari-
ant to reparameterizations. Therefore it might still be the best ap-
proach to tackle the real problem of predictive modeling (Eq. (2.146))
and consider methods that solve high dimensional integrals. This is
the topic of the next section.

Quite often, a learning problem can’t be formulated in probabilistic
terms, in particular in the supervised setting. Instead, a general loss
function L : (Rn ×Rn) → R can be defined for the learning problem
which measures the cost of predicting f(x,θ) for some input x when
the true observation is y. So f(·, ·) is the predictive model, with adap-
tive parameters θ. In this setting the parameters θ are determined by
optimizing the empirical risk R(θ) of the predictive model on the train-
ing set D. The empirical risk is usually defined as containing a data
fitting term induced by L(·, ·) on the training set and a regularization
term Ω(θ):

R(θ) =
1

|D|

∑
xi,yi

L(f(xi,θ),yi) + λΩ(θ) (2.170)

Learning then means finding parameters θ that minimize R(θ). Note
that this framework of empirical risk minimization [403] encompasses
MLE and MAP.

2.5 the monte carlo principle and sampling

Probability Theory is a powerful language to model uncertainties. Yet,
many questions that are related to uncertain modeling are determinis-
tic. Usually these can be written in the form of an expectation: Given
a deterministic function f : Rm → Rn and a probability density (or
mass) function p(x), one is interested in finding

E [f(x)] =

∫
f(x)p(x)dx (2.171)

Depending on the form of f(x) and p(x) this integral is often (i.e. for
interesting cases) not analytically tractable. Most standard methods

34 fundamentals

of numerical integration do not work well either, in particular for
high-dimensional problems.

A simple yet powerful approach is the Monte Carlo principle [242].
The above integral is approximated by a weighted sum of f(xi) at ac-
cordingly chosen points xi. Specifically

E [f(x)] =

∫
f(x)p(x)dx ≈ 1

S

S∑
i

f(xi), xi ∼ p(x) (2.172)

So the xi are i.i.d samples from p(x). The above estimate has two nice
properties:

• It is unbiased (which follows from the linearity of the expecta-
tion operator):

E

[
1

S

S∑
i=1

f(xi)

]
=
1

S
E

[
S∑
i=1

f(xi)

]
=
1

S

S∑
i=1

E [f(xi)]

= E [f(x)]

(2.173)

• Its variance shrinks proportionally to S:

V

[
1

S

S∑
i=1

f(xi)

]
=
1

S2

S∑
i=1

V [f(xi)] =
1

S
V [f(x)] (2.174)

Note that this holds independently of the dimensionality of x!
This is however only true as long as the samples xi are indepen-
dent. Otherwise, Eq. (2.174) is more involved:

V

[
1

S

S∑
i=1

f(xi)

]
=
1

S
V [f(x)]

+2
∑

16i<j6S

Cov(f(xi), f(xj))
(2.175)

The Monte Carlo approach can be applied flexibly within a lot of
settings. For example, given some dataset D, one goal is usually to
find the predictive distribution p(x | D). Assuming the existence of
an unknown parameter θ, the Monte Carlo principle can be applied
in a straight forward way:

p(x | D) =

∫
p(x | θ)p(θ | D)dθ ≈ 1

S

∑
p(x | θi), θi ∼ p(θ | D)

(2.176)

Overall the problem of solving an integral is replaced by the problem
of generating independent (in the best case) samples from some distri-
bution. As it turns out, this is very challenging for high dimensional
distributions, but often more manageable than alternative approaches
to tackle high dimensional integrals.

2.5 the monte carlo principle and sampling 35

sampling . In order to generate representative values from a dis-
tribution p(x) a naive idea is to find a simple enough distribution q(x)
to sample from instead. Clearly an additional step must be taken, if
such a sample is then used in Eq. (2.172) as an approximation for a true
sample from the difficult p(x). This correction can again be derived
applying the Monte Carlo principle and results in importance sampling
[354]:∫

p(x)f(x)dx =

∫
q(x)

p(x)

q(x)
f(x)dx

≈ 1

N

∑
i

p(xi)

q(xi)
f(x), xi ∼ q(x)

(2.177)

Usually, only the functional form of p(x) is known, but not its nor-
malization constant, i.e. p(x) = p̂(x)/Z, with Z =

∫
p(x)dx. In this

case, weighted importance sampling can be utilized∫
p(x)f(x)dx =

∫
p̂(x)f(x)dx∫
p̂(x)dx

=

∫ p̂(x)
q(x)q(x)f(x)dx∫ p̂(x)
q(x)q(x)dx

≈
∑
i
p̂(xi)
q(xi)

f(xi)∑
i
p̂(xi)
q(xi)

=
∑
i

f(xi)wi, xi ∼ q(x)

(2.178)

where wi are normalized importance weights:

wi =

p̂(xi)
q(xi)∑
n
p̂(xn)
q(xn)

(2.179)

An obvious problem with this approach is the possibility that very
few samples have large weights and therefore dominate the sum
in Eq. (2.178) reducing the effective sample size drastically. For exam-
ple, if one considers the unnormalized importance weights ŵi =

p̂(xi)/q(xi) then the expected variance between two weights ŵi and
ŵj can be expressed as

E
[
(ŵi − ŵj)

2
]
= Ep(x)

(
p̂(x)

q(x)

)d
− 1 (2.180)

which grows exponentially with the dimensionality d of x, because
Ep(x)

(
p̂(x)
q(x)

)
> 1 for p(x) 6= q(x)3. This actually implies that only a

single sample will determine the Monte Carlo estimate. A possible
remedy for this situation is Sampling Importance Resampling [354]: The
weights wi, i ∈ S, induce an S dimensional Multinomial distribution.
From this distribution S indices are repeatedly drawn which then
form the final Monte Carlo estimate, having each a weight of 1/S.

If a random variable y can be represented as some non-linear trans-
formation f(x) of x and p(x) represents a distribution which it is

3 This derivation assumes that p and q are fully factorized distributions.

36 fundamentals

easy to sample from, than valid samples of p(y) are easy to generate
through sampling from p(x) and applying f(·). A well known appli-
cation of this transformation method is the generation of samples from
an arbitrary Gaussian N(x | µ,Σ): The random variable z ∼ N(z | 0, I)
(which is usually generated by a different transformation method, e.g.
the Box-Muller method [35]) can be transformed to x with

x = Lz, z ∼ N(z | 0, I) (2.181)

where LLT = Σ, i.e. L is the Cholesky factor of Σ, which always exists
because Σ is positive semi-definite.

The transformation method can also be applied if the random vari-
able of interest y is part of a (tractable) joint distribution p(x,y).
Specifically, if p(y) =

∑
x p(x,y) then generating a full sample from

the joint distribution and simply leaving away the part representing
x generates valid samples y ∼ p(y)4.

If the distribution p(x) is simple, enough an easy way to sample
from p(x) is by the inversion method. Let X have cdf F(x), which is
monotone and therefore invertible. Then Y, defined as

Y = F−1(u), u ∼ U(0, 1) (2.182)

will be distributed according to F(·). The reason is due to the defi-
nition of the cumulative distribution function (cdf, Eq. (2.122)) of a
continuous uniform random variable:

p(Y 6 y) = p(F−1(u) 6 y) = p(u 6 F(x)) = F(x) (2.183)

If a distribution p(x) = p̂(x)
Z has an intractable normalization con-

stant Z, but is otherwise analytically manageable, then rejection sam-
pling generates valid samples. Similar to importance sampling a pro-
posal distribution q(x) is utilized to generate samples. For the proposal
distribution it is important that its scaled density function q(x) is
above p̂(x):

cq(x) > p̂(x), c > 0, ∀x (2.184)

q(x) is used to generate a candidate sample xcand which is then com-
pared to a sample u ∼ U(0, 1) and accepted if u 6 p̂(xcand)

cq(xcand)
. The

conditional probability for acceptance, i.e. p(accept | x), is therefore
given by

p(accept | x) =
p̂(x)

cq(x)
(2.185)

The overall acceptance probability represents the statistical efficiency
of a sampling method:

p(accept) =
∫
p(accept, x)dx =

∫
p(accept | x)q(x)dx

=

∫
p̂(x)

cq(x)
q(x)dx =

∫
p̂(x)

c
dx =

Z

c

(2.186)

4 More formally, this is equivalent to applying a selector matrix, as demonstrated with
marginalizing a Gaussian.

2.5 the monte carlo principle and sampling 37

This expression can now be used to show that the sampled distribu-
tion (i.e. p(x | accept)) is actually the desired distribution p(x):

p(x | accept) =
p(x, accept)
p(accept)

=
p̂(x)

c

c

Z
=
p̂(x)

Z
= p(x) (2.187)

The efficiency of rejection sampling is acceptable for a one dimen-
sional distribution but results in a very impractical sampling method
for high dimensional densities: For example, in the simple case that
p(x) and q(x) are both d-dimensional factorized distributions the
probability of accepting some candidate sample decreases exponen-
tially with the number of dimensions because (using Eq. (2.186) d
times for every pair of one dimensional distributions):

p(accept) =
d∏
i

Zi
ci

(2.188)

The previous methods showed that high dimensional distributions
are difficult to sample from. Apart from special cases where the trans-
formation method is applicable (like the Gaussian), neither the in-
verse method (solving integrals which is necessary for the cdf F are
generally difficult in high dimensions) nor the rejection method (vol-
umes, in this case the rejection volume, grow exponentially fast with
dimensions) are practical methods. Usually even modes of a distribu-
tion (which could serve as anchor points for a sampling procedure) are
not known at all.

What is necessary to generate samples in high dimensional spaces
is a method that explores efficiently the practically unknown distri-
bution and generates valid (i.e. representative) samples from it at the
same time.

To model random exploration a popular choice are first order Markov
Chains, a sequence of random variables whose distribution evolves
over time as a function of past realizations [271]. A first order Markov
Chain is defined to be a series of random variables x1, . . . , xN such
that

p(xk | x1, . . . , xk−1) = p(xk | xk−1), ∀k (2.189)

Mathematically, a Markov Chain is specified by an initial probability
distribution p(xo) and a transition probability p(xt | xt−1). In order
for the chain to produce actual values from a desired distribution
p(x), it must be ensured that the stationary distribution π(x) of the
chain is p(x). That is one can design a desired global behavior of a
markov chain by shaping the local transition operator T(xt, xt−1) ≡
p(xt | xt−1). For a given desired stationary distribution π(x) many
possible transition operators exist.

It turns out that only two properties are necessary to construct a
Markov Chain with a desired stationary distribution π(x):

38 fundamentals

• the chain must be ergodic:

p(xt)→ π(x), for t→∞ and arbitrary p(xo) (2.190)

A markov chain is ergodic if it is aperiodic (no state, i.e. the
same random variable, is revisited periodically) and irreducible
(every state is reachable by every other state). That means it has
at most one stationary distribution.

• p(x), the desired distribution, must be an invariant distribution
with respect to the transition operator T(xt, xt−1).

p(x ′) =
∫
p(x)T(x ′, x)dx (2.191)

A useful property of a transition operator T(x ′, x) is detailed balance
with respect to some distribution q(x):

q(x)T(x, x ′) = q(x ′)T(x ′, x), ∀x, x ′ (2.192)

A Markov Chain that satisfies detailed balance is also called a re-
versible markov chain: it is just as likely that we arbitrarily pick some
state x and move to x ′ than the other way around. Detailed balance of
a transition operator with respect to some distribution p(x) is a use-
ful property of a chain because it implies that p(x) is the stationary
distribution of the induced markov chain 5:∫

p(x)T(x ′, x)dx =
∫
p(x ′)T(x ′, x)dx = p(x) · 1 (2.193)

MCMC methods produce estimates with the Monte Carlo method us-
ing samples generated via Markov Chains. The following three meth-
ods are currently the most widely used approaches. They are all
based on a transition operator that fulfills detailed balance.

gibbs sampling . Gibbs sampling [107] simply picks single dimen-
sions i of the random vector x in turn and resamples p(xi | x−i). So
the underlying transition operator is

T(x ′, x) = p(x ′i | x−i)δ(x
′
−i = x−i). (2.194)

It can be shown that Gibbs Sampling is a special case of Metropolis-
Hastings Sampling (Eq. (2.197)), and therefore satisfies automatically
detailed balance (because Metropolis-Hastings Sampling satisfies it,
Eq. (2.198)).

Standard Gibbs sampling updates only one variable (single-site up-
dates) per Markov Chain step, so successive samples will be highly
correlated, which motivates subsampling. It is best used when dis-
tributions factorize, i.e. groups of variables are conditionally indepen-
dent. In this case, these variables can be updated in parallel (blocked
Gibbs sampling). Gibbs sampling is not effective when variables are
strongly correlated.

5 Note that detailed balance is a sufficient but not a necessary condition for a station-
ary distribution.

2.5 the monte carlo principle and sampling 39

metropolis-hastings sampling . In the Metropolis-Hastings
sampling scheme [257, 143] a proposal distribution q(x ′ | x) is uti-
lized to generate a step in the Markov Chain. Importantly (and dif-
ferent to the proposal distribution used by e.g. the rejection method),
this proposal distribution depends on the current state of the Markov
Chain. A candidate x ′ for the new state of the Markov Chain is sam-
pled from q(x ′ | x) and accepted with probability a:

a = min
(
q(x | x ′)p(x ′)
q(x ′ | x)p(x)

)
(2.195)

So the transition operator for Metropolis-Hastings can be written as

T(x ′, x) = q(x′ | x)a (2.196)

Note that a can even be computed when p(x) = p̂(x)/Z is only known
up to the normalization constant Z! If x ′ is rejected, the new state of
the Markov Chain is set to x again.

Given the definition of a, it is easy to see that Gibbs sampling is
indeed a special kind of Metropolis-Hastings sampling with an accep-
tance rate of 1:

a =
q(x | x ′)p(x ′)
q(x ′ | x)p(x)

=
p(xi | x

′
−i)p(x

′)

p(x ′i | xi)p(x)

=
p(xi | x

′
−i)p(x

′
i | x

′
−i)p(x

′
−i)

p(x ′i | xi)p(xi | x−i)p(x−i)
= 1, because x−i ≡ x ′−i

(2.197)

With respect to the desired stationary distribution p(x) the transition
operator Eq. (2.196) fulfills detailed balance:

q(x′ | x)ap(x) = min(q(x′ | x)p(x),q(x | x ′)p(x ′))

= q(x | x ′)p(x ′)min
(
q(x | x ′)p(x ′)
q(x′ | x)p(x)

, 1
)

= q(x | x ′)ap(x ′)

(2.198)

The proposal distribution is chosen such that it is sufficiently sim-
ple (computationally efficient) to draw samples from it. For continu-
ous state spaces a common choice is a Gaussian centered at the cur-
rent state, a reasonable proposal distribution also for correlated high-
dimensional random variables. Using a Gaussian as an exemplary
proposal distribution, the main problem with Metropolis-Hastings
sampling becomes apparent: If the space of the goal distribution p(x)
should be adequately explored (because it is highly multimodal), the
variance of the proposal Gaussian must be set high enough. However,
if the variance is too large then most candidate states will be rejected.
So the sampler either degenerates into local exploration or shows
poor efficiency. Hence the distance explored by a typical Metropolis-
Hastings sampling approach only grows with the square root of the
number of computation steps [242], resembling a typical random
walk behavior. The more general problem is the fact that while the
proposal distribution is state dependent, it does not take the specific
functional form of the stationary distribution into account.

40 fundamentals

hamiltonian monte carlo. Hamiltonian Monte Carlo [35, 242,
358, 32] breaks out of this poor local exploration by utilizing the be-
havior of physical systems under Hamiltonian dynamics – the state
of such systems evolves over multiple time steps, and, if formulated
adequately, can then be interpreted as a valid sample of a Markov
Chain.

If the stationary distribution p(x) is written as p(x) =
exp(−E(x))

Z

then the energy function E(x) can be interpreted as the potential en-
ergy of a physical system. The potential energy E(x) is then used to
construct a Hamiltonian H(x,p), which additionally needs a kinetic
energy term K(p) defined over a momentum p:

H(x,p) = E(x) +K(p) (2.199)

The Hamiltonian itself can be used to induce a joint probability dis-
tribution over (x,p):

pH(x,p) =
exp(−H(x,p))

ZH
=

exp(−E(x)) exp(−K(p))
ZH

(2.200)

Because this distribution is separable its marginal distribution with
respect to x is the stationary distribution p(x). So a sample (x,p)
from pH(·) becomes a valid sample from the stationary distribution
by simply discarding p.

But how is such a joint sample generated to begin with? Given
values for x and p, a Hamiltonian system evolves according to the
following dynamic:

ẋ = p

ṗ = −
∂E(x)

∂x

(2.201)

One can show [35, chapter 11.5] that these Hamiltonian dynamics
leave pH(x,p) invariant and hence also p(x). However, Eq. (2.201)
alone does not ensure that sampling also happens ergodically (it can’t,
because the value of the Hamiltonian remains constant under the
dynamics, ensuring invariance). Hence, after sampling x from a dy-
namic evolution of the system, p must be resampled, according to
p(p) =

exp(−K(p))
Z . A standard distribution for p is a Gaussian, e.g.

K(p) =
1

2
pTp (2.202)

However, K(·) may also depend on the actual value of x. Note that the
approach described up to now does not need a Metropolis correction
step—every state (x,p) evolved via the dynamics in Eq. (2.201) and
with regularly resampled p is accepted.

In practice, Eq. (2.201) must be simulated with finite numerical pre-
cision. The leapfrog, or Störmer–Verlet, integration provides such a
discrete time approximation for Hamiltonian dynamics [272, 139]. It

2.5 the monte carlo principle and sampling 41

depends on one parameter ε, the stepsize of the simulation. Given xt
and pt a step is computed as follows:

pt+1
′ = pt −

ε

2

∂E(xt)

∂x
xt+1 = xt + εpt+1

′

pt+1 = pt+1
′ −

ε

2

∂E(xt+1)

∂x

(2.203)

The leapfrog integration ensures that the volume in the phase space is
conserved, however the value of the Hamiltonian does in general not
stay constant. Hence, a correction step is necessary: If (x,p) represent
the initial state of the simulation and (x ′,p ′) is the state after a series
of leapfrog steps, then x ′ is accepted with probability

min(1, exp(H(x,p) −H(x ′,p ′))) (2.204)

With this schema, which is generally referred to as Hamiltonian Monte
Carlo (HMC), it is no longer obvious that the transition operator in-
duced by the simulated Hamiltonian dynamics is invariant. However,
if at the beginning of a set of simulated leapfrog steps the integra-
tion direction (forward or backward in time) is chosen at random
(together with the sampled momentum p) then it is possible to show
that HMC fulfills detailed balance [35].

Because gradient information of the proposal distribution is used,
the system explores the state space linearly with respect to the num-
ber of steps of the simulated chain. Note that in general, it is difficult
to choose the form of the kinetic energy such that it helps most for
p(x). Also, it is not clear for how long the simulation should be run
and how big the stepsize should be chosen—both parameters can be
itself determined by proposal distributions during running HMC.

In more general terms, HMC is an example of an auxiliary variable
method which adds additional dimensions to help x explore more eas-
ily and efficiently the state space of the target distribution p(·) [11].

As already mentioned at the beginning of this section many impor-
tant questions in probabilistic modeling actually involve determin-
istic quantities, e.g. expectations. In Machine Learning we often look
for parameters that optimize these quantities. The following two rules
are very helpful if this optimization is done in a gradient–based ap-
proach. Both rules (usually) rely on the Monte Carlo principle in or-
der to be implemented efficiently.

If the random variable x is distributed according to some param-
eterized probability distribution, x ∼ p(x | θ), then the score function
(SF) estimator [101, 339] is given by

∂Ep(x|θ) [f(x)]

∂θ
= Ep(x|θ)

[
f(x)

∂ logp(x,θ)
∂θ

]
(2.205)

42 fundamentals

This equality is derived with the log derivative identity:

∂ logp(x | θ)
∂θ

=
1

p(x | θ)

∂p(x | θ)

∂θ
(2.206)

Specifically,

∂Ep(x|θ) [f(x)]

∂θ
=
∂
∑
x p(x | θ)f(x)

∂θ
=

∑
x

∂p(x | θ)

∂θ
f(x)

=
∑
x

p(x | θ)
∂ logp(x | θ)

∂θ
f(x)

= Ep(x|θ)

[
f(x)

∂ logp(x,θ)
∂θ

] (2.207)

Derivative and expectation can be simply swapped if x is a deter-
ministic, differentiable function of θ and another random variable z:

∂Ep(z) [f(x(θ, z))]
∂θ

= Ep(z)

[
∂f(x(θ, z))

∂θ

]
(2.208)

This pathwise derivative (PD) estimator is valid if and only if f(x(θ, z))
is a continuous function of θ for all z [114, 339], so x can not be a
discrete random variable!

Both estimators can be used under different circumstances and
have different advantages [339]. The SF estimator is more generally
applicable (e.g. f(·) can be discontinuous) and only requires sample
values from f(x) instead of the derivative f ′(x) (in the case of applying
the Monte Carlo principle). However, its gradient estimate tends to
have high variance, in particular if f(x) is rather smooth. In this case it
is often preferable to transform the SF estimator into an PD estimator
by moving the parameter θ from the distribution into the expectation
through an appropriate reparameterization [101, 200, 307, 339].

If θ appears in both the probability distribution over the expecta-
tion and in f(·) then both Eq. (2.205) and Eq. (2.208) are applied, using
the product rule and the derivation from Eq. (2.207) [339]. A detailed
technical discussion of the above gradient estimators is given in [114].

2.6 graphical models

Probability Theory is the basic language to describe uncertainty, but
how can one describe a probabilistic system with a large number of in-
teracting random variables in such a way that all complexities remain
manageable? E.g. how does one encode structural information—the
covariance matrix expresses such structural information, but only in
a limited way.

Relationships between random variables are determined through
the concept of statistical independence. A compact but also flexible

2.6 graphical models 43

way to encode these relationships is the popular framework of Graph-
ical Models [204, 410]: Graphical Models are graphs whose nodes cor-
respond to random variables and edges encode statistical dependen-
cies (that is, an absent edge between two nodes may indicate statisti-
cal independence). This section gives a concise introduction into this
framework. Importantly (and distinct from most books on Graphical
Models that spend most of the time on tabular Graphical Models) I
will only consider parameterized Graphical Models, i.e. the edges of
the graph are equipped with weights and the goal of learning is to
determine these weights. Also differently to most texts I do not cover
Factor Graphs and also skip the so called Plate notation [35]. Graphi-
cal Models are depicted with directed or undirected edges (represent-
ing the learnable parameters of the models) and nodes. Nodes either
represent random variables, depicted as circles A or deterministic
computations, depicted as diamonds o .

2.6.1 Undirected Graphical Models

The simplest approach to encode conditional independence is a direct
representation of this fact: Two nodes are connected by an undirected
edge if they are conditionally dependent given all others. Or, to put
it the other way around, x is conditionally independent of y given
the set of random variables Z (x ⊥⊥ y | Z), when every path between
x and y contains some node z ∈ Z. Clearly, x is independent of all
other random variables in the graph if one conditions on its direct
neighbors. This set is called the Markov blanket of x.

An undirected graphical model induces factorized probability distri-
butions over its nodes when non-negative potential functions ψ(·) are
assigned to the set C of its cliques6:

p(x) =
1

Z

∏
C∈C

ψC(xC,θC) (2.209)

The normalizing constant (also partition function) Z(θ) sums (or inte-
grates7) over all configurations of the random variable x, i.e.

Z(θ) =
∑
x

∏
C∈C

ψC(xC,θC) (2.210)

To simplify notation I will write Z instead and leave out the depen-
dence on θ.

As it turns out, if a density (or, in the discrete case, a mass function)
p(x) factors according to a density that is induced by an undirected

6 Usually the potential functions are defined over (non-linear) functions φ(·) of the
random variables x, i.e. features from the input data. However, to maintain readability,
everything is defined on the untransformed random variables.

7 Without loss of generality and no other assumptions given, random variables are
considered to be discrete, so marginalization is done with sums.

44 fundamentals

Graphical Model, then it satisfies all the conditional independence
constraints that are defined by the undirected graph. On the other
hand, if a probability distribution has all the conditional indepen-
dence constraints defined by some undirected graph then its associ-
ated probability density factors according to the induced probability
function from Eq. (2.209) (Hammersley-Clifford Theorem, [31]). Actu-
ally, the theorem is only true for strictly positive distributions, which
I will focus from now on. So we can write Eq. (2.209) in the Gibbs
representation:

p(x | θ) =
1

Z
exp

(∑
C∈C

logψC(xC,θC)

)
(2.211)

with

Z =
∑
x

∑
C∈C

logψC(xC,θC) (2.212)

The argument of the exp(·) function is often denoted the negative
energy function −E(x,θ).

Given observed data D the goal is as usual to determine the param-
eters θ (the weights on the edges of the undirected graph). Note that
without any specific partitioning of the random variable x into input
and output elements, I generally consider the case of unsupervised
learning (though everything is applicable to the supervised case, too).
Following the Maximum Likelihood Estimation principle, the first
derivative of the loglikelihood function is necessary: either the op-
timum can be found analytically in closed form or, in the standard
case, the gradient can be used by an iterative optimization procedure.
As the elements in D are assumed to be i.i.d it is enough to compute
the first derivative with respect to the parameters θ for one element
x ∈ D:

∂ logp(x | θ)
∂θ

=
∑
C∈C

∂ logψC(xC,θ)
∂θ

−
∂ logZ
∂θ

=
∑
C∈C

∂ logψC(xC,θC)
∂θ

−
1

Z

∑
x ′

∂ exp
(∑

C∈C logψC(x ′C,θC)
)

∂θ

=
∑
C∈C

(
∂ logψC(xC,θC)

∂θ

−
∑
x ′
p(x ′ | θ)

∂ logψC(x ′C,θC)
∂θ

)
(2.213)

This is a little bit unwieldy and reads simpler in terms of the energy
function E(x,θ):

∂ logp(x | θ)
∂θ

=
∂E(x,θ)
∂θ

−
∑
x ′
p(x ′ | θ)

∂E(x ′,θ)
∂θ

(2.214)

2.6 graphical models 45

The second term which is due to the normalization constant Z com-
putes an expectation of the energy gradient with respect to the current
probability model (i.e. the current setting of θ). This expectation may
be difficult to evaluate exactly, so the Monte Carlo Principle and effi-
cient sampling strategies become necessary.

The simplest possible model for Eq. (2.211) consists of n binary
random variables where the energy is defined over pairs of nodes (if
there were no edges at all then learning would result in estimating
n independent Bernoulli distributions, resulting in Eq. (2.152)). The
negative energy function of this fully visible Boltzmann Machine vBM
is

−E(x,θ) =
∑
i

xiθ̂i +
1

2

∑
i

∑
j

xiθ̃ijxj = x
T θ̂+

1

2
xT θ̃x (2.215)

with θ = (θ̂ ∈ Rn, θ̃ ∈ Rn×n), θ̃ symmetric and θ̃ii ≡ 0. The first
term of Eq. (2.214) is easy to compute, using Eq. (2.70) and Eq. (2.78)
for the derivatives of θ̂ and θ̃ respectively:

∂E(x,θ)
∂θ̂

= −xT

∂E(x,θ)
∂θ̃

= −(vec(xxT)T
(2.216)

But the second term requires a sum over all possible binary config-
urations and is therefore in general not tractable. However, Gibbs
sampling is particularly simple in this case:

p(xi | x−i) =
p(xi | x−i)

p(x−i)
=
p(xi | x−i)∑
xi
p(x)

=
exp (−E(x,θ)) /Z∑

xi∈{0,1} exp (−E(x,θ)) /Z

=
exp

(
(θ̂i +

∑
k θ̃ikxk)xi

)
1+ exp

(
θ̂i +

∑
k θ̃ikxk

)
(2.217)

For xi ≡ 1 this simplifies to

p(xi = 1 | x−i) =
exp

(
θ̂i +

∑
k θ̃ikxk

)
1+ exp

(
θ̂i +

∑
k θ̃ikxk

)
=

1

1+ exp
(
−(θ̂i +

∑
k θ̃ikxk)

)
= σ

(
θ̂i +

∑
k

θ̃ikxk

) (2.218)

where σ(·) is the logistic sigmoid non-linearity defined as

σ(u) =
1

1+ exp(−u)
=

exp(u)
1+ exp(u)

(2.219)

46 fundamentals

So while a simple sampling strategy exists, learning is still very slow
due to the inherent inefficiency of Gibbs Sampling and the general
usage of iterative gradient ascent (or, in a more abstract way, the
learning loop (gradient ascent) relies on an inefficient inference loop
(sampling)).

What happens if the same graphical structure is used for real val-
ued random variables x?

p(x) ∝ exp
(
−
1

2
xT θ̃x+ θ̂

T
x

)
(2.220)

which can be identified as a Gaussian in natural parameterization
(Eq. (2.124)). That is

Σ = θ̃
−1

µ = Σ−1θ̂
(2.221)

Differently to the general case, such a Gaussian Markov Random Field
which is simply a Gaussian can be solved in closed form with respect
to its parameters. Given n i.i.d. observations in the training set D =

{x1, x2, . . . , xn}, the likelihood with respect to µ and Σ is

n∏
i=1

N(xi | µ,Σ) (2.222)

and hence the negative loglikelihood `(µ,Σ) is

`(µ,Σ) =
nd

2
log 2π︸ ︷︷ ︸

const.

+
n

2
log |Σ|︸ ︷︷ ︸

depends on Σ

+
1

2

n∑
i=1

(xi − µ)
TΣ−1(xi − µ)︸ ︷︷ ︸

depends on µ,Σ

(2.223)

Using Eq. (2.70) and Eq. (2.72) the first derivative of the loglikelihood
with respect to µ is

∂`(µ,Σ)
∂µ

=

n∑
i=1

Σ−1(µ− xi) (2.224)

and hence the MLE estimate for µ is

µMLE =
1

n

n∑
i=1

xi (2.225)

In order to compute the first derivative of `(µ,Σ) with respect to Σ−1

Eq. (2.78) and Eq. (2.86) are necessary:

∂`(µ,Σ)
∂Σ−1

= −
n

2
Σ+

1

2

∑
i

(xi − µ)(xi − µ)
T (2.226)

and therefore

ΣMLE =
1

n

∑
i

(xi − µ)(xi − µ)
T (2.227)

2.6 graphical models 47

Usually µ is not known so ΣMLE must rely on µMLE instead. In order
to ensure an unbiased estimate, a tiny correction must be made:

Σ ′MLE =
1

n− 1

∑
i

(xi − µMLE)(xi − µMLE)
T (2.228)

So basically the MLE for the parameters of the Gaussian are simply
the empirical mean and the empirical covariance matrix.

Both the vBM and the Gaussian utilize at most second order infor-
mation (as evident from Eq. (2.216), Eq. (2.225) and Eq. (2.227)). Al-
ready quite simple problems can’t be successfully tackled with these
types of models [242, p.524]. In general, Graphical Models can be
made more powerful by the introduction of latent variables [152], usu-
ally denoted by h. That is

p(x | θ) =
∑
h

p(x,h | θ) =
1

Z

(∑
h

exp (−E(x,h,θ))

)
(2.229)

with

Z =
∑
x

∑
h

exp (−E(x,h,θ)) (2.230)

The general idea behind latent variables is that these either represent
theoretical concepts that determine the system in an unobservable
manner or actually represent unobservable physical states.

It is straightforward to compute conditionals, e.g. the posterior over
latent variables given visible variables p(h | x) is

p(h | x,θ) =
p(x,h | θ)

p(x | θ)
=

exp (−E(x,h,θ))∑
h exp (−E(x,h,θ))

(2.231)

However, in the special case of a Gaussian this is not true: Adding
additional latent variables that are also marginally Gaussian does
not enhance the capacity of such a model: it stays a Gaussian (see
Eq. (2.134)), the latent variables are unidentifiable.

In order to use the formulation from Eq. (2.211), the free energy
F(x,θ) is introduced:

p(x | θ) =
1

Z
exp (−F(x,θ))

=
1

Z
exp

(
− log

(∑
h

exp (−E(x,h,θ))

)) (2.232)

that is

F(x,θ) = log

(∑
h

exp (−E(x,h,θ))

)
(2.233)

48 fundamentals

The log-likelihood gradient is then given by:

∂ logp(x | θ)
∂θ

=
∂F(x,θ)
∂θ

−
∂ logZ
∂θ

=
∂ log (

∑
h exp (−E(x,h,θ)))

∂θ
−
∂ logZ
∂θ

=
∑
h

exp (−E(x,h,θ))∑
h ′ exp

(
−E(x,h ′,θ)

) ∂− E(x,h,θ)
∂θ

−
∂ logZ
∂θ

=
∑
h

p(h | x,θ)
∂− E(x,h,θ)

∂θ
−
∂ logZ
∂θ

=
∑
h

p(h | x,θ)
∂− E(x,h,θ)

∂θ

−
∂ log (

∑
x ′

∑
h exp (−E(x ′,h,θ)))
∂θ

=
∑
h

p(h | x,θ)
∂− E(x,h,θ)

∂θ

−
∂ log (

∑
x ′

∑
h exp (−E(x ′,h,θ)))
∂θ

=
∑
h

p(h | x,θ)
∂− E(x,h,θ)

∂θ

−
∑
x ′

∑
h

exp (−E(x ′,h,θ))∑
x ′′

∑
h exp (−E(x ′′,h,θ))

∂E(x ′,h,θ)
∂θ

=
∑
h

p(h | x,θ)
∂− E(x,h,θ)

∂θ

−
∑
x ′

∑
h

p(x ′,h | θ)
∂− E(x ′,h,θ)

∂θ

(2.234)

The similarity to Eq. (2.214) is not surprising. Note that now the first
term is also an expectation of the energy gradient, this time with re-
spect to the posterior distribution of the latent variables. In general
this means that learning now involves two intractable terms. The first
term is sometimes called the positive phase. It lowers the energy (i.e.
increases probability mass) at training samples x and the best (as in-
terpreted by the posterior) latent configurations. The second phase
(the negative phase) universally increases the energy, in particular at
these configurations it considers most probable. The negative phase
therefore acts as a contrastive term and ensures that learning can end.

A Boltzmann Machine (BM) [2] has the same structural terms as the
vBM but with (binary) latent variables:

−E(x,h,θ) =
∑
i

yiθ̂i+
1

2

∑
i

∑
j

yiθ̃ijyj = y
T θ̂+

1

2
yT θ̃y (2.235)

where the visible units x ∈ Rn and the latent units h ∈ Rm are stacked
into y = (x,h)T and θ = (θ̂ ∈ Rn+m, θ̃ ∈ R(n+m)×(n+m)), θ̃ again
symmetric and θ̃ii ≡ 0. The gradient of the energy with respect to θ

2.6 graphical models 49

is already given in Eq. (2.216), substituting xwith y. The overall gradi-
ent is a sum of two expectations (with respect to the latent posterior
and the joint distribution respectively) over this energy gradient—
these expectations are approximated with the Monte Carlo Method,
using Gibbs sampling according to Eq. (2.217).

A Boltzmann Machine can be trained rather efficiently if its connec-
tivity structure is sparse. In these cases, sampling can become effi-
cient. One widely known instance of such a model is the Restricted
Boltzmann Machine (RBM) [355]: Edges exist only between latent and
visible units. The associated energy function can then be written as:

E(x,h,θ) = xT θ̂x +hT θ̂h + xT θ̃h (2.236)

and the free energy F(x,θ) is

F(x,θ) = log

(∑
h

exp (−E(x,h,θ))

)

= xT θ̂x + log

(∑
h

exp
(
xT θ̃h+hT θ̂h

))

= xT θ̂x + log

∑
h

m∏
j=1

exp

((∑
i

xiθ̃ij + θ̂j

)
hj

)
= xT θ̂x + log

((
1+ exp

(∑
i

xiθ̃i1 + θ̂1

))

×

∑
h 6=1

m∏
j=2

exp

((∑
i

xiθ̃ij + θ̂j

)
hj

)
= xT θ̂x + log

 m∏
j=1

(
1+ exp

(∑
i

xiθ̂ij + θ̂hj

))
= xT θ̂x +

m∑
j=1

log

(
1+ exp

(∑
i

xiθ̂ij + θ̂hj

))

(2.237)

The latent variables are conditionally independent given the visible
variables (and, due to symmetric formulation of the energy function,
vice versa):

p(h | x,θ) =
p(x,h | θ)

p(x | θ)
=

exp (−E(x,h,θ))∑
h exp (−E(x,h,θ))

=
exp

(
xT θ̂x +h

T θ̂h + xT θ̃h
)

∑
h exp

(
xT θ̂x +h

T θ̂h + xT θ̃h
)

=
exp

(
hT θ̂h + xT θ̃h

)
∑
h exp

(
hT θ̂h + xT θ̃h

)
=

m∏
j=1

exp
((∑

i xiθ̂ij + θ̂hj
)
hj
)(

1+ exp
(∑

i xiθ̂ij + θ̂hj
))

(2.238)

50 fundamentals

where I have used intermediate results from Eq. (2.237). So

p(hj = 1|x) = σ

(∑
i

xiθ̂ij + θ̂hj

)
(2.239)

and

p(xj = 1|h) = σ

(∑
i

hiθ̂ij + θ̂xj

)
(2.240)

relying on the alternative expression for the logistic sigmoid function
(Eq. (2.219)). Note that in this case only two (blocked) Gibbs steps are
necessary in order to get a new complete sample of the configuration.
In particular, given a configuration of the visible variables, a valid
sample under the current model from the posterior distribution of
the latent variables can be generated in one step, so the first part of
the loglikelihood gradient (see Eq. (2.234)) can be evaluated efficiently
for the RBM.

However, the negative phase needs a full sample (x,h) from the
current model and therefore one must resort to a Markov Chain that
iteratively samples p(x | h) and p(h | x) in a blockwise manner until
equilibrium.

Contrastive Divergence (CD) [149] circumvents this problem by trun-
cating the Markov Chain after several steps. More specifically, with
CDk the blockwise Gibbs sampling is started at a sample from the train-
ing set and then stopped after k complete updates of the latent and visible
variables. The basic idea behind CD is that with the correct parame-
ters θ the Markov Chain will leave the data distribution unaltered
(because the data distribution is the desired invariant distribution of
the chain), and therefore the chain should be started at a data sample
(and not at some randomly chosen configuration, as is the standard
procedure with Markov Chains). If the data distribution is not (yet)
the invariant distribution for the current model than this divergence
can already be detected after a small number of steps in the chain,
without the need to wait until the chain reaches its equilibrium. So
instead of computing the log-likelihood gradient ∇θ`(θ) according
to the derivation,

∇θ`(θ) =
∑
n

(
− Ep(h|x,θ) [∇θ (E(x,h,θ))]

+Ep(h,x|θ) [∇θ (E(x,h,θ))]
)

,
(2.241)

Contrastive Divergence approximates it as follows:

∇θ`(θ) ≈
∑
n

(
− Ep(h|x,θ) [∇θ (E(x,h,θ))]

+Ep̂k(h,x|θ) [∇θ (E(x,h,θ))]
) (2.242)

2.6 graphical models 51

Figure 2.1: A visual representation of an exemplary RBM with 4 latent units
and three visible units (identified by a double circle). Edges only
exist between latent and visible units.

where p̂k(h, x | θ) is the model distribution over visible and latent
units obtained when running blocked Gibbs-sampling for k iterations,
starting the chain from samples from the training set.

Starting the Markov Chain at training samples and running it only
for a fixed number of steps however leads to suboptimal generative
models: Areas in the probability landscape that are far from any train-
ing samples have a very low chance of getting reached by a particle
through the chain and therefore will never open up the probability
mass they occupy. What happens overall is that the model overfits
the probability landscape to the samples from the dataset. This ef-
fect can be alleviated by setting k high enough (e.g. k = 10 is often
reported to be good enough), but in theory the problem persists.

A better idea to model true samples from the probability distribu-
tion induced by the current setting of θ is to have a certain number
of particles (i.e. configurations of the variables) representing this dis-
tribution that are updated through several steps of iterated Gibbs
sampling without resetting them to samples from the training set
after every gradient update. So these particles persist over the com-
plete learning phase which gives this approach the name persistent
Contrastive Divergence (PCD) [387, 425, 424]. Because the model pa-
rameters θ only change a little bit between every gradient-induced
update, it is valid to start the Markov Chain at the persisted particles.
Overall, these particles then can roam freely in the complete configu-
ration space and are able to correct the probability density far away
from data samples. Combining RMBs and PCD it is possible to train
Deep Boltzmann Machines (DBM) in an efficient way [323]. DBM are
Boltzmann Machines with many layers where units within a layer are
not connected.

2.6.2 Directed Graphical Models

Considering the underlying graph of an RBM (Fig. 2.1) efficient con-
ditional sampling is possible because every path between two hidden
(visible) units is interleaved by at most one observed visible (hidden)
unit. How could we model the reverse semantic, i.e. two units be-

52 fundamentals

z

x y

(a)

zx y

(b)

Figure 2.2: The two possible conditional independence relationships in a di-
rected acyclic graph. In both cases p(x,y | z) = p(x | z)p(y | z).
The double circle around a unit indicates that it is observed. If z
is marginalized out then x and y become dependent.

come dependent conditioned on an observed unit both are connected
to? This semantic is very important when modeling cause and effect
structures: The observed unit represents the observed effect and the
two (or more) unobserved units are possible causes.

As a very simple example, imagine three binary random variables.
One variable models whether the lawn in front of our house is wet
in the morning. The other two variables represent the two possible
causes for a wet lawn, either a nightly rain shower or the sprinkler
running accidentally very early. Both have a very small probability
of being true, and, without any given observation, are independent
of each other. The binary variable for the wet lawn is of course a
function of the true (unobserved) state of the two causes. Both become
dependent on each other as soon as the lawn variable is observed. In
particular, in the case of a wet lawn, both would compete to explain
this observation—if one of the two causes is true the other becomes
very improbable (because the unconditional priors are already very
low).

This behavior is called explaining away and can not be represented
by an undirected graphical model. However, a directed acyclic graph
(DAG) can realize this type of conditional dependence structure. More
specifically, a DAG can represent two different conditional indepen-
dence relations (Fig. 2.2) and the above described conditional dependence
semantic (Fig. 2.3).

Interestingly, there are also sets of conditional independence con-
straints that can only be expressed by an undirected graph but not
with a directed acyclic graph. The simplest example for such a case is
given in Figure 2.4.

The set of independence relations that both undirected and di-
rected graphical models can describe are represented by chordal graphs
[204]. Yet, a Markov Network is better suited to describe soft con-
straints between the variables of a probabilistic system and on the
other hand DAGs are better suited to express causal generative mod-
els. Similar to the undirected graphical models, a DAG also induces
factorized probability distributions. In this case these are simply prod-

2.6 graphical models 53

x y

z

(a)

x y

z1

z2

(b)

Figure 2.3: x and y are marginally independent. As soon as a direct descen-
dant (a) or an indirect descendant (b) of x and y is observed, both
become statistically dependent. Due to these possible long range
interactions along directed paths the Markov blanket of a unit in
a directed graph comprises the set of parents, children and co-
parents of the unit.

w

x

z

y

(a)

w

x

z

y

(b)

w z

x y

(c)

Figure 2.4: (a) Opposite units are conditional independent, given their re-
spective neighbors are observed. No directed acyclic graph with
the same graph structure can encode these conditional indepen-
dence relationships over the same units, as can be seen in (b) and
(c). Both can only fulfill one of the two conditional independence
constraints induced by (a).

ucts of conditional probability distributions derived from the local
graph structure

p(x,h | θ) =
∏
i

p(xi | πi(x),θ) (2.243)

πi(x) denotes the direct predecessors (parents) of xi in the underlying
directed graph. Obviously, Eq. (2.243) is a special case of Eq. (2.209)
with already normalized potential functions ψ(·), that is Z = 1. Re-

54 fundamentals

membering Eq. (2.234), maybe this way of writing distributions sim-
plifies the loglikelihood gradient?

∂ logp(x | θ)
∂θ

=
1

p(x | θ)

∂p(x | θ)

∂θ

=
1

p(x | θ)

∂
∑
h p(x,h | θ)

∂θ

=
∑
h

p(h | x,θ)
p(x,h | θ)

∂p(x,h | θ)

∂θ

=
∑
h

p(h | x,θ)
∂ logp(x,h | θ)

∂θ

(2.244)

So this is very similar to the undirected case, gradients of the
complete loglikelihood are weighted by the posterior distribution. If
p(x,h | θ) is written in the Gibbs representation (Eq. (2.211)), then
Eq. (2.244) resembles Eq. (2.234) without the annoying second part
that is expensive to compute in the undirected case. While this is a
nice effect of the likelihood being the product of normalized condi-
tional probability distributions, p(h | x,θ) is still a complex (usually
intractable) distribution.

This was also the case for undirected graphical models and there
the solution was to resort to the Monte Carlo principle, but now sam-
pling is also difficult due to the explaining away effect, the reason I
originally introduced direct models. The complex conditional depen-
dency semantics results in a very large Markov blanket for any unit
(see Figure 2.3) so efficient blocked Gibbs sampling (as previously
done with RBMs) is in general not possible (unless the DAG has
very sparse connectivity, such as trees). At the same time, Metropolis-
Hastings based approaches are also inefficient as explaining away
leads to highly coupled variables.

If all units are observed then Eq. (2.244) is considerably simplified.
In this case, without loss of generality, two groups of units can be
identified: Units with only outgoing edges and units with only in-
coming edges—inputs x and outputs y. Thus the training set actu-
ally comprises n input/output tuples, forming a supervised learning
task. Again, without loss of generality, the most basic model in the
fully observed instance is then a DAG with a layer of input units x
and a layer of output units y. These two layers are connected by a
weight matrix W and the DAG models the conditional distribution
y | x. The more complex fully observed models are always several
combined instances of this basic model.

If y | x is distributed according to a multivariate Gaussian then this
supervised problem is called linear regression (also see Eq. (2.153))8:

p(y | x) = N(y |Wx+ µ,Σ) (2.245)

8 As already pointed out earlier, instead of x usually non-linear transformations φ(·)
of x are used in practice.

2.6 graphical models 55

with x ∈ Rd, y ∈ Ro, θ = (µ ∈ Ro,W ∈ Ro×d). More specifically,
if y is only a scalar then the negative loglikelihood function over the
whole training set D can be written as (see Eq. (2.156)):

`(θ) ∝ −
n

2
lnσ2 −

1

2σ2

∑
i

(
yi −w

Txi
)2

(2.246)

Stacking all inputs xi into a matrix X in a rowwise fashion (and equiv-
alently all scalar targets yi into a column vector y) this can be ex-
pressed more compactly as

`(θ) ∝ −
n

2
lnσ2 −

1

2σ2
(y−Xθ̂)T (y−Xθ̂) (2.247)

Hereby, θ̂
T ≡ (µ,wT) and every input sample is extended by a 1

(i.e. the first column of X is 1n). Using Eq. (2.70) and Eq. (2.73) the
gradient of Eq. (2.247) with respect to θ̂ is

∇θ̂`(θ) ∝ XTXθ̂−XTy (2.248)

and therefore the maximum likelihood estimate for θ̂ is

θ̂MLE = (XTX)−1XT︸ ︷︷ ︸
=X†

y (2.249)

The expression X† is called the Moore-Penrose pseudoinverse [266].
Instead of actually computing the inverse of a possibly numerical
problematic matrix, θ̂MLE is usually computed using a Singular Val-
ued Decomposition (Eq. (2.27)) of X [266].

With θ̂MLE used in Eq. (2.247), it is straightforward to determine
σ2MLE:

σ2MLE =
1

n
(y−Xθ̂MLE)

T (y−Xθ̂MLE) (2.250)

If y is instead vector valued (e.g. o dimensional), than the above
derivation can be done independently o times, as long as y | x has
a diagonal covariance structure (i.e. the regressed outputs are inde-
pendent given the input). If this is not the case then no closed form
solution exists and gradient-based approaches must be employed.

If, as a further example, y | x is distributed according to a Bernoulli
distribution, i.e.

p(y | x,θ) = Bern(y | σ(wTx+ µ)) (2.251)

then no closed from solution for θ̂
T

= (µ,wT) exists. Instead, the
MLE solution for this logistic regression model is attained by optimiz-
ing the binary cross-entropy function (Eq. (2.163)):

`(θ̂) =
∑
i

yi logσ(θ̂
T
x) + (1− yi)(1− logσ(θ̂

T
x)) (2.252)

56 fundamentals

using gradient information:

∇θ̂`(θ̂) =
∑
i

(
σ(θ̂

T
xi) − yi

)
xi (2.253)

Logistic regression (and its multivariate extension multinomial re-
gression) is a convex optimization problem and therefore gradient de-
scent (Eq. (2.42)) will not get stuck in local minima. However, the
unique optimum may be at infinity (see [35, p. 222] and therefore a
MAP (Eq. (2.164)) approach appears to be reasonable.

A large class of different conditional output distributions can be
modeled using the basic model of an affine transformation applied
to the inputs x, depending on the employed link function after the
transformation. See [266] for more details on Generalized Linear Models
(GLM).

If latent variables are introduced, the models become more power-
ful in general, but also more difficult to tackle. Unsurprisingly, if both
latent and visible units are Gaussian everything remains simple. Let

p(h) = N(h | 0, I)

p(x | h) = N(x |Wh+ µ,σ2I)
(2.254)

with h ∈ Rl, x ∈ Rd and θ = (µ,W,σ2). This latent linear model is
called probabilistic Principal Component Analysis (pPCA) [389] and is,
viewed as a generative model, marginally representing a Gaussian
with a low rank structure (see Eq. (2.140)):

p(x | θ) = N(x | µ,WWT + σ2I) (2.255)

This model is useful if a high-dimensional Gaussian has a low-rank
structure. In this case, pPCA allows to estimate the Gaussian with a
much lower number of necessary samples compared to the standard
Gaussian (this becomes most evident in estimating the covariance
matrix, see Eq. (2.227)).

The maximum-likelihood estimates for θ = (W,µ,σ2) can be given
in closed form [389]:

µMLE =
1

n

∑
i

xi

WMLE = Ll(Λl − σ
2I)

1
2R

σ2MLE =
1

d− l

d∑
j=l+1

λj

(2.256)

with Ll being the d× l matrix whose columns are the first l eigen-
vectors of the empirical covariance matrix S (Eq. (2.227)) and Λl the
diagonal matrix of corresponding eigenvalues (R is an arbitrary or-
thogonal matrix). The estimated variance σ2 is the average of the dis-
carded eigenvalues. The best setting for l can’t be resolved with MLE.

2.6 graphical models 57

Instead, one has to rely on a validation set and use the l with highest
loglikelihood score on that set.

Inferring the latent representation for an observed x and given pa-
rameters θ can be done using Eq. (2.143):

p(h | x,θ) = N(h | µ̂, Σ̂) (2.257)

with the posterior mean µ̂ given by

µ̂ =
(
σ2I+WTW

)−1 (
WT (xi − µMLE)

)
(2.258)

and the input independent (i.e. fixed) posterior covariance Σ̂ given by

Σ̂ = σ2
(
σ2I+WTW

)−1
(2.259)

Probabilistic PCA becomes the famous PCA [189, 168, 289] for σ→ 0.
Using WMLE, the posterior distribution is a collapsed Gaussian with
posterior covariance Σ̂PCA = 0 (because WMLEW

T
MLE = I in the limit

case). The posterior mean is simply the scaled projection of x on the
first l eigenvectors:

µ̂PCA = Λ
−1/2
l LTl (x− µMLE) (2.260)

The transformation in Eq. (2.260) is usually referred to as whitening
[102]. Applied with all principle components retained, it results in an
empirical covariance matrix S that is the identity. Without the diag-
onal scaling Eq. (2.260) represents the standard form of PCA which
is usually derived through a maximum variance formulation on the
principle components or a minimum error formulation on the recon-
structed backprojections [35].

The necessary eigendecomposition of the empirical covariance ma-
trix is often computed using an SVD (Eq. (2.27)) on the data matrix X
(the training samples x ∈ D are stacked in a rowwise fashion to from
X).

The latent representation of pPCA is denoted a distributed repre-
sentations [152]. What is happening with the model if it is changed
to a localist representation? Probabilistically this means that the latent
variable is modeled with a (k-dimensional) Multinomial distribution
(Eq. (2.113)), resulting in a Mixture of Gaussians (MoG) or Gaussian
Mixture Model (GMM) [35]:

p(h | θ) = Multi(x | n,π1,π2, . . . ,πk)

p(x | h = i,θ) = N(x | µi,Σi)
(2.261)

So θ = (π,µ1,Σ1, . . . ,µk,Σk). The marginal distribution of x is a
multimodal distribution formed by a weighted sum of Gaussians:

p(x | θ) =

k∑
m=1

p(h = m | π)N(x | µm,Σm) (2.262)

58 fundamentals

Maximum Likelihood Estimation can’t be done in closed form be-
cause the parameter sets for the k different Gaussians interact through
the posterior distribution (i.e. explaining away). The gradients of the
loglikelihood function have the general form of Eq. (2.244):

∂ logp(x | θ)
∂µi

= riΣ
−1
i (x− µi)

∂ logp(x | θ)
∂Σi

= ri
(
Σi − (x− µi)(x− µi)

T
)

∂ logp(x | θ)
∂πi

=
ri
πi

(2.263)

with the responsibilities ri denoting the posterior over the latent vari-
able h:

ri ≡ p(z = i | x) =
πiN(x | µi,Σi)∑
k πkN(x | µk,Σk)

(2.264)

Note that for the covariance matrices Σi care must be taken that these
remain positive definite. This is usually done through some form of
projected gradient methods [305].

When the posterior has a simple (i.e. tractable) form as in Eq. (2.264),
then a special kind of gradient ascent method is usually much eas-
ier to apply, Expectation Maximization (EM) [254]. EM is a general
algorithm for latent variable problems and corresponds to a coor-
dinate wise gradient ascent method. Instead of optimizing the in-
tractable loglikelihood function (and/or relying on its intractable gra-
dient with respect to θ) EM optimizes a lower bound of the loglikeli-
hood which can be derived from Jensens inequality (Eq. (2.94)):

logp(x | θ) = log
∑
h

p(x,h | θ) = log
∑
h

q(h)

q(h)
p(x,h | θ)

>
∑
h

q(h) log
p(x,h | θ)

q(h)
:= F(q,θ)

(2.265)

Hereby q(h) is an arbitrary distribution over the latent variables with
q(h) > 0 for all h where p(x,h | θ) > 0. The free energy F(q,θ) can
be expressed differently:

F(q,θ) =
∑
h

q(h) log
p(x,h | θ)

q(h)

=
∑
h

q(h) log
p(h | x,θ)p(x | θ)

q(z)

=
∑
h

q(h) logp(x | θ) +
∑
h

q(h) log
p(h | x,θ)
q(h)

= logp(x | θ) −KL[q(h)||p(h | x,θ)]

(2.266)

The gap between the loglikelihood and the lower bound F(q,θ) at
some θ corresponds to the Kullback-Leibler divergence (which is al-
ways non-negative) between the arbitrarily chosen distribution q(h)

2.6 graphical models 59

and the true posterior p(h | x,θ). That is if q(h) is set to the posterior
p(h | x,θ) for some fixed θ then the lower bound is tight at this θ.

This insight forms the basis for one derivation of the EM algorithm
[273]: In the E step, q(h) is set to the posterior of h at the current
parameter θ. In the M step the loglikelihood is (locally) maximized
with respect to θ through maximizing the lower bound, relying on
the following decomposition of F(q,θ):

F(q,θ) =
∑
h

q(h) log
p(x,h | θ)

q(h)

=
∑
h

q(h) logp(x,h | θ) −
∑
h

q(h) logq(h)

= Eq(h) [p(x,h | θ)] +H[q]

(2.267)

where the entropy of q(·) is independent of θ. The complete loglike-
lihood p(x,h | θ) is often much easier to optimize with respect to θ
which is also true for Eq(h) [p(x,h | θ)]. E steps and M steps applied
iteratively then ensure that overall the loglikelihood gets maximized
locally with respect to θ.
q(h) is usually depending on the input x so q(h) ≡ q(h | x). Fur-

thermore, q(·) may also depend on some additional parameters φ,
either local ones (i.e. the parameters are specific to x) or global ones.
The second variant will be discussed in later paragraphs in more de-
tail.

The application of EM is favorable if the posterior p(h | x,θ) is
somewhat manageable. For example this is the case with Mixtures
of Gaussians (Eq. (2.264)). The M step then resembles estimating k
many independent Gaussians (see Eq. (2.225) and Eq. (2.227)) where
the training samples are weighted by their respective responsibilities.

The EM algorithm also provides a simple approach to learning a
generalized form of pPCA called Factor Analysis (FA) [359, 35]:

p(h) = N(h | 0, I)

p(x | h,θ) = N(x |Wh+ µ,Ψ)
(2.268)

Ψ is hereby a diagonal matrix with arbitrary positive entries. The
marginal distribution p(x | θ) is again a low-rank Gaussian:

p(x) = N(x | µ,WWT +Ψ) (2.269)

so

µMLE =
1

n

∑
i

xi (2.270)

Note that if Ψ is a full covariance matrix then p(x | θ) represents a
full-rank Gaussian and the linear latent model would not be useful.

Alternating the following two steps allows learning W and Ψ:

60 fundamentals

• In the E-step the posterior Gaussian p(h | x,θ) (see Eq. (2.143))
is determined for the current θ.

p(h | x,θ) = N(h | µ̂, Σ̂) (2.271)

with

Σ̂ = (I+WTΨ−1W)−1

µ̂ = Σ̂
(
WTΨ−1(x− µMLE)

) (2.272)

• In the M step the latent variables are assumed to be known so
estimatingW andΨ results in a standard linear regression prob-
lem, where the posterior means are the inputs and the observed
training samples are the targets. Different to pPCA the learned
weights W are usually not orthogonal.

In this form EM can also be applied to PCA [317]—this is particu-
larly interesting when the covariance matrix does not fit into memory
to compute the SVD or if the data becomes available in an online fash-
ion.

The EM algorithm allows to tackle very complicated models in a
structured manner. For example, in order to model mixtures of Gaus-
sians that have a low-rank structure (for every cluster the low-rank
structure is different) one can simply combine the EM equations for
Mixture of Gaussians and Factor Analysis resulting in Mixture of Fac-
tor Analyzers (MFA) [111]. However, different from these two simple
models (and combinations thereof), p(h | x, θ) is in most cases not
tractable, so it is not possible to set q(h) to p(h | x,θ).

The EM algorithm also works if q(h) only resembles an approxi-
mation of p(h | x,θ), e.g. through a variational distribution. Similarly
it is not necessary to actually maximize the expected complete loglike-
lihood with respect to θ, it is enough to only improve it a little (e.g.
again by an (the hopefully tractable) gradient step) [273]. These last
two remarks are often subsumed under generalized EM and show that
EM can be interpreted as a special case of variational learning [190]:
it treats the variational parameters and the model parameters in an
alternating fashion instead of optimizing both sets together.

A more probabilistic interpretation of the central decomposition in
Eq. (2.267) finally explains the origin of the name EM: For the algo-
rithm to work what is necessary is first an expression for the expected
complete loglikelihood, which then is locally maximized. Of course
this expectation can also be estimated using the Monte Carlo princi-
ple. In this case the samples from the posterior are generated through
a MCMC schema, giving rise to MCMC-EM [252, 253]. More details
on the derivation of the EM algorithm and its application to Mixture
of Gaussians and to Factor Analysis are given in Appendix A.

2.6 graphical models 61

If the prior distribution in Factor Analysis is changed to a Laplacian
distribution the resulting model becomes a representative of sparse
coding [282]:

p(h) ∝ exp(−λ||h||2)

p(x | h,θ) = N(x |Wh, I)
(2.273)

where the dataset D has mean 0 (so µ can be omitted) and the condi-
tional covariance matrix is set to I for simplicity. For some observed
x, the associated negative complete loglikelihood − log(x,h) is

− log(x,h) ∝ ||x−Wh||2 + λ||h||1 (2.274)

If W is known then Eq. (2.274) is sometimes denoted the LASSO
(Least Absolute Shrinkage and Selection Operator) [386]. In this case
it is interpreted as a linear regression problem between inputs W
(stacked row-wise) and one-dimensional targets x where the weights
h are supposed to be sparse, realizing feature selection.

Determining the optimal parameters θ = W can again be done
with the EM algorithm. However, the E-step is more difficult than in
the case of Factor Analysis due to explaining away effects. It can be
formulated as a convex optimization problem (for fixed parameters
θ), but there is no closed-form solution:

min
h

||h||1 subject to Wh = x (2.275)

As it turns out this is also a convex relaxation formulation for the
NP-complete problem of sparse coding [77, 270, 83, 96]:

min
h

||h||0 subject to Wh = x (2.276)

The solutions to Eq. (2.275) and Eq. (2.276) are identical if the op-
timum of Eq. (2.276) is sparse enough (see [394] for a much more
rigorous mathematical treatment of this statement). For that reason,
a lot of effort has been put into finding efficient iterative solutions
for Eq. (2.275). A standard approach for this problem is the iterative
shrinkage-thresholding algorithm (ISTA) [75, 20]. ISTA belongs to the
class of proximal gradient methods [286] for solving non-differentiable
convex functions. It finds the minimum of f+ g with f : Rn → R a
convex and Lipschitz-continuous [147] function and g : Rn → R a
convex (but non-differentiable) function using the following iterative
algorithm:

xt+1 = arg min
x∈Rn

(
g(x) +

L

2

∥∥∥∥x−(xt − 1

L
∇f(xt)

)∥∥∥∥2
2

)
(2.277)

where L is the Lipschitz constant of f. So one iteration is itself an
optimization problem. In the case of g ≡ ||h||1 and f ≡ ||x−Wh||22 a
closed-form solution for every iteration step exists [130]:

ht+1 = τα

(
h+

1

L
WT (x−Wh)

)
. (2.278)

62 fundamentals

τα(·) is a shrinkage operator defined as

τα(x) = sgn(x)(x−α)+, α =
λ

L
. (2.279)

Hereby sgn(·) is the elementwise sign function and (·)+ sets all nega-
tive entries of a vector to 0.

Given a latent representation h for some x the M-step for deter-
mining W is, as with Factor Analysis, a linear regression problem
over the complete training set D enhanced with the latent data. It is
a good practice to ensure that the columns of W have unit length
which is generally realized by re-normalization after the linear re-
gression problem is solved. Otherwise, the latent representation can
become very small (i.e. the absolute values of the vector elements)
and the entries of W very large.

The marginal distribution of p(x | θ) is complex and in particu-
lar no (low-rank) Gaussian. Hence, differently to Factor Analysis, the
representation of h can be chosen to be overcomplete, i.e. the dimen-
sionality of h is much larger than the dimensionality of x. This is
quite reasonable, considering that h is supposed to be sparse.

If both the visible and latent variables are binary, the underlying
model becomes exponentially more difficult to solve. For example,
consider a single layer sigmoid belief network (SBN) [288, 274], the bi-
nary equivalent of Factor Analysis (Eq. (2.268)):

p(h | θ) = Bern(h | µ) =
∏
i

µhii (1− µi)
1−hi

p(x | h,θ) = Bern(x | σ(Wh+b))

(2.280)

with h ∈ {0, 1}l, x ∈ {0, 1}n, θ = (µ ∈ Rl,W ∈ Rl×n,b ∈ Rn) and
σ(·) being the logistic sigmoid (see Eq. (2.219)) applied elementwise.
Using Eq. (2.219) both p(h | θ) and p(x | h,θ) can be written in an
alternative way:

p(h | θ) =
∏
i

exp(ηihi)
1+ exp(ηi)

=
exp

(
ηTh

)∏
i(1+ exp(ηi))

p(x | h,θ) =
∏
i

exp
((∑

jWijhj +bi

)
xi

)
1+ exp

(∑
jWijhj +bi

)
=

exp
(
xTWh+bTx

)
∏
i

(
1+ exp

(∑
jWijhj +bi

))
(2.281)

with η = µ
1−µ . Hence

p(x,h | θ) =
exp

(
xTWh+bTx+ηTh

)
∏
i

(
1+ exp

(∑
jWijhj +bi

))∏
i

(
1+ exp

(
ηi
)) (2.282)

2.6 graphical models 63

The complete loglikelihood is therefore

logp(x,h | θ) = xTWh+bTx+ηTh

−
∑
i

log

1+ exp

∑
j

Wijhj +bi


−
∑
i

log (1+ exp (ηi))

(2.283)

The energy function of an RBM (Eq. (2.236)) is very similar, but the
complete (log)likelihood is easy to calculate here due to the tractable
normalization constant. Computing the gradient of the complete log-
likelihood with respect to the parameters is better done elementwise
in this case, e.g.

∂ logp(x,h | θ)

∂Wij
= xihj −

exp
(∑

jWijhj +bi

)
(
1+ exp

(∑
jWijhj +bi

))hj
=
(
xi − p(xi = 1 | h,θ)

)
hj

(2.284)

So learning only happens if the prediction (the conditional distribu-
tion of xi) is significantly different from the observed value xi. Simi-
larly

∂ logp(x,h | θ)

∂bi
= xi − p(xi = 1 | h,θ) (2.285)

and

∂ logp(x,h | θ)

∂ηi
= hi − p(hi = 1 | θ) (2.286)

However, Eq. (2.244) weights these gradient terms for every config-
uration with the corresponding posterior p(h | x,θ). This posterior,
differently from the undirected RBM, is expensive to compute. With

p(h | x,θ) =
p(x,h | θ)∑
h p(x,h | θ)

(2.287)

an exponential sum needs to be computed. And this sum can’t be ef-
ficiently simplified, because h appears both in the nominator and the
denominator of Eq. (2.282). The only generic approach left is Gibbs
sampling. Its mixing time for SBN can be improved when a state is
persisted for every Markov chain, i.e. every sample has its own per-
sisted chain [274].

An SBN with multiple layers is a simple extension of Eq. (2.280)
by introducing intermediate layers hk (note that layers closer to the

64 fundamentals

observed generative output of the model are numbered higher, i.e. the
SBN starts at the layer denoted h0):

p(h0 | θ) = Bern(h0 | µ) =
∏
i

µh
0
i

i (1− µi)
1−h0i

p(hk | hk−1,θ) = Bern(hk | σ(Wkhk−1 +bk)), k > 0

p(x | hK,θ) = Bern(x | σ(WhK +b))

(2.288)

Rewriting Eq. (2.288) according to Eq. (2.281) allows the expression of
the joint probability p(x,hK, . . . ,h0) according to Eq. (2.282) because

p(x,hK, . . . ,h0 | θ) = p(x | hK,θ)p(h0 | θ)

K−1∏
i=0

p(hi+1 | hi,θ). (2.289)

Therefore computing gradients of the complete loglikelihood for
arbitrary weight elements remains a purely local operation: For some
weight element Wk

ij at layer k (0 < k 6 K) the gradient is

∂ logp(x,hK, · · · ,h0 | θ)

∂Wk
ij

= hkiĥj −
exp

(∑
jW

k
ijĥj +b

k
i

)
(
1+ exp

(∑
jW

k
ijĥj +b

k
i

)) ĥj
=
(
hki − p(h

k
i = 1 | ĥ,θ)

)
ĥj, ĥ ≡ hk−1

(2.290)

Of course, this gradient has to be evaluated under the expectation
of the posterior p(hK,hK−1, · · · ,h0 | x,θ) which is even more com-
plicated than in the single-layer case. Note that the posterior is also
not significantly simplified for the case of some hidden units (or com-
plete layers, e.g. h0 for the case of a stochastic input-output mapping)
being observed because with multiple layers the Markov blanket of
a unit spans three layers (its parents, its children, and the children’s
parents), so efficient sampling remains very difficult.

So is it possible to train a sigmoid belief network with many layers
(sometimes called a Deep Belief Network (DBN)) more efficiently? As
it turns out the (at first sight) naïve idea of simply stacking greedily
trained one-layer models is indeed working. Single layer SBN layers
can be stacked on top of each other, if special sparsity constraints
are integrated into the basic models, as was recently demonstrated
successfully [105].

The idea of stacking directed graphical models was originally con-
sidered disadvantageous: A single layer would try to model the latent
variables as independent which in general is not possible (because
only a single layer of parameters is available). So the resulting aggre-
gated posterior p(h0) =

∑
x p(h

0 | x)p(x) was considered to be as diffi-
cult to model for the next layer as the original data distribution p(x).
Instead, stacking undirected RBMs on top of each other also leads to
a (generative) sigmoid belief network with multiple layers [155]. Us-
ing an argument based on the free energy of the model it is possible

2.6 graphical models 65

to show that with every layer the loglikelihood of the dataset under
the deep model can be indeed improved. The top layer of this DBN
is still an undirected Restricted Boltzmann Machine, though. The ad-
vantage of this approach is that an efficient inference procedure for
high level latent variables is provided for free: simply evaluate the
stack of RBMs sequentially. Its disadvantage is that, in order to gen-
erate new samples, the model first needs to run a Markov Chain of
the top-level RBM.

A very different way of learning generative directed graphical mod-
els is based on the idea of an inverse recognition model [154, 371]: The
complicated inference process for the latent posterior p(h | x) (e.g.
represented by an iterative MCMC schema) can be itself described
by a machine learning model. Why would that approach be actu-
ally reasonable? As shown with the example of a single layer SBN
(Eq. (2.283)), the complete loglikelihood for directed generative mod-
els is easy to evaluate and likewise its associated gradients. So in this
case, an efficient method to compute e.g. samples from the posterior
solves already the tractability problem (see again Eq. (2.244)). Note
that this is basically also what Contrastive Divergence implements,
only that CD efficiently produces samples from the joint distribution
which is necessary in the case of undirected graphical models9. A
recognition model was also recently used to improve the training of
Deep Boltzmann Machines [324].

In order for this idea to work, a very powerful recognition model is
necessary and a suitable objective to train this class of models. Neu-
ral Networks are considered to be the most flexible Machine Learning
methods—in this setting they seem to be the perfect model of choice.
A possible consistent training objective (which is missing in the origi-
nal approach utilizing a recognition mode, the wake-sleep algorithm
[154]) is a simple reformulation of the already introduced free energy
from the EM algorithm (see Eq. (2.267)) [307, 200]:

F(q,θ) =
∑
h

q(h) log
p(x,h | θ)

q(h)

=
∑
h

q(h) logp(x | h,θ) +KL[q(h)||p(h | θ)]

= Eq(h) [logp(x | h,θ)] +KL[q(h)||p(h | θ)]

(2.291)

With this motivation at hand the next section finally introduces Neu-
ral Networks. Neural Networks can be considered as special kinds
of directed Graphical Models: The probability distributions for the
various (hidden) units are delta functions, therefore all computations
are entirely deterministic. So it might be not completely surprising
that in this case an algorithm exists, that can efficiently train (super-
vised) models with an arbitrary large number of hidden units. The

9 And Contrastive Divergence works so well because the underlying model is globally
shared between the samples from the training set.

66 fundamentals

backpropagation algorithm will be derived in a general way in the next
section. Furthermore, the most important developments to success-
fully train neural networks with multiple layers (deep networks) are
briefly presented which also encompass approaches that use, among
others, Eq. (2.291) to train deep networks in an unsupervised way.

2.7 neural networks

Looking into physics, biology and engineering, (computational) sys-
tems are usually defined by a modular structure. They are built out
of smaller systems and often use only a few adjustable basic entities
that compose the overall system. So out of the principle of modularity,
systems evolve that can solve complex tasks. Algebraically, modular-
ity is represented by function composition. In Machine Learning the
approach that is most closely connected to function composition are
Neural Networks [34, 333].

Functionally, a Neural Network with input x ∈ Rm, output y ∈ Ro

and parameters (usually called weights) θ ∈ Rn is a mapping N :

Rm × Rn → Ro, followed by an output non-linearity M : Ro → Ro

(which is the identity function in the case of linear outputs) [336].
In order to determine settings for the weights, a loss function L :

Ro × Ro → R is necessary. In certain cases, M must have a special
functional form such that the overall output of the network aligns
with the loss L (matching loss function [336])10, e.g. see Eq. (2.160) for
the case of multi-valued classification. If the Neural Network is as-
sociated with a probabilistic modeling task, the loss function can be
the negative conditional log-likelihood function, e.g. from regression
(Eq. (2.153)) or classification (Eq. (2.159)). Because Neural Networks
are quite flexible, additional regularization is usually necessary to
avoid overfitting. Hence, the empirical risk minimization framework
(Eq. (2.170)) is well suited to describe the stochastic optimization prob-
lem induced by a training set D which is equivalent to MAP in the
case of a probabilistic form of L(·, ·). The expression `(θ, x,y) then
denotes the empirical risk incurred by the Neural Network M ◦N for
the parameter setting θ and a sample (x,y) from the training set, i.e.

`(θ, x,y) = L(M(N(θ, x)),y) + λΩ(θ) (2.292)

where Ω(θ) is a regularization cost for the parameters.
The Neural Network M ◦N itself is considered to be a highly non-

linear function constructed out of elementary mathematical expres-
sions. A versatile mathematical building block is the affine transfor-
mation

Wx+b (2.293)

10 In [34] this is called a natural pairing of error functions and activation functions.

2.7 neural networks 67

with the weight matrix W ∈ Rm×n and the bias b ∈ Rm, for some
x ∈ Rn.

Because affine transformations are closed under composition, sev-
eral sequentially combined affine transformations can always be rep-
resented by one affine transformation. If however affine transforma-
tions are interleaved with non-linearities, a highly non-linear function
can be constructed. Combining these two entities results in the most
widely used form of a layer in a Neural Network:

f(Wx+b) (2.294)

with the non-linear activation function f : Rm → Rm and x,W,b de-
fined as in Eq. (2.293).

A Neural Network M ◦N is then implemented by the composition
of at least two such layers11 withN having the following general form:

N(θ, x) = bK +WK(fK−1(bK−1+

WK−1(· · · (f1(b1 +W1x)) · · ·)))
(2.295)

Hereby, θ = (b1,W1, . . . ,bK−1,WK−1,bK,WK). Note that the last
non-linearity (at layer K) is the identity (because any non-linearity at
this layer is covered by M). All other non-linearities are supposed to
be truly non-linear. The hidden layer hk at depth k is defined recur-
sively as

hk(θ,hk−1) = fk(Wkhk−1 +bk), k > 2 (2.296)

with

h1(θ, x) = f1(W1x+b1) (2.297)

M ◦N is said to have K− 1 hidden layers or to have a depth of K− 1.
Neural Networks with K = 2 (i.e. one hidden layer) are often denoted
shallow networks [27]. Conversely, networks with K > 2 are denoted
deep networks. Later, techniques are introduced that allow learning
deep Neural Networks with hundreds of hidden layers [367].

An element of a hidden layer is denoted a hidden unit. Using hidden
layers, Eq. (2.295) can be written as

N ≡ hK ◦hK−1 ◦ · · · ◦h1 (2.298)

M(N(θ, x)) then is the prediction (evaluation) of the network for
some x at θ. This standard feed-forward Neural Network is the most
simple architecture that can be built out of the two basic entities (affine
transformations and non-linearities), where the output of a hidden
layer k becomes the input of layer k+ 1. More complex architectures

11 A Neural Network with one layer is still a linear model with respect to the parame-
ters θ and resembles a Generalized Linear Model (GLM).

68 fundamentals

x

h1

W1

hK−1

hK

WK

M(·)

L(·)

y

(a)

x

. . .h1

W1

. . .hK−1

. . .hK

WK

M(·)

L(·)

y

(b)

Figure 2.5: Graphical representations of a feed-forward Neural Network. (a)
A network with K layers shown in the form of a parameterized
Graphical Model. Only input and target nodes are random vari-
ables, all other elements represent deterministic computations.
(b) The same model shown as a stack of hidden layers repre-
sented as vectors. Hereby, rounded rectangles denote random
variables and cornered rectangles deterministic variables. Bias
units are left out for clarity. Best viewed electronically.

are possible, e.g. some layer k might not only get its input from the
directly preceding layer but also from layers k− 2, k− 3, . . . through
so called skip connections [34].

If the input to a Neural Network is a sequence of vectors (and
the associated target data is also a sequence) then a Recurrent Neu-
ral Network (RNN) [313, 415, 419] must be used: every element of
the sequence is processed by a network of the above form (and all
these networks share their parameters). Additionally these elemen-
twise networks are connected by recurrent weights (which are also
shared to ensure generalization over sequences of arbitrary length).
Mathematically, a Recurrent Neural Network can be described with
the following abstract formula:

ht = F(xt,ht−1,θ) (2.299)

where xt is the input at time step t, ht is the hidden state of the net-
work at time step t and F(·) is the transfer function for the hidden
state, depending on the parameters θ. In fact, the most general Neu-

2.7 neural networks 69

ral Network architecture is an RNN withM ◦N being the special case
of a sequence with length 1. However, Eq. (2.295) is enough to derive
the central method that allows efficient learning of the parameters of
a Neural Network which then can be applied without modification
to the more complex RNNs. Because the models in subsequent chap-
ters are all static feed-forward models, RNNs will be only discussed
briefly in this text, see subsection 2.7.1.

Clearly, one can imagine other basic building blocks than the affine
transformation from Eq. (2.294) and it is by no means the only possi-
ble building block. The important aspect of Eq. (2.295) is the nesting
of the basic building blocks. However, most alternative architectures
can be usually expressed as a stack of matrix-vector operations with
interleaved elementwise non-linear activation functions. For example,
a product unit [87]

hi = f

∏
j

x
Wij

j

 (2.300)

can be realized as a matrix-vector product in the log-domain,

hi = f

exp

∑
j

Wij log xj

 , (2.301)

with f(·), exp(·) and log(·) elementwise and complex-valued activation
functions [398]. More complex transformations involving additive and
multiplicative interactions can be realized as affine transformations of
tensor-vector expression. Hence, I utilize non-linear affine transforma-
tions as the standard building block for networks in this section.

The type of activation function hasn’t been discussed yet. Tradi-
tionally, sigmoid-shaped functions have been used, ensuring that com-
putations stay bounded and with the benefit of simple, numerically
efficient derivatives. The logistic sigmoid function σ(x),

σ(x) =
1

1+ exp(−x)
=

exp(x)
1+ exp(x)

,

σ ′(x) = σ(x)(1− σ(x)),
(2.302)

and the Tangens Hyperbolicus function (tanh(x)),

tanh(x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

= 2σ(2x) − 1,

tanh ′(x) = 1− tanh2(x),
(2.303)

are the most prominent members of this class of functions. The lo-
gistic sigmoid function is not symmetric around the origin and there-
fore has some theoretical disadvantage which is empirically measur-
able (in both training speed and generalization performance). Hence,

70 fundamentals

the tanh(·) activation function is preferred, specifically of the form
1.7159 tanh

(
2
3x
)

[224].
Recently, piecewise linear functions have been used in many success-

ful applications of deep Neural Networks. These functions are fast
to evaluate, have an equally fast (and simple) derivative and have
the theoretical benefit that deep networks can be mathematically an-
alyzed to some degree [265, 326]. The rectifying linear unit (ReLU)
[245, 268, 116, 209],

ReLU(x) = max(0, x) ≡ [x]+ (2.304)

is the simplest version in this class. More involved variants have some
reported benefits, like the leaky ReLU (LReLU) [241],

LReLU(x) = max(0, x) + cmin(0, x), c > 0, c� 1, (2.305)

where c is a very small, positive constant set by hand. The parametric
PReLU [146] has the same functional form but in this case c is a learn-
able parameter (either shared within a layer or learned separately for
every unit). Finally, this idea can be generalized to a sum of hinge-
shaped functions, the adaptive piecewise linear (APL) unit [3]. The
APL is defined as

APL(x) = max(0, x) +
∑
i

aimin(0, x− bi) (2.306)

Again, the learnable parameters ai,bi, 1 6 i 6 n can be shared be-
tween units of a layer or learned separately for every unit.

Based on these approaches, activation functions acting on disjunc-
tive groups of units in a hidden layer in a competitive way have been
introduced. The Max-Out [120] activation function is defined over
such a group H = {h1, . . . ,hm} of hidden units

Max-Out(H) = max
hi∈H

(hi) (2.307)

The hidden units hi can hereby be the result of a non-linear affine
transformation, though the original paper uses linear units. Max-Out
also reduces the dimensionality of a layer. And finally, the Local-
Winner-Take-All (LWTA) [364] activation function is also defined over
disjunctive groups of units. However, it sets the activation of a non-
maximum unit in its group to 0 and does not reduce the group to a
scalar output, i.e.

LWTA(hi) =

hi, if hi ≡ maxhj∈H

0, otherwise.
(2.308)

It has also been demonstrated to achieve state-of-the-art results on
several Computer Vision benchmarks [412].

2.7 neural networks 71

In fact, a very wide range of reasonable activation functions exist.
Interpreting a layer of a Neural Network as a Generalized Linear
Model, the link functions utilized for these models can be a valuable
source of inspiration. For example, the ReLU activation function is
actually the link function used in Tobit regression [391].

An important theoretical question deals with the expressive capa-
bilities of M ◦N. What kind of functions can it represent? Does its
representational power depend on the number of layers, on the num-
ber of hidden units per layer or on the type of non-linear activation
functions? Interestingly, a Neural Network of the form in Eq. (2.295)
with only one hidden layer and a finite (but apriori indeterminable)
number of hidden units can already approximate a large set of contin-
uous functions on compact subsets of Rn, independent of the type of
activation function used (as long as some weak assumptions are ful-
filled). This is called the universal approximation theorem [72, 167] and
is of course also true for Neural Networks with more than one layer.
However, no constructive proofs exist. An even stronger result can be
shown for recurrent Neural Networks which are Turing complete [345].
Given such powerful results it comes as no surprise that determining
the best parameter setting θ for Neural Networks according to the in-
put/output pairs (x,y) from a training set D and some loss function
L(·, ·) is very difficult, and, in general, NP-complete [192, 36, 347] (this
is independent of the depth of a network). So when training a Neural
Network, one has to rely on various kinds of heuristics that usually
give no guarantees about the quality of the identified solution.

One popular heuristic is gradient descent (Eq. (2.42)). The only
guarantee it can give is that some type of local minima in the param-
eter space can be found [278]. Local minima are usually sub-optimal
but in Machine Learning the ultimate goal is generalization and in
this case local minima of the training objective need not be harmful.
In fact, ending up in a bad local minima (i.e. those local minima with
inferior generalization capabilities) is highly unlikely for deep large-
scale12 Neural Networks. Moreover, for these kinds of networks most
true local minima seem to behave equally well with respect to the
error on a test set [123, 57]. A more important problem with gradi-
ent descent heuristics are saddle points with a large extent (spurious
minima) which actually plague Neural Networks [326, 76, 57].

The naïve way to compute the gradient follows Eq. (2.39) and gen-
erally produces (numerically) good enough estimates of the gradi-
ent. This finite difference approximation can be improved by the cen-

12 These are networks with many hidden layers of non-linearities and many units per
hidden layer.

72 fundamentals

tral difference approximation which produces for an arbitrary function
f : Rn → R a gradient estimate with approximation error O(ε2):

∂f

∂xi
≈ f(x+ εei) − f(x− εei)

2ε
(2.309)

However, for every element of the gradient vector, the network
must be evaluated twice13. So overall O(n2) operations are neces-
sary to compute the complete gradient in this way which makes
this approach unfeasible for Neural Networks. Gradient computation
should be at most as expensive as evaluating the network for a given
input sample, which is O(n).

The famous backpropagation algorithm does exactly this: Comput-
ing the gradient of a Neural Network with n parameters in O(n) op-
erations14. Technically, backpropagation is a special kind of reverse
mode automatic differentiation (AD) [133, 134], however for quite
some time AD and Machine Learning remained separate endeavors,
unbeknownst to each other [15]. This might explain the many times
the algorithm was re-invented but not re-discovered [333].

From a purely mathematically point of view, computing deriva-
tives of some parameter θi for a structure like the one presented in
Eq. (2.295) is simply done by the chain rule. For efficient gradient cal-
culations it is important to see that a lot of computational effort can be
reused which is algorithmically the definition of dynamic program-
ming (or caching computations) [69]. The chain rule and dynamic pro-
gramming are the central elements of the backpropagation algorithm.
Being based on two such simple principles it is not surprising the
method itself dates back a very long time. Already with the invention
of calculus it was considered that differentiation should be subjected
to mechanical automation [15]15. And around the beginning of the
area of electronic computing machines backpropagation was used in
the field of stochastic control theory [198, 45, 85, 46] and also to train
already Neural network-like architectures with several layers of non-
linearities [173, 172, 233]. For popularizing backpropagation within
the field of Machine Learning usually [319] and [218] are credited.

13 In the case of Eq. (2.39), one of these two evaluations computes the loss for the
current θ and the given input/output pair(s), so this evaluation only needs to be
done once per complete gradient computation.

14 So backpropagation is simply an efficient way to compute gradients. For this reason
it is somewhat non-descriptive to say that a Neural Network is trained by backprop-
agation—it only implies that a gradient-based optimization procedure is used for
training.

15 Some marginalia from my side: In [15], Leibniz is cited as having done some work on
automated differentiation. However, his Machina arithmetica in qua non additio tantum
et subtractio sed et multiplicatio nullo, diviso vero paene nullo animi labore peragantur does
not seem to imply to me that he realized that differentiation of arbitrary expressions
can be done by a machine, even though it may be self-evident a posteriori because it
is a purely mechanistic task.

2.7 neural networks 73

A much more detailed historical description of the origins and rein-
ventions of backpropagation and its application for Neural-Network
learning is given in [333].

The algorithmic derivation is more important to this work and is
explained next. Differently to most texts covering backpropagation I
rely solely on the notation and results from Vector and Matrix Calcu-
lus (Section 2.2). Hence, the final results are described in a way that
can be used without any further transformation for an efficient im-
plementation. Additionally, the application to different architectures
is also simplified, because all involved terms are compact matrix ex-
pressions and are therefore simpler to map to architectural extensions
or changes.

Consider the simple case of N being a stack of non-linear matrix-
vector operations (see Eq. (2.295)). `(θ, x,y) is the risk incurred by
the Neural Network M ◦N for the parameter setting θ and a sam-
ple (x,y) from the training set (Eq. (2.292)). In order to compute
∇θ`(θ, x,y) it turns out that the Jacobians of the risk with respect
to hidden layers hk are helpful. Following the chain rule for vector-
valued functions (Eq. (2.50)) the Jacobian of the risk with respect to
some input x is

JL◦M◦N = JLJMJN, θ unknown but fixed (2.310)

which is a 1×n row vector, for x ∈ Rn. More specifically, for hk one
gets

J̃hk ≡ JL◦M◦hK◦hK−1◦···◦hk = JLJMJhKJhK−1
· · · Jhk (2.311)

where Jhm is the Jacobian of some (hidden) layer hm+1 with respect
to hm. So the Jacobian with respect to hk can be computed recur-
sively given the local Jacobian of the next layer k+ 1 with respect to
hk:

J̃hk = J̃hk+1Jhk (2.312)

Given Eq. (2.294), Jhk is simply (see Eq. (2.46) and Eq. (2.69)):

Jhk = Dk+1Wk+1 (2.313)

where Dk+1 is a square diagonal matrix with f ′k+1(·) on its diagonal.
So overall

J̃hk = J̃hk+1Dk+1Wk+1 (2.314)

which is a 1×m row vector for hk ∈ Rm. Matrix-vector operations
are usually read from from right (the vector expression, J̃hk+1) to left
(the matrix, Dk+1Wk+1), so the gradient of the loss `(θ, x,y) with
respect to hk is

J̃hk
T
=Wk+1

TDk+1J̃hk+1
T

(2.315)

74 fundamentals

This formula explains the name backpropagation: Compared to the
way of evaluating the loss for some input x, information for com-
puting gradients flows backwards (hence reverse mode automatic dif-
ferentiation). Computing these Jacobians is efficient because the re-
cursive definition reuses previous computations. However, it is neces-
sary to save some information from the forward computation, as be-
comes evident when computing Dk+1: The layer-wise preactivations
ak = Wkhk + bk are necessary for evaluating the first derivative of
the respective activation functions. From Computer Science, it is a
well known property of algorithms to trade savings in time for costs
in space.

Given J̃hk , computing the first derivative of `(θ, x,y) with respect
to Wk becomes straightforward (Eq. (2.62)):

` ′(θ, x,y) = J̃hk [Dfk(Wkhk−1 +bk)] , (2.316)

And

Dfk(Wkhk−1 +bk) ≡ Dk
∂vec(Wkhk−1 +bk)

∂vec(Wk)T
(2.317)

where Dk is defined as previously. Finally, from Eq. (2.66),

∂vec(Wkhk−1 +bk)

∂vec(Wk)T
= hk−1

T ⊗ I (2.318)

so in total

` ′(θ, x,y) = J̃hkDk(hk−1
T ⊗ Im) (2.319)

This 1×nm vector expression can be simplified (see Eq. (2.67)) to

` ′(θ, x,y) = vec(DkJ̃hk
T
hk−1

T)T (2.320)

And hence the gradient of the loss `(θ, x,y) with respect to Wk is

∇Wk
`(θ, x,y) = vec(DkJ̃hk

T
hk−1

T) (2.321)

which is (in words) the outer product of the scaled backpropagated
Jacobian J̃hk and the input to layer k. Similarly,

∇bk`(θ, x,y) = vec(DkJhk
T) (2.322)

It is instructive to compare Eq. (2.321) with Eq. (2.290), the gradi-
ent of a weight-matrix in a Sigmoid Belief Network with respect to
the complete log-likelihood. It also has the form of an outer product
between the input to a layer and an error signal for this layer and
involves forward computations and backward computations (in the
form of sampling). However, being overall a stochastic computation,
the error signal has to be estimated locally and can’t be transferred
in a direct and deterministic way from higher layers to lower layers

2.7 neural networks 75

(information between layers is transported through conditional sam-
pling).

Finally, the recursive computation must also be initialized. Because
the gradient of the parameters with respect to the regularization term
Ω(θ) is usually simple to compute, the backpropagation algorithm is
initialized with the Jacobian of N(θ, x) with respect to the loss L(·, ·).
For matching loss functions this Jacobian has usually a particular sim-
ple form, e.g. in the case of non-linear regression (Eq. (2.153)) or clas-
sification (Eq. (2.159)) it is simply the distance vector between the last
layer hK and the observed output, i.e.

J̃hK = N(θ, x) −y (2.323)

So overall

∇θ`(θ, x,y) ≡ (∇WK
,∇bK ,∇WK−1

, . . . ,∇W1
,∇b1), (2.324)

which takesO(n) to compute if the cost to evaluate the non-linearities
and their respective derivatives is negligible. Note that from an im-
plementation perspective, the above derivations assume that weight
matrices are stored in a column-first order (i.e. the way FORTRAN
stores matrices).

How successful is the direct improvement signal JL, telling the
output how it should change locally to improve the assessed risk
`(θ, x,y), relayed to the parameters, e.g. some weight matrix at layer
k? A reasonable approach to this question is to compare the norms
‖JL‖2 and

∥∥J̃hk∥∥2. When the length of a vector is considered to ex-
press its information content then a skewed proportion between the
two lengths indicates that information gets lost. Reiterating Eq. (2.311),
J̃hk is

J̃hk = JLJMJhKJhK−1
· · · Jhk (2.325)

The spectral norm Eq. (2.29) is consistent (Eq. (2.31)), hence

∥∥J̃hk∥∥2 6 ‖JL‖2 ‖JM‖2 K∏
i=k+1

‖Wi‖2 ‖Di‖2 (2.326)

Eq. (2.326) shows that the transfer of information can become arbi-
trarily bad. Gradient information either vanishes, e.g. in the case of
activation functions with (absolute) derivatives ‖Di‖ that are strictly
smaller than 1, or explodes, e.g. in the case of badly initialized weight
matrices. The problem of vanishing/exploding gradients was first
identified for Recurrent Neural Networks [159, 26, 163] because it
only manifests itself with networks of some depth. Overall it leads to
a highly varying distribution of gradient information per layer and
therefore destabilizes the optimization process. For a very long time
it was considered to be the main obstacle to train Neural Networks
with many layers of non-linearities.

76 fundamentals

x

h1
R1

W1

hK−1
RK−1

hK
RK

WK

M(·)

L(·)

y

Figure 2.6: A simple recurrent Neural Network, as defined in Eq. (2.327).
The recurrent connections are only within the particular layers.
Bias units are left out for clarity. Best viewed electronically.

2.7.1 Recurrent Neural Networks

Given the derivation of the backpropagation algorithm for a feed-
forward network, it is not difficult to extend the algorithm to a gen-
eral Recurrent Neural Network. The basic idea is to unfold the recur-
sive structure of the RNN for a given input/output pair (X,Y) into a
large (deep) Neural Network with massively shared parameters. Con-
sider the following simple RNN with K layers and an input sequence
of length n:

hik = fk(Wkh
i
k−1 +Rkh

i−1
k +bk) , 1 6 i 6 n, 2 6 k 6 K

hi1 = fk(W1x
i +R1h

i−1
1 +b1) , 1 6 i (2.327)

Hereby, the input X is a sequence of vectors X = (x1, x2, . . . , xn)
and the target Y = (y1,y2, . . . ,yn) an associated sequence of target
vectors. The parameters θ encompass the standard feed-forward pa-
rameters (Wk,bk), 1 6 k 6 K, the recurrent weights Rk, 1 6 k 6 K

and the k many initial states h0k, 1 6 k 6 K. Eq. (2.327) is the simplest
version of a recurrent Neural Network, usually the recurrence struc-
ture is fully connected between all layers and/or has additional ele-
ments beyond standard affine transformations (e.g. Long short-term
Memory (LSTM) [161]), but it is simple to depict graphically (see Fig-

2.7 neural networks 77

ure 2.6). For a training pair (X,Y) the empirical risk for the network
is defined per time step, i.e.

`(θ,X,Y) =
n∑
i=1

L(M(hiK),y
i) + λΩ(θ) (2.328)

In order to compute the gradient of θ with respect to `(θ,X,Y)
the computational graph induced by Eq. (2.327) for the specific train-
ing sample (X,Y) is unrolled in time. This is depicted in Figure 2.7
for a sequence of length n. Most of the parameters are reused over
the course of the computation (they are shared over time), but in or-
der to facilitate the backpropagation algorithm from Eq. (2.321), the
shared parameters are unaliased per time step. That is, for the time
being, the parameters are unshared, and then it is straightforward to
compute the gradient for every parameter. The overall gradient for
a shared parameter is then simply the sum of the gradients of the
unaliased parameters (Backpropagation Through Time (BPTT) [416]).
For example, consider R1:

∂`(θ,X,Y)
∂R1

=

n∑
i=1

∂`(θ,X,Y)
∂Ri1

(2.329)

Hereby, ∂`(θ,X,Y)
∂Ri1

is simply computed with Eq. (2.321), using the
underlying feed-forward computation graph shown in Figure 2.7.

2.7.2 Convolutional Neural Networks

Eq. (2.327) induces parameter sharing over time. Sharing parameters
is also a necessity with respect to generalization—the RNN should
be able to handle sequences of arbitrary length. However, also for a
standard feed-forward Neural Network parameter sharing is possible
and reasonable. In this case, single elements of a weight matrix (or
associated groups of elements) are shared, possibly only limited to
dedicated layers or over several layers. A very general approach for
parameter sharing in this regard is soft weight sharing [279, 35] (which
can of course also be applied to RNN’s), acting as a regularization
method. With soft weight sharing the hard constraint of equal weights
(as is the case with RNNs with respect to sharing over time steps) is
replaced by a set of weights that have similar weights. A special case
for soft weight sharing is weight decay, where the weights are put
into exactly one group and encouraged to have values close to 0. Soft
weight sharing generalizes this MAP based approach. The prior p(θ)
with

p(θ) =
∏
i

p(θi) (2.330)

78 fundamentals

x1 x2 xn
. . .

h1
1h0

1 h2
1 hn

1

W1
1

W2
1

Wn
1

R1
1 R1

2

h0
K−1 h1

K−1 h2
K−1 hn

K−1

R1
K−1

R2
K−1

h0
K h1

K h2
K hn

K

W1
K

W2
K

Wn
K

R1
K

R2
K

M(·) M(·) M(·)

L(·) L(·) L(·)

y1 y2 yn. . .

Figure 2.7: Eq. (2.327) unrolled in time. Shared parameters are identified
with the same color, but are unaliased in the unrolled computa-
tion graph (indicated by the superscript). Best viewed electroni-
cally.

uses a flexible mixture model for p(θi):

p(θi) =

M∑
j=1

πjN(θi | µj,σ
2
j) (2.331)

Identical to the MAP approach, the negative log-likelihood of the
prior is then used as a regularization term for the empirical risk term:

Ω(θ) = −
∑
i

log

M∑
j=1

πjN(θi | µj,σ
2
j)

 (2.332)

The soft weight parameters π, µ and σ2 are then also adaptively de-
termined on the training set together with the parameters θ. One
possibility would be to utilize the EM algorithm (Eq. (2.265)), alter-
nating between the soft weight parameters and θ. However, both sets

2.7 neural networks 79

-1
2

8
9

4
-6

5
-8

7

4
-35

7

-8
1836

50

∗

=

Figure 2.8: Convolving a 3 × 3 image (angular corners) with a 2 × 2 filter
(rounded corners). The convolution is only computed at those
positions where both image and filter overlap (indicated by the
colored rectangles). Best viewed electronically.

of parameters heavily depend on each other and therefore a joint op-
timization using gradient-based approaches is reasonable, relying on
the gradients for the mixture model as given in Eq. (2.263).

Weight sharing is also reasonable if the input data has a certain
topological structure that implies that weights should be shared. The
premier example for this case are (natural) images. Images considered
as two-dimensional signals are position invariant and local. In mathe-
matical terms this is a linear shift invariant (LSI) system. The standard
method to analyze LSI systems is convolution [405]. Convolution is an
operator defined on two functions f (the signal to be analyzed) and
g (the filter), resulting in the new function (f∗g). If f : R → R and
g : R→ R are continuous functions then (f∗g) : R→ R with

(f∗g)(x) =
∫
f(y)g(x− y)dy =

∫
f(x− y)g(y)dy (2.333)

which can be readily extended to the n-dimensional case.
For discrete functions f : Z→ R and g : Z→ R, the discrete convolu-

tion (f∗g) is defined by

(f∗g)[n] =
∞∑

m=−∞ f[m]g[n−m] =

∞∑
m=−∞ f[n−m]g[m] (2.334)

For the specific case of a two-dimensional signal f : Z×Z→ R and a
two-dimensional filter g : Z×Z→ R, Eq. (2.334) is defined as

(f∗g)[n,m] =

∞∑
k=−∞

∞∑
l=−∞ f[k, l]g[n− k,m− l]

=

∞∑
k=−∞

∞∑
l=−∞ f[n− k,m− l]g[k, l]

(2.335)

Note that (f∗g) is a valid function on the domain of f and thus can
serve as the signal for a subsequent convolution. So while convolution
is an inherently local operation, by repeated applications to a given
signal global properties of the signal can be determined.

80 fundamentals

In both the continuous and discrete case the convolution exists if
at least one function has a compact support16. In the case of discrete
functions, if the filter g has finite support on the set M ≡ {−M,−M+

1, . . . ,M− 1,M} (that is, g[n] = 0, for n /∈M), then

(f∗g)[n] =
M∑

m=−M

f[n−m]g[m] (2.336)

The discrete convolution can be transformed into a matrix-vector
multiplication where one of the two functions is converted into a
Toeplitz matrix (Eq. (2.9)). Without loss of generalization assume that
both f and g have compact support and let f = (f1, f2, . . . , fn)T and
the filter g = (g1,g2, . . . ,gm)T with m � n. Then h = f∗g can be
written as

h =



g1 0 · · · · · · · · · · · · 0

g2 g1 0 · · · · · · · · · 0

g3 g2 g1 0 · · · · · ·
...

...
.

...

gm gm−1
. . . g1 0 · · · 0

0 gm gm−1
. . . g1

. . .
...

...
.

...

0 0 0 0 0 gm gm−1

0 0 0 0 0 0 gm





f1

f2

f3
...

fn−1

fn


(2.337)

So h is a discrete signal with n+m− 1 elements. In order to avoid
border effects within the convolved signal, the sum of the convolution
operation (Eq. (2.336)) is sometimes restricted to the domain where
both signal and filter have support17. In this case the matrix-vector
expression results in an n−m+ 1 dimensional signal (with f and g
defined as previously):

h =



gm gm−1 · · · g1 0 0 · · · 0

0 gm gm−1 · · · g1 0
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 0 gm gm−1 · · · g1 0

0 0 0 0 gm gm−1 · · · g1





f1

f2

f3
...

fn−1

fn


(2.338)

Eq. (2.337) and Eq. (2.338) are also possible for n-dimensional con-
volutions, the filter elements gi in the rows of the Toeplitz matrix are

16 The convolution between two functions exists under much more permissible condi-
tions, but these are mathematically more involved and not relevant for this text.

17 This mode of convolution is usually denoted valid, while the computation according
to the definition in Eq. (2.336) is called full.

2.7 neural networks 81

then interleaved with zeros, while the input signal f is vectorized ac-
cording to some regular schema, e.g. Eq. (2.53). As a two-dimensional
example for Eq. (2.338) consider Figure 2.8: A 3× 3 image gets con-
volved with a 2× 2 filters, ignoring border patterns, i.e. the convo-
lution is only computed at these positions of the resulting functions
where the support of the image and the filter overlap completely. The
result (also shown in Figure 2.8 to the right) is a 2× 2 image. If images
are represented as vectors according to the vec(·) operator (Eq. (2.53)),
then Eq. (2.338) can be written in the following way in this specific
case:


36

−8

50

18

 =


−3 7 0 4 5 0 0 0 0

0 −3 7 0 4 5 0 0 0

0 0 0 −3 7 0 4 5 0

0 0 0 0 −3 7 0 4 5





5

9

−1

−8

4

2

7

−6

8



(2.339)

In practical applications, it is sometimes necessary to have a cer-
tain degree of border information. This can be realized through zero
padding the signal on its borders and then applying a valid convo-
lution. Furthermore, the signal to be analyzed may be very high-
frequent but also rather redundant. In this case, convolution can be
applied only every s-th input sample, increasing the effective stride of
Eq. (2.336) to s. So if a one-dimensional discrete signal with n ele-
ments is zero-padded with z zeros on every end and then convolved
with a filter of length m using a stride of s the resulting signal has
length (n−m+ 2z+ 1)//s where // denotes integer division.

A related operation to convolution is the cross-correlation [405] op-
erator ? (here only defined for the discrete case):

(f ? g)[n] =

∞∑
m=−∞ f

∗[m]g[n+m] (2.340)

with f∗ the complex conjugate of f. From a Machine Learning point
of view, convolution and cross-correlation are identical operations in
the case of real-valued signals, because differently to the usual appli-
cation of convolution in either mathematics or signal processing, for
Machine Learning the goal is to learn the filter operator g.

Considering Eq. (2.337) it is easy to see how this can be integrated
into a Neural Network: a convolution can be expressed as an affine
transformation where the rows of the associated weight matrix are
shared parameters. Also differently from standard applications, a so

82 fundamentals

×
×

×
×

×
×

×
×

× ×
×

×
×

×
×

×
×

× ×
×

×
×

×
×

×
×

×

(a)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

(b)

Figure 2.9: A convolutional layer with three different filters resulting in an
output with three channels. (a) The three different filters are vi-
sualized in a stylized way to the right of the input image. Every
filter computes the respectively colored feature map. For the or-
ange filter, the convolution operation for two different positions
in the feature map are sketched in more detail. (b) The three
filters applied to the same image with a zero padded border of
width 1. In this case, resulting feature maps have the same dimen-
sionality as the input. In both (a) and (b) the filters are applied
with a stride of 1. Best viewed electronically.

called convolutional layer consists not only of one filter g but usually
comprises a set of learnable filters. This set of filters then computes a set
of feature maps where every feature map retains the basic structure of
the input signal. That is, if the input is for example an image, a feature
map also represents an image, see Figure 2.9 for the case of a two-
dimensional input signal. These sets of feature maps are organized
into channels.

If the input to a convolutional layer already spans a number of
channels |c| (for example, in the case of images these might be the red,
green and blue color channels, or several consecutive (gray-valued)
frames from a video) than a learnable filter g for this kind of input
consists of the same channel-like structure:

g ≡ (g1,g2, . . . ,g|c|) (2.341)

A feature map h associated with such a filter g is then computed by
summing up the individual convolutions per channel, i.e.

h =

|c|∑
i=1

fi∗gi (2.342)

Again, the underlying structure of the input (as given by the structure
of the individual channels) is retained by this definition. Figure 2.10

shows a simple example where several channels of two-dimensional
images are convolved with three different filters.

A Neural Network that has layers made up of convolutions of the
form Eq. (2.342), equipped with an additional bias and followed by

2.7 neural networks 83

Figure 2.10: A convolutional layer with a stack of channels as input. The fea-
ture maps are computed by summing up the individual convo-
lutions of the respective filters. Again, the three different sets
of filters produce an output containing three channels. Best
viewed electronically.

Figure 2.11: The architecture of LeNet-5, a convolutional Neural Network
used to recognize human handwriting. The figure is taken from
[221].

non-linearities is called a Convolutional Neural Network (CNN) [103,
219, 221]. Figure 2.11 shows a well-known instance of a CNN, LeNet-
5 [221]. The figure depicts the typical form of CNNs, layers of convo-
lutions followed by standard fully-connected layers. In a CNN, the con-
volutional layers are typically interleaved with reduction operations.
These usually pool over a small area of the individual feature maps
(but never between channels). Pooling operations are typical aggrega-
tion functions like averaging [221] or maximum [414, 299] operations.
Recently, more involved pooling functions have been proposed, e.g.
Lp pooling [341] or distance transform pooling [112]. Pooling imple-
ments not only a form of dimensionality reduction but also encodes
invariances of the network to geometric transformations of the input,
e.g. the repeated application of max-pooling over several layers leads
to a certain degree of translation invariance of the network. Figure 2.12

shows variants of the maximum operation over a 2× 2 pooling region.
These pooling operations can also be expressed as matrix-vector

operations, the elements of the respective matrices are no learnable

84 fundamentals

2
-1

0
2

9
-4

1
3

-6
-8

7
3

-4
5

5
0

9
35

7

(a)

2
-1

0
2

9
-4

1
3

-6
-8

7
3

-4
5

5
0

9
1

3
9

7
7

5
7

7

(b)

Figure 2.12: Max-Pooling over 2× 2 regions with (a) non-overlapping or (b)
overlapping [208] pooling areas. In both cases some pooling re-
gions with the respective dominant element are colored. Best
viewed electronically.

parameters, though. Instead, these matrices are usually determined
adaptively, depending on the current parameters θ and the input x
to the network. However, it is also possible to use a standard learn-
able convolutional layer instead of a pooling layer [363]. In order to
simulate the dimensionality reduction aspect, the stride of the convo-
lution is increased and the convolution keeps the number of feature
maps identical. In its basic form, convolution can only simulate sim-
ple aggregation functions. For more complex pooling operations, spe-
cialized activation functions are also necessary, e.g. the learned-norm
pooling function [137]. Compared to the state-of-the-art performance
of max-pooling based CNNs for object recognition, this type of CNN
with only convolutions (and alternating subsampling) performs com-
petitively [363].

Because a CNN can be formulated as a stack of non-linear affine
transformations (Eq. (2.295)), computing the gradients of the filters g
of some convolutional layer with respect to a loss function `(θ, x,y)
can be done by the backpropagation algorithm (Eq. (2.321)). Consider
only one filter g, with its Toeplitz matrix from Eq. (2.337) denoted as
G ∈ Rn×m (the exact values for n and m depend not only on the size
of the filter and the (channeled) input but also on the chosen stride(s)
and zero padding(s)). ∇G`(θ, x,y) is easy to derive, but it does not
yet take into account that the rows of G are actually shared. This is
however straightforward, if the Toeplitz structure of G is exploited:
First, reshape ∇G`(θ, x,y) (an nm-dimensional vector) into an n×m
matrix using the cev(·,n,m) operator (Eq. (2.55)). Then build the sum
of the elements along all possible n +m − 1 diagonals, forming an
n+m− 1 vector. This vector can then be reshaped into the same form

2.7 neural networks 85

as the original filter g. This reshape however depends again on the
size of the filter, the chosen strides and the chosen zero padding(s).

∇g`(θ, x,y) =
∑
\

∇Gcev(`(θ, x,y),n,m) (2.343)

where
∑

\ denotes forming a vector by summing up elements along
all possible diagonals of a matrix.

As it turns out ∇g`(θ, x,y) can also be computed through convolv-
ing a mirrored Jacobian and the input to the respective convolutional
layer. Again, let g be a filter that is applied convolutionally to some
arbitrary input x (a tensor), though with one channel only (without
loss of generality, as will be seen shortly). Furthermore, let h denote
the result of the convolution, i.e.

h = x∗g (2.344)

The Jacobian J̃h of h (Eq. (2.311)) with respect to `(θ, x,y) has the
same structure as x. So in general J̃h is representable as a tensor, e.g.
in the case of x being a 2d image, J̃h also represents a 2d image. Given
the elementwise definition of the convolution operator ∗ (Eq. (2.336)),
∇g`(θ, x,y) can also be derived elementwise which results in

∇g`(θ, x,y) = vec(([J̃h]◦∗ x)◦) (2.345)

where [J̃h] indicates that the Jacobian is represented as a tensor and ◦
denotes the point reflection operator for tensors, see Eq. (2.38). If the
input x has several channels then [J̃h] is simply convolved with every
channel separately to get the respective gradients, because Eq. (2.341)
only involves a sum over the filtered channels.

For example in the case of x being an image, this means that in
order to compute∇g`(θ, x,y) the 2d interpretation of J̃h is rotated by
180 degrees, convolved with x and then rotated again by 180 degrees.
J̃h can also be computed using convolution explicitly. However it

depends heavily on the actually used stride s and zero-padding z.
Assume s = 1 and z = 0. Furthermore, assume that J̃k denotes the
Jacobian of the layer after h and that both layers only have one feature
map (again, without loss of generalization). If f is a dimensionally
consistent filter such that

k = h∗ f (2.346)

then J̃h is computed from a zero-padded Jacobian J̃k. More specifi-
cally, denote J̃mk the Jacobian J̃k that is zero-padded by m− 1 zeros
on both ends per every dimension of the Jacobian. Then

J̃h = J̃mk ∗ f◦ (2.347)

If h has n elements per dimension then k has n−m+ 1 elements, if
f has m elements per dimension. The zero-padded Jacobian J̃mk has

86 fundamentals

n−m+ 1+ 2(m− 1) = n+m− 1 elements per dimension. Hence, J̃h
has n+m− 1−m+ 1 = n elements.

The backward path from Eq. (2.347) for one convolutional layer can
also be used to realize the forward path of an upsampling convolutional
operation. More specifically, an upsampling convolutional layer with
an upsampling factor of k can be implemented by the backward pass
of a convolutional layer with stride k. This operation is sometimes
denoted fractional strided convolution [236]. A much simpler realiza-
tion of fractional strided convolution is using perforated upsampling
followed by standard convolution [285]18. In perforated upsampling ev-
ery element of a feature map is replaced by a cube (same dimensions
as the feature map) having k zeros per dimension. The elements of
the original feature map are placed at the first element of their respec-
tive cubes. This upsampling operator is then followed by a standard
convolution operator of the desired size.

An important practical aspect is to consider which of the two dif-
ferent technical approaches to compute the gradients of the filters is
more efficient. The widely used Caffe framework [188] implements
both forward and backpropagation paths in CNNs as matrix opera-
tions, relying on the highly optimized matrix-matrix operations of the
underlying hardware. This approach requires more memory though,
because the Toeplitz matrix requires more space than its associated fil-
ter. On the other hand, it might be reasonable to use the Fast Fourier
Transformation (FFT) to realize efficient forward and backward con-
volutions [405]. However, for CNNs the filters used in the forward
computations are usually small, so an FFT-based approach only is
promising for the forward path if high-dimensional inputs (i.e ten-
sors) are used. However, in the backward path for the backpropaga-
tion algorithm Jacobians and feature maps are convolved with each
other and then an FFT-based approach should be beneficial [251].

From an optimization point of view, minimizing some loss function
induced by a Neural Network is considered as one the most challeng-
ing real-world optimization problems. Already the invariance of the
evaluation of a network to symmetric re-orderings of weights leads
to the existence of an exponential amount of equivalent local minima
[34]. However, one has to realize that the overall goal of optimizing
a Neural Network is to find settings with high generalization capa-
bilities: The network has to perform well on unseen future data, and
hence the training data must be considered as a stochastic proxy for
the truly unknown objective. Therefore, finding the absolute mini-
mum on an apriori stochastic cost function is not worthwhile. Indeed,
recent research hints at this being be counterproductive to the goal
of generalization [57]. This makes stochastic optimization techniques
a necessity. Interestingly, simple stochastic gradient descent [312] itera-

18 Hubert Soyer came up with the idea and the name of perforated upsampling. Back
then we didn’t know that it implements fractional strided convolution.

2.7 neural networks 87

tively evaluated on a small set of randomly sampled training data (a
so called minibatch) and equipped with a momentum term [319] often
leads to very good parameter settings.

More specifically, for minibatch stochastic gradient descent the up-
date direction δθt at the t-th optimization iteration (t > 1) is evalu-
ated as:

δθt =
1

|D ′|

∑
xi,yi∈D ′

∇θ`(θt−1, xi,yi), D ′ ⊂ D, |D ′|� |D| (2.348)

The minibatch D ′ is hereby sampled randomly from D without re-
placement. With a fixed learning rate ηt the new parameter value θt
at iteration t is

θt = θt−1 + ηtδθt−1 (2.349)

ηt is often independent of iteration t and set to a small value (be-
tween 0.1 and 0.0001), ensuring the validity of the underlying Taylor
approximation. Yet, in order to exact convergence, ηt can also be an-
nealed to zero with a simple schedule [312, 327], e.g.

ηt = η0(1+ γt)
−1 (2.350)

with η0 and γ being two hyperparameters.
An important question is how θ0 is chosen. A widely used initial-

ization schema is to sample the elements of the weight matrices from a
Gaussian with mean 0 and standard deviation 0.1 and set the biases to
0. However, as will be pointed out later in the text, choosing the initial
parameter values for a Neural Network can have a heavy influence on
its successful application to the task at hand, in particularly for deep
networks19. A simple guiding principle for choosing an initialization
is to ensure that at the beginning of the training the linear regime of
the non-linearities is utilized, which allows gradient information to
be propagated to all layers of the network (cf Eq. (2.326)). For the
tanh(·) activation function a good rule is to draw the elements of a
weight-matrix Wk ∈ Rm×n from a distribution centered at 0 with
variance 1/n20, i.e. Wk ∼ N(Wk | 0, 1/nI) or Wk ∼ U(−

√
3/n,

√
3/n)

[224].
How is D ′ at some iteration t chosen? A typical approach in Ma-

chine Learning is to split the training set D, |D| = m, into dmk e many
minibatches D1,D2, . . . ,Ddmk e with

|Di| = k, ∀ 1 6 i <
⌈m
k

⌉
,

D = D1 ∪D2 ∪ · · · ∪Ddmk e and

Di ∩Dj = ∅, ∀ 1 6 i < j 6
⌈m
k

⌉ (2.351)

19 The initial value of the bias can have a large influence on the overall optimization
process, depending on the utilized non-linearities [109, 146, 191].

20 n is sometimes denoted the fan-in of a layer.

88 fundamentals

The next dmk e many update directions are then evaluated on the re-
spective minibatches Di. After one such epoch (a complete learning
pass through the training set where every sample in D is used ex-
actly once to calculate an update direction) the minibatch splits are
resampled anew. k is considered a hyperparameter, for k = 1 the
standard stochastic gradient descent approach is recovered [38, 37].

Finally, from a more practical point of view, the sum in Eq. (2.348)
may seem cumbersome at first, after having streamlined the deriva-
tion of the gradient for one input/output pair (i.e. Eq. (2.321) and
Eq. (2.322)). However, reformulating the involved expressions in terms
of matrices, the above sum can be represented as a simple matrix-
matrix product. To see this, first consider the specific update direction
for some weight matrix Wk ∈ Rm×n at iteration t in the minibatch
case:

δWk,t =
∑

xi,yi∈D ′
vec(Dk,iJ̃hk,i

T
h(k−1),i

T)

= vec

 ∑
xi,yi∈D ′

Dk,iJ̃hk,i

T
h(k−1),i

T

 (2.352)

where the index i at Dk,i, J̃hk,i and h(k−1),i indicates the association
of these three terms with the training pair (xi,yi). This is a sum over
the outer products of the respectively scaled Jacobians and the associ-
ated input to the k-th hidden layer. Using Eq. (2.22) this can be written
much more elegantly (and, important for practical purposes, com-
putationally much more efficient) as a matrix-matrix product. Let’s
define a matrix Hk−1 ∈ Rk×n that collects the k many hidden activa-
tions hk−1 ∈ Rn in a row-wise manner. Additionally, let the matrix
Ĵk ∈ Rm×k collect the k Jacobians J̃hk,i in a column-wise manner. Fi-
nally, Dk,i being k many diagonal matrices, a matrix D̂k ∈ Rm×k

collects the diagonals as vectors also in column-wise manner. Given
these three matrices, Eq. (2.352) can be rewritten as

δWk,t = vec

 ∑
xi,yi∈D ′

Dk,iJ̃hk,i

T
h(k−1),i

T


= vec

((
D̂k � Ĵk

)
Hk−1

)
,

(2.353)

where � is the elementwise multiplication of two matrices (see the
Linear Algebra section, e.g. Eq. (2.8) and Eq. (2.22) for a detailed re-
view of the utilized identities). δbk,t needs a vector 1 of ones:

δbk,t =
(
D̂k � Ĵk

)
1 (2.354)

If a momentum term vt is utilized, the updates at iteration t > 1

are as follows:
vt = µvt−1 + ηtδθt−1

θt = θt−1 − vt
(2.355)

2.7 neural networks 89

with µ ∈ (0; 1) being a decay (hyper-) parameter and v0 = 0. The
basic motivation for a momentum term vt is to accelerate the opti-
mization process along those dimensions in which the gradient be-
haves consistently and, on the other hand, soften the negative impact
of dimensions which have inconsistent gradient information and thus
mitigates oscillations. For that it builds an exponential moving aver-
age over update directions which results in the cancellation of gra-
dient information for those inconsistent parameter dimensions. Yet,
being a purely additive method its usefulness can be quite limited for
challenging cases.

One hypothesis why stochastic gradient descent works so well is
that stochastic minibatches ensure the optimization process never get-
ting stuck in bad local minima, in particular at the beginning of the
process [375]. As pointed out already earlier, large Neural Networks
should not suffer from bad local minima, as the probability of find-
ing one is exponentially small [326, 123, 57]. Instead, it is important
that the optimization does not get stuck at points that look locally
like minima but are actually saddle points (spurious minima). Results
from Random Matrix Theory [8, 7] indicate that saddle points are
prevalent in Neural Networks (for both small- as well as large-scale
networks). Large numbers of saddle points can explain why classi-
cal second-order Newton methods never gained traction for Neural
Networks, as such methods have difficulties dealing with them [76].

A theoretically motivated approach resolving this problem is to uti-
lize additional second order information in a stochastic manner. While
several promising stochastic second order optimization algorithms
where proposed ([336, 246, 76]), stochastic gradient descent methods
with simple preconditioning [108, 327] ensuring different multiplica-
tive scaling factors for every parameter perform surprisingly robust
and good in general [86, 388, 427] and only rely on first order infor-
mation. One such approach is AdaDELTA [427]. It is based on the
following two premises:

• The optimization should progress in a similar fashion along all
dimensions. This is particularly a good idea with deep networks
because the scale of the gradients in each layer differs often in
the order of several magnitudes. So a direction that tends to
have predominantly large (absolute) gradient values should have
predominantly small learning rates. And vice versa. A good lo-
cal estimate for the behavior of a direction’s absolute gradient
values is the average of the square gradient values over a fixed
window [86]. An efficient approximation (efficient with respect
to memory requirements) of such a window is a simple expo-
nential moving average of the elementwise squared gradient:

E(g2)t = ρE(g
2)t−1 + (1− ρ)gt

2 (2.356)

90 fundamentals

with gt ≡ δθt, the update direction at iteration t. ρ is a de-
cay constant, a hyperparameter. Learning rate adaptation per
dimension then happens with the squared root of E(g2)t result-
ing in an approximation of the root mean squared length of all
update directions up to iteration t. That is, the improved param-
eter update rule at iteration t is then

θt = θt−1 +
ηt

RMS(g)t
δθt−1 (2.357)

with

RMS(g)t =
√
E(g2)t + ε (2.358)

where a small constant ε ≈ 1e− 6 is added for improving the
condition of the denominator [22]. Eq. (2.357) is also known as
the RMSprop update rule [388].

• The problem with the update rule in Eq. (2.357) (and also for
Eq. (2.349) and Eq. (2.355)) is that it is dimensionally inconsis-
tent (not covariant [242, 203]): The left hand side has a vector of
units suitable for the parameter vector θ, the right hand side is
dimensionless, though. Inspired by second order methods only
using a diagonal Hessian [220], AdaDELTA multiplies the up-
date direction from Eq. (2.357) with an exponentially moving
average over the parameter updates ∆θ to get a covariant descent
direction:

θt = θt−1 +
RMS(∆θ)t−1

RMS(g)t
δθt (2.359)

Identically to Eq. (2.358), RMS(∆θt) is defined as

RMS(∆θt) =
√
E((∆θ)2)t + ε (2.360)

with the same ε as used in Eq. (2.358). E((∆θ)2)t is also an
exponential moving average with the previous decay constant
ρ:

E((∆θ)2)t = ρE((∆θ)
2)t−1 + (1− ρ)(∆θt)

2 (2.361)

Hereby ∆θt is the actual update at iteration t, i.e.

∆θt = θt −θt−1 (2.362)

Note that in Eq. (2.359) RMS(∆θt−1) must be used. This may
lead to a more robust behavior of the updates in case of large
(sudden) gradients, as these are directly damped by the denomi-
nator [427]. Furthermore, with ε also in the nominator, progress
is ensured even in the case of previously very small updates.

2.7 neural networks 91

2.7.3 Deep supervised Neural Networks

Since we know that, with a single hidden layer, we can ap-
proximate any mapping to arbitrary accuracy we might
wonder if there is anything to be gained by using any
other network topology, for instance one having several
hidden layers. One possibility is that by using extra lay-
ers we might find more efficient approximations in the
sense of achieving the same level of accuracy with fewer
weights and biases in total. Very little is currently known
about this issue [34, p.132].

As some theoretical evidence has been accumulated that deep net-
works may actually be advantageous with respect to their shallow
counterparts for statistical efficiency reasons [142, 27, 25], interest in
training discriminative deep networks always remained high.

However it was generally considered difficult to successfully train
such networks. Empirically, they often performed worse than net-
works with one layer [383]. For some time only two instances of deep
networks existed that were generally applicable: recurrent LSTM net-
works and Convolutional Neural Networks. Both cope exceptionally
well with the vanishing/exploding gradient (Eq. (2.326)) effect.

An LSTM network [161] is specifically designed to resolve this
problem by using an architecture that ensures unhampered flow of
gradient information through multiplicative gating mechanisms. It re-
places simple hidden units with LSTM-cells (Figure 2.13), storing each
an analog value in a memory cell. An LSTM-cell has input and output
gates controlling when network input can affect its stored value and
when it can influence the network’s output. At time t the recurrent
computation for an LSTM network with one hidden layer is as fol-
lows (using the extensions of forget gates [109] and peephole connec-
tions [110]):

it = σ(Wix+Riht−1 +pi � ct−1 +bi)
ft = σ(Wfx+Rfht−1 +pf � ct−1 +bf)
ct = ft � ct−1 + it � g(Wcx+Rcht−1 +bc)

ot = σ(Wox+Roht−1 +po � ct−1 +bo)
ht = ot � h(ct)
yt =M(WMht +bM)

(2.363)

Hereby it, ft and ot denote the respective vector-valued input, forget
and output gates, g(·) and h(·) are the input and output activation
functions, p denotes the respective peephole connections (written as
vectors, which means that there is no direct leakage of information
between memory cells) and ct denotes the values of the memory cells
at time t. Note that I again chose ht to denote the hidden state of the
network which is distinct from the value of the memory cells.

92 fundamentals

Figure 2.13: An LSTM cell (or an LSTM memory block). This Figure visual-
izes one element (i.e. a row in each) of the matrix expressions
in Eq. (2.363). Instead of hk the Figure usesmk. Additionally, it
shows a linear projection step for the hidden state ht, depicted
as recurrent and resulting in rk which is not given in Eq. (2.363).
The peephole connections are depicted by the dashed lines. The
Figure is taken from [320].

Convolutional Neural Networks seem not to suffer from the vanish-
ing/exploding gradient effect because sharing parameters happens
within a layer and leads to summing up of many noisy gradient con-
tributions which mitigates effects of Eq. (2.326).

If the unstable gradient information, caused by the vanishing/ex-
ploding gradient problem, is a reason for the difficulties of training
deep networks than one approach is to employ optimization meth-
ods that are robust in these scenarios, like the previously introduced
AdaDELTA approach (Eq. (2.359)). A very different approach is to
ensure that vanishing or exploding gradients can’t start to happen
at all because the weights are initialized such that the parameters are
overall well-behaving. This general approach became popular over
the last years because it happens before learning starts and hence is
simpler to analyze and understand.

One possible initialization scheme is driven by the objective to
maintain approximately the variances of the forward activations and
also the variances of the backpropagated gradients at some fixed level
for all layers [115]. Obviously this approach depends on the precisely
used activation function. For the tanh(·) activation this normalized ini-
tialization draws the parameters of the weight-matrices according to
the following uniform distribution:

Wk ∼ U

(
−

√
6

m+n
,
√
6

m+n

)
, k > 1 (2.364)

2.7 neural networks 93

where Wk ∈ Rm×n. For a rectifying activation function the optimal
initialization is [146]:

Wk ∼ N

(
Wk | 0,

2

n
I

)
, k > 1 (2.365)

The orthogonal initialization method is based on an analysis of the
learning dynamics in deep linear networks. It suggests to initialize
weight-matrices as the product of two orthonormal weight-matrices
that are chosen in such a way that as much information as possible
can be propagated from the input layer to the loss function [326].
Assume that Wk ∈ Rm×n with m > n without loss of generality.
Wk is then initialized as the product of two orthonormal matrices
Rk+1 ∈ Rm×m and Rk ∈ Rn×n as follows:

Wk = Rk+1
(n)Rk

T (2.366)

where Rk+1(n) is the matrix Rk+1 with the last (m − n) columns
removed. Wk+1 is then also initialized according to Eq. (2.366) with
Rk+1

T chosen as the right orthonormal matrix. The orthonormal ma-
trices can be constructed through an SVD of Gaussian noise matrices
of the respective dimension.

A much simpler initialization method ensures that for every hid-
den unit most incoming parameters are set to 0 (e.g. only 15% of all
incoming weights have some random value other than 0). This sparse
initialization scheme works well for both feed-forward as well as for
recurrent Neural Networks [375, 276], independently of the activa-
tion function (so, in particular, it seems to work well for the vener-
able logistic sigmoid function, too). Specifically for recurrent Neural
Networks it is necessary to limit the spectral radius of the recurrent
weight matrices—this idea originates from work with echo-state net-
works [178, 179, 240, 375]. In the case of a ReLU activation function
learning seems to be successful when the recurrent connections are
initialized to the identity matrix, or a scaled variant thereof [217, 357].

The most involved initialization schema is based on the idea of con-
structing the network consecutively in a layer-wise fashion. This can
be done in a purely supervised manner [93, 331, 226, 28, 350, 315], in
a semi-superwised fashion [297, 417] or in a completely unsupervised
way [10, 335, 155, 25]. After the network with the required depth is
constructed, the complete stack is fine-tuned in a supervised way.

The most widely recognized variant of the latter approach was orig-
inally developed to facilitate learning of Deep Belief Networks [155].
However, it was shown empirically that this approach also improves
learning of discriminative deep networks [25]. This idea received (and
still receives) a lot of attention but it is currently not used very often
as other methods mentioned in this section are faster, simpler and
more flexible and overall lead to better results with deep networks
(both feed-forward and recurrent ones) on a wide range of tasks. Yet,

94 fundamentals

this approach is attractive because the pretraining phase works com-
pletely in an unsupervised way and hence could enable to learn deep
networks even when very little supervised data is available.

Pretraining a layer can be done with different kinds of (shallow)
unsupervised (or semi-supervised [297, 417]) models that must have a
simple inference procedure. The RBM (Eq. (2.236)) is one such shallow
model. Because the latent units are conditionally independent given
the visible units, inference is fast, though training a layer is generally
slow. After training one RBM on the training set, the data is passed
through the model and the latent representations are now used as the
new training set for the next RBM.

A conceptually simpler approach is to use the first layer of a shallow
autoencoder [318, 10, 342, 141, 89, 39] for stacking. A shallow autoen-
coder is a Neural Network with one hidden layer that maps the input
onto itself, so the loss is defined only in terms of the input x:

`(θ, x) = L(M(N(θ, x)), x) + λΩ(θ) (2.367)

with

N(θ, x)) = bd +Wd f(be +Wex)︸ ︷︷ ︸
encoder

(2.368)

The encoder part of this autoencoder is then used to form a layer in
the deep network. In [326] it is suggested to use standard shallow
Autoencoders to initialize the layers of deep networks with true non-
linearities, based on their analysis of the dynamics of linear deep
networks. In order to ensure that the single layer encoder learns an
interesting representation of the input the shallow model is usually
somehow constrained. Several possible variations of this approach
are presented in the following. A simple constraint is that both en-
coder and decoder are transposes of each other [28], i.e. they share
the weight matrix W:

N(θ, x)) = bd +WT f(be +Wx) (2.369)

Another widely used approach is to inject distortions to the net-
work sampled from some limited random process e.g. through addi-
tive or multiplicative Gaussian or Bernoulli noise [346, 5, 267, 292].
The Denoising Autoencoder [407] combines a shared weight-matrix
with distortions applied to the input. In the case of additive Gaus-
sian noise (with variance σ2) this approach can also be interpreted
as minimizing not only the reconstruction cost but also the following
additional penalty Ω(θ, x) [292]:

Ω(θ, x) = σ4
∑
i,j

(
‖wjTwi‖f ′(wiTx)

)2
(2.370)

wherewiT are the rows of the weight matrixW. Note that differently
to the usual structural risk minimization framework (Eq. (2.170)) the

2.7 neural networks 95

penalty now also depends on the input x. This penalty encourages the
hidden units to learn orthogonal representations of the input, similar
to [215] that modeled overcomplete Independent Component Analy-
sis [193, 68, 23, 162, 170] with a shallow autoencoder.

A different constraint on the shallow Autoencoder may be that
the model should learn representations that are insensitive to small
changes in the input space [311, 310] . This can be achieved by penal-
izing the Frobenius norm (Eq. (2.30)) of the Jacobian of the encoder
function with respect to the input which is equivalent to using the
standard shallow autoencoder (Eq. (2.368)) and inject white Gaussian
noise at the hidden representation [292]:

Ω(θ, x) = ‖Jx(h)‖F =
h∑
i=1

f ′(wi
Tx)‖wi‖2 (2.371)

Finally, a very different constraint on the hidden units enforces spar-
sity. While various forms of sparse Autoencoders have been suggested,
the k-sparse autoencoder [244] seems to be theoretically the best moti-
vated approach. For the hidden layer f(Wex+be) only the k largest
values are retained, all other units are set to 0. If f is chosen to be
linear then it can be shown that this approach approximates a sparse
coding algorithm (Eq. (2.275)) [244].

The best initialization method is worthless in practice if the inputs
to the respective layers are in a bad range requiring input normaliza-
tion, in particular if the input data is heterogeneous or uses different
kinds of units. The input data is usually normalized such that the em-
pirical distribution for every input dimension approximates a simple
Gaussian centered at 0 and with standard deviation of 1 [224]. This
can be done through a z-transformation (Eq. (2.131)) using the empir-
ical mean µMLE and the empirical diagonal variances σ2MLE over the
training set. During evaluation the data from the test set must also
be normalized with these parameters. An even better but computa-
tionally more demanding approach is to whiten (Eq. (2.260)) the input
data [418].

Not only the input should be normalized but also all hidden layers
With a point-symmetric activation function (and normalized inputs)
this is ensured in the case of well-initialized weight-matrices for the
beginning of the training process. However, learning is a complicated
dynamical process so for hidden units this means that their (empiri-
cal) distributions permanently change because the weights leading to
the respective layers permanently change (covariate shift, [343]). How-
ever, in the case of iterative training methods it is prohibitive to keep
track of the exact hidden non-stationary distributions. A simple and ef-
fective method is to constantly normalize the hidden representations
based on minibatches (batch normalization [171]). In this approach a
hidden layer k is normalized through a z-transformation (Eq. (2.131))

96 fundamentals

using the empirical mean µMLE and the empirical standard deviation
σMLE of the preactivation ak21, computed over a minibatch:

âk =
ak − µMLE√
(σMLE)2 + ε

(2.372)

where ε is chosen as a small constant for numerical stability. In order
to ensure that the non-linearity fk(·) can use its complete non-linear
range, âk is additionally scaled and shifted before fk(·) is applied:

ãk = γ� âk +β (2.373)

γ and β are parameters that are learned, too22. It is important that
Eq. (2.372) is included in the backpropagation procedure. In partic-
ular, the Jacobian J̃k−1 also gets contributions from µMLE and σMLE.
For convolutional layers, µMLE and σMLE are computed per feature
map, γ and β are shared within a feature map. During evaluation
on the test-set, µk and σk are substituted by the respective popula-
tion statistics over the training set, computed e.g. by moving averages
already during training. Batch normalization performs exceptionally
well in experiments [171]. It not only improves the training speed but
also the generalization capabilities of trained networks.

Architecturally the flow of information can be improved through
so called skip connections [34, 401, 294]. Skip connections connect a
hidden layer hk with some later layers hl, l > k+ 1 or directly with
the network output. Clearly, this ensures that the learning signal can
be more directly disseminated over all layers. However, it is not clear
where and how the skip connections should be placed. The best op-
tion would be to learn this, too.

Very recently an adaptive gating mechanism allowed the training
of very deep feed-forward networks. It builds paths along which
information can flow across many layers without attenuation in an
adaptive manner [367, 195]. Differently to fixed skip connections this
architecture can build skip connections in a dynamic way depend-
ing on the respective input. The idea is inspired by the LSTM cell
(Eq. (2.363)) and utilizes multiplicative gating elements. More specif-
ically, for the k-th layer yk a transform gate Tk−1(yk−1,θ) and a
carry gate Ck−1(yk−1,θ) are introduced and combined with ŷk =

fk(Wkyk−1 +bk) such that yk is computed as [367]

yk = ŷk � Tk−1(yk−1,θ) +yk−1 �Ck−1(yk−1,θ) (2.374)

The functional form of both gates is arbitrary but one is inclined
to choose again a non-linear affine transformation. The parameters

21 µ and σ2 are supposed to have a superscript k to indicate that they are related to
layer k, but it is left out for readability.

22 Eq. (2.373) can be considered as an additional layer with a diagonal weight matrix
diag(γ).

2.7 neural networks 97

of the respective gates might be shared (i.e. Ck−1(yk−1,θ) = 1 −

Tk−1(yk−1,θ). The multiplications in Eq. (2.374) are defined in an
elementwise way, so some dimensions might be carried over unal-
tered and others not. This can induce quite complex transformation
idioms, in particular if redundant information is contained in yk−1.
In the case of shared parameters a good choice for the transform gate
is the logistic sigmoid, i.e.

Tk−1(yk−1,θ) = σ(WT ,k−1yk−1 +bT ,k−1) (2.375)

bT ,k−1 is then initialized to a larger negative value [367, 109], ensur-
ing unattenuated gradient flow at the beginning of training.

Given such a large pool of methods that allow the training of
networks with many layers, underfitting during training is often no
longer a problem. Yet, even with large-scale datasets, very big (and
hence rather deep) networks still (may) face the problem of overfit-
ting. The standard approach to tackle this problem is early stopping
on a validation set [35, 293]: During training, the risk `(θ, x,y) is con-
stantly monitored on an additional validation set and as soon as its
empirical risk clearly starts to deteriorate, training is stopped, even if
the empirical training risk would still improve. Furthermore, weight
decay (Eq. (2.169)) is usually applied, too.

A simple but quite effective method to avoid specifically the coadap-
tation of hidden units in the same layer is dropout [365]. During train-
ing units in hidden layers are randomly set to 0 (dropped out), which
happens according to some fixed probability, depending on layer k.
A hidden layer yk is then computed according to

yk = Bfk(Wkyk−1 +bk) (2.376)

where B is a binary diagonal matrix, with Bi ∼ Bern(Bi | pk). That
is, at layer k a hidden unit gets dropped out with probability 1− pk
and hence during evaluation the weight-matrixWk gets scaled by pk.
Dropout works specifically well with ReLU and Max-Out activation
functions23. Formulated as a chained matrix multiplication it is seam-
lessly integrated into the backpropagation framework, though for the
optimization procedures more extreme settings seem to be preferable
as well as additional norm constraints on the weight matrices [364].
Interestingly, with batch normalization (Eq. (2.372)) dropout seems to
be less beneficial or necessary [171].

The dropout idea can also be applied directly to the weight ma-
trices (dropconnect, [411]) and in theory it should be more flexible
than dropout, as the overall noise pattern acting on the network has

23 Dropout is inspired by some insights from genetics [234]. From this point of view
it is obvious that it should work very well with Max-Out, as genes usually co-act
in groups. However, recent research shows that Dropout is better interpreted as a
variational inference method[104]. I do not know how this aspect can explain the
improvement seen with Max-Out

98 fundamentals

much less structure. Yet, its efficient implementation is much more
challenging (several noisy versions of the parameter vector θmust be
kept in memory for every minibatch) and the reported results [411]
do not seem to justify this additional overhead from a practical point
of view.

Finally, for standard recurrent Neural Networks it was recently
shown that training instabilities due to vanishing or exploding gra-
dients can be handled very successfully by simply clipping gradients
[260, 287].

The previous approaches are very appealing from a theoretical
point of view. However, the following two aspects had a much more
resounding effect for the successful application of deep Neural Net-
works to tasks that were traditionally dominated by alternative meth-
ods:

• Faster computers: In order to avoid getting stuck in spurious
minima it is often enough to train longer (while avoiding overfit-
ting). This simple insight however only became economically vi-
able (with respect to real world computation time) over the last
10 years through the advent of powerful graphics processing
units (GPGPU—General Purpose Graphical Processing Units).
Their optimized atomic operations are perfectly aligned for re-
alizing efficient matrix-matrix operations found in the elemen-
tary affine transformations (Eq. (2.294)) and the backpropagated
Jacobians (Eq. (2.314)) [281]. GPUs not only allow tackling large-
scale models but prove specifically helpful with abundant labeled
training data.

• Large datasets (e.g. ImageNet [80]): Ubiquitous powerful and
cheap computational units not only lead to a large amount of
available data, the dimensions of the gathered data samples also
increase (which means, in the case of classification, the number
of classes). This increase of information density helps avoiding
the problematic overfitting trend that Neural Networks some-
times show due to their high flexibility. Not only do more classes
mean more bits per training sample (the number of bits a train-
ing samples conveys to a learning algorithm is about O(log |c|),
where |c| is the number of classes). Large datasets simple reduce
the risk of stopping the training in spurious minima by mis-
take which manifests itself in overfitting on the test set. Large
datasets can be made even bigger by augmenting them with
transformed input samples. These are changed in such a way
that the associated target information stays invariant [63, 209,
84]. Datasets that are augmented in this way allow the model to
detect the important invariances it otherwise would have a very
hard time to identify.

2.7 neural networks 99

Large, augmented datasets are only helpful for training Neural
Networks if they can be tackled computationally. That is, the
wall-clock time for training must remain within reasonable lim-
its. GPUs are the right tool to solve this kind of problem.

The idea of artificially augmenting the dataset with valid is ex-
tremely powerful and at the same time so simple—but it is not pos-
sible for those cases where humans themselves don’t know the un-
derlying invariances. But these instances are be the premier cases to
apply Machine Learning in the first place!

One possible approach to tackle this problem is to generate so-
called adversarial inputs that are close to a given input but have a
lower cost compared to this reference sample [123]. Such adversarial
inputs can be generated by relying on an adversarial epsilon neigh-
borhood around an input sample, defined through the first derivative
of the cost function with respect to the input. Increasing the cost for
samples in the (dynamically determined) adversarial neighborhood
embeds the labelled training samples in a loss surface that is mostly
flat around the embedded training cases, ensuring a much more sta-
ble generation of the resulting model (also compare to Flat Minima
[160]).

On a more abstract level this method (decrease a loss for some
input space, increase the loss for some (other) input space) resem-
bles some well-known forms of unsupervised learning, as detailed
for directed and undirected graphical models (see Section 2.6). An
under-appreciated form of unsupervised learning for Neural Net-
works (contrastive backpropagation [156]) produces adversarial inputs
using Hybrid Monte Carlo sampling.

Therefore, the final part of this section covers therefore ways to
train deep Neural Networks in an unsupervised fashion. If done
right, only very little labeled training data can already produce pow-
erful discriminative models, as recently shown for the simple MNIST
dataset [303].

This compact review covered those aspects only that subjectively
form the basics of successful approaches to training deep supervised
Neural Networks. It can’t delve into the ever increasing set of prob-
lems successfully tackled24 by either recurrent (LSTM-based) Neu-
ral Networks or Convolutional Networks25. A small excerpt of these
encompasses major successes in unconstrained handwriting recogni-
tion [128], speech recognition [129, 320], machine translation [373,
9], image captioning [409, 197], object recognition [59, 60, 209, 304,
350, 380], medical image processing [62], image segmentation [94,

24 Successfully hereby means that deep Neural Networks are performing better than or
comparable to the state-of-the-art.

25 Many of the successful applications of CNNs use the ReLU non-linearity. It would
be interesting to see whether this activation function has a positive effect on the
gradient scalings compared between different layers.

100 fundamentals

369] and pose estimation [393, 55, 421, 280]. It also can’t present
the overwhelming number of new algorithmic approaches that seem-
ingly appear on a weekly basis at the moment. Exciting develop-
ments hereby include fast approximations of Dropout [413, 19, 18],
Bayesian Neural Networks [206], parameter compression [81, 413,
176], attention-driven models [9, 368] and completely new approaches
to train deeply nested systems [50].

2.7.4 Unsupervised Deep Neural Networks

If one considers a Neural Network as a computational architecture
with directed edges the connection to directed graphical models is ob-
vious and directly leads to one possibility for using Neural Networks
for unsupervised learning: the training data is considered the deter-
ministic output of the Neural Network, generated by a set of unknown
hidden units. Learning the parameters can be done with gradient de-
scent (relying for example on the backpropagation algorithm). This
approach is only reasonable if inference of the hidden activations is
efficient.

On the other hand if the data is considered the input to a Neural
Network, a score function must be defined that represents the unsu-
pervised modelling task for the data at hand. In this case learning also
happens by gradient descent using the gradient of the score function
with respect to the input and Hybrid Monte Carlo (HMC) to produce
adversarial input data ([156], also see the discussion in the previous
paragraph). However, identifying a valid score function is difficult
(overall it represents a large part of the unsupervised learning chal-
lenge) and HMC sampling is slow in general.

A simplification for this type of unsupervised Neural Network
learning is to define the score for some given sample as its recon-
struction cost. That is, the Neural Network is tasked to reproduce its
input. This Autoencoder then resembles a self-supervised problem and
training its parameters works as described in Section 2.7.3.

An Autoencoder with one hidden layer (and linear output units
and a sum-of-squares objective) is actually no more powerful than
PCA (irrespective of the non-linearity of the hidden layer) [39]. So
for more expressive models deep Autoencoders are necessary. Train-
ing such models seems to resemble the standard supervised prob-
lem detailed in the previous subsection, but in fact it is not. With a
proper supervised problem the targets already contain the important
information, having abstracted away distracting aspects of the data.
However, identifying the defining content of the data is the task of an au-
toencoder.

So while for unsupervised learning unlimited training data is avail-
able, it is still a huge challenge to obtain good models with deep
Autoencoders—this is clearly different to supervised deep models.

2.7 neural networks 101

Therefore algorithmic techniques like those mentioned in Section 2.7.3
are much more important for training deep Autoencoders.

Similar to the supervised setup one possible way to construct deep
Autoencoders is to stack single layer models on top of each other. The
decoder of the deep Autoencoder is often just the encoder transposed
(i.e. the weight matrices are transposed and stacked in the inverse or-
der). Single layer models like RBMs [321] or Denoising Autoencoder
[408] are widely used for initializing deep Autoencoders which are
then fine-tuned on the unlabelled dataset using the reconstruction
cost. The output of the encoder (which can be defined using any of
the hidden layers in the deep model) is then used as the representa-
tion for the respective input data. However, from a more theoretical
point of view these approaches lack a proper probabilistic formula-
tion (and are also difficult to generalize to recurrent models). For
example while it is possible to associate the cost function of the De-
noising Autoencoder with a probabilistic criterion by a variational
lower bound, this lower bound only is related to the log-probability
of the corrupted data [30].

It is therefore instructive to consider other methods that induce deep
Autoencoders. Generative directed graphical models can be used to
define principled methods that result in deep Autoencoder models.
In the following paragraphs, two such approaches are presented and
extended in novel ways. Both rely on the fact that a complicated infer-
ence procedure associated with the generative model is either directly
or indirectly approximated with deep Neural Networks.

Mapping inference algorithms into deep Autoencoders

In Section 2.6 the probabilistic formulation for sparse coding is intro-
duced:

p(h) ∝ exp(−λ||h||2)

p(x | h,θ) = N(x |Wh, I)
(2.377)

A standard approach to fit the model to a dataset is the EM algo-
rithm. While the M-step is straightforward (estimate W given x and
the respective h, using standard linear regression) the E-step for infer-
ring h for a given x andW is complicated due to the explaining-away
phenomenon in directed graphical models.

A popular iterative algorithm for the E-step is ISTA [75] which iter-
ates the following recursion until convergence in order to determine
the sparse approximation for some x:

ht+1 = τα

(
ht +

1

L
WT (x−Wht)

)
. (2.378)

102 fundamentals

Hereby, τ(·) is a shrinkage operator defined as

τα(x) = sgn(x)(x−α)+, α =
λ

L
(2.379)

with sgn(·) the elementwise sign function, (x)+ ≡ max(0, x) and L is
lower bounded by the largest eigenvalue of WTW. Eq. (2.378) can be
slightly rewritten [130] as

ht+1 = τα

(
1

L
WTx+Sht

)
. (2.380)

WT is also denoted the filter matrix and S ≡ (I− 1
LW

TW) is de-
noted the inhibition matrix. Eq. (2.380) is a recursive relation of an el-
ementwise non-linearity applied to a set of matrix-vector operations
and therefore resembles a recurrent Neural Network with the input
shared over time. Conversely, it can also be interpreted as a static deep
network where the layers share the same weights, the input is routed
to every layer and the network has a dynamic depth.

With a fixed number of layers, Eq. (2.380) can be used to induce a
deep Neural Network. The results of the ISTA algorithm for a con-
verged sparse coding model act as target data for the network which
therefore resembles a fast approximation of ISTA (learned ISTA, LISTA
[130]).

At first this might simply seem to be some variant of an explic-
itly truncated form of ISTA. However, the involved parameters (W, S)
are learned and no longer tied to each other as in the case of ISTA,
see Eq. (2.380). Additionally, after some initial training period the
parameters shared by all layers can be untied and optimized individ-
ually on a per-layer basis. This allows LISTA to outperform ISTA and
its variants by a large margin with respect to computational aspects
[130] and still perform competitively with respect to the resulting la-
tent representations.

If the last layer of this model is itself projected back into the input
space, an Autoencoder model is induced [360, 362]. Differently to stan-
dard deep Autoencoders, the last hidden layer of such a model forms
the latent (sparse) representation. Also, differently from the standard
deep Autoencoder model the network has the same number of units
per layer. This might seem to be restrictive at first but the connection
to sparse coding allows a straightforward training of an overcomplete
latent representation.

In this case a process (the iterative algorithm from Eq. (2.380)) in-
duces a deep (autoencoding) network structure and provides guid-
ance (the (initially) shared weight structure) for the difficult opti-
mization procedure. This kind of support to learn a deep network
is very different from simply enhancing the dataset through viable
input samples.

Sparse coding can be interpreted as a model that combines the
advantages of a purely local coding approach with a distributed rep-

2.7 neural networks 103

resentation [98]. A different approach to sparse coding is to aim ex-
plicitly for a set of features that are statistically uncorrelated.

One realization for this idea is Predictability Minimization (PM)
[330]: The model for learning the latent representation (e.g. a shal-
low Autoencoder) is paired with a predictor network that tries to
infer one element of a latent representation given all the other ele-
ments. Training then happens in an alternating way: In one phase the
unsupervised learner finds representations that minimize the recon-
struction error and at the same time maximize the prediction error
of the predictor network. In the other phase the predictor network
minimizes its prediction error.

Building unsupervised models with multiple layers of nonlineari-
ties in an iterative way [337] with this approach is difficult (see Ap-
pendix B): The greedily trained single layers usually get stuck at bad
locally minima, or, more likely given the alternating optimization ap-
proach, at saddle points [76].

An alternative approach to PM is to use explicit inhibitory weights
instead of a predictor network [98]. Because of the inhibitory weights
and the involved non-linearities (in the form of activation functions
for the hidden units), such a model must also be simulated by an
iterative method. More specifically, a single-layer forward model with
inhibitory weights between the latent units can be simulated by the
following differential equation:

dh

dt
= f(Wx+Qh+b) −h (2.381)

f is some arbitrary non-linearity, W is the filter matrix and Q is
the inhibitory matrix that has negative off-diagonal elements and a
diagonal that is fixed to 0. For stability reasons Q is also normalized
to have rows of length 1. For a symmetric Q it is guaranteed that the
above equation settles in a stable state [165]. The underlying Neural
Network is shown in Figure 2.14.

Training the parameters (W, Q, b) is done through hebbian learn-
ing for W and b and anti-hebbian learning for Q, using inputs x and
stable outputs h from the differential equation.

To reach a stable output pattern y, Eq. (2.381) must be simulated
numerically. The Euler method [147] is the easiest numerical simula-
tion approach to differential equations. For Eq. (2.381) one iteration
is as follows:

ht+1 = ht +α
dht

dt
= (1−α)ht +αf(Wx+Qht +b), (2.382)

where α is a fixed stepsize. For a given x a stable output y is com-
puted by iterating Euler steps until convergence. Similar to the idea
of unrolling the inference algorithm for sparse coding as described

104 fundamentals

Figure 2.14: The architecture of the model that gives rise to the differential
equation in Eq. (2.381). Inhibitory connections are depicted by
filled circles. Figure is taken from [98]. Best viewed electroni-
cally.

previously for LISTA, the iterative Euler steps can also be used to
construct a deep network with multiple layers of nonlinearities. The
depth will be fixed in order to achieve a computationally efficient
approximation of the underlying mathematical model.

The parameters (W, Q and b) and the stepsize α are shared by
all layers, and can gradually be unshared as training progresses. The
necessary training signals can be either obtained by the correctly sim-
ulated differential equation or again by a reconstruction criterion. The
latter is chosen in the subsequent discussion. Note that in the initial
model, no aspects of autoencoding where present! Additional objec-
tives like minimizing the correlation between latent units, minimizing
some sparsity penalty on the latent units or minimizing a supervised
criterion [360] are also possible. The resulting autoencoder can be fur-
ther regularized if the reconstruction matrix is simply the transpose
of W.

It has not been possible to evaluate the proposed model (a Hobbe-
sian network [158]) in a detailed manner yet, due to time constraints.
However a short empirical analysis of the learned filters was con-
ducted. Figure 2.15(a) shows filters (that is, rows of W) when trained
on images of the MNIST dataset. The figure depicts three different
types of filters: (i) the typical local strokes, (ii) several global patterns
and (iii) quite a high number of random filters. The local filters seem
to be unique: None of the filters of this type appear several times—
this is due to the fact that the model tries to decorrelate the features.
The latter also explains the existence of the high number of random
filters, which is the easiest way to decorrelate features. Without the
reconstruction criterion, setting all filters to white noise would be a
viable solution. That is, the reconstruction criterion can be interpreted
as a regularizing factor for the original unsupervised model.

An interesting observation can be made when the model is ap-
plied to natural gray-scale images from the CIFAR10 dataset [207].

2.7 neural networks 105

(a) (b)

Figure 2.15: Filters and reconstruction filters learned by Hobbesian Net-
works. (a) Filters (W) of a fully connected Hobbesian Network
with 5 layers, 196 hidden units and tanh non-linearity, trained
on MNIST [222]. The decorrelation matrix Q leads to many un-
used filters and thus sparse codes. (b) Reconstruction filters from
a Hobbesian Network (same configuration as in (a)) trained on
gray-scale images from CIFAR10. W shows the same type of
filters but with a very high degree of white noise added, so it
is less useful for visualization purposes. Figure is best viewed
electronically.

Figure 2.15(b) shows the reconstruction filters which are obtained on
this dataset. Compared to other unsupervised models, the observed
structures are very different26 and also rather difficult to explain. One
might think some of these are decomposing the image into different
parts (e.g. foreground and background), but there is no consistent
way to achieve a valid interpretation. It is apparent that more anal-
ysis is necessary, for example even without evaluating the learned
features on some additional tasks (e.g. supervised classification prob-
lems) it is interesting to investigate how the filters change when the
input set is changed, e.g. in the case of CIFAR10 through augmenting
the dataset with typical geometric transformations.

variations . As a very general mathematical model, Eq. (2.381)
can be implemented in different ways27. In the following several vari-
ations or extensions that Eq. (2.381) allows are presented.

26 The images were not whitened. Clearly, this is an important preprocessing step if
one wants to achieve competitive performance to other models. Without whitening
the model will get stuck with resolving only second-order correlations.

27 Considering the fact that many important models are described by differential equa-
tions, it could be a worthwhile investigation to see how existing models from dif-
ferent domains can be used to induce deep Neural Networks as fast approximators.
This is especially useful for the case of time-consuming simulations.

106 fundamentals

• For a d-dimensional latent variable h, d different learning rates
can be used, i.e.

ht+1 = (1−α)ht +αf(Wx+Qht +b), α ∈ Rd (2.383)

More generally the stepsize α can be determined adaptively at
every layer t:

αt = g(Ux+Vht) (2.384)

The parameters (U and V) might be shared over all layers to
avoid overfitting. With an adaptive learning rate per layer the
resulting deep architecture becomes similar to the previously in-
troduced gating mechanism for deep supervised networks (see
Eq. (2.374)) [367, 195].

• A very different type of variation can be achieved by using a
more powerful numerical method to simulate the differential
equation Eq. (2.381). The basic form of a Runge-Kutta method is
the so called midpoint method [147]:

ht+1 = ht +α
dh̃t

dt
(2.385)

with

h̃t = ht +
α

2

dht

dt
(2.386)

Applied to Eq. (2.381) this results in the following update rule:

h̃t = (1−
α

2
)ht +

α

2
f(Wx+Qht +b),

ht+1 = ht −αh̃t +αf(Wx+Qh̃t +b)
(2.387)

The network architecture is thus extended by one additional
layer h̃t per hidden layer ht. The resulting structure can be
made more interesting if the idea from Eq. (2.384) is also in-
tegrated. This means that different network topologies are im-
plied depending on the numerical method that is used to simu-
late Eq. (2.381).

• The described approach can also be used to induce a deep con-
volutional autoencoder. The matrix Q then resembles a 1× 1× f
convolution and implements competition between the f feature
maps [231].

• Q can have several levels of structure, identifying groups of
units that should not compete with each other [131].

2.7 neural networks 107

related work . The proposed Hobbesian Network model first
needs to be validated in more detail on several typical benchmarks in
order to assess its feasibility as an unsupervised learning algorithm.
Overall one might argue that it is only a small variation to LISTA
[130], because for LISTA the matrix S (see Eq. (2.380)) is itself setup
as an inhibitory matrix. However the fact that different deep architec-
tures can be induced (see Eq. (2.387)) clearly shows that the presented
idea is more general. In fact, one might argue that LISTA can be in-
terpreted as a special case of a Hobbesian network.

Given only the algorithmic idea, there are some connections to
other published approaches:

• Setting the stepsize α to 1, allowing an arbitrary matrix Q and
selecting the ReLU activation function as the non-linearity f re-
covers the autoencoding part of the Discriminative Recurrent
Sparse Auto-Encoding model [314].

• There is a surprising connection to a recently proposed recur-
rent network architecture, the Gated Recurrent Unit (GRU) [56].
If in Eq. (2.383) the input x is different at every time-step t and
the learning rate αt is computed adaptively as proposed above,
i.e.

ht+1 = (1−αt)ht +αf(Wxt +Qht +b),

αt = g(Uxt +Vht)
(2.388)

then the functional form of the GRU is recovered (the reset gate
of a GRU unit is not explicitly modeled, but it can be subsumed
into the Q operator that can be defined to be time-dependent).
That is, GRU resembles some differential equation (with addi-
tional aspects mixed in) simulated by the Euler method. Con-
versely various instantiations of the GRU exist, depending on
the concrete numerical method used to simulate the dynamics
(e.g. see Eq. (2.387)).

• Inhibitory weights were used with an ISTA-like algorithm be-
fore [131], combining a generative model with an additional
penalty cost derived from the correlation between the latent
units. Several new algorithmic developments would also allow
to unroll this model into a feed-forward model [361] which
could inspire additional variations to the basic Hobbesian net-
work.

Future work will not only investigate the feasibility of the basic Hobbe-
sian Network model in more detail but also its possible variations and
connections to related work. The overall goal is to define a rich class
of models that allow efficient approximation of models with explicit
lateral inhibition, for both static as well as dynamic data (i.e. recurrent
networks).

108 fundamentals

Learning stochastic inverses

With sparse coding the inference algorithm (the inverse of the model)
is readily available and can be used to induce a much more efficient
approximation using a deep (autoencoding) network. However, for ar-
bitrary directed graphical models such a tractable inference algorithm
does not exist. Instead a very successful approach is to find a tractable
lower bound on the marginal likelihood of the data and use this bound
to identify an efficient (approximate) inference method. Lower bound-
ing the marginal likelihood was already introduced with the EM al-
gorithm (see 2.265, the Evidence Lower BOund (ELBO)).

Consider a generative model p(x | θ) with parameters θ and latent
variables h. Using an approximate posterior distribution q(h | x,φ)

for the latent variables h, the ELBO can be written as (discrete la-
tent variables are assumed without loss of generality, mostly because
sums can be written more compactly than integrals):

logp(x | θ) >
∑
h

q(h | x,φ) log
p(x,h | θ)

q(h | x,φ)
:= F(x,θ,φ) (2.389)

The lower bound F(x,θ,φ) can be expressed in alternative, but
equivalent ways, each giving rise to a different approach to tackle the
inference problem. For example, if the approximate posterior distri-
bution of the latent variables equals the true posterior then the ELBO
is tight (see Eq. (2.390)):

F(x,θ,φ) = logp(x | θ) −KL[q(h | x,φ)||p(h | x,θ)], (2.390)

where the second term is the Kullback-Leibler divergence between
the approximate and true posterior distribution. This way of formu-
lating the bound leads to the E-step in the EM algorithm. The E-step
is tractable in the case of a simple posterior p(h | x,θ). However, this
formulation is not helpful for intractable posteriors. The M-step can
be derived with a different formulation:

F(x,θ,φ) = Eq(h|x,φ) [p(x,h | θ)] +H[q], (2.391)

where the second term denotes the entropy of q(·). The central prob-
lem here is to compute the expectation with respect to the (approx-
imate) posterior. If this is possible, then optimizing Eq. (2.391) with
respect to θ is straightforward. However, even in the case of a non-
convex problem for θ gradient based approaches can be applied (gen-
eralized EM)—the gradient of the above expression with respect to θ
can be computed using the rule for pathwise derivatives (see Eq. (2.208),
assuming a reasonable well-behaving complete log-likelihood):

∇θEq(h|x,φ) [p(x,h | θ)] = Eq(h|x,φ) [∇θp(x,h | θ)] (2.392)

Computing the expectation with respect to the posterior distribution
can be done with the Monte Carlo principle (see Section 2.5) which

2.7 neural networks 109

needs (unbiased) samples. One possible way to generate valid sam-
ples is to actively forego the approximate posterior distribution q(·)
and produce samples from the true posterior p(h | x,θ). Without any
additional knowledge of the true posterior distribution this is only
possible with MCMC methods (e.g. using the gradient of the poste-
rior with respect to h and employing Hybrid Monte Carlo). While
mathematically the best approach (because the produced samples are
unbiased samples from the true posterior distribution), it is computa-
tionally unfeasible for large datasets.

An alternative approach is to choose a local variational approxima-
tion q(·). It usually allows to solve the resulting pathwise derivative
integral (Eq. (2.392)) in an analytic form [190, 35]. However local varia-
tional approximations imply an optimization process for every sample
in the dataset and therefore are also not applicable to large amounts of
data.

A global variational approximation model q(·) circumvents this prob-
lem, because only one set of parameters φ is used for the approxi-
mate posterior [153, 79, 262, 200, 307], amortizing the inference cost over
all data samples [306]. The main obstacle here is estimating the param-
eter φ. A straightforward solution is to rely on the score function
estimator Eq. (2.205) for Eq. (2.391). However this estimator usually
is associated with a high degree of variance [164].

Using yet another formulation for F(x,θ,φ) eventually allows the
application of a pathwise derivative estimator for φ (at least in the
case of continuous latent variables):

F(x,θ,φ) = Eq(h|x,φ) [logp(x | h,θ)]

− KL[q(h | x,φ)||p(h | θ)]
(2.393)

Similar to Eq. (2.392) ∇θEq(h|x,φ) [logp(x | h,θ)] can be readily
evaluated with a pathwise derivative. For∇φEq(h|x,φ) [logp(x | h,θ)]
the high-variance score estimator is always applicable:

∇φEq(h|x,φ) [logp(x | h,θ)] = Eq(h|x,φ) [logp(x | h,θ)

×
(
∇φ logq(h | x,φ)

)] (2.394)

If h is continuous then an estimator with much less variance can be
computed using a pathwise derivative. In order to apply Eq. (2.208),
a random variable z (with distribution r(z)) and a mapping f(z,φ)

must exist, such that for h̃ = f(z,φ) it holds that:

h̃ ∼ q(h | x,φ) for z ∼ r(z) (2.395)

In this case

∇φEq(h|x,φ) [logp(x | h,θ)] = Er(z)
[
∇φ logp(x | f(z,φ),θ)

]
(2.396)

For some distributions the Kullback-Leibler divergence between
the approximate posterior distribution of h and its prior (the sec-
ond part of Eq. (2.393)) can be computed analytically. In this case

110 fundamentals

∇φKL[q(h | x,φ)||p(h | θ)] can also be derived analytically, other-
wise either score function estimates or pathwise derivative estimates
are applicable, too.

If the global variational approximation q(h | x,φ) is parameter-
ized by a deep Neural Network [79, 307, 200] then Eq. (2.393) de-
scribes a deep Autoencoder model28: The first term is the reconstruc-
tion cost and the second term acts as a regularizer. It is important
to point out that this kind of regularized Autoencoder is very differ-
ent from the standard approach of combining the reconstruction cost
haphazardly with some arbitrary regularization method: Eq. (2.393)
is a lower bound to the log-likelihood of the data under the model to
be trained and is therefore meaningful from a probabilistic perspec-
tive. Estimating the true log-likelihood of some sample x under the
trained model can therefore also be accomplished through principled
manners, using importance sampling (Eq. (2.177)) [307]:

p(x | θ) =

∫
p(h | x,φ)

p(h | x,φ)
p(x | h,θ)p(h | θ)dh

≈ 1

S

S∑
i=1

p(x | hi,θ)p(hi | θ)
q(hi|x,φ)

, hi ∼ q(h | x,φ)

(2.397)

Training this variational Autoencoder (vAE) [200] happens in the stan-
dard way with (minibatched) stochastic gradient descent methods,
relying on the previously described gradient computations through
stochastic backpropagation [307]. The expectation over these gradients
with respect to the posterior distribution relies on the Monte Carlo
principle, so the overall approach is sometimes described as a doubly
stochastic estimation [390].

The most basic example for a vAE assumes Gaussian latent vari-
ables, with a diagonal prior p(h | θ) = N(h | 0, I), h ∈ Rd. The
inference model is also considered a diagonal Gaussian. More specifi-
cally, q(h | x,φ) is conditionally Gaussian, that is q(h | x,φ) = N(h |

µ(x,φ),σ(x,φ)).
In order to apply the pathwise derivative estimator a (valid!) repa-

rameterization [200] of h is necessary. In the case of a Gaussian this
can be the inverse of the z-transformation:

h̃ = µ(x,φ) + ε�σ(x,φ), ε ∼ N(ε | 0, I) (2.398)

With a diagonal Gaussian for both the prior and the inference model,
the Kullback-Leibler divergence from Eq. (2.393) is also analytically
tractable:

KL[q(h | x,φ)||p(h | θ)] = −
1

2

d∑
i=1

(1+ 2 logσi−µ2i −σ
2
i) (2.399)

28 In the case of a q(·) being a Neural Network the variational approximation is also
called a recognition network.

2.7 neural networks 111

Hence, ∇φKL[q(h | x,φ)||p(h | θ)] is easy to compute, relying on
standard backpropagation.

The conditional log-likelihood model p(x | h,θ) does not need to
be specified in a detailed manner—gradients with respect to θ can be
computed using standard backpropagation, so any type of (differen-
tial) model can be chosen, depending on the task at hand.

A large class of continuous distributions allow the kind of repa-
rameterization demonstrated in Eq. (2.398). Therefore it is straightfor-
ward to choose different kinds of prior and (conditional) inference
distributions. It is also possible to capture posterior correlations be-
tween the latent variables either by explicit modelling [12] or by uti-
lizing volume-preserving probability flows [306].

The vAE framework is very expressive and flexible. It can be eas-
ily adapted to supervised [153, 12, 124], semi-supervised [201] and
generative recurrent [16, 58] models. In the following, I suggest three
small extensions of the basic framework:

• Inspired by previous work on directed and undirected graphical
models, I suggest to utilize a factorized latent representation
[296, 71, 256].

• This factorized representation gives rise to variational Autoen-
coders for multi-view data with private and shared latent rep-
resentations [325, 187].

• Finally, I propose to utilize the variational Autoencoder frame-
work to regularize an unsupervised clustering approach in a princi-
pled manner.

factorizing latent variables . Instead of allowing the pos-
terior distribution to model arbitrary correlations between latent di-
mensions [12], an alternative approach to a more expressive model is
to change the conditional model p(x | h,θ), which is usually assumed
to be a standard directed graphical model. An instance of this idea is
a bi-linear directed graphical model [71]. In the basic case p(x | h,θ)
is a directed graphical model with two layers. The layer that generates
x is a linear generative model

x = N(x |Wa,σ2), (2.400)

a diagonal Gaussian. The second layer is a (deterministic) factorized
representation of a, i.e.

a = Ub�Vc (2.401)

In this case, h ≡ [b, c], θ ⊂ {U,V,W} and the prior distributions
p(b | θ) and p(c | θ) implicitly define the functional roles of b and c.
Of course, both can be chosen to be diagonal Gaussians. Even in this
case the factorized model is more expressive compared to the basic

112 fundamentals

vAE model. As an example, with U = V ≡ I the model represents a
Gaussian Scale Mixture [71].

The factorization is particularly interesting in combination with the
recently introduced Normalizing Flows for vAE [306] which allow ar-
bitrary complex posterior approximations: Due to the multiplicative
interaction of the latent variables a very compact description of data
can be achieved.

As a first empirical test, a vAE model with factorized latent units
was compared to a standard vAE model, evaluated on the binarized
version of MNIST [211]. The basic vAE has an encoder and a decoder
with two hidden layers each. The encoder is defined as follows:

q(h | x,φ) = N(h | µ,σ2)

µ = V3h̃+a3

logσ = V4h̃+a4

h̃ = tanh (V2(tanh (V1x+a1) +a2) ,

(2.402)

with φ = {Vi,ai}, i = 1, 2, 3, 4, µ,σ ∈ R100 and x ∈ R784. The
conditional log-likelihood model logp(x | h,θ) is given by

logp(x | h,θ) =
768∑
i=1

xi logyi + (1− xi) log(1−yi)

y = σ(W3 (tanh (W2(tanh (W1h+b1) +b2)) +b3).

(2.403)

So θ = {Wi,bi}, i = 1, 2, 3 and h ∈ R100.
The factorized model has the same basic architecture with 2 hid-

den layers in the encoder and decoder. The encoder is identical to
Eq. (2.402), but semantically splits the linear output units into two
separated classes:

q(h | x,φ) = N(h1 | µ1,σ12)N(h2 | µ2,σ22)

µ1 = V3h̃+a3

logσ1 = V4h̃+a4

µ2 = V5h̃+a5

logσ2 = V6h̃+a6

h̃ = tanh (V2(tanh (V1x+a1) +a2) ,

(2.404)

withφ = {Vi,ai}, i = 1, 2, 3, 4, 5, 6, µj,σj, j = 1, 2 ∈ R50 and h̃ ∈ R784.
The log-likelihood model p(x | h,θ) is a non-linear extension of the
bi-linear model from Eq. (2.401):

logp(x | h,θ) =
768∑
i=1

xi logyi + (1− xi) log(1−yi)

y = σ(W4 tanh (W3ỹ+b1) +b2)

ỹ = tanh(W1h1)� tanh(W2h2).

(2.405)

2.7 neural networks 113

with θ = {Wi,b1,b2}, i = 1, 2, 3, 4 and h1,h2 ∈ R50.
In a brief experiment the marginal negative log-probability of the

standard vAE model (Eq. (2.397)) for the test dataset was evaluated
to 120 nats, the factorized model achieved 119 nats. The difference
is not significant though the factorized model has less parameters
overall. Also, both numbers are far from the best reported negative
log-probabilities on the dataset (which are around 85 [399]).

Future work will cover more experiments with larger models and
also with different datasets. It is interesting to investigate whether
the two latent variables h1 and h2 will perform semantically differ-
ent roles. For this type of experiment, at least for one random variable
distributions different from a Gaussian should be employed (e.g. the
log-Gaussian distribution). Finally, going beyond the original bilin-
ear model, more than two latent variables should be considered. In
this case it is not clear how the latent variables are combined. One
possibility is to use a hierarchical process.

private and shared latent variables . A factorized latent
representation is particularly useful for modeling multi-view data. In
this case a good modeling assumption is that on the one hand dif-
ferent modalities share some general latent information (the abstract
concepts defining the multi-view data), but on the other hand latent
representations specific to every modality are necessary. The shared
variables encode the content of the multi-modal data while the private
variables encode style [302]. Models with latent spaces factorized into
private and shared parts are easily integrated into the general vAE
framework and thus can be efficiently applied to large scale data sets.
Figure 2.16 depicts an architecture that finds private and shared latent
representations for the special case of a two-fold multi-view dataset.
Unlike other Neural Network-based multi-view models [256] the pre-
sented architecture is a proper generative model and does not need
one of the modalities to be available in order to generate the others.

Apart from this architectural specifications, no experiments with
this model have been conducted so far. Future work will encompass
a larger set of experiments with different kinds of multi-view datasets
and investigate the following questions:

• How should encoders of different modalities be combined in or-
der to generate a latent representation (e.g. additively vs. multi-
plicatively)?

• What types of (continuous) distributions should be chosen for
private and latent representations?

• Should private and latent spaces them-self be factorized?

• How are the resulting models evaluated? Standard multi-view
datasets are usually labeled, so for comparison with competitive

114 fundamentals

x1 x2

. . .

. . .

. . .

. . .

p2

. . .

. . .

F(·)

. . .

. . .

. . .

. . .

p1

. . .

. . .

F(·)

⊗

. . .

. . .

s

Figure 2.16: Variational Autoencoding a multi-view dataset into shared and
private latent variables. The operator ⊗ is a placeholder for var-
ious possible ways to combine representations from the two
views (e.g. addition or multiplication). The model heavily relies
on very good single-view generative models. Solid lines in the
graph denote deterministic forward propagation of activations,
dashed lines denote forward propagation of samples.

models the architecture in Figure 2.16 should be expanded by a
semi-supervised mechanism [201].

• How are missing modalities tackled? One idea is to use the neu-
tral element of the combination operator in the shared inference
network during training. Then training of the parameters asso-
ciated with the available modalities can be conducted without
problems. Inferring a missing modality happens in a similar
way. In this case the missing private latent variable (responsible
for the style of the data) must be integrated out, e.g. with Monte
Carlo.

• The existence of additional modalities should have a profound
impact on attentional mechanisms [132]. This aspect is impor-
tant for the question of sensor fusion.

2.7 neural networks 115

• Finally, relying on recent developments for generative recurrent
models [16, 58], the architecture can be extended to modeling
temporal multi-view data.

variational autoencoded regularized information max-
imization. Regularized Information Maximization (RIM) [119] is
a principled probabilistic approach for discriminative clustering. It is
based on maximizing the Mutual Information between the empirical
distribution on the inputs and the induced cluster distribution, regu-
larized by a complexity penalty. More specifically, let p(y | x,ψ) be a
conditional model that predicts a distribution over label values (clus-
ter memberships) y ∈ {1, . . . ,K} given some input x. The variable ψ
denotes the parameters of this conditional model.

For a discriminative clustering task, p(y | x,ψ) should fulfill the
following competing characteristics:

• class balance, i.e. the category labels should be assigned equally
across the dataset,

• class separation, i.e. data points should be classified with a large
margin (p(y | x,ψ) should put as much probability mass as
possibly to one specific label).

Maximizing the empirical Mutual Information I(x,y | ψ) between
x and y under p(y | x,ψ) is one possible approach to realize the above
two requirements. The Mutual Information I(·) is defined as

I(x,y | ψ) = H[p̂(y | ψ)] −
1

N

∑
i

H[p(y | x,ψ)] (2.406)

where H[p(x)] denotes the entropy of p(x) and p̂(y) is the empirical
label distribution given as

p̂(y | ψ) =

∫
p̂(x)p(y | x,ψ)dx ≈ 1

N

∑
i

p(y | xi,ψ) . (2.407)

I(x,y | ψ) may be trivially maximized by classifying each point xi
in its own category yi [40]. RIM therefore extends the objective of
maximizing I(x,y | ψ) by a regularization term R(λ,ψ), where the
form of R(λ,ψ) depends on the specific choice of p(y | x,ψ):

LRIM(x,y,ψ, λ) := I(x,y | ψ) − R(λ,ψ) (2.408)

For example, if p(y | x,ψ) is chosen as a multi-class logistic regres-
sion model then a suitable regularizer for this linear model is the
squared L2 norm of the parameters. However, this simple model is
not sufficient to model complex distributions p(y | x,ψ). In case of
more powerful models, such as deep Neural Networks, appropriate
regularization needs to be reconsidered. Clearly, the squared L2 norm

116 fundamentals

is a viable suggestion also for the case of deep models. However, L2

provides limited expressibility (e.g. when considering that parts of
p(y | x,ψ) are formed by a Convolutional Network) and, even more
importantly, does not align well with the probabilistic principles in-
troduced by RIM29.

I introduce a novel method vaeRIM that provides probabilistic reg-
ularization of complex RIM models based on the vAE framework.
While previous Neural Network-based approaches combine unsuper-
vised and supervised learning problems by various forms of non-
linear embedding methods (i.e. Autoencoders) [321, 297, 201] the pre-
sented idea combines two unsupervised learning methods in a prin-
cipled manner.

In the specific case of RIM a straightforward approach is to put
a multinomial logistic regression layer on top of some part of the
inference network from the vAE framework. This idea is depicted
schematically in Figure 2.17. The objective function to be optimized
for learning ψ,φ and θ is

LvaeRIM(x,ψ,φ,θ) = F(x,θ,φ) + I(x,y | ψ) −R(λ,ψ \φ) (2.409)

with ψ∩φ 6= ∅. Hereby F(x,θ,φ) denotes the ELBO (Eq. (2.393)), i.e.
phi and θ denote the parameters of the inference network and the
conditional log-likelihood model respectively. Note that parameters
from the conditional clustering model p(y | x,ψ) that are not shared
with the recognition model still need to be regularized in some ap-
propriate way.

As a first benchmark the popular MNIST dataset (with the typi-
cal training/validation/test set split) is used to evaluate vaeRIM. The
baseline model is a Convolutional Network with two convolutional
layers (with 2× 2 max-pooling and tanh nonlinearity each) followed
by a fully connected layer. The convolutional layers have feature maps
of size 32 and 64 respectively and filter sizes of 5× 5 each. The pa-
rameters (except the biases) of this network are regularized with the
squared L2 norm. The baseline network has a 50 dimensional multi-
nomial output, representing 50 possible clusters. A given input x is
associated with the cluster that has the highest activity (i.e. probabil-
ity under the multinomial distribution). Given cluster memberships
for all samples in the training set, it is straightforward to determine
the class a cluster represents by looking at the dominating (true) la-
bel per cluster. A classifier learned in this way achieves an average
classification rate of 73% on the test set, see the first line in Table 2.1.

The recognition network of the variational Autoencoder also con-
sists of the same stack of two convolution layers as the baseline model.

29 In combination with a maximum likelihood based objective, the L2 regularization
term lends itself to a MAP interpretation of the resulting cost function. But in the
case with RIM the empirical Mutual Information objective does not imply any MAP
interpretation.

2.7 neural networks 117

x

. . .

. . .

. . .h. . .

. . .

. . .

x̂ F(·)

. . .

. . .

LRIM(·)

Figure 2.17: The computational graph of vaeRIM. The conditional cluster-
ing model p(y | x,ψ) used by RIM and the recognition network
q(h | x,φ) from the variational Autoencoder framework share a
set of parameters. The parameters from p(y | x,ψ) that are not
shared are still regularized with a squared L2 norm. Solid lines
in the graph denote deterministic forward propagation of acti-
vations, dashed lines denote forward propagation of samples.

Table 2.1: Average classification performance over 40 runs for the baseline
model and vaeRIM on the standard MNIST test set. Out of 40 runs,
the best model for vaeRIM achieved 86.9% classification accuracy,
the worst model 72.2%.

MNIST

Baseline 73.2%± 0.7%

vaeRIM 78.9%± 3.2%

On top of this convolutional stack, two fully connected layers are em-
ployed in parallel: One represents a 50 dimensional multinomial logis-
tic regression layer, feeding into the RIM objective. This layer is regu-
larized with the squared L2 norm. The other layer represents the pa-
rameters of the approximated posterior distribution, a 20-dimensional
diagonal Gaussian. The generative model p(x | h,θ) is represented by
an MLP with one hidden layer of dimensionality 500 and the ReLU
nonlinearity. The trained vaeRIM then again induces a classifier on
the input data, which achieves a (mean) classification accuracy of 79%
on the test set, see the second entry in Table 2.1.

Optimization of both the baseline model as well as vaeRIM was
done with Adadelta [427] for 200 epochs—optimal hyperparameters,
e.g. the weighting of the L2 regularization terms, were identified on
the standard validation set of MNIST.

Figure 2.18 shows the mean input for every cluster identified by
an instance of vaeRIM (models based on RIM always only utilize a

118 fundamentals

Figure 2.18: Mean images per cluster. In the experiments, vaeRIM can allo-
cate at most 50 different clusters. Out of these possible choices
it usually allocates a small number of actually used clusters (i.e.
pseudo-classes), in the specific case it settles on 19 different clus-
ters. Every sub-image above is the mean of all MNIST instances
from the training set allocated to the respective pseudo-class.
Figure best viewed electronically.

subset of the available 50 clusters, i.e. this is also true for the base-
line model). The images indicate that inputs from classes 3, 5 and 8

and from classes 4 and 9 are easily confused. This is confirmed by
considering the associated confusion matrix, see Figure 2.19. In par-
ticular the bad performance of class 5 consistently prohibited average
classification rates above 85% for vaeRIM.

The presented vaeRIM model is not the only way to combine RIM
and variational Autoencoders. Another obvious approach [201] is to
use the inferred latent (variational) representation from a given in-
put and apply a multinomial logistic regression model trained with
the RIM objective. In preliminary experiments, this model however
produced classification results below 60%.

The most principled approach treats the cluster membership of
some input as a latent variable itself. In this case the L2 regularization
for the unshared parameters of the discriminative clustering network
would become unnecessary. If the two types of latent variables (h
and y) are independent given some data point x, the marginal log-
likelihood of x can be lower bounded as follows [201]:

logp(x | θ) >
∑
y

q(y | x,φ)L(x,y) +H[q(y | x,φ)] (2.410)

where

L(x,y) := Eq(h|x,φ,y)[logp(x | h,y,θ) + p(y | θ)

+ p(h | θ) − logq(h | x,y,φ)]
(2.411)

and q(y | x,φ) is the recognition model for the cluster membership.
Compared to I(x,y | ψ) from RIM, an important difference becomes

2.7 neural networks 119

0 1 2 3 4 5 6 7 8 9

9
8

7
6

5
4

3
2

1
0

0.01 0.01 0.00 0.02 0.43 0.00 0.00 0.01 0.00 0.52

0.00 0.00 0.01 0.17 0.02 0.00 0.01 0.01 0.78 0.01

0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.92 0.00 0.03

0.01 0.00 0.00 0.01 0.20 0.02 0.75 0.00 0.00 0.00

0.00 0.00 0.00 0.37 0.01 0.59 0.01 0.01 0.01 0.00

0.00 0.00 0.00 0.00 0.79 0.00 0.02 0.00 0.00 0.18

0.00 0.00 0.02 0.91 0.00 0.01 0.00 0.03 0.01 0.00

0.01 0.00 0.90 0.01 0.02 0.00 0.01 0.04 0.01 0.00

0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.97 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00

0.0

0.2

0.4

0.6

0.8

Figure 2.19: The confusion matrix of the ten classes in MNIST for vaeRIM.
Rows represent the true class labels, columns the predictions.
The classification result for this instance on the test set is 81.3%.
Figure best viewed electronically.

apparent: The above model aims at a high entropy for the cluster dis-
tribution of a sample x. RIM however aims at an overall balanced clus-
ter assignment (first term of I(x,y | ψ)) but strives for a discriminative
clustering behavior for a given sample x (second term of I(x,y | ψ)).
Future work is concerned with resolving this conflicting goals and
combining the RIM cost function with the lower bound objective, es-
sentially realizing a parametric form of an infinitely warped mixture
model [174].

3
D ATA S E T

A large body of research for Machine Learning in Computer Vision
deals with the problem of object recognition. Supervised deep learn-
ing approaches lead to several impressive results in this domain over
the last years [60, 61, 209]. In particular the large scale ImageNet [80]
dataset became a prominent benchmark to showcase the superior-
ity of deep models and also to investigate new architectural ideas
[350, 380] for Neural Networks. This dataset also gained some wider
high profile, as popular media outlets started to base absurd claims
with respect to artificial intelligence mostly on performance numbers
on ImageNet. This high profile in turn lead to an overly focus of deep
learning models on high-level object recognition tasks.

In the following I will argue why (high-level) object recognition as
represented by ImageNet is not an optimal benchmark for learning
systems in the domain of Computer Vision. Instead, I suggest to use
datasets that are closer to physically measurable facts and introduce
such a dataset which is used in the subsequent sections.

Looking more closely at the ImageNet dataset it becomes clear that
this benchmark must be regarded with some care. Its overall con-
struction has a large amount of very similar micro-classes of the same
abstract classes (e.g. there are hundreds of different dog categories).
Together with the fact that images mostly show the object in question
in a centered (or at least rectified) manner, a learning algorithm is
tasked to a large degree to do elaborate texture analysis. Of course it was
demonstrated that deep models pretrained on ImageNet can also be
used for more complicated object recognition datasets [304, 283, 113],
but the overall critique can not be refuted: An elaborate texture anal-
ysis tries to emulate a tiny aspect of human intelligence.

Until very recently (i.e. end of 2014) actually only a small num-
ber of other Computer Vision problems have been tackled with deep
models: object detection [62, 379], image segmentation [94, 340, 291]
and (human) pose estimation [393]. If one defines Computer Vision
as the task of inferring (true) physical properties of an environment
observed through a camera-like artifice then only the latter task some-
how resonates with this basic definition. And even with pose estima-
tion the model is exclusively tasked to emulate human intelligence,
as the labels for these datasets are generated completely by humans.

Computer Vision tasks like Tracking, Stereo Vision or Structure-
From-Motion can be adequately defined relying on measurable phys-
ical properties only. Hence these tasks can serve as less biased bench-

121

122 dataset

marks for deep learning models compared to high-level object recog-
nition.

A common subproblem for these three tasks is identifying simi-
lar low-level image patches. Different from high-level object patches
these kind of image patches don’t show any abstract structure and
resemble much more a seemingly arbitrary collection of pixels. Nev-
ertheless these patches have a high inherent structure, as they map a
very detailed aspect of the underlying three dimensional reality to a
two-dimensional representation. Identifying such structures goes be-
yond simple texture analysis. Note that the notion of similarity on
low-level image patches can be extended to similarity on high-level
images and hence allows also to tackle object recognition tasks from
this point of view (the converse is in general not true). Building an
adaptive vision system in a bottom-up way will make the resulting
model not only more flexible but also much less prone to artifacts
unconsciously introduced into the top-down oriented dataset: High-
level concepts will emerge in a bottom-up approach automatically,
reducing the necessity of large labelled datasets. The flexibility of a
bottom-up approach stems from the fact that adding invariances to
the model can be simply achieved by extending the training set with
samples that exhibit these invariances—this is not always possible for
top-down architectures [290].

Being a common subtask to several Computer Vision problems,
low-level image similarity estimation is accompanied by several prac-
tical constraints, usually in the form of computational or memory
requirements. Of course it is challenging to obtain a dataset that is
endowed with the similarity measure induced by the physical reality
(basically a weakly labelled dataset with binary targets—patches are
similar or not similar). A reliable approach that produces realistic la-
bels and introduces as little algorithmic artifacts as possible is to use
additional sensors that allow to build dense surface models which
then are used to infer the similarity score.

The dataset [43] used in this work was generated in this way, using
multi-view stereo matching to obtain the dense surface models. One
of the reasons for generating this dataset is to help finding represen-
tations (descriptors) for these kind of patches that have a specifically
compact representation (i.e. a low memory footprint which is essential
for real-world applications).

To be closer to the real application of local patch similarity mea-
sures, the similarity measure was not defined for arbitrary image
patches, but only for these patches centered at so-called keypoints
[232]. This setting resembles the underlying approach of typical Vi-
sion systems for the previously mentioned problems—these systems
rely on keypoints in order to stay within computational requirements.
Using keypoints to define low-level image patches also allowed to
model a main source of uncertainty in such Vision system (i.e. key-

dataset 123

Figure 3.1: A range of images taken from the Notre Dame dataset demon-
strate how candidate pairs of low-level image patches are gen-
erated. Keypoints from a reference image (first column) are pro-
jected into neighboring images (second column) using dense sur-
face models (i.e. depth maps, see second-to-last column). If the
projected keypoint is visible in the neighboring image (using vis-
ibility maps, see last column) any keypoints within 5 pixels in
position, 0.25 octaves in scale and π/8 in orientation of the pro-
jected keypoint are considered matches. Keypoint pairs that are
outside of two times these ranges are considered as non-matches.
The third and forth column show keypoints that have a match-
ing keypoint in the respective other image. Figure taken from
[43]. Best viewed electronically.

points are defined algorithmically and therefore are subject to uncer-
tainty).

The overall approach to determining matching low-level image pairs
is outlined in Figure 3.1. After an identified keypoint is projected into
neighboring images using the parameters obtained by dense surface
models, all keypoints in this image are deemed to be matching ones
as long as their location, scale and orientation is within a certain range
compared to the projected keypoint. In particular this results in the
inclusion of relationships that exist on different scales, an important
aspect for (natural) images [232]. The journal article [43] Figure 3.1 is
taken from contains more details on the dataset generation process.

Because the approach relies on multi-view methods, the available
data sources are limited. Hence only three different scenes are avail-
able to generate matching and non-matching image patches. These
encompasse more than 1.5 million image patches (64× 64 pixels) col-
lected from scenes from the Statue of Liberty (450,000 patches), Notre
Dame (450000 patches) and Yosemite’s Half Dome (650000 patches).

124 dataset

(a) (b)

Figure 3.2: Patches in the same column may depict the same 3D point. (a)
Examples for false positive matches (i.e. the two patches repre-
sent a different 3D point). (b) Examples for false negatives, i.e.
the two patches represent the same 3D point but might be con-
sidered as not similar. Best viewed electronically.

While the dataset itself is very challenging (Figure 3.2 shows in-
stances of false positives and false negatives) and the patches from
Half Dome resemble a wide selection of typical natural image patches
(see Figure 3.3) the overall dataset is limited. For example, no indoor
scenes are available which usually have a very different kind of illu-
mination profile, different scales, different level-of-detail and differ-
ent kinds of viewpoints. In the case of generating a new dataset for
this kind of task it is advisable to extend the multi-view approach
with a LIDAR-based registration process like it is done for a recently
published dataset that covers mostly road-type scenes [106].

Irrespective of the shortcomings of the dataset it is one of the few
Computer Vision benchmarks for Machine Learning that represents
a task that goes beyond imitating human intelligence and allows to real-
ize a low-level type of understanding. This fact makes it particularly
interesting as a benchmark for unsupervised learning algorithms, an
aspect that was not considered so far. Usually such algorithms are
evaluated indirectly through supervised object recognition problems
or based on probabilistic measurements, e.g. negative log-likelihood
scores. Both approaches are however unsatisfactory to some degree.

The first approach becomes obsolete as soon as purely supervised
algorithms perform better on the respective object recognition tasks—
which will happen with any kind of dataset equipped with human-
defined categories because essentially unlimited labelled data for these
tasks exist if enough time for human labelers is allotted. Also it is highly
debatable how an unsupervised algorithm is supposed to perform
well on a very narrowly defined supervised task when it does not
know of the said task. The latter is theoretically sound but doesn’t
demonstrate the practical applicability of an unsupervised approach.
It is also limited to probabilistic models only and even for this class of
algorithms many interesting scores can only be approximately eval-
uated. Additionally it was recently pointed out that several popular
evaluation methods for unsupervised models seem to be inconsistent
with each other [385].

dataset 125

Figure 3.3: Patch correspondences from the Half Dome dataset. Two consec-
utive images form valid pairs. For this dataset the wide variation
of viewpoints and level-of-detail is the most prominent feature.
Note that some patches are better identified by only considering
the texture present in the patch, while others (e.g. the first row)
need some kind of different analysis. All patches are centered on
interest points but otherwise can be considered random.

126 dataset

This void can be filled perfectly by the dataset at hand (and more
generally by any kind of unbiased similarity dataset defined by phys-
ical properties). Any unsupervised learning algorithm defines explic-
itly or implicitly a latent representation for the input space and also
induces a distance metric on it. This distance metric then can be used
to evaluate the dataset on the similarity scores which can be done
without any other supervised component.

As already alluded earlier if unsupervised learning algorithms can
be extended to semi-supervised algorithms with a small amount of
similarity-based targets (derived from physical properties like prox-
imity in space or time [264]), vision systems for various kinds of prob-
lems can be built in a bottom-up manner. The high-level tasks can
share most of the processing stack and will overall require consider-
ably less labelled data. This is particularly important for those tasks
where it is very difficult (or costly) to get a large amount of labels.
So the dataset presented in this chapter can also be interpreted as a
first step to build a deep Computer Vision system for a wide range
of tasks in a bottom-up way.

baselines . The evaluation metric used to quantitatively determine
the performance of a (learned) descriptor on the dataset is the false
positive error rate at 95% recall (fp@95). In order to determine this error
rate any two descriptors must be map-able to a number representing
their degree of similarity. Using this number a threshold has to be de-
termined such that 95% of the matching descriptors are considered as
actually matching. In turn a certain amount of non-matching descrip-
tor pairs will also be below this threshold (false positives)– this is the
considered error metric. The goal is to have as low a false positive
error rate as possible.

In order to evaluate the error rates of different models in a princi-
pled manner for every scene a preselected dataset comprising 50,000

matching pairs and 50,000 non-matching pairs exists. These test sets
are used to evaluated the descriptors which are of course not trained
on the respective test scene.

The following baselines on this dataset (see Table 3.1 for the quan-
titative evaluation) are used to assess the performance of the deep
models introduced in the subsequent sections

• RAW: The most basic model is to use the pixels themselves as
features. Obviously this is not a very compact representation,
and also not a very invariant one. Two descriptors are compared
by computing the sum-of-square difference on the vectorized
images.

• SIFT [238]/SIFTb: The 128 dimensional descriptor from David
Lowe. These are actually 128 float numbers, so the memory foot-
print for one SIFT descriptor is not that small. SIFTb therefore

dataset 127

describes the SIFT descriptor where every dimension is repre-
sented by one byte.

• DAISY [43]: The best descriptor learned with the pipeline de-
fined in the original paper of the dataset. The DAISY descriptor
is either 29 or 36 dimensional.

• L-BGM [396]: A compact (64 dimensional) descriptor that is
learned by applying boosting to gradient-based weak learners.

• CVX [351]: This descriptor (in the case of this work we look
at the 32 dimensional version) learns both pooling regions and
dimensionality reduction using convex optimization applied to
a discriminative large margin objective.

Table 3.1: Baseline models used throughout this work. The table shows
the false positive error rate at 95% retrieval. Descriptor models
are trained on one dataset and evaluated on the remaining two
datasets. RAW, SIFT and SIFTb do not need any prior training
phase.

LY ND HD

ND HD LY HD LY ND

RAW 52.4 51.1 58.3 51.1 58.3 52.4

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

SIFTb 22.8 25.6 31.7 25.6 31.7 25.6

DAISY – – 16.8 13.5 18.3 12.0

L-BGM 14.2 19.6 18.0 15.8 21.0 13.7

CVX 9.1 14.3 14.2 13.4 16.7 10.0

As additional baselines two special cases of deep Convolutional
Networks were also considered:

• The deep Convolutional Network referred to as AlexNet [209]
encoded similarity on an instance-based metric surprisingly well
by relying on the final hidden layer (a fully connected layer of
size 1024) [209, Figure 4 (right)]. Hence, it could be the case
that the pretrained network also performs well on the dataset
at hand. The original network is configured for images of size
224 × 224. Being a convolutional architecture, it is straightfor-
ward to adapt the network to the new input size of 64× 64. It
is only necessary to change the stride lengths of the convolu-
tional layers in order to ensure that the fully connected layers
have the necessary shape of the original AlexNet. In this way

128 dataset

all pretrained parameters can be utilized. However, the result-
ing error rates were very poor and never decreased below 70%
(this performance was consistent independently of the layer of
the network that was chosen to act as a descriptor for a given
patch). One possible way to improve the score would have been
to fine-tune the network with the labelled similarity data. How-
ever, the resulting descriptor would have been at least a 1024-
dimensional vector, and thus too large, at least for the super-
vised setting. Additionally, due to the large number of parame-
ters evaluating the network on a patch took about twice as long
as evaluating SIFT. Therefore I did not continue to pursue this
direction.

• Mapping high-dimensional samples with random projections
[33] to low-dimensional embeddings often results in very good
nearest neighbor performance. However, this was not the case
here. A randomly initialized Convolutional Network with 4 lay-
ers (and tanh activation function) mapping a 64× 64 patch to a
32 dimensional vector resulted in an error rate of roughly 50%
for all three datasets. Figure 3.4 depicts the distance histograms
of this network for all three test sets.

dataset 129

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5
match
non-match

(a) Liberty

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0

2.5
match
non-match

(b) Notre Dame

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0

2.5
match
non-match

(c) Yosemite

Figure 3.4: Distance histograms for a random Convolutional Network on the
respective test set for the three scenes. The blue histogram shows
the empirical distribution of distances (L2 norm) of matching
patches. It is noticeable that the distribution of the non-matching
patches is much more Gaussian than the distribution of the match-
ing patches. This can be interpreted as an indication that the
matching patches form a kind of lower-dimensional manifold.
Best viewed electronically.

4
S U P E RV I S E D M O D E L I N G O F L O C A L I M A G E
PAT C H E S

A central goal of Computer Vision is to describe the content of images,
possibly at different levels of detail. Given such descriptions tasks like
object recognition, scene understanding, 3d reconstruction, structure
from motion, tracking and image search can be solved. One possible
approach to identify such a description is to rely on geometric prop-
erties of the objects that are supposedly depicted in images—model-
based object recognition [258]. Clearly, this approach finds its limits
when describing non-geometric objects (e.g. trees or clouds) and is
also limited computationally with respect to the number of objects it
can handle within an image.

Utilizing photometric information on the other hand is often an ex-
cellent tool to differentiate between a large number of objects. Simple
ideas like color co-occurrence histograms [52] work surprisingly well.
These appearance-based methods can be extended by computing local
gray value descriptors, e.g. steerable filters [99] or Gabor filters [181]
on a global grid. However, being global methods they have difficulties
with partially visible objects.

The seminal paper by Schmid and Mohr [329] introduced the idea
of describing an image as a set of salient image points only. Salient
points (or interest points) are characteristic locale regions (features) in
an image with high informational content. The descriptor of an interest
point is computed in such a way that it shows a certain degree of
invariance with respect to typical transformations that leave the actual
content unchanged, e.g. illumination transformations, displacement
transformations or scale transformations.

This idea was subsequently refined and extended by David Lowes
SIFT [239]: Inspired by findings from neuroscience [88, 235] SIFT re-
lies (among other heuristic ingredients) on a non-linear, edge-based
descriptor transformation and improves on illumination, scale, rota-
tion and translation invariance. It resembles a simplified model of
the primary V1 cortex to discriminate between edge orientations and
pools into small spatial as well as orientation bins. Based on these
concepts a plethora of other descriptors has been hand-crafted dur-
ing the last 10–15 years, e.g. SURF [14] and HOG [74], see [316] for a
summarizing article.

These descriptors are specifically constructed to show a high level
of invariance with respect to appearance, viewpoint and lightning
variations of a local image patch. Being tolerant to non-rigid changes
in object geometry but maintaining high selectivity at the same time

131

132 supervised modeling of local image patches

Features

Bag of Words (BoW)

Pooling

Classification

Figure 4.1: The prototypical structure of a processing pipeline for an object
recognition system before 2013. A given image (not limited to
grayscale) is converted into a large set of local descriptors, using
a feature extraction module. The feature extraction module re-
sembles typical hand-engineered approaches like SIFT. Dictionar-
ies for Bag-of-Word (BoW) representations are learned with un-
supervised methods like k-means or sparse coding. Sometimes,
an additional pooling module is employed which often encodes
prior knowledge about the input data, e.g. spatial pyramid pool-
ing [214]. The final vectorized representation of the original im-
age is used training a shallow supervised classifier. This figure is
adapted from a set of slides by Yann LeCun.

makes these local descriptors central to a wide range of Computer Vi-
sion tasks like tracking [429], stereo vision [392], panoramic stitching
[42], structure from motion [144] and specifically object recognition
[352, 214]. E.g. for object classification, local features are used through
vector quantization—at least until fairly recently (before 2013) visual
words were at the center of many successful classification systems
[352, 353, 214] that have the overall compositional structure depicted
Figure 4.1. The descriptor plays a central role in this pipeline which
is the reason why the task of defining the descriptor was reserved
for the human: if the descriptor is chosen right the whole system will
perform well.

Interestingly the approach depicted in Figure 4.1 is not limited
to object recognition in Computer Vision systems: Typical classifi-
cation tasks in natural language processing are solved in the same
way – in this case engineered syntactic parse trees resemble the hand-
crafted descriptors. Similarly, the area of speech recognition relied
heavily on such an architecture for more than 10 years. In this case

supervised modeling of local image patches 133

the handcrafted features are variants of Mel-frequency cepstral co-
efficients (MFCC) [78] and a standard Gaussian Mixture Model [35]
implements the Bag of Word module and also realizes pooling.

Widespread interest in deep learning methods for solving general
perception problems (image, audio, natural language and video) was
(re)ignited by several astounding results of Neural Network-based
systems for classification tasks in Computer Vision and Speech Recog-
nition [126, 125, 64, 60, 62, 73] where deep networks outperformed
their opponent approaches by a large margin. More specifically, deep
Convolutional Networks have emerged as the dominating model for
a successful Computer Vision pipeline1 (and, interestingly enough,
are also competitive for speech recognition [1] and natural language
processing [194]). This new pipeline bears a lot of resemblance to the
one shown in Figure 4.1, however it expands the feature processing
element of the old pipeline into multiple layers, see Figure 4.2. It no
longer relies on human engineering but learns everything on its own,
given only input/output relations (i.e. such a system is trained in an
end-to-end manner). The advantage of learning methods is that they
provide a way to learn filters in the subsequent stages of a processing
pipeline: Prior knowledge about image statistics point to the useful-
ness of oriented edge detectors at the first stage, but there is no sim-
ilar apriori knowledge that would allow to design reasonable filters
for later feature modules. Therefore, basically all human designed
feature extractors need to stay shallow.

A possible criticism of these successful Computer Vision systems
can be that they are nearly all instances of classification problems:
Even object detection and image segmentation can be solved by con-
sidering it as a (pixelwise) classification problem [340, 94]. Yet, many
of the typical vision problem domains mentioned in the opening
paragraph are not instances of classification problems. Instead so-
lutions in theses domains are not structured like the pipeline from
Figure, but are a mix of algorithmic components and low-level im-
age descriptions—the hand-crafted features from the first stage of
the pipeline in Figure 4.1.

It would come as no surprise if this first stage of these algorithms
can also be substituted by a deep model. Remarkably, hand-crafted
descriptors them-self have a structure that resembles the one shown
in Figure 4.1: a layer of filters is followed by a pooling stage and pos-
sibly by a normalization layer, see Figure 4.3. Obviously, every stage
of the pipeline in Figure 4.3 can benefit from learning with the goal
to exploit statistical properties of low-level image patches in order to
find discriminative representations that are invariant to the many un-
wanted transformations such a patch is usually exposed to. Recently
exactly this has been done with various discriminative learning tech-

1 It might be the case that Convolutional Networks get superseded by the more gen-
eral RNNs in the Vision domain, too [384, 369].

134 supervised modeling of local image patches

Low Level Features

Mid Level Features

High Level Features

Classification

Figure 4.2: A deeply nested feed-forward system that is trained in an end-to-
end way. Note that in such systems conceptual entities like Low
Level Features loose their actual meaning. The system consists of
different kinds of stackable learning modules, represented by col-
ored rectangles. Different colors indicate that different types of
learning modules can be combined. As of Summer 2015, this
overall architecture is the dominating paradigm for e.g. object
classification systems of static images. It is straightforward to
add a time-dependent component to this architecture through so-
called recurrent connections. The only requirement for the overall
system is that information from the classification problem (i.e. a
learning signal) somehow reaches all trainable modules. Back-
propagation is a popular way to provide such a signal, but as it
turns out, more general approaches also work very well [50].

supervised modeling of local image patches 135

Figure 4.3: A typical descriptor design: After smoothing the pixels around
an identified interest point (represented by a rectangular or cir-
cular image patch), a bank of filters computes feature maps. These
feature maps are then non-linearly processed through normaliza-
tion layers and/or dimensionality reduction layers (pooling and
embedding). Figure is adapted from [43].

niques [344, 43, 396, 351]. For example, in [351], a convex optimization
formulation has been utilized to learn the pooling configuration and
the subsequent dimensionality reduction.

The parallel between Figure 4.1 and Figure 4.3 is evident and there-
fore it is not only conceptually reasonable but actually very promis-
ing to learn a deep version of the original descriptor pipeline in an
end-to-end manner.

The resulting learning task is apriori no classification problem, so
the learning objective needs to be formulated differently. In this case
an interesting question for the successful realization of the deep de-
scriptor learning system is to find out how much of the wisdom iden-
tified for training deep networks on object classification tasks is true
in this new setting.

While this question is interesting and important for Machine Learn-
ing practitioners, Computer Vision experts are probably evaluating
the approach according to different criteria2: Is the considered dataset
representative enough? Do the learned descriptors also perform ac-
ceptably on other tasks than the one they were trained on? Are typical
constraints imposed on descriptors considered?

The last question is particularly important for the chosen deep ar-
chitecture: Descriptors are extracted in a dense fashion, so it is im-
portant that both the memory footprint for a descriptor is as small as
possible as well as the computational demand for computing it.

Therefore, the overall goals of this chapter are as follows:

• Identify possible ways to formulate descriptor learning in a way
suitable for deep networks but usable in generic Computer Vi-
sion tasks.

2 Deep Convolutional Networks were only embraced by the majority of the Com-
puter Vision community after they beat standard approaches on ImageNet [80], an
accepted benchmark in this research community.

136 supervised modeling of local image patches

• Empirically evaluate the vast range of design decisions that
need to be resolved when working with deep networks for the
specific problem of descriptor learning.

• Possibly perform better than other state-of-the-art approaches
on a meaningful benchmark, while taking relevant side con-
straints for descriptors into account.

• Evaluate the learned models on datasets that are significantly
different from the one used to train the descriptors.

However, learning descriptors with a deep architecture is not only
a goal in itself. Instead it can serve as a building block for solving
Computer Vision problems in a bottom-up manner. This idea is con-
trary to the currently dominating paradigm of training nested archi-
tectures in a top-down end-to-end way. It particularly necessitates a
very large amount of labeled data which is time consuming and ex-
pensive to collect. It is even more so for more detailed and more fine
grained labels that are necessary for tasks that go beyond standard
object recognition.

A bottom-up approach can solve this problem. It still builds a
deeply nested architecture that is trained in an end-to-end way. How-
ever, much less (exactly) labeled data for the overall task is neces-
sary because parts of the architecture are trained on auxiliary tasks
for which it is either easier to get labeled data or the labels itself
need only to be weak (e.g. correspondences between two patches can
easily be gathered through simple temporal coherence principles or
with systems that have additional sensors, e.g. depth measurements
that help to determine the weak correspondence label). Additionally,
these parts (usually in the lower layers of deep architectures) can also
be shared by different high-level tasks.

The chapter is structured as follows: In Section 4.1 I briefly de-
scribe the dataset we are looking at in this chapter—a more in-depth
presentation is given in Chapter 3. Convolutional Networks and suit-
able cost functions for the descriptor learning task are presented in
Section 4.2. Section 4.3 is an extensive quantitative evaluation of the
wide range of possible design decisions when training Convolutional
Networks. This is followed by a qualitative evaluation of some of the
trained models, showing visualizations of various properties of these
models (Section 4.4). Two transfer learning experiments are covered
in Section 4.5. The chapter concludes with a section dedicated to re-
lated work (Section 4.6) and a summary (Section 4.7).

4.1 dataset

In order to convince a Computer Vision practitioner to use deep Con-
volutional Networks as a building block to solve her geometric vision

4.1 dataset 137

problems, it is important to demonstrate their capabilities in model-
ing low-level image patches on a relevant dataset.

The dataset from Chapter 3 encompasses a large and, more impor-
tantly, a realistic data set of patch correspondences. Importantly it
is built by well respected Computer Vision researchers, working in
the field of feature descriptors. The main reason for constructing the
dataset was to establish a benchmark to evaluate compact local image
descriptors [43]. It is based on more than 1.5 million image patches
(64× 64 pixels) collected from three different scenes (450,000 patches
from the Statue of Liberty (this scene is denoted LY in the experi-
ments) and Notre Dame (ND each, 650,000 patches from Yosemite’s
Half Dome (HD)). The patches are sampled around interest points
detected by Difference of Gaussians [239] and are normalized with
respect to scale and orientation3. Figure 4.4 shows some random
patches from the Notre Dame scenery. Clearly, the dataset has a wide
variation in lighting conditions, viewpoints, and scales.

The dataset contains also approximately 2.5 million image corre-
spondences. In order to produce ground truth data stereo matching
is used to obtain dense surface models. These dense surface mod-
els in turn are then used to establish correspondences between im-
age patches. As actual 3D correspondences are used, the identified
2D patch correspondences show substantial perspective distortions
resulting in a much more realistic dataset than previous approaches
[227, 259]. In order to facilitate comparison of various descriptor algo-
rithms a large set of predetermined match/non-match patch pairs is
provided. For every scene, sets comprising between 500 and 500,000

pairs (with 50% matching and 50% non-matching pairs) are available.
The evaluation metric used to quantitatively determine the perfor-

mance of a descriptor is the false positive error rate at 95% recall (fp@95).
This means that a threshold has to be determined such that 95% of
the matching descriptors are considered as actually matching. In turn
a certain amount of non-matching descriptor pairs will also be be-
low this threshold—this is the considered error metric. The goal is to
lower this percentage as much as possible.

At a first glance, the dataset appears very similar to an earlier
benchmark of the same authors [420], yet the correspondences in the
novel dataset resemble a much harder problem. The error rate at 95%
detection of correct matches for the SIFT descriptor [239] raises from
6% to 26%, the error rate for evaluating patch similarity in pixel space
(using normalized sum squared differences) raises from 20% to at
least 48% (all numbers are take from [420] and [43] respectively).

3 A similar dataset of patches centered on multi-scale Harris corners is also available.

138 supervised modeling of local image patches

Figure 4.4: Patch correspondences from the Notre Dame dataset. Note the
wide variation in lighting, viewpoint and level of detail. The
patches are centered on interest points but otherwise can be con-
sidered random, e.g. there is no reasonable notion of an object
boundary possible.

4.1 dataset 139

Table 4.1: The false positive error rate at 95% retrieval (fp@95) for the base-
line models. Descriptor models are trained on one dataset and
evaluated on the remaining two datasets. RAW, SIFT and SIFTb
do not need any prior training phase.

LY ND HD

ND HD LY HD LY ND

RAW 52.4 51.1 58.3 51.1 58.3 52.4

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

SIFTb 22.8 25.6 31.7 25.6 31.7 25.6

DAISY – – 16.8 13.5 18.3 12.0

L-BGM 14.2 19.6 18.0 15.8 21.0 13.7

CVX 9.1 14.3 14.2 13.4 16.7 10.0

4.1.1 Baselines

In order to asses the performance of the many trained models in
Section 4.3, I consider the following baselines on this dataset (see
Table 4.1 for the quantitative evaluation):

• RAW: The most basic model is to use the pixels themselves as
features. Obviously this is not a very compact representation,
and also not a very invariant one. Two descriptors are compared
by computing the sum-of-square difference on the vectorized
images.

• SIFT [238]/SIFTb: The 128 dimensional descriptor from David
Lowe. These are actually 128 float numbers, so the memory foot-
print for one SIFT descriptor is not that small. SIFTb therefore
describes the SIFT descriptor where every dimension is repre-
sented by one byte.

• DAISY [43]: The best descriptor learned by optimizing the free
parameters of the descriptor pipeline from Figure 4.3. It has
either 29 or 36 dimensions.

• L-BGM [396]: A compact (64-dimensional) descriptor that is
learned by applying boosting to gradient-based weak learners.

• CVX [351]: This descriptor (in the case of this work I consider
the 32-dimensional version) learns both pooling regions and di-
mensionality reduction using convex optimization applied to a
discriminative large margin objective.

140 supervised modeling of local image patches

4.2 convolutional networks

As described in detail in section 2.7.3 a standard Convolutional Net-
work is a feed forward network with an architecture that is special-
ized for processing datasets where the constituents of a sample show
a high degree of local neighborhood relations. Typical examples for
such local neighborhood relations are the 1D structure of audio data,
the 2D structure of images or the 3D structure of videos. While these
local neighborhoods are defined through a regular graph structure
(a lattice over multiple dimensions), recent publications [44, 250] ap-
plied Convolutional Networks to general graph structures, too.

In order to find patterns in such locally defined structures the main
elements of a Convolutional Network are its filters that are applied
in a convolutional way to all elements of a given sample, e.g. to all
pixels of a given image. As it turns out this convolutional operation
can be simulated in a straightforward manner by a standard feed
forward network through an adequately structured Toeplitz matrix
[118] (most weights are zero) and weight sharing4. Such a convolu-
tional layer is followed by an elementwise applied nonlinearity and
then (usually) by a so called pooling layer. This special type of feed
forward operation aggregates information within a small local region
of a filtered sample. The local region is hereby implied by the local
geometry of the dataset, e.g. in 2d images, a local region is usually
defined by a square patch encompassing 2x2 or 3x3 pixels.

The pooling operation can be considered a special form of a con-
volution with a fixed set of weights [363]. Differently to a standard
convolution layer the pooling regions are usually disjunct. The goal of
the pooling operation is to achieve a certain degree of invariance with
respect to a basic geometric operation on the underlying structure.
This is particularly helpful for classification tasks because a range of
geometric operations are invariant with respect to object identity but
obfuscate the overall image. For example, in regular lattices, pooling
achieves some form of translation invariance.

Finally, in recent years additional types of specialized layers were
proposed mostly for normalization purposes [182, 209], but again
these types are actually special cases of convolution.

A classic Convolutional Network is composed of alternating layers
of convolution (with a nonlinearity) and pooling. Notably, a convo-
lution layer not only consists of one filter but a set of filters. A filter
fi applied to a given input produces a feature map mi. A convolu-
tional layer with n filters therefore produces n feature maps (that is
in the case of 2d images a three dimensional tensor with n being the
first dimension). After pooling every single feature map, a new layer
of convolutional filters is applied to the new stack of pooled feature
maps. Due to the backpropagation algorithm (see Section 2.7) train-

4 This approach is for example taken in the widely popular Caffe toolkit [188].

4.2 convolutional networks 141

ing a Convolutional Network can be done efficiently through iterative
optimization algorithms, e.g. stochastic gradient ascent on a suitable
objective function.

4.2.1 Loss functions for correspondences

While the architecture of a deep network defines a simple yet power-
ful and flexible computational pipeline the accompanying loss func-
tion determines what task actually is solved by the network. So here
it is necessary to look at the specific dataset at hand, consider all
available information and the problem that should be solved.

For the matching task the problem description is easy to formulate:
Find a representation for patches such that patches identifying the
same 3D point in a scene are close by under some undefined (i.e. to
be determined, too) metric.

When evaluating learned representations an additional scalar is nec-
essary: all pairs of patches with a distance of their representations
below this threshold are deemed similar, i.e. representing the same
3D point. Truly similar patches therefore need representations that
are close to each other. In this case a suitable cost function seems to
be straightforward: Pull representations of matching patches together,
i.e. minimize the sum over all squared distances of matching pairs:∑

x1,x2∈M
dθ(x1, x2)2 (4.1)

Here M is the set of all matching patches and dθ(x1, x2) is the dis-
tance between the representations of the two patches x1 and x2. One
possible choice is the standard euclidean distance:

dθ(x1, x2) = ‖f(x1,θ) − f(x2,θ)‖2 (4.2)

In turn, f(x,θ) represents a Convolutional Network that implements
a non-linear transformation of some patch x ∈ X: f : X×Rn → RD.
θ ∈ Rn denotes all learnable parameters of the network.

However, Eq. (4.1) is a flawed objective function: One possible op-
timal solution is to map all patches to the same (constant) represen-
tation, e.g. the zero vector. This problem occurs because the objective
is not formulated in a probabilistic way: a contrastive term (see Sec-
tion 2.4) is missing.

For datasets where similarities between inputs are defined by ob-
ject identities, Neighborhood Component Analysis (NCA) [117, 17]
is a nice probabilistic formulation. However, for the dataset at hand
similarities are defined at a very fine granularity so a better approach
is to define a contrastive term in a heuristic way (avoiding at the same
time the computational problems of a probabilistic formulation like
NCA, because no costly normalization with respect to probabilities is

142 supervised modeling of local image patches

necessary). An obvious idea is to push dissimilar pairs apart, that is
(because of the negative sign!) minimize

−
∑

x1,x2∈N
dθ(x1, x2)2 (4.3)

where N is the set of non-matching pairs. Overall, the objective func-
tion is defined as∑

x1,x2∈M
dθ(x1, x2)2 −

∑
x1,x2∈N

dθ(x1, x2)2 (4.4)

If a label y indicates whether the pair (x1, x2) ∈ M (that is y ≡ 1) or
(x1, x2) ∈ N (i.e. y ≡ 0) then the loss from Eq. (4.4) can be written as:∑

i

yidθ(x
i
1, xi2) − (1− yi)dθ(x

i
1, xi2) (4.5)

Here i iterates over all available pairs of matching as well as non-
matching patches.

Investigating the objective function from Eq. (4.5) with respect to
the evaluation criterion formulated at the beginning of this section, it
becomes clear that too much work is done by the contrastive term: In
comparison to the distance of matching pairs it is only important that
dissimilar patches are pushed apart far enough. Pushing them apart in-
definitely (as implied by Eq. (4.3)) results in unnecessary work and
actually makes the task much more difficult to solve. From a theoret-
ical point of view the problem with Eq. (4.3) is its unbounded nature.
The training algorithm will overfit to this aspect of the loss function
and important information from matching pairs that are still too far
apart is drowned out by contributions from dissimilar but already far
apart pairs.

The solution to this problem is as simple as elegant: If two dis-
similar patches are farther apart than some margin mpush then these
pairs are no longer considered in the objective (i.e. they are no longer
pushed farther apart, which explains the naming of this margin). That
is, minimize∑

x1,x2∈N
[mpush − dθ(x1, x2)]2+ (4.6)

with

[x]+ = max(0, x) (4.7)

Setting mpush ≡∞ one gets Eq. (4.3) as a special case. In the best case,
mpush should be somehow related to the threshold that is utilized
during the evaluation procedure, i.e. the threshold that determines
whether two patches are considered similar or not. The overall loss
function

`DrLim(θ) =
∑
i

yidθ(x
i
1, xi2)

2+(1−yi)[mpush −dθ(x
i
1, xi2)]

2
+ (4.8)

4.2 convolutional networks 143

was introduced in 2006 under the name DrLim (dimensionality reduc-
tion by learning an invariant mapping) [138]. The goals for DrLim
obviously align well with the matching task at hand:

• Simple distance measures in the output space (such as euclidean dis-
tance) should approximate neighborhood relations in the input
space.

• The mapping should not be constrained to implementing sim-
ple distance measures in the input space and should be able to
learn complex transformations.

• It should be faithful even for samples whose neighborhood re-
lationships are unknown.

The last two goals are important because many metric distance learn-
ing algorithms [210] need a tractable distance metric in the input
space and can not provide out-of sample extensions.

From a conceptual point of view, DrLim can be described with a
physical spring analogy: Similar patches are connected by attract-only
springs, dissimilar patches by m-repulse-only springs. Figure 4.5 de-
picts this conceptual point of view for a stylized setting in 2D (already
showing the generalized idea of m-attract-only springs introduced in
the next paragraphs).

While the DrLim loss seems very plausible, a close inspection of
Eq. (4.8) indicates that room for improvement exists: In particular, if
two matching inputs x1 and x2 are considered, Eq. (4.8) demands
that their final representations should be identical. However, this is
an unreasonable requirement with respect to the evaluation criterion:
The two representations should only be close enough. Additionally if
one imagines that the Convolutional Network transforms patches to
some complicated manifold than it is a bad idea to require that similar
patches have identical representations. Instead one hopes that similar
patches actually define some space on this manifold that behaves lo-
cally in a nice way, e.g. it is locally linear with respect to the patches
associated with the same (or close-by) 3D point(s). In more geometric
terms, one wants to achieve equivariance instead of invariance under
different 3D transformations.

Therefore, a simple relaxation similar to the push marginmpush can
be introduced via a pull margin mpull:∑

x1,x2∈M
[dθ(x1, x2) −mpull)]

2
+ (4.9)

That is, all matching pairs with a distance below the pull margin are
ignored by the objective function (see Figure 4.5). Not only allows
it to learn an overall smoother mapping but it also simplifies the
optimization procedure: Pairs that are already close enough can be
ignored by the network and it can focus its capacity on solving for

144 supervised modeling of local image patches

(a)
Attracting Forces

(b)
Repulsive Forces

Figure 4.5: Physical spring analogy for the two terms involved in the objec-
tive. The black point represents a reference object: red points re-
semble similar objects, blue points dissimilar objects. Clearly, the
overall system tries to find a complicated equilibrium, balancing
compressive and stretching forces between all involved objects.
(a) Red springs act as attracting springs, that is similar points are
pushed closer to the black point. However, these springs have
a certain rest length (indicated by the red dotted circle with re-
spect to the black point), if this length (or a smaller length) is
achieved, such a spring no longer exerts a compressive force—so
this kind of spring does not show any stretching forces. The sim-
ilar red object within the dotted red circle is therefore not pulled
any closer to the reference object (but also not pushed away!).
Note that the rest length of the original DrLim formulation for
the attracting springs is 0, so it will always exert a compressive
force. (b) Blue springs act as repulsive springs, they push apart
(i.e. only exert stretching forces). These springs also have a rest
length, if this length is attained (or takes values beyond) then a
spring stops pushing apart, too. This rest length is indicated by
the blue dotted circle, the dissimilar blue object outside this cir-
cle is not pushed any further from the reference object. Figure is
adapted from [138].

4.2 convolutional networks 145

difficult pairs (i.e. similar to the previous reasoning, one can avoid
overfitting of the network). The improved formulation for DrLim is

`DrLim+(θ) =
∑
i

[
yi[dθ(x

i
1, xi2) −mpull]

2
+

+ (1− yi)[mpush − dθ(x
i
1, xi2]

2
+

] (4.10)

`DrLim+(θ) is simply the sum of two hinge-like losses. The differ-
ence to the standard hinge loss is only the square operation at the
respective pushing and pulling terms. Is the square actually benefi-
cial in this case? Clearly it smooths the otherwise discontinuous gra-
dient of the loss with respect to the embedding. Consider the part of
Eq. (4.10) that pulls similar pairs together:∑

x1,x2∈M
[dθ(x1, x2) −mpull)]

2
+ (4.11)

If the distance for a matching pair (x1, x2) is between mpull and
mpull + 1 then the contribution of this pair to the overall cost is scaled
down quadratically. Similarly, the contribution to the gradient used for
optimizing the parameters of the Convolutional Network are scaled
down respectively. This can have a negative effect with respect to
the overall difficulty of the resulting optimization problem: if many
matching pairs have distances between mpull and mpull + 1 all accom-
panying gradients get scaled down. It therefore seems to be a good
idea to consider a pure hinge loss for the part concerning the match-
ing pairs:∑

x1,x2∈M
[dθ(x1, x2) −mpull)]+ (4.12)

resulting in the `DrLim++(θ) loss:

`DrLim++(θ) =
∑
i

[
yi[dθ(x

i
1, xi2) −mpull]+

+ (1− yi)[mpush − dθ(x
i
1, xi2)]

2
+

] (4.13)

Due to symmetry the same reasoning can be applied to the part that
pushes dissimilar pairs apart yielding `DrLim+++(θ):

`DrLim+++(θ) =
∑
i

[
yi[dθ(x1, x2) −mpull]+

+ (1− yi)[mpush − dθ(x1, x2)]+
] (4.14)

The usage of the hinge loss exposes the underlying task that is approx-
imately solved by DrLim and the proposed variants: If a matching pair
is above some threshold m it contributes one unit to a total loss. Sym-
metrically if a non-matching pair is not far enough apart, this pair
also contributes one unit. In classification problems this loss function

146 supervised modeling of local image patches

is usually called the 0-1 loss. The 0-1 loss is non-convex (and non-
continuous) so it is often approximated by a convex surrogate loss
where the hinge loss is the most popular candidate.

Boosting algorithms use the exponential loss [35] as a surrogate loss
for the 0-1 loss. Like the hinge loss it is convex with respect to the
decision variable but also everywhere differentiable. Applied to the
task at hand the exponential loss is given by

`exp(θ)) =
∑
i

exp(y ′idθ(x1, x2)) (4.15)

where y ′ = 2y− 1 and y indicates whether two samples x1 and x2 are
a corresponding pair or not, i.e. y ′ ∈ {−1, 1}. This is the loss function
used in two recent publications for compact descriptor learning [396].

Finally, another popular surrogate loss function for the 0-1 loss is
the log loss [35], which is closely connected to the exponential loss:

`log(θ) =
∑
i

log
(
1+ exp(y ′idθ(x1, x2)

)
(4.16)

4.3 experiments

Using a deep Convolutional Network for Computer Vision tasks is
always a valid decision. However, the question of the detailed config-
uration of such a network remains elusive. Already the choice of the
correct cost function is challenging if the task is not the prototypical
classification problem with a fixed number of object classes as demon-
strated in the previous section. Decisions with respect to depth, filter
sizes, number of feature maps, type of activation functions and so on
heavily impact the overall performance of the network.

While these hyperparameter settings can be automatically deter-
mined with meta learning algorithms [356, 378] a systematic evalua-
tion of such settings should help to improve the understand of Convo-
lutional Network from an empirical point of view. This is even more
so for tasks that are not in the already well explored space of object
classification.

The first problem of a systematic evaluation for the various types of
hyperparameters is the combinatorial explosion of possible settings.
There is however a second, much bigger problem with a systematic
evaluation: overfitting. At the end of a thorough evaluation it is sim-
ply not possible to report an unbiased performance score—the test
set is touched too often 5. The goal of this work is however not to
report the best performance on the selected benchmark, it is the em-
pirical evaluation of some basic design decisions. Therefore it is more
interesting what effect the various settings have, compared to a basic
model.

5 In Statistics this is referred to as double dipping.

4.3 experiments 147

This basic model is chosen with the help of a small training set
and a very small evaluation set, both constructed by hand. More
specifically, I selected 15000 patch pairs from every scene as train-
ing data (in total 45000 pairs) and 500 pairs from every scene as test
data (the patches in these 1500 pairs in the test set are not contained
in the large evaluation sets used later). On this newly created train-
ing and test set I evaluated a large number of possible basic con-
figurations. The search space encompassed different cost functions
(`DrLim(θ), `DrLim+(θ) and `DrLim++(θ)6.), filter sizes (3× 3, 5× 5 and
7× 7), activation functions (tanh(·) and ReLU(·)), depth (3 and 4 con-
volutional layers) and number of feature maps (20, 30 and 40 fea-
ture maps per convolutional layer). The various models had between
120000 and 150000 parameters, so at least an order of magnitude
smaller than standard Convolutional Networks as of 2015. Optimiza-
tion of the respective architecture was done with stochastic gradient
descent with a mini batch size of 100 and a learning rate η = 0.01. Ev-
ery candidate architecture was trained for exactly 15 epochs and then
evaluated on the test set. The combined fp@95 error rate on all three
scenes was then used as the final evaluation criteria. The architecture
that performed best had the following configuration:

• A convolutional layer with 40 5× 5 filters, followed by a stan-
dard 2x2 max-pooling operation. The activation function is tanh.

• A convolutional layer with 40 5× 5 filters, followed by a stan-
dard 2x2 max-pooling operation. The activation function is tanh.

• A convolutional layer with 40 4× 4 filters, followed by a stan-
dard 2x2 max-pooling operation. The activation function is tanh.

• A convolutional layer with 64 5× 5 filters, which reduces every
feature layer to a scalar (Why 64? Because 64 = 2 × 32). The
activation function is tanh.

• Finally a fully connected linear layer of size 64 x 32.

• The cost function is `DrLim++(θ), with mpull = 1.5 and mpush = 5.

The output of the four layer network is 32 dimensional real valued
vector. Assuming 4 bytes of memory requirements for every float this
compact patch descriptor takes up as much memory the the 128 byte
descriptor of SIFTb.

Given this basic architecture the following variations were system-
atically investigated on the training sets with 250000 matching and
non-matching pairs each and the respective test sets from the three
scenes:

• Loss functions.

6 Luckily (as it becomes clear later), I had 3 GPUs available for this kind of evaluation
and therefore it was possible to include also `DrLim++(θ)

148 supervised modeling of local image patches

• Activation functions.

• Pooling operations.

• Optimization procedures.

• Depth.

• Data augmentation.

I only varied one of these aspects at any point in time. The other
aspects used the settings from the reference model.

training and evaluation protocol . For both training and
evaluation, every image patch (represented as a real valued vector) is
preprocessed by subtracting its mean value and dividing by its stan-
dard deviation. The evaluation protocol is the same as used by the
baseline models (see section 4.1.1): train on one dataset and evaluate
the learned model on the remaining two datasets, reporting the false
positive rate at 95% retrieval. Training a deep Convolutional Network
usually uses a validation set (in the specific setting of this work for
avoiding overfitting on the training set, i.e. early stopping). In order to
be able to use all available training data from one dataset, I utilize
the respective third scene as a validation set when evaluating on the
second scene. Note that this is a rather difficult setup, as training set,
validation set and test set are all from different distributions. Training
happens always until the optimization converges on the training set
or shows clear overfitting signs on the validation set.

loss functions . Based on the systematic development of suit-
able loss functions for the correspondence problem in section 4.2.1
the following loss functions where investigated with the base archi-
tecture.

• `DrLim(θ), that is∑
i

yidθ(x1, x2)2 + (1− yi)[mpush − dθ(x1, x2)]2+

• `DrLim+(θ), that is∑
i

yi[dθ(x1, x2) −mpull]
2
+ + (1− yi)[mpush − dθ(x1, x2)]2+

• `DrLim++(θ), that is∑
i

yi[dθ(x1, x2) −mpull]+ + (1− yi)[mpush − dθ(x1, x2)]2+

• `DrLim+++(θ), that is∑
i

yi[dθ(x1, x2) −mpull]+ + (1− yi)[mpush − dθ(x1, x2)]+

4.3 experiments 149

Table 4.2: fp@95 error rates for different kind of loss functions. For com-
parison, SIFT and CVX from the set of baseline models are also
shown.

LY ND HD

ND HD LY HD LY ND

`DrLim(θ) 11.4 19.0 18.1 17.1 22.1 13.2

`DrLim+(θ) 10.3 17.6 14.8 13.6 19.4 10.6

`DrLim++(θ) 8.9 16.7 14.1 14.9 16.7 8.9

`DrLim+++(θ) 10.9 18.5 15.8 16.2 20.4 9.8

`exp(θ) 53.9 65.4 60.1 63.6 67.0 56.6

`log(θ) 41.0 53.2 49.1 52.2 55.5 46.0

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

CVX 9.1 14.3 14.2 13.4 16.7 10.0

• `exp(θ), that is∑
i

exp(y ′idθ(x1, x2)) (4.17)

• `log(θ), that is∑
i

log
(
1+ exp(y ′idθ(x1, x2)

)
(4.18)

Table 4.2 shows the final result for this type of evaluation. The theo-
retical consideration for relaxing the push loss (manifold assumption)
lead to a significant improvement (compare `DrLim(θ) and `DrLim+(θ)).
In particular, `DrLim++(θ) (which was already identified with the small
model selection dataset) performed best, having a standard hinge loss
for the positive pairs but a squared hinge loss for the negative pairs.
It is difficult to assess why the squared hinge loss for the negative
pairs performs better than the standard hinge loss for negative pairs.

The low performance of both the exponential and logistic loss stems
from an underfitting problem. Widely used remedies for this problem
(that are strictly speaking not allowed in to be used in this evaluation),
e.g. more powerful optimizers, different kinds of initializations or var-
ious forms of regularizations did not help.

activation functions . The standard activation functions for
forward as well as recurrent networks have the well-known sigmoid
shape: Both the logistic sigmoid and the tangens hyperbolicus not
only have mathematically nice properties (the derivatives are bounded

150 supervised modeling of local image patches

and exist everywhere) but are also computationally efficient to eval-
uate (also with respect to their derivatives). However, recent deep
learning systems [207] for object recognition identified the rectifying
linear unit (ReLU) [245, 268, 116] and its multivariate generalization,
Max-Out [120], as crucial for achieving state-of-the-art results. While
some theoretical results [265] try to argue why ReLU is a good activa-
tion function (apart from the fact that it does not suffer from the van-
ishing gradient problem), on a practical side it speeds up the training
time due to its simple form and hence allows the training of bigger
models with the same computational budget. This advantage is how-
ever not relevant here as the architecture is deliberately kept small.

A systematic investigation of different activation functions for a
given problem is usually not done. Using the basic architecture I do
so and look at the following candidates (see Section 2.7 for their math-
ematical definitions):

• the logistic sigmoid function.

• the Tangens Hyperbolicus (the activation function of the refer-
ence model).

• the rectifying linear unit (ReLU).

• the Max-Out activation function, applied to disjunctive groups of
feature maps of one convolutional layer.

• the Local-Winner-Take-All (LWTA) [366] function, also applied
to disjunctive groups of feature maps of one convolutional layer.

Table 4.3 shows that tanh performs much better than the other pos-
sible functions, in particular better than ReLU. One possible expla-
nation might be that the small model size is overall problematic for
ReLU activations: the ReLU activation usually leads to a larger num-
ber of inactive units (i.e. they produce a 0 for a given input), which
effectively limits the capacity of the model. From a statistical point
of view already at the beginning of training half of all units will be
inactive7: the preactivation can be modeled as a Gaussian with mean
zero. So only about 14 th of all units can be utilized for training (in
order to get gradient information for a given weight, both units con-
nected by this weight must be non-zero). In large models this implicit
capacity reduction is not a problem (and actually might be helpful to
avoid overfitting), but with small models as in this work the perfor-
mance may be limited by this fact. First experiments with models 4

to 6 times larger as the reference model show improvements in the
range of 1% to 1.5% for ReLU based models (but do not show any
further improvements for tanh).

7 For every sample, a different set of units will be inactive, but the basic argument
holds.

4.3 experiments 151

Table 4.3: fp@95 error rates for different kinds of activation functions. Both
Max-Out and LWTA activation functions are applied to groups of
two feature maps. σ denotes the logistic sigmoid function.

LY ND HD

ND HD LY HD LY ND

σ 16.5 24.3 25.6 24.4 27.2 17.5

tanh 8.9 16.7 14.1 14.9 16.7 8.9

ReLU 10.6 18.6 17.0 17.5 18.0 10.2

Max-Out 9.3 17.5 16.6 17.3 18.1 9.5

LWTA 12.8 20.7 20.4 19.9 21.5 13.3

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

CVX 9.1 14.3 14.2 13.4 16.7 10.0

pooling operations . Pooling is an important operation for the
matching task, as the various patches show a high range of different
scales—so pooling is not only responsible for translation invariance
but also for scale invariance in this case. In principle pooling imple-
ments a spatial dimensionality reduction restricted to the dominant
feature space of the Convolutional Network. More formally, if we
consider a layer m of some arbitrary Convolutional Network with di-
mensions f×w× h (f is the number of feature maps in a layer, w is
the width and h is the height of one feature map) then a pooling oper-
ation with pooling size p and stride s can be defined in the following
elementwise way:

π(m)k,i,j =

 p∑
x=0

p∑
y=0

ukx,y|mk,si+x,sj+y|
l

 1
l

(4.19)

u is hereby a three dimensional non-negative weigh tensor and ukx,y
may depend on the value of mk,si+x,sj+y. π(m)k,i,j then denotes the
value of the pooled feature layer m in feature map k at position (i, j).
Notably if p is uneven the above formula can be rewritten:

π(m)k,i,j =

 p/2∑
x=−p/2

p/2∑
y=−p/2

ukx,y|mk,ri+x,rj+y|
l

 1
l

(4.20)

As pointed out recently [363] this can be written even more generally
like a standard convolution operation in a Convolutional Network:

π(m)k,i,j =

 p/2∑
x=−p/2

p∑
y=0

∑
k ′
ûk,k ′
x,y |mk ′,ri+x,rj+y|

l

 1
l

(4.21)

152 supervised modeling of local image patches

û is now a 4-dimensional weight tensor. Eq. (4.21) still implements a
spatially restricted pooling operation (i.e. the number of feature maps
in layer m is not reduced). In particular, the pooling operation from
Eq. (4.20) can be recovered by setting most entries of û to 0:

ûk,k ′
x,y =

1, if k = k ′

0, otherwise.

In the following we consider 5 different types of specific instantiations
of Eq. (4.20) or Eq. (4.21).

• Max-Pooling (mp): Currently the most widely used pooling op-
eration is max-pooling [414, 309, 328, 64]. Considering Eq. (4.20),
max-pooling can be realized by letting l → ∞ (i.e. the maxi-
mums norm) and setting all entries of u to 1.

• Average-pooling (ap): With l = 1 and ukx,y ≡ 1
p2

a simple av-
eraging operation over a pooling region [221] is implemented.
The absolute value avoids that canceling of positive and nega-
tive values happens [182].

• Overlapping max-pooling (ov-mp) realizes the standard max-
pooling with a stride size s that is smaller than the pooling
size p. Similar to recently successful Convolutional Network-
architectures [207], max-pooling with a pooling size of 3 and a
stride size of 2 is investigated.

• Stochastic max-pooling (sto-mp) [428]: Standard max-pooling
only considers the maximal element in a pooling region—this
hard thresholding operation neglects many values that should
be considered during computation, e.g. because they are very
close to the maximum value in their pooling region. Stochas-
tic max-pooling ensures that such values are also utilized and
implements a multimodal pooling operation. During the train-
ing phase, ukx,y is sampled probabilistically for every input from
a multinomial distribution. This multinomial is defined by the
value of mk,ri+x,rj+y for x,y ∈ [0,p]× [0,p]. More precisely, the
probability mass function of the random variable Uk is given
by

p(ukx,y = 1) =
emk,ri+x,rj+y∑p

x=0

∑p
y=0 e

mk,ri+x,rj+y
(4.22)

At test time the elements of a given pooling region are summed
with weights ukx,y defined by the probabilities from Eq. (4.22).

• All convolutional (all-conv) pooling [363]. Pooling can be con-
sidered as a special case of convolution (see Eq. (4.21)). The
all-conv model substitutes the specialized pooling layer by a

4.3 experiments 153

Table 4.4: fp@95 error rates for different kinds of pooling operations. Max-
Pooling is used in the reference architecture.

LY ND HD

ND HD LY HD LY ND

mp 8.9 16.7 14.1 14.9 16.7 8.9

ap 12.5 20.4 16.6 16.8 19.2 11.7

ov-mp 17.4 24.5 22.0 22.1 26.0 17.1

st-mp 16.9 24.3 36.1 28.1 38.3 22.8

all-conv 9.2 18.8 18.7 18.4 19.7 9.4

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

CVX 9.1 14.3 14.2 13.4 16.7 10.0

standard convolutional layer, with stride 2 in the case at hand.
This convolutional layer is also followed by an elementwise non-
linearity, which is tanh in this set of experiments8.

Table 4.4 shows the results for the various types of pooling opera-
tions. Standard max-pooling (mp) outperforms the other pooling op-
erations (similar result is obtained when the task is object classifi-
cation [328]). This might come as no surprise because max-pooling
is apriori best suited for scale invariance. The results for stochastic
max-pooling must be considered with a word of warning: Training
one model with this pooling operation takes a very long time (about
4 days on the available hardware setup), therefore only one experi-
ments for every training/test set is realized—it may well be the case
that a large amount of underfitting is present in this specific results.
Furthermore it might be that the inference procedure for Eq. (4.22) is
leading to suboptimal results and that instead a proper Monte Carlo
approximation should be used. This in turn would require a distance
measure that can handle probability densities. See Section 6.2 for
some preliminary work in this direction.

optimization. Learning the parameters of a Convolutional Net-
work is a difficult non-convex optimization problem. Interestingly,
first-order methods are widely used optimization methods, though
powerful second order methods have been specifically designed for
deep learning problems [247, 336].

8 The recently published paper that suggested the all convolutional architecture [363]
used rectifying linear units throughout the network. Experiments with this activation
function performed worse, however.

154 supervised modeling of local image patches

From a theoretical point of view, first-order methods are suitable
enough as long as one ensures that learning gets not stuck in regions
that look like local minima but actually are not (i.e. saddle points [76])
9. However, this requirement may be simply fulfilled by training long
enough on extremely large datasets. From a practical point of view,
simple first-order methods allow scalable training of large models
and large datasets and are simple to implement. Therefore, I only
consider first-order optimization procedures:

• sgd: The stochasticity in stochastic gradient descent (sgd) [312, 37]
comes from selecting a small set (i.e. a minibatch) of random
samples from the training set when computing one gradient
step. This stochasticity moves the network quickly through bad
regions in weight space [375] and is therefore overall very popu-
lar. The update rule for one iteration of sgd is (assuming a fixed
learning rate η):

θt = θt−1 + ηtδθt−1 (4.23)

θt denotes the parameter values at iteration t and δθt−1 de-
notes the gradient of the objective function with respect to the
parameter values at iteration t− 1.

• Momentum based sgd (m-sgd): In order to avoid spurious move-
ments in certain directions in weight space a momentum term
is built by collecting gradient directions from the optimization
iterations. The weighted accumulation of the instantaneous di-
rections leads to filtering out spurious directions and therefore
smooths the overall optimization procedure. The momentum vt
at iteration t is an exponential moving average with some decay
factor µ ∈ [0, 1]:

vt = µvt−1 + ηtδθt−1

θt = θt−1 − vt
(4.24)

• Nesterov accelerated gradient (nag) was invented as a descent
method that converges quadratically for non-stochastic, convex
problem domains [275]. For stochastic optimization problems it
is instructive to express the update rules as follows [375]:

vt = µvt−1 + η∇θ`(θt−1 + µtvt−1) (4.25)

θt = θt−1 − vt (4.26)

At a coarse glance this approach looks like standard momen-
tum based gradient descent. However, nag looks ahead when
computing the derivative of the loss at time t and thus avoids

9 Note that it is not considered a disadvantage that one can only identify local minima
when training neural networks, as was pointed out several times in Section 2.7.

4.3 experiments 155

high entries for the momentum vector which easily lead to over-
shooting during difficult optimization phases—instead it allows
a much more timely correction of accumulated momentum di-
rections. As it turns out this equation can be rewritten such that
looking ahead is no longer specifically necessary [29].

• RMSprop. It would be beneficial to have an adaptable learning
rate per parameter. A straightforward and theoretically correct
approach would be to take the diagonal hessian for determin-
ing individual learning rates [21]. A different, more heuristically
driven approach is RProp [308], but it fails with stochastic mini-
batches. A conceptually simple heuristic for a stochastic variant
of RProp was recently introduced under the name RMSProp
[388]:

θt = θt−1 +
ηt

RMS(g)t
δθt−1 (4.27)

with

RMS(g)t =
√
E(g2)t + ε (4.28)

where a small constant ε ≈ 1e− 6 is added for improving the
condition of the denominator [22]. E(g2)t is an efficient approx-
imation of the diagonal Hessian, implemented as a simple ex-
ponential moving average of the elementwise squared gradient:

E(g2)t = ρE(g
2)t−1 + (1− ρ)gt

2 (4.29)

with gt ≡ δθt, the update direction at iteration t. ρ is a decay
constant.

• AdaDELTA. From a theoretical point of view, RMSProp com-
putes a gradient step that is inconsistent with respect to units:
parameters and gradients of these parameters do not fit together
[427]. The updates introduced by AdaDELTA ensure that the
quantities involved in computing the gradient step fit together
with respect to units:

θt = θt−1 +
RMS(∆θ)t−1

RMS(g)t
δθt (4.30)

Similar to RMSprop, RMS(∆θt) is defined as

RMS(∆θt) =
√
E((∆θ)2)t + ε (4.31)

with the same ε as used previously. E((∆θ)2)t is also an expo-
nential moving average with the previous decay constant ρ:

E((∆θ)2)t = ρE((∆θ)
2)t−1 + (1− ρ)(∆θt)

2 (4.32)

156 supervised modeling of local image patches

Table 4.5: fp@95 error rates for different kinds of optimization procedures.
sgd is the method used in the reference model, with learning rate
η = 0.1. A momentum term of 0.9 is used where applicable. ρ is
set to 0.9. The learning rate for RMSprop is 1e− 5, for AdaDELTA
it is 0.1. AdaDELTA denotes the variant described in the text.

LY ND HD

ND HD LY HD LY ND

sgd 8.9 16.7 14.1 14.9 16.7 8.9

m-sgd 10.1 17.6 14.1 14.7 17.3 9.6

nag 10.8 18.5 18.0 18.2 18.7 10.9

RMSprop 8.9 15.6 15.3 13.8 16.4 8.6

AdaDELTA 8.6 15.9 13.6 13.9 16.6 8.6

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

CVX 9.1 14.3 14.2 13.4 16.7 10.0

Note that RMS(∆θt−1) must be used. This may lead to a more
robust behavior of the updates in case of large (sudden) gra-
dients, as these are directly damped by the denominator [427].
However, in my experiments it turned out that this dampening
effect had a negative impact on the overall performance: Models
trained with AdaDELTA showed very good performance devel-
opment on the validation set in the first few epochs but sud-
denly stalled. I was able to circumvent this problem by using
RMS(g)t−1 in the denominator instead.

Table 4.5 summarizes the results for the set of optimizers. AdaDELTA
performs best, improving significantly in particular on the difficult
training/test set combinations. It also outperforms the strongest base-
line model, CVX by a small overall margin! RMSProp performs ex-
tremely well during the first 10 epochs but starts to heavily fluctuate.
I briefly investigated different schemes of annealing the learning rate
in this case, without any success, though. RMSprop is the optimiza-
tion procedure where early-stopping needs to be employed, for all
other methods no overfitting tendencies with respect to training error
were observed.

depth . The depth (that is, the number of layers) of a model can be
varied in two principled ways: Changing the number of convolutional
layers or adding fully connected layers to the stack of convolutional
layers. When only considering different numbers of convolutional lay-
ers I ensure that the overall number of parameters stays roughly the

4.3 experiments 157

same compared to the base model. However, I don’t try to balance ca-
pacity when adding fully connected layers. In this section I consider
the following configurations with respect to depth:

• L4, the reference model with 4 convolutional layers and one
final linear layer.

• L3, 3 convolutional layers, with (roughly) the same number of
parameters as the reference model. Specifically, the first layer
has 64 5 × 5 filters, followed by a max-pooling operator with
stride 3. The second has the same filter configuration but is fol-
lowed by a max-pooling operator with stride 2. The third layer
has 32 5× 5 filters followed by the final linear layer.

• L5, 5 convolutional layers, again adjusted for the number of
parameters with respect to L4. Overall the filter sizes had to
become smaller. The first layer has 64 3× 3 filters, followed by
three convolutional layers with 64 2 × 2 filters each. The fifth
convolutional layer has 128 3× 3 filters. All max-pooling opera-
tions have stride 2.

• L7, 7 convolutional layers. The first two convolutional layers
have 32 3× 3 filters. The next convolutional layer has 64 2× 2
filters, followed by 2 layers with 64 2× 2 filters, a layer with 64

3× 3 filters and a final convolutional layer with 64 2× 2 filters.
The max-pooling operations after the second and third layer are
missing.

• FC1 enhances L4 with one fully connected layer with 256 units.
The last convolutional layer is adapted to this setting, it no
longer contains 5 × 5 filters, but instead 4 × 4 filters. With 64

feature maps (and no max-pooling operation) this results in 256

convolutional output units.

• FC2 enhances the reference model with two fully connected lay-
ers. In the spirit of FC1, another hidden layer with 256 units is
added.

It is clearly visible that a certain amount of depth helps, both in the
convolutional stack as well as with fully-connected layers. Both FC1

and FC2 clearly outperform CVX, but both models do have substan-
tially more parameters than the reference model.

data augmentation For training a deep Neural Network la-
beled data can never be enough. In the specific setting of this chapter
a simple (and highly effective) way to extend the training data is to
fuse two of the three scenes into one training set. In the training proto-
col of the base model the validation scene is missing, however. Using

158 supervised modeling of local image patches

Table 4.6: fp@95 error rates for models with different overall depth. L4 is
the reference model. For FC1 and FC2 the learning rate η is set to
0.001.

LY ND HD

ND HD LY HD LY ND

L3 14.3 23.3 27.4 26.3 27.5 16.5

L4 8.9 16.7 14.1 14.9 16.7 8.9

L5 8.9 17.2 14.8 15.3 16.9 9.2

L7 9.3 18.2 21.0 20.3 19.6 11.4

FC1 7.7 14.7 13.1 13.1 15.2 7.9

FC2 8.1 14.6 13.5 13.7 16.0 8.0

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

CVX 9.1 14.3 14.2 13.4 16.7 10.0

the standard settings of the base model I forgo the usage of a vali-
dation set and train on the fused training set until the optimization
procedure converges. The reference model can be substantially im-
proved using this large dataset: On the Liberty evaluation set, 13.6%
are achieved, on the Notre Dame dataset 7.4% and on the Half Dome
evaluation set 12.5%.

Another way to handle models with high capacity is to utilize
prior knowledge and encode this knowledge into the overall learning
procedure. For example a convolutional Network encodes the prior
knowledge that the input is spatially structured according to a 2d lat-
tice. A different (and easy to realize in practice) approach to encode
prior information is to augment the training data in a manner consis-
tent with this prior knowledge: given a labeled training sample more
labeled samples can be generated by consistent functional transfor-
mations of this sample. Of course this not always possible, usually
one resorts to Machine Learning because these valid transformations
of the input space are not known.

For images a wide set of invariant transformations are known, that,
at least for object classification, encode prior knowledge. Generating
additional valid training data through translating, rotating and chang-
ing color information is currently considered another key enabler for
the recent success of deep learning approaches for Computer Vision
approaches [63, 64, 60, 209].

However, with the dataset at hand translations and rotations can
not be freely chosen, though: Matching pairs were chosen according
to strict rules that are defined with respect to translational, rotational

4.3 experiments 159

and scale characteristics of the keypoint patches. I therefore limit pos-
sible translations to at most 5 pixels and rotations are only possible
in full amounts of 90 degrees (and both patches in a pair are rotated
in an identical way). Nonetheless, even with this specific schedule for
generating additional data, I was not able to improve on the best per-
formance. Instead, as it turns out, performance degraded significantly
on the reference model. Overall, the absolute performance number de-
crease by at least 10%. The reason for this unexpected drop in perfor-
mance might be the highly specific way the dataset was constructed—
introducing additional synthetic data may introduce further statisti-
cal aspects that can not be handled by the compact base model.

compression through binarization. While the learned de-
scriptor is already quite compact, an improvement with respect to
both memory requirements as well as matching speed can be achieved
if the descriptor is inherently binary. In this case, for example, match-
ing two descriptors is realized through a simple binary XOR oper-
ation, which is usually available as an extremely efficient low-level
operation on current computer architectures10.

Learning such a binary representation can be achieved with the
same cost function and the same architecture used previously, except
for one tiny change: instead of a linear activation function at the end
of the descriptor pipeline a sigmoid function is chosen. At evaluation
time, every dimension then is binarized through a threshold function.
The threshold is determined as the median activation vector over the
training set. Note that this resembles the prior assumption that the
marginal probability of a dimension having a binary one should be
0.5 (i.e. highest marginal entropy).

While straightforward (and very successful in other cases with
large networks [230]), this approach is not competitive with respect
to the state-of-the-art results, as Table 4.7 shows. Adding additional
regularization terms that encourage for example saturating outputs
or utilizing more powerful optimizers did not improve the evaluation
performance. Considering the training performance of this approach
it seems that the problem is that the network underfits. Solving this
problem is left as future work.

A very different approach for finding binary representations is to
use random projections of learned real valued descriptors [184, 351].
The idea is based on increasing the dimensionality of a given de-
scriptor through multiplying with a random matrix and then sim-
ply thresholding the resulting higher dimensional representation (i.e.
only taking the sign).

10 This instruction is called POPCOUNT: After an XOR operation between two bit
strings, POPCOUNT counts the number of bits set to 1 in the result (i.e. the Ham-
ming distance) very efficiently.

160 supervised modeling of local image patches

Table 4.7: Error rates for binary descriptors. The table shows the percent of
incorrect matches when 95% of the true matches are found. CVX-
64b denotes the 46-dimensional CVX floating point descriptor pro-
jected to 64bits. L4-σ denotes the binarized descriptor (32 dimen-
sions) learned from scratch. L4-32b and L4-64b denote binarized
descriptors obtained by random projections of the 32-dimensional
floating point descriptor of the reference model. BinBoost [397] is
a 64-dimensional binary descriptor learned with boosting.

LY ND HD

ND HD LY HD LY ND

SIFT 22.8 25.6 31.7 25.6 31.7 25.6

L4-σ 32.5 39.7 37.9 36.1 36.3 30.4

L4-32b 23.9 33.1 33.1 33.6 33.0 23.5

L4-64b 15.3 23.6 23.7 19.3 23.7 14.9

SIFTb 22.8 25.6 31.7 25.6 31.7 25.6

BinBoost 16.9 22.9 20.5 19.0 21.7 14.6

CXV-64b 15.2 24 20.4 18.5 23.5 14.4

More specifically, a Parseval tight frame is some matrix F ∈ Rq×d

with q > d and FTF = Id. The new representation Ffθ(x) (i.e. the
matrix F gets left multiplied to the d-dimensional representation of
f(x), leads to an overcomplete representation that preserves Euclidean
distance, though:

‖Ffθ(x1) − Ffθ(x2)‖2 = (fθ(x1) − fθ(x2))F
TF(fθ(x1) − fθ(x2))

= ‖fθ(x1) − fθ(x2)‖
(4.33)

The binarized version of Ffθ(x1) then is simply

fbθ(x) = sgn(Ffθ(x)) (4.34)

where sgn(·) is the sign function, i.e.

sgn(x)

1, if x > 0

0, otherwise.
(4.35)

Note that the descriptors {fθ(x)}X must be zero centered in order
to get a meaningful distribution of binary vectors. This is achieved
through computing the mean descriptor on the respective training
set.

Clearly this binarization procedure can only approximate the true
distance ‖fθ(x1) − fθ(x2)‖ for two patches x1, x2 ∈ X. The more over-
complete the representation (i.e. the larger q is) the better this ap-
proximation will get. For a given binary descriptor fb(x) its memory

4.3 experiments 161

footprint will be smaller then the one of the original 32 dimensional
floating point descriptor as long as q < 1024 (32 bits for every floating
point dimension). Table 4.7 shows performance results for various val-
ues of q. The underlying floating point descriptor is computed using
the models trained with the AdaDELTA optimization procedure (see
Table 4.5). It shows that descriptors binarized in this way perform
comparable to other state-of-the-art approaches.

fully connected architecture . I end this long list of com-
putational experiments with a brief review of a different kind of net-
work architecture, a simple fully connected deep forward network.

The networks are trained with the `DrLim++(θ) cost function, again
with the goal of finding a 32 dimensional real valued descriptor for
the image patches. In order to avoid overfitting (the 4096 dimensional
input induces a large number of parameters apriori) I choose the fol-
lowing two approaches to reduce the input dimensions.

• Resizing patches to 32× 32 pixels. This reduction of the input
size to 1024 dimensions allows a deep network with 5 layers
that has about 750000 parameters: 1024-512-256-256-128-32. The
nonlinear activation function is again tanh, training is done with
AdaDELTA, with a learning rate η = 1 and a decay factor of
ρ = 0.9. Figure 4.6 shows some random receptive fields from
the first layer for the network trained on the Half Dome training
set. Interestingly these are focused around the keypoint (i.e. the
center) of a given patch.

• Reducing the dimensionality with Principal Component Analy-
sis (PCA). As it turns out only between 350 and 500 principal
components are necessary to cover 95% of the variance within
a training set. After transforming the input data to its lower
dimensional representation a deep network with 3 layers com-
putes the 32 dimensional descriptor. Training is again done with
AdaDELTA (η = 1 and ρ = 0.9).

The results for both models are shown in Table 4.8. Compared to
the results achieved by a Convolutional Network and compared to
the standard SIFT descriptor, both models do not perform very well.
However, I could not spent a lot of time to run a large number of
different experiments with this architecture, so it is quite likely that
these results can be improved substantially, in particular if the best
architecture is selected following the same approach as with the ref-
erence model for Convolutional Networks. It is interesting that filters
from the first layer focus solely on a very small area around the patch
center (Figure 4.6). In order to foster a more diverse set of filters a
L1 prior on the first layer-weights might be a good idea, possibly
combined with a penalty term for the first hidden layer derived from
sparse coding.

162 supervised modeling of local image patches

Table 4.8: Error rates for fully connected networks. FC is the fully connected
network with 5 hidden layers, FC-PCA denotes the architecture
that has PCA-transformed inputs.

LY ND HD

ND HD LY HD LY ND

FC 23.8 29.5 28.3 28.9 31.2 25.1

FC-PCA 37.2 46.5 43.9 42.0 46.3 36.9

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

CVX 9.1 14.3 14.2 13.4 16.7 10.0

Figure 4.6: Some filters from the first layer of the fully connected network
with 5 layers. The network focuses on the area around the center
where the reference-keypoint of every patch is defined.

4.4 qualitative assessment

In this section, I briefly give some qualitative characterizations of the
learned convolutional architecture.

• Filters: It is often instructive to visualize the learned filters, as
these can indicate what is actually going on in the model (see
also the receptive fields in the fully connected model, Figure 4.6).
For a Convolutional Network, all filters can be visualized, not
only these from the first layer.

• Propagation path: What is happening to an image when it is
propagated through the network? Again, for Convolutional Net-
works this path can be visualized in a simple way: Plotting the
various feature maps after the max-pooling operation as two
dimensional images.

4.4 qualitative assessment 163

• Most offending image pairs: What are those image pairs that
the network gets wrong the most? That is which true pairs
are furthest apart (and therefore probably considered as non
matching, i.e. false negatives) and, conversely, which false pairs
are closest (i.e. considered matching, i.e. false positives). These vi-
sualizations are accompanied by the respective overall distance
histograms.

In more detail the model used for these qualitative evaluations is
the reference model trained on the Half Dome training set, using the
variant of AdaDELTA described previously as an optimizer (i.e the
model from Table 4.5, last row). With respect to the filters of the dif-
ferent layers all investigated models give similar visual impressions.
Figure 4.7 depicts the filters from the first and second convolutional
layer. Overall the filters do no show any visually discernable patterns.
Maybe some of the filters in the first layer might be interpreted as
edge detectors but only with some amount of goodwill.

Figure 4.8 and Figure 4.9 show the transformation path of images
through the network. Two arbitrary images from the Notre Dame
training set are fed through the same model. Finally, the resulting
distance histograms for the three training sets (reference model opti-
mized with AdaDELTA) are shown in Figure 4.10 and derived from
these histograms the corresponding most offending image pairs (both
false negatives and false positives) are shown in Figure 4.11. The four
image pairs with the smallest (in the case of false positive pairs) and
the largest (in the case of false negative pairs) distances respectively
are shown for the six combinations of training sets and evaluation
sets. Even for humans some of the presented pairs would be difficult
to get correctly classified. For example, for images from the Notre
Dame evaluation set (Figure 4.11(f),(h)), repeated structural elements
from different 3D points are easily falsely to form a matching pair.

164 supervised modeling of local image patches

(a)

(b)

Figure 4.7: Visualizations of the first two filter layers. (a) The 40 filters of
size 5× 5 forming the first convolution layer. Most of the filters
do not look completely random, but it is challenging to detect
specific patterns.(b) The second layer has 40 feature maps. Every
feature map (one row in the figure) has 40 filters of size 5× 5.
Again, filters seem not to be random, but also do not show easily
interpretable patterns. Best viewed electronically.

4.4 qualitative assessment 165

(a) (b)

(c) (d)

Figure 4.8: Visualizing the activations at the various layers produced by an
input image. (a) The 64× 64 inputs patch shows a detailed struc-
tural element of a window from Notre Dame. (b) After the first
max-pooling layer a feature map has 30× 30 pixels. (c) 40 feature
maps of size 13× 13 pixels after the second max-pooling layer.
(d) The final max-pooling layer with 40 filters of size 5× 5 pixels.
Best viewed electronically.

166 supervised modeling of local image patches

(a) (b)

(c) (d)

Figure 4.9: Visualizing the activations at the various layers produced by an
input image. (a) The 64× 64 input depicts content at a large scale.
(b) After the first max-pooling layer a feature map has 30× 30
pixels. (c) 40 feature maps of size 13× 13 pixels after the second
max-pooling layer. (d) The final max-pooling layer with 40 filters
of size 5 × 5 pixels. Compared to Figure 4.8, in particular the
second layer behaves qualitatively very differently on this type
of input. Best viewed electronically.

4.4 qualitative assessment 167

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
match
non-match

(a)
Evaluation set: LY
Training set: ND

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
match
non-match

(b)
Evaluation set: LY
Training set: HD

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
match
non-match

(c)
Evaluation set: ND

Training set: LY

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
match
non-match

(d)
Evaluation set: ND

Training set: HD

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
match
non-match

(e)
Evaluation set: HD

Training set: LY

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
match
non-match

(f)
Evaluation set: HD

Training set: ND

Figure 4.10: Distance histograms for the three evaluation sets (Liberty
(first row), Notre Dame (second row) and Half Dome (third
row)), using the reference model optimized with the variant
of AdaDELTA from Table 4.5. The x-axis is the euclidean (L2)
distance, the y-axis are normalized counts. Best viewed elec-
tronically.

168 supervised modeling of local image patches

(a) fn (b) fp (c) fn (d) fp

(e) fn (f) fp (g) fn (h) fp

(i) fn (j) fp (k) fn (l) fp

Figure 4.11: False negatives (fn) and false positives (fp), the four most wrong
image pairs for every evaluation set/training set combination.
Image pairs are shown next to each other. The first row shows
image pairs from the Liberty evaluation set when the model is
trained on the Notre Dame ((a), (b)) or the Half Dome ((c), (d))
training set. Similarly, the second row shows wrongly classified
pairs from the Notre Dame scene with a model trained on the
Liberty ((e), (f)) or the Half Dome ((g), (h)) training set. Finally,
the third row shows false negatives and false positives from the
Half Dome scene when the descriptor is trained on the Liberty
((i), (j)) or the Notre Dame ((k), (l)) training set. Best viewed
electronically.

4.5 transfer learning 169

4.5 transfer learning

In this section I evaluate the learned descriptors on tasks it was not
specifically trained for (transfer learning)11. The underlying goal of
learning a low-level descriptor is to use it for different kinds of (high-
level) tasks. In the best case the descriptor is integrated in a larger
learning framework that itself has a deep structure and can be learned
through backpropagation (or a more flexible framework [50]). Here, I
consider two simpler tasks from the standard domain of object recog-
nition. In the first task the new descriptor substitutes SIFT in the old
classification pipeline from Figure 4.1. The dataset chosen here is the
PASCAL Visual Object Classes [91, 92]: Its images have a large spatial
extend, so a Bag-of-Word approach seems a good idea12.

Indeed a much more interesting experiment would be to apply
the learned descriptor convolutionally to these images and form a
representation that is a three dimensional tensor with 32 channels.
These representations would then be fed into a second Convolutional
Network which is trained in a supervised manner on the associated
classification task and backpropagates information also into the low-level
descriptor network. However, due to limited computational resources,
this approach must be postponed to future work. So the experiments
performed in this case merely investigate how well the learned de-
scriptor can replace SIFT in a typical use case for hand-engineered
local image descriptors.

In the second task the new descriptor is directly used for object
recognition on the STL-10 [66] dataset: Given (downscaled) images
of objects, convert every image to a 32 dimensional descriptor and
classify the image according to a simple nearest neighbor scheme.
Conversely, given matching and non-matching pairs of images from
STL (based on object identity), learn a compact representation with
the base model and apply it to the low-level correspondence task.

4.5.1 PASCAL VOC 2007

The Pascal Visual Object Classes (VOC) [92] challenge is a benchmark
in visual object category recognition and detection. The dataset from
the year 2007

13 consists of annotated consumer photographs collected
from FLICKR14, a public photo storage website. There are two princi-

11 As of 2015 this has become a standard approach for many Computer Vision settings:
Deep Convolutional Networks are trained on ImageNet and then adapted to the
actual task.

12 This was true for 2013 when these experiments have been conducted. However, as of
2015, Deep Convolutional Networks pretrained (and even without that pretraining!)
on ImageNet are the state-of-the-art approaches for the VOC challenge, too [145, 54].

13 Only the data for the 2007 competition has a test set with available ground truth
annotations.

14 www.flickr.com

www.flickr.com

170 supervised modeling of local image patches

Figure 4.12: The abstract pipeline from Figure 4.1 visualized on a specific
example. Descriptor representations are computed with the ref-
erence model trained with AdaDELTA on the Half Dome train-
ing set. The figure is adapted from a presentation by Andrea
Vedaldi.

ple challenges for this benchmark: classification and detection. In the
classification challenge, which I am considering in this section, the
task is to predict the presence or absence of at least one object from
20 classes, so multiple objects can occur per image. The 20 classes
are aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable,
dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor. Fig-
ure 4.13 shows two example images from this dataset, already con-
verted to gray scale (the descriptor model from this chapter needs
gray valued input patches).

In order to build a representation for a given image, as a first step
descriptors are densely extracted using the reference model trained
with AdaDELTA on the Half Dome training set. Figure 4.14 and Fig-
ure 4.15 show several feature layers of the new representation from the
two images in Figure 4.13. These images are generated by interpret-
ing the extracted tensor of size h×w× 32 as a stack of 32 images.

The set of descriptors per image are then vector-quantized via a vi-
sual dictionary and converted into a Bag-of-visual-Words represen-
tation. In order to avoid any effects of biased learning, the visual
dictionary was trained via a simple clustering algorithm (K-Means,
i.e. the dictionary consists of cluster centers) on a different dataset, the
MIRFLICKR-1M [169], which consists of one million random images
from FLICKR.

The BoW representation is used to train a standard multi-class sup-
port vector machine on the images from the training set, about 10000

samples. The baseline model on this dataset utilizes densely extracted
SIFT descriptors instead and also employs a visual dictionary trained
via K-Means on the MIRFLICKR-1M [169]. Table 4.9 shows the results
of this evaluation. Compared to the best results on this dataset [53, 54]
the performance is obviously very bad, for both Convolutional Net-

4.5 transfer learning 171

(a)

(b)

Figure 4.13: Two randomly chosen pictures from the VOC 2007 dataset in
their original colored version and the employed gray scale vari-
ant. (a) The label associated with this image is car. (b) The labels
associated with this image are diningtable, person, chair.

works as well as SIFT based systems [54]. However, no other tricks to
improve the performance have been tried (for example spatial pyra-
mid pooling [214] or more sophisticated encoding methods [53]). The
important result is that the descriptors learned with a Convolutional
Network perform as well as (or even slightly better) than SIFT while
being much more compact.

Particularly the recent results (as of 2015) achieved with deep Con-
volutional Networks pretrained on ImageNet [54] make a comparison
with a bottom-up constructed and end-to-end trained architecture an
interesting future work. Additionally, it will also be interesting to see
qualitatively how the feature maps (see Figures 4.14 and 4.15) change
if a high-level object recognition task is used to fine-tune the low-level
descriptors.

172 supervised modeling of local image patches

Figure 4.14: Randomly extracted feature maps from the car image. At least
the car in the front is reflected in the feature maps.

Figure 4.15: The second exemplary image filtered with the CNN descriptor.
The original scene is very cluttered, the descriptor cannot retain
a lot of information.

4.5 transfer learning 173

Table 4.9: Image classification results on VOC 2007. The column denoted
SIFT256 represents the results from the classification pipeline (Fig-
ure 4.12) using SIFT as the descriptor method and a dictionary
size of 256 atoms. Equivalently, columns denoted with CNNxxx
denote pipelines based on the compact descriptor learned with
the convolutional architecture. Descriptors are densely extracted
with a stride of 4 pixels. The Bag-of-Word representation is formed
through standard term-frequency inverse-document-frequency (tf-
idf) coding. For the four different dictionary sizes, the convolu-
tional descriptors perform marginally better than the SIFT descrip-
tor.

CNN256 CNN512 CNN1024 CNN2048 SIFT256 SIFT512 SIFT1024 SIFT2048

aeroplane 45.1 47.9 51.7 54.0 49.0 51.2 55.2 55.8

bicycle 26.1 32.9 35.2 38.4 25.8 30.5 30.7 30.4

bird 22.5 21.7 25.2 28.9 23.7 17.0 24.8 25.2

boat 29.9 32.6 34.1 44.4 35.1 35.1 45.6 46.6

bottle 19.0 18.8 19.5 19.7 18.2 16.7 13.8 17.7

bus 24.6 22.8 25.2 26.5 26.0 27.9 29.2 26.1

car 50.2 53.6 53.0 53.4 50.2 51.2 51.2 52.1

cat 23.9 30.3 29.7 31.8 25.4 26.8 34.1 30.8

chair 31.2 34.0 34.5 35.2 32.5 33.2 32.7 33.6

cow 15.2 21.7 20.3 23.2 15.4 17.7 24.4 19.3

diningtable 18.2 17.6 22.0 27.1 21.4 23.5 23.4 22.8

dog 24.2 30.3 29.9 29.0 25.4 28.5 30.4 30.8

horse 32.6 33.2 34.4 43.5 31.9 31.3 36.8 38.8

motorbike 34.3 34.7 36.6 37.1 18.2 22.5 23.4 26.7

person 66.6 68.7 70.1 69.4 64.8 65.7 68.8 68.3

pottedplant 17.7 16.9 17.4 12.1 18.9 18.5 18.4 13.9

sheep 21.5 26.0 31.0 22.5 19.2 21.4 22.1 24.1

sofa 21.0 16.0 19.3 18.7 14.9 16.2 16.2 19.9

train 33.3 36.6 42.8 45.4 37.8 40.6 39.8 42.6

tvmonitor 25.8 22.7 23.9 28.5 27.9 29.1 31.7 28.7

mAP 28.0 30.2 31.5 32.9 27.8 28.8 30.7 31.0

174 supervised modeling of local image patches

Figure 4.16: Randomly chosen images from STL, already resized to 64× 64
pixels and converted to gray scale.

4.5.2 STL-10

The STL-10 dataset [66] is used to investigate how well knowledge
can be transferred between high-level and low-level learning tasks.
The STL-10 dataset is quite different from the VOC2007 dataset. It
represents a line of datasets [207, 95, 135] that might be criticized
by their limited real-worldness: images show only one object and are
largely without any clutter, the single object is well aligned with the
center, spatial extend of an image itself is limited (in the case of STL-
10 the image size is 96× 96 pixels) and the number of objects is small.
However, these characteristics allow two nicely defined learning ex-
periments: Given the learned low-level image descriptor from the
correspondence task, how well does the embedding vector represent
high-level object categories. And, vice versa, how well does a descrip-
tor perform on the low-level matching task when it is trained with
high-level inputs and similarities are formed according to category
information.

STL-10 is built from labeled examples from ImageNet [80], cropped
and rescaled to 96x96 pixels. The 10 classes have each 500 training
images and 800 test images. Additionally, the dataset contains 100000

unlabeled images from a much broader set of classes. These images
are supposed to be used by unsupervised algorithms and thus re-
main unused with the current experiments. Figure 4.16 shows some
example images from the dataset, already converted to grayscale.

4.5 transfer learning 175

Table 4.10: Classification accuracy for STL using 32 dimensional descriptors
learned with a Convolutional Network on a low-level correspon-
dence task. Classification is done using a k nearest neighbour
approach. The baseline approach (RAW) uses the pixel values
as descriptors (i.e. the descriptor is 4096 dimensional). Higher
numbers are better.

k = 1 k = 3 k = 5

CNN 29.8 33.4 38.9

RAW 27.6 31.8 35.3

from low-level to high-level representations . For the
object classification task the images from both the training and test
set are converted to gray scale, rescaled to 64 × 64 pixels and con-
trast normalized. Every preprocessed image is mapped to a 32 di-
mensional vector by the descriptor model (again, I choose the refer-
ence architecture trained with AdaDELTA on the Half Dome training
set). Classification is performed with a simple non-parametric near-
est neighbour classifier, directly evaluating the image representation.
Table 4.10 shows the results when evaluating the descriptor model
with various numbers of neighbors (k) on the test set. The baseline is
a simple Sum-of-Squares Difference metric applied to the raw pixel
values.

from high-level to low-level representations . Given
the object categories from the STL-10 dataset, pairs of matching (same
object class) and non-matching (different object class) image pairs
are formed. The overall architecture (a convolutional Network with
`DrLim++(θ) cost function) is the same as the reference architecture
from Section 4.3. Training happens with stochastic gradient descent
(η = 0.01) until convergence.

The learned 32 dimensional descriptor is evaluated on the three
evaluation sets from that correspondence task. Overall the result is
as worse as with a random initialization—the performance on the
three evaluation sets is around 50%. So if one takes into account that
the AlexNet stack (see Chapter 3) did also perform not very well
(without any additional adjustments) on the correspondence task it
seems that for different levels of abstractions in the image content
different convolutional models can not be simply interchanged. More
work is necessary here in the future to determine how such networks
can be adapted in an efficient way to different settings.

176 supervised modeling of local image patches

4.6 related work

Local, fine-grained correspondence is such an elementary task in Com-
puter Vision, it should be a typical problem domain for Convolu-
tional Networks. However, only in 2008 did first work appear in this
direction [180]. Its evaluation data is limited though, only covering
in-plane affine transformations. Without a properly constructed train-
ing set no further development in this area was observed for some
time. The large dataset from Chapter 3 made training deep Convolu-
tional Networks an obvious choice, prone to succeed in this domain.
The preliminary work for this chapter showed the feasibility of size-
constraint Convolutional Networks for compact descriptor learning
[284].

Very recently, several papers also investigated local descriptor learn-
ing with deep Convolutional Networks [97, 237, 426, 140, 423, 348]15.
Two of these papers have much better results on the matching task
than reported in this work. However, these results are achieved with
networks and representations that are several times larger than the
models used in this work. For both papers some educated guess-
work can be done which indicates that their performance would be
at most as good as the one reported here if their models map to
32-dimensional descriptors (but still keep their larger number of pa-
rameters). Additionally both papers do not investigate the general-
ization capabilities of the learned descriptor using transfer learning
tasks (see Section 4.5). Transfer learning is considered in a another
recent paper [348] but its results are not comparable to my work as
the paper utilizes an evaluation methodology different from fp@95.
Of course other methods than deep networks have been applied to
the matching task, too [43, 396, 395, 351]. Table 4.1 already showed
the best performing approaches with a compact memory footprint.

Learning a similarity measure between entities belongs to the field
of metric learning [210]. A very comprehensive literature review for
this research field is given in the Ph.D. thesis from Karen Simonyan
[349]. For Neural Network-based models, similarity measures can be
learned with DrLim [138, 382] or ranking-based objectives [338]. The
siamese network concept [334, 41] can also be applied to Recurrent
Neural Networks [17] and to learn similarity preserving binary rep-
resentations for multimodal data [249].

4.7 summary

Given the recent overwhelming success of deep Convolutional Net-
works for Computer Vision problems (mostly object classification,
though) the good results reported in this chapter might appear a

15 Apart from [348] these papers seem to miss the previously mentioned earlier refer-
ences.

4.7 summary 177

Table 4.11: False positive error rates at 95% retrieval (fp@95) for some of
the baseline models. L4 is the reference model trained with the
adapted AdaDELTA optimization algorithm, FC1 is the reference
model followed by one fully-connected hidden layer before map-
ping to a 32-dimensional descriptors. It is trained with stochastic
gradient descent. In particular FC1 clearly outperforms all other
models.

LY ND HD

ND HD LY HD LY ND

SIFT 20.9 24.7 28.1 24.7 28.1 24.7

DAISY – – 16.8 13.5 18.3 12.0

CVX 9.1 14.3 14.2 13.4 16.7 10.0

L4 8.6 15.9 13.6 13.9 16.6 8.6

FC1 7.7 14.7 13.1 13.1 15.2 7.9

bit uninspiring. However, considering the constraints with respect
to model size and representations dimensionality the performance
may be surprising, nevertheless. Theoretical considerations [57] and
empirical investigations [123] so far only indicate that very high ca-
pacity networks will generally be able to show good performance as
long as enough training data is available. Good results with capacity-
restriced models are therefore so much more interesting.

It might be surprising that tanh outperformed the ReLU activation
function, but this is probably due to the limited number of parame-
ters. This result should make one cautious against black-box recipes
when using deep networks. Not only would these clearly advocate
for the ReLU (or similar half-plane activation functions) but also for
Dropout, which neither did help with respect to performance (see a
longer comment with respect to Dropout in Section 6.2). Similarly, a
certain level of depth appears beneficial in particular in combination
with a fully connected layer. But again, with restricted model sizes
deeper does not mean better.

Properly modeling the embedding task turned out to be crucial
for achieving good results with a small representation. Integrating
the manifold hypothesis into the DrLim objective to form a new cost
function improved the performance more than any other measure-
ment (like fully-connected layers or optimizers). In absolute terms up
to 5% improvement could be gained, which is roughly 25% relative
improvement.

Overall the reference model identified by a small model selection
stage at the very beginning turned out to perform very well when

178 supervised modeling of local image patches

combined with a powerful optimizer that is adopted to the task. It
therefore is valid to compare the best performing models in this chap-
ter to other state-of-the-art models without risking (too much) of dou-
ble dipping. So far, as Table 4.11 shows, the Convolutional Network
developed in this Chapter seems to be the best performing model
when the number of parameters and the size of the representation is
severely limited.

Could these results be still obtained if the descriptor representa-
tion is reduced even more? A singular value decomposition of the
last linear layer consistently identified only between 24 and 26 non-
negligible singular values. However, first experiments were not suc-
cessful to use this decomposition in order to achieve a more compact
descriptor having comparable performance.

The most compact descriptor would be binary. However, as re-
ported earlier, finding binary descriptor from scratch turned out to
be difficult. Nevertheless, good binary descriptors can be obtained
by random projections and sign-hashing of real-valued descriptors.
Hence, a possible approach to find good binary descriptors would
use a model pretrained with a real-valued embedding criterion which
is then changed to a hashing-based objective, following the cost func-
tions outlined in several recent papers [230, 249].

5
U N S U P E RV I S E D M O D E L I N G O F L O C A L I M A G E
PAT C H E S

In the following I tackle the dataset from Chapter 3 from the view-
point of pure unsupervised feature learning. Why is this actually an
interesting problem? It seems that there are already enough datasets
for evaluating unsupervised feature learning algorithms. In particular
for feature learning from image data, several well-established bench-
marks exist like Caltech-101 [95], CIFAR-10 [207] and NORB [223],
to name only a few. Notably, these benchmarks are all object clas-
sification tasks. Unsupervised learning algorithms are evaluated by
considering how well a subsequent supervised classification algorithm
performs on high-level features that are found by aggregating the
learned low-level representations.

However, I think that mingling these steps makes it difficult to as-
sess the quality of the unsupervised algorithms. A more direct way
is needed to evaluate these methods, preferably where a subsequent
supervised learning step is completely optional.

I am not only at odds with the methodology of evaluating unsu-
pervised learning algorithms. General object classification tasks are
always based on orientation- and scale-rectified pictures with objects
or themes firmly centered in the middle. One might argue that ob-
ject classification acts as a good proxy for a wide range of Computer
Vision tasks beyond object classification, like tracking, stereo vision,
panoramic stitching or structure from motion. But this hypothesis
was not yet shown to be correct either theoretically or through empir-
ical evidence. Instead, the dataset from Chapter 3 provides the most
basic task that is elementary to all typical problems in Computer Vi-
sion: matching low-level representations, i.e. determining if two data
samples are similar given their learned representation.

Matching image descriptors is a central problem in Computer Vi-
sion, so hand-crafted descriptors are always evaluated with respect to
this task [259]. Given a dataset of labeled correspondences, supervised
learning approaches will find representations and the accompanying
distance metric that are optimized with respect to the induced simi-
larity measure (as it was empirically demonstrated for Convolutional
Networks in Chapter 4). It is remarkable that hand-engineered de-
scriptors perform well under this task without the need to learn such a
measure for their representations in a supervised manner.

To the best of my knowledge it has never been investigated whether
any of the many unsupervised learning algorithms developed over
the last couple of years can match this performance. While I do not

179

180 unsupervised modeling of local image patches

introduce a new learning algorithm, in essence I propose to make the
dataset from Chapter 3 a standard benchmark when evaluating new
unsupervised feature learning algorithms.

Specifically, I investigate the performance of the Gaussian RBM
[381], its sparse variant and the mean covariance RBM [296] with-
out any supervised fine tuning with respect to the matching task. As
it turns out, under very favourable conditions performs the mcRBM
comparably to hand-engineered feature descriptors. In fact using a
simple heuristic, the mcRBM produces a compact binary descriptor
that performs better than several state-of-the-art hand-crafted descrip-
tors.

For the sake of seclusiveness, the main characteristics of the match-
ing dataset are briefly repeated (section 5.1). Section 5.2 introduces
the investigated models in more detail while Section 5.3 describes the
evaluation protocol. In section 5.4 I present the empirical results, both
quantitatively and qualitatively. Section 5.5 concludes with a brief
summary.

related work Only a few papers from the last years are simi-
lar in spirit to the work in this chapter: The popular press discussed
two papers [67, 216] that are actually interested in the behaviour of
unsupervised learning approaches without any supervised steps af-
terwards. However, again only high-level representations (i.e. class
instances) are considered. Similarly, very deep Autoencoders [208]
learn a compact, binary representation in order to do fast content-
based image search (semantic hashing, [322]). Again, these represen-
tations are only studied with respect to their capabilities to model
high-level object concepts.

Finding (compact) low-level image descriptors is an excellent su-
pervised learning task: Even hand-designed descriptors have many
free parameters that cannot (or should not) be optimized manually.
Given ground truth data for correspondences, the performance of su-
pervised learning algorithms is impressive, as e.g. demonstrated in
Chapter 4 of this work. See Section 4.6 for more related work in the
space of supervised metric learning.

5.1 dataset

The matching dataset was originally introduced for studying discrim-
inative (i.e. supervised) learning algorithms for local image descrip-
tors [43]. It fosters supervised learning of optimal low-level image
representations using a large and realistic training set of patch corre-
spondences.

The dataset is based on more than 1.5 million image patches (64×
64 pixels) of three different scenes: the Statue of Liberty (about 450,000

patches), Notre Dame (about 450,000 patches) and Yosemite’s Half

5.1 dataset 181

Figure 5.1: Patch correspondences from the Liberty dataset. Note the wide
variation in lighting, viewpoint and level of detail. The patches
are centered on interest points but otherwise can be considered
random, e.g. there is no reasonable notion of an object boundary
possible. Figure taken from [43].

Dome (about 650,000 patches). The patches are sampled around inter-
est points detected by Difference of Gaussians [239] and are normal-
ized with respect to scale and orientation1. As shown in Figure 5.1,
the dataset has a wide variation in lighting conditions, viewpoints,
and scales.

The dataset contains also approximately 2.5 million image corre-
spondences. Correspondences between image patches are established
via dense surface models obtained from stereo matching (stereo match-
ing, with its epipolar and multi-view constraints, is a much easier
problem than unconstrained 2D feature matching). As actual 3D cor-
respondences are used, the identified 2D patch correspondences show
substantial perspective distortions resulting in a much more realistic
dataset than previous approaches [227, 259]. The dataset appears very
similar to to an earlier benchmark of the same authors [420], yet the

1 A similar dataset of patches centered on multi-scale Harris corners is also available.

182 unsupervised modeling of local image patches

correspondences in the novel dataset resemble a much harder prob-
lem. The error rate at 95% detection of correct matches for the SIFT
descriptor [239] raises from 6% to 26%, the error rate for evaluating
patch similarity in pixel space (using normalized sum squared dif-
ferences) raises from 20% to at least 48% (all numbers are take from
[420] and [43] respectively), for example. In order to facilitate com-
parison of various descriptor algorithms a large set of predetermined
match/non-match patch pairs is provided. For every scene, sets com-
prising between 500 and 500,000 pairs (with 50% matching and 50%
non-matching pairs) are available.

The dataset constitutes an excellent test-bed for unsupervised learn-
ing algorithms. A wide range of experiments can be conducted in a
controlled manner:

• Self-taught learning [295],

• Semi-supervised learning,

• Supervised transfer learning over input distributions with a
varying degree of similarity (the scenes of Statue of Liberty and
Notre Dame show architectural structures, while Half Dome re-
sembles a typical natural scenery),

• Enhancing the available dataset with arbitrary image patches at
keypoints and

• Evaluating systems trained on different tasks (e.g. large scale
classification problems [209]).

5.2 methods

The basics of undirected graphical models are extensively covered
in Section 2.6. Therefore this section only describes briefly the exten-
sions of these basic models.

5.2.1 Gaussian-Binary Restricted Boltzmann Machine

The Gaussian-Binary Restricted Boltzmann Machine (GRBM) is an
extension of the Binary-Binary RBM [100] that can handle continuous
data [151, 381]. It is a bipartite Markov Random Field over a set of
visible units, v ∈ Rn, and a set of hidden units, h ∈ {0, 1}m. Every
configuration of units v and units h is associated with an energy
E(v,h,θ), defined as [381]

E(v,h,θ) =
1

2
vTΛv− vTΛa−hTb− vTΛ1/2Wh (5.1)

with θ = (W ∈ Rn×m,a ∈ Rn,b ∈ Rm,Λ ∈ Rm×m), the model
parameters.W represents the visible-to-hidden symmetric interaction

5.2 methods 183

terms, a and b represent the visible and hidden biases respectively
and Λ is the precision matrix of v, taken to be diagonal. E(v,h,θ)
induces a probability density function over v and h:

p(v,h,θ) =
exp

(
−E(v,h; θ)

)
Z(θ)

Z(θ) =

∫ ∑
h

exp
(
−E(v,h,θ)

)
dv

(5.2)

where Z(θ) is the normalization partition function.
Learning the parameter set θ is accomplished by gradient ascent

in the log-likelihood of θ given N i.i.d. training samples. The log-
probability of one training sample is

logp(v,θ) = −
1

2
vTΛv+ vTΛa

+

m∑
j

log

(
1+ exp

(
Nv∑
i

vTi (Λ
1
2W)ij +bj

))
−Z(θ)

(5.3)

Evaluating Z(θ) is intractable, therefore algorithms like Contrastive
Divergence (CD) [149] or persistent CD (PCD) [387] are used to com-
pute an approximation of the log-likelihood gradient. The bipartite
nature of an (G)RBM is an important aspect when using these al-
gorithms: The visible units are conditionally independent given the
hidden units. They are distributed according to a diagonal Gaussian:

p(v | h,θ) ∼ N(Λ− 1
2Wh+a,Λ−1) (5.4)

Similarly, the hidden units are conditionally independent given the
visible units. The conditional distribution can be written compactly
as

p(h | v,θ) = σ(vTΛ
1
2W+b) (5.5)

where σ denotes the element-wise logistic sigmoid function, σ(z) =

1/(1+ e−z).

5.2.2 Sparse GRBM

In many tasks it is beneficial to have features that are only rarely
active [269, 65]. Sparse activation of a binary hidden unit can be
achieved by specifying a sparsity target ρ and adding an additional
penalty term to the log-likelihood objective that encourages the actual
probability of unit j of being active, qj, to be close to ρ [269, 150]. This
penalty is proportional to the negative Kullback-Leibler divergence

184 unsupervised modeling of local image patches

between the hidden unit marginal qj = 1
N

∑
n p(hj = 1 | vn,θ) and

the target sparsity:

λsp
(
ρ logqj + (1− ρ) log(1− qj)

)
, (5.6)

where λsp represents the strength of the penalty. This term enforces
sparsity of feature j over the training set, also referred to as lifetime
sparsity. The hope is that the features for one training sample are
then encoded by a sparse vector, corresponding to population sparsity.
I denote a GRBM with a sparsity penalty λsp > 0 as spGRBM.

5.2.3 Mean-Covariance Restricted Boltzmann Machine

In order to model pairwise dependencies of visible units gated by
hidden units, a third-order RBM can be defined with a weight wijk
for every combination of vi, vj and hk. The cubic scaling of the weight
parameter W (a three-dimensional tensor) of such a third-order RBM
makes learning models of even moderate size prohibitive. A widely
used approach in such cases is to factorize the weight matrix and
possibly share weights. The parameters are therefore reduced to a
filter matrix C ∈ Rn×F connecting the input to a set of factors and a
pooling matrix P ∈ RF×m mapping factors to hidden variables. The
energy function for this cRBM [300] is

Ec(v,hc,θ ′) = −(vTCT)2Phc − c
Thc (5.7)

with θ ′ = {C,P, c} and where (·)2 denotes the element-wise square
operation. Note that P has to be non-positive [300, Section 5]. The
hidden units of the cRBM are still conditionally independent given
the visible units, so inference remains simple. Their conditional dis-
tribution (given visible state v) is

p(hc | v,θ ′) = σ(PT (CTv)2 + c) (5.8)

On the other hand the visible units are conditionally Gaussian:

p(v | hc,θ ′) ∼ N(0,Σ) (5.9)

with

Σ−1 = Cdiag(−Phc)CT (5.10)

Note that this inverse covariance matrix depends on the hidden state.
Repeated conditionally sampling x which is necessary for example
in MCMC is therefore computationally very costly as the inference
can not be amortized over samples: for every sample a new matrix
inversion must be computed.

As Eq. (5.9) shows, the cRBM can only model Gaussian inputs with
zero mean. For general Gaussian-distributed inputs the cRBM and the

5.3 evaluation protocol 185

GRBM can be combined into the mean-covariance RBM (mcRBM) by
simply adding their respective energy functions:

Emc(v,hm,hc,θ,θ ′) = Em(v,hm,θ) + Ec(v,hc,θ ′) (5.11)

Em(v,hm,θ) denotes the energy function of the GRBM (see Eq. (5.1))
with Λ fixed to the identity matrix. The resulting conditional distri-
bution over the visible units, given the two sets of hidden units hm
(mean units) and hc (covariance units) is

p(v | hm,hc,θ,θ ′) ∼ N(ΣWhm,Σ) (5.12)

with Σ defined as in Eq. (5.10). The conditional distributions for hm
and hc are still as in Eq. (5.5) and Eq. (5.7) respectively. The param-
eters θ,θ ′ can again be learned using approximate Maximum Like-
lihood Estimation, e.g. via CD or PCD. These methods require to
sample from p(v|hm,hc,θ,θ ′), which involves an expensive matrix
inversion (see Eq. (5.10)). Instead, samples are obtained by using Hy-
brid Monte Carlo (HMC) [271] on the mcRBM free energy [296].

5.3 evaluation protocol

For the results presented in the following section I loosely follow the
standard evaluation procedure [43]: For every scene (Liberty (denoted
by LY), Notre Dame (ND) and Half Dome (HD)), I use the labeled
dataset with 100,000 image pairs to assess the quality of a trained
model on this scene. In order to save space I do not present ROC
curves and only show the results in terms of the 95% error rate which
is the percent of incorrect matches when 95% of the true matches are
found.

The presented models are trained in an unsupervised fashion on
the available patches while the original work was purely supervised
[43]. Therefore I investigate two scenarios. In the first scenario, I train
on one scene (400,000 randomly selected patches from this scene) and
evaluate the performance on the test set of every scene. This allows
to investigate the self-taught learning paradigm [295]. In the second
scenario I train on all three scenes jointly (represented by 1.2 million
image patches) and then evaluate again every scene individually.

5.3.1 Distance metrics

As I explicitly refrain from learning a suitable (with respect to the
correspondence task) distance metric with a supervised approach,
standard distance measures must be used. The Euclidean distance is
widely used when comparing image descriptors. Yet, considering the
generative nature of the models a rather general argumentation [186]
indicates that the Manhattan distance, denoted L1, should be chosen

186 unsupervised modeling of local image patches

for matching tasks. I also consider two normalization schemes for
patch representations, `1 and `2 (i.e. after a feature vector x is com-
puted, its length is normalized such that ‖x‖1 = 1 or ‖x‖2 = 1).

Given a visible input both (sp)GRBM and mcRBM compute fea-
tures that resemble parameters of (conditionally) independent binary
random variables (i.e. Bernoulli variables). The Kullback-Leibler di-
vergence [70] KL[·||·] between two probability mass functions p and
q over a set X is defined as

KL[p||q] =
∑
x∈X

p(x) log
p(x)

q(x)
(5.13)

For example, the Kullback-Leibler divergence of a Bernoulli variable
with bias p to a Bernoulli variable with bias q is given by

p log
p

q
+ (1− p) log

1− p

1− q
(5.14)

A symmetric version of the Kullback Leibler divergence is the Jensen-
Shannon divergence JSD [229]:

JSD(p ‖ q) = 1

2
KL[p||m] +

1

2
KL[q||m] (5.15)

with m(x) = 1
2(p(x) + q(x)) for all x ∈ X. Finding m(x) for dis-

crete probability mass functions p(x) and q(x) is straightforward—
however it is very difficult for continuous probability density func-
tions!

5.4 results

This section presents the results for GRBM, its sparse variant and
mcRBM. As the three main baselines serve SIFT [239], Principle Com-
ponents Analysis (PCA, see Section 2.6.2) and raw pixel values (i.e.
the image patch is the descriptor itself), see Table 5.1.

5.4.1 Baselines

sift. SIFT [239] (both as interest point detector and descriptor) is
a landmark for image feature matching. Because of its good perfor-
mance it is one the most important basic ingredients for many differ-
ent kinds of Computer Vision algorithms. I use it as the main baseline
for evaluating the three models.

Table 5.1 shows two entries for SIFT: The first line shows the result
for a slightly post-processed SIFT descriptor: it is `1 normalized. `1
normalization provides better results than `2 normalization or no nor-
malization at all. SIFT performs descriptor sampling at a certain scale
relative to the Difference of Gaussians peak. In order to achieve good
results, it is essential to optimize this scale parameter [43, Figure 6] on

5.4 results 187

Table 5.1: Error rates of various baseline models. The table shows the per-
cent of incorrect matches when 95% of the true matches are found.

Test set

Method Training set LY ND HD

SIFT – 28.1 20.9 24.7

RAW – 58.3 52.4 51.1

LY 51.3 50.9 53.2
PCA ND 51.9 46.4 49.5
(128d) HD 53.8 47.4 47.3

SIFTb – 31.7 22.8 25.6

BRIEF – 59.1 54.5 54.9

BRISK – 79.3 74.8 73.2

SURF – 54.0 45.5 43.5

every dataset. As it turns out, with the SIFT implementation used for
this work [404], the scale parameter is identical for all three datasets.
Therefore, one line in Table 5.1 suffices for presenting the results for
a normalized SIFT vector.

A second aspect that is also investigated here is the performance of
compact descriptors (compact here means that the memory footprint
is small). SIFT in its unnormalized form can be represented with 128

bytes only. The performance of this 128-byte descriptor is shown in
the line labeled SIFTb of Table 5.1. The last lines in this table also
show other widely used descriptors that where specifically designed
to improve over SIFT with respect to compactness: BRIEF (32 bytes)
[49] and BRISK (64 bytes) [228] are binary descriptors, SURF [14] is
a real valued descriptor with 64 dimensions. Interestingly, the perfor-
mance of these descriptors is far from the performance of SIFT and
yet these descriptors are often used in matching tasks.

pca . The simplest descriptor for any entity is always the entity it-
self. In the case of the image patches of the dataset at hand this results
in 4096 dimensional descriptors. Obviously, the resulting matching
performance is not expected to be very good. Therefore this perfor-
mance serves well as a general lower bound. The line denoted RAW
in Table 5.1 depicts the error rates for this case. A definite weakness
of this descriptor is its high memory footprint (4096 bytes, because
no normalization is applied to the byte values of the pixels). PCA is
a widely used technique to achieve simple dimensionality reduction.

188 unsupervised modeling of local image patches

Table 5.2: Error rates, i.e. the percent of incorrect matches when 95% of the
true matches are found. All numbers for GRBM and spGRBM
are given within ±0.5%. (L1`1) indicates that descriptors are `1
normalized and compared under the L1 distance metric.

Test set

Method Training set LY ND HD

SIFT – 28.1 20.9 24.7

LY 47.6 33.5 41.4

GRBM ND 50.0 33.4 42.5

(L1`1) HD 49.0 34.0 41.5

LY/ND/HD 48.7 33.5 42.1

LY 37.9 26.9 34.3

spGRBM ND 40.0 28.0 35.4

(L1`1) HD 39.1 27.9 34.9

LY/ND/HD 37.5 26.6 33.6

The entry in Table 5.1 shows the performance of 128-dimensional de-
scriptors (real valued). PCA needs a training set, therefore the entry
consists of three sub-entries.

5.4.2 GRBM/spGRBM

The GRBM and spGRBM only differ in the setting of the sparsity
penalty λsp, therefore the results for both models are presented to-
gether. I use CD1 [149] to compute the approximate gradient of the
log-likelihood and the recently proposed RMSprop [388] (also see
Eq. (2.357)) method as gradient ascent method. Table 5.2 shows the
overall error rates for both models (together with the SIFT baseline).

Before learning the parameters all image patches are rescaled to
16× 16 pixels. Then I preprocess all training samples by subtracting
from every patch its mean and dividing by the standard deviation
of its elements. This is a common practice for visual data and corre-
sponds to local brightness and contrast normalization. There is also
a theoretical justification for why this preprocessing step is neces-
sary to learn a reasonable precision matrix Λ [381, Section 2.2]. It
is the only preprocessing scheme that allows GRBM and spGRBM to
achieve good results. In addition, it is important to learnΛ—setting it
to the identity matrix, a common practice [150], also produces dissat-

5.4 results 189

isfying error rates. Note that originally it was considered that learn-
ing Λ is mostly important when one wants to find a good density (i.e.
generative) model of the data.

Both GRBM and spGRBM have 512 hidden units. The elements
of W are initialized according to N(0, 0.1), the biases are initialized
to 0. RMSprop uses a learning rate of 0.001, the decay factor is 0.9,
the minibatch size is 128. Both models train for 10 epochs only. The
spGRBM uses a sparsity target of ρ = 0.05 and a sparsity penalty of
λsp = 0.2. spGRBM is very sensitive to settings of λsp [377]—setting it
too high results in dead representations (samples that have no active
hidden units) and the results deteriorate drastically.

Like SIFT, GRBM and spGRBM perform best when their latent rep-
resentations are `1 normalized before compared under the L1 dis-
tance. spGRBM performs considerably better than its non-sparse ver-
sion. This is not necessarily expected: Unlike e.g. in classification [65]
sparse representations are considered problematic with respect to
evaluating distances directly. Lifetime sparsity may be after all bene-
ficial in this setting compared to strictly enforced population sparsity.
Both models perform very poorly under the Jensen-Shannon diver-
gence similarity (overall error rates around 60%), which is therefore
not reported in Table 5.2. I was not successful in finding a compact
representation with any of the two models, that performed at least in
the range of PCA.

spGRBM shows an unexpected behaviour. While Notre Dame seems
to be the simplest of the three datasets (with respect to the matching
problem), its worst performance is obtained when the representations
are learned on the Notre Dame patches. Furthermore, Liberty benefits
more from unsupervised training on Half Dome than on Notre Dame,
even though Notre Dame is much more similar to it (self-teaching hy-
pothesis). Altogether the best performance is achieved when trained
jointly on all three scenes. These three observations may indicate ef-
fects due to overfitting in the first two cases. This might be alleviated
by enhancing the dataset with patches around keypoints from arbi-
trary images.

I also briefly compared RMSprop training with standard minibatch
gradient descent training. There were no differences in the final eval-
uation results, yet RMSprop needed at most half of the training time
necessary for comparable results with standard gradient descent.

5.4.3 mcRBM

mcRBM training is performed using the code from the original pa-
per [296]. The patches are resampled again to 16 × 16 pixels. Then
the samples are preprocessed by subtracting their mean (patchwise),
followed by PCA whitening, which retains 99% of the variance. The

190 unsupervised modeling of local image patches

Table 5.3: Error rates for the mcRBM models. The table shows the percent
of incorrect matches when 95% of the true matches are found. All
numbers are given within ±0.5%. (L1`2) indicates that descriptors
are `2 normalized and compared under the L1 distance metric.
JSD denotes the Jensen-Shannon divergence.

Test set

Method Training set LY ND HD

SIFT – 28.1 20.9 24.7

LY 31.3 25.1 34.5

mcRBM ND 34.0 25.6 33.0

(L1`2) HD 31.2 22.3 25.7

LY/ND/HD 30.8 24.8 33.3

LY 34.7 24.2 38.6

mcRBM ND 33.3 24.8 44.9

(JSD) HD 29.9 22.7 37.6

LY/ND/HD 30.0 23.1 39.8

overall training procedure (with stochastic gradient descent) is iden-
tical to the one described in [296, Section 4].

Two different mcRBM architectures are considered: The first has
256 mean units, 512 factors and 512 covariance units. P is not con-
strained by any fixed topography. The results for his architecture
are presented in Table 5.3. The second architecture is concerned with
learning more compact representations: It has 64 mean units, 576 fac-
tors and 64 covariance units. P is initialized with a two-dimensional
topography that takes 5× 5 neighbourhoods of factors with a stride
equal to 3. The results for the binarized representations of this model
is shown in Table 5.4. Both architectures are trained for a total of 100

epochs, however updating P is only started after epoch 50.
For both instances the main insight is that only the latent covariance

units should act as the representations for a given patch. Compared to
results using the complete latent representation, this form of descrip-
tors perform much better, in particular for the compact architecture
with 64 covariance units. Using the complete latent representation
of the mcRBM gives performance results that are much worse then
the RAW descriptors. This is in accordance with manually designed
descriptors: Many of these rely on distributions (i.e. histograms) of
intensity gradients or edge directions [239, 259, 14], structural infor-
mation which is encoded by the covariance units of an mcRBM. The

5.4 results 191

Table 5.4: Error rates for compact real-valued (mcRBM with L1`2 dis-
tance/normalization scheme) and binarized descriptors. The ta-
ble shows the percent of incorrect matches when 95% of the true
matches are found. D-Brief [395] learns compact binary descrip-
tors with supervision.

Test set

Method Training set LY ND HD

SIFT – 31.7 22.8 25.6

BRIEF – 59.1 54.5 54.9

BRISK – 79.3 74.8 73.2

SURF – 54.0 45.5 43.5

LY 33.5 37.2 55.8

mcRBM ND 37.3 37.2 50.6

(L1`2) YM 34.0 32.4 44.7

LY/ND/HD 33.6 32.2 52.3

LY – 43.1 47.2
D-Brief ND 46.2 – 51.3
(4 bytes) HD 53.3 43.9 –

LY 32.0 35.1 56.5

mcRBM ND 41.4 30.1 51.4

(8 bytes) YM 37.9 31.5 47.3

LY/ND/HD 36.1 27.2 46.1

function of the mean units is to factor away aspects like lighting con-
ditions which are uninformative for the similarity task (see also [301,
Section 2]).

The large mcRBM architecture with 512 covariance units performs
best under the L1 distance measure when the latent representation is
`2 normalized. When Half Dome is used as training set the overall
performance on all three datasets is comparable to normalized SIFT,
albeit at the cost of a 4.5 times larger feature representation. Com-
pared to spGRBM one sees a noticeable improvement for the results
on the respective training set (the diagonal entries in the subtable).
Overall the more complex mcRBM seems to be beneficial for mod-
eling Liberty and Notre Dame. Evaluating under the JSD distance
measure produces results as bad as with (sp)GRBM. However, if one
scales down the factors of the trained model linearly (a value of 3 is

192 unsupervised modeling of local image patches

appropriate), the results with respect to JSD improve remarkably, see
Table 5.3, the last entry. The positive effect of this heuristic scaling
is not as pronounced for the Half Dome dataset. Noteworthy, the
same observation with respect to training on HD holds as with the
(L1`2) evaluation scheme. The scaling heuristic is also beneficial if
the input is differently preprocessed: Scaling down the factors after
unsupervised training is necessary if one seeks comparable results
for contrast normalized, ZCA’ed [66] image patches (the results for
this preprocessing scheme are not shown here). Instead of manually
adjusting this scale factor, it should be a better idea to learn a scal-
ing shared by all factors [73], yet integrating this scale parameter and
optimizing it with respect to the mcRBM training objective did not
result in the predicted improvements.

Finding compact representations for any kind of input data should
be done with multiple layers of nonlinearities [208]. But even with
only two layers it is possible to learn relatively good compact de-
scriptors, cf. to the mcRBM entry in Table 5.4. If features are bina-
rized, the representation can be made even more compact. In order to
find a suitable binarization threshold I employ the following simple
heuristic: After training on a dataset all latent covariance activations
(values between 0 and 1) of the training set are histogrammed. The
median of this histogram is then used as the threshold. Table 5.4, last
entry, shows that the resulting compact (8 bytes) descriptor performs
remarkably well, comparable or even better than several state-of-the-
art descriptors. It performs even comparable to D-Brief [395], which
is a binary descriptor learned in a supervised way.

5.4.4 Other models

I also trained several other unsupervised feature learning models:
GRBM with nonlinear rectified hidden units2 [268], various kinds
of Autoencoders (sparse [66] and denoising [408] Autoencoders) and
two layer models (stacked RBMs, Autoencoders with two hidden lay-
ers, cRBM [300]). None of these models performed better than PCA
and usually failed to supersede the RAW pixel descriptor, too.

In several publications [66, 67] gain-shaped K-means performed sur-
prisingly well compared to RBM or Autoencoder based models. Com-
pared to standard K-means, the important ingredient is that image
patches are ZCA’ed. Due to its fast training time it is an attractive
model for learning low-level descriptors. However, even after scaling
down the image patches to 12× 12 (no learning happened with large
image patches, instead the learned centers were exemplars from the
training set), no convincing results could be achieved, see Table 5.5.

2 My experiments indicate that RMSprop is in this case also beneficial with respect to
the final results: It learns models that perform about 2-3% better than those trained
with stochastic gradient descent.

5.4 results 193

Table 5.5: Error rates for K-means, i.e. the percent of incorrect matches when
95% of the true matches are found. All numbers for K-means are
given within ±0.5%.

Test set

Method Training set LY ND HD

SIFT – 28.1 20.9 24.7

LY 40.9 38.9 44.3

K-means ND 45.0 39.7 44.1

HD 49.1 37.3 47.9

LY/ND/HD 42.7 35.3 43.2

deep autoencoders . It may be not surprising that models with
only one or two layers of representations have difficulties with mod-
eling the complex dataset at hand. SIFT itself can be represented as
a model that has at least two layers. It therefore seems likely that
a model with many layers performs better than either (sp)GRBM or
mcRBM. In order to investigate this hypothesis, I trained a deep Au-
toencoder with six layers (1024− 512− 256− 128− 256− 512− 1024).
One variant used GRBM (for the first layer) or standard binary-binary
RBMs (for the subsequent layers) for layer initialization [208], a differ-
ent variant simply trained the complete architecture in an end-to-end
manner, which could be successfully trained if the layers got initial-
ized properly [375]. The positive result of these models is that the
reconstruction loss for a given image is an order of a magnitude bet-
ter than the reconstruction loss one can achieve with PCA. Obviously,
this is not very surprising given the amount of parameters the model
posses. On the other hand, the 128 dimensional deep representations
used for the matching task did not perform better than the represen-
tation learned with PCA. In the conclusion of this chapter I speculate
why it is probably not enough in the case of unsupervised learning
to simply scale the depth of ones models to achieve better results.

5.4.5 Qualitative analysis

When working with image data it is always instructive and interest-
ing to visualize filters or features developed by a model. Unsurpris-
ingly, both spGRBM (Figure 5.2a) and mcRBM (Figure 5.2b—these are
columns from C) learn Gabor like filters. Filters learned with GRBM
(not shown) tend to be much more random and have overall a much
lower number of such Gabor filters.

194 unsupervised modeling of local image patches

(a) (b)

Figure 5.2: Patch models tend to learn Gabor filters. (a) Typical filters
learned with spGRBM. (b) Filters from an mcRBM.

(a) (b)

Figure 5.3: (a) The pixelwise inverted standard deviations learned with a sp-
GRBM plotted as a 2D image (darker gray intensities resemble
lower numerical values). An input patch is elementwise multi-
plied with this image when computing the latent representation.
This figure is generated by training on 32× 32 patches for bet-
ter visibility, but the same qualitative results appear with 16× 16
patches. (b) The relative contribution of patch pixels learned by
the large margin based convex optimization approach [351].

An interesting observation can be made when inspecting the di-
agonal elements of Λ1/2 from a spGRBM: Figure 5.3a shows these
elements visualized as an image patch—when computing a latent rep-
resentation, the input v is scaled (elementwise) by this matrix. This
2D image resembles a Gaussian that is dented at the center, the loca-
tion of the keypoint of every image patch. This observation is even
more interesting if compared to pooling configurations learned with
a large margin convex optimization approach [351]: As Figure 5.3b
shows, the weighting structure learned by the supervised algorithm
is similar to the weighting matrix from spGRBM.

The mcRBM also places filters around the center (the location of
the keypoint): Figure 5.4a shows some unusual filters from C. They
are centered around the keypoint and bear a strong resemblance to
discriminative projections (Figure 5.4b) that are learned in a super-
vised way on this dataset [43, Figure 5]. Qualitatively, the filters in
Figure 5.2d resemble log-polar filters that are used in several state-
of-the-art feature designs [259]. While it may be surprising that these
filters appear with the mcRBM, if one considers the energy function

5.5 conclusion 195

(a) (b)

Figure 5.4: (a) The mcRBM also learns some variants of log-polar filters cen-
tered around the DoG keypoint. These are very similar to filters
found when optimizing for the correspondence problem in a su-
pervised setting. Several of such filters are shown in subfigure (b),
taken from [43, Figure 5].

Figure 5.5: The basic keypoint filters are combined with Gabor filters, if
these are placed close to the center. The Gabor filters get sys-
tematically arranged around the keypoint filters.

of the mcRBM, it matches the supervised criteria used for discrimina-
tive training for the DAISY [43] descriptors!

Finally, the very focused keypoint filters (first column in Figure 5.2)
are often combined with Gabor filters placed in the vicinity of the cen-
ter—the Gabor filters appear on their own, if they are too far from
the center. If an mcRBM is trained with a fixed topography for P,
one sees that the Gabor filters get systematically arranged around the
keypoint (Figure 5.5). This can be loosely interpreted as learning an
orientation with respect to the keypoint at the center of the patch. But
this is actually what happens in the algorithm of SIFT descriptor.

5.5 conclusion

In summary the evaluation presented in this chapter leaves some pos-
itive and some negative impressions. On the negative side are defi-
nitely the large number of models that could not even outperform
the most simple baselines of RAW and PCA descriptors. One might
argue that this comes as no surprise, as the matching task requires
methods that identify geometric invariances between patches but all
employed models are never shown this kind of pairwise data. At least

196 unsupervised modeling of local image patches

outperforming a standard linear model like PCA should be possible,
though.

Clearly, some of these models (even a plain deep autoencoder) are
probably not expressive enough for the data. Of course it is possible
that there are some methods that apriori have latent representations
that are more useful for the kind of matching task while other meth-
ods choose representations more suitable for different tasks, but both
classes of methods are equally expressive for the raw dataset. Overall
this might require that unsupervised learning as a general methodol-
ogy needs a more fine-grained definition. More specifically it means
that the matching dataset should indeed serve as a general unsuper-
vised benchmark, in particular because the most popular evaluation
methods for unsupervised algorithms are inconsistent [385].

On the positive side is the result achieved by the mean-covariance
RBM. It does not only show a good quantitative performance but
also has interesting (and partially surprising) qualitative characteris-
tics. The nice aspect of this model is that the interpretation of its two
types of latent units (mean and covariance units) induces an appro-
priate usage in the matching task that eventually leads to the good
performance: the covariance units are supposed to encode the image
content and therefore are the representation that must be used for
similarity problems.

An important question can be directly derived from this observa-
tion: Do methods that have different groups of latent variables (algo-
rithmically and semantically different) perform better in general on
this task (given of course that the specific group of latent units is cho-
sen that supposedly is best suited for the matching task)? Or, more
generally, should unsupervised methods always have factorized la-
tent representations (also see the end of Section 2.7.4)?

6
T O U R D E S C U L - D E - S A C S

When summarizing research results it should be good practice to
report approaches that did not work as expected, too. This is par-
ticularly true for methods that theoretically are a perfect fit for the
problem or empirically have been verified with great success. Such
negative research results can spur new research directions as they
may highlight potential (overlooked) weaknesses of methods.

This chapter briefly gives an overview of failed attempts to tackle
the problem of learning (compact) descriptors for local image patches
(see Chapter 3) with supervised, semi-supervised and unsupervised
methods. All proposed experiments use methods that are either the-
oretically or empirically well-motivated. Because the outcome of the
various experiments was not as good as expected, I use one third of
the evaluation setup: results are reported for the Liberty traininig set
only (i.e. the test sets are Notre Dame and Half Dome). This reduced
the computational burden when running the unsuccessful results sev-
eral times to validate the findings. I describe fruitless explorations
into

• semi-supervised models (Section 6.1): A type of gated undi-
rected graphical model allows to describe pairs of input data
and induces a semi-distance metric on the latent representa-
tion. The performance of this model on the matching dataset
is poor. A simple extension of the learning rule using explic-
itly non-matching pairs (and thus turning the originally semi-
supervised model into a fully supervised model) lead to a con-
siderable improvement but the new model still performs worse
than the baseline performance from SIFT.

• supervised extensions (Section 6.2): The supervised model from
Chapter 4 has many possible options that could lead to consid-
erable improvements: Models that take explicitly or implicitly
scale into account, cost functions that are better tuned to the
evaluation criteria or the magic-wand dropout [365]. Only a few
of these ideas turned out to be good candidates for further in-
vestigations.

• unsupervised models (Section 6.3): Directed graphical models,
relying on deep Neural Networks as fast approximators (see
Section 2.7.4), seem to be a very good fit to the matching task.
The reported failure on the dataset may hint at some missing
ingrediants of these new approaches for tackeling more realistic
datasets.

197

198 tour des cul-de-sacs

6.1 modeling image pairs with a three-way rbm

Why did the unsupervised approaches in Chapter 5 perform so un-
convincingly? One possible explanation is that for high-dimensional
visual inputs the utilized models are simply not powerful enough
(see Section 6.3 for one more attempt with supposedly better models).
From a more abstract point of view it is questionable whether purely
static unsupervised learning can actually be successful in the evalua-
tion setting at hand: The matching task from Chapter 3 requires that a
model identifies the invariances between patches. Probably these types
of invariances are only detected to some degree by looking at single
samples alone—most of the capacity of the models will be spent on
describing the regularities found over the dataset as a whole. It is
quite possible that the important invariances for describing pairs of
samples can not be detected at all with such models.

So for an approach that operates closer to the actual task, the re-
spective models should be able to know at least about the positive
instances of matching pairs. Such instances are readily available in a
phyiscally grounded data set: proximity in time or space is implicitly
pairing samples. Of course it is still advantageous if these models can
represent a single input, too.

With these considerations in mind, one possible approach is to use
a set of binary latent variables h ∈ [0, 1]d that identify different kinds
of basic relationships between two inputs x ∈ RDx ,y ∈ RDy and
define the following score S(x,y,h) over triplets x,y,h [372]:

S(x,y,h) =
F∑
f=1

vf
Tx×wfTy×ufTh. (6.1)

Hereby, vf ∈ RDx , wf ∈ RDy and uf ∈ Rd, for f = 1, 2, . . . f denote
filters that will be learned from training data. For convenience, these
filters are also put into matrices in a row-wise manner, i.e. V ∈ Rf×Dx ,
W ∈ Rf×Dy and U ∈ Rf×d, which allows to rewrite Eq. (6.1) more
compactly:

S(x,y,h) = xTVTdiag(Uh)Wy (6.2)

This score function is turned into an energy function E(x,y,h,θ) by
extending it with bias terms:

E(x,y,h,θ) = −S(x,y,h) − cTh

+
1

2
(x−a)T (x−a) +

1

2
(y−bT)(y−b)

(6.3)

6.1 modeling image pairs with a three-way rbm 199

with θ = {U,V,W,a,b, c}. The energy function defines an undirected
graphical model (see Section 2.6.1) representing the probability distri-
bution over the three variables x,y,h:

p(x,y,h | θ) =
1

Z
exp(−E(x,y,h,θ)),

Z =
∑
h

∫ ∫
exp(−E(x,y,h,θ))dxdy

(6.4)

The resulting model is similar to a basic RBM 2.236, but with multi-
plicative interactions. Without this type of interaction it would simply
be an RBM that has x and y as a concatenated input.

The bias terms in equation 6.3 for x and y are necessary in order
to obtain a proper distribution: Both x and y represent continuous
data, without the quadratic containment terms the energy function
could be made arbitrarily negative. The exact form of the containment
defines the actual conditional probability distribution. In this case it
leads to conditional Gaussians:

p(x | h,y,θ) = N(x | VT (Wy�Uh) +a, I)

p(y | h, x,θ) = N(y |WT (Vx�Uh) +b, I)
(6.5)

The conditional Gaussians are spherical—inputs x and y are not mod-
eled, only the invariances with respect to each other. This is best seen
when considering p(x,y | h,θ):

p(x,y | h,θ) ∼ N

 x

y

∣∣∣∣∣∣
(
a

b

)
,

(
I Σ

ΣT I

)−1
 (6.6)

with Σ = VTdiag(Uh)WT , see Eq. (6.2).
Similar to the standard RBM the conditional distribution for the

latent variable is a factorized Bernoulli distribution:

p(h | x,y,θ) =
d∏
i=1

σ
([
UT (Vx�Wy) + c

]
i

)
(6.7)

While the model is defined over the triplet x, y, h, the impor-
tant aspect is the relationship between pairs (x,y), described by the
marginalized joint distribution p(x,y | θ):

p(x,y, | θ) =
∑
h

p(x,y,h | θ)

= exp
(
−
1

2
(x−a)T (x−a) −

1

2
(y−b)T (y−b)

)
×(d∏

k=1

(
1+ exp

(
ck +uk

T (Vx�Wy
)))

/Z

(6.8)

where uk is the k-th column of U and Z is the normalizing constant
defined in Eq. (6.4). Z is not tractable for reasonable large d which is

200 tour des cul-de-sacs

a problem when doing maximum likelihood learning for the param-
eters θ. With `(θ) =

∑N
n=1 logp(xn,yn | θ) being the log-likelihood

over a dataset with N observed input pairs, the derivative ∇θ`(θ)
of the log-likelihood with respect to the parameters corresponds to
the standard derivative-expression for undirected graphical models
(see Eq. (2.234)):

∇θ`(θ) =
∑
n

(
− Ep(h|x,y,θ) [∇θ (E(x,y,h,θ))]

+Ep(h,x,y|θ) [∇θ (E(x,y,h,θ))]
) (6.9)

Optimizing the paramters is usually done with stochastic gradient
descent, using mini-batches of samples. The specific gradients for
U,V,W, a, b, c can be derived using the Matrix Calculus rules from
Section 2.2 (among others, the trace-derivative trick) and are given by
the following expressions (these are incorrectly stated in the original
paper [372]):

∇UE(x,y,h,θ) = −(Vx�Wy)hT

∇VE(x,y,h,θ) = −(Wy�Uh)xT

∇WE(x,y,h,θ) = −(Vx�Uh)yT

∇aE(x,y,h,θ) = −(x−a)

∇bE(x,y,h,θ) = −(y−b)

∇cE(x,y,h,θ) = −h

(6.10)

Due to equation Eq. (6.7) sampling from p(h | x,y,θ) is computa-
tionally cheap, so the first term of Eq. (6.9) (the positive phase) can be
approximated with the Monte Carlo principle. However the second
term (the negative phase) is an average with respect to the model distri-
bution over x,y and h. One possible remedy is to apply Contrastive
Divergence (CD) (see Eq. (2.242)) where the two groups of variables
that get alternatedly sampled in the Gibbs Chain are the pair (x,y)
and h. p(x,y | h,θ) is Gaussian (Eq. (6.6)), but its covariance matrix
is the inverse of a larger matrix formed by some of the parameters.
So every Gibbs step involves a costly matrix inversion which makes
standard Contrastive Divergence not applicable here.

Because of the special conditional independence relationship be-
tween the three random variables, a three-way Contrastive Diver-
gence approximation [372] can be utilized to generate a Monte Carlo
estimate of the second phase: using Gibbs sampling, the distributions
p(h | x,y,θ), p(x | h,y,θ) and p(y | h, x,θ) are circularly sampled.
The structure between x and y does not imply any sampling order
and therefore the ordering for p(x | h,y,θ) and p(y | h, x,θ) should
be choosen anew (e.g. randomly) every time h got sampled. In order
to avoid overfitting it might be a good idea to regularize the log-
likelihood function, e.g. with the Frobenius norm (Eq. (2.30)) of the
matrices. If x and y are form the same domain and Dx ≡ Dy then it

6.1 modeling image pairs with a three-way rbm 201

might also be a good regularization approach to set V ≡ W. In this
case the model can also be used to determine a latent representation
for a single input x alone (representing a covariance-RBM [300]).

The log-probability of an image pair (x,y) is given by

logp(x,y | θ) = −
1

2
(x−a)T (x−a) −

1

2
(y−b)T (y−b)

+

d∑
k=1

log
(
1+ exp

(
ck +uk

T (Vx�Wy)
))

− logZ

(6.11)

logZ can not be computed, but when comparing (i.e. subtracting) the
log-probabilities of two image pairs it cancels. Hence a semi-metric
d(x,y) for an image pair can be defined as

d(x,y) = − logp(x,y | θ) − logp(y, x | θ)

+ logp(x, x | θ) + logp(y,y | θ)
(6.12)

This definition not only removes the sensitivity to how well images
themselves are modelled (the last two terms) but also ensures sym-
metry (d(x,y) = d(y, x). An alternative way to obtain a symmetric
semi-metric is by weight sharing the filters V and W.

This model is theoretically very nice and in combination with the
semi-metric from eq. 6.12 fits exactly the matching problem. However,
even with a large amount of different hyperparameter settings I was
not able to achieve false positive rates that were close to the SIFT
baseline reported in Chapter 3: Overall error rates stayed above 60%
using positive pairs from the Liberty training set (this was also true
for the other two training sets).

One possible reason for the poor performance might be that the
model is overfitting on the training data. This happens easily with
standard Contrastive Divergence training, as the probability space
outside a small viccinity of the training samples is not explored. For
pairs of images this idiosyncrasy is even more problematic. Persistent
Contrastive Divergence [387] is an extension of CD to circumvent this
problem—but it did not help in the case at hand. The performance did
not increase. There also exists an explanation for this observation: The
persistent samples are only helpful when they can tackle the difficult
space of the probability landscape induced by the model parameters.
But this means that the persistent samples should consist of good false
pairs which is difficult to ensure in the absence of a valid model for
a single image—the persistent chain can easily lose track and start
producing negative image pairs that don’t help with learning at all.

The model performance can be increased considerably if the per-
sistent samples are explicitly paired with valid negative pairs. The
resulting model is then no longer semi-supervised, though the neg-
ative pairs can simply consist of arbitrary image pairs. More specif-
ically, given a set N of negative pairs, Explicit Negative Contrasting

202 tour des cul-de-sacs

uses negative pairs (x,y) ∈ N in order to compute a better gradient
∇θ`(θ):

∇θ`(θ) =
∑
m∈N

∑
n

(
− Ep(h|x,y,θ) [∇θ (E(x,y,h,θ))]

+
1

2

(
Ep(h,x,y|θ) [∇θ (E(x,y,h,θ))]

+Ep(h|xm,ym,θ) [∇θ (E(x,y,h,θ))]
)) (6.13)

The Monte Carlo approximation of the expectation over the model
can be done with Persistent Constrastive Divergence and optimiza-
tion uses mini-batched stochastic gradient descent (i.e. a small subset
of positive and negative image pairs is used for training). Note that
without the term representing the negative phase the results reported
in the next paragraph could not be obtained.

Training on positive and negative image pairs from the Liberty
training set resulted in a substantial reduction of error rates. Using
784 factors and 200 latent units, the false positive rate at 95% recall
was 29% on the Notre Dame evaluation set and 40% on the Halfe
Dome evaluation set. Compared to the baseline models and state-of-
the art results for supervised models (see Chapter 3) these results are
still far from impressive. The learned filters (Figure 6.1) however show
that the involved transformations between image pairs are detected
very well—this indicates that better performance could be possible if
this new model is tweaked into the right direction. These filters re-
semble to a large degree the well-known log-polar filters [430], which
are best suited to detect rotations. Apart from rotatations the other
dominating geometric transformation between image pairs is a scale
transformation. This is represented by filters having a log-polar struc-
ture at different scales and by filters depicting vortex-like structures.
The involved image transformations are heavily non-linear and there-
fore the learned filters do not look perfectly smooth.

While this new model is not competitive with respect to the match-
ing task, it is nonetheless an intersting option when a more general
probabilistic model should be learned. The supervised three-way fac-
tored RBM model is much more generally useful, for example it can
also be used for denoising or impainting tasks, if one of the inputs is
of lower quality (e.g. corrupted).

6.2 exploring extensions to the supervised model

For the basic supervised model described in Chapter 4 a set of possi-
ble improvements exists:

• Architecture: The dataset encompasses image patches covering
a wide range of different scales. While the max-pooling opera-
tor seems to be able to resolve some of these scale issues it is

6.2 exploring extensions to the supervised model 203

Figure 6.1: Filters for a factorized three-way RBM learned with explicit con-
trastive Divergence. The model has 200 latent binary units, 784 fac-
tors and 32× 32 inputs. The two projection matrices for the input
pairs (V, W) are shared. Positive and negative image pairs are
from the Liberty training set. Optimization was done with mini-
batched stochastic gradient descent with momentum, using 50

positive and 50 negative samples each. The persistent chain en-
compasses also 50 samples.

not perfectly suited for this task. One possible approach is to
explicitly model scale with several complete multi-layer pathways.
A recurrsive attention model on the other hand can handle dif-
ferent scales in an implict way.

• Cost functions: While DrLim is a well-founded heuristic to de-
termine similarity embeddings it has at least two shortcomings.
The DrLim objective does too much work: matching descriptors
only need to be closer to each other than non-matching descrip-
tors. So ranking-like constraints might be more suitable than
DrLim-based cost functions. Furthermore, the resulting embed-
dings are point estimates which can not capture the inherenct
uncertainty of the input data.

204 tour des cul-de-sacs

6.2.1 Scale-aware architecture

If it is possible to decompose the input into different entities that
resemble information at different scales than a scale-aware architec-
ture can be built in an explicit manner: Every entity is processed by a
deep network and the resulting outputs are combined into one global
representation for the original input.

For images a widely used decomposition that was shown to cap-
ture scale information well [232] is the Laplacian Pyramid [48]. The
Laplacian Pyramid is constructed out of the so-called Gaussian Pyra-
mid. For a given image x a Gaussian Pyramid is built by subsampling
the original image repeatedly. More specifically, let Rk be an operator
that subsamples an image by a facotr of k (such a subsampling op-
erator usually has a Gaussian smoothing operator as a first step in
order to avoid aliasing effects). The first element P0 of the Gaussian
pyramid is the original image x. The second element is P1 = Rk(x),
the third element is P2 = Rk(P1) and so on.

In order to construct elements for the Laplacian Pyramid, an ex-
pand operator Ek is necessary, which upsamples an image by a factor
of k (this upsampling operator usually has a Gaussian smoothing op-
erator as a final step). The level k of a Laplacian Pyramid is then
built by the difference of two consecutive images from the Gaussian
Pyramid:

Ll = Pl − Ek(Pl+1) (6.14)

The last element of the Laplacian Pyramid is the last image of the
Gaussian Pyramid.

A Laplacian Pyramid with k levels is processed by k deep Convolu-
tional Networks [94]. In the experiments I decided to have a pyramid
of depth 3. The network applied to the first level of the pyramid has
the same architecture as the baseline network from Chapter 4:

• A convolutional layer with 40 5× 5 filters, followed by a stan-
dard 2x2 max pooling operation. The activation function is tanh.

• A convolutional layer with 40 5× 5 filters, followed by a stan-
dard 2x2 max pooling operation. The activation function is tanh.

• A convolutional layer with 40 4× 4 filters, followed by a stan-
dard 2x2 max pooling operation. The activation function is tanh.

• A convolutional layer with 64 5× 5 filters, which reduces every
feature layer to a scalar. The activation function is tanh.

• Finally a fully connected linear layer of size 64 x 32.

The second-level image is 32× 32, hence the deep network has one
layer less:

6.2 exploring extensions to the supervised model 205

• A convolutional layer with 40 5× 5 filters, followed by a stan-
dard 2x2 max pooling operation. The activation function is tanh.

• A convolutional layer with 40 5× 5 filters, followed by a stan-
dard 2x2 max pooling operation. The activation function is tanh.

• A convolutional layer with 64 5× 5 filters, which reduces every
feature layer to a scalar. The activation function is tanh.

• Finally a fully connected linear layer of size 64 x 32.

Finally, the 16× 16 downsampled original image is processed by a
two layer network:

• A convolutional layer with 40 7× 7 filters, followed by a stan-
dard 2x2 max pooling operation. The activation function is tanh.

• A convolutional layer with 64 5× 5 filters, which reduces every
feature layer to a scalar. The activation function is tanh.

• Finally a fully connected linear layer of size 64 x 32.

The three 32-dimensional representations are averaged in order to
get the final representation1. The cost function is `DrLim++(θ), with
mpull = 1.5 and mpush = 5. Using stochastic gradient descent (lr=0.01)
with minibatches of size 100, the above configuration achieved a false
positive rate of 9.2% on the Notre Dame evaluation set and 16.8% on
the Half Dome evaluation set.

A methodologically more interesting approach is to resolve the
problem of different scales with a recursive attention model [263, 368].
This means that the convolutional model from Chapter 4 is applied
several times to the same patch and previous computations are then
used to adaptivly change this patch. Specifically the representation
computed at iteration k is used to determine a multiplicative filter for
the input at iteration k+ 1:

rk = f(xk,θ)

x0 = x

xk = g(rk)� x
(6.15)

f : R64×64 → R32 is the Convolutional Network with four layers from
Chapter 4, x is some input patch and g : R32 → R64×64 is a function
that maps a representation to an attention patch. I implement g with
a deep Convolutional Network (four layers, using perforated upsam-
pling [285] to extend spatial scale) with a sigmoid output layer. For

1 I also tried to learn the weightings of the three subrepresenations with an additional
deep gating network [175] which was applied to the original image. This gating
network is also a Convolutional Network, but severly limited in capacity in order to
keep the number of parameters small. This might be a reason why the approach did
not work.

206 tour des cul-de-sacs

an attention model of length K the representation after K iterations is
used for the matching task. The cost function is again `DrLim++(θ).

All involved operations in Eq. (6.15) are differentiable with respect
to parameters, so backpropagation can be applied. However, training
this model proved to be quite challening. For K > 2 training did
not converge (unless a very small learning rate was used, but then
no learning did happen). The best results obtained with K = 2 were
27.3% for the Notre Dame evaluation set and 39.1% for the Half Dome
evaluation set.

6.2.2 Cost functions

One should solve the [classification] problem directly and
never solve a more general problem as an intermediate
step [. . .], or, when solving a problem, one should avoid
solving a more general problem as an intermediate step.
Vladimir Vapnik [402].

While this quote is often used against generative modeling, it can also
be applied to select between different supervised cost functions (if
the problem has a more flexible structure than standard classification).
When the goal is to ensure that a threshold for distances can be found
such that matching pairs are closer than non-matching pairs then
DrLim solves this problem only indirectly: By ensuring that matching
pairs have distances smaller than mpush and non-matching pairs have
distances greater than mpull and with mpull < mpush the above goal
is achieved. However, the task can be represented in a direct way,
requiring that the distance dθ(·, ·) (see Eq. (4.2)) associated with a
matching pair (the set of all matching pairs is denoted by M) is well
below the distance of any negative pair (the set N):

dθ(x
m
1 , xm2) < dθ(x

n
1 , xn2) − c, ∀m ∈M,n ∈ N (6.16)

with c acting as an additional margin. The corresponding loss func-
tion is a ranking constraint:

`rank(θ) =
∑

m∈M,n∈N
max(dθ(xm1 , xm2) − dθ(x

n
1 , xn2) + c, 0) (6.17)

In order to ensure that matching pairs form a manifold, this loss func-
tion can be extended by a DrLim-like term that pulls matching pairs
together:

`rank+(θ) =
∑
m∈M

||dθ(x
m
1 , xm2) −mpull||

2

+
∑

m∈M,n∈N
max(dθ(xm1 , xm2) − dθ(x

n
1 , xn2) + c, 0)

(6.18)

6.2 exploring extensions to the supervised model 207

While the above two loss functions model the matching task in a di-
rect way it turns out that the underlying optimization is difficult: Stan-
dard stoachstic gradient descent fluctuates heavily on the training set
and the validation set. A more stable optimization performance can
be achieved with AdAM [199]. While for both cost functions the op-
timization shows very good results for the first few epochs on the re-
spective validation sets, the overall performance is much worse than
the baseline cost-function `DrLim++(θ) from Section 4.3: The standard
four-layer Convolutional Network with a 32-dimensional embedding
achieves 10.2% and 17.5% on the Notre Dame and Half Dome eval-
uation sets respectively when trained with `rank(θ) on the Liberty
dataset. For `rank+(θ) it results in 16.8% and 26.1% false positive rates
respectively.

So DrLim seems to be indeed not such a bad idea as a cost func-
tion for the matching task. A limitation of the approach might be the
fact that the low-dimensional representations are describing point es-
timates. A point estimate can never express uncertainties with which
an input is associated. One possible solution to this aspect is to learn
latent density embeddings [4, 406].

In order to model a density with a parametric model it needs to
be represented in a suitable form. One possible way is to use the
sufficient statistics of a density. For example a Gaussian is represented
by its mean vector and its covariance matrix.

In this work Gaussians with diagonal covariance matrices are con-
sidered, so in order to encode a d-dimensional Gaussian, 2d numbers
are necessary. These are the outputs of a linear layer atop a deep Con-
volutional Network f(·,θ):

µ(x),σ(x) = f(x,θ) (6.19)

The Kullback-Leibler divergence between two distributions can be
used to induce a valid distance measure between two inputs x1 and
x2:

d(x1, x2) =
1

2

(
KL[N(x | f(x1,θ)||N(x | f(x2,θ)]

+KL[N(x | f(x2,θ)||N(x | f(x1,θ)]
) (6.20)

where N(x | f(·,θ) is a Gaussian with parameters µ and Σ determined
by the deep Convoluational Network f(·,θ). For two d-dimensional
Gaussians N(x | µ1,σ21) and N(x | µ2,σ22) the Kullback-Leibler diver-
gence is given by:

1

2

(∑
i

σ21i
σ22i

+
∑
i

(µ1i − µ2i)
2

σ22i
−d+2

∑
i

logσ2i−2
∑
i

logσ1i
)

(6.21)

Given this distance measure the standard approach from Chapter 4

can be applied. More specifically the four-layer Convoluation Net-
work (with tanh activation function and a 32-dimensional output) is

208 tour des cul-de-sacs

trained using the `DrLim++(θ) objective. It achieves a false positive
rate of 9.0% for Notre Dame and 15.5% for Half Dome when trained
on image pairs from the Liberty set. Note that this performance is
achieved with a 16-dimensional Gaussian. If a 32-dimensional Gaus-
sian is used (i.e. the Convolutional Network has 64 outputs) the false
positive rate improves to 8.2% and 14.8% respectively. In both cases
standard minibatched gradient descent with a learning rate of 0.01 is
used.

6.2.3 Dropout

Sine its introduction in 2012 Dropout [365] has a reputation as an in-
dispensible tool for training good deep supervised Neural Networks.
This might be a somewhat myopic viewpoint neglecting the fact that
most of the successful applications of Dropout are only classifica-
tion tasks, mostly limited to object classification for image datasets.
And even in this domain, several state-of-the-art results have been
achieved without dropout [64, 60].

The basic architecture from Chapter 4 and the embedding task for
the matching problem are therefore a good setting to validate the
usability of Dropout. Dropout is usually applied to fully-connected
layers only. In order to apply it to a convolutional layer I decided
to consider complete feature maps as the basic entity that should be
masked. However, no improvements could be achieved, neither with
tanh nor with ReLU activations. Instead, the performance decreased
at least by 10% compared to results reported in Section 4.3.

One hypothesis for these results is that Dropout is detrimental
when the model-size is not large enough. Furthermore, a very recent
paper [104] indicates that the standard approach of scaling weights
with the Dropout-rate during inference is particularly troublesome
for convolutional layers. Instead, in this case inference should be done
with a proper Monte Carlo approximation.

6.3 image similarities with variational autoencoders

Directed graphical models showed impressive results modeling im-
age patches [200, 262, 307, 132]. Of course, the evaluation of the mod-
els used in these reports differs significantly from the matching task.
Nevertheless, their ability to model images beyond 16 × 16 pixels
make these approaches an interesting sandbox for experiments with
the matching data. Specifically the variational Autoencoder frame-
work (see Section 2.7.4) is appealing as its encoder and decoder archi-
tecture allow Convolutional Networks (relying on upsampling tech-
niques [285] for the decoder) and the latent representations can be
described as Gaussian embeddings which showed very good perfor-
mance previously (see Section 6.2).

6.3 image similarities with variational autoencoders 209

To make a long experimentation phase of about 12 months short
also the variational Autoencoding framework did not lead to bet-
ter matching performance as a standard deep Autoencoder (see Sec-
tion 5.4.4). The performance always stayed below the performance of
PCA (see Table 5.1). Different input sizes (also down to 16× 16 pix-
els), different types of networks (fully-connected and convolutional),
different optimizers (RMSprop, AdaDelta, AdAM) and different vari-
ational distributions (Gaussian, Laplacian, log-Gaussian) did not have
any appreciable impact on the matching performance.

I observed that the quality of the generated samples was not good
and therefore changed the log-likelihood model to a multiscale for-
mulation: The decoder generates three images from a shared latent
representation. These images are then used to compose the final (32×
32) image. The first image is 8× 8 pixels. It is upsampled and added
to the second generated image (16 × 16). This aggregated image is
again upsampled and added to the third image, giving the final im-
age. While other methods reported good results with such a multi-
scale approach [82] the matching performance did not improve.

7
C O N C L U S I O N

From a distance most of the work presented in this thesis follows
a well-known pattern over the last years in connectionist research
within the field of Computer Vision: Deep supervised networks out-
perform competing approaches on some benchmark while deep un-
supervised models are not there yet. However, a closer look reveals a
much more nuanced picture.

One of the most important differences to other work involving deep
Convolutional Networks is the dataset (Chapter 3). It is deliberately
chosen to be not a high-level Computer Vision task but to have labels
that only resemble a similarity relation based on principled physical
properties of the pictured world. This is an important aspect when
one is concerned with evaluating unsupervised methods as the cur-
rent approaches to do so are insufficient [385]. With a similarity task
that is as free from overlayed human interpretation (e.g. the labels of
high-level object classification) as possible the hope was that unsuper-
vised learning algorithms can truly show their potential and a better
assessment of these kinds of algorithms is possible.

However, this hope was only partially fulfilled: most investigated
methods failed. It is not completely clear if this is due to the limited
capacity of some of the models or due to the fact that at least for
the matching task unsupervised models also need access to some of
the mechanism that generates valid pairs (i.e. multi-view information
must be available to a method)1. In a certain way unsupervised learn-
ing also needs to integrate some aspects of the target space, an idea
that was recently put forward in a more concrete instantiation [374].
What this means in a very abstract sense is that the definition of unsu-
pervised learning needs to be refined, and this refinement then might
bring also better methods to evaluate such models in a consistent way
[385].

The supervised model seems to be a boring repetition of the yet-
another-deep-convolutional-network showcase. It is not! The utilized
architecture has a particularly small memory footprint both with re-
spect to the number of parameters and the final representation. These
aspects are widely neglected in typical research efforts that try to im-
prove on some state-of-the-art results. However they are crucial for
real-world applications, e.g. in cars or on mobile phones. Nonethe-
less it is quite possible to achieve competitive performance with a

1 One might argue that most learning by humans is unsupervised. However, humans
have a really good implicit teacher—physics. For example, our vision system does
not observe a sequences of arbitrary images but instead a never ending movie whose
frames adhere strongly to temporal and spatial constraints.

211

212 conclusion

constrained model, too. A powerful optimizer seems to be most im-
portant in such a case. Additionally, first experiments also indicate
that a more expressive way to represent an entity can lead to unex-
pected improvements (see Section 6.2).

I also presented some general algorithmic ideas independent of
the empirical evaluation for both supervised as well as unsupervised
Neural Network-based models. Explicit negative Contrastive divergence
was evaluated with respect to the matching task, but needs to be
validated on more multi-view datasets. Similarly, variational autoen-
coded clustering (see end of Section 2.7.4) needs to be evaluated on a
wider range of datasets. Finally, Hobbesian Networks, also introduced
in Section 2.7.4 where only presented together with a qualitative as-
sessment and are in need of the same comprehensive quantitative
evaluation.

future work

One of the main motivations for training models on low-level image
patches is the goal to build a general Computer Vision system in a
bottom-up manner. Clearly, this has not been attempted at all and is
therefore one of the major tasks for the future.

Apart from this more general point of view a large set of open ques-
tions and undone experiments exist with the presented line of work.
For the supervised modeling task one might be primarily interested
on the existing four-layer deep convolutional architecture. It seems
that currently the following investigations seem to be most promis-
ing in order to improve the performance:

• Batch Normalization [171]: In the evaluations it was empirically
shown, a better optimizer indeed leads to a much better per-
formance. Batch-Normalziation is an orthogonal component to
any optimization procedure, improving the learning capacity
of existing networks. Actually, if the results from the Batch-
Normalization paper are transferable to the matching setting,
than this might be the easiest way to considerably improve the
matching performance.

• Fracking [348]: After the model is trained for some time most of
the training pairs, positive as well as negative no longer carry
useful information. Instead, informative training samples must
be selected. One approach is fracking which improved the per-
formance of the trained models by 25%. In addition to fracking,
adversarial training [122] on input pairs might also improve the
performance.

• Student-Teacher training: A recent trend is to distill [47, 148, 206]
a large teacher network into a more compact student network.
This would allow to first learn a very powerful (i.e. having many

conclusion 213

parameters) teacher network mapping patches to a compact rep-
resentation and then use these representations as targets for a
student network that is also limited in the number of parame-
ters. The teacher network can also be used to produce additional
training data, mapping arbitrary patches to representations. In
this case the student network might also be trained with an ad-
ditional DrLim cost for the patches from the original training set
(however the contrastive term can be left out, as no degenerate
solutions are possible).

• Convolutional Dropout for regression [104]: I explained in Sec-
tion 6.2 that Dropout did not help at all to improve the match-
ing performance which might be due to the small model-size.
A more probably hypothesis is that for Convolutional Layers in-
ference must be done relying on Monte Carlo approximations
[104] which I did not do. Even then it is not clear if any im-
provement can be achieved as there are no reports for success-
ful applications of Dropout to regression problems. A Monte
Carlo inference scheme induces a different way to compute dis-
tances between representation, for example as is demonstrated
in Section 6.2.

Instead of the standard deep convolutional architecture, different
model classes can also be used. One possible idea is to add an addi-
tional attention module to the baseline architecture in the form of a
Spatial Transformer Network [177]. This module should particularly
help in dealing with different scales of patches, relieving the max-
pooling operation from this task. Similar to the recursive attention
model described in Section 6.2 this approach can be extended by iter-
atively applying the complete model to a given patch. The recurrent
(feedback) signal for the next iteration is again based on the com-
puted representation of the current iteration and will be fed into the
Spatial Transformer module.

Recently [384, 369] Multidimensional Recurrent Neural Networks
[127] (MDRNNs) emerged as strong alternatives to Convolutional
Networks for Computer Vision tasks. Previous work already demon-
strated how standard RNNs can be used to learn fixed representa-
tions [17] so it is straightforward to adapt MDRNNs to the matching
task of this work.

The results attained with the unsupervised models (Chapter 5)
were not convincing. One hypothesis is that the utilized models were
not powerful enough for the type of data. It therefore is a valid at-
tempt to have another round of experiments if the models in ques-
tion appear powerful enough. Recently two candidate models, DRAW
[132] and LAPGAN [82] have been introduced, outperforming other
approaches on various modeling tasks related to images. Of course,
both models should also be extended to multi-view data and then

214 conclusion

evaluated on the matching task, similar to the three-way RBM in Sec-
tion 6.1.

Generative Adversarial Networks (GAN) [121] do not infer latent
representations for an input sample. One remedy might be to utilize
some hidden representation of its discriminative network, another
possible solution is to use gradient descent in the input space of the
generative network for a given input.

While these two models represent reasonable and valid candidates
for further experiments they do not resolve the fundamental problem
that is associated with latent representations of unsupervised meth-
ods: the representations are not discriminative enough. In Natural
Language Processing the problem of finding discriminative represen-
tations of the basic entities (words) was recently successfully tackled
with the simple and elegant word2vec approach [261]. While it might
be debatable if this method can be called unsupervised (see my com-
ments at the beginning of this chapter), the word representations are
learned relying only on structural information of the problem do-
main. For Computer Vision a similar method patch2vec can be de-
fined which only relies on structural information contained in images
(or videos). For the case of images this structural information might
be given by the patches at keypoints (a well-defined mathematical
concept [232, 239]). Patches at keypoints should then have a repre-
sentation that has predictive capacity. That is, given a patch and the
set of its neighboring patches, the representation of the patch should
be predictable by the representation of the other patches. Representa-
tions are computed by a Deep Convolutional Network which might
also take into account the wider context of the respective patch (i.e. a
larger part of the overall image). Patches with different scales can be
handled in an unifying way using Spatial Pyramid Pooling [145].

Part II

A P P E N D I X

A
E M

Expectation Maximization is a method for finding maximum likelihood
solutions for probability models having latent (unobserved) variables.
This short exposure is mainly based on Neal and Hinton [273]. It
presents EM as an algorithm for maximizing a joint function of the
parameters and of the distribution over the unobserverd variables
(this differs from the standard presentation (e.g. [254]). In particular
this viewpoint justifies incremental versions of the algorithm (partial
M-steps and partial E-steps).

I denote the set of observed variables by X, the set of latent vari-
ables by Z and the parameters of the probability model by θ. The goal
is to find the maximum likelihood estimates for θ given X. However,
suppose that direct optimization of logp(X | θ) := `(θ) is difficult, op-
timizing the complete-data log likelihood logp(X,Z | θ) on the other
hand is significantly easier (i.e. computationally tractable).

a.1 derivation

After introducing an arbitrary probability distribution q(Z) defined
over the latent variables, one obtains a lower bound on the log like-
lihood `(θ) (using Jensen’s inequality, which can be applied because
log is concave and q(Z) is a distribution).

`(θ) = log
∑
Z

q(Z)
p(X,Z)
q(Z)

>
∑
Z

q(Z) log
p(X,Z | θ)

q(Z)
:= F(q,θ) (A.1)

This assumes discrete latent variables (otherwise use
∫

instead of
∑

,
with some additional constraints on q(Z)). F(q,θ) is actually a term
common in statistical physics and usually called free energy. It can be
decomposed as follows:

F(q,θ) =
∫
q(Z) log

p(X,Z | θ)

q(Z)
dZ =

=

∫
q(Z) logp(X,Z | θ)dZ−

∫
q(Z) logq(Z)dZ =

= 〈logp(X,Z | θ)〉q(Z) +H[q]

(A.2)

〈·〉q(Z) denotes hereby the expectation under the distribution q(Z),
H[·] the entropy.

Expectation Maximization is an iterative algorithm, alternating be-
tween the following two steps:

217

218 em

• E-Step: Maximize F(q,θ) with respect to the distribution over
the hidden variables, holding the parameters θ fixed:

qk(Z) := arg max
q(Z)

F(q(Z),θ(k−1))) (A.3)

• M-Step: Maximize F(q,θ) with respect to the parameters θ,
keeping the distribution q(Z) fixed (the entropy term does not
depend on θ):

θk := arg max
θ

F(qk(Z),θ)) = arg max
θ

〈logp(X,Z | θ)〉qk(Z)

(A.4)

So EM is basically a coordinate ascent in F. What’s happening in the
E-Step becomes much clearer when we rewrite the free energy:

F(q,θ) =
∫
q(Z) log

p(X,Z | θ)

q(Z)
dZ

=

∫
q(Z) log

p(Z | X,θ)p(X | θ)

q(Z)
dZ

=

∫
q(Z) logp(X | θ)dZ+

∫
q(Z) log

p(Z | X,θ)
q(Z)

dZ

= logp(X | θ)

∫
q(Z)dZ−KL[q(Z)||p(Z | X,θ)]

= `(θ) −KL[q(Z)||p(Z | X,θ)]

(A.5)

KL[·||·] denotes hereby the Kullback-Leibler divergence between two
probability distributions. Eq. (A.5) says that for fixed θ, F is bounded
from above by `, illustrated in Figure A.1 graphically, and this bound
is achieved with KL[q(Z)||p(Z | X,θ)] = 0. But for two distributions
p,q, KL[p||q] = 0 if and only if p = q. So the E-Step simply sets

qk(Z) = p(Z | X,θk) (A.6)

and after the E-Step, the free energy equals the likelihood (for the
given θ). Still, p(Z | X,θ) may be very complex. However, in stan-
dard applications our data items are independently and identical dis-
tributed. From this independence assumption we have p(X,Z | θ) =∏
n p(xn, zn | θ) (we assumed here that X contains n elements xn

and Z respectively n elements zn) and by marginalizing over Z we
have

p(X | θ) =
∑
Z

p(X,Z | θ) =
∑
Z

∏
n

p(xn, zn | θ) =

=
∏
n

∑
zn

p(xn, zn | θ) =
∏
n

p(xn | θ)
(A.7)

A.1 derivation 219

ln p(X|θ)L(q,θ)

KL(q||p)

Figure A.1: The decomposition given by Eq. (A.5). The free energy F(q,θ) is
a lower bound on `(θ), because the Kullback-Leibler divergence
is always nonnegative. The figure is taken from [35].

Therefore, the posterior probability p(Z | X,θ) factorizes with respect
to n:

p(Z | X,θ) =
p(X,Z | θ)∑
Z p(X,Z | θ)

=

∏N
n=1 p(xn, zn | θ)∏N
n=1 p(xn | θ)

=

=

∏N
n=1 p(zn | xn,θ)p(xn | θ)∏N

n=1 p(xn | θ)
=

N∏
n=1

p(zn | xn,θ)

(A.8)

It is now straighforward to see that the E-Step and M-Step together
never decrease the likelihood:

• The E-Step brings the free energy to the likelihood.

`(θk−1) = F(qk,θk−1) (A.9)

• The M-Step optimizes the free energy with respect to θ.

F(qk,θk−1) 6 F(qk,θk) (A.10)

• As already shown in Eq. (A.1), the free energy is upper bounded
by the likelihood.

F(qk,θk) 6 `(θk) (A.11)

Note that even though I describe both the E-step and the M-step as
maximization operations, there is no need for an actual maximization
operation. The M-step of the algorithm may be only partially imple-
mented, as long as it results in an improvement of F(q,θ) which
always leads to the true likelihood improving as well. [254] refer to
such variants as generalized EM algorithms. There is clearly also no
need to use the optimal distribution over hidden configurations. One
can use any distribution that is convenient so long as the distribution
is always updated in a way that improves F. This is usally referred
as a partial E-step. For example, considering Eq. (A.8), a partial E-step

220 em

����� � ���	��

��
��������

� ���
���� ���

Figure A.2: Given some initial parameter value θold, the E-Step (evaluating
the posterior distribution over latent variables) brings the value
of F(qk,θold) to `(θold), as shown by the blue curve (the bound
makes a tangential contact). Note that the lower bound need
not be a concave function with a unique maximum, as depicted
here. In the M-Step, the bound is optimized giving the value
θnew. The procedure is then repeated. Figure is taken from [35].

would be to update p(zi | xi,θ) for one particular i and then apply
an M-step.

The operation of the EM algorithm can also be viewed in the space
of the parameters θ, as illustrated schematically in Figure A.2.

It is still necesary to show that maxima in F correspond to maxima
in `. Consider a fix point (q∗(Z),θ∗) of the EM algorithm. Then we
have:

∂

∂θ
〈logp(X,Z | θ)〉q∗(Z) |θ∗= 0 (A.12)

Thus:
`(θ) = logp(X | θ) = 〈logp(X | θ)〉q∗(Z) =

=

〈
log

p(X,Z | θ)

p(Z | X,θ)

〉
q∗(Z)

=

= 〈logp(X,Z | θ)〉q∗(Z) − 〈logp(Z | X,θ)〉q∗(Z)

(A.13)

and so:
d

dθ
`(θ) =

d

dθ
〈logp(X,Z | θ)〉q∗(Z)−

d

dθ
〈logp(Z | X,θ)〉q∗(Z) (A.14)

Finally,

d

dθ
`(θ) |θ∗= 0 (A.15)

so the EM algorithm converges to a stationary point of `(θ).
Additionally, the type of such a stationary point must be a maxi-

mum in `: Consider d2

dθ2
`(θ):

d2

dθ2
`(θ) =

d2

dθ2
〈logp(X,Z | θ)〉q∗(Z) −

d2

dθ2
〈logp(Z | X,θ)〉q∗(Z)

A.2 application : mixture of gaussians 221

(A.16)

With θ = θ∗, the first term on the right is negative (a maximum) and
(given certain assumptions1, see [422, 254] for more details) the sec-
ond term is positive. Thus the curvature of the likelihood is negative
and θ∗ is a maximum of `.

rate of convergence . In general, the rate of convergence of
the EM algorithm is reported to be slow (linear, or even sublinear).
See [422, 254] for a detailed analysis.

a.2 application : mixture of gaussians

Consider a superposition of K Gaussian densities of the form

p(x) =

K∑
k=1

πkN(x | µk,Σk) (A.17)

with the mixing coefficients πk being normalized:
∑
k πk = 1. Also,

with p(x) > 0 (it is a probability distribution) and N(x | µk,Σk) > 0,
we get πk > 0 for k = 1 . . . K. Note that from a generative view
point, πk is he prior probability of picking the kth component and the
density N(x | µk,Σk) is the probability of x conditioned on k. Given a
set of n observations X = {x1, . . . , xn}, one way to set the values of the
parameters (µk, Σk and πk (for all k)) is to use maximum likelihood.
The loglikelihood function is

logp(X | θ) =

n∑
n=1

log

(
K∑
k=1

πkN(xn | µk,Σk)

)
(A.18)

with θ = (µ1, . . . ,µk,Σ1, . . . ,Σk,π1, . . . ,πk). As a result of the pres-
ence of the summation inside the logarithm the maximum likelihood
solution for the parameters no longer has a closed form analytical
solution. One could use an iterative numeric optimization technique
but instead, consider EM.

For a given datapoint x the associated latent variable z indicates
which of the K Gaussians generated the data point. Thus p(z = k |

x,θ) denotes the probability that x was generated by the kth com-
ponent (these probabilities are also known as responsibilities). Bayes’
theorem results in

p(zi = k | xi,θ) =
πkN(xi | µk,Σk)∑K
c=1 πcN(xi | µc,Σc)

=: γik. (A.19)

Assuming i.i.d data Eq. (A.8) can be applied, so the E-step is straight-
forward.

1 θ∗ can also be a saddle point

222 em

For the M-step the functional form of the expected complete log-
likelihood 〈logp(X,Z | θ)〉p(Z|X,θ) is necessary:

〈logp(X,Z | θ)〉p(Z|X,θ) =
∑
Z

p(Z | X,θ)

(
n∑
i=1

logp(xi, zi | θ)

)
=

=

K∑
z1=1

K∑
z2=1

· · ·
K∑

zn=1

 n∏
j=1

p(zj | xj,θ)×(
n∑
i=1

logp(xi, zi | θ)

))
(A.20)

Here, I have used the definition of the expectation and the result of
Eq. (A.8). This formula must be restructured in order to be able to
proceed. The idea is to find a reformulation only for one fixed data
point xi. To get to an expression that is equivalent to the previous
one, a sum over all data points is necessary:

n∑
i=1

K∑
k=1

logp(xi, zi = k | θ)

 K∑
z1=1

K∑
z2=1

· · ·
K∑

zn=1

δk,zi

n∏
j=1

p(zj | xj,θ)


(A.21)

with δk,zi the Kronecker delta. The second part of this expression
can be greatly simplified because for a given i and a given k one can
write:

K∑
z1=1

K∑
z2=1

· · ·
K∑

zn=1

δk,zi

n∏
j=1

p(zj | xj,θ)

=

 K∑
z1=1

· · ·
K∑

zi−1=1

K∑
zi+1=1

· · ·
K∑

zn=1

n∏
j=1,j6=i

p(zj | xj,θ)

p(zi = k | xi,θ)

=

 n∏
j=1,j6=i

 K∑
zj=1

p(zj | xj,θ)

p(zi = k | xi,θ) = 1 · γik

This results in a simple expression for the expected complete log-
likelihood 〈logp(X,Z | θ)〉p(Z|X,θ) of any finite mixture model:

n∑
i=1

K∑
k=1

γik (logp(xn | zi = k,θ) + logp(xi = k)) (A.22)

Note that the previous derivations (for the M-step) did not take into
account that a mixture of gaussians (i.e. p(xi | zi = k,θ) = N(xi |

µk,Σk)) is used. Optimizing Eq. (A.22) with respect to the parameter

A.2 application : mixture of gaussians 223

set θ = (µ1,Σ1,π1, . . . ,µK,ΣK,πK) results in the following equations
(the exact derivations of these are not shown here):

µk
new =

∑n
i=1 γikxi∑n
i=1 γik

Σk
new =

∑n
i=1 γik(xi − µk

new)(xi − µk
new)T)∑n

i=1 γik

πnew
k =

n∑
i=1

γik
n

(A.23)

K-Means

Probabilistic models can often be transformed to non-probabilistic
variants by considering some limit-behaviour. Consider a mixture of
K isotropic Gaussians (MoG), each with the same covariance Σ =

σ2I. In the limit σ2 → 0 the EM algorithm for MoG converges to
the K-Means algorithm [35]. The K-Means algorithm is a very simple
clustering algorithm, formed by an iterative two-step procedure:

• Partition the dataset according to the closest distance of samples
to the respective cluster centers.

• (Re-)Compute the cluster center for every partition by averaging
the respective samples in a partition.

The second step corresponds to the M-step from the previous deriva-
tion with responsibilities fixed to the uniform distribution over a
given partition. In the general setting of the MoG model, The E-step
for the MoG model needs to take the limiting behaviour of σ into
account. For some data point xi it is:

p(zi = k | xi) =
πk exp

(
−||xi−µk||

2

2σ2

)
∑
l πl exp

(
−||xi−µl||

2

2σ2

)
=

1∑
l
πl
πk

exp
(
−||xi−µl||

2+||xi−µk||
2

2σ2

) (A.24)

If k denotes the component that is closest to xi, then ||xi − µl||
2 >

||xi−µk||
2 for all l, then −||xi−µl||

2+ ||xi−µk||
2 6 0 for all l and thus

the denominator converges to 1 if σ2 → 0 (because if l = k, this part
of the sum in the denomiator is always 1, and all other summands
converge to 0 because exp(−∞) does so).

On the other hand, if k is not resembling the closest component,
then −||xi − µl||

2 + ||xi − µk||
2 > 0 for l denoting the closest compo-

nent, and whith σ2 → 0 the exponent of this component is

−||xi − µl||
2 + ||xi − µk||

2

2σ2
→ +∞ (A.25)

224 em

and thus the denominator converges to ∞. In total, this results in the
hard assignment step of K-Means.

a.3 factor analysis

Factor Analysis is a directed graphical model that represents a linear
Gaussian system (Eq. (2.137)):

p(h) = N(h | 0, I)

p(x | h,θ) = N(x |Wh+ µ,Ψ)
(A.26)

with θ ≡ {µ,W,Ψ}. Inverting the system is therefore straightforward
(Eq. (2.143)):

p(h | x,θ) = N(h |m,Σ) (A.27)

with

Σ = (I+WTΨ−1W)−1 (A.28)

and

m = Σ(WTΨ−1(x− µ)) (A.29)

In statistics m is often denoted the score of a sample x. Note that the
posterior covariance Σ is independent of x, i.e. the posterior uncer-
tainty is independent of the observation (an obvious weakness of the
model).

Fitting the parameters θ using Maximum Likelihood Estimation
might appear to be simple, because p(x | µ,W,Ψ) is a Gaussian
(Eq. (2.140)):

p(x | µ,W,Ψ) = N(x | µ,WWT +Ψ) (A.30)

The Maximum Likelihood Estimation of µ is therefore (see Eq. (2.225),
assuming n observations x1, x2, . . . , xn):

µ =
1

n

∑
i

xi (A.31)

However, there are no closed-form solutions possible for W and Ψ,
because the covariance matrix WWT +Ψ appears both in an inverse
as well as a determinant in the log-likelihood logp(x | θ). One pos-
sible solution is therefore gradient based optimization. Because the
posteriors are Gaussians, the EM algorithm is a tractable alternative
approach to fit W and Ψ. Eq. (A.27) realizes already the E-step.

A.3 factor analysis 225

For the M-step the free energy F(p(h | ·),θ) = Ep(h|x,θ) [p(x,h | θ)]+
H[q] must be optimized with respect to θ. First, write only those
terms of F(p(h | ·) that involve θ:

F(·) ∝
∑
i

Ep(h|·)

[
log

(
1√
|2πΨ|

×

exp
(
−
1

2
(xi − µ−Whi)

T Ψ−1 (xi − µ−Whi)

))]
∝

∑
i

Ep(h|·)

[
−
1

2
log |Ψ|−

n

2
log(2π)−

1

2
(xi − µ−Whi)

T Ψ−1 (xi − µ−Whi)

]
∝

∑
i

Ep(h|·)

[
−
1

2
(xi − µ−Whi)

T Ψ−1 (xi − µ−Whi)

]
∝

∑
i

Ep(h|·)

[
(xi − µ)

TΨ−1Whi −
1

2
hiW

TΨ−1Whi

]

(A.32)

Because of the pathwise derivative estimator (Eq. (2.208), that is,
derivative and expectation operator can be swapped) it is now simple
to continue:

∇WF(·) ∝ ∇W
∑
i

Ep(h|·)

[
(xi − µ)

TΨ−1Whi −
1

2
hiW

TΨ−1Whi

]
=

∑
i

Ep(h|·)
[
∇W

(
tr
(
(xi − µ)

TΨ−1Whi

)
−

1

2
tr
(
hiW

TΨ−1Whi

))]
=

∑
i

Ep(h|·)
[
hi(xi − µ)

TΨ−1 −hihi
TWTΨ−1

]
=

∑
i

(
Ep(h|·)[hi](xi − µ)

TΨ−1 − Ep(h|·)[hihi
T]WTΨ−1

)
!
= 0

(A.33)

Hereby, the well-known trace-trick was applied twice, allowing to
utilize the rules for trace derivatives (Eq. (2.76) and Eq. (2.81)). The
above equation can be solved in closed form:

W =

[∑
i

(xi − µ)Ep(h|·)[hi]
T

][∑
i

Ep(h|·)[hih
T
i)

]−1
(A.34)

with Ep(h|·)[hih
T
i) = Σ+mim

T
i . The functional relation to standard

linear regression (Eq. (2.249) is evident in the above solution. A simi-
larly involved derivation gives the M-step for Ψ:

Ψ =
1

n
diag(G(W)) (A.35)

where G(W) is defined as

G(W) =
∑
i

(
(xi − µ) (xi − µ)

T +WEp(h|·)[hih
T
i]W

T

− 2WEp(h|·)[hi](xi − µ)
T
) (A.36)

226 em

PCA

Similar to the Mixture-of-Gaussian case it is possible to derive a well-
known non-probabilistic algorithm from Factor Analysis by consider-
ing a limit-behaviour of the model. First, consider the special case of
probabilistic PCA (pPCA), i.e. Ψ = σ2I. In the limit σ2 → 0 the pos-
terior mean for the probabilistic PCA model becomes an orthogonal
projection onto the same principal subspace as in PCA. The posterior
mean for pPCA is (see Eq. (A.27)):

m = Σ(WTσ−2I(x− µ)) (A.37)

with

Σ = (I+WTσ−2IW)−1 = σ2(σ2I+WTW)−1. (A.38)

Hence,

m = (σ2I+WTW)−1(WT (xi − µ)). (A.39)

In the case of pPCA the maximum-likelihood solution can be given
in closed form (Eq. (2.256):

WMLE = Ll(Λl − σ
2I)

1
2R (A.40)

with Ll being the d× l matrix whose columns are the first l eigen-
vectors of the empirical covariance matrix S (Eq. (2.227)) and Λl the
diagonal matrix of corresponding eigenvalues (R is an arbitrary or-
thogonal matrix).

If σ2 → 0 the maximum-likelihood solution WMLE converges to
VlΛ

1/2
l . So (σ2I+WTW)−1 → Λ−1

l , and thus

m = Λ
−1/2
l VTl (x− µ) (A.41)

which is the same subspace that PCA also projects to (Eq. (2.260)).

B
P R E D I C TA B I L I T Y M I N I M I Z AT I O N F O R D E E P
L E A R N I N G

Deep multi-layer Neural Networks have many levels of non-linearities,
which allow them to potentially represent very compactly highly non-
linear and highly-varying functions. This belief is not new [318, 157,
400] and was strengthened by recent theoretical studies [25, 24].

Unfortunately, training deep networks is difficult with standard
gradient-based approaches. Indeed, until recently deep networks were
generally found to perform no better, and often worse, than Neural
Networks with one or two hidden layers, [383]. However the intro-
duction of new learning algorithms [155, 151, 28, 298, 225, 407] has
made it possible to train deep network structures such as Deep Belief
Networks [155] and stacked autoencoders [28].

The common theme among these approaches is the use of an unsu-
pervised training phase that performs a layer by layer initialization,
thereby allowing a representation of the data to be built up hierarchi-
cally. However there is less agreement on what properties the inter-
mediate stages of this representation should have. One approach is
to train each level to reconstruct its own input (i.e. the representation
given by the level below) as accurately as possible, which leads natu-
rally to stacked autoencoders [28]. If the hidden layers are further re-
quired to identify the dependencies and regularities of the unknown
distribution from which the inputs were drawn, one arrives at denois-
ing autoencoders [407]. Yet another guiding principle is sparseness
for the representations [298, 225]. However, there is no well-grounded
theory and the above mentioned requirements feel rather arbitrary.

Looking for criteria that such intermediate representations should
fulfill, we take a step back and consider the goal of unsupervised
learning in general. Informally, unsupervised learning is driven by
finding structure in data (or, likewise, to identify redundancy in it).
Additionally, the identified structures should be useful to extract in-
formation from the data. In [13] several ways are proposed how these
goals can be achieved. In particular the author argues that unsuper-
vised learning should yield a representation, whose elements are in-
dependent (such representations are often called factorial codes). Pre-
dictability minimization (PM) [330] is an unsupervised learning prin-
ciple that aims at finding such factorial codes. In this paper we argue
that PM is well suited as an unsupervised learning mechanism for
initializing the layers of deep Neural Networks. We will further dis-
cuss whether reconstruction is a necessity towards factorial codes and

Joint work with Thomas Rückstieß.

227

228 predictability minimization for deep learning

input layer

code layer

prediction layer

full connection

full-not-self connection

Figure B.1: Predictability Minimization architecture: The input patterns are
presented to the network at the bottom layer and fed forward to
the code layer which is fully connected to the inputs and has a
non-linear activation. The predictor sits on top of the code layer,
trying to predict each of the n code units’ activations from the
remaining n−1 code units.

suggest that independence of the code units should be considered a
suitable alternative criterion.

Section 2 briefly describes the general idea behind PM and also
the proposed implementation (following [330]) Thea application of
PM to the layers of deep Neural Networks is discussed in Section 3.
Experiments are covered in Section 4 and concluded in Section 5.

b.1 predictability minimization

The principle of predictability minimization [330] is at the core of our
method. In general, PM is an unsupervised method for learning non-
redundant representations of input data. In particular it aims at find-
ing binary (or at least quasi-binary) factorial codes. A factorial code
must fulfill (i) the binary criterion, that is, each code-symbol should be
either 1 or 0 and, (ii) the invertibility criterion, i.e. it must be possible to
reconstruct the input from the code and (iii) the independence criterion,
i.e. the occurence of each code symbol should be independent from
all other code symbols.

A simple architecture is proposed to achieve the independence cri-
terion: A one layer feedforward network (code network) with c out-
put units (code units) has an n dimensional input. Assuming that a
given input to this network carries redundant information then the
network’s goal is to respond with less redundant (but still informa-
tive) output (ideally, it would create a factorial code of the input [13]).
In order to achieve this, another component is introduced: there is
an adaptive predictor for each code unit that tries to predict the out-
put of this unit given the remaining n− 1 code units. However, each
code unit tries to become as unpredictable as possible by representing
an aspect of the input that is not represented by the other code units.
Thus, the predictors and the code network are tightly interwoven and
will co evolve during learning. Figure B.1 depicts this interrelation
graphically.

B.2 pm for deep neural networks 229

Interestingly [330] states that conditions (i) and (ii) can be ignored
and PM should be implemented instead by focusing on the indepen-
dence criterion alone. From a mathematical point of view, the inde-
pendence criterion can be realised in a simple way: Given the i-th
input vector xi, the code network produces a c dimensional output
yi = (y1i ,y2i , . . . ,yci) with yji ∈ [0, 1], j = 1, . . . , c. The predictor for
code unit k is denoted by pk, its output in response to {y

j
i : j 6= k} is

denoted by pki . pk is trained to minimize∑
i

(pki − y
k
i)
2 (B.1)

that is, pk learns to approximate the conditional expectation E(yk |

{yj : j 6= k}) of yk. As already indicated in the paragraph before, the
code network and the predictors resemble opposing forces and this is
even more highlighted by the following striking symmetry: the code
network is trained to maximize exactly this same objective function
[330]. It is beyond the scope of this paper to discuss in detail, why it
is actually sufficient just to consider eq. (B.1). More information on
this aspect is provided in [332].

b.2 pm for deep neural networks

As it was pointed out previously [90], a single layer of binary fea-
tures is not the best way to capture the structure of (possibly high
dimensional) input data. [335] already implemented a hierarchy of
PM modules, where each layer computes the input to the next layer.
However this hierarchy was not considered as an initialization for a
deep Neural network, which then is globally fine tuned using another
training criterion for the task at hand.

b.2.1 Greedy Layerwise Pretraining And Fine Tuning

Similar to Deep Belief Networks and stacked autoencoders, we use
several layers of PM modules to build a deep network. The output
of the code units in the kth module will be used as the input for
the (k+ 1)th module, and the kth module will be trained before the
one at layer k+ 1. After all layers are pre trained, a fine tuning phase
follows which aims at globally adjusting all parameters of the deep
network according to some (supervised) criterion.

Preliminary experiments on small toy data sets prompted us to
reconsider the reconstruction criterion already mentioned in Section
B.1. We found that adding the reconstruction criterion to the objective
function (B.1) for the code network helped to improve performance
of the final deep network significantly. In this case, one gets a two
layer feed forward network whose first layer (representing the orig-
inal code network) is trained by PM and a traditional autoencoder

230 predictability minimization for deep learning

(a) uniform toydata (b) noisy toydata

Figure B.2: Toy datasets. Each horizontal line represents one of 1000 input
patterns. The images are mostly white, only two patches of 8

pixels each have a random value between 0.0 and 1.0. In (a) the
value is kept constant for each patch, in (b) each pixel value in
both patches is random. Please note that the inputs are plotted
as horizontal lines in this graph but represent square images of
dimension 16x16 that match the feature plots in Fig. B.3.

together, while the second layer is trained by the reconstruction crite-
rion alone. Note that from the point of view of a traditional autoen-
coder the combiniation with PM now offers the possibility to train a
code layer that is bigger in size than the input dimension (an impor-
tant aspect when trying to build good deep networks [90]). Because
of its striking advantage we did not use the traditional autoencoder
to implement the reconstruction criterion but the denoising version
[407] instead.

b.3 experiments

Two different sets of experiments were conducted: Experiments on
artificially created toy data and on a challenging version of the well-
known MNIST hand-written digits benchmark. The toy datasets were
used to shed light onto the internal mechanisms of PM. We discuss
the results of our toy experiments in Section B.3.1 and the MNIST
benchmark in section B.3.2.

All experiments use the following PM architecture: A non-linear
predictor with sigmoid activation sits on top of a one layer sigmoid
code network. Both layers are seperately trained in batch mode with
gradient ascent and descent, respectively. For performance compar-
isons we look at both traditional and denoising autoencoders (AE
and dAE). Furthermore, we conducted some experiments with a hy-
brid version: a predictability minimizing denoising autoencoder (PM-
dAE). Here we alternated PM and dAE training repeatedly on the
same weights.

B.3 experiments 231

b.3.1 PM Analysis with Artificial Data

Having the predictor and code layer fight each other by minimizing
(predictor) vs. maximizing (codes) the prediction error forces the code
units to become less redundant. Ideally, the code units become com-
pletely independent but this independence cannot be created within
the deterministic network. Instead, the units have to draw their inde-
pendence from the input patterns, concentrating on different areas of
the image.

With artificially created toy data (shown in Fig. B.2) the mecha-
nisms of PM can be further investigated. We use two data sets, each
set consists of 1000 images of 256 pixels each, with most pixels hav-
ing a value of 1.0 (white). Only two patches, located at the same posi-
tions in each image and 8 pixels wide, are independently assigned a
random value between 0.0 and 1.0. While in the uniform dataset (Fig.
B.2a) the pixels in each patch have the same color, in the noisy dataset
(Fig. B.2b) the pixels vary inside a patch as well.

b.3.1.1 Uniform Toy Data

Since there are only two independent sources in the input data, we
chose to have only two units in the code layer. In order to become
independent, they each have to concentrate on a different patch. As
a matter of fact, it would be sufficient for the units to have their re-
ceptive field focus on just a single pixel rather than the whole 8-pixel
patch. In our experiments, however, this was never the case. Instead,
the resulting features, depicted in Fig. B.3, always cover a patch as a
whole.

Figure B.3 shows that each PM code unit’s receptive field converges
to one single patch for maximal unpredictability. In contrast, the AE
units draw their inputs from both patches (same results are obtained
for dAE). Their objective function ensures that enough information is
stored to reconstruct the input patterns, but does not force the units to
become independent. Looking at the prediction errors (Fig. B.4), how-
ever, we discover that both code layers minimize their predictability.
While this is expected for PM, it seems that in order to reconstruct
the image, the AE units necessarily have to become more indepen-
dent from each other as well. This result also corroborates the recent
findings in [213].

It is not clear, if the ability to reconstruct input patterns inevitably
leads to better intermediate representations and, later on, better per-
formance for a deep network whose layers are trained in this way.

b.3.1.2 Noisy Toy Data

The noisy dataset is more complex than the uniform version from
section B.3.1.1 because its information content is much higher. While

232 predictability minimization for deep learning

Figure B.3: AE (top) and PM (bot-
tom) features on the
toy dataset. Each of the
two PM units concen-
trates on one patch for
maximal unpredictabil-
ity. The AE features
contain enough infor-
mation to almost com-
pletely reconstruct the
original images, but the
units are not as indepen-
dent.

Figure B.4: Prediction error of both
AE and PM network, aver-
aged over 20 runs. While
the objective function for
AE does not force the
units to become unpre-
dictable, their prediction
error still increases (al-
though much slower than
for the PM network), in-
dicating that independent
features help the AE in re-
constructing the input pat-
terns.

structure is clearly present in the data (and can easily be identified
by inspection in Fig. B.2b) it is difficult for (d)AE architectures to
reconstruct the inputs as it can only perform well by memorizing the
patterns.

We increased the code layer size to 10 units and let a PM network
compete against a hybrid version: a predictability minimizing autoen-
coder (PMAE). For PMAE, two different learning rates for the PM
module were chosen. After 2000 epochs, both PMAE networks were
able to isolate the noisy patches and tune their features to the loca-
tion of the patches, while the AE features still looked random. Figure
B.5b shows the 10 features for AE and one of the PMAEs, the other
features were ommited in this plot but were very similar.

At 2000 epochs, AE had improved only marginally with an error of
310.23, while PMAE’s reconstruction errors were 202.71 and 175.50,
respectively. Because we could see slight improvement in AE’s error,
we let the experiment continue for another 10000 epochs and found
that all three methods evenutally converged to almost the same error,
but it took pure AE unusually long to do so.

While we looked at the prediction errors in section B.3.1.1, here we
used PM to guide AE training and were interested in its convergence
speed. The results for the noisy toy dataset imply that AE training
can be accelerated significantly if combined with PM training. Differ-

B.3 experiments 233

(a) AE features after 2000 epochs (b) PMAE features after 2000 epochs

Figure B.5: Plots of the weights for each of the 10 code units after training
for 2000 epochs.

Figure B.6: Reconstruction error for pure AE (blue, dashed line) and two
PMAE networks with different learning rates. Combining PM
and AE leads to significantly faster convergence and similar re-
sults.

ent PM learning rates led to different convergence speed, but both
outperformed pure AE by far. It remains to be seen if this result is
valid for larger and more complex datasets as well.

b.3.2 Digit Classification

We performed experiments on a subset of the original MNIST prob-
lem which is part of a bigger benchmark suite [212]. The problem
is divided into a training, validation and test set (10000, 2000, 50000

respectively). The input dimensionality is d = 28× 28 = 768.
Due to our current restricted hardware equipment we were only

able to experiment with Neural Networks with two hidden layers.
We also had to fix the size of each layer: The first layer contains
1000 code units, the second 2000. Classification was done with an
additional softmax layer. After the unsupervised pre training was fin-
ished, we trained the softmax layer seperately for 30 epochs, using
standard backpropagation. This was followed by a global fine-tuning
phase, again using standard backpropagation. To speed up training
(both unsupervised and supervised), we subdivided the training set
into minibatches each containing 1000 training cases and updated the
weights after each minibatch. We tried several values for the hyper-
parameters (learning rates, training epochs during unsupervised pre
training) and used early stopping in the fine tuning phase. We se-

234 predictability minimization for deep learning

Figure B.7: PM Features. Depicted are the weight matrices of 100 code units,
trained with pure PM. Some features resemble silhouettes of dig-
its or parts of digits that occur frequently.

lected the best setting for each model according to its classification
performance on the validation set.

In total, we trained 4 models:

sdae A stacked denoising autoencoder [407] achieved a classifica-
tion error of 3.764%.

spm Both layers were initialized with PM as described in Section B.1,
(i.e. the reconstruction criterion is ignored). The classification
error is 3.968%.

spmae Each layer is pre trained with PM and a traditional autoen-
coder. The classification error is 3.782%.

spmdae Both layers are pre trained with PM combined with a de-
noising autoencoder. The classification error is 3.734%.

b.4 conclusion and future work

We draw several conclusions from our results. First, the combination
of a stacked (denoising) PMAE delivered the best results, beating
sdAE marginally. This supports the findings of the noisy toy data
experiment (section B.3.1.2) and demonstrates that autoencoders can
be improved by PM.

Secondly, using PM, it is possible to get comparable results with
a traditional AE (which is not denoising) even if the code layer size
is bigger than the input dimension. This suggests that the denoising

B.4 conclusion and future work 235

part of AE can be replaced by PM training, preventing the AE to
simply learn the identity function and forcing it into a direction of
useful intermediate representations.

And lastly, PM alone without enforcing reconstruction can compete
with the above methods and yields similar classification results. This
shows that the AE’s reconstrucing property is not necessarily the key
incredient for good classification. Other criteria, like minimized pre-
dictability, are valid candidates for creating good codes and should
be considered in future analysis of deep learning architectures. A se-
lection of features created by the PM network are shown in Figure
B.7.

Immediate future work is obvious: We want to perform all experi-
ments with our proposed method (and its variants) on the benchmark
of classification problems used in [212]. In particular we are interested
how the performance evolves when using more code units per layer
and more layers.

PM was originally introduced for finding good (quasi-) binary codes
in an unsupervised manner. Thus it is a straight forward idea to com-
bine PM with semantic hasing [322].

Finally, another interesting direction will be to add neighborhood
relationships, or general lateral connections, between the code units
similar to the idea presented in [213].

B I B L I O G R A P H Y

[1] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn. Ap-
plying convolutional neural networks concepts to hybrid nn-
hmm model for speech recognition. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4277–
4280, 2012. (Cited on page 133.)

[2] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning
algorithm for boltzmann machines*. Cognitive science, 9(1):147–
169, 1985. (Cited on page 48.)

[3] F. Agostinelli, M. Hoffman, P. J. Sadowski, and P. Baldi. Learn-
ing activation functions to improve deep neural networks. In
International Conference on Learning Representations (ICLR), Work-
shop Track, 2015. (Cited on page 70.)

[4] M. A. Aizerman, E. A. Braverman, and L. Rozonoer. Theoret-
ical foundations of the potential function method in pattern
recognition learning. In Automation and Remote Control, pages
821–837, 1964. (Cited on page 207.)

[5] G. An. The effects of adding noise during backpropagation
training on a generalization performance. Neural Computation,
8(3):643–674, 1996. (Cited on page 94.)

[6] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgar-
sky. Tensor decompositions for learning latent variable models.
The Journal of Machine Learning Research, 15(1):2773–2832, 2014.
(Cited on page 13.)

[7] A. Auffinger and G. B. Arous. Complexity of random smooth
functions on the high-dimensional sphere. The Annals of Proba-
bility, 41(6):4214–4247, 2013. (Cited on page 89.)

[8] A. Auffinger, G. B. Arous, and J. Černỳ. Random matrices and
complexity of spin glasses. Communications on Pure and Applied
Mathematics, 66(2):165–201, 2013. (Cited on page 89.)

[9] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine transla-
tion by jointly learning to align and translate. In International
Conference on Learning Representations (ICLR), 2014. (Cited on
pages 99 and 100.)

[10] D. H. Ballard. Modular learning in neural networks. In Proc.
AAAI, pages 279–284, 1987. (Cited on pages 93 and 94.)

237

238 bibliography

[11] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge
University Press, 2012. (Cited on page 41.)

[12] D. Barber and C. M. Bishop. Ensemble learning in bayesian neu-
ral networks. In Generalization in Neural Networks and Machine
Learning, 1998. (Cited on page 111.)

[13] H. B. Barlow. Unsupervised learning. Neural Computation, 1(3):
295–311, 1989. (Cited on pages 227 and 228.)

[14] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up
robust features. In European Conference on Computer Vision
(ECCV), pages 404–417. Springer, 2006. (Cited on pages 131,
187, and 190.)

[15] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind.
Automatic differentiation in machine learning: a survey. CoRR,
abs/1502.05767, 2015. (Cited on page 72.)

[16] J. Bayer and C. Osendorfer. Learning stochastic recurrent
networks. CoRR, abs/1411.7610, 2014. (Cited on pages 111

and 115.)

[17] J. Bayer, C. Osendorfer, and P. van der Smagt. Learning se-
quence neighbourhood metrics. In International Conference on
Artificial Neural Networks (ICANN), 2012. (Cited on pages 141,
176, and 213.)

[18] J. Bayer, C. Osendorfer, C. Chen, S. Urban, and P. van der Smagt.
On fast dropout and its applicability to recurrent networks.
CoRR, abs/1311.0701, 2013. (Cited on page 100.)

[19] J. Bayer, C. Osendorfer, S. Urban, and P. van der Smagt. Training
neural networks with implicit variance. In Neural Information
Processing ICONIP, pages 132–139, 2013. (Cited on page 100.)

[20] A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM Jour-
nal on Imaging Sciences, 2(1):183–202, 2009. (Cited on page 61.)

[21] S Becker and Y. LeCun. Improving the convergence of back-
propagation learning with second order methods. In Proceed-
ings of the 1988 connectionist models summer school. San Matteo,
CA: Morgan Kaufmann, 1988. (Cited on page 155.)

[22] S. Becker and Y. LeCun. Improving the convergence of back-
propagation learning with second-order methods. In D. Touret-
zky, G. E. Hinton, and T. Sejnowski, editors, Proc. of the 1988
Connectionist Models Summer School, pages 29–37. Morgan Kauf-
man, 1989. (Cited on pages 90 and 155.)

bibliography 239

[23] A. J. Bell and T. J. Sejnowski. An information-maximization
approach to blind separation and blind deconvolution. Neural
Computation, 7(6):1129–1159, 1995. (Cited on page 95.)

[24] Y. Bengio. Learning deep architectures for AI. Now Publishers Inc,
2009. (Cited on page 227.)

[25] Y. Bengio and Y. Le Cun. Scaling learning algorithms towards
ai. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors,
Large-Scale Kernel Machines. MIT Press, 2007. (Cited on pages 91,
93, and 227.)

[26] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term de-
pendencies with gradient descent is difficult. Neural Networks,
5(2):157–166, 1994. (Cited on page 75.)

[27] Y. Bengio, O. Delalleau, and N. L. Roux. The curse of highly
variable functions for local kernel machines. In Advances in
Neural Information Processing Systems (NIPS), 2005. (Cited on
pages 67 and 91.)

[28] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy
layer-wise training of deep networks. In Advances in Neural
Information Processing Systems (NIPS), 2006. (Cited on pages 93,
94, and 227.)

[29] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. Ad-
vances in optimizing recurrent networks. In International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages
8624–8628. IEEE, 2013. (Cited on page 155.)

[30] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denois-
ing auto-encoders as generative models. In Advances in Neural
Information Processing Systems (NIPS), 2013. (Cited on page 101.)

[31] J. Besag. Spatial interaction and the statistical analysis of lattice
systems. Journal of the Royal Statistical Society. Series B (Method-
ological), pages 192–236, 1974. (Cited on page 44.)

[32] M. J. Betancourt, S. Byrne, S. Livingstone, and M. Girolami.
The geometric foundations of hamiltonian monte carlo. arXiv
preprint arXiv:1410.5110, 2014. (Cited on page 40.)

[33] E. Bingham and H. Mannila. Random projection in dimension-
ality reduction: applications to image and text data. In Interna-
tional conference on Knowledge Discovery and Data Mining (KDD),
pages 245–250. ACM, 2001. (Cited on page 128.)

[34] C. M. Bishop. Neural networks for pattern recognition. Oxford
University Press, 1995. (Cited on pages 66, 68, 86, 91, and 96.)

240 bibliography

[35] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006. (Cited on pages 4, 31, 36, 40, 41, 43, 56, 57, 59, 77, 97, 109,
133, 146, 219, 220, and 223.)

[36] A. L. Blum and R. L. Rivest. Training a 3-node neural network
is NP-complete. Neural Networks, 5(1):117–127, 1992. (Cited on
page 71.)

[37] L. Bottou. Large-scale machine learning with stochastic gradi-
ent descent. In Proceedings of COMPSTAT’2010, pages 177–186.
Springer, 2010. (Cited on pages 88 and 154.)

[38] L. Bottou. Stochastic gradient tricks. In G. Montavon, G. B. Orr,
and K. R. Müller, editors, Neural Networks, Tricks of the Trade,
Reloaded, Lecture Notes in Computer Science (LNCS 7700),
pages 430–445. Springer, 2012. (Cited on page 88.)

[39] H. Bourlard and Y. Kamp. Auto-association by multilayer per-
ceptrons and singular value decomposition. Biological cybernet-
ics, 1988. (Cited on pages 94 and 100.)

[40] J. S. Bridle, Anthony J. R. Heading, and J. C. D. MacKay. Unsu-
pervised classifiers, mutual information and ’phantom targets’.
In Advances in Neural Information Processing Systems (NIPS),
pages 1096–1101, 1991. (Cited on page 115.)

[41] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Säckinger, and R. Shah. Signature verification using siamese
time delay neural network. International Journal of Pattern Recog-
nition and Artificial Intelligence, 7(4):669–688, 1993. (Cited on
page 176.)

[42] M. Brown and D. G. Lowe. Automatic panoramic image stitch-
ing using invariant features. International Journal of Computer
Vision (IJCV), 74(1):59–73, 2007. (Cited on page 132.)

[43] M. Brown, G. Hua, and S. Winder. Discriminative learning of
local image descriptors. Pattern Analysis and Machine Intelligence
(PAMI), 2010. (Cited on pages 122, 123, 127, 135, 137, 139, 176,
180, 181, 182, 185, 186, 194, and 195.)

[44] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral net-
works and locally connected networks on graphs. In Interna-
tional Conference on Learning Representations (ICLR), 2013. (Cited
on page 140.)

[45] A. E. Bryson. A gradient method for optimizing multi-stage
allocation processes. In Proc. Harvard Univ. Symposium on digital
computers and their applications, 1961. (Cited on page 72.)

bibliography 241

[46] A. E. Bryson and Y. C. Ho. Applied optimal control: optimiza-
tion, estimation, and control. Blaisdell Pub. Co., 1969. (Cited on
page 72.)

[47] C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model com-
pression. In International Conference on Knowledge Discovery and
Data Mining (KDD), 2006. (Cited on page 212.)

[48] P. J. Burt and E. H. Adelson. The laplacian pyramid as a com-
pact image code. IEEE Transactions on Communications, 31(4):
532–540, 1983. (Cited on page 204.)

[49] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha,
and P. Fua. Brief: Computing a local binary descriptor very fast.
Pattern Analysis and Machine Intelligence (PAMI), 34(7):1281–1298,
2012. (Cited on page 187.)

[50] M. A. Carreira-Perpinán and W. Wang. Distributed optimiza-
tion of deeply nested systems. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2014. (Cited on
pages 100, 134, and 169.)

[51] A. Cauchy. Méthode générale pour la résolution des systèmes
d’équations simultanées. Compte Rendu à l’Académie des Sciences,
Paris, 25:536–538, 1847. (Cited on page 14.)

[52] P. Chang and J. Krumm. Object recognition with color cooc-
currence histograms. In Computer Vision and Pattern Recognition
(CVPR), volume 2, 1999. (Cited on page 131.)

[53] K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature en-
coding methods. In British Machine Vision Conference (BMVC),
2011. (Cited on pages 170 and 171.)

[54] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Re-
turn of the devil in the details: Delving deep into convolutional
nets. In British Machine Vision Conference (BMVC), 2014. (Cited
on pages 3, 169, 170, and 171.)

[55] X. Chen and A. L. Yuille. Articulated pose estimation by a
graphical model with image dependent pairwise relations. In
Advances in Neural Information Processing Systems (NIPS), pages
1736–1744, 2014. (Cited on page 100.)

[56] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation. In Empiricial Methods in Natural Language Processing
(EMNLP), 2014. (Cited on page 107.)

242 bibliography

[57] A. Choromanska, M. Henaff, M. Mathieu, G. Arous, and Y. Le-
Cun. The loss surface of multilayer networks. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2015.
(Cited on pages 71, 86, 89, and 177.)

[58] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and
Y. Bengio. A recurrent latent variable model for sequential data.
In NIPS, 2015. (Cited on pages 111 and 115.)

[59] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber. A commit-
tee of neural networks for traffic sign classification. In Inter-
national Joint Conference on Neural Networks (IJNN), pages 1918–
1921, 2011. (Cited on pages 3 and 99.)

[60] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber. Multi-
column deep neural network for traffic sign classification. Neu-
ral Networks, 32:333–338, 2012. (Cited on pages 99, 121, 133, 158,
and 208.)

[61] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep
neural networks for image classification. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012. (Cited on
pages 3 and 121.)

[62] D. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber.
Mitosis detection in breast cancer histology images with deep
neural networks. In Medical Imaging Computing and Computer
Assisted Interventions (MICCAI), volume 2, pages 411–418, 2013.
(Cited on pages 3, 99, 121, and 133.)

[63] D. C. Cireşan, U. Meier, L.M. Gambardella, and J. Schmidhuber.
Deep, big, simple neural nets for handwritten digit recognition.
Neural Computation, 22(12):3207–3220, 2010. (Cited on pages 3,
98, and 158.)

[64] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and
J. Schmidhuber. Flexible, high performance convolutional neu-
ral networks for image classification. In International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 1237–1242, 2011.
(Cited on pages 133, 152, 158, and 208.)

[65] A. Coates and A. Ng. The importance of encoding versus train-
ing with sparse coding and vector quantization. In Interna-
tional Conference on Machine Learning (ICML), 2011. (Cited on
pages 183 and 189.)

[66] A. Coates, H. Lee, and A. Ng. An analysis of single layer net-
works in unsupervised feature learning. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2011. (Cited
on pages 169, 174, and 192.)

bibliography 243

[67] A. Coates, A. Karpathy, and A. Ng. Emergence of object-
selective features in unsupervised feature learning. In Advances
in Neural Information Processing Systems (NIPS), 2012. (Cited on
pages 180 and 192.)

[68] P. Comon. Independent component analysis—a new concept?
Signal Processing, 36(3):287–314, 1994. (Cited on page 95.)

[69] T. H. Cormen, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.
(Cited on page 72.)

[70] T.M. Cover and J.A. Thomas. Elements of information theory.
Wiley-interscience, 2006. (Cited on page 186.)

[71] B.J. Culpepper, J. Sohl-Dickstein, and B.A. Olshausen. Building
a better probabilistic model of images by factorization. In Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2011.
(Cited on pages 111 and 112.)

[72] G. Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems, 2(4):303–314,
1989. (Cited on page 71.)

[73] G. E. Dahl, M. A. Ranzato, A. Mohamed, and G. E. Hinton.
Phone recognition with the mean-covariance restricted Boltz-
mann machine. In Advances in Neural Information Processing Sys-
tems (NIPS), pages 469–477, 2010. (Cited on pages 133 and 192.)

[74] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 886–893. IEEE, 2005. (Cited
on page 131.)

[75] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresh-
olding algorithm for linear inverse problems with a sparsity
constraint. Communications on Pure and Applied Mathematics, 57

(11):1413–1457, 2004. (Cited on pages 61 and 101.)

[76] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio. Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization. In Advances in
Neural Information Processing Systems (NIPS), 2014. (Cited on
pages 71, 89, 103, and 154.)

[77] G. M. Davis, S. G. Mallat, and Z. Zhang. Adaptive time-
frequency decompositions. Optical Engineering, 33(7):2183–2191,
1994. (Cited on page 61.)

244 bibliography

[78] Steven Davis and Paul Mermelstein. Comparison of parametric
representations for monosyllabic word recognition in continu-
ously spoken sentences. Acoustics, Speech and Signal Processing,
28(4):357–366, 1980. (Cited on page 133.)

[79] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The
helmholtz machine. Neural Computation, 7(5):889–904, 1995.
(Cited on pages 109 and 110.)

[80] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. Im-
ageNet: A Large-Scale Hierarchical Image Database. In Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2009.
(Cited on pages 98, 121, 135, and 174.)

[81] M. Denil, B. Shakibi, L. Dinh, and N. de Freitas. Predicting
parameters in deep learning. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 2148–2156, 2013. (Cited
on page 100.)

[82] E. L Denton, C. Chintala, A. Szlam, and R. Fergus. Deep gen-
erative image models using a laplacian pyramid of adversarial
networks. In Advances in Neural Information Processing Systems
(NIPS), 2015. (Cited on pages 209 and 213.)

[83] D. L. Donoho and X. Huo. Uncertainty principles and ideal
atomic decomposition. Information Theory, 47(7):2845–2862,
2001. (Cited on page 61.)

[84] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox.
Discriminative unsupervised feature learning with convolu-
tional neural networks. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2014. (Cited on pages 3 and 98.)

[85] S. E. Dreyfus. The numerical solution of variational problems.
Journal of Mathematical Analysis and Applications, 5(1):30–45, 1962.
(Cited on page 72.)

[86] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. The Jour-
nal of Machine Learning Research, 12:2121–2159, 2011. (Cited on
page 89.)

[87] R. Durbin and D. E. Rumelhart. Product units: A computa-
tionally powerful and biologically plausible extension to back-
propagation networks. Neural Computation, 1(1):133–142, March
1989. (Cited on page 69.)

[88] S. Edelman, N. Intrator, and T. Poggio. Complex cells and object
recognition. Unpublished manuscript: http://kybele. psych. cornell.
edu/ edelman/archive. html, 1997. (Cited on page 131.)

bibliography 245

[89] J. L. Elman and D. Zipser. Learning the hidden structure of
speech. The Journal of the Acoustical Society of America, 83(4):
1615–1626, 1988. (Cited on page 94.)

[90] D. Erhan, P. A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent.
The difficulty of training deep architectures and the effect of un-
supervised pre-training. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2009. (Cited on pages 229

and 230.)

[91] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
challenge 2007 (voc2007) results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html,
2007. (Cited on page 169.)

[92] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes (VOC) chal-
lenge. International Journal of Computer Vision (IJCV), 80(2):303–
338, 2010. (Cited on page 169.)

[93] S. E. Fahlman and C. Lebiere. The cascade-correlation learn-
ing architecture. In Advances in Neural Information Processing
Systems (NIPS), 1990. (Cited on page 93.)

[94] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hier-
archical features for scene labeling. Pattern Analysis and Machine
Intelligence (PAMI), 35(8):1915–1929, 2013. (Cited on pages 99,
121, 133, and 204.)

[95] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual
models from few training examples: An incremental bayesian
approach tested on 101 object categories. Computer Vision and
Image Understanding, 2007. (Cited on pages 174 and 179.)

[96] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient
projection for sparse reconstruction: Application to compressed
sensing and other inverse problems. Selected Topics in Signal Pro-
cessing, IEEE Journal of, 1(4):586–597, 2007. (Cited on page 61.)

[97] P. Fischer, A. Dosovitskiy, and T. Brox. Descriptor matching
with convolutional neural networks: a comparison to sift. arXiv
preprint arXiv:1405.5769, 2014. (Cited on page 176.)

[98] Peter Földiak. Forming sparse representations by local anti-
hebbian learning. Biological cybernetics, 64(2):165–170, 1990.
(Cited on pages 103 and 104.)

[99] W. T. Freeman and E. H. Adelson. The design and use of steer-
able filters. Pattern Analysis and Machine Intelligence (PAMI), 13

(9):891–906, 1991. (Cited on page 131.)

246 bibliography

[100] Y. Freund and D. Haussler. Unsupervised learning of distri-
butions on binary vectors using two layer networks. Technical
report, University of California, Santa Cruz, 1994. (Cited on
page 182.)

[101] M. C. Fu. Gradient estimation. Handbooks in operations research
and management science, 13:575–616, 2006. (Cited on pages 41

and 42.)

[102] K. Fukunaga. Introduction to statistical pattern recognition. Aca-
demic press, 1990. (Cited on page 57.)

[103] K. Fukushima. Neocognitron: A self-organizing neural net-
work model for a mechanism of pattern recognition unaffected
by shift in position. Biological cybernetics, 36(4):193–202, 1980.
(Cited on page 83.)

[104] Y. Gal and Z. Ghahramani. Bayesian convolutional neu-
ral networks with bernoulli approximate variational inference.
arXiv preprint arXiv:1506.02158, 2015. (Cited on pages 97, 208,
and 213.)

[105] Z. Gan, R. Henao, D. Carlson, and L. Carin. Learning deep sig-
moid belief networks with data augmentation. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2015.
(Cited on page 64.)

[106] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the KITTI vision benchmark suite. In Com-
puter Vision and Pattern Recognition (CVPR), 2012. (Cited on
page 124.)

[107] S. Geman and D. Geman. Stochastic relaxation, gibbs distribu-
tions and the bayesian restoration of images. Pattern Analysis
and Machine Intelligence (PAMI), 1984. (Cited on page 38.)

[108] A. P. George and W. B. Powell. Adaptive stepsizes for recursive
estimation with applications in approximate dynamic program-
ming. Machine Learning, 65(1):167–198, 2006. (Cited on page 89.)

[109] F. A Gers, J. Schmidhuber, and F. Cummins. Learning to forget:
Continual prediction with LSTM. Neural Computation, 12(10):
2451–2471, 2000. (Cited on pages 87, 91, and 97.)

[110] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber. Learning
precise timing with LSTM recurrent networks. The Journal of
Machine Learning Research, 3:115–143, 2003. (Cited on page 91.)

[111] Z. Ghahramani and G. E. Hinton. The EM algorithm for mix-
tures of factor analyzers. University of Toronto Technical Report
CRG-TR-96-1, 1997. (Cited on page 60.)

bibliography 247

[112] R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable
part models are convolutional neural networks. In CVPR, 2015.
(Cited on page 83.)

[113] Ross Girshick. Fast R-CNN. In International Conference on Com-
puter Vision (ICCV), 2015. (Cited on page 121.)

[114] P. Glasserman. Monte Carlo methods in financial engineering, vol-
ume 53. Springer Science & Business Media, 2003. (Cited on
page 42.)

[115] X. Glorot and Y. Bengio. Understanding the difficulty of train-
ing deep feedforward neural networks. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), pages 249–
256, 2010. (Cited on page 92.)

[116] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural
networks. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2011. (Cited on pages 70 and 150.)

[117] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov.
Neighbourhood components analysis. In Advances in Neural In-
formation Processing Systems (NIPS), 2005. (Cited on page 141.)

[118] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3.
The Johns Hopkins University Press, 2012. (Cited on pages 12

and 140.)

[119] R. Gomes, A. Krause, and P. Perona. Discriminative clustering
by regularized information maximization. In Advances in Neural
Information Processing Systems (NIPS), 2010. (Cited on page 115.)

[120] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio. Maxout networks. In International Conference on Ma-
chine Learning (ICML), 2013. (Cited on pages 70 and 150.)

[121] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adver-
sarial nets. In Advances in Neural Information Processing Systems
(NIPS), 2014. (Cited on page 214.)

[122] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014. (Cited on page 212.)

[123] I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively
characterizing neural network optimization problems. CoRR,
abs/1412.6544, 2014. (Cited on pages 71, 89, 99, and 177.)

[124] A. Graves. Practical variational inference for neural networks.
In Advances in Neural Information Processing Systems (NIPS), 2011.
(Cited on page 111.)

248 bibliography

[125] A. Graves. Offline arabic handwriting recognition with multidi-
mensional recurrent neural networks. In Guide to OCR for Arabic
Scripts, pages 297–313. Springer, 2012. (Cited on page 133.)

[126] A. Graves and J. Schmidhuber. Offline handwriting recognition
with multidimensional recurrent neural networks. Advances in
Neural Information Processing Systems (NIPS), 21, 2009. (Cited on
page 133.)

[127] A. Graves, S. Fernandez, and J. Schmidhuber. Multi-
dimensional recurrent neural networks. In International Con-
ference on Artificial Neural Networks (ICANN), 2007. (Cited on
page 213.)

[128] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke,
and J. Schmidhuber. A novel connectionist system for uncon-
strained handwriting recognition. Pattern Analysis and Machine
Intelligence (PAMI), 31(5):855–868, 2009. (Cited on page 99.)

[129] A. Graves, A. Mohamed, and G. E. Hinton. Speech recognition
with deep recurrent neural networks. In Acoustics, Speech and
Signal Processing (ICASSP), pages 6645–6649, 2013. (Cited on
page 99.)

[130] K. Gregor and Y. LeCun. Learning fast approximations of
sparse coding. In International Conference on Machine Learning
(ICML), 2010. (Cited on pages 61, 102, and 107.)

[131] K. Gregor, A. Szlam, and Y. LeCun. Structured sparse coding
via lateral inhibition. In Advances in Neural Information Process-
ing Systems (NIPS), 2011. (Cited on pages 106 and 107.)

[132] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW:
A recurrent neural network for image generation. In Interna-
tional Conference on Machine Learning (ICML), 2015. (Cited on
pages 114, 208, and 213.)

[133] A. Griewank. A mathematical view of automatic differentiation.
Acta Numerica, 12:321–398, 2003. (Cited on page 72.)

[134] A. Griewank and A. Walther. Evaluating derivatives: principles
and techniques of algorithmic differentiation. SIAM, 2008. (Cited
on page 72.)

[135] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cate-
gory dataset. Technical report, California Institute of Technol-
ogy, 2007. (Cited on page 174.)

[136] G. Grimmett and D. Stirzaker. Probability and Random Processes.
Oxford University Press, USA, 2001. (Cited on page 19.)

bibliography 249

[137] C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio. Learned-norm
pooling for deep feedforward and recurrent neural networks.
In Machine Learning and Knowledge Discovery in Databases, pages
530–546. Springer, 2014. (Cited on page 84.)

[138] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction
by learning an invariant mapping. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2006. (Cited on pages 143,
144, and 176.)

[139] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical inte-
gration illustrated by the Störmer–Verlet method. Acta numer-
ica, 12:399–450, 2003. (Cited on page 40.)

[140] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.
Matchnet: Unifying feature and metric learning for patch-based
matching. In Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015. (Cited on page 176.)

[141] T. D. Harrison. A Connectionist framework for continuous speech
recognition. PhD thesis, Cambridge University, 1987. (Cited on
page 94.)

[142] J. Håstad. Computational Limitations of Small-depth Circuits. MIT
Press, Cambridge, MA, USA, 1987. (Cited on page 91.)

[143] W. K. Hastings. Monte carlo sampling methods using markov
chains and their applications. Biometrika, 57(1):97–109, 1970.
(Cited on page 39.)

[144] M. Havlena and K. Schindler. Vocmatch: Efficient multiview
correspondence for structure from motion. In European Confer-
ence on Computer Vision (ECCV), pages 46–60, 2014. (Cited on
page 132.)

[145] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in
deep convolutional networks for visual recognition. In European
Conference on Computer Vision (ECCV), 2014. (Cited on pages 169

and 214.)

[146] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classifi-
cation. arXiv preprint arXiv:1502.01852, 2015. (Cited on pages 70,
87, and 93.)

[147] H. Heuser. Lehrbuch der Analysis, Teil 1. Vieweg+Teubner Verlag,
2003. (Cited on pages 13, 61, 103, and 106.)

[148] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531, 2015. (Cited
on page 212.)

250 bibliography

[149] G. E. Hinton. Training products of experts by minimizing con-
trastive divergence. Neural Computation, 14(8):1771–1800, 2002.
(Cited on pages 50, 183, and 188.)

[150] G. E. Hinton. A practical guide to training restricted boltzmann
machines. Technical report, University of Toronto, 2010. (Cited
on pages 183 and 188.)

[151] G. E. Hinton and R. Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science, 313(5786):504–507,
2006. (Cited on pages 182 and 227.)

[152] G. E. Hinton and T. J. Sejnowski. Learning and relearning in
boltzmann machines. In D. E. Rumelhart, J. L. McClelland, and
PDP Research Group, editors, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Vol. 1, pages 282–317.
MIT Press, 1986. (Cited on pages 47 and 57.)

[153] G. E. Hinton and D. Van Camp. Keeping the neural networks
simple by minimizing the description length of the weights. In
Conference on Computational Learning Theory, 1993. (Cited on
pages 109 and 111.)

[154] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The" wake-
sleep" algorithm for unsupervised neural networks. Science, 268

(5214):1158–1161, 1995. (Cited on page 65.)

[155] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algo-
rithm for deep belief nets. Neural Computation, 18(7):1527–1554,
2006. (Cited on pages 64, 93, and 227.)

[156] G. E. Hinton, S. Osindero, M. Welling, and Y. W. Teh. Unsuper-
vised discovery of nonlinear structure using contrastive back-
propagation. Cognitive science, 30(4):725–731, 2006. (Cited on
pages 99 and 100.)

[157] G.E. Hinton. Connectionist learning procedures. Artificial intel-
ligence, 40(1-3):185–234, 1989. (Cited on page 227.)

[158] T. Hobbes. Leviathan or The Matter, Forme and Power of a Common
Wealth Ecclesiasticall and Civil. 1651. (Cited on page 104.)

[159] S. Hochreiter. Untersuchungen zu dynamischen neuronalen
netzen. diploma thesis, 1991. Advisor:J. Schmidhuber. (Cited
on page 75.)

[160] S. Hochreiter and J. Schmidhuber. Flat minima. Neural Compu-
tation, 9(1):1–42, 1997. (Cited on page 99.)

[161] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997. (Cited on pages 76

and 91.)

bibliography 251

[162] S. Hochreiter and J. Schmidhuber. LOCOCODE performs non-
linear ICA without knowing the number of sources. In J.-F.
Cardoso, C. Jutten, and P. Loubaton, editors, First International
Workshop on Independent Component Analysis and Signal Separa-
tion, Aussois, France, pages 149–154, 1999. (Cited on page 95.)

[163] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gra-
dient flow in recurrent nets: the difficulty of learning long-term
dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field
Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.
(Cited on page 75.)

[164] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic
variational inference. The Journal of Machine Learning Research,
14(1):1303–1347, 2013. (Cited on page 109.)

[165] J. J. Hopfield. Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of the national
academy of sciences, 79(8):2554–2558, 1982. (Cited on page 103.)

[166] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge
university press, 2012. (Cited on page 9.)

[167] K. Hornik. Approximation capabilities of multilayer feedfor-
ward networks. Neural Networks, 4(2):251–257, 1991. (Cited on
page 71.)

[168] H. Hotelling. Analysis of a complex of statistical variables into
principal components. Journal of educational psychology, 24(6):
417, 1933. (Cited on page 57.)

[169] M. J. Huiskes, B. Thomee, and M. S. Lew. New trends and ideas
in visual concept detection: The mir flickr retrieval evaluation
initiative. In International Conference on Multimedia Information
Retrieval, pages 527–536. ACM, 2010. (Cited on page 170.)

[170] A. Hyvärinen and E. Oja. Independent component analysis: al-
gorithms and applications. Neural Networks, 13(4):411–430, 2000.
(Cited on page 95.)

[171] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Inter-
national Conference on Machine Learning (ICML), 2015. (Cited on
pages 95, 96, 97, and 212.)

[172] A. G. Ivakhnenko. Polynomial theory of complex systems. IEEE
Transactions on Systems, Man and Cybernetics, (4):364–378, 1971.
(Cited on page 72.)

[173] A. G. Ivakhnenko and V. G. Lapa. Cybernetic Predicting Devices.
CCM Information Corporation, 1965. (Cited on page 72.)

252 bibliography

[174] T. Iwata, D. Duvenaud, and Z. Ghahramani. Warped mixtures
for nonparametric cluster shapes. In Uncertainty in Artificial
Intelligence, 2013. (Cited on page 119.)

[175] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adap-
tive mixtures of local experts. Neural Computation, 3(1):79–87,
1991. (Cited on page 205.)

[176] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up con-
volutional neural networks with low rank expansions. In British
Machine Vision Conference (BMVC), 2014. (Cited on page 100.)

[177] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu.
Spatial transformer networks. In Advances in Neural Information
Processing Systems (NIPS), 2015. (Cited on page 213.)

[178] H. Jaeger. The "echo state" approach to analysing and training
recurrent neural networks. Technical Report GMD Report 148,
German National Research Center for Information Technology,
2001. (Cited on page 93.)

[179] H. Jaeger. Adaptive nonlinear system identification with echo
state networks. In Advances in Neural Information Processing Sys-
tems, 2002. (Cited on page 93.)

[180] M. Jahrer, M. Grabner, and H. Bischof. Learned local descrip-
tors for recognition and matching. In Computer Vision Winter
Workshop, 2008. (Cited on page 176.)

[181] A. K. Jain, N. K. Ratha, and S. Lakshmanan. Object detection us-
ing gabor filters. Pattern Recognition, 30(2):295–309, 1997. (Cited
on page 131.)

[182] K. Jarrett, K. Kavukcuoglu, M.A. Ranzato, and Y. LeCun. What
is the best multi-stage architecture for object recognition? In
International Conference on Computer Vision (ICCV), 2009. (Cited
on pages 140 and 152.)

[183] A Jazwinski. Filtering for nonlinear dynamical systems. IEEE
Transactions on Automatic Control, 11(4):765–766, 1966. (Cited on
page 28.)

[184] H. Jégou, T. Furon, and J. Fuchs. Anti-sparse coding for ap-
proximate nearest neighbor search. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2029–
2032, 2012. (Cited on page 159.)

[185] J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités
entre les valeurs moyennes. Acta Mathematica, 30(1):175–193,
1906. (Cited on page 20.)

bibliography 253

[186] Y. Jia and T. Darrell. Heavy-tailed distances for gradient based
image descriptors. In Advances in Neural Information Processing
Systems (NIPS), 2011. (Cited on page 185.)

[187] Y. Jia, M. Salzmann, and T. Darrell. Factorized latent spaces
with structured sparsity. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2010. (Cited on page 111.)

[188] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architec-
ture for fast feature embedding. CoRR, abs/1408.5093, 2014.
(Cited on pages 86 and 140.)

[189] I. Jolliffe. Principal component analysis. Wiley Online Library,
2002. (Cited on page 57.)

[190] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An
introduction to variational methods for graphical models. Ma-
chine learning, 37(2):183–233, 1999. (Cited on pages 60 and 109.)

[191] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical ex-
ploration of recurrent network architectures. In International
Conference on Machine Learning (ICML), 2015. (Cited on page 87.)

[192] J. S. Judd. Neural network design and the complexity of learning.
MIT Press, 1990. (Cited on page 71.)

[193] C. Jutten and J. Herault. Blind separation of sources, part I: An
adaptive algorithm based on neuromimetic architecture. Signal
Processing, 24(1):1–10, 1991. (Cited on page 95.)

[194] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolu-
tional neural network for modelling sentences. Association for
Computational Linguistics (ACL), 2014. (Cited on page 133.)

[195] N. Kalchbrenner, I. Danihelka, and A. Graves. Grid long short-
term memory. arXiv preprint arXiv:1507.01526, 2015. (Cited on
pages 96 and 106.)

[196] R. E. Kalman. A new approach to linear filtering and prediction
problems. Journal of Fluids Engineering, 82(1):35–45, 1960. (Cited
on page 28.)

[197] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. arXiv preprint
arXiv:1412.2306, 2014. (Cited on page 99.)

[198] H. J. Kelley. Gradient theory of optimal flight paths. ARS Jour-
nal, 30(10):947–954, 1960. (Cited on page 72.)

254 bibliography

[199] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations
(ICLR), 2014. (Cited on page 207.)

[200] D. P. Kingma and M. Welling. Auto-encoding variational bayes.
In International Conference on Learning Representations (ICLR),
2013. (Cited on pages 42, 65, 109, 110, and 208.)

[201] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.
Semi-supervised learning with deep generative models. In
Advances in Neural Information Processing Systems (NIPS), pages
3581–3589, 2014. (Cited on pages 111, 114, 116, and 118.)

[202] J. F. C. Kingman and S. J. Taylor. Introduction to Measure and Prob-
ability. Cambridge University Press, 1966. (Cited on page 26.)

[203] D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd
Ed.): Fundamental Algorithms. Addison Wesley Longman Pub-
lishing Co., Inc., 1997. (Cited on page 90.)

[204] D. Koller and N. Friedman. Probabilistic graphical models: princi-
ples and techniques. MIT press, 2009. (Cited on pages 43 and 52.)

[205] K. Königsberger. Analysis 1 (Springer Lehrbuch). Springer, 2004.
(Cited on page 13.)

[206] A. Korattikara, V. Rathod, K. Murphy, and M. Welling. Bayesian
dark knowledge. In Advances in Neural Information Processing
Systems (NIPS), 2015. (Cited on pages 100 and 212.)

[207] A. Krizhevsky. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009. (Cited
on pages 104, 150, 152, 174, and 179.)

[208] A. Krizhevsky and G.E. Hinton. Using very deep autoencoders
for content-based image retrieval. In European Symposium on
Artificial Neural Network (ESANN), 2011. (Cited on pages 84,
180, 192, and 193.)

[209] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classi-
fication with deep convolutional neural networks. In Advances
in Neural Information Processing Systems (NIPS), 2012. (Cited on
pages 3, 70, 98, 99, 121, 127, 140, 158, and 182.)

[210] B. Kulis. Metric learning: A survey. Foundations and Trends
in Machine Learning, 5(4):287–364, 2012. (Cited on pages 143

and 176.)

[211] H. Larochelle and I. Murray. The neural autoregressive distribu-
tion estimator. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2011. (Cited on page 112.)

bibliography 255

[212] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio.
An empirical evaluation of deep architectures on problems with
many factors of variation. In International Conference on Machine
Learning (ICML), 2007. (Cited on pages 233 and 235.)

[213] H. Larochelle, D. Erhan, and P. Vincent. Deep learning using ro-
bust interdependent codes. In Artificial Intelligence and Statistics,
2009. (Cited on pages 231 and 235.)

[214] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene cate-
gories. In Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2, pages 2169–2178, 2006. (Cited on pages 132

and 171.)

[215] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng. ICA with re-
construction cost for efficient overcomplete feature learning. In
Advances in Neural Information Processing Systems, 2011. (Cited
on page 95.)

[216] Q. V. Le, R. Monga, M. Devin, G. Corrado, K. Chen, M. A. Ran-
zato, J. Dean, and A. Y. Ng. Building high-level features using
large scale unsupervised learning. In International Conference on
Machine Learning (ICML), 2012. (Cited on page 180.)

[217] Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to
initialize recurrent networks of rectified linear units. CoRR,
abs/1504.00941, 2015. (Cited on page 93.)

[218] Y. LeCun. Une procédure d’apprentissage pour réseau a seuil
asymmetrique (a learning scheme for asymmetric threshold net-
works). In Cognitiva 85, pages 599–604, 1985. (Cited on page 72.)

[219] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Computation, 1(4):541–
551, 1989. (Cited on page 83.)

[220] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.
Jackel. Optimal brain damage. Advances in Neural Information
Processing Systems (NIPS), 1990. (Cited on page 90.)

[221] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, November 1998. (Cited on pages 83

and 152.)

[222] Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of
handwritten digits. http://yann.lecun.com/exdb/mnist, 1998.
Accessed: 2015-10-01. (Cited on page 105.)

http://yann.lecun.com/exdb/mnist

256 bibliography

[223] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for
generic object recognition with invariance to pose and lighting.
In Conference on Computer Vision and Pattern Recognition (CVPR),
2004. (Cited on page 179.)

[224] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller. Efficient back-
prop. In Neural Networks: Tricks of the trade, pages 9–48. Springer,
2012. (Cited on pages 70, 87, and 95.)

[225] H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model
for visual area v2. In Advances in Neural Information Processing
Systems (NIPS), 2008. (Cited on page 227.)

[226] R. Lengellé and T. Denoeux. Training MLPs layer by layer us-
ing an objective function for internal representations. Neural
Networks, 9(1):83–97, 1996. (Cited on page 93.)

[227] V. Lepetit and P. Fua. Keypoint recognition using randomized
trees. Pattern Analysis and Machine Intelligence (PAMI), 28(9):
1465–1479, 2006. (Cited on pages 137 and 181.)

[228] S. Leutenegger, M. Chli, and R.Y. Siegwart. Brisk: Binary ro-
bust invariant scalable keypoints. In International Conference on
Computer Vision (ICCV), 2011. (Cited on page 187.)

[229] J. Lin. Divergence measures based on the shannon entropy. In-
formation Theory, 37(1):145–151, 1991. (Cited on page 186.)

[230] L. Lin, O. Morère, V. Chandrasekhar, A. Veillard, and H. Goh.
DeepHash: Getting regularization, depth and fine-tuning right.
CoRR, abs/1501.04711, 2015. (Cited on pages 159 and 178.)

[231] M. Lin, Q. Chen, and S. Yan. Network in network. In Interna-
tional Conference on Learning Representations (ICLR), 2014. (Cited
on page 106.)

[232] T. Lindeberg. Scale-space theory: A basic tool for analyzing
structures at different scales. Journal of applied statistics, 1994.
(Cited on pages 122, 123, 204, and 214.)

[233] S. Linnainmaa. The representation of the cumulative rounding
error of an algorithm as a Taylor expansion of the local round-
ing errors. Master’s thesis, University Helsinki, 1970. (Cited on
page 72.)

[234] A. Livnat, C. Papadimitriou, N. Pippenger, and M. W. Feld-
man. Sex, mixability, and modularity. Proceedings of the National
Academy of Sciences, 107(4):1452–1457, 2010. (Cited on page 97.)

[235] N. K. Logothetis, J. Pauls, and T. Poggio. Shape representation
in the inferior temporal cortex of monkeys. Current Biology, 5

(5):552–563, 1995. (Cited on page 131.)

bibliography 257

[236] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-
tional networks for semantic segmentation. arXiv preprint
arXiv:1411.4038, 2014. (Cited on page 86.)

[237] J. L. Long, N. Zhang, and T. Darrell. Do convnets learn corre-
spondence? In Advances in Neural Information Processing Systems
(NIPS), 2014. (Cited on page 176.)

[238] D. G. Lowe. Object recognition from local scale-invariant fea-
tures. IJCV, 2:1150–1157, 1999. (Cited on pages 126 and 139.)

[239] D.G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2):91–110,
2004. (Cited on pages 131, 137, 181, 182, 186, 190, and 214.)

[240] M. LukoševičIus and H. Jaeger. Reservoir computing ap-
proaches to recurrent neural network training. Computer Science
Review, 3(3):127–149, 2009. (Cited on page 93.)

[241] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities
improve neural network acoustic models. In ICML, 2013. (Cited
on page 70.)

[242] D. J. C. MacKay. Information theory, Inference and Learning Algo-
rithms. Cambridge University Press, 2003. (Cited on pages 34,
39, 40, 47, and 90.)

[243] J. R. Magnus and H. Neudecker. Matrix Differential Calculus
with Applications in Statistics and Econometrics. Wiley, 3rd edition,
2007. (Cited on pages 13, 15, and 16.)

[244] A. Makhzani and B. J. Frey. k-sparse autoencoders. CoRR,
abs/1312.5663, 2013. (Cited on page 95.)

[245] J. Malik and P. Perona. Preattentive texture discrimination with
early vision mechanisms. Journal of the Optical Society of America
A, 7(5):923–932, 1990. (Cited on pages 70 and 150.)

[246] J Martens. Deep learning via hessian-free optimization. In In-
ternational Conference on Machine Learning (ICML), 2010. (Cited
on page 89.)

[247] J Martens. Learning the linear dynamical system with asos. In
International Conference on Machine Learning (ICML), 2010. (Cited
on page 153.)

[248] J. Masci, U. Meier, G. Fricout, and J. Schmidhuber. Multi-scale
pyramidal pooling network for generic steel defect classifica-
tion. In International Joint Conference on Neural Networks (IJCNN),
2013. (Cited on page 3.)

258 bibliography

[249] J. Masci, M. M Bronstein, A. M. Bronstein, and J. Schmidhu-
ber. Multimodal similarity-preserving hashing. Pattern Analysis
and Machine Intelligence (PAMI), 36(4):824–830, 2014. (Cited on
pages 176 and 178.)

[250] J. Masci, D. Boscaini, M. M Bronstein, and P. Vandergheynst.
Shapenet: Convolutional neural networks on non-euclidean
manifolds. CoRR, abs/1501.06297, 2015. (Cited on page 140.)

[251] M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolu-
tional networks through ffts. CoRR, abs/1312.5851, 2013. (Cited
on page 86.)

[252] C. E. McCulloch. Maximum likelihood variance components
estimation for binary data. Journal of the American Statistical
Association, 89(425):330–335, 1994. (Cited on page 60.)

[253] C. E. McCulloch. Maximum likelihood algorithms for gener-
alized linear mixed models. Journal of the American statistical
Association, 92(437):162–170, 1997. (Cited on page 60.)

[254] G. J. McLachlan and T. Krishnan. The EM algorithm and exten-
sions. Wiley New York, 1997. (Cited on pages 58, 217, 219,
and 221.)

[255] David A Medler. A brief history of connectionism. Neural Com-
puting Survey, 1998. (Cited on page 4.)

[256] R. Memisevic. Gradient-based learning of higher-order image
features. In International Conference on Computer Vision, 2011.
(Cited on pages 111 and 113.)

[257] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. Equation of state calculations by fast com-
puting machines. The Journal of Chemical Physics, 21(6):1087–
1092, 1953. (Cited on page 39.)

[258] A. S. Mian, M. Bennamoun, and R. Owens. Three-dimensional
model-based object recognition and segmentation in cluttered
scenes. Pattern Analysis and Machine Intelligence (PAMI), 28(10):
1584–1601, 2006. (Cited on page 131.)

[259] K. Mikolajczyk and C. Schmid. A performance evaluation of lo-
cal descriptors. Pattern Analysis and Machine Intelligence (PAMI),
2005. (Cited on pages 137, 179, 181, 190, and 194.)

[260] T. Mikolov. Statistical Language Models Based on Neural Networks.
PhD thesis, Brno University of Technology, 2012. (Cited on
page 98.)

bibliography 259

[261] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estima-
tion of word representations in vector space. In International
Conference on Learning Representations (ICLR), 2013. (Cited on
pages 5 and 214.)

[262] A. Mnih and K. Gregor. Neural variational inference and learn-
ing in belief networks. In International Conference on Machine
Learning (ICML), 2014. (Cited on pages 109 and 208.)

[263] V. Mnih, N. Heess, and A. Graves. Recurrent models of visual
attention. In Advances in Neural Information Processing Systems
(NIPS), 2014. (Cited on page 205.)

[264] H. Mobahi, R. Collobert, and J. Weston. Deep learning from
temporal coherence in video. In International Conference on Ma-
chine Learning (ICML), 2009. (Cited on page 126.)

[265] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the num-
ber of linear regions of deep neural networks. In Advances in
Neural Information Processing Systems (NIPS), pages 2924–2932,
2014. (Cited on pages 70 and 150.)

[266] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012. (Cited on pages 55 and 56.)

[267] A. F. Murray and P. J. Edwards. Enhanced MLP performance
and fault tolerance resulting from synaptic weight noise dur-
ing training. Neural Networks, 5(5):792–802, 1994. (Cited on
page 94.)

[268] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In International Conference on Ma-
chine Learning (ICML), 2010. (Cited on pages 70, 150, and 192.)

[269] V. Nair and G.E. Hinton. 3-d object recognition with deep belief
nets. In Advances in Neural Information Processing Systems (NIPS),
2009. (Cited on page 183.)

[270] B. K. Natarajan. Sparse approximate solutions to linear sys-
tems. SIAM journal on computing, 24(2):227–234, 1995. (Cited on
page 61.)

[271] R. M. Neal. Probabilistic inference using markov chain monte
carlo methods. Technical report, University of Toronto, 1993.
(Cited on pages 37 and 185.)

[272] R. M. Neal. MCMC using hamiltonian dynamics. Handbook of
Markov Chain Monte Carlo, 2010. (Cited on page 40.)

[273] R. M. Neal and G. E. Hinton. A new view of the EM algorithm
that justifies incremental and other variants. Learning in Graphi-
cal Models, 1998. (Cited on pages 59, 60, and 217.)

260 bibliography

[274] R.M. Neal. Connectionist learning of belief networks. Artificial
Intelligence, 56(1):71–113, 1992. (Cited on pages 62 and 63.)

[275] Y. Nesterov. A method of solving a convex programming prob-
lem with convergence rate O(1/k2). Soviet Mathematics Doklady,
27(2):372–376, 1983. (Cited on page 154.)

[276] R. Neuneier and H. G. Zimmermann. How to train neural net-
works. In Neural Networks: Tricks of the Trade, pages 373–423.
Springer, 2012. (Cited on page 93.)

[277] M. Nickel, V. Tresp, and H. P. Kriegel. A three-way model for
collective learning on multi-relational data. In International Con-
ference on Machine Learning (ICML), pages 809–816, 2011. (Cited
on page 13.)

[278] J. Nocedal and S. J. Wright. Numerical optimization. Springer
verlag, 2006. (Cited on pages 14 and 71.)

[279] S. J. Nowlan and G. E. Hinton. Simplifying neural networks
by soft weight-sharing. Neural Computation, 4(4):473–493, 1992.
(Cited on page 77.)

[280] M. Oberweger, P. Wohlhart, and V. Lepetit. Hands deep in deep
learning for hand pose estimation. In Computer Vision Winter
Workshop (CVWW), 2015. (Cited on page 100.)

[281] K. S. Oh and K. Jung. GPU implementation of neural networks.
Pattern Recognition, 37(6):1311–1314, 2004. (Cited on page 98.)

[282] B.A. Olshausen and D.J. Field. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natural
images. Nature, 381(6583):607–609, 1996. (Cited on page 61.)

[283] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization
for free?–weakly-supervised learning with convolutional neu-
ral networks. In Computer Vision and Pattern Recognition (CVPR),
2015. (Cited on page 121.)

[284] C. Osendorfer, J. Bayer, S. Urban, and P. van der Smagt. Convo-
lutional neural networks learn compact local image descriptors.
In Neural Information Processing (ICONIP), pages 624–630, 2013.
(Cited on page 176.)

[285] C. Osendorfer, H. Hubert Soyer, and P. van der Smagt. Image
super-resolution with fast approximate convolutional sparse
coding. In Neural Information Processing (ICONIP), 2014. (Cited
on pages 86, 205, and 208.)

[286] N. Parikh and S. Boyd. Proximal algorithms. Foundations and
Trends in Optimization, 1(3):127–239, 2014. (Cited on page 61.)

bibliography 261

[287] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of
training recurrent neural networks. In International Conference
on Machine Learning, pages 1310–1318, 2013. (Cited on page 98.)

[288] Judea Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann, 1988. (Cited
on page 62.)

[289] K. Pearson. Liii. on lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11):559–572, 1901. (Cited on
page 57.)

[290] B. Pepik, R. Benenson, T. Ritschel, and B. Schiele. What is hold-
ing back convnets for detection? In German Conference on Pat-
tern Recognition (GCPR), pages 517–528. Springer, 2015. (Cited
on page 122.)

[291] P. Pinheiro and R. Collobert. Recurrent convolutional neural
networks for scene labeling. In International Conference on Ma-
chine Learning (ICML), pages 82–90, 2014. (Cited on page 121.)

[292] B. Poole, J. Sohl-Dickstein, and S. Ganguli. Analyzing noise in
autoencoders and deep networks. CoRR, abs/1406.1831, 2014.
(Cited on pages 94 and 95.)

[293] L. Prechelt. Early stopping—but when? In Neural Networks:
Tricks of the Trade, pages 53–67. Springer, 2012. (Cited on
page 97.)

[294] T. Raiko, H. Valpola, and Y. LeCun. Deep learning made easier
by linear transformations in perceptrons. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), pages 924–
932, 2012. (Cited on page 96.)

[295] R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng. Self-taught
learning: Transfer learning from unlabeled data. In Interna-
tional Conference on Machine Learning (ICML), 2007. (Cited on
pages 182 and 185.)

[296] M. A. Ranzato and G. E. Hinton. Modeling pixel means and
covariances using factorized third-order boltzmann machines.
In Conference on Computer Vision and Pattern Recognition (CVPR),
2010. (Cited on pages 111, 180, 185, 189, and 190.)

[297] M. A. Ranzato and M. Szummer. Semi-supervised learning of
compact document representations with deep networks. In In-
ternational conference on Machine learning (ICML), 2008. (Cited
on pages 93, 94, and 116.)

262 bibliography

[298] M. A. Ranzato, C. S. Poultney, S. Chopra, and Y. LeCun. Effi-
cient learning of sparse representations with an energy-based
model. In Advances in Neural Information Processing Systems
(NIPS), 2006. (Cited on page 227.)

[299] M. A. Ranzato, L. Boureau, and Y. LeCun. Sparse feature learn-
ing for deep belief networks. In Advances in Neural Information
Processing Systems (NIPS), 2007. (Cited on page 83.)

[300] M. A. Ranzato, A. Krizhevsky, and G. E. Hinton. Factored 3-way
restricted boltzmann machines for modeling natural images. In
International Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2010. (Cited on pages 184, 192, and 201.)

[301] M. A. Ranzato, V. Mnih, and G.E. Hinton. Generating more real-
istic images using gated mrf’s. In Advances in Neural Information
Processing Systems (NIPS), 2010. (Cited on page 191.)

[302] M. A. Ranzato, J. Susskind, V. Mnih, and G. E. Hinton. On
deep generative models with applications to recognition. In
Conference on Computer Vision and Pattern Recognition (CVPR),
2011. (Cited on page 113.)

[303] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko.
Semi-supervised learning with ladder network. In Advances in
Neural Information Processing Systems (NIPS), 2015. (Cited on
page 99.)

[304] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn
features off-the-shelf: an astounding baseline for recognition. In
Converence on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 512–519, 2014. (Cited on pages 99 and 121.)

[305] B. Recht. Projected gradient methods, 2012. (Cited on page 58.)

[306] D. J. Rezende and S. Mohamed. Variational Inference with Nor-
malizing Flows. In International Conference on Machine Learning
(ICML), 2015. (Cited on pages 109, 111, and 112.)

[307] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic
backpropagation and approximate inference in deep genera-
tive models. In International Conference on Machine Learning
(ICML), pages 1278–1286, 2014. (Cited on pages 42, 65, 109,
110, and 208.)

[308] M. Riedmiller and H. Braun. A direct adaptive method for
faster backpropagation learning: The RPROP algorithm. In In-
ternational Conference on Neural Networks, pages 586–591. IEEE,
1993. (Cited on page 155.)

bibliography 263

[309] M. Riesenhuber and T. Poggio. Hierarchical models of object
recognition in cortex. Nature neuroscience, 2(11):1019–1025, 1999.
(Cited on page 152.)

[310] S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. N.
Dauphin, and X. Glorot. Higher order contractive auto-encoder.
In European Conference on Machine Learning (ECML), 2011. (Cited
on page 95.)

[311] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Con-
tracting auto-encoders. In International Conference on Machine
Learning (ICML), 2011. (Cited on page 95.)

[312] H. Robbins and S. Monro. A stochastic approximation method.
The annals of mathematical statistics, pages 400–407, 1951. (Cited
on pages 86, 87, and 154.)

[313] A. J. Robinson and F. Fallside. The utility driven dy-
namic error propagation network. Technical Report CUED/F-
INFENG/TR.1, Cambridge University Engineering Depart-
ment, 1987. (Cited on page 68.)

[314] J. T. Rolfe and Y. LeCun. Discriminative recurrent sparse auto-
encoders. In International Conference on Learning Representations
(ICLR), 2013. (Cited on page 107.)

[315] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio. Fitnets: Hints for thin deep nets. CoRR,
abs/1412.6550, 2014. (Cited on page 93.)

[316] P. M. Roth and M. Winter. Survey of appearance-based methods
for object recognition. Technical report, Institute for Computer
Graphics and Vision, Graz University of Technology, Austria,
2008. (Cited on page 131.)

[317] S. Roweis. EM algorithms for PCA and SPCA. In Advances in
Neural Information Processing Systems (NIPS) 27, 1998. (Cited on
page 60.)

[318] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, Vol. 2: Psy-
chological and Biological Models. MIT Press Cambridge, MA,
USA, 1986. (Cited on pages 4, 94, and 227.)

[319] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–
536, 1986. (Cited on pages 72 and 87.)

[320] H. Sak, A. Senior, and F. Beaufays. Long Short-Term Memory
recurrent neural network architectures for large scale acoustic
modeling. In Proc. INTERSPEECH, 2014. (Cited on pages 92

and 99.)

264 bibliography

[321] R. Salakhutdinov and G. E. Hinton. Learning a nonlinear em-
bedding by preserving class neighbourhood structure. In In-
ternational Conference on Artificial Intelligence and Statistics (AIS-
TATS), pages 412–419, 2007. (Cited on pages 101 and 116.)

[322] R. Salakhutdinov and G. E. Hinton. Semantic hashing. Interna-
tional Journal of Approximate Reasoning, 2008. (Cited on pages 180

and 235.)

[323] R. Salakhutdinov and G. E. Hinton. An efficient learning proce-
dure for deep boltzmann machines. Neural Computation, 24(8):
1967–2006, 2012. (Cited on page 51.)

[324] R. Salakhutdinov and H. Larochelle. Efficient learning of deep
boltzmann machines. In International Conference on Artificial In-
telligence and Statistics, pages 693–700, 2010. (Cited on page 65.)

[325] M. Salzmann, C. H. Ek, R. Urtasun, and T. Darrell. Factorized
orthogonal latent spaces. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010. (Cited on page 111.)

[326] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions
to the nonlinear dynamics of learning in deep linear neural
networks. In International Conference on Learning Representations
(ICLR), 2014. (Cited on pages 70, 71, 89, 93, and 94.)

[327] T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning
rates. In International Conference on Machine Learning (ICML),
2013. (Cited on pages 87 and 89.)

[328] D. Scherer, A. Müller, and S. Behnke. Evaluation of pooling
operations in convolutional architectures for object recognition.
In International Conference on Artificial Neural Networks (ICANN),
pages 92–101. Springer, 2010. (Cited on pages 152 and 153.)

[329] C. Schmid and R. Mohr. Local grayvalue invariants for image
retrieval. Pattern Analysis and Machine Intelligence (PAMI), 19(5):
530–534, 1997. (Cited on page 131.)

[330] J. Schmidhuber. Learning factorial codes by predictability min-
imization. Neural Computation, 4(6):863–879, 1992. (Cited on
pages 103, 227, 228, and 229.)

[331] J. Schmidhuber. Learning complex, extended sequences using
the principle of history compression. Neural Computation, 4(2):
234–242, 1992. (Cited on page 93.)

[332] J. Schmidhuber. Netzwerkarchitekturen, Zielfunktionen und Ket-
tenregel. Habilitation, Technische Universitat München, 1993.
(Cited on page 229.)

bibliography 265

[333] J. Schmidhuber. Deep learning in neural networks: An
overview. Neural Networks, 61:85–117, 2015. (Cited on pages 3,
4, 66, 72, and 73.)

[334] J. Schmidhuber and D. Prelinger. Discovering predictable clas-
sifications. Neural Computation, 5(4):625–635, 1993. (Cited on
page 176.)

[335] J. Schmidhuber, M. Eldracher, and B. Foltin. Semilinear pre-
dictability minimization produces well-known feature detec-
tors. Neural Computation, 8(4):773–786, 1996. (Cited on pages 93

and 229.)

[336] N. N. Schraudolph. Fast curvature matrix-vector products for
second-order gradient descent. Neural Computation, 2002. (Cited
on pages 66, 89, and 153.)

[337] N. N. Schraudolph, M. Eldracher, and J. Schmidhuber. Process-
ing images by semi-linear predictability minimization. Network:
Computation in Neural Systems, 1999. (Cited on page 103.)

[338] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified
embedding for face recognition and clustering. arXiv preprint
arXiv:1503.03832, 2015. (Cited on page 176.)

[339] J. Schulman, N. Heess, T. Weber, and P. Abbeel. Gradient es-
timation using stochastic computation graphs. In Advances in
Neural Information Processing Systems (NIPS), 2015. (Cited on
pages 41 and 42.)

[340] H. Schulz and S. Behnke. Learning object-class segmentation
with convolutional neural networks. In European Symposium on
Artificial Neural Networks (ESANN), 2012. (Cited on pages 121

and 133.)

[341] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural
networks applied to house numbers digit classification. In In-
ternational Conference on Pattern Recognition (ICPR), pages 3288–
3291, 2012. (Cited on page 83.)

[342] N. E. Sharkey. Image compression by back propagation: a
demonstration of extensional programming. In Advances in
Cognitive Science, volume 2. Ablex Publishing, 1987. (Cited on
page 94.)

[343] H. Shimodaira. Improving predictive inference under covari-
ate shift by weighting the log-likelihood function. Journal of
statistical planning and inference, 90(2):227–244, 2000. (Cited on
page 95.)

266 bibliography

[344] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests
for image categorization and segmentation. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2008. (Cited on
page 135.)

[345] H. T. Siegelmann and E. D. Sontag. On the computational
power of neural nets. Journal of computer and system sciences,
50(1):132–150, 1995. (Cited on page 71.)

[346] J. Sietsma and R. J. F. Dow. Creating artificial neural networks
that generalize. Neural Networks, 4(1):67–79, 1991. (Cited on
page 94.)

[347] J. Šíma. Training a single sigmoidal neuron is hard. Neural
Computation, 14(11):2709–2728, 2002. (Cited on page 71.)

[348] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and
F. Moreno-Noguer. Discriminative learning of deep convolu-
tional feature point descriptors. In International Conference on
Computer Vision (ICCV), 2015. (Cited on pages 176 and 212.)

[349] K. Simonyan. Large-Scale Learning of Discriminative Image Repre-
sentations. PhD thesis, University of Oxford, 2013. (Cited on
page 176.)

[350] K. Simonyan and A. Zisserman. Very deep convolutional net-
works for large-scale image recognition. CoRR, abs/1409.1556,
2014. (Cited on pages 3, 93, 99, and 121.)

[351] K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor learn-
ing using convex optimisation. In European Conference on Com-
puter Vision (ECCV), 2012. (Cited on pages 127, 135, 139, 159,
176, and 194.)

[352] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Free-
man. Discovering objects and their location in images. In Inter-
national Conference on Computer Vision (ICCV), volume 1, pages
370–377, 2005. (Cited on page 132.)

[353] J. Sivic, B.C. Russell, A. Zisserman, W.T. Freeman, and A.A.
Efros. Unsupervised discovery of visual object class hierarchies.
In Conference on Computer Vision and Pattern Recognition (CVPR),
2008. (Cited on page 132.)

[354] A. Smith, A. Doucet, N. de Freitas, and N. Gordon. Sequen-
tial Monte Carlo Methods in Practice. Springer, 2013. (Cited on
page 35.)

[355] P. Smolensky. Information processing in dynamical systems:
foundations of harmony theory. MIT Press Computational Models
Of Cognition And Perception Series, pages 194–281, 1986. (Cited
on page 49.)

bibliography 267

[356] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in
Neural Information Processing Systems (NIPS), 2012. (Cited on
page 146.)

[357] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. Parsing with
compositional vector grammars. In Proceedings of the ACL con-
ference, 2013. (Cited on page 93.)

[358] J. Sohl-Dickstein, M. Mudigonda, and M. Deweese. Hamilto-
nian monte carlo without detailed balance. In International Con-
ference on Machine Learning (ICML), pages 719–726, 2014. (Cited
on page 40.)

[359] C. Spearman. "General Intelligence", objectively determined
and measured. The American Journal of Psychology, 15(2):201–
292, 1904. (Cited on page 59.)

[360] P. Sprechmann, A. Bronstein, and G. Sapiro. Learning efficient
structured sparse models. In International Conference on Machine
Learning (ICML), 2012. (Cited on pages 102 and 104.)

[361] P. Sprechmann, R. Litman, T. B. Yakar, A. M. Bronstein, and
G. Sapiro. Supervised sparse analysis and synthesis opera-
tors. In Advances in Neural Information Processing Systems (NIPS),
pages 908–916, 2013. (Cited on page 107.)

[362] P. Sprechmann, A. Bronstein, and G. Sapiro. Learning efficient
sparse and low rank models. Pattern Analysis and Machine Intel-
ligence (PAMI), 2015. (Cited on page 102.)

[363] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller.
Striving for simplicity: The all convolutional net. In International
Conference on Learning Representations (ICLR), 2015. (Cited on
pages 84, 140, 151, 152, and 153.)

[364] N. Srivastava and R. Salakhutdinov. Multimodal learning with
deep boltzmann. In Advances in Neural Information Processing
Systems (NIPS), 2013. (Cited on pages 70 and 97.)

[365] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014. (Cited on pages 97, 197, and 208.)

[366] R. K. Srivastava, J. Masci, S. Kazerounian, F. Gomez, and
J. Schmidhuber. Compete to compute. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 2310–2318, 2013.
(Cited on page 150.)

268 bibliography

[367] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very
deep networks. In Advances in Neural Information Processing Sys-
tems (NIPS), 2015. (Cited on pages 67, 96, 97, and 106.)

[368] M. Stollenga, J. Masci, F. J. Gomez, and J. Schmidhuber. Deep
networks with internal selective attention through feedback
connections. In Advances in Neural Information Processing Sys-
tems (NIPS), pages 3545–3553, 2014. (Cited on pages 100

and 205.)

[369] M. Stollenga, W. Wonmin Byeon, M. Liwicki, and J. Schmid-
huber. Parallel multi-dimensional LSTM, with application to
fast biomedical volumetric image segmentation. In Advances
in Neural Information Processing Systems (NIPS), 2015. (Cited on
pages 100, 133, and 213.)

[370] R. L. Stratonovich. Conditional markov processes and their
application to the theory of optimal control. 1968. (Cited on
page 28.)

[371] A. Stuhlmüller, J. Taylor, and N. D. Goodman. Learning stochas-
tic inverses. In Advances in Neural Information Processing Systems
(NIPS), 2013. (Cited on page 65.)

[372] J. Susskind, R. Memisevic, G. E. Hinton, and M. Pollefeys. Mod-
eling the joint density of two images under a variety of transfor-
mations. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2011. (Cited on pages 198 and 200.)

[373] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 3104–3112, 2014. (Cited on
page 99.)

[374] I. Sutskever, R. Jozefowicz, K. Gregor, D. Rezende, T. Lillicrap,
and O. Vinyals. Towards principled unsupervised learning.
arXiv preprint arXiv:1511.06440, 2015. (Cited on page 211.)

[375] Ilya Sutskever. Training recurrent neural networks. PhD the-
sis, University of Toronto, 2013. (Cited on pages 89, 93, 154,
and 193.)

[376] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduc-
tion, volume 28. MIT press, 1998. (Cited on page 28.)

[377] K. Swersky, D. Tarlow, I. Sutskever, R. Salakhutdinov, R. Zemel,
and R. Adams. Cardinality restricted boltzmann machines. In
Advances in Neural Information Processing Systems (NIPS), 2012.
(Cited on page 189.)

bibliography 269

[378] K. Swersky, J. Snoek, and R. P. Adams. Freeze-thaw bayesian
optimization. arXiv preprint arXiv:1406.3896, 2014. (Cited on
page 146.)

[379] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks
for object detection. In Advances in Neural Information Processing
Systems (NIPS), pages 2553–2561, 2013. (Cited on page 121.)

[380] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2015. (Cited on pages 3, 99, and 121.)

[381] Y. Tang and A. Mohamed. Multiresolution deep belief networks.
In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2012. (Cited on pages 180, 182, and 188.)

[382] G. W. Taylor, I. Spiro, C. Bregler, and R. Fergus. Learning in-
variance through imitation. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2011. (Cited on page 176.)

[383] G. Tesauro. Practical issues in temporal difference learning. Ma-
chine learning, 8(3):257–277, 1992. (Cited on pages 91 and 227.)

[384] L. Theis and M. Bethge. Generative image modeling using spa-
tial LSTMs. In Advances in Neural Information Processing Systems
(NIPS), 2015. (Cited on pages 133 and 213.)

[385] L. Theis, A. van den Oord, and M. Bethge. A note on the evalua-
tion of generative models. arXiv preprint arXiv:1511.01844, 2015.
(Cited on pages 4, 124, 196, and 211.)

[386] R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
pages 267–288, 1996. (Cited on page 61.)

[387] T. Tieleman. Training restricted boltzmann machines using ap-
proximations to the likelihood gradient. In International Confer-
ence on Machine Learning (ICML), 2008. (Cited on pages 51, 183,
and 201.)

[388] T. Tieleman and G.E. Hinton. Lecture 6.5 - rmsprop: Divide the
gradient by a running average of its recent magnitude. COURS-
ERA: Neural Networks for Machine Learning, 2012. (Cited on
pages 89, 90, 155, and 188.)

[389] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic prin-
cipal component analyzers. Neural Computation, 11(2):443–482,
1999. (Cited on page 56.)

270 bibliography

[390] M. Titsias and M. Lázaro-Gredilla. Doubly stochastic varia-
tional bayes for non-conjugate inference. In International Con-
ference on Machine Learning (ICML), 2014. (Cited on page 110.)

[391] J. Tobin. Estimation of relationships for limited dependent vari-
ables. Econometrica: journal of the Econometric Society, pages 24–
36, 1958. (Cited on page 71.)

[392] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descrip-
tor applied to wide-baseline stereo. Pattern Analysis and Machine
Intelligence (PAMI), 32(5):815–830, 2010. (Cited on page 132.)

[393] A. Toshev and C. Szegedy. Deeppose: Human pose estima-
tion via deep neural networks. In Computer Vision and Pattern
Recognition (CVPR), pages 1653–1660, 2014. (Cited on pages 100

and 121.)

[394] J. A. Tropp. Greed is good: Algorithmic results for sparse ap-
proximation. IEEE Transactions on Information Theory, 50(10):
2231–2242, 2004. (Cited on page 61.)

[395] T. Trzcinski and V. Lepetit. Efficient discriminative projections
for compact binary descriptors. In European Conference on Com-
puter Vision (ECCV), 2012. (Cited on pages 176, 191, and 192.)

[396] T. Trzcinski, M. Christoudias, V. Lepetit, and P. Fua. Learning
image descriptors with the boosting-trick. In Advances in Neural
Information Processing Systems (NIPS), 2012. (Cited on pages 127,
135, 139, 146, and 176.)

[397] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit. Boosting
binary image descriptors. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2013. (Cited on page 160.)

[398] S. Urban and P. van der Smagt. A neural transfer function for a
smooth and differentiable transition between additive and mul-
tiplicative interactions. CoRR, abs/1503.05724, 2015. (Cited on
page 69.)

[399] B. Uria, I. Murray, and H. Larochelle. A deep and tractable den-
sity estimator. In International Conference on Machine Learning
(ICML), 2014. (Cited on page 113.)

[400] P. E. Utgoff and D. J. Stracuzzi. Many-layered learning. Neural
Computation, 2002. (Cited on page 227.)

[401] P. van der Smagt and G. Hirzinger. Solving the ill-conditioning
in neural network learning. In G. Montavon, G. B. Orr, and K. R.
Müller, editors, Neural Networks: Tricks of the Trade, volume 7700

of Lecture Notes in Computer Science, pages 191–203. Springer
Berlin Heidelberg, 2012. (Cited on page 96.)

bibliography 271

[402] V. Vapnik. Statistical Learning Theory. Wiley, 1998. (Cited on
page 206.)

[403] V. Vapnik. The nature of statistical learning theory. Springer Ver-
lag, 2000. (Cited on page 33.)

[404] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable li-
brary of computer vision algorithms. In International Conference
on Multimedia, 2010. (Cited on page 187.)

[405] M. Vetterli, J. Kovačević, and V. K. Goyal. Foundations of sig-
nal processing. Cambridge University Press, 2014. (Cited on
pages 79, 81, and 86.)

[406] L. Vilnis and A. McCallum. Word representations via Gaussian
Embedding. In International Conference on Learning Representa-
tions (ICLR), 2015. (Cited on pages 5 and 207.)

[407] P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Ex-
tracting and composing robust features with denoising autoen-
coders. In International Conference on Machine Learning (ICML),
2008. (Cited on pages 94, 227, 230, and 234.)

[408] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Man-
zagol. Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11:3371–3408, 2010. (Cited
on pages 101 and 192.)

[409] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A
neural image caption generator. arXiv preprint arXiv:1411.4555,
2014. (Cited on page 99.)

[410] M. J. Wainwright and M. I. Jordan. Graphical models, exponen-
tial families, and variational inference. Foundations and Trends
in Machine Learning, 1(1-2):1–305, 2008. (Cited on page 43.)

[411] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regular-
ization of neural networks using dropconnect. In International
Conference on Machine Learning (ICML), pages 1058–1066, 2013.
(Cited on pages 97 and 98.)

[412] Q. Wang and J. JaJa. From maxout to channel-out: Encoding in-
formation on sparse pathways. In International Conference on Ar-
tificial Neural Networks (ICANN), pages 273–280. Springer, 2014.
(Cited on page 70.)

[413] S. Wang and C. Manning. Fast dropout training. In Inter-
national Conference on Machine Learning (ICML), pages 118–126,
2013. (Cited on page 100.)

272 bibliography

[414] J. Weng, N. Ahuja, and T. S. Huang. Cresceptron: a self-
organizing neural network which grows adaptively. In Inter-
national Joint Conference on Neural Networks (IJCNN), volume 1,
pages 576–581, 1992. (Cited on pages 83 and 152.)

[415] P. J. Werbos. Generalization of backpropagation with applica-
tion to a recurrent gas market model. Neural Networks, 1(4):
339–356, 1988. (Cited on page 68.)

[416] P. J. Werbos. Backpropagation through time: what it does and
how to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.
(Cited on page 77.)

[417] J. Weston, F. Ratle, H. Mobahi, and R. Collobert. Deep learning
via semi-supervised embedding. In Neural Networks: Tricks of
the Trade, pages 639–655. Springer, 2012. (Cited on pages 93

and 94.)

[418] S. Wiesler and H. Ney. A convergence analysis of log-linear
training. In Advances in Neural Information Processing Systems
(NIPS), pages 657–665, 2011. (Cited on page 95.)

[419] R. J. Williams. Complexity of exact gradient computation algo-
rithms for recurrent neural networks. Technical Report Tech-
nical Report NU-CCS-89-27, Boston: Northeastern University,
College of Computer Science, 1989. (Cited on page 68.)

[420] S. Winder and M. Brown. Learning local image descriptors.
In Conference on Computer Vision and Pattern Recognition (CVPR),
2007. (Cited on pages 137, 181, and 182.)

[421] P. Wohlhart and V. Lepetit. Learning descriptors for object
recognition and 3d pose estimation. In Computer Vision and Pat-
tern Recognition (CVPR), 2015. (Cited on page 100.)

[422] C. F. J. Wu. On the convergence properties of the EM algorithm.
The Annals of Statistics, 1983. (Cited on page 221.)

[423] K. M. Yi, Y. Verdie, P. Fua, and V. Lepetit. Learning to assign
orientations to feature points. arXiv preprint arXiv:1511.04273,
2015. (Cited on page 176.)

[424] L. Younes. On the convergence of markovian stochastic algo-
rithms with rapidly decreasing ergodicity rates. Stochastics: An
International Journal of Probability and Stochastic Processes, 65(3-4):
177–228, 1999. (Cited on page 51.)

[425] A. L. Yuille. The convergence of contrastive divergences. In
Advances in Neural Information Processing Systems (NIPS), 2005.
(Cited on page 51.)

bibliography 273

[426] S. Zagoruyko and N. Komodakis. Learning to compare im-
age patches via convolutional neural networks. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015. (Cited on
page 176.)

[427] M. D. Zeiler. Adadelta: An adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012. (Cited on pages 89, 90, 117, 155,
and 156.)

[428] M. D. Zeiler and R. Fergus. Stochastic pooling for regulariza-
tion of deep convolutional neural networks. In International
Conference on Learning Representations (ICLR), 2013. (Cited on
page 152.)

[429] H. Zhou, Y. Yuan, and C. Shi. Object tracking using sift fea-
tures and mean shift. Computer Vision and Image Understanding
(CVIU), 113(3):345–352, 2009. (Cited on page 132.)

[430] S. Zokai and G. Wolberg. Image registration using log-polar
mappings for recovery of large-scale similarity and projec-
tive transformations. Image Processing, 14(10):1422–1434, 2005.
(Cited on page 202.)

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	Main work
	1 Introduction
	2 Fundamentals
	3 Dataset
	4 Supervised modeling of local image patches
	5 Unsupervised Modeling of Local Image Patches
	6 Tour des Cul-de-Sacs
	7 Conclusion

	Appendix
	A EM
	B Predictability Minimization for Deep Learning
	Bibliography

